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q-Holonomic Systems and Quantum Invariants

Abstract

The topics of this dissertation fall under the purview of quantum topology, which seeks to build

connections between the insights and constructions of quantum physics and classical topology. A

pivotal theme will be the appearance of topologically interesting q-holonomic systems in quantum

invariants. These manifest in the quasiperiodic behavior of Witten-Reshetikhin-Turaev (WRT)

invariants, and as certain modules associated to lagrangians in quantized character varieties. This

work was motivated by the AJ conjecture [Gar04a, Guk05a], which predicts that these two

manifestations are the two sides of a single coin.

The main result of this dissertation is that the ADO invariant is q-holonomic, meaning it

exhibits strong recursive behavior. Some subtlety is involved in the definition of q-holonomicity in

this setting, as the ADO invariant exhibits a topologically uninteresting quasi-periodicity because

of the appearance of roots of unity. This invariant is closely related to the colored Jones polynomial

of the AJ conjecture, and acts as its analytic continuation.
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CHAPTER 1

Background

1.1. Quantum Invariants

In the 1980s Vaughan Jones introduced a novel knot invariant built from representations of

von Neumann algebras, as detailed in his survey article [Jon85]. His treatment was based on

representing planar diagrams as closures of braids, but the question was soon posed: Is there an

intrinsically 3d description of the Jones polynomial? Later, Edward Witten published the seminal

paper [Wit89a] identifying the Jones polynomial as a partition function in a 3d quantum field

theory with complex Chern-Simons action.

Shortly after this, Nicolai Reshetikhin and Vladimir Turaev announced an algebraic implemen-

tation of Jones’ original invariant in terms of what are now called modular tensor categories. Their

work [RT90, RT91] gave a concrete procedure for producing knot invariants from categories with

extra structures mimicking the behavior of tangles.

Since their inception three decades ago, the Witten-Reshetikhin-Turaev (WRT) invariants of

links and three manifolds have been the subject of intense study and have been generalized widely.

Their construction still revolves around the existence of a unique functor

(1.1.1) FC : DC −→ C

that sends a link diagram T whose ` components are colored by objects {V1, . . . , V`} of a category

C to an endomorphism 〈T 〉 ∈ End(1lC) ' C(q). The colored Jones polynomial is one of the best

known WRT invariants and arises when C = Repq SL2C.

WRT invariants depend on the specific objects (typically representations) attached to the link

components, with the exact formulas for the invariants varying widely between representations.

There is a strong but non-obvious quasi-periodicity to the variation, which manifests as recursive

relationships between invariants at different representations. The exact expressions of these recur-

sion relations is the core of the AJ conjecture in its mathematical formulation [Gar04a, GL05].
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A new class of quantum invariants of links and three-manifolds was introduced in [ADO92,

M+08, GPMT09, CGPM15a], based on representation categories of quantum groups with van-

ishing quantum dimensions. Such categories are often non-semisimple. These invariants generalize

Witten-Reshetikhin-Turaev (WRT) invariants [Tur88, Wit89b, RT91], which are instead con-

structed from semisimple categories where quantum dimensions are all nonzero. This paper arose

from studying the recursive properties of this new class of invariants with the goal of comparing

their behavior to that of better understood quantum invariants.

This work is in part motivated by the search for a physical manifestation of this new class of

invariants. Many WRT invariants have a physical origin in Chern-Simons theory with compact

gauge group [Wit89b]. An analogous physical origin for the new class of invariants would be a 3d

continuum quantum field theory whose partition functions compute the new invariants. The results

of this dissertation support the existence of such a theory, by proving that the relevant invariants

exhibit the prerequisite strong recursive behavior.

It was shown by Garoufalidis and Lê in [GL05] that the sequence of colored Jones polynomials(
JKN (q)

)
N∈N of a knot K always obey a finite-order recursion relation. More precisely, the function

JK : N→ C[q, q−1] generates a q-holonomic module for the q-Weyl algebra

(1.1.2) E1 = C(q)[x±, y±]/(yx− qxy) ,

where x and y act on functions f : N → C(q) as multiplication by qN and shifting N 7→ N + 1,

respectively. The theory of q-holonomic modules, central to the work of [GL05], was developed by

Sabbah [Sab93] and generalized classic work on D-modules by Bernstein, Sato, Kashiwara, and

others.

It was conjectured in [Gar04b] that the classical A-polynomial of a knot K divides the q → 1

limit of any element A(x, y; q) ∈ E1 that annihilates the colored Jones polynomial JK . Since the

A-polynomial is defined using the SL(2,C) representation variety of the knot complement S3\K

[CCG+94b], this AJ conjecture established a new connection between colored Jones invariants

and classical geometry. The conjecture is open but has been confirmed in many examples, e.g.

[GS10, GK12].
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The fact that the colored Jones polynomials should be annihilated by a recursion operator

related to the A-polynomial was independently predicted by Gukov [Guk05b], based on the physics

of Chern-Simons theory. The approach of [Guk05b] was to analytically continue Chern-Simons

theory with compact gauge group SU(2) to a complex group SL(2,C); then an operator A(x, y; q)

providing recursion relations for the colored Jones was identified with an effective Hamiltonian that

must annihilate the analytically continued Chern-Simons wave function This operator had to be

a quantization of the classical A-polynomial, which was the classical Hamiltonian of the system.

(This insight was subsequently used in [Guk05b] to generalize the Volume Conjecture of [Kas97].)

From a physical perspective, the presence of an operator A(x, y; q) that quantizes the classical

A-polynomial and annihilates quantum wave functions is now known to be a robust feature of

Chern-Simons theory with gauge group SU(2) and many other versions of Chern-Simons theory

with gauge group SL(2,C), including its analytic continuation (cf. [DGLZ09, Dim15, GM19]).

It is therefore natural to ask whether the new class of quantum invariants of [ADO92, GPMT09,

CGPM15a] satisfy recursion relations related to A-polynomial.

The invariants considered in this paper are defined using the representation category of the

unrolled quantum group UHζ2r(sl2) at the 2r-th root of unity ζ2r := e
iπ
r , r ∈ N≥2. (See Sec-

tion 2 for details.) This quantum group admits a continuous family of ‘typical’ representations

{Vα}α∈(C\Z)∪(−1+rZ) that are irreducible but have vanishing quantum dimensions.

Let L be a framed, oriented link in S3, with n components colored by typical representations

Vα1 , ..., Vαn . It was shown in [ADO92, GPMT09] how to overcome the problem of vanishing

quantum dimensions to define a non-vanishing link invariant N r
L(α1, ..., αn). After restricting to

αi ∈ C\Z, it is useful to view these invariants as a family of holomorphic functions

(1.1.3) N r
L : (C\Z)n → C , (r ∈ N≥2)

that admit metamorphic continuations to (C/2rZ)n. Though this family of invariants can be

defined using the methods of [GPMT09], they appeared in the earlier work of Akutsu, Deguchi,

and Ohtsuki [ADO92]. Thus we call N r
L(α) the ADO invariants.
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We prove that the ADO invariants N r
L of any framed, oriented link L are indeed q-holonomic.

Moreover, in the case of a knot L = K, we prove that all recursion relations satisfied by the ADO

invariants are also satisfied by the colored Jones function JK .

A physical interpretation of the ADO invariant has appeared in the work [GHN+20] of Gukov,

Hsin, Nakajima, Park, & Pei. Therein, ADO invariants are related physically to a number of other

invariants, including the homological blocks of [GPPV20]. It is conjectured in [GHN+20, Sec 4]

that ADO invariants obey the same recursion operations as Jones polynomials. The results of this

chapter prove that this is indeed the case.

1.1.1. Roots of unity, q-holonomic families, and Hamiltonian reduction. It is not

obvious what should be meant when considering whether the ADO invariants are q-holonomic. At

each fixed r, the ADO invariant N r
L of an n-component link L turns out to be quasi-periodic in each

variable αi, with period 2r. (We review this property in Proposition 2.2.1 and Corollary 2.2.2.)

The result is that the ADO invariant N r
L(α1, ..., αn) at fixed r will satisfy n independent recursion

relations, of the form

(1.1.4)
( n∏
j=1

x
−2rCij
j y2ri − 1

)
N r
L(α) = 0 , i = 1, ..., n

where each xi acts as multiplication by ζαi2r := e
iπ
r
αi and each yi acts as a shift αi 7→ αi + 1, and

Cij is the integer linking matrix of L. These recursion relations, which depend only on the linking

matrix, do not have a deep connection with the A-polynomial.

To obtain topologically rich recursion relations, we work independently of the choice of r. This

leads us to introduce the notion of a q-holonomic family. Let

(1.1.5) En = C(q)[x±1 , y
±
1 , ..., x

±
n , y

±
n ]/(yixj − qδijxjyi)

be a q-Weyl algebra in n pairs of variables. Given an n-component link L with ADO invariants

{N r
L(α)}r≥2, define an analog of the annihilation ideal I[NL] ⊆ En by

(1.1.6) I[NL] = {A(x, y; q) ∈ En |A(x, y; ζ2r)N
r
L(α) = 0 for all but finitely many r ≥ 2} ,

with the action xiN
r
L(α) = ζαi2rN

r
L(α) and yiN

r
L(α) = N r

L(α1, ..., αi + 1, ..., αn). Note that the spe-

cialization of elements of En to q = ζ2r may not be defined at some finite number of r’s, which we
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discard in defining the ideal I[NL]. We prove

Theorem 2.3.3 For any framed, oriented link L, the left En-module En/I[NL] is q-holonomic.

In particular, this implies that each ADO function N r
L(α) satisfies n independent recursion

relations, which come from operators A(x, y; q) ∈ En that are independent of r.

Our method of proof is to first show that the ADO invariants N r
L(α) may be lifted (or ana-

lytically continued) to functions GD(r;x1, ..., xn, z11, z12, ..., znn; q) of 1 + n + 1
2n(n + 1) variables

r, xi, zij = zji, and q, in such a way that

(1.1.7) N r
L(α) = GD

(
r; ζα1

2r , ..., ζ
αn
2r , ζ

α2
1/2

2r , ζ
α1α2/2
2r , ..., ζ

α2
n/2

2r ; ζ2r
)
.

The diagram invariant GD is neither canonical nor a link invariant, as it depends on the choice of

a diagram D for a (1, 1)-tangle whose closure is the link L.

The virtue of GD is that it generates a q-holonomic module for the q-Weyl algebra En+1, in the

same n pairs of generators xi, yi as (1.1.5) together with a final pair x̂, ŷ that act as multiplication

by qr and shift r 7→ r+1. The proof that GD is q-holonomic (Section 1.2) is a simple generalization

of the original work of [GL05].

In Section 2.3 it’s argued that the specialization (1.1.7), which in particular sets q to be a 2r-th

root of unity, may be understood as a version of quantum Hamiltonian reduction. The Hamiltonian

reduction reduces En+1 to En by eliminating the shift ŷ in r and setting x̂ = ζr2r = −1. It

takes the annihilation ideal of GD in En+1 and explicitly constructs elements of our desired ideal

I[NL]. Appendix A has a self-contained proof that the relevant Hamiltonian reduction preserves

q-holonomic modules.

Our result that the family of ADO invariants is q-holonomic (Theorem 2.3.3) does not on its

own guarantee the existence of topologically significant recursion relations. We prove in Section

2.3.3 that the ideal I[NL] is included in the annihilation ideal of the colored Jones function (up to

a rescaling of variables.)

More concretely, suppose that L = K is an oriented knot with framing φ ∈ Z, and JKN (q) are

its colored Jones polynomials, normalized so that JunknotN (q) = (qN−q−N )/(q−q−1). Then we have:

Theorem 2.3.4 Every element A(x, y; q) ∈ I[NK ] satisfies A(q−1x, (−1)φ+1y; q)JKN = 0.
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This result follows from a relation between the representations involved in defining the ADO

and colored Jones invariants [CGPM15b]. When the parameter α of a typical module Vα for the

unrolled quantum group is an integer N−1 ∈ Z\rZ, the module is reducible and its simple quotient

is the (N − 1)-dimensional module used in defining the Nth colored Jones polynomial.

It has been shown [Wil20, BB] that both ADO and colored Jones invariants of links may be

obtain by specializations of more universal invariants valued in the Habiro ring [Hab04, Hab07].

One might expect that such relations lead to an independent proof that the family of ADO invariants

is q-holonomic, with recursion relations equivalent to those satisfied by the colored Jones. Indeed,

[Wil20, Thm 66] proves that every element in the annihilation ideal of the colored Jones of a

knot will also annihilate the family of ADO invariants. This is a converse to our Theorem 2.3.4.

Taken together, the two results establish that the annihilation ideals of the colored Jones and ADO

invariants are equivalent.

1.1.2. Example: figure-eight knot. The Jones polynomials
(
J41
N (q)

)
N∈N of the zero-framed

figure-eight knot,

(1.1.8)

J41
1 (q) = 1 , J41

2 (q) = q5 + q−5 ,

J41
3 (q) = q14 − q10 + q2 + 1 + q−2 − q−10 + q−14

J41
4 (q) = q27 − q23 − q21 + q17 + q11 + q9 + q−9 + q−11 + q−17 − q−21 − q−23 + q27 , etc.

normalized so that JunknotN (q) = qN−q−N
q−q−1 , satisfy the 2nd-order in-homogeneous recursion

(1.1.9) (q − q−1)A41(x, y; q)J41
N (q) = B41(qN ; q) ,

where1

(1.1.10)
A41(x, y; q) = (x

2

q −
q
x2

)y − (x2 − 1
x2

)(x4 − x2 − (q2 + 1
q2

)− 1
x2

+ 1
x4

) + (qx2 − 1
qx2

)y−1

B41(x; q) = (x+ 1
x)(qx2 − 1

qx2
)(x

2

q −
q
x2

) ,

1This differs slightly from the recursion relation found in [GL05], only because of the normalization of the colored
Jones polynomials we are using here. The recursions are completely equivalent.
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and x and y act as multiplication by qN and shift N 7→ N + 1, respectively. The in-homogeneous

recursion above implies the existence of a homogeneous recursion of one order higher,

(1.1.11)
[
B41(x; q)y −B41(qx; q)

]
A41(x, y; q)J41

N (q) = 0 .

The operator Ã41(x, y; q) :=
[
B41(x; q)y − B41(qx; q)

]
A(x, y; q) generates the annihilation ideal of

the colored Jones. At q = 1, it is easy to see that

(1.1.12) Ã41(m, `; q = 1) = (m+m−1)(m2−m−2)3(`− 1)
(
`− (m4−m2− 2−m−2 +m−4) + `−1

)
is divisible by the A-polynomial of the figure-eight knot, namely

(1.1.13) (`− 1)(`− (m4 −m2 − 2−m−2 +m−4) + `−1).

A compact formula for the ADO invariants of the zero-framed figure-eight knot was given

in [Mur08]; adjusted for our conventions in this paper, it reads

(1.1.14) N r
41

(α− 1) =
−i1−r

xr − x−r
r−1∑
k=0

x2k+1(q−2kx−2; q2)2k+1

∣∣∣
x = ζα2r, q = ζ2r

Letting N̂ r
41

(α) := i1−r(xr − x−r)N r
41

(α− 1), the first few ADO invariants are

(1.1.15)

N̂2
41

(α) = (x+ x−1)(x2 + 3 + x−2) (x = e
iπ
2
α)

N̂3
41

(α) = (x+ x−1)(x4 + 3x2 + 5− 3x−2 + x−4) (x = e
iπ
3
α)

N̂4
41

(α) = (x− x−1)(x2 + 1 + x−1)3 (x = e
iπ
4
α)

N̂5
41

(α) = (x− x−1)(x+ x−1)2
[
x6 + x4

+(3 + q2 − q3)(x2 + x−2) + (2− q2 + q3) + x−4 + x−6
]

(x = e
iπ
5
α, q = e

iπ
5 )

Further values appear in Appendix B. We verify for each 2 ≤ r ≤ 20 that

(1.1.16) A41(x, y; ζ2r)N̂
r
41

(α) = −(ζ2rα2r − 3 + ζ−2rα2r )B41(ζα2r, ζ2r) ,

for exactly the same A41 and B41 as in (1.1.10), with x and y now acting as multiplication by ζα2r

and shift α 7→ α+ 1, respectively. These in-homogeneous recursions imply that for each r the ADO

invariant satisfies a homogeneous recursion

(1.1.17) Ã41(x, y; ζ2r)N̂
r
41

(α) = 0 r ∈ N≥2

7



for exactly the same Ã41(x, y; q) =
[
B41(x; q)y − B41(qx; q)

]
A41(x, y; q) that annihilated the col-

ored Jones. Note that (1.1.17) is equivalent to Ã41(qx,−y; ζ2r)N
r
41

(α) = 0 in the ‘un-hatted’

normalization, in agreement with Theorem 2.3.4.

Further examples of in-homogeneous and homogeneous recursions for the 31 and 52 knots are

collected in Appendix B.

1.2. q-Holonomicity

q-Holonomic systems are a q-difference analog of classical holonomic ones. They are useful for

describing and measuring recursive behaviors of functions with discrete arguments. We give a brief

introduction here, deferring most technical details to the following Section 1.2.1.

Let Wn be the nth q-Weyl algebra, generated by q-difference operators on n variables. Certain

WRT invariants, including the colored Jones and ADO invariants, generate Wn modules. (Here n

is the number of link components.) The “strength” of the recursion of a Wn-module N is measured

by its homological dimension.

Let F be the Bernstein filtration on Wn given by total degree in its generators [Sab93, §1.5.1].

Suppose G is an ascending filtration on a finitely generated W module N whose filtered components

GjN are finite dimensional over C(q), and compatible with F in the sense that

(1.2.1) FjWn · GkN ⊆ Gj+kN

Given any such good filtration,2 there exists a unique Hilbert polynomial p such that dimC(q) GiN =

p(i) for i� 0.

Definition 1.2.1. (Homological Dimension.) For a finitely generated W module N with good

filtration G, the degree of the Hilbert polynomial p is the homological dimension of N as a Wn

module. It is denoted d(N).

Intuitively, d(N) is the growth rate of the filtered components of N . It does not depend on

the choice of filtration [Sab93, Thm 1.5.3]. The lower d(N) is, the more linear relations there are

between elements of N . There are bounds on the homological dimension.

2When N = Wn〈f〉 is cyclic, the filtration given by FjN = (FjW) 〈f〉 satisfies these requirements.
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Theorem 1.2.2. (Bernstein’s Inequality) [Sab93] Let Wn be the q-Weyl algebra of rank n

and N a finitely generated Wn module. Then either d(N) = 0, in which case N = 0, or else

n ≤ d(N) ≤ 2n.

A Wn module N is called q-holonomic when d(N) = n or 0. Any generator of a cyclic q-

holonomic module is likewise called q-holonomic. The central result of this dissertation is that the

ADO invariants are a q-holonomic family. This is a necessary condition of the AJ conjecture, which

further claims that the recursion relations are a quantized version of the A-polynomial [CCG+94a].

The closure properties of q-holonomic functions under addition, multiplication, multi-sums,

etc. are consequences of universal algebraic features of q-holonomic modules. In particular the

closure properties are independent of the actual functional spaces on which q-Weyl algebras are

represented.

To maintain a reasonably self-contained and pedagogical exposition, we will review basic defi-

nitions and examples of q-holonomic modules in Section 1.2.1, following the classic work of Sabbah

[Sab93], which in turn was based on work of Bernstein [Ber71], Sato, Kashiwara, and others on

D-modules. In the process we will introduce the functional spaces Vm,n relevant for the diagram

invariant GD defined in Section 2.2.1.

Other good references include the classic [Zei90, WZ92], as well as the more recent survey

[GL16]. There are powerful derived methods available to study generalizations of q-Weyl modules

and functors among them, such as [KS12]. We will not require or discuss these methods.

In Section 1.2.2 we explain how standard closure properties of q-holonomic modules apply to

GD. Then in Section 2.2.3 we emulate [GL05] to prove that GD is q-holonomic — by verifying

that all the building blocks of Section 2.2.1 are q-holonomic and that their composition to form GD

preserves this property.

1.2.1. q-holonomic modules and functions. Let Cq = C(q) denote the field of fractions in

a formal variable q. Recall the q-Weyl algebras in n pairs of variables

(1.2.2)
Wn =Cq[x1, ..., xn, y1, ..., yn]/relq

En =Cq[x±11 , ..., x±1n , y±11 , ..., y±1n ]/rel±q

9



Namely, these consist of polynomials (resp. Laurent polynomials) in 2n non-commutative formal

variables xi, yi (resp. x±i , y
±
i ), subject to the relations

(1.2.3) relq :

yixj = qδijxjyj

xixj = xjxi

yiyj = yjyi

rel±q :

yεi x
ε′
j = qεε

′δijxε
′
j y

ε
j

xεix
ε′
j = xε

′
j x

ε
i

yεi y
ε′
j = yε

′
j y

ε
i

(ε, ε′ ∈ {±1})

as well as the implicit relations xix
−1
i = yiy

−1
i = 1.

Both algebras have a notion of a q-holonomic module, though their respective definitions differ

some. The notion of q-holonomic Wn modules is based on homological dimension, which quantifies

the quasi-periodicity of the module elements under the action of Wn. Homological dimension is

based on the Bernstein Filtration F•Wn given by total degree in x and y,

(1.2.4) FkWn = Cq〈xayb s.t. |a|+ |b| ≤ k〉 ,

where we write |a| =
∑

j aj for a multi-index a = (a1, ..., an). Given a left Wn-module M , an

ascending filtration F•M is called a “good filtration” if the associated Rees module is a finitely

generated module for the Rees algebra of Wn. In particular, this implies that the filtrations on Wn

and M are compatible (i.e. FkWn · F`M ⊆ Fk+`M), and that each FkM is finite-dimensional.

Remarkably, for every good filtration there exists a Hilbert polynomial p such that dimCq FkM =

p(k) for k � 0. The degree of the Hilbert polynomial is denoted d(M) and called the homological

dimension of M . It is independent of the choice of good filtration. In other words, d(M) is the

polynomial order of growth of the filtered components of any good filtration.

The q-analogue of Bernstein’s inequality guarantees that if M is a finitely generated Wn module

and has no monomial torsion3 then d(M) ≥ n. We are interested in the case when the homological

dimension is as small as possible.

Definition 1.2.3. A left Wn-module M is called q-holonomic if it is finitely generated, has no

monomial torsion, and either M = 0 or d(M) = n.

Since elements of En may have arbitrarily large negative degree, the components of the Bernstein

filtration will be infinite dimensional. Being q-holonomic is instead defined in terms of homological

3Given a left Wn-module M , its monomial torsion mtor(M) ⊆ M is the subspace consisting of v ∈ M such that
xayb v = 0 for some monomial xayb := xa11 · · ·xann ya11 · · · yann ∈Wn.
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codimension. Given a left En-module M , its homological codimension c(M) is the smallest integer

k such that ExtkEn(M,En) 6= 0.

Definition 1.2.4. A left En-module M is called q-holonomic if it is finitely generated and

M = 0 or c(M) = n.

Results in [Sab93, Sec. 2] show that for any finitely-generated En-module M one has c(M) ≤ n

(an analogue of Bernstein’s inequality), and that M is q-holonomic if and only if ExtkEn(M,En) = 0

for all k 6= n.

There is a close relationship between En and Wn modules. First, En has a natural right Wn-

module structure, which provides a map from (left) Wn modules to En modules, i.e.

(1.2.5)
Wn-mod → En-mod

M 7→ En ⊗Wn M .

Note that the kernel of this map consists precisely of Wn-modules with monomial torsion. Con-

versely, any finitely-generated En-module M can be written as M = En ⊗Wn N for some N (e.g.

the Wn-span of the generators of M). A simple result of [Sab93, Sec. 2] is

Proposition 1.2.5. A left En-module M is q-holonomic if and only if there exists a q-holonomic

left Wn module N with M = En ⊗Wn N .

1.2.1.1. Cyclic modules. We will mainly be interested in cyclic modules, i.e. modules of the

form M = Env or N = Wnv generated by a single element v. In the case of Wn-modules, a useful

observation is that every cyclic module has a canonical good filtration, given by

(1.2.6) FkN := (FkWn)v .

In the case of En-modules, another structural result of [Sab93, Sec. 2] shows that

Proposition 1.2.6. Every q-holonomic En-module is cyclic.

We recall that any cyclic module may be written in the form

(1.2.7) M = En
/

AnnEn(v) or N = Wn

/
AnnWn(v) ,

11



where the annihilation ideal AnnA(v) = {a ∈ A s.t. av = 0} is the left ideal in the algebra A = En

or Wn consisting of elements that kill the generator.

For a cyclic module M , being q-holonomic roughly implies that the annihilation ideal has at

least n independent generators. This can be made precise by introducing the characteristic variety

charM ∈ (C∗)2n; by (e.g.) Prop. 7.1.9 of [KS12], M is q-holonomic if and only if dim(charM) = n.

The corresponding statement for D-modules is a classic result in the theory, cf. [Kas77]. A weaker,

specialized result, which is sufficient for all the examples we need to consider in this paper, is the

following:

Lemma 1.2.7. Let M = Env be a cyclic En-module whose annihilation ideal contains elements

of the form pj(x)yj
dj +qj(x) for each j = 1, ..., n, with pj(x), qj(x) ∈ Cq[x1, ..., xn], pj , qj 6= 0. Then

M is q-holonomic.

Proof. We will prove that the associated Wn-module N = Wnv is q-holonomic, by showing

that the dimensions of the filtered components FkN = (FkWn)v obey dimFkN ≤ Ckn for some

fixed constant C. Then it follows from Prop. 1.2.5 that M = Env is q-holonomic.

Choose any k ≥ max{n, d1, ..., dn}. The filtered component FkN is certainly spanned by all the

monomials xaybv := xa11 ...x
an
n y

b1
1 ...y

bn
n v with |a|+ |b| ≤ k. However, the relations

(1.2.8) (pj(x)yj
dj + qi(x))v = 0 , j = 1, ..., n

make some of these monomials redundant, and reduce the dimension. Let cj = degxj pj(x). Then,

for any j, we observe that if xaybv is divisible by y
dj
j , the relations (1.2.8) imply that it is sufficient

to consider xa such that degxj x
a < cj . In other words, FkN is spanned by

(1.2.9)
{
xaybv

∣∣∣ |a|+ |b| ≤ k , aj , bj ≥ 0 for all j , and for all j, bj ≥ dj only if aj < cj

}
We seek an upper bound for dimension of this space of monomials. Let d = max{d1, ..., dn}

and c = max{c1, ..., cn}. For each 0 ≤ m ≤ n, let

Sm :=


(a, b)

∣∣∣∣∣∣∣∣∣∣∣

aj , bj ≤ k for all j,

bj ≥ d for exactly m values of j,

and bj ≥ d only if aj < c


12



Then
⋃n
m=0 Sm contains the set of (a, b) such that xaybv is in the set (1.2.9), and we can count

|Sm| =

n

m

dn−m(k − d + 1)m(k + 1)n−mcm ≤ Cmkn, 0 ≤ m ≤ n(1.2.10)

for some constants Cm (depending on m,n, c,d). Thus

dimFkN ≤
n∑

m=0

|Sm| ≤
( n∑
m=0

Cm
)
kn,

so that the homological dimension of N is at most n, and N is a q-holonomic Wn module. We

conclude that M ' En ⊗Wn N is likewise q-holonomic. �

1.2.1.2. The function spaces Vm,n. The cyclic modules relevant to this work arise from a par-

ticular representation of the W and E algebras. For any non-negative integers m and n, we define

(1.2.11) Vm,n = {functions : Zm → Vn} ,

where Vn is the field of rational functions in q
1
2 , {x

1
2
i }ni=1, {zij}ni,j=1 as in (2.2.7). (Recall that the

diagram invariant GD is valued in Vn.) We will think of Vm,n as a vector space over the fraction

field Cq = C(q). The appearance of the continuous variables xi, zij is a departure from the setting

of the colored Jones polynomial.

The space Vm,n has a left action of En+m (and hence of its sub-algebra Wn+m) defined as

follows. Let us relabel the last m pairs of generators of of En+m as xi, yi  x̂i−n, ŷi−n (i > n), so

that

(1.2.12) En+m = Cq[x±1 , y
±
1 , ..., x

±
n , y

±
n , x̂

±
1 , ŷ

±
1 , ..., x̂

±
m, ŷ

±
m]/(rel±q ) .

Where rel±q are as in (1.2.3). Let f : Zm → Vn denote a function in Vm,n. The m pairs of generators

x̂1, ŷ1, . . . , x̂m, ŷm have a familiar action

(1.2.13)
(x̂±i · f)(a1, ..., am) = q±aif(a1, ..., am)

(ŷ±i · f)(a1, ..., am) = f(a1, ..., ai ± 1, ..., am) .

13



The other n pairs of generators x1, y1, . . . , xn, yn have an action on Vm,n induced from that of En

on the codomain Vn, which is given by

(1.2.14) x±i : multiplication by x±i , y±i :


xj 7→ q±δijxj

zj` 7→ q
1
2
δijδi`x

± 1
2
δi`

j x
± 1

2
δij

` zj`

A more intuitive way to understand the action of En+m on Vm,n is to fix q to be a generic complex

number and to set xi = qαi and zij = qαiαj/2 for αi, αj ∈ C. Then the generators xi (resp. x̂i)

of En+m act as multiplication by qαi (resp. qai) and the generators yi (resp. ŷi) act by shifting

αi 7→ αi + 1 (resp. ai 7→ ai + 1). In particular, the awkward transformation of zj` in (1.2.14) is just

that induced from a shift in αi.

Unfortunately, we will need to keep q a formal algebraic variable (we cannot set it to a generic

complex number) in order to gain control over the specialization to the ADO invariant later on.

Explicitly, the induced action on f ∈ Vm,n is

(1.2.15)
(x±i · f)(a1, ..., am) 7→ x±i f(a1, ..., am) ,

(y±i · f)(a1, ..., am) 7→ f(a1, ..., am)
∣∣∣xi → q±xi , zij → x

± 1
2

j zij (j 6= i), zii → q
1
2x±i zii

.

It is straightforward to check that the q-commutation relations of En+m are respected by these

combined actions.

With the above action, any function f ∈ Vm,n generates a cyclic module for En+m

(1.2.16) Mf := En+mf ' En+m
/

AnnEn+m(f) .

Definition 1.2.8. We say that the function f is q-holonomic if the corresponding En+m-module

Mf is q-holonomic.

Similarly, f generates a cyclic Wn+m-module Nf = Wn+mf = Wn+m

/
AnnWn+m(f). Note that

such a Wn+m-module can never have monomial torsion, because the Wn+m action on Vm,n extends

to an En+m action, for which the generators xi, yi, x̂i, ŷi are invertible. By Prop. 1.2.5, if Nf is a

q-holonomic Wn+m-module, then Mf is a q-holonomic En+m-module.

1.2.1.3. Examples. We list some classic examples of q-holonomic functions f ∈ Vm,n which will

be useful in proving the q-holonomicity of the diagram invariant GD. In what follows we use ai to

14



denote a discrete variable and αi for a continuous one. The actions of the xi, yi, x̂i, and ŷi are as

in (1.2.13) and (1.2.14).

Constant and delta functions.

The constant function f(a1, ..., an) ≡ 1 (f ∈ Vm,n) has annihilation ideal

(1.2.17) AnnEn+m(f) = En+m(yi − 1, ŷj − 1)ni=1
m
j=1,

and is q-holonomic by an application of Lemma 1.2.7.

The delta function in discrete variables h(a1, ..., an) = δa1,0 · · · δan,0 is annihilated by the ideal

(1.2.18) AnnEn+m(h) = En+m(yi − 1, x̂j − 1)ni=1
m
j=1 .

It is q-holonomic by Lemma 1.2.7 applied with the x̂j and ŷj swapped. This swap, written more

precisely as the map sending (x̂j , ŷj) 7→ (ŷj , x̂
−1
j ), is an automorphism of En+m known as Mellin or

Fourier transform, cf. [Sab93, Sec. 1.3].

We also consider a cyclic En+m-module M = En+mv with annihilation ideal

(1.2.19) AnnEn+m(v) = En+m(xi − 1, ŷj − 1)ni=1
m
j=1 .

It is q-holonomic, by Lemma 1.2.7 now with the xi and yi swapped. This plays the role of the cyclic

module generated by a delta-function in the continuous variables, namely f = δ(x1−1) · · · δ(xn−1).

However, such a Dirac delta-function does not exist in our algebraic functional space Vn, so the

cyclic module M = En+mv is not embedded in Vm,n.

Indicator functions.

Generalizing the delta-function example above, the indicator function

(1.2.20a) ϑ[a2,a3](a1) =


1 a2 ≤ a1 ≤ a3

0 else

∈ V3,0

is annihilated by the elements (x̂1−qx̂3)(ŷ3−1), (x̂1− x̂2)(ŷ2−1), and (x̂1− x̂3)(x̂1−q−1x̂2)(ŷ1−1),

and thus by Lemma 1.2.7 is q-holonomic for E3. Its half-infinite cousin

(1.2.20b) ϑa1≤a2 = ϑ(−∞,a2](a1) = ϑ[a1,∞)(a2) :=


1 a1 ≤ a2

0 else

∈ V2,0
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has annihilation ideal containing (x̂2−q−1x̂1)(ŷ2−1) and (x̂2− x̂1)(ŷ1−1), and thus is q-holonomic

for E2. Specializations of these functions to constant a1, a2, and/or a3 are similarly q-holonomic.

Linear exponentials.

The linear functions

(1.2.21) f(a1) = qa1 in V1,0 and g = x1 in V0,1

are both q-holonomic, with annihilation ideals

(1.2.22) Ann(f) = E1(ŷ1 − q) and Ann(g) = E1(y1 − q) .

More generally, given any non-zero integer vectors Â = (Â1, ..., Âm) in Zm and A = (A1, ..., An) in

Zn, we consider the linear function in Vm,n given by

(1.2.23) f(a1, ..., am) = q
1
2
Â·ax

1
2
A := q

1
2
Â1a1+...+

1
2
Âmamx

1
2
A1

1 · · ·x
1
2
An

n .

Its annihilation ideal in En+m has generators

(1.2.24)


ŷi − q

1
2
Âi Âi even

ŷ2i − qÂi Âi odd

(i = 1, ...,m) and


yi − q

1
2
Ai Ai even

y2i − qAi Ai odd

(i = 1, ..., n) ,

and thus is q-holonomic by a direct application of Lemma 1.2.7.

Quadratic exponentials.

The quadratic functions

(1.2.25) f(a1) = qa
2
1 in V1,0 and g = z211 in V0,1

are q-holonomic with annihilation ideals E1(ŷ1 − qx̂21) and E1(y1 − qx21), respectively. (Recall the

specialization zii → ζ
α2
i /2

2r , under which zii depends quadratically on αi.) Similarly, the quadratic

function

(1.2.26) f(a1) = q
1
2
a21 in V1,0 and g = z11 in V0,1

are q-holonomic with annihilators E1(ŷ
2
1 − q2x̂21) and E1(y

2
1 − q2x21). We may also consider mixed

quadratic functions such as

(1.2.27) f(a1) = xa11 in V1,1 ,
16



which is q-holonomic with annihilation ideal Ann(f) = E2(y1 − x̂1, ŷ1 − x1).

More generally, let Â ∈ Zm, A ∈ Zn be non-zero integer vectors, let B̂ : Zm × Zm → Z and

B : Zn × Zn → Z be symmetric bilinear forms, and let C : Zn × Zm → Z be a bilinear map. Then

the function f in Vm,n given by

f(a) = q
1
2
B̂(a,a)+ 1

2
Â·ax

1
2
C(−,a)+ 1

2
AzB(1.2.28)

:= q
1
2

∑
ij B̂ijaiaj+

1
2

∑
i Âiai

∏
ij

x
1
2
Cijaj

i

∏
i

x
1
2
Ai

i

∏
ij

z
Bij
ij

is q-holonomic. Its annihilation ideal is cumbersome to write down in general form because it

depends on whether various parameters are even or odd, but possible to analyze. It is generated

by expressions of the form ŷj−(monomial in q±, x±, x̂±) or ŷ2j−(monomial in q±, x±, x̂±) and by

yi−(monomial in q±, x±, x̂±) or y2i−(monomial in q±, x±, x̂±), for each j = 1, ...,m and i = 1, ..., n.

Thus being q-holonomic follows directly from Lemma 1.2.7.

Warning! The function f(a1) = qa
3
1 (f ∈ V1,0) is well known to not be q-holonomic, cf. [GL16, Ex.

2.2]. Similarly, the analogous “cubic” functions involving continuous variables, such as g(a1) = x
a21
1

(g ∈ V1,1) and h(a1) = za111 (h ∈ V1,1) are not q-holonomic.

q-Factorials.

Many types of q-factorials (or quantum dilogarithms) are q-holonomic. For a ∈ Z, we recall the

q-Pochhammer symbol (2.1.10) given by

(1.2.29) (x; q)a :=


(1− x)(1− qx) · · · (1− qa−1x) a ≥ 1

1 a = 0

0 a ≤ −1

This is an element of V1,1 and its annihilation ideal contains4 (x̂−q−1)(ŷ+x̂x−1) and (1−x)y+x̂x−1,

hence by Lemma 1.2.7 it generates a q-holonomic E2-module.

1.2.2. Closure properties. A notable feature of q-holonomic modules is that they are closed

under many algebraic operations. These closure properties enabled Garoufalidis and Lê to efficiently

4Note that the (x̂ − q−1) factor in the first equation accounts for setting (x; q)a = 0 at negative values of a; at all
positive a, the function (x; q)a = 0 is simply annihilated by ŷ + x̂x− 1.
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prove that the colored Jones invariants of knots formed a q-holonomic family. They are of similar

importance here.

We review some of the closure properties that will be used in the current work, as they apply

to our functional spaces Vm,n containing both discrete and continuous variables. Even though

the initial application to Jones polynomials [GL05] only involved acting on functions of discrete

variables, the closure properties themselves are much more general. They all derive from purely

algebraic properties of q-holonomic En-modules, which make no reference to representations in a

particular functional space. If one happens to be working with cyclic En-modules generated by

functions, the algebraic closure properties can simply be applied to that setting. This perspective

was also espoused in the survey [GL16].

Thus, altogether, there is nothing mathematically novel in this section. Our goal is to illustrate

how established closure properties apply in our setting.

Proposition 1.2.9. Closure properties Suppose that f, g ∈ Vm,n are q-holonomic, with

arguments a = a1, . . . , am.

(a) (Addition and Multiplication) The functions f +g ∈ Vm,n and fg ∈ Vm,n are q-holonomic.

(b) (Shifts) Choose vectors c ∈ (Cq \ 0)n and d ∈ Zm. Then

(1.2.30a) f(a1 + d1, ..., am + dm)
∣∣
xi 7→ cixi for i = 1, ..., n

is q-holonomic.

(c) (Linear transformations) Let A ∈ Mat(n× n′,Z), C ∈ Mat(n×m′,Z) and D ∈ Mat(m×

m′,Z). We define a q-holonomic function h(a′) ∈ Vm′,n′, given by

(1.2.30b) h(a′) := f(Da′)
∣∣
x 7→ qCaxA

Explicitly, the transformation of the x’s here is xi 7→
∏m′

j′=1 q
Cij′aj′

∏n′

i′=1 x
Aii′
i′ . Important

special cases include specializations of discrete variables:

(1.2.30c) f(a1, ..., am−1, am) ∈ Vm,n q-holonomic ⇒ f(a1, ..., am−1, 0) ∈ Vm−1,n q-holonomic ;

specializations in continuous variables:

(1.2.30d) f(a) ∈ Vm,n q-holonomic ⇒ f(a)
∣∣
xn=1

∈ Vm,n−1 q-holonomic ;
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and extensions in both types of variables: when m ≤ m′ and n ≤ n′, we can view f ∈ Vm,n

as an element of Vm′,n′ (a function independent of any extra a or x variables), and f being

q-holonomic for En+m implies that f is q-holonomic for En′+m′ as well.

(d) The sum over a discrete variable

(1.2.30e) h(a1, . . . , am, am+1) :=

am+1∑
b=am

f(a1, ..., am−1, b) , g ∈ Vm+1,n

is likewise q-holonomic. Similarly, when they converge, the half-infinite sums

∞∑
b=am

f(a1, · · · , am−1, b) and

am∑
b=−∞

f(a1, ..., am−1, b)

are q-holonomic functions in Vm,n; and
∑∞

b=−∞ f(a1, ..., am−1, b) is q-holonomic in Vm−1,n.

Proof. The proofs of these statements are essentially identical to the arguments given in

[GL05, GL16].

For (a), let M = En+mf and N = En+mg be the modules generated by f and g. The En+m-

module generated by the sum f + g is a sub-quotient of the (algebraic) direct sum M ⊕ N , and

both sub-quotients and direct sums of q-holonomic modules are q-holonomic [Sab93]. Similarly,

the En+m-module generated by fg is a submodule of the algebraic tensor product M ⊗Cq [x±] N ;

and tensor products of q-holonomic modules are q-holonomic [Sab93].

For (b), we may simply note that for any c ∈ (C∗q)n and d ∈ Zm, there is an automorphism

of the algebra En+m given by γ : (xi, x̂j , yi, ŷj) 7→ (cixi, q
dj x̂j , yi, ŷj), and a corresponding linear

automorphism of Vm,n sending

(1.2.31) h(a1, ..., am) 7→ h(a1 + d1, ..., am + dm)
∣∣
xi 7→ cixi for i = 1, ..., n

as in (1.2.30a) that intertwines the automorphism γ of the algebra. The property of being q-

holonomic is preserved by any such automorphism.

For (c), we assemble A,C,D into an (n+m)× (n′ +m′) matrix

(1.2.32) U =

A 0

C D

 .
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This linear transformation defines a function F : (C∗)n+m → (C∗)n′+m′ under which the pullback

of coordinates is F ∗xi =
∏n+m
j=1 x

Uij
j . This in turn induces an inverse image functor F ! : Em+n-

mod→ Em′+n′-mod, which is shown in [Sab93, Sec. 2.3] to preserve q-holonomic modules. Letting

M = En+mf , one finds that the module N = En′+m′h generated by the function in (1.2.30b) is a

sub-quotient of F !(M), and so q-holonomic.

For (d), we use the result of [Sab93, Sec 2.4] that the algebraic convolution product of q-

holonomic modules is q-holonomic. For any h(a1, ..., am) and h′(a1, ..., am), the function

(1.2.33) h ∗m h′ :=
∞∑

b=−∞
h(a1, ..., b+ am)h′(a1, ...,−b) ∈ Vm,n ,

when it exists, generates a submodule of the algebraic convolution product (En+mh) ∗ (En+mh′),

and thus is q-holonomic. Then we recall that indicator functions (1.2.20a) are q-holonomic. The

summation given by (1.2.30e) is obtained by convolving f (extended to an element of Vm+2,n) with

an indicator function; similarly, the half-infinite and infinite sums below (1.2.30e) are obtained by

convolving f with half-infinite indicator functions and with the constant function, respectively. �
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CHAPTER 2

The ADO Invariants are a q-Holonomic Family

2.1. An Extension of the Drinfel’d-Jimbo Algebra

Here we consider a particular quantum group whose representation category is used to con-

struct the ADO invariant. This object was first fully established in [GPMT09], though ideas of

its formulation were already present in [ADO92, Oht02]. For more details about the unrolled

quantum group and its representation theory see [CGPM15c, GPM18].

Let q be a formal variable. Fix a positive integer r ≥ 2, and let ζ2r = e
π
√
−1
r be a 2rth-root of

unity. Let Kr be the subring of C(q) consisting of elements with no poles at q = ζ2r. A Kr-module

can be specialized at q = ζ2r by tensoring with the module Kr/(q − ζ2r).

Consider the C(q)-algebra Uq = Uq(sl2) generated by E,F,K,K−1 with relations

(2.1.1) KF = q−2FK, KE = q2EK, KK−1 = K−1K = 1, and [E,F ] =
K −K−1

q − q−1
.

This is a Hopf algebra with co-product, co-unit, and antipode defined on generators by:

(2.1.2)

4(E) = 1⊗ E + E ⊗K, ε(E) = 0, S(E) = −EK−1,

4(F ) = K−1 ⊗ F + F ⊗ 1, ε(F ) = 0, S(F ) = −KF,

4(K) = K ⊗K, ε(K) = 1, S(K) = K−1.

The Hopf algebra Uq is usually called the Drinfel’d-Jimbo quantum group.

The unrolled quantum group UHζ2r = UHζ2r(sl2) is the C-algebra generated by E,F,K,K−1, H

with relations (2.1.1) specialized to q = ζ2r, together with the relations

(2.1.3) HK = KH, [H,E] = 2E, [H,F ] = −2F.

The algebra UHζ2r is a Hopf algebra with coproduct, counit and antipode defined as above on

K±, E, F and defined on the element H as

(2.1.4) 4(H) = H ⊗ 1 + 1⊗H, ε(H) = 0, S(H) = −H.
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To connect with the ADO invariant, we will further pass to the central quotient

(2.1.5) UHζ2r = UHζ2r(sl2) := UHζ2r/(E
r, F r) .

2.1.1. Representations of UHζ2r . Let V be a finite-dimensional UHζ2r module. An eigenvalue

λ ∈ C of H is called a weight and the associated eigenspace is called the weight space. We say V

is a weight module if it splits as a direct sum of weight spaces and qH = K as operators on V , i.e.

Kv = ζ2r
λv for any weight vector v with Hv = λv. Let Repwt U

H
ζ2r denote the category of finite

dimensional weight modules of UHζ2r .

Consider the following two families of modules. For α ∈ C, let Vα be the representation in

Repwt U
H
ζ2r with a basis {v0, . . . , vr−1} on which the UHζ2r -action is given by

Evi =
ζ2r

α−i+1 − ζ2r−(α−i+1)

ζ2r − ζ2r−1
vi−1, Fvi =

ζ2r
i+1 − ζ2r−(i+1)

ζ2r − ζ2r−1
vi+1,(2.1.6)

Hvi = (α− 2i)vi, Kvi = ζ2r
α−2ivi

where v−1 = vr = 0. When α ∈ (C \Z)∪ (−1 + rZ) the module Vα is simple and called typical. As

we will now discuss, when α ∈ Z \ (−1 + rZ) the module Vα is not decomposable — it has a simple

submodule which is not a direct summand.

For each n ∈ Z≥0, let Sqn be the usual (n+ 1)-dimensional irreducible highest weight Uq-module

with highest weight n. The module Sqn has a basis {s0, s1, ..., sn} on which the Uq-action is given

by Ksi = qn−2isi and

Esi =
qn−i+1 − q−(n−i+1)

q − q−1
si−1, Fsi =

qi+1 − q−(i+1)

q − q−1
si+1(2.1.7)

where s−1 = sn+1 = 0. If n ∈ {0, . . . , r − 1} then by setting q = ζ2r and Hsi = (n − 2i)si, the

Uq-module Sqn becomes a simple UHζ2r -module Sn. In general, if m ∈ {0, . . . , r − 1} and k ∈ Z then

we can define a simple (m+1)-dimensional UHζ2r -module Sm+kr with basis {s0, ..., sm} on which the

UHζ2r -action is given by

Hsi = (m+ kr − 2i)si, Ksi = qm+kr−2isi

and (2.1.7) with q = ζ2r and n = m+ rk (here we set s−1 = sm+1 = 0). Notice that the definitions

of Vkr−1 and Skr−1 coincide.
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Lemma 2.1.1. Every irreducible representation of Repwt U
H
ζ2r is isomorphic to exactly one of

the modules in the list:

• Sn+kr, for n = 0, · · · , r − 2 and k ∈ Z,

• Vα for α ∈ (C \ Z) ∪ (−1 + rZ).

Proof. An argument analogous to that of finite dimensional sl2-modules (see for example

[Kas95, Section V.4]) shows the following: 1. Every non-zero finite dimensional weight UHζ2r -

module has a highest weight vector and 2. If W is furthermore a simple module then it is uniquely

determined up to isomorphism by its highest weight λ ∈ C. The lemma then follows from the fact

that the highest weights of modules in the above list are in bijection with the elements of C. �

When α = n + kr, n = 0, ..., r − 2, the module Vα is no longer irreducible. Instead, there is a

non-split short exact sequence

0→ Sn+kr−2(n+1) → Vn+kr → Sn+kr → 0

where the first morphism is determined by sending the highest weight vector of Sζ2rn+kr−2(n+1) to

vn+1 and the second morphism is given by sending the highest weight vector Vn+kr to the highest

weight vector of Sζ2rn+kr. The families

{Vα}α∈(C\Z)∪(−1+rZ) and {Sqn}n∈Z≥0

are used to define the ADO invariant and colored Jones polynomial, respectively.

2.1.2. The ribbon structure on Repwt U
H
ζ2r . Here we recall that Repwt U

H
ζ2r is a ribbon

category, for details see for example [GPMT09, CGPM15c, GPM18]. We will describe the

ribbon structure in terms of dualities and a braiding. This formulation follows [GPM18], where

it is shown that a ribbon category can be defined as a pivotal braided category satisfying certain

compatibility constraints on the natural twist morphism defined from the braiding and dualities.

This structure will be used while defining link invariants.

Since UHζ2r is a Hopf algebra, Repwt U
H
ζ2r is a monoidal category where the unit 1l is the 1-

dimensional trivial module C. Moreover, Repwt U
H
ζ2r is C-linear: hom-sets are C-modules, the

composition and tensor product of morphisms are C-bilinear, and End
Repwt U

H
ζ2r

(1l) = C Id1l. We

will often denote the unit 1l by C.
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Duality. Let V and W be representations in Repwt U
H
ζ2r . Let v0, . . . , vr−1 be a basis of V and

v∗0, . . . , v
∗
r−1 the dual basis of the dual space V ∗ = HomC(V,C). The duality morphisms

−→
coevV : C→ V ⊗ V ∗, −→

ev V : V ∗ ⊗ V → C

1 7→
r−1∑
i=0

vi ⊗ v∗i , f ⊗ w 7→ f(w),

←−
coevV : C→ V ∗ ⊗ V ←−

ev V : V ⊗ V ∗ → C

1 7→
r−1∑
i=0

v∗i ⊗Kr−1vi, w ⊗ f 7→ f(K1−rw)

define a pivotal structure on Repwt U
H
ζ2r [GPM18]. Taking V = Vα, the cup and cap morphisms

can be written

(2.1.8)
←−

coev: 1 7→
r−1∑
i=0

ζ2r
(r−1)(α−2i)v∗i ⊗ vi,

←−
ev : vi ⊗ v∗j 7→ ζ2r

(1−r)(α−2i)δij .

Braiding. In [Oht02], Ohtsuki truncates the usual formula of the h-adic quantum R-matrix

to define an operator on V ⊗W by

(2.1.9) R = ζ2r
H⊗H/2

r−1∑
k=0

(ζ2r − ζ2r−1)2k

ζ2r
k(ζ2r

−2; ζ2r
−2)k

Ek ⊗ F k.

where the q-factorial (a.k.a. q-Pochhammer symbol or quantum dilogarithm [FK94]) is given by

(2.1.10) (x; p)n :=


n−1∏
k=0

(1− xpk) if n > 0

0 otherwise

and ζ2r
H⊗H/2 is the operator given by

ζ2r
H⊗H/2(v ⊗ v′) = ζ2r

λλ′/2v ⊗ v′

for weight vectors v and v′ of weights of λ and λ′. We call R the truncated R-matrix. It is not

an element in UHζ2r ⊗ U
H
ζ2r , but its action on the tensor product of two objects of Repwt U

H
ζ2r is a

well-defined linear map. Moreover, R gives rise to a braiding cV,W : V ⊗W →W ⊗V on Repwt U
H
ζ2r

defined by v ⊗ w 7→ τ(R(v ⊗ w)) where τ is the permutation x ⊗ y 7→ y ⊗ x. The inverse of the
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operator R is

(2.1.11) R−1 =

(
r−1∑
k=0

(−1)k
(ζ2r − ζ2r−1)2k

ζ2r
k2(ζ2r

−2; ζ2r
−2)k

Ek ⊗ F k
)
ζ2r
−H⊗H/2.

For later reference, we compute the coefficients of R acting on va ⊗ wb ∈ Vα ⊗ Vβ:

R(va ⊗ wb) = q
1
2
H⊗H

r−1∑
k=0

(q − q−1)2k

qk(q−2; q−2)k
Ekva ⊗ F kwb

= q
1
2
H⊗H

r−1∑
k=0

(−1)kqk(α−a−b−1)
(q−2(α−a+1); q−2)k(q

2(b+1); q2)k
(q−2; q−2)k

va−k ⊗ wb+k

=

r−1∑
k=0

(−1)kqk(α−a−b−1)q
1
2
λαa−kλ

β
b+k

(q−2(α−a+1); q−2)k(q
2(b+1); q2)k

(q−2; q−2)k
va−k ⊗ wb+k(2.1.12)

where λβb+k = β − 2(b + k) and λαa−k = α − 2(a − k) are the weights of wb+k ∈ Vβ and va−k ∈ Vα,

respectively and q = ζ2r. A similar calculation reveals the following coefficients for the inverse:

(2.1.13) R−1(va⊗wb) =
r−1∑
k=0

(−1)kq−
1
2
λαaλ

β
b qk(α−a−b+1) (q−2(α−a+1); q−2)k(q

2(b+1); q2)k
(q2; q2)k

va−k⊗wb+k ,

again with q = ζ2r .

2.2. The ADO Invariant

A cousin of the WRT family of invariants [RT90], the ADO invariant is based on a functor

from a category formalizing link diagrams to the category of representations detailed in Section

2.1.1. This section is meant to provide a concise review of this invariant, along the way establishing

notation.

We consider framed oriented tangles whose components are colored by objects of Repwt U
H
ζ2r .

Such tangles are called Repwt U
H
ζ2r -colored ribbons. Let R

Repwt U
H
ζ2r

be the category of Repwt U
H
ζ2r -

colored ribbons [Kas95, XIV.5.1]. The well-known Reshetikhin-Turaev construction defines a

C-linear functor

F : R
Repwt U

H
ζ2r

→ Repwt U
H
ζ2r

(for details see e.g. [Kas95, Tur16]). The value of any Repwt U
H
ζ2r -colored ribbon under F can be

computed using the six building blocks, which are the morphisms , , y, x,x,y in R
Repwt U

H
ζ2r

.
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The functor F transforms these building blocks as follows:

(2.2.1)
F ( ) = τ ◦R, F ( x) =

−→
coevV , F ( y) =

←−
coevV ,

F ( ) = τ ◦R−1, F (y) =
−→
ev V , F (x) =

←−
ev V .

where τ(v⊗w) = w⊗ v permutes the factors. Vertical lines are sent to the identity morphism and

reversing the direction of an arrow is equivalent to coloring instead by the dual module.

Suppose T is a (1, 1) tangle whose endpoints are both colored with the irreducible representation

V ∈ Repwt U
H
ζ2r . By definition F (T ) ∈ End

Repwt U
H
ζ2r

(V ). Since V is simple, this endomorphism is

the product of the identity IdV : V → V with an element 〈T 〉 of the ground ring of Repwt U
H
ζ2r , i.e.

F (T ) = 〈T 〉 IdV .

Let L be the closed link obtained by joining the loose ends of T . Then

(2.2.2)

F (L) = F

(
6T V

)
= 〈T 〉F

(
6IdV V

)

= 〈T 〉F
(

6V

)
= 〈T 〉(←−ev V ◦

−→
coevV ) = 〈T 〉 qdim

Repwt U
H
ζ2r

(V ).

When V = Vα is typical, direct calculation shows that quantum dimension vanishes:

(2.2.3) qdim
Repwt U

H
ζ2r

(Vα) := (
←−
ev Vα ◦

−→
coevVα) = 0 .

Details may be found in [GPMT09]. Thus, from equation (2.2.2) we have that F (L) = 0 if any

component of L is colored by a typical module Vα.

In [ADO92], Akutsu, Deguchi, and Ohtsuki showed that one can replace such a vanishing

quantum dimension in equation (2.2.2) with a modified dimension d(V ) and obtain an invariant

which is now known as the ADO invariant. This process was extended to a general theory in

[GPMT09]. We will briefly recall this construction.

The aforementioned modified dimension d is given on the set of typical modules by

(2.2.4) d(Vα) =

r−2∏
j=0

1

ζ2r
α+r−j − ζ2r−(α+r−j)

= −ζ2r
1
2
r(1−r) ζ2r

α+1 − ζ2r−(α+1)

ζ2r
rα − ζ2r−rα

.

Let L be a Repwt U
H
ζ2r -colored framed link with at least one component colored by a typical module

Vα. Cutting this component, we obtain a (1, 1) tangle Tα. Then [GPMT09, Prop. 35] implies
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that the assignment

L 7→ F ′(L) := d(Vα)〈Tα〉

is independent of the choice of diagram and cut component and yields a well-defined isotopy in-

variant of L. This is the ADO invariant.

In the remainder of this paper we will assume that all colors are typical modules. Given a link

with colors Vα1 , . . . , Vαn , we will choose without loss of generality to cut the component colored

Vα1 . The corresponding ADO invariant defines a function

(2.2.5) N r
L : (C\Z)n → C , N r

L(α1, ..., αn) = d(Vα1)〈Tα1〉 .

Establishing q-holonomic properties of this family of functions for r ≥ 2 is the central focus of this

paper.

The diagrammatic calculus summarized here computes the ADO invariant in a blackboard

framing. One may use the ribbon element in the category (or add extra loops to a diagram) to

change to an arbitrary framing. Changing the framing of the i-th strand by φ units multiples the

ADO invariant by a prefactor

(2.2.6) ζ2r
1
2
φ[α2+2(1−r)α].

2.2.1. A two-step reconstruction of the ADO invariant. For analyzing the q-holonomic

properties of the ADO invariant N r
L, it will be useful to split its construction into two steps:

(1) Cut an n-strand link L to get a (1,1) tangle T with a particular choice of diagram D,

arranged so that all crossings are of the form or . To this diagram we will associate

a function GD : Z→ Vn, where

(2.2.7) Vn := C(q
1
2 , x

1
2
1 , ..., x

1
2
n , z11, z12, ..., znn)

is the field of rational functions in the 1 +n+ 1
2n(n+ 1) = 1

2(n+ 1)(n+ 2) formal variables

q
1
2 , {x

1
2
i }ni=1, and {zij}ni,j=1, with zij = zji. We call the function GD the diagram invariant.

(2) For each r ∈ Z≥2 we specialize the variables in GD(r) as

(2.2.8) q1/2 = ζ2r
1/2 , x

1/2
i = ζ2r

αi/2 , zij = ζ2r
αiαj/2 .

to get the ADO invariant N r
L(α). It will follow from the construction of GD that this

specialization is well defined. More compactly: if we write GD(r;x
1
2 , z; q

1
2 ) to explicitly
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emphasize the dependence on x, z, q for each value of r, then

(2.2.9) N r
L(α) = GD(r; ζ2r

α/2, ζ2r
α⊗α/2; ζ2r

1/2) .

x1
a1

a2a5

a6a3

a4
a7

Figure 2.1. Labeled tangle diagram whose closure is a 31 knot.

We assign each component of the tangle a distinct variable x1, . . . , xn. These parameterize

the typical modules which color the diagram. By convention the unique open component will be

given x1. We also label each arc with a distinct parameter a1, ..., am, which parameterize basis

elements of the relevant typical module. Arcs end at crossings regardless of whether they are the

upper or lower strand. A general (1, 1) tangle diagram with C crossings and U disjoint flat unknot

components has 2C + U + 1 arcs. See Figure 2.1.

We decompose the diagram D into crossings, cups, and caps. To each of these building blocks

we associate a function of m+ 1 variables a1, ..., am, r, which is valued in Vn, as follows:

a
<latexit sha1_base64="hPjYX/nFlXN0yBF7sGAgp5px8t0=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0f6DHoxWMC5gHJEmYnvcmY2dllZlYIS77AiwdFvPpJ3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobuq3nlBpHssHM07Qj+hA8pAzaqxUp71S2a24M5Bl4uWkDDlqvdJXtx+zNEJpmKBadzw3MX5GleFM4KTYTTUmlI3oADuWShqh9rPZoRNyapU+CWNlSxoyU39PZDTSehwFtjOiZqgXvan4n9dJTXjjZ1wmqUHJ5ovCVBATk+nXpM8VMiPGllCmuL2VsCFVlBmbTdGG4C2+vEya5xXvonJVvyxXb/M4CnAMJ3AGHlxDFe6hBg1ggPAMr/DmPDovzrvzMW9dcfKZI/gD5/MHxaGM7A==</latexit> b
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c
<latexit sha1_base64="XnJ12BWO9K+UPFfy8+qBFv2uXjo=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0f6DHoxWMC5gHJEmYnvcmY2dllZlYIS77AiwdFvPpJ3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobuq3nlBpHssHM07Qj+hA8pAzaqxUZ71S2a24M5Bl4uWkDDlqvdJXtx+zNEJpmKBadzw3MX5GleFM4KTYTTUmlI3oADuWShqh9rPZoRNyapU+CWNlSxoyU39PZDTSehwFtjOiZqgXvan4n9dJTXjjZ1wmqUHJ5ovCVBATk+nXpM8VMiPGllCmuL2VsCFVlBmbTdGG4C2+vEya5xXvonJVvyxXb/M4CnAMJ3AGHlxDFe6hBg1ggPAMr/DmPDovzrvzMW9dcfKZI/gD5/MHyKmM7g==</latexit>

d
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xj
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(2.2.10a)

:= δd−ba−cϑc≤aϑd≥b (−xi)a−cq(c−a)(a+b+1)+2cdzijx
−d
i x−cj

(q2(a−1)x−2i ; q−2)a−c(q
2(b+1); q2)a−c

(q−2; q−2)a−c
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c
<latexit sha1_base64="XnJ12BWO9K+UPFfy8+qBFv2uXjo=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0f6DHoxWMC5gHJEmYnvcmY2dllZlYIS77AiwdFvPpJ3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobuq3nlBpHssHM07Qj+hA8pAzaqxUZ71S2a24M5Bl4uWkDDlqvdJXtx+zNEJpmKBadzw3MX5GleFM4KTYTTUmlI3oADuWShqh9rPZoRNyapU+CWNlSxoyU39PZDTSehwFtjOiZqgXvan4n9dJTXjjZ1wmqUHJ5ovCVBATk+nXpM8VMiPGllCmuL2VsCFVlBmbTdGG4C2+vEya5xXvonJVvyxXb/M4CnAMJ3AGHlxDFe6hBg1ggPAMr/DmPDovzrvzMW9dcfKZI/gD5/MHyKmM7g==</latexit>

d
<latexit sha1_base64="CC9FAILUx/kKnY89h2uonwUkgiY=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0f6DHoxWMC5gHJEmZne5Mxs7PLzKwQQr7AiwdFvPpJ3vwbJ8keNLGgoajqprsrSAXXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1EmmGDZYIhLVDqhGwSU2DDcC26lCGgcCW8Hwbuq3nlBpnsgHM0rRj2lf8ogzaqxUD3ulsltxZyDLxMtJGXLUeqWvbpiwLEZpmKBadzw3Nf6YKsOZwEmxm2lMKRvSPnYslTRG7Y9nh07IqVVCEiXKljRkpv6eGNNY61Ec2M6YmoFe9Kbif14nM9GNP+YyzQxKNl8UZYKYhEy/JiFXyIwYWUKZ4vZWwgZUUWZsNkUbgrf48jJpnle8i8pV/bJcvc3jKMAxnMAZeHANVbiHGjSAAcIzvMKb8+i8OO/Ox7x1xclnjuAPnM8fyi2M7w==</latexit>

xi
<latexit sha1_base64="47n+zS9fKB9SJovn4uMCy7cdD9c=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6QI9BLx4jmgckS5id9CZDZmeXmVkxLPkELx4U8eoXefNvnCR70GhBQ1HVTXdXkAiujet+OYWl5ZXVteJ6aWNza3unvLvX1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoeuq3HlBpHst7M07Qj+hA8pAzaqx099jjvXLFrbozkL/Ey0kFctR75c9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NTJ+TIKn0SxsqWNGSm/pzIaKT1OApsZ0TNUC96U/E/r5Oa8NLPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadkg3BW3z5L2meVL3T6vntWaV2lcdRhAM4hGPw4AJqcAN1aACDATzBC7w6wnl23pz3eWvByWf24Recj29i1I3f</latexit>

xj
<latexit sha1_base64="tWA8/RClfwVJKuRyHO2SPCALI0Y=">AAAB6nicbVDJSgNBEK2JW4xb1KOXxiB4CjMu6DHoxWNEs0AyhJ5OT9Kmp2forhHDkE/w4kERr36RN//GznLQxAcFj/eqqKoXJFIYdN1vJ7e0vLK6ll8vbGxube8Ud/fqJk414zUWy1g3A2q4FIrXUKDkzURzGgWSN4LB9dhvPHJtRKzucZhwP6I9JULBKFrp7qnz0CmW3LI7AVkk3oyUYIZqp/jV7sYsjbhCJqkxLc9N0M+oRsEkHxXaqeEJZQPa4y1LFY248bPJqSNyZJUuCWNtSyGZqL8nMhoZM4wC2xlR7Jt5byz+57VSDC/9TKgkRa7YdFGYSoIxGf9NukJzhnJoCWVa2FsJ61NNGdp0CjYEb/7lRVI/KXun5fPbs1LlahZHHg7gEI7BgwuowA1UoQYMevAMr/DmSOfFeXc+pq05ZzazD3/gfP4AZFiN4A==</latexit>  (R−1)a,bc,d[xi, xj ]

(2.2.10b)

:= δd−ba−cϑc≤aϑd≥b (−xi)kq(c−a)(a+b−1)−2abz−1ij x
b
ix
a
j

(q2(a−1)x−2i ; q−2)a−c(q
2(b+1); q2)a−c

(q2; q2)a−c

(2.2.10c)
a

<latexit sha1_base64="hPjYX/nFlXN0yBF7sGAgp5px8t0=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0f6DHoxWMC5gHJEmYnvcmY2dllZlYIS77AiwdFvPpJ3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobuq3nlBpHssHM07Qj+hA8pAzaqxUp71S2a24M5Bl4uWkDDlqvdJXtx+zNEJpmKBadzw3MX5GleFM4KTYTTUmlI3oADuWShqh9rPZoRNyapU+CWNlSxoyU39PZDTSehwFtjOiZqgXvan4n9dJTXjjZ1wmqUHJ5ovCVBATk+nXpM8VMiPGllCmuL2VsCFVlBmbTdGG4C2+vEya5xXvonJVvyxXb/M4CnAMJ3AGHlxDFe6hBg1ggPAMr/DmPDovzrvzMW9dcfKZI/gD5/MHxaGM7A==</latexit> a
<latexit sha1_base64="hPjYX/nFlXN0yBF7sGAgp5px8t0=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0f6DHoxWMC5gHJEmYnvcmY2dllZlYIS77AiwdFvPpJ3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobuq3nlBpHssHM07Qj+hA8pAzaqxUp71S2a24M5Bl4uWkDDlqvdJXtx+zNEJpmKBadzw3MX5GleFM4KTYTTUmlI3oADuWShqh9rPZoRNyapU+CWNlSxoyU39PZDTSehwFtjOiZqgXvan4n9dJTXjjZ1wmqUHJ5ovCVBATk+nXpM8VMiPGllCmuL2VsCFVlBmbTdGG4C2+vEya5xXvonJVvyxXb/M4CnAMJ3AGHlxDFe6hBg1ggPAMr/DmPDovzrvzMW9dcfKZI/gD5/MHxaGM7A==</latexit>

xi
<latexit sha1_base64="47n+zS9fKB9SJovn4uMCy7cdD9c=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6QI9BLx4jmgckS5id9CZDZmeXmVkxLPkELx4U8eoXefNvnCR70GhBQ1HVTXdXkAiujet+OYWl5ZXVteJ6aWNza3unvLvX1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoeuq3HlBpHst7M07Qj+hA8pAzaqx099jjvXLFrbozkL/Ey0kFctR75c9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NTJ+TIKn0SxsqWNGSm/pzIaKT1OApsZ0TNUC96U/E/r5Oa8NLPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadkg3BW3z5L2meVL3T6vntWaV2lcdRhAM4hGPw4AJqcAN1aACDATzBC7w6wnl23pz3eWvByWf24Recj29i1I3f</latexit>

 εa[xi] = 1
a

<latexit sha1_base64="hPjYX/nFlXN0yBF7sGAgp5px8t0=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0f6DHoxWMC5gHJEmYnvcmY2dllZlYIS77AiwdFvPpJ3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobuq3nlBpHssHM07Qj+hA8pAzaqxUp71S2a24M5Bl4uWkDDlqvdJXtx+zNEJpmKBadzw3MX5GleFM4KTYTTUmlI3oADuWShqh9rPZoRNyapU+CWNlSxoyU39PZDTSehwFtjOiZqgXvan4n9dJTXjjZ1wmqUHJ5ovCVBATk+nXpM8VMiPGllCmuL2VsCFVlBmbTdGG4C2+vEya5xXvonJVvyxXb/M4CnAMJ3AGHlxDFe6hBg1ggPAMr/DmPDovzrvzMW9dcfKZI/gD5/MHxaGM7A==</latexit>

xi
<latexit sha1_base64="47n+zS9fKB9SJovn4uMCy7cdD9c=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6QI9BLx4jmgckS5id9CZDZmeXmVkxLPkELx4U8eoXefNvnCR70GhBQ1HVTXdXkAiujet+OYWl5ZXVteJ6aWNza3unvLvX1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoeuq3HlBpHst7M07Qj+hA8pAzaqx099jjvXLFrbozkL/Ey0kFctR75c9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NTJ+TIKn0SxsqWNGSm/pzIaKT1OApsZ0TNUC96U/E/r5Oa8NLPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadkg3BW3z5L2meVL3T6vntWaV2lcdRhAM4hGPw4AJqcAN1aACDATzBC7w6wnl23pz3eWvByWf24Recj29i1I3f</latexit>

a
<latexit sha1_base64="hPjYX/nFlXN0yBF7sGAgp5px8t0=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0f6DHoxWMC5gHJEmYnvcmY2dllZlYIS77AiwdFvPpJ3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobuq3nlBpHssHM07Qj+hA8pAzaqxUp71S2a24M5Bl4uWkDDlqvdJXtx+zNEJpmKBadzw3MX5GleFM4KTYTTUmlI3oADuWShqh9rPZoRNyapU+CWNlSxoyU39PZDTSehwFtjOiZqgXvan4n9dJTXjjZ1wmqUHJ5ovCVBATk+nXpM8VMiPGllCmuL2VsCFVlBmbTdGG4C2+vEya5xXvonJVvyxXb/M4CnAMJ3AGHlxDFe6hBg1ggPAMr/DmPDovzrvzMW9dcfKZI/gD5/MHxaGM7A==</latexit>

 ε∗a[xi] = q2a(r−1)x1−ri

a
<latexit sha1_base64="hPjYX/nFlXN0yBF7sGAgp5px8t0=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0f6DHoxWMC5gHJEmYnvcmY2dllZlYIS77AiwdFvPpJ3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobuq3nlBpHssHM07Qj+hA8pAzaqxUp71S2a24M5Bl4uWkDDlqvdJXtx+zNEJpmKBadzw3MX5GleFM4KTYTTUmlI3oADuWShqh9rPZoRNyapU+CWNlSxoyU39PZDTSehwFtjOiZqgXvan4n9dJTXjjZ1wmqUHJ5ovCVBATk+nXpM8VMiPGllCmuL2VsCFVlBmbTdGG4C2+vEya5xXvonJVvyxXb/M4CnAMJ3AGHlxDFe6hBg1ggPAMr/DmPDovzrvzMW9dcfKZI/gD5/MHxaGM7A==</latexit>

a
<latexit sha1_base64="hPjYX/nFlXN0yBF7sGAgp5px8t0=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0f6DHoxWMC5gHJEmYnvcmY2dllZlYIS77AiwdFvPpJ3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobuq3nlBpHssHM07Qj+hA8pAzaqxUp71S2a24M5Bl4uWkDDlqvdJXtx+zNEJpmKBadzw3MX5GleFM4KTYTTUmlI3oADuWShqh9rPZoRNyapU+CWNlSxoyU39PZDTSehwFtjOiZqgXvan4n9dJTXjjZ1wmqUHJ5ovCVBATk+nXpM8VMiPGllCmuL2VsCFVlBmbTdGG4C2+vEya5xXvonJVvyxXb/M4CnAMJ3AGHlxDFe6hBg1ggPAMr/DmPDovzrvzMW9dcfKZI/gD5/MHxaGM7A==</latexit>

xi
<latexit sha1_base64="47n+zS9fKB9SJovn4uMCy7cdD9c=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6QI9BLx4jmgckS5id9CZDZmeXmVkxLPkELx4U8eoXefNvnCR70GhBQ1HVTXdXkAiujet+OYWl5ZXVteJ6aWNza3unvLvX1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoeuq3HlBpHst7M07Qj+hA8pAzaqx099jjvXLFrbozkL/Ey0kFctR75c9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NTJ+TIKn0SxsqWNGSm/pzIaKT1OApsZ0TNUC96U/E/r5Oa8NLPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadkg3BW3z5L2meVL3T6vntWaV2lcdRhAM4hGPw4AJqcAN1aACDATzBC7w6wnl23pz3eWvByWf24Recj29i1I3f</latexit>

 ηa[xi] = 1
a

<latexit sha1_base64="hPjYX/nFlXN0yBF7sGAgp5px8t0=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0f6DHoxWMC5gHJEmYnvcmY2dllZlYIS77AiwdFvPpJ3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobuq3nlBpHssHM07Qj+hA8pAzaqxUp71S2a24M5Bl4uWkDDlqvdJXtx+zNEJpmKBadzw3MX5GleFM4KTYTTUmlI3oADuWShqh9rPZoRNyapU+CWNlSxoyU39PZDTSehwFtjOiZqgXvan4n9dJTXjjZ1wmqUHJ5ovCVBATk+nXpM8VMiPGllCmuL2VsCFVlBmbTdGG4C2+vEya5xXvonJVvyxXb/M4CnAMJ3AGHlxDFe6hBg1ggPAMr/DmPDovzrvzMW9dcfKZI/gD5/MHxaGM7A==</latexit>

a
<latexit sha1_base64="hPjYX/nFlXN0yBF7sGAgp5px8t0=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0f6DHoxWMC5gHJEmYnvcmY2dllZlYIS77AiwdFvPpJ3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobuq3nlBpHssHM07Qj+hA8pAzaqxUp71S2a24M5Bl4uWkDDlqvdJXtx+zNEJpmKBadzw3MX5GleFM4KTYTTUmlI3oADuWShqh9rPZoRNyapU+CWNlSxoyU39PZDTSehwFtjOiZqgXvan4n9dJTXjjZ1wmqUHJ5ovCVBATk+nXpM8VMiPGllCmuL2VsCFVlBmbTdGG4C2+vEya5xXvonJVvyxXb/M4CnAMJ3AGHlxDFe6hBg1ggPAMr/DmPDovzrvzMW9dcfKZI/gD5/MHxaGM7A==</latexit>

xi
<latexit sha1_base64="47n+zS9fKB9SJovn4uMCy7cdD9c=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6QI9BLx4jmgckS5id9CZDZmeXmVkxLPkELx4U8eoXefNvnCR70GhBQ1HVTXdXkAiujet+OYWl5ZXVteJ6aWNza3unvLvX1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoeuq3HlBpHst7M07Qj+hA8pAzaqx099jjvXLFrbozkL/Ey0kFctR75c9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NTJ+TIKn0SxsqWNGSm/pzIaKT1OApsZ0TNUC96U/E/r5Oa8NLPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadkg3BW3z5L2meVL3T6vntWaV2lcdRhAM4hGPw4AJqcAN1aACDATzBC7w6wnl23pz3eWvByWf24Recj29i1I3f</latexit>

 η∗a[xi] = q2a(1−r)xr−1i

Here we have used a, b, c, d to denote the subset of arc variables a1, ..., am present at a particular

crossing. We have also used

(2.2.10d) δa,b :=


1 a = b

0 otherwise

, ϑa≤b :=


1 a ≤ b

0 otherwise

.

We are thinking of each of the maps R[xi, xj ], R
−1[xi, xj ], ε[xi], ε

∗[xi], η[xi], η
∗[xi] as functions of

the full set of arc variables a1, . . . , am together with r — though they are independent of the arc

variables that do not appear in the building block under consideration.

We similarly rewrite1 the modified quantum dimension (2.2.4) associated to component labeled

xi as

(2.2.10e) d[xi] =

r∏
j=2

1

qjxi − q−jx−1i
= (−xi)r−1q

1
2
r(r+1)−1 1

(q4x2i ; q
2)r−1

,

thought of as a function of all m+ 1 integer variables, which depends non-trivially only on r.Each

function in (2.2.10a)–(2.2.10e) has domain Zm+1 and is valued in Vn.

We define a function G×D : Zm+1 → Vn by multiplying together together the functions associated

to every crossing, cup, and cap in the diagram; a function d[x1] for the open link component (labeled

1One might wonder why we did not “analytically continue” the simpler formula on the right hand side of (2.2.4) to

obtain d[xi] = −q
1
2
r(1−r) qxi−(qxi)

−1

xri−x
−r
i

. The answer is that (2.2.10e) turns out to be q-holonomic, whereas this latter

expression is not!
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x1 by convention); and delta-functions δa1,0, δam,0 for the two arcs at the open ends of the (1, 1)

tangle (labeled, say, a1 and am). Schematically,

(2.2.11) G×D (a1, ..., am; r) = d[x1]δa1,0δam,0
∏

R
∏

R−1
∏
y
ε
∏
x
ε∗
∏

x

η
∏

y

η∗ .

From this we define the diagram invariant GD : Z → Vn as the multi-sum of G×D over the arc

variables

(2.2.12) GD(r) :=
∑

a1,...,am∈[0,r−1]m
G×D (a1, ..., am; r)

The multi-sum in (2.2.12) reproduces the composition of building blocks (2.2.1) by summing over

the basis elements of the typical representations. Once we fix r ≥ 2 and specialize q = ζ2r,

xi = ζ2r
αi , and zij = ζ2r

αiαj/2, each of the functions R,R−1, ε, ε∗, η, η∗, d above simply becomes a

matrix element of the building blocks from (2.2.1). This can be seen by comparing with the formulas

(2.1.12), (2.1.13), (2.1.8), (2.2.4). Finally, the specialization of GD(r) as in (2.2.8) reproduces the

ADO invariant N r
L(α).

Example: The labeled diagram of a (1,1) tangle whose closure is a 31 knot is shown in Figure

2.1. There are seven arcs with associated variables a1, . . . , a7 and one component with associated

variable x1. The corresponding diagram invariant is

GD(r) =
r−1∑

a1,...,a7=0

d[x1]δa1,0δa7,0R
a1,a4
a2,a5 [x1, x1]R

a5,a2
a6,a3 [x1, x1]R

a3,a6
a4,a7 [x1, x1]ε

∗
a4

[x1]ηa4 [x1]

2.2.2. Poles and relation to the colored Jones. It follows from its construction in Section

2.2.1 that the ADO invariant is a meromorphic function.

The only non-monomial denominators that appear in the functions R±, ε(∗), η(∗), d of Section

2.2.1 are (q4x2i ; q
2)r−1 in the modified dimension d[xi] and (q2; q2)a−c, (q−2; q−2)a−c in the R-

matrices. A short exercise shows that the denominators in the R-matrices divide the numerators,

as both q2(b+1);q2)k
(q2;q2)k

and q2(b+1);q2)k
(q−2;q−2)k

belong to C[q, q−1] for all k, b ∈ Z≥0. Thus after simplification

the only possible denominator in GD(r) is xr1 − x
−r
1 .

Moreover, only integral powers of x, z, q appear; and the only place that zij (resp. z−1ij ) appears

is as a prefactor in the R function (resp. R−1 function) for positive (resp. negative) crossing of

components i and j. Altogether this implies that
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Proposition 2.2.1. For each r ≥ 1,

(2.2.13) GD(r) ∈ 1

(q4x21; q
2)r−1

n∏
i,j=1

z
Cij
ij · C[x±1 , ..., x

±
n , q

±] ,

where Cij is the linking matrix of the original framed link L (Cii being the framing of the i-th

component).

Recall that the ADO invariant N r
L(α) is obtained from GD by the specialization q → ζ2r,

xi → ζαi2r , and zij → ζ
αiαj/2
2r in (2.2.8). Proposition 2.2.1 then translates into the following functional

properties of the ADO invariant.

Corollary 2.2.2.

(i) If L is a knot (n = 1 strands), the ADO invariant N r
L : C\Z → C may be extended to a

meromorphic function of α = α1 ∈ C with at most simple poles at each integer.

(ii) If L is a link with n > 1 strands, the ADO invariant N r
L : (C\Z)n → C may be extended

to a holomorphic function of α = (α1, ..., αn) ∈ Cn.

(iii) For any n, N r
L is quasi-periodic, satisfying

(2.2.14) N r
L(α1, ..., αi + 2r, ..., αn) =

( n∏
j=1

ζ2r
2rCijαj

)
N r
L(α1, ..., αi, ..., αn)

In other words, N r
L is a section (holomorphic if n > 1, meromorphic if n = 1) of a complex

line bundle on (C/2rZ)n determined by the linking matrix Cij.

The relations in (2.2.14) are those mentioned in Section 1.1.1. They are our motivation for

excluding r-dependent recursion relations from our q-holonomic systems.

Proof. For (i) we observe that after specializing q = ζ2r and x1 = ζ2r
α, the modified quantum

dimension may be rewritten as on the right hand side of (2.2.4), so the only denominator that

could give rise to poles is ζ2r
rα − ζ2r−rα = 2i sin(πα).

For part (ii), recall that the ADO invariant does not depend on which strand is cut to represent

the initial link diagram as a (1,1) tangle. From (2.2.13) and the reasoning of Part (i), it follows

that there are no poles in αi for i 6= 1. Since ADO can be constructed with a different choice of

cut strand it follows that there can be no poles in α1 either.
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Part (iii) follows from observing that, with the exception of the z
Cij
ij prefactors, the expression

(2.2.13) is a function of the xi = ζ2r
αi , which satisfy ζαi+2r

2r = ζαi2r . The prefactors z
Cij
ij = ζ2r

1
2
Cijαiαj

lead precisely to the quasi-periodicity (2.2.14). �

In the case of a knot, the residues of the poles at integer values of α are related to colored Jones

polynomials. This is because for α = N − 1 (with N ∈ Z\rZ), the typical module Vα becomes

reducible and contains as a simple quotient the module SN−1 used to define the N -th colored Jones

polynomial. This expectation was made precise in [CGPM15b, Cor. 15], which we restate here:

Proposition 2.2.3. ([CGPM15b, Cor. 15]) Let K be an oriented knot with framing φ. Let

r ≥ 2, and let N ∈ Z \ rZ. Let JKN (q) ∈ C[q±] denote the N -th colored Jones polynomial of K,

normalized so that JunknotN (q) = (qN − q−N )/(q − q−1). Then

(2.2.15) Resα=N−1N
r
K(α) =

i1−r

π
sin
(π
r

)
(−1)N+(N−1)φJN (ζ2r) .

Note that the right hand side differs slightly from that in [CGPM15b]. The r-dependent

prefactors differ due to a different normalization for the modified dimension d[Vα]. The extra

(−1)N+(N−1)φ appears because the pivotal structure and ribbon element in the category UHζ2r(sl2)-

mod discussed above — the only pivotal structure that exists for generic α ∈ C — differs from

the pivotal structure and ribbon element used in the standard definitions of the colored Jones

polynomial.

We remark that at α = N − 1 with N ∈ rZ, the ADO invariant does not have a pole, and may

simply be evaluated. In particular, it was shown some time ago by J. Murakami and H. Murakami

[MM01] that N r
K(r−1) coincides with the re-normalized Jones polynomial Ĵr(ζ2r), where ĴN (q) =

q−q−1

qN−q−N JN (q), as well as with the Kashaev invariant [Kas97]. This observation allowed Kashaev’s

famous volume conjecture to be reformulated in terms of colored Jones polynomials.

2.2.3. GD is q-holonomic. Our next goal is to prove that the diagram invariant GD defined

in Section 2.2.1 is q-holonomic. Specifically, for an n-component tangle, we show that GD generates

a q-holonomic module for a q-Weyl algebra with n+ 1 pairs of generators: x1, y1, . . . , xn, yn acting

by multiplication and q-shifts of the variables xi in GD, together with x̂, ŷ acting by multiplication

by qr and shift r 7→ r + 1.
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Proving that GD is q-holonomic in this sense is a straightforward generalization of the classic

results of Garoufalidis and Lê [GL05] on the Jones polynomial. We adapt the methods there to

the function spaces to which GD belongs.

With the machinery of q-holonomic modules in place, we obtain

Proposition 2.2.4. The diagram invariant GD(r) defined in Section 2.2.1, which is an element

of V1,n, generates a q-holonomic module for En+1.

Proof. All the individual functions (2.2.10) associated to crossings, cups, and caps that get

multiplied to define G×D in (2.2.11) are q-holonomic in Vm+1,n. Specifically:

• The discrete delta-functions δa,0 ∈ V1,0 that enter the final product G×D are q-holonomic

(Example (1.2.18)).

• The modified quantum dimension d[xi] = (−xi)r−1q
1
2
r(r+1)−1 1

(q4x2i ;q
2)r−1

∈ V1,1 can be

assembled as a product of

(1) A q-factorial 1
(xi;q2)r

, which was explained to be q-holonomic below (1.2.29), and in

which we use Prop. 1.2.9b to shift xi → q2xi and r → r − 1.

(2) A general quadratic exponential xri q
1
2
r2 as in Example 1.2.28, in which we shift xi →

−xi.

(3) A linear exponential x−1i q
1
2
r as in Example (1.2.23), in which we shift xi → −xi.

(4) An overall constant q−1.

All these pieces are q-holonomic functions in V1,1, so Prop. 1.2.9a guarantees their product

will be q-holonomic as well.

• The cup and cap functions ηa[xi] = 1, εa[xi] = 1, are constant and therefore q-holonomic

by Example 1.2.17.

The cup and cap functions η∗a[xi] = q2a(1−r)xr−1i and ε∗a[xi] = q−2axi, both in V2,1 (the

discrete variables are a and r), are products of general linear and quadratic exponentials,

as in Examples 1.2.23, 1.2.28.

• The R-matrices Ra,bc,d[xi, xj ], (R
−1)a,bc,d[xi, xj ] ∈ V5,2 are products of discrete delta-functions

(Example (1.2.18)), indicator functions (Example (1.2.20)), linear and quadratic exponen-

tials (Examples 1.2.23, 1.2.28), and q-factorials (Example (1.2.29)), all with various shifts
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(Prop. 1.2.9b) and linear transformations (Prop. 1.2.9c). Some of the q-factorials involve

q−2 rather than q2; but can be put into the same form as Example (1.2.29) by observing

that

(2.2.16) (y; q−2)a = (−y)aq−a(a−1)(y−1; q2)a ,

which is a “standard” q-factorial multiplied by linear and quadratic exponentials. Thus

R,R−1 ∈ V5,2 are q-holonomic.

By Prop. 1.2.9c, the above functions remain q-holonomic when extended to Vm+1,n. The

product of G×D ∈ Vm+1,n of these q-holonomic functions is q-holonomic by Prop. 1.2.9a. The final

diagram invariant GD ∈ V1,n is obtained from G×D by summing over every discrete variable, and

then specializing the bounds of each summation to be 0 and r − 1. It is therefore q-holonomic by

Prop. 1.2.9d (for the summations) and Prop. 1.2.9c (for the specializations). �

2.3. Specializing to a Root of Unity

We proved in Proposition 2.2.4 that GD generates a q-holonomic En+1-module for any (1, 1)-

tangle diagram D. The relevant action of En+1 = Cq[x±1 , y
±
1 , ..., x

±
n , y

±
n , x̂

±, ŷ±] on functions f ∈ V1,n

(including GD) is given by

(2.3.1)
xi : f 7→ xif x̂ : f 7→ qrf

yi : f 7→ f
∣∣
xi 7→ qxi, zii 7→ q

1
2xizii, zij 7→ x

1
2
j zij

ŷ : f 7→ f
∣∣
r 7→ r+1

.

We would now like to prove that the ADO invariant N r
L is q-holonomic in the sense detailed below.

The ADO invariant is a topological invariant of the framed, oriented link L obtained by closing the

tangle with diagram D.

We recall from Section 2.2.1 that the ADO invariant is obtained from GD by setting q
1
2 = ζ2r

1
2 ,

x
1
2
i = ζ2r

αi/2, and zij = ζ2r
αiαj/2. More succinctly, if we make explicit the dependence on x, z, q in

GD(r, x
1
2 , z; q), then

(2.3.2) N r
L(α) = GD(r; ζ2r

α/2, ζ2r
α2/2; ζ2r

1/2) .

As prefaced in the introduction, explaining what it means for functions defined at roots unity

q = ζ2r to be holonomic is a subtle matter. By Corollary 2.2.2, we may think of the ADO invariant
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at each fixed r as an element of the functional space

(2.3.3) N r
L ∈ V(r)n := {quasi-periodic, meromorphic functions : (C/2rZ)n → C} ,

with periodicity of the form f(α1, ..., αi + 2r, ..., αn) = ζ
∑
j 2rCijαj

2r f(α1, ..., αi, ..., αn) for some (un-

specified) Cij . Each space V(r)n has an action of the q-Weyl algebra at a 2r-th root of unity

(2.3.4) E(r)n := C[x±1 , y
±
1 , ..., x

±
n , y

±
n ]/(yixj − ζ

δij
2r xjyi)

given by

(2.3.5) xi · f(α) = ζαi2r f(α) , yi · f(α) = f(α1, ..., αi + 1, ..., αn)
(
f ∈ V(r)n

)
.

However, due to the quasi-periodicity in Part (iii) of Corollary 2.2.2, it is also clear that at each

fixed r the ADO invariant of an n-strand link will trivially satisfy n independent recursion relations(∏
j x
−2rCij
j y2ri − 1

)
N r
L = 0 (i = 1, ..., n), where Cij is the linking matrix of L. In order to obtain

a topologically interesting statement, we work in a family, considering all r ∈ N≥2 at once.

Consider the evaluation maps

(2.3.6) evr :
En 99K E(r)n

A(x, y; q) 7→ A(x, y; ζ2r) .

(2.3.7) I[f ] := {A ∈ En | evr(A)fr = 0 for all but finitely many r ∈ N} ,

throwing out any r’s for which evr(A) is not defined. Then we say:

Definition 2.3.1. The family of functions
{
fr ∈ V(r)n }r∈N is q-holonomic if the associated

cyclic module En/I[f ] is q-holonomic.

We will prove in this section that the family of ADO invariants
{
N r
L ∈ V

(r)
n

}
r≥2 of any framed,

oriented link L is q-holonomic. We will also prove that the associated ideal I[NL] is contained in

the annihilation ideal of the colored Jones polynomial of L.

2.3.1. Quantum Hamiltonian reduction. We introduce a preliminary result that will help

us relate the annihilation ideal of GD and the family of ADO invariants. The result is purely

algebraic in nature, independent of particular functional spaces.
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Suppose we have a left ideal In ⊆ En and a nonzero element c in Cq. Then we can construct a

left ideal I(xn→c)n−1 ⊆ En−1 by first taking the intersection of In with the subalgebra

(2.3.8) Ẽn−1 := Cq[x±1 , y
±
1 , ..., x

±
n−1, y

±
n−1, x

±
n ]/(yixj − qδijxjyi)n−1i,j=1 ⊂ En ,

in which xn is central (because yn is no longer present), and then specializing xn = c, noting that

En−1 ' Ẽn−1/(xn − c). All together,

(2.3.9) I(xn→c)n−1 =
(
In ∩ Ẽn−1

)∣∣
xn=c

.

Explicitly, the elements of In and I(xn→c)n−1 are related as follows: A(x1, y1, ..., xn−1, yn−1) is in

I(xn→c)n−1 if and only if it has a lift Ã in In independent of yn such that A = Ã|xn=c.

Passing from the associated module En/In to En−1/I(xn→c)n−1 is a version of quantum Hamiltonian

reduction. In this case, the reduction is with respect to a multiplicative moment map xn, and central

character c.2 Quantum Hamiltonian reduction is a familiar operation in the study of D-modules

and representation theory, cf. [EG02, CBEG07, Los12, Jor14], which is generally expected to

preserve holonomic modules (since it is the quantization of a Lagrangian correspondence). We will

use the following result, whose proof is the subject of Appendix A:

Proposition 2.3.2. For n ≥ 2, let In ⊆ En be a left ideal, and let I(xn→c)n−1 =
(
I∩ Ẽn−1

)∣∣
xn=c

⊆

En−1 as above. If En/In is a q-holonomic En-module then En−1/I(xn→c)n−1 is a q-holonomic En−1-

module.

A useful way to relate Hamiltonian reduction to more elementary operations on q-holonomic

modules is the following. Let v be the generator of En/In and let δ
(n)
c denote the generator of the

module En/(y1 − 1, ..., yn−1 − 1, xn − c), a “delta-function” module in the final variable xn. Just

like Example (1.2.19), this delta-function module is q-holonomic. We denote by En(v ⊗ δ(n)c ) the

submodule of the tensor-product-module (Env)⊗ (Enδ
(n)
c ) generated by v ⊗ δ(n)c .

Let us also consider the map of rings f∗ : Cq[x±1 , ..., x±n ] 7→ Cq[x±1 , ..., x
±
n−1] given by f∗(xi) = xi

for 1 ≤ i ≤ n − 1 and f∗(xn) = c. There is a corresponding inverse-image functor f ! : En-mod →

En−1-mod defined in [Sab93, Sec. 2.3]. It is explained in the proof of Prop. 2.3.2 in Appendix A

2Very similar reductions were used in [Dim13] to construct quantum A-polynomials from ideal triangulations of knot
complements. The construction there was not yet rigorous, but could hopefully be made so using Prop. 2.3.2.
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that

(2.3.10) En−1/I(xn→c)n−1 ' f !
(
En(v ⊗ δ(n)c )

)
.

With this in hand, it follows from the fact that taking tensor products, passing to submodules, and

inverse images all preserve q-holonomic modules that En−1/I(xn→c)n−1 must be q-holonomic as well.

We note that the quantum Hamiltonian reduction discussed above is closely related to special-

ization of variables, in the case of cyclic En-modules generated by functions. For example, if En acts

on some space of functions of (x1, ..., xn), and the function f(x1, ..., xn) generates a cyclic module

Enf = En/In, In = AnnEn(f), then the specialization fc(x1, ..., xn−1) := f(x1, ..., xn−1, c) generates

a module En−1fc = En−1/In−1, such that the Hamiltonian-reduction ideal I(xn→c)n−1 above satisfies

I(xn→c)n−1 ⊆ In−1. In other words, the specialized module En−1fc is a quotient of En−1/I(xn→c)n−1 .

Thus, a corollary of Proposition 2.3.2 is that when f is q-holonomic its specialization fc must be

q-holonomic as well. This was already established in Proposition 1.2.9c. The virtue of the alge-

braic formulation of quantum Hamiltonian reduction above is that it applies even when considering

modules that are not generated by functions; that is how we will use it in the next section.

2.3.2. The ADO invariants are a q-holonomic family. We are now ready to prove one

of our main results, by using quantum Hamiltonian reduction to implement the specializations

qr = −1 in the ADO invariants.

Theorem 2.3.3. Let L be a framed, oriented link with n components. Then the family of ADO

invariants {N r
L}r≥2 is q-holonomic for En. In other words, the associated ideal

(2.3.11) I[NL] := {A ∈ En | evr(A)N r
L = 0 for all but finitely many r}

as in (2.3.7) defines a q-holonomic En−module En/I[NL].

Proof. Choose a diagram D of a (1, 1) tangle whose closure is L, as in Section 1.2, and let

GD(r;x
1
2 , x; q

1
2 ) ∈ V1,n be the associated diagram invariant. From Proposition 2.2.4, we know that

GD generates a q-holonomic left En+1-module via the action given in (2.3.1). Denote its annihilation

ideal by

(2.3.12) In+1 = AnnEn+1 GD ,
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and construct the reduced ideal

(2.3.13) I(x̂→−1)n :=
(
In+1 ∩ Ẽn

)∣∣
x̂=−1 ⊆ En

as in (2.3.9). This is quantum Hamiltonian reduction at c = −1. It eliminates the ŷ variable (which

shifted r 7→ r + 1) and sets the x̂ variable (which acted as multiplication by qr) to −1.

We claim that I(x̂→−1)n ⊆ I[NL]. To see this, choose any A(x, y; q) = A(x1, y1, ..., xn, yn; q) ∈

I(x̂→−1)n . By the definition of I(x̂→−1)n , there exists Ã(x, x̂, y; q) ∈ Ẽn = Cq[x1, y1, ..., xn, yn, x̂] ⊂

En+1 such that

(2.3.14) Ã(x, x̂ = −1, y; q) = A(x, y; q) and Ã(x, x̂, y; q)GD(r;x
1
2 , z; q) .

Choose any nonzero polynomial f(q) ∈ C[q] such that f(q)A(x, y; q) and f(q)A(x, x̂, y; q) both have

evaluations at q = ζ2r for all r ∈ N. (Recall that all singularities came from poles.) From the first

equality in (2.3.14), we have f(ζ2r)Ã(x, x̂, y; ζ2r) = f(ζ2r)A(x, y; ζ2r) for all r. Combining this with

the second equality in (2.3.14), evaluated at q = ζ2r, we have

(2.3.15) f(ζ2r)A(x, y; ζ2r)GD(r;x
1
2 , z; ζ2r) = 0 .

We may further specialize x
1
2 = e

iπ
2r
α and z = e

iπ
2r
α2

as in (2.3.2), leading to

(2.3.16) f(ζ2r)A(x, y; ζ2r)N
r
L(α) = 0

for all r, with action (2.3.5). Since f(ζ2r) can only vanish at (at most) finitely many values of

r ∈ N, we find that A(x, y; ζ2r) ∈ I[NL].

From Proposition 2.3.2 we know that the module En/I(x̂→−1)n is q-holonomic. Moreover,

since I(x̂→−1)n ⊆ I[NL], we find that En/I[NL] ' (En/I(x̂→−1)n )/(I[NL]/I(x̂→−1)n ) is a quotient

of En/I(x̂→−1)n . Since quotients of q-holonomic modules are q-holonomic by [Sab93, Cor. 2.1.6], it

follows that En/I[NL] is q-holonomic. �

2.3.3. Relation to the AJ conjecture. Finally, we can relate the recursion relations satisfied

by the ADO family to those satisfied by the colored Jones polynomials. Let L = K be an oriented

knot with framing φ.

Theorem 2.3.4. Let I[NK ] ∈ E1 be the ideal in Theorem 2.3.3 that annihilates the ADO

family. Let
(
JN (q)

)
N∈N be the sequence of colored Jones polynomials of K. Then for every element
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A(x, y; q) ∈ I[NK ] we have

(2.3.17) A(q−1x, (−1)φ+1y; q) JN (q) = 0 ,

where x acts as multiplication by qN and y acts by shifting N 7→ N + 1.

Proof. From Corollary 2.2.2 we see that the poles in N r
K(α) come entirely from the denomi-

nator ζ2r
rα − ζ2r−rα in the modified quantum dimensions. Then, noting that

(2.3.18) Resα=N−1
1

ζ2r
rα − ζ2r−rα

= Resα=N−1
1

2i sin(πα)
=

(−1)N−1

2πi
,

we may rewrite Proposition 2.2.3 to say that

(2.3.19) (ζα2r − ζ−α2r )N r
K(α)

∣∣
α=N−1 =

(
2i−r sin

π

r

)
(−1)(N−1)φJN (ζ2r) ,

Also note that with y acting as a shift α 7→ α+ 1 we have y(ζα2r − ζ
−α
2r ) = (ζα2r − ζ

−α
2r )(−y), and

so

(2.3.20) A(x, y; ζ2r)N
r
K(α) = 0 ⇔ A(x,−y; ζ2r)(ζ

α
2r − ζ−α2r )N r

K(α) = 0 .

Similarly, with y acting as a shift N 7→ N + 1 we have y(−1)N = (−1)N (−y), so

(2.3.21) A(x, y; ζ2r)(−1)φ(N−1)JN (ζ2r) = 0 ⇔ A(x, (−1)φy; ζ2r)JN (ζ2r) = 0 .

Let A(x, y; q) be any element of the ideal I[NK ]. For every value of r such that A(x, y; q) is

non-singular at q = ζ2r we have A(x, y; ζ2r)NK(α) = 0; and then from (2.3.19)–(2.3.21) we obtain

(2.3.22) A(q−1x, (−1)φ+1y; ζ2r)JN (ζ2r) = 0 .

(The extra shift x→ q−1x is made to ensure that x acting as qα on the ADO is compatible with x

acting as qN (rather than qN−1) on the colored Jones.) Now consider the functions

(2.3.23) BN (q) := A(q−1x, (−1)φ+1y; q)JN (q) ∈ Cq , N ∈ N

Due to (2.3.22), each rational function BN (q) has zeroes at an infinite set of distinct points q = ζ2r.

(Note: there are at most finitely many poles in BN (q), and if they occur at roots of unity, the

corresponding values of r may be thrown out without affecting this argument.) Each function

BN (q) must therefore be identically zero. �
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We have shown that, up to an algebra automorphism that rescales (x, y) 7→ (q−1x, (−1)φ+1y),

the annihilation ideal I[NK ] of the ADO family is included in the annihilation ideal of the colored

Jones function. If we further assume the AJ Conjecture of [Gar04b, Guk05b], it follows that:

Corollary 2.3.5. (Assuming the AJ Conjecture of [Gar04b].) Let K be a knot with framing

φ and let A(x, y; q) be any element of the ADO ideal I[NK ] that admits evaluation at q = 1. Then

A(m, (−1)φ+1`; 1) is divisible by the A-polynomial A(m, `) of K.

The converse of Theorem 2.3.4 is proven in [Wil20, Thm 66]: that the colored Jones annihilation

ideal is included in the ADO annihilation ideal. Taken together, these results imply that the two

annihilation ideals can be identified. Computations in Appendix B confirm this identification.
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CHAPTER 3

Future Directions

It has been conjectured [Guk05a, Gar04a] that the q-difference operators which annihilate the

colored Jones polynomial are defined by modules of quantized character varieties coming from knot

complements. We have shown that such q-holonomic systems also appear for quantum invariants

constructed using modified traces, which implies that the original conjecture holds beyond the

semisimple case. This section proposes some lines of inquiry which would explore this relationship

between recursive properties of quantum invariants and quantized character varieties.

3.1. The Quantum A-Polynomial

A pivotal next goal is to give a rigorous quantization of the A-polynomial [CS83] in terms

of the quantum character stacks of [JLSS21]. These character stacks enjoy an excision property,

which means the skein modules can be built from a 3d triangulation of the knot complement, while

resolving the issues facing the quantization procedure detailed in [Dim11].

Quantum character stacks are non-commutative moduli spaces defined for surfaces with marked

points on the boundary. The relevant surfaces consist of T and G regions, separated by one

dimensional B-interfaces. The moduli spaces of [JLSS21] track the G- and T - local systems over

the appropriate regions, along with B-reductions along interfaces and framing data along specified

segments of the boundary.

This would be a major step towards resolving the AJ conjecture [Gar04a, Guk05a], which

predicts that a (yet-undefined) quantization of the A-polynomial annihilates the colored Jones

polynomial [RT90]. This work would place the quantum A-polynomial in the context of the

Kapustin-Witten twist of N = 4 4d Yang-Mills theory [KW07, BZBJ18], which is also expected

to manifest the colored Jones polynomial as a partition function. Significant incremental progress

has been made towards solving the AJ conjecture, but this proposal represents a distinct approach

centered on its physical formulation [Guk05a].
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The A-polynomial of a knot K is defined by a lagrangian in the SL2C character variety of

the torus. It consists of those characters which extend to the interior of the knot complement

S3 \ K [CCG+94a]. I will translate this classical construction into the quantum setting by first

considering the 4-punctured sphere, thought of as the boundary of an ideal tetrahedron ∆. The

triangulated surface has a quantum coordinate ring which acts on the bulk module. Defining and

constructing this module is a central part of the project.

Bulk modules are then constructed for arbitrary triangulated 3-manifolds by gluing together

the bulk modules of individual tetrahedra. Working with triangulated knot complements, we arrive

at an algebraic and quantum version of the lagrangian which defines the A-polynomial. Recovering

an expression for the quantum A-polynomial involves identifying the meridian and longitude of the

boundary torus as elements in quantum coordinate ring of the boundary torus. The quantum A-

polynomial is expected to be a two-variable non-commutative polynomial in terms of these elements.

As this construction depends on the choice of an ideal triangulation, proving invariance under

the 2-3 Pachner move will be crucial. Furthermore, this invariance was the fundamental problem

faced by the construction in [Dim11], where triangulations with self-folded tetrahedra could lead

to trivial results. A major benefit of working in the framework provided by [JLSS21] is that the

extra information tracked by decorated character stacks will produce non-trivial bulk modules even

in the presence of self folded tetrahedra.

Goals:

� Formulate the decorated skein module of a 3-manifold using quantum character stacks.

� Give a triangulation-independent reformulation of the quantum A-polynomial [Dim11]

based on the bulk module of knot complements.

� Compute the quantum A-polynomial of the 31,41,52 knots, using fixed triangulations.

3.1.1. Beyond SL2. The classical A-polynomial is a knot invariant defined by a lagrangian

in the SL2C-character variety of a torus [CS83]. The proposed construction of the quantum A-

polynomial from cluster coordinates on decorated character stacks likewise focuses on the SL2C

case. A natural next step would be to leverage the generality of decorated character stacks to

construct quantum A-polynomials based on SLnC-local systems for n > 2.
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In [Sik05], SU(n)-quantum invariants were introduced which coincide with those of the Kauff-

man bracket for n = 2 and Kuperburg bracket for n = 3. For any three manifold M , the SU(n)-skein

module is isomorphic to the coordinate ring of the SL(n)-character variety of π1(M) [Sik05]. Fur-

thermore, for any simple complex Lie algebra g, there is a quantum torus Wg whose action on an

appropriate function space captures the recursive properties of G-quantum invariants [Sik08].

An SLn-bulk module built from the coordinates of [JLSS21] should have a natural interpreta-

tion as a module of Wsln , giving more weight to SLn versions of the AJ conjecture.

3.2. Representation Theory and Recursion

This dissertation adds to the growing collection of quantum invariants known to be q-holonomic

[GL05, Gar12, GLL18, BDGG20]. The relevant proofs, including the central result of this

work, have focused on the expression of these invariants as functions, which are obtained from

some category of representations C through a standard procedure. The idea behind the proposed

project is simple: the q-holonomicity of a quantum invariant depends on the category used to

construct it. Motivated by that, I hope to formulate q-holonomicity as a categorical notion.

My approach would be to first categorify the action of the quantum tori discussed in Section

1.2, and then the definition of homological dimension. The relevant quantum tori are generated

by q-difference operators, which have natural candidates for categorification to Repq(G). Namely,

the multiplication M of (1.2.13) becomes a grading shift and the shift L becomes tensoring with a

distinguished object. An early check on these candidates is whether they q-commute after decate-

gorification. Following [BGHL14], I believe that decategorification is given by zeroth Hochschild

homology. This homology acts as a categorical trace and is used in the construction of WRT

invariants, where it provides the notion of quantum dimension.

Goals:

� Categorify the action of q-difference operators, to the category Repq G.

� Reformulate homological dimension as a property of morphisms in Repq G.

� Prove the equivalent of Bernstein’s Inequality for categories.

� (Re)-prove that the colored Jones polynomial is q-holonomic, using the categorical per-

spective.
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APPENDIX A

Proof of Proposition 2.3.2

We give here an elementary proof of Proposition 2.3.2, on quantum Hamiltonian reduction. We

use the same notation as in Section 2.3.1.

Proposition 2.3.2. For n ≥ 2, let In ⊆ En be a left ideal, and let I(xn→c)n−1 =
(
I∩Ẽn−1

)∣∣
xn=c

⊆

En−1 as in (2.3.9). If En/In is a q-holonomic En-module then En−1/I(xn→c)n−1 is a q-holonomic En−1-

module.

Without loss of generality, we may assume c = 1. Otherwise we may use the automorphism of

En given by

(A.1) (xi, yi) 7→


(xi, yi) i ≤ n− 1

(cxi, yi) i = n

to intertwine the reduction at xn = c with reduction at xn = 1.

Let In be the annihilation ideal of v, so that v generates the cyclic En-module En/In. Let us

denote by

(A.2) En−1 = Cq[x±1 , y
±
1 , ..., x

±
n−1, y

±
n−1]/(yixj − q

δijxjyi) , and E1 = Cq[x±n , y±n ]/(ynxn − qxnyn)

the standard q-Weyl algebra in the first n− 1 pairs of variables and the last pair, respectively. We

introduce the “delta-function” module

(A.3) M δ
1 = E1/(xn − 1) = E1δ

(1) ,

with formal1 generator δ(1) satisfying (xn − 1)δ(1) = 0, and its extension to an En-module

(A.4) M δ
n = En/(y1 − 1, ..., yn−1 − 1, xn − 1) = Enδ(n)

1Recall the delta functions in continuous variables are not in the function spaces Vm,n, so we must describe them
formally, in terms of their annihilation ideals.
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with formal generator δ(n) satisfying (yi − 1)δ(n) = 0 for i = 1, ..., n− 1 and (xn − 1)δ(n) = 0. Both

M δ
1 and M δ

n are q-holonomic (for E1 and En, respectively), as in Example (1.2.19).

It is also useful to recall that the tensor product of En-modules U ⊗W has underlying vector

space U ⊗Cq [x±]W and action x±i (u⊗w) := (x±i u)⊗w = u⊗ (x±i w), y±i (u⊗w) := (y±i u)⊗ (y±i w).

In contrast, the exterior product of an En−1-module U and an E1-module W is defined to have

underlying vector space U ⊗Cq W and action x±i (u⊗ w) = (x±i u)⊗ w, y±i (u⊗ w) = (y±i u)⊗ w for

i ≤ n − 1 and x±n (u ⊗ w) = u ⊗ (x±nw), y±n (u ⊗ w) = u ⊗ (y±nw). A special case is the exterior

product of the algebras themselves, En−1 � E1 ' En.

Now let M̃ denote the submodule of the tensor product (En/In)⊗M δ
n generated by v ⊗ δ(n),

(A.5) M̃ = En(v ⊗ δ(n)) .

M̃ is q-holonomic because q-holonomic modules are closed under taking tensor products and passing

to submodules (Section 1.2.2, [Sab93, Cor. 2.1.6, Prop 2.4.1]). We will show that

Lemma A.1. M̃ decomposes as an exterior product of En−1 and E1 modules

(A.6) M̃ ' (En−1/I(xn→1)
n−1 )�M δ

1 ,

whose first factor is precisely the module En−1/I(xn→1)
n−1 in the statement of Prop. 2.3.2.

Proof of Prop. 2.3.2. Assuming Lemma A.1, the most efficient way to prove the proposition

is to consider the map

(A.7) f : (C∗)n−1 → (C∗)n , f(x1, ..., xn−1) = (x1, ..., xn−1, 1)

and to apply the associated inverse image functor f ! to M̃ . Explicitly, the inverse image functor

f ! : En-mod → En−1-mod acts on an En-module U by tensoring it over En with the (En−1,En)

bimodule

(A.8) E := Cq[x±1 , ..., x
±
n ]/(xn − 1) ⊗

Cq [x±1 ,...,x
±
n ]

En ' (xn − 1)En
∖
En .

Thus in general f !U := E ⊗En U ' (xn−1)U
∖
U . In the case of the product M̃ = (En−1/I(xn→1)

n−1 )�

M δ
1 , the inverse image functor just removes the M δ

1 factor, giving

(A.9) f !M̃ = En−1/I(xn→1)
n−1 .
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Since inverse image (the zeroth cohomology of the derived inverse image of [Sab93, Prop. 2.3.2])

preserves q-holonomic modules, En−1/I(xn→1)
n−1 is q-holonomic. �

Comparing to Wn-modules gives an alternative proof that M̃ = (En−1/I(xn→1)
n−1 ) �M δ

1 being

q-holonomic implies that En−1/I(xn→1)
n−1 is q-holonomic. We include this for completeness.

Denote by w the generator of En−1/I(xn→1)
n−1 and let Nn−1 = Wn−1w = Wn−1/(I(xn→1)

n−1 ∩Wn−1).

The canonical good filtration on this module is given by

(A.10) FkNn−1 = {βw | degx,yβ ≤ k} ,

where degx,y denotes total degree in x1, ..., xn−1 and y1, ..., yn−1. Let dk = dimCqFkNn−1.

Similarly, let Ñ = Wn(w � δ(1)). By [GL16, Prop. 3.4], Ñ is a q-holonomic Wn module.

The filtration (A.10) can likewise be defined on Ñ , tracking total degree in the 2n variables

x1, . . . , xn, y1, . . . , yn. Let d̃k = dimCqFkÑ . As a vector space, Ñ decomposes as

(A.11) Ñ = Wn(w � δ(1)) = (Wn−1w)⊗Cq (W1δ
(1)) ' (Wn−1w)⊗Cq Cq[yn]

we find that FkÑ '
⊕k

`=0Fk−`Nn−1 ⊗ y`n; so d̃k =
∑k

`=0 d`, or equivalently dk = d̃k − d̃k−1. Since

Ñ is q-holonomic, there is a polynomial p(k) of degree n such that d̃k = p(k) for all sufficiently

large k. Therefore, dk = s(k) − s(k − 1) is a polynomial of degree n − 1 for all sufficiently large

k, whence Nn−1 is also q-holonomic. Then by Prop. 1.2.5, En−1/I(xn→1)
n−1 = En−1 ⊗Wn−1 Nn−1 is

q-holonomic.

Proof of Lemma A.1. We introduce a Z-grading on En given by degree with respect to

yn, with graded components E(k)
n = Ẽn−1ykn, where Ẽn−1 = Cq[x±1 , y

±
1 , ..., x

±
n−1, y

±
n−1, x

±
n ]/(yixj −

qδijxjyi) as in (2.3.8). With respect to this grading, M δ
n of (A.4) may be given the structure of a

graded module. Indeed,

(A.12) M δ
n ' Cq[x±1 , ..., x

±
n−1, y

±
n ] ,

and we take the graded components to beM δ
n
(k) = Cq[x±1 , ..., x

±
n−1]y

k
n. The tensor product (En/In)⊗

M δ
n and its submodule M̃ = En(v ⊗ δ(n)) inherit the Z-grading from M δ

n. Explicitly, the graded

components are

(A.13) M̃ (k) = Ẽn−1
(
yknv ⊗ yknδ(n)

)
.
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It follows that the annihilation ideal AnnEn(v ⊗ δ(n)) must be generated by elements that are

homogeneous in yn. Combined with the fact that yn is invertible, we find that AnnEn(v ⊗ δ(n))

can be generated entirely in degree zero, i.e. its generators can be chosen to be elements of Ẽn−1.

Moreover, we have xn − 1 ∈ AnnEn(v ⊗ δ(n)), since (xn − 1) · (v ⊗ δ(n)) = v ⊗ (xn − 1)δ(n) = 0. All

together, the annihilation ideal takes the form

(A.14) AnnEn(v ⊗ δ(n)) = En(p1, ..., p`, xn − 1) ' En(p1|xn=1, ..., p`|xn=1, xn − 1)

for some p1, ..., p` ∈ Ẽn−1. We have used the fact that xn is central in Ẽn−1 to simply set x1 = 1 in

the pi’s, as indicated. This establishes a product decomposition

(A.15) M̃ ' En−1/(p1|xn=1, ..., p`|xn=1)� E1/(xn − 1) = En−1/(p1|xn=1, ..., p`|xn=1)�M
δ
1 .

It remains to show that the ideal En−1(p1|xn=1, ..., p`|xn=1) appearing on the left hand side of

this product is equivalent to I(xn→1)
n−1 = (In ∩ Ẽn−1)|xn=1. The following observation is key: for

any β ∈ Ẽn−1, we can use the q-commutation relations to order variables in each monomial in β

such that x’s are placed to the left and y’s are placed to the right. Then, using yi(v ⊗ δxn,c) =

(yiv) ⊗ (yiδxn,c) = (yiv) ⊗ δxn,c for i < n and xi(v ⊗ δxn,c) = (xiv) ⊗ δxn,c for all i, we find that

β · (v ⊗ δ(n)) = (βv)⊗ δ(n) for all β ∈ Ẽn−1. More so, using (xn − 1)δ(n) = 0 we can extend this to

(A.16) β · (v ⊗ δ(n)) = (βv)⊗ δ(n) = (β|xn=1v)⊗ δ(n) = β|xn=1 · (v ⊗ δ(n)) .

Now, if β ∈ In ∩ Ẽn−1 = AnnẼn−1
(v) then βv = 0, so (A.16) implies β|xn=1 ∈ AnnEn(v ⊗ δ(n)).

From the form of the annihilation ideal (A.14), we therefore have

β|xn−1 ∈ En−1(p1|xn=1, ..., p`|xn=1).

Conversely, suppose that γ ∈ En−1(p1|xn=1, ..., p`|xn=1), so that (γv)⊗δ(n) = 0. We now observe2

that the map Ẽn−1v → (Ẽn−1v)⊗ δ(n) of left Ẽn−1-modules has kernel (xn − 1)Ẽn−1v. Therefore,

(γv) ⊗ δ(n) = 0 implies that there exists γ̃ ∈ Ẽn−1 such that γv = (xn − 1)γ̃v; or equivalently

2Explicitly: (Ẽn−1v)⊗δ(n) is a submodule of the tensor product of modules (Ẽn−1v)⊗(Ẽn−1δ
(n)), which by definition

has underlying vector space (Ẽn−1v) ⊗
Cq [x

±
1 ,...,x

±
n ]

(Ẽn−1δ
(n)). But Ẽn−1δ

(n) ' Cq[x1, ..., xn]/(xn − 1). Thus, noting

that xn − 1 is central in Ẽn−1, the full tensor product becomes (Ẽn−1v) ⊗
Cq [x

±
1 ,...,x

±
n ]

(Ẽn−1δ
(n)) ' (Ẽn−1v) ⊗

Cq [x
±
1 ,...,x

±
n ]

Cq[x1, ..., xn]/(xn − 1) '
(
Ẽn−1v

)/(
(xn − 1)Ẽn−1v

)
. Therefore, the map (Ẽn−1v) → (Ẽn−1v) ⊗ δ(n) has kernel

contained in (xn − 1)Ẽn−1v; and one can check that the kernel also contains (xn − 1)Ẽn−1v.
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that there exists γ̂ ∈ Ẽn−1 such that γ̂v = 0 and γ̂|xn=1 = γ (just set γ̂ = γ − (xn − 1)γ̃). Since

γ̂ ∈ AnnẼn−1
(v) = In ∩ Ẽn−1, it follows that γ ∈ (In ∩ Ẽn−1)

∣∣
xn=1

= I(xn→1)
n−1 . �
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APPENDIX B

Further Examples and Computations

The Jones polynomials for the zero-framed 31 and 52 knots are readily computed using a general

formula for p-twist knots [Mas03, Hab00] (see also [GS10]):

(B.1) Jpn(q) :=
n∑
k=0

k∑
j=0

(−1)j+1qk+pj(j+1)+ 1
2
j(j−1) (q2j+1 − 1)(q; q)k(q

1−n; q)k(q
1+n; q)k

(q; q)k+j+1(q; q)k−j
, .

In our normalization and choices of chirality, we have

(B.2) J31
N (q) =

qN − q−N

q − q−1
Jp=1
N (q−2) , J52

N (q) =
qN − q−N

q − q−1
Jp=2
N (q−2) .

We computed ADO invariants directly, using the (1, 1)-tangle diagrams in Figure B.1, and then

changing the framing from blackboard to zero framing. We performed computations for 2 ≤ r ≤ 11.

For convenience, we introduce the normalization

(B.3) N̂ r
K(α) := (iζα2r)

1−r ζ
α
2r − ζ

−α
2r

ζrα2r − ζ
−rα
2r

N r
K(α− 1) .

Let X(n) := xn − x−n, q = ζ2r, x = ζα2r, and X(n) := xn − x−n. The ADO invariants for 31 and 52

are shown in Figures B.2 and B.3, respectively.

Inhomogeneous recursion relations for the colored Jones polynomials of 31 and 52 were found

in [GL05, GS10]. In the current normalization, the recursions take the form

(B.4) (q − q−1)AK(x, y; q)JK
N (q) = BK(qN ; q)

Where for 31 the operators in (B.4) are

A31(x, y; q) = q3x6y − 1

B31(x; q) = q2x(q2x4 − 1)
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x

x

Figure B.1. Tangle diagrams whose closures are the 31 (left) and 52 knots (right).

r N̂ r
31

(α)

2 −X(3)

3 q2X(5) + qX(1)

4 q2X(7) +X(3) + q2X(1)

5 q2X(9) − q4X(5) + qX(3)

6 q2X(11) − q4X(7) +X(5) +X(1)

7 q2X(13) − q4X(9) − q6X(7) − q5X(3) + q2X(1)

8 q2X(15) − q4X(11) − q6X(9) − q4X(5) +X(3)

9 q2X(17) − q4X(13) − q6X(11) − q3X(7) − q7X(5) − q8X(1)

10 q2X(19) − q4X(15) − q6X(13) − q2X(9) − q6X(7) − q6X(3) + q2X(1)

11 q2X(21) − q4X(17) − q6X(15) − qX(11) − q5X(9) − q4X(5) − q10X(3)

Figure B.2. The ADO invariant for the knot 31.

For 31 they are

A52(x, y; q) = −q28(1− q2x4)(1− q4x4)x14y3 − q(1− q8x4)(1− q10x4)

− q5(1− q2x4)(1− q8x4)x4(1− q4x2 − q4(1− q2)(1− q4)x4 + q8(1 + q6)x6 + 2q14x8 − q18x10)y2

+ (1− q4x4)(1− q10x4)(1− 2q2x2 − q2(1 + q6)x4 + q4(1− q2)(1− q4)x6 + q10x8 − q12x10)y
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r N̂ r
52

(α)

2 −2X(3) −X(1)

3 (2q2 − 1)X(5) + 2q2X(3) + 2q2X(1)

4 (2q2 − 2)X(7) + (3q2 − q)X(5) + (3q2 − 1)X(3) + (2q2 − 1)X(1)

5 (2q2 − q − 2)X(9) + (2q3 + 2q2 − 2)X(7) + (2q3 + 2q2 + q − 3)X(5)

+(2q3 + q2 + q − 2)X(3) + (q3 + q2 − 2)X(1)

6 −(4q4 + 2)X(9) − (6q4 + 2)X(7) − (6q4 + 1)X(5) − (4q4 + 2)X(3) − 2X(1)

7 −(q4 + 2q3 − 2q2 + 1)X(13) + (4q5 − 2q4 − 4)X(11) + (5q5 − 2q4 + 2q3 − 7)X(9)

+(6q5 − q4 + 3q3 − 2q2 + 2q − 7)X(7) + (5q5 − 2q4 + 3q3 − q2 + q − 7)X(5)

+(3q5 − 2q4 + q3 − q2 − 4)X(3) − (q4 + q3 − q2 + 2)X(1)

8 −(2q6 + 2q4 − 2q2 + 2)X(15) + (q6 − 3q4 − q2 − 5)X(13) + (3q6 − q4 − 3q2 − 9)X(11)

+(7q6 − 3q2 − 10)X(9) + (7q6 − 3q2 − 10)X(7) + (4q6 − q4 − 3q2 − 8)X(5)

+(q6 − 3q4 − 2q2 − 4)X(3) − (q6 + 2q4 − q2 + 1)X(1)

9 −(4q5 − 4q2 + 1)X(17) − (4q5 + 4q3 − 2q1 + 4q)X(15) − (2q5 + q4 + 5q3 + 7q + 5)X(13)

+(q5 + 2q4 − 3q3 − 6q2 − 11q − 8)X(11) + (3q5 − q3 − 7q2 − 10q − 12)X(9)

+(2q5 + q4 − 2q3 − 7q2 − 10q − 8)X(7) − (q5 + 2q4 + 4q3 + 2q2 + 6q + 5)X(5)

−(3q5 + 2q4 + 3q3 − q2 + 2q)X(3) − (3q5 + q4 − 3q2 + 1)X(1)

10 −(q6 − 4q2)X(19) − (6q6 + 4q4 − 2)X(17) − (8q6 + 10q4 + 4q2 + 4)X(15)

−(6q6 + 14q4 + 10q2 + 14)X(13) − (22q4 + 8q2 + 22)X(11) + (q6 − 22q4 − 8q2 − 22)X(9)

−(6q6 + 14q4 + 10q2 + 14)X(7) − (9q6 + 8q4 + 6q2 + 3)X(5) − (7q6 + 2q4 + q2 − 2)X(3)

−(3q6 − q4 − 2q2 − 1)X(1)

11 −(2q7 − q5 − 2q4 − 2q2 − 2q + 2)X(21) − (2q9 + 6q7 + 4q5 − 4q4 + 4q3 − 6q2 − 2)X(19)

−(3q9 + 5q8 + 7q7 + 3q6 + 7q5 + 7q3 − 4q2 + 1)X(17)

−(2q9 + 5q8 + 10q7 + 6q6 + 9q5 + 5q4 + 12q3 + 2q2 + 5q + 3)X(15)

+(3q9 − 9q8 − 6q7 − 11q6 − 8q5 − 14q4 − 10q3 − 9q2 − 3q − 12)X(13)

+(6q9 − 8q8 − 4q7 − 15q6 − 6q5 − 18q4 − 9q3 − 15q2 − 2q − 13)X(11)

+(3q9 − 9q8 − 5q7 − 12q6 − 7q5 − 15q4 − 9q3 − 10q2 − 3q − 12)X(9)

−(2q9 + 5q8 + 9q7 + 7q6 + 8q5 + 7q4 + 10q3 + 3q2 + 4q + 3)X(7)

−(4q9 + 4q8 + 7q7 + 3q6 + 6q5 + 2q4 + 6q3 − 3q2)X(5)

−(2q9 + 5q7 + 3q5 − 2q4 + 3q3 − 5q2 − 3)X(3) − (2q7 − q5 − q4 − 2q2 − 2q + 1)X(1)

Figure B.3. The ADO invariant for the knot 52.
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B52(x; q) = q5x3 + q7(1 + q2)x5 − q7(1 + q8)x7 +
q6 − q−6

q − q−1
(−q14x9 + q20x13)

− q19(1 + q8)x15 − q25(1 + q2)x17 − q29x19.

These imply homogeneous recursions

(B.5) ÃK(x, y; q)JKN (q) :=
[
BK(x; q)y −BK(qx; q)

]
AK(x, y; q)JKN (q) = 0 (K = 31, 52) ,

just as in the figure-eight example (1.1.11) in the Introduction.

We checked explicitly for each 2 ≤ r ≤ 11 that the ADO invariants satisfy inhomogeneous

recursions

(B.6)
A31(x, y; ζ2r)N̂

r
31

(α) = (ζ2rα2r − 1 + ζ−2rα2r )B31(ζα2r, ζ2r)

A52(x, y; ζ2r)N̂
r
52

(α) = (2ζ2rα2r − 3 + 2ζ−2rα2r )B52(ζα2r, ζ2r)

with exactly the same A and B polynomials. Again, these imply homogeneous recursions

(B.7) ÃK(x, y; ζ2r)N̂
r
K(α) = 0 r ∈ N≥2 (K = 31, 52) ;

with the same ÃK(x, y; q) =
[
BK(x; q)y − BK(qx; q)

]
AK(x, y; q). Note that the prefactors (x2r −

1 + x−2r) and (2x2r − 3 + 2x−2r) appearing in (B.6) may be factored out from the homogeneous

recursion (B.7), since they commute with y and just behave like overall constants.

In terms of the standard normalization of the ADO invariant used in the main body of the

paper (NK rather than N̂K), the homogeneous recursions take the form

(B.8) ÃK(qx,−y; ζ2r)N
r
K(α) = 0 r ∈ N≥2 (K = 31, 52) ,

in perfect agreement with Theorem 2.3.4.
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