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The Essential Role of Pancreatic a-Cells in Maternal
Metabolic Adaptation to Pregnancy
Liping Qiao,1 Sarah Saget,1 Cindy Lu,1 Tianyi Zang,1 Brianna Dzyuba,1 William W. Hay Jr.,2 and
Jianhua Shao1

Diabetes 2022;71:978–988 | https://doi.org/10.2337/db21-0923

Pancreatic a-cells are important in maintaining
metabolic homeostasis, but their role in regulating
maternal metabolic adaptations to pregnancy has
not been studied. The objective of this study was to
determine whether pancreatic a-cells respond to
pregnancy and their contribution to maternal meta-
bolic adaptation. With use of C57BL/6 mice, the find-
ings of our study showed that pregnancy induced a
significant increase of a-cell mass by promoting
a-cell proliferation that was associated with a transi-
tory increase of maternal serum glucagon concen-
tration in early pregnancy. Maternal pancreatic GLP-1
content also was significantly increased during preg-
nancy. Using the inducible Cre/loxp technique, we
ablated the a-cells (a-null) before and during preg-
nancy while maintaining enteroendocrine L-cells and
serum GLP-1 in the normal range. In contrast to an
improved glucose tolerance test (GTT) before preg-
nancy, significantly impaired GTT and remarkably
higher serum glucose concentrations in the fed state
were observed in a-null dams. Glucagon receptor
antagonism treatment, however, did not affect meas-
ures of maternal glucose metabolism, indicating a
dispensable role of glucagon receptor signaling in
maternal glucose homeostasis. However, the GLP-1
receptor agonist improved insulin production and glu-
cose metabolism of a-null dams. Furthermore, GLP-1
receptor antagonist Exendin (9-39) attenuated preg-
nancy-enhanced insulin secretion and GLP-1 restored
glucose-induced insulin secretion of cultured islets
from a-null dams. Together, these results demonstrate
that a-cells play an essential role in controlling mater-
nal metabolic adaptation to pregnancy by enhancing
insulin secretion.

Pregnancy is a relatively short physiological process dur-
ing a woman’s life. To accommodate embryo implanta-
tion, placental and fetal development, and prepare for
delivery and lactation, maternal metabolism goes through
a series of adaptations during this short period. Although
many systems are involved, available data demonstrate
that insulin plays a dominant role in regulating these
metabolic adaptations. There is a significant expansion of
maternal pancreatic islet mass and insulin production to
meet the increased demand for insulin. Interestingly,
despite reduced insulin sensitivity in maternal metaboli-
cally active tissues and increased hepatic glucose produc-
tion (1,2), maternal blood glucose concentration gradually
decreases due to the increasing consumption of glucose
by the placenta and fetus as gestation proceeds (3–6).
Therefore, the progressive elevation of maternal blood
insulin concentrations and a reduction in blood glucose
concentrations are hallmarks of maternal metabolic adap-
tations to pregnancy (7–10).

a-Cells are the second most common primary pancre-
atic endocrine cells and make up 35–40% of human islet
cellular content (11–13). In response to fasting and
decreased blood glucose concentration, a-cells secrete glu-
cagon to promote hepatic glucose production (14,15).
Glucagon also enhances insulin secretion via intraislet
paracrine effects (16,17). Recent studies have shown that
the a-cells also secrete glucagon-like peptide 1 (GLP-1)
(18–22), which promotes glucose-induced insulin secre-
tion (23). Although both glucagon receptor (GCGR) and
GLP-1 receptor (GLP-1R) are expressed in pancreatic
b-cells, intraislet glucagon and GLP-1 enhance insulin
secretion mainly through GLP-1R (17,24,25).
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Given the importance of a-cells in controlling metabo-
lism, the role of a-cells in maternal metabolic adaptation
during pregnancy has not been systemically investigated.
Previous human and rat studies have reported that preg-
nancy increases maternal blood glucagon concentrations
at some time points (26–29). Although Gcgr gene deletion
reduced maternal blood glucose concentrations (30,31),
the confounding effects of whole-body gene knockout on
maternal islet development in early life cannot be ruled
out. Conflicting data also were reported regarding adapta-
tive changes in the maternal a-cell population and gluca-
gon production during pregnancy (32–34). Therefore, for
the studies reported in this article, we used mouse models
to measure the responses of a-cells to pregnancy and their
regulatory effects on maternal metabolism. Our results
showed that, in parallel with b-cell mass expansion, there
also was a significant increase in the a-cell population dur-
ing pregnancy. Unlike the transitory increase in maternal
serum glucagon concentrations in early pregnancy, pancre-
atic GLP-1 and glucagon contents were robustly increased
during most of gestation. a-Cell ablation improved glucose
tolerance in nonpregnant mice but robustly increased
maternal serum glucose concentrations during pregnancy.
Importantly, a-cell ablation significantly impaired preg-
nancy-induced insulin production, and GLP-1R agonist
injection restored serum insulin concentrations in a-null
dams. GLP-1R antagonist Exendin (9-39) (Ex9) signifi-
cantly attenuated pregnancy-enhanced insulin secretion.
Together, these results reveal a vital role of pancreatic
a-cells in maternal insulin production.

RESEARCH DESIGN AND METHODS

Materials
The anti-glucagon antibody was from R&D Systems (Min-
neapolis, MN). Antibodies against insulin and Ki67 were
from Abcam (Cambridge, MA). The total GLP-1 ELISA kit,
TRIzole, SuperScript III reverse transcriptase, and Oli-
go(dT)12-18 primer and the Alexa Fluor–conjugated goat
anti-mouse, rabbit, and sheep antibodies were from Invi-
trogen (Carlsbad, CA). Glucose, glucose oxidase, glucagon,
GLP-1 (7-36) amide, Ex9, tamoxifen (Tmx), BSA, Ficol,
DMEM, and RPMI medium were from Sigma-Aldrich (St.
Louis, MO). The mouse insulin and glucagon ELISA kits
were from Mercodia (Uppsala, Sweden). The in situ cell
death detection kit was from Roche (Basel, Switzerland).
Anti–glucagon receptor antibody REMD25.9 was provided
by REMD Biotherapeutics Inc. (Camarillo, CA). Semaglutide
(Sem) was obtained from Novo Nordisk (Plainsboro, NJ).

Experimental Animals
ROSA26-eGFP-DTA mice (named as DTA) (35,36), GcgCreErt2

mice (37), GcgiCre (38), Ai9 (39), mTmG (40), and C57BL/6
mice were from The Jackson Laboratory (Bar Harbor, ME).
All of these transgenic mice have the C57BL/6J genetic
background. DTA, mTmG, or Ai9 mice were crossed with
GcgCreErt2 or GcgiCre mice to create DTA;GcgCreErt2,

mTmG;GcgCreErt2, Ai9;GcgCreErt2, or Ai9;GcgiCre mice. To ablate
a-cells and allow intestinal L-cell recovery, 8-week old
DTA;GcgCreErt2 (named as a-null) mice were orally gavaged
with Tmx (1 mg daily in 100 mL corn oil) for two consecu-
tive days. Since our preliminary data showed that 2-day
Tmx treatment ablates �96% of a-cells in DTA;GcgCreErt2

mice, we selected a 2-day gavage to minimize potential side
effects of Tmx on pregnancy. Mating and studies were per-
formed 1 month after Tmx treatment to allow L-cell recov-
ery. Ten- to twelve-week-old nulliparous female mice were
randomly selected for mating. Pregnancy was determined by
the presence of a vaginal plug and was assigned the embry-
onic day (E)0.5. Glucose tolerance tests (GTT) were per-
formed after overnight fasting with intraperitoneal glucose
injection (2 g/kg). Serum samples were prepared, and glu-
cose concentration was determined with use of glucose oxi-
dase. Some a-null dams received glucagon (50 mg/kg at 1
min before glucose injection) or GLP-1R agonist Sem (6 mg/
kg s.c. 10 min before glucose injection) during intraperito-
neal GTT (21,41). Maternal tissues, placentas, and fetuses
were collected in the fed state. Pancreatic glucagon and
GLP-1 were extracted via homogenizing tissue in 70% etha-
nol and 20 mmol/L HCl.

For tracking of a-cell neogenesis, nonpregnant
Ai9;GcgCreErt2 female mice were orally gavaged with Tmx (2
mg daily in 100 mL corn oil) for five consecutive days,
which resulted in the labeling of nearly all a-cells. Two
weeks later, they were mated with C57BL/6 sires. Pan-
creases were collected at E18.5, and immunofluorescence
(IF) was performed with an anti-glucagon antibody. To
detect transdifferentiation between a-cells and b-cells dur-
ing pregnancy, we used the Ai9;GcgiCre mice in which all
GCG-expressing cells were labeled with a red fluorescent
protein (RFP). Pancreases were collected at indicated gesta-
tional ages. Glucagon and insulin coexpressed cells were
detected by Gcg-directed RFP and IF with anti-insulin anti-
bodies. To check GCG promoter–directed Cre expression,
we gavaged mTmG;GcgCreErt2 mice with Tmx for five consec-
utive days.

Experiments using mouse models were carried out
according to the Association for Assessment and Accredi-
tation of Laboratory Animal Care International (AAALAC
International) guidelines with approval from the Univer-
sity of California San Diego Animal Care and Use
Committee.

Immunohistochemistry, IF, and b-Islet Morphometric
Analysis
Tissues were fixed in 4% paraformaldehyde or 10% neu-
tral-buffered formalin and then processed and embedded
in optimal cutting temperature compound or paraffin. For
immunohistochemistry, tissue sections were blocked with
2% H2O2 in PBS and then heated in 0.1 mol/L pH 6.0 cit-
rate buffer for 15 min at 95�C for antigen retrieval. After
second-round blocking, immunostaining of insulin was
done using an anti-insulin primary antibody (10 mg/mL)
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or rabbit serum (for a negative control) for 4 h. The sec-
tions were visualized with 3,30-diaminobenzidine (Vector
Laboratories, Burlingame, CA) at room temperature for
1.5 min and counterstained with hematoxylin. a-Cells,
b-cells, and pancreas areas were measured with immuno-
histochemistry (IHC)-stained series of sections with the
microscope software (BZ-X800E; Keyence, Laguna Hills,
CA). a-Cell and b-cell masses were measured with the use
of glucagon- or insulin-stained series of sections. We
determined the percentage of a-cell or b-cell area in the
pancreas by dividing the area of glucagon- or insulin-posi-
tive cells in one section by the pancreas area. The a-cell
or b-cell mass was calculated by multiplication of the pan-
creas weight by the percentage of a-cell or b-cell area as
we previously described (4,42).

For IF, the slides were incubated in 1% SDS in PBS for
5 min to induce antigen retrieval. After blocking with BSA
in PBS for 2 h, sections were incubated with anti-insulin,
anti-glucagon, or anti-Ki67 antibody overnight at 4�C.
After rinsing, the secondary antibody conjugated with
Alexa Fluor 488 or 568 was applied to the slides and incu-
bated for 2 h at room temperature. After washing, sections
were mounted in DAPI Fluoromount-G (SouthernBiotech,
Birmingham, AL) and visualized by fluorescent optical
microscopy. The ratios of Ki67 and glucagon or insulin pro-
tein–positive cells were calculated with use of IF images.
For each dam, 8–12 islets were randomly counted for
Ki67-, glucagon-, or insulin-positive cells from different
sections. The average percentage of Ki67-positive a-cells or
b-cells from each dam was used for statistical analysis. The
apoptotic cells were detected with TUNEL staining. The tis-
sue sections from mTmG;GcgCreErt2 reporter mice were
mounted in DAPI Fluoromount-G and visualized with fluo-
rescent optical microscopy.

Pancreatic Islet Isolation and Glucose-Stimulated
Insulin Secretion
The pancreatic islets were isolated by collagenase digestion
and differential centrifugation through Ficol gradients as
we previously described (4). For mRNA extraction, all islets
were immediately homogenized in TRIzole. For glucose-
stimulated insulin secretion (GSIS), size-matched islets
were handpicked and incubated overnight in RPMI with 5
mmol/L glucose. One hour before the assay, the culture
medium was changed to the Krebs-Ringer medium with 2
mmol/L glucose. The islets were then stimulated with the
addition of glucose (20 mmol/L) for 1 h with or without 1
mmol/L Ex9 or 10 mg/mL REMD25.9. The medium was
collected at the end of stimulation. The insulin left in the
islets was extracted and measured with an ELISA kit
(4,43).

Statistical Analysis
Data are expressed as mean ± SEM. Statistical analyses
were performed with the Student t test or ANOVA,

followed by Bonferroni posttests with the use of Prism
software. Differences were considered significant at P <
0.05.

Data and Resource Availability
The data sets and reagents generated during the current
study are available from the corresponding author on rea-
sonable request.

RESULTS

Pregnancy Increased a-Cell Mass and Intraislet GLP-1
Production
Pregnancy significantly increases b-cell mass in rodents
through enhancing b-cell proliferation (44,45). Similarly,
our measurement revealed a significant increase of gluca-
gon-positive tissue masses of pregnant mice from E6.5 to
E18.5 (Fig. 1A and B). The cellular sizes of glucagon-posi-
tive cells were the same between basal and E15.5
(Supplementary Fig. 1A). There was no significant change
in the ratios of glucagon- and insulin-positive area within
the islet (Fig. 1C), indicating a proportional increase of a-
and b-cells during pregnancy. The proliferation marker
Ki67 protein–positive rates of a-cells were significantly
increased during early pregnancy and midpregnancy (Fig.
1D). We also labeled a-cells with tdTomato (RFP) before
pregnancy using Ai9;GcgCreErt2 mice and then studied any
precursor-directed a-cell neogenesis during pregnancy. No
significant increase of RFP-negative and glucagon-positive
cells was detected during pregnancy, indicating no a-cell
neogenesis during pregnancy (Supplementary Fig. 1B). We
also studied the transdifferentiation between a- and
b-cells during pregnancy using Ai9;GcgiCre mice, in which
all a-cells were labeled with RFP. There was no significant
difference in insulin and RFP coexpressed cells between
basal and E15.5 (mean ± SEM 0.14 ± 0.07% of a-cells vs.
0.18 ± 0.11% of a-cells [Supplementary Fig. 1C]). Consis-
tent with a recent report (33), our data indicate that the
increase of the a-cell number and tissue mass during
pregnancy is not due to increased transdifferentiation
from b-cells. Almost no TUNEL-positive a-cells were
detected (data not shown), indicating no a-cell apoptosis
during pregnancy. Together, these results indicate that
pregnancy increases pancreatic a-cell mass by enhancing
a-cell proliferation.

Despite a noticeable increase of a-cell mass during preg-
nancy, a significant increase of serum glucagon concentra-
tions was only detected at E6.5, and pancreatic glucagon
contents were increased between E6.5 and E12.5 (Fig. 1E
and F). However, pancreatic total GLP-1 contents were sig-
nificantly increased at nearly all pregnancy time points
(Fig. 1G).

a-Cell Ablation Induced Hyperglycemia and
Hypoinsulinemia in Pregnant Mice
To study the role of a-cells in maternal metabolic adapta-
tion, we created transgenic mice with Tmx-inducible a-cell
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ablation (a-null) by crossing the ROSA26-eGFP-DTA mice
(35,36) with preproglucagon promoter–directed Cre trans-
genic (GcgCreErt2) mice (37). Results showed that 2-day Tmx
treatment depleted �96% of a-cells (Fig. 2A). A significant
number of intestinal L-cells were also ablated (Fig. 2A) (Tmx
vs. oil). Although preproglucagon is expressed in the brain
(46), the GcgCreErt2 did not direct any DNA recombination in
PPG neurons (Supplementary Fig. 2A), which is consistent
with others’ reports (25,37). In addition, a recent study
demonstrated that PPG neuron ablation exhibited no effect
on insulin production and glucose metabolism (47).

Consistent with findings of previous studies (21,38,
48,49), ablated a-cells were not replenished in adult mice
but L-cells were quickly regenerated (Fig. 2A). Serum GLP-
1 concentrations were also recovered to control levels
(Supplementary Fig. 2B). To focus on the effect of pancre-
atic a-cells, we used the mice 1 month after Tmx treat-
ment. The same strategy has been used to let L-cells
recover (21,25,49). Therefore, after L-cell replenishment,
the a-null mice provided a unique model for study of the
role of a-cells in maternal metabolic adaptation.

Like other a-cell–ablated mice (21,48,49), nonpregnant
female and male a-null mice exhibited no significant
changes in random-fed serum glucose concentrations, tri-
glyceride (TG) concentrations (Fig. 2B and C), and fasting

serum glucose concentrations (Fig. 2D and E [time 0]).
However, an improved GTT was observed in male and
female a-null mice (Fig. 2D and E). A similar phenotype of
improved GTT was previously reported in mice with glu-
cagon deficiency (50–53).

During pregnancy, significantly increased serum glu-
cose and TG concentrations were observed in pregnant
a-null mice (Fig. 2F and G). In contrast, serum insulin
concentrations of a-null dams were significantly lower
than those of the pregnant control (Con) dams (Fig. 2H).
Of note, despite insulin resistance, Con dams’ serum glu-
cose concentrations were significantly decreased in late
pregnancy (Fig. 2F), which is in line with findings of
human and rodent studies (4–6). During GTT, serum glu-
cose concentrations of a-null dams were significantly
higher than in Con dams (Fig. 2I). Accordingly, lower
serum insulin concentrations were detected in a-null
dams (Fig. 2J). Together, these results show that a-cell
ablation impairs maternal glucose metabolism due to
reducing serum insulin concentrations.

a-Cell Ablation Showed No Significant Effect on b-Cell
Proliferation but Significantly Decreased GSIS During
Pregnancy
Increasing b-cell mass and insulin secretion are the main
mechanisms underlying the progressive increase of
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Figure 1—Pregnancy increases the a-cell mass and pancreatic GLP-1. Maternal tissue samples were collected from pregnant C57BL/6J
mice at indicated embryonic ages. A and B: a-Cell mass was measured with use of IHC images of a series of pancreatic sections (dark
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maternal serum insulin concentrations during pregnancy.
Our results showed that b-cell mass was comparable
between Con and a-null mice before and during pregnancy
(Fig. 3A). Similar percentages of Ki67-positive b-cells
were also observed in Con and a-null dams (Fig. 3B), indi-
cating that a-cells are dispensable in pregnancy-induced
b-cell mass expansion.

We then performed a GSIS study using islets from age-
matched nonpregnant control (np-Con), Con, and a-null
dams. Basal insulin secretion rates were comparable between
np-Con, Con, and a-null islets (Fig. 3C). As expected, glucose-

induced insulin secretion rates were significantly higher in
islets from Con dams compared with np-Con islets (Fig. 3C).
However, glucose-induced insulin secretion rates were signif-
icantly attenuated in islets from a-null dams (Fig. 3C). These
results indicate that a-cell ablation impaired glucose-
enhanced insulin production during pregnancy.

Glucagon Receptor Antagonism Did Not Alter Maternal
Glucose Metabolism
Glucagon regulates glucose metabolism mainly through
the endocrine effects on the liver and other peripheral
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tissues. The a-null dams had remarkably reduced serum
glucagon concentrations and pancreatic glucagon and
GLP-1 contents (Fig. 4A–C). However, pancreatic insulin
contents were not altered in a-null dams (Fig. 4D). Gluca-
gon receptor (Gcgr) gene knockout dams exhibited persis-
tent hypoglycemia (30,31), which is opposite to the
metabolic phenotypes of a-null dams. Therefore, we used
glucagon receptor antibody REMD25.9 (REMD Biothera-
peutics Inc.) to block GCGR signaling during pregnancy
and further assess the endocrine effect of glucagon on
maternal metabolic adaptation (54–56). Antibody injec-
tion avoids the developmental impact of systemic Gcgr
gene knockout (30,31).

Blocking GCGR signaling increases a-cell mass and glu-
cagon and pancreatic GLP-1 production (57–59). Signifi-
cantly increased serum and pancreatic glucagon and GLP-
1 contents and enlarged a-cell mass were observed in
REMD25.9-treated dams (Fig. 4E–H), indicating a success-
ful blockage of GCGR signaling. To our surprise, there
was no significant alteration in random feeding serum
glucose and insulin concentrations in REMD25.9-treated
dams (Fig. 4I and J). Similarly, comparable fasting serum
glucose and insulin concentrations were observed in
REMD25.9-treated and Con dams (Fig. 4K and L). The
metabolic phenotypes of a-null dams are strikingly differ-
ent from those of REMD25.9-treated dams. The main dif-
ference between these two models is the opposite
changes in pancreatic glucagon and GLP-1 contents (Fig.
4A–G). Since GLP-1R plays a dominant role in mediating
the insulinotropic effect of both glucagon and GLP-1
(17,24,25), we performed intraperitoneal GTT of Con and
REMD25.9-treated dams with or without GLP-1R antago-
nist Ex9. Ex9 injection significantly increased serum
glucose concentrations, while it reduced GSIS, in both

REMD25.9-treated and Con dams (Fig. 4M and N). Since
GLP-1R mediates the regulatory effects of both glucagon
and GLP-1, these results led us to propose that increased
intraislet GLP-1 and glucagon might maintain insulin pro-
duction and glucose metabolism in REMD25.9-treated
dams. These data also support a previous study that dem-
onstrated the importance of GLP-1R in maternal b-cell
adaptation to pregnancy (32).

GLP-1R Agonist Increased Maternal Serum Insulin in
a-null Dams, While GLP-1R Antagonist Ex9 Attenuated
Pregnancy-Enhanced Insulin Secretion
The above results showed that a-cell ablation significantly
reduced pancreatic glucagon and GLP-1 contents and
insulin production during pregnancy. The a-cells promote
insulin secretion through glucagon and GLP-1 (16,24,25).
We injected glucagon or GLP-1R agonist Sem into a-null
dams during GTT to determine which hormone mediates
the regulatory effects. Results showed that Sem injection
significantly improved serum glucose and insulin concen-
trations in a-null dams (Fig. 5A and B). However, glucagon
injection did not improve serum glucose and insulin con-
centrations in a-null dams (Fig. 5A and B). Importantly,
serum glucose concentrations during intraperitoneal GTT
of Sem-treated a-null dams were even significantly lower
than those of Sem-treated Con dams (Fig. 5A). Since
serum insulin concentrations of Sem-treated a-null dams
were restored to Sem-treated Con dam levels (Fig. 5B), we
reasoned that decreased glucagon of a-null dams contrib-
uted to the significantly improved GTT of a-null–Sem
dams. The increased glucose concentrations during GTT
of GCG-treated a-null dams (Fig. 5A) further support the
essential role of glucagon in maintaining serum glucose
concentrations after fasting.
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We then repeated the GSIS of islets from a-null dams
in the presence of GLP-1 and glucagon. Results showed
that GLP-1 treatment restored GSIS rates of islets from
a-null dams to the levels of islets from Con dams (Fig.
5C). Given the recovery of L-cells and normal serum GLP-
1 in a-null mice (Fig. 2A and Supplementary Fig. 2B),
these results indicate that the reduction of intraislet
GLP-1 is most likely responsible for the decrease of insu-
lin production in pregnant a-null mice.

Both GCGR and GLP-1R are expressed in b-cells and
mediate the insulinotropic effects of glucagon and GLP-1
(17,24,25). For further verification of the pathway(s)
through which a-cells regulate the adaptation of maternal
b-cells to pregnancy, a GSIS was performed in the pres-
ence of GLP-1R or GCGR antagonist Ex9 or REMD25.9.
Results showed no effect of Ex9 and REMD25.9

treatment on basal insulin secretion rates in all islets (Fig.
5D). Under high glucose conditions, insulin secretion
rates were significantly reduced by Ex9 treatment in both
islets from virgin and islets from pregnant mice (Fig. 5D).
In contrast, the REMD25.9 treatment did not alter glu-
cose-induced insulin secretion rates in either group. These
results indicate that similar to GLP-1R in nonpregnant
conditions (17,24,25), GLP-1R plays an essential role in
glucose-induced insulin secretion during pregnancy.

DISCUSSION

Increased insulin production and circulating insulin con-
centrations are essential in regulating normal maternal
metabolic adaptations to pregnancy (7–10). In addition to
peripheral insulin resistance, inadequate insulin production
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during pregnancy leads to hyperglycemia and gestational
diabetes mellitus (9,10,60). The current study reveals an
essential role of pancreatic a-cells in pregnancy-enhanced
insulin production.

b-Cells and a-cells are primary endocrine cells in pan-
creatic islets. However, the role of a-cells in islet adapta-
tion to pregnancy has not been specifically studied. Our
data show that, in parallel with the expansion of b-cell
mass, a-cell mass also significantly increases during preg-
nancy. Others have reported similar phenotypes in stud-
ies in pregnant mice (34,61). Our results also indicate
that significantly increased proliferation in early preg-
nancy most likely contributes to the a-cell mass expan-
sion. Unlike b-cells, the expansion of a-cell mass occurs
without an accompanying increase in maternal blood gluca-
gon concentrations, except for a transitory increase at E6.5.
Some human and rat studies have reported increased mater-
nal blood glucagon concentrations at a time point during
pregnancy (26–29). However, conflicting data do not con-
sistently demonstrate increased maternal glucagon pro-
duction during pregnancy (26–29,32–34). Differences in
methodology, animal models, and the timing of glucagon
measurements during pregnancy may account for these

inconsistencies. Regardless of the maternal blood gluca-
gon concentration, the findings of our study and pub-
lished data indicate that pregnancy increases a-cell
proliferation and a-cell mass (34,61). Most importantly,
our study reveals that pregnancy increases maternal pan-
creatic GLP-1 and glucagon contents, which promote
insulin production. Therefore, these data support the con-
cept that maternal pancreatic a-cells adapt to pregnancy
at both structural and functional levels.

Glucagon is the primary hormone from a-cells and
plays a crucial role in maintaining systemic glucose
homeostasis. However, despite �96% a-cell ablation, the
nonpregnant a-null mice in our studies exhibited only
minor changes in their metabolic phenotypes. Our results
support the notion that despite a robust reduction in
a-cell mass, the remaining glucagon in the circulation is
sufficient for normal glucose metabolism in a-null mice in
most physiological conditions (21,48,49). The compensa-
tory effects from other hormone(s) or organs, such as
the central nervous system, might also underlie the
minor metabolic phenotype of nonpregnant a-null
mice. In contrast to the improved GTT of nonpregnant
a-null mice and hypoglycemia of Gcgr gene knockout
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dams (21,30,31,48,49), significantly increased fed-state
serum glucose concentrations and glucose intolerance were
observed in a-null dams. Furthermore, blocking GCGR sig-
naling showed no significant effect on maternal glucose
metabolism. Therefore, these results indicate that the
endocrine effects of glucagon play a minor role in regulat-
ing maternal glucose metabolism during normal pregnancy.
Thus, maternal hyperglycemia produced by a-cell ablation
during pregnancy might be caused by a mechanism(s)
other than the endocrine effect of glucagon.

The proximity of a- and b-cells in pancreatic islets produ-
ces a paracrine effect between these two types of cells
(25,62,63). Thus, b-cells normally suppress glucagon secre-
tion from a-cells, but glucagon stimulates glucose-induced
insulin secretion (16,64). Importantly, a-cells also secret
GLP-1, which enhances glucose-induced insulin secretion
(20,65,66). Glucagon and GLP-1 are encoded by the same
preproglucagon gene. Posttranslational cleavage of progluca-
gon by proprotein convertase subtilisin/kexin type 2
(PCSK2) produces glucagon, while PCSK1 directs GLP-1 pro-
duction (22,62,65,67). Despite the debate about the physio-
logical importance of a-cell–released GLP-1 in glucose
metabolism (20), accumulating data indicate that intraislet
GLP-1 plays a vital role in augmenting insulin production in
conditions of metabolic stresses (19,21,49,51,63,65,68–70).
In our study, the pregnancy-induced increase of maternal
serum insulin concentration was significantly diminished in
a-null dams. Similarly, genetic blocking of glucagon and GLP-
1 production significantly increases maternal serum glucose
concentrations, which is associated with a blunted increase of
maternal serum insulin concentrations during pregnancy
(71). Most importantly, our study showed that a GLP-1 recep-
tor agonist and GLP-1 itself restored insulin secretion in
a-null dams and cultured islets from a-null dams. Because
serum GLP-1 and L-cells were restored in the a-null dams,
our studies indicate that intraislet GLP-1 plays a specific and
vital role in mediating pregnancy-enhanced insulin produc-
tion. Unlike in the study with systemic Glp-1r gene knockout
mice (32), both a-null mice and the mice with proglucagon
gene mutation exhibited normal b-cell proliferation and islet
mass expansion during pregnancy (71). In addition, although
a- to b-cell transdifferentiation has been proposed as a mech-
anism for b-cell mass expansion during pregnancy, consistent
with two recent studies (33,34), our results do not support
this mechanism. Therefore, our combined results lead us to
propose that a-cells actively contribute to pregnancy-
enhanced insulin production via intraislet GLP-1–promoted
insulin secretion. Of note, our data do not rule out the contri-
bution of intraislet glucagon in maternal islet adaptation, and
further studies are warranted to test for this possibility. The
involvement and regulatory effects of circulating GLP-1 on
maternal metabolic adaptation also need to be further
studied.

Although pregnancy robustly increases insulin production
and maternal blood insulin concentrations in both humans
and rodents, there are differences in mechanisms for such

b-cell adaptations. Compared with rodents, human b-cells
have relatively low rates of proliferation and b-cell mass
expansion during pregnancy (45,72,73). Human islets also
have significantly more a-cells (making up 35–40% vs.
15–20% of islet cellular content in humans vs. rodents,
respectively) (11–13). Without the mantle structure as in
rodent islets, human a-cells randomly mix with b-cells and
other cells, favoring the potential for intraislet paracrine
interactions between a- and b-cells. Further studies will be
necessary to confirm the role of a-cells in insulin production
and metabolic adaptation during human pregnancy. Such
human studies will have the potential to reveal a new cause
of insulin insufficiency in gestational diabetes mellitus,
namely, failure of a-cell adaptation and/or intraislet GLP-1
production.

In summary, the current study demonstrates that a-cells
are a vital component of maternal pancreatic islet adapta-
tion to pregnancy in mouse models. In mice, pregnancy
induces a-cell proliferation and a-cell mass expansion. Pan-
creatic a-cells promote maternal insulin production during
pregnancy from adjacent b-cells mainly via GLP-1R–medi-
ated intraislet paracrine action.
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