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Abstract of the Dissertation

Sensing Across Mobiles and the Cloud:

Architectural Styles and Software Mechanisms

by

Haksoo Choi

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2015

Professor Mani B. Srivastava, Chair

Recent changes in pervasive sensing applications require software systems that can address

diverse technical, architectural, and human issues. Research on wireless sensor networks has

served as technical fundamentals, mobile sensing research has helped solving many archi-

tectural problems, and now various human/cultural difficulties in pervasive sensing systems

are revealed. We compare two contrasting architectural styles, i.e., the cathedral and the

bazaar 1, and discuss the design of a system that unifies the both. Main challenges in de-

signing such a system include: (1) a large amount of personal data; (2) privacy in sharing

them; (3) energy-efficiency on mobile devices. We address them using a distributed network

of virtually-private data stores featuring rule-based sharing control and flow-based execution

of context inferences. Our performance benchmarks show that the rule processing delay is

less than 25 ms in typical usage scenarios, and the flow-based execution saves 38.3% of CPU

time as well as 54.3% of memory usage in comparison to a bus-based framework. Our twelve-

person user study results indicate participants feel less privacy concerns using the rule-based

sharing control. We also discuss an interesting tradeoff between usability and controllability,

discovered from the user study. Finally, all source code for this research is readily available

online2.

1The analogy is inspired from a book authored by Eric S. Raymond, “The Cathedral and the Bazaar.”
2https://github.com/nesl/SensorSafe and https://github.com/nesl/FlowEngine
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CHAPTER 1

Introduction

Collaboration of mobile devices and cloud systems are popular in modern pervasive sensing

applications. Mobile devices are ubiquitous, connected to the Internet, and used as platforms

for personal data collection. Cloud systems have made it possible for such data to be almost

permanently stored, shared across many entities, and used to generate more sophisticated

information about individuals. Common use of terms such as Internet of Things (IoT)

[AIM10], Cyber-Physical-Systems (CPS) [Lee08], and Machine-to-Machine (M2M1) reflects

how pervasive such technologies are in our lives.

Systems for such applications have technical roots in Wireless Sensor Networks (WSNs)

[Lew04], which can be considered as a micro-scale version of pervasive computing systems.

From dust-sized wireless sensor nodes [WLL01] to structural health monitoring systems for

Golden Gate Bridge [KPC07], WSNs started as autonomous networks collecting various

sensor data through wireless channels. Then, it became large-scale systems such as environ-

mental, seismic, and oceanic sensing/actuation systems. Now, the sensors are replaced by

mobile devices, and the low-power wireless medium are replaced by the Internet.

Although diverse research has been conducted in WSNs, modern pervasive systems have

their own problems, especially in software architectures and human-related problems. It is

because: (1) the scale of the systems has been expanded; (2) the sensing target has changed

from things to humans; (3) the nature of the collected data has become privacy-sensitive.

Among many problems, we focus on data privacy, energy-efficiency, and large data volume.

First, one human-related issue is privacy of individuals sensed by machines, i.e., mobile

devices and sensors embedded in infrastructures. There has been much news on privacy,

1https://en.wikipedia.org/wiki/Machine_to_machine
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ranging from facetious to serious ones. An Android application, “Do you trust me?”, trans-

mitted precise location coordinates between romantic couples without any consent from each

other. Later, the developers were indicted without physical detention due to violation of lo-

cation information protection laws in South Korea [Lee11]. Moreover, if you use so-called

“hacking” tools such as Tor [DMS04] and Tails2, or merely visit Linux Journal website,

your identity might be on a watch list maintained by U.S. National Security Agency (NSA)

[GKO14]. Further, researchers were able to reidentify credit card users from anonymous

transaction history of 1.1 million people in 10,000 stores over three-month period. Other

major privacy incidents include reidentification of the Netflix dataset, patient health records

from Washington State, taxi ride records from New York City, and so on [Sin15].

Second, energy efficiency while processing sensor data is also important because the

most popular end-devices at the sensing side are typically battery-operated. Nowadays,

there are growing demands on capabilities of mobile devices, but the battery technology is

not keeping up. To overcome this problem, industries have designed flexible mobile CPUs

using heterogeneous multiple processors and cores (HMPCores) on a single chip. Although

the hardware seems ready, core operating system services are not fully optimized for such

CPUs. In addition, energy efficiency in mobile devices better preserves privacy because more

data can be processed within a user’s own devices rather than someone else’s cloud. In this

way, a less amount of information instead of risky raw data needs to be shared.

Third, the amount of sensor data can become very large so architectures for pervasive

computing systems should be carefully designed. Apparently, collecting data from many

mobile devices and storing them in a centralized place is straightforward, but it will require

a highly-scalable server infrastructure. However, we argue that if privacy is architecturally

handled, the data size that a single host machine needs to handle is not large enough, so the

typical performance of a home PC will suffice.

We discuss two broad architectural styles, i.e., a centralized cathedral and a distributed

bazaar 3, and then introduce a design called kazaar that unifies the both. Briefly speaking,

2https://tails.boum.org
3The analogy is inspired from a book authored by Eric S. Raymond, “The Cathedral and the Bazaar.”
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the cathedral has problems with data privacy, but the bazaar is hard to manage. Our

unified architecture remedies the manageability problem with virtual machines, and provides

individuals with virtually-private data stores to preserve data privacy.

The main advantage of the cathedral style is manageability because an owner of a system

has full access to user data and infrastructures hosting the data. Good manageability also

helps earning trust from users because a well-managed system leads to better quality of

services. However, it makes users give away their privacy easily in return for such services.

Another disadvantage of the cathedral approach is scalability. Although modern data centers

are highly scalable, they can face limitations once the amount of data reaches the capacity

of addressable entities in the IPv6 environment.

Better privacy can be achieved by the bazaar because personal data are stored in private

devices so users can have better control. Once data leave personal data stores, we can

maintain traces of data movement and investigate if needed. Self-destruct data would be

ideal, but without help from the core operating system services, it seems impractical. As

a last resort, we also need help from privacy laws. On the other hand, the distributed

architecture might scale in unmanageable way, but it could be the only choice for handling

the amount of data produced in the IoT environment based on IPv6.

As mentioned before, if we just focus on privacy, the distributed style would be ideal,

but the manageability is a problem. For this reason, many researchers have investigated if

virtual machine infrastructures can help achieving both the manageability and the privacy.

In this paper, we leverage virtualization techniques to provide users with tangible privacy

experience through our kazaar architecture, which unifies the cathedral and the bazaar.

The kazaar architecture remedies the data scalability problem by distributing individual’s

data into their own storage. Ideally, the storage should be physically owned by data owners

but it is impractical due to typical upstream limitations of residential Internet services. Thus,

kazaar stores the data as close to owners as possible (e.g., regional data centers at each zip

code). This will geographically distribute the data and give physical access to owners if

needed. For this, we present SensorSafe, an implementation of virtually-private data stores,

3



which is a core component of the kazaar architecture.

On the other hand, in order for mobile devices to distill raw sensor data into more

abstract information, energy-efficiency is an important issue. Our design of FlowEngine

employs flow-based programming model to manage data processing applications easily. This

obtained manageability can be used by an operating system scheduler to execute them in

energy-efficient manner, especially using the recent heterogeneous CPUs. We propose such

a technique and discuss its feasibility.

The kazaar architecture was inspired by many existing works. Shilton et al. discussed

social, political, and legal aspects of computer systems with personal data, and suggested

expanding Codes of Fair Information Practice [SBE09]. Cranor et al. contributed numerous

research works in Usable Privacy and Security area [CG05]. Closest to our work, Montjoye et

al. presented a software framework called openPDS, where users can share only privacy-safe

information instead of risky raw data [MSW14].

Key contributions of this work are as follows:

• We propose an architecture that gives tangible privacy experience, in that users can

physically unplug and stay private.

• We provide a practical implementation of SensorSafe, a virtually-private data store in

the cloud, and FlowEngine, an energy-efficient dataflow execution in mobile devices.

• We discuss our observations on usability vs. controllability tradeoffs, discovered from

our user study.

Our performance benchmarks show that SensorSafe has an average latency of less than 25

ms on processing privacy rules in typical usage scenarios, and FlowEngine reduces 38.3% of

CPU time as well as 54.3% of memory usage in comparison to a bus-based framework. Such

results demonstrate that the proposed mechanisms are feasible. Moreover, our user study

results indicate that users have less privacy concerns when they have more control over

their data, which is provided by SensorSafe. We also discuss an interesting tradeoff between

4



usability and controllability, discovered in the user study. Lastly, all software source code

for this research is readily available online4.

Rest of this paper is structured as follows. Chapter 2 compares two contrasting architec-

tural styles, and propose an unified architecture called kazaar. Chapter 3 presents example

applications used in this paper. Chapter 4 discusses the cloud component of our architec-

ture, SensorSafe. Chapter 5 discusses the mobile component of our architecture, FlowEngine.

Chapter 6 describes performance benchmark results of our implementation. Chapter 7 dis-

cusses results and findings from our user study. Chapter 8 provides an overview of the

existing literature. Finally, Chapter 9 concludes this paper, discusses privacy principles that

we have discovered, and provides a few ideas on implementating the principles.

4https://github.com/nesl/SensorSafe and https://github.com/nesl/FlowEngine
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CHAPTER 2

Architectural Styles

In this chapter, we discuss several architectural styles for a computer system that flows

sensory information among many users. We first discuss two contrasting architectures, i.e.,

centralized vs. distributed, and then propose an approach that unifies them. We also point

out when either approach fails and why the unification is necessary.

2.1 A Centralized Cathedral

As shown in Figure 2.1, a centralized architecture consists of a single server and many clients

(or users). Such a server is owned by a single entity, usually a commercial company. Sensory

information from users is stored in the central server and can be retrieved by users or other

entities from the server. Although we state there is a server, data centers usually operate

many server nodes in coordination, giving users a perspective of interacting with a single

server.

One strong advantage of the centralized architecture is simplicity. Making an architecture

simple is especially important when capability requirements of a system are very high. It is

because a system can scale easily (in terms of throughput, bandwidth, storage size, etc.) by

simply adding more server nodes. In addition, an owner of the server infrastructure has a full

access to every aspect of the system. This manageability leads to better service availability

because technical issues can be well-handled with the full access. More importantly, the

server owner also has an access to user data and auxiliary information such as system logs.

Such data are useful in many ways, for example, providing personalized services or improving

service qualities. From a user’s perspective, good service quality often results in better
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Big Data Center

Figure 2.1: A centralized cathedral architecture.

trustworthiness, and most users are not much concerned about privacy once they trust

someone.

However, it is interesting that users become indifferent to privacy due to the trustworthi-

ness built upon their private information. We point out several problems related to privacy

in the centralized architecture. First, ownership of user data is ambiguous because they are

physically stored in a server owner’s hardware while the data are about users. Second, the

server owner potentially has unlimited access to private data unless proper security mecha-

nisms are employed. Although the server owner could claim that user data are secure, users

do not have a choice but to believe if the software is not open-sourced. In the worst-case

scenario, even open-sourced software is not sufficient because physical ownership of data

entails many side channels for illegitimate data access. Besides, data privacy is especially

important in sensing applications because raw sensor data not only are sensitive but also

can be used to infer more privacy-invasive information.
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Figure 2.2: A distributed bazaar architecture.

2.2 A Distributed Bazaar

As the KISS1 principle implies, we should always avoid a system becoming unnecessarily

complex. However, we claim that it is reasonable to add necessary complexity for privacy

because it is one of the basic human rights. In this section, we discuss whether a fully

decentralized approach is indeed necessary, and see if it is feasible to build applications on

top of such an architecture.

In a decentralized architecture shown in Figure 2.2, each user physically owns their data

and hardware storing them. Commercial companies request user data every time they need

them, and are not allowed to store them outside the personal storages. This restriction can

be enforced by legal and/or technical measures. Data traders act as mediators, providing

a kind of directory service for connecting data producers (e.g., users) and consumers (e.g.,

commercial companies). In this kind of architecture, it is clear who owns data and the data

owners have a complete control over their data.

However, this architecture is impractical due to several reasons. First, typical upstream

speed of residential Internet services is slow. It will cause intolerable service delay because

1Keep It Simple and Stupid (https://en.wikipedia.org/wiki/KISS_principle)
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Figure 2.3: The unified kazaar architecture.

companies fetch user data only from the personal storages. Second, it might be impossible

for non-technical users to run a PC at home all the time. Even if they manged to set

up one, it would be challenging to keep the system up and running. Third, we cannot

entirely rely on companies to exercise the no-store policy. Although privacy laws can help,

technically enforcing the policy is more desirable. Lastly, distributed computation over

wide area networks (WANs) is not trivial. In order to analyze data spread over the large

networks (e.g., machine-learning over WANs), distributed computations are unavoidable

because companies are not allowed to store personal data in their hardware. However, such

distributed computations are not trivial in general.

2.3 A Unified Kazaar

We remedy the problems mentioned above by proposing a unified architecture that dis-

tributes user data over personal data stores, but still makes the centralized access feasible.

An overview of the architecture is shown in Figure 2.3. The key idea is a network of virtual

machines (VM) hosting virtually-private data stores, and a single VM instance contains its

owner’s data only. Data storages are purchased by the owners (e.g., portable solid-state
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drives), but the storages are commercially-operated at locations close to the owners. The

close operation allows users to unplug their storage physically and go offline in case they

are concerned. This architecture is a technically safer way to share personal data and also

gives users tangible experience about their privacy. In addition, storing data in personally-

purchased media gives users better legal rights, even though the data are used by third-party

companies.

SensorSafe is a core component of the kazaar architecture. It is a framework for virtually-

private data stores, which are distributed over the Internet. VM instances running the

SensorSafe framework are hosted in regional data centers, and each SensorSafe framework

stores a single user’s private data. The regional data centers are connected to commercial

companies’ computing centers where they fetch personal data and process them. Because

communication speed between the regional data centers and the computing centers are much

faster than that of the residential Internet services, data are more accessible for central

processing. For additional privacy guarantees, commercial companies operating the regional

data centers can be certified by third-party companies such as TRUSTe [Ben99].

While SensorSafe is a backend framework in the cloud, FlowEngine runs on mobile devices

to process personal sensor data energy-efficiently. Note that processing more data in a user’s

private device is also important for privacy because it reduces the risk of raw sensor data

leakage. Figure 2.4 shows core components in SensorSafe and FlowEngine, along with how

they are related to each other. We describe details of SensorSafe and FlowEngine in Chapter 4

and Chapter 5, respectively.
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CHAPTER 3

Example Applications

We introduce three context inference applications that help the discussion of our system

throughout this paper. The applications include activity, stress, and conversation inferences,

which have been presented in existing works. We have reimplemented them on FlowEngine

to demonstrate energy-efficiency achieved by our the data-flow execution framework. The

reimplemented dataflow programs are shown in Figure 3.1. We also briefly discuss several

important characteristics that have guided the design of FlowEngine.

3.1 Activity

This application infers user’s activities in five states, i.e., stationary, walking, running, bik-

ing, and driving [RMB10]. It uses accelerometer and GPS sensors on a smartphone. One

interesting characteristic of this application is that it internally uses movement detection

based on accelerometer to reduce usage of an energy-hungry GPS sensor. Depending on the

result of the movement detection, subsets of its dataflow graph are activated or deactivated.

3.2 Stress and Conversation

These applications use ECG and respiration sensors from a body-worn chest-band [RBA10],

and infer whether a user is stressed or not and speaking or not [RAP11]. The machine-

learning algorithms for the two classifications have many common features computed from

the respiration sensor. Such shared computations would have caused a waste of resources if

there was no system support from FlowEngine. In addition, several features have common
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primitive computation stages, and they are also exploited by FlowEngine to reduce resource

usage.
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CHAPTER 4

SensorSafe: Virtually-Private Data Stores

This chapter introduces a concept of virtually-private data stores, SensorSafe, which is a

foundation of the kazaar architecture. SensorSafe enables users to control how their data

will be shared using expressive rules, and release data with differential-privacy in mind. We

also talk about usability of rule-based sharing by comparing simple-but-easy and powerful-

but-hard user interfaces. The database layer is also an important component of SensorSafe

implementation, so we discuss how it has been evolved from the first version. SensorSafe has

been field-tested, and the user study results indicate that participants feel more comfortable

sharing their personal sensory information using SensorSafe as discussed in Chapter 7

4.1 Need for Privacy

Nowadays, mobile devices can collect personal and sensitive information about various as-

pects of our lives. They usually have GPS, WiFi/3G, and sensors such as an accelerometer, a

gyroscope, a photodiode, a proximity sensor, etc. Such capabilities enable continuous collec-

tion of personal sensory information. Not only they can provide location and sensor data but

also infer a user’s context such as activities [KWM11], transportation modes [RMB10], and

identities of speakers [LPL09]. Moreover, we can even obtain information about psychosocial

status [PRH11] or social contexts [RAP11] if body-worn sensors (e.g., Autosense [ESK11],

etc.) are used. Typically, machine learning algorithms are used by the context inferences,

and classification models are trained using diverse features extracted from raw sensor data

[JKM03].

This technology advancement is now pushing a new class of applications that involves
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sharing of personal sensory information. One example is Mobile Health [ES10], where med-

ical sensors continuously monitor physiological signals on a user’s body, and share the data

with doctors, researchers, family members, or insurance companies [KAB09]. In commer-

cial industries, Xively1 is a popular web service for collecting, storing, and sharing sensor

data streams. Foursquare2 is also a prevalent web application for users to share location

information with friends, and benefit from various location-based services.

Although these applications are promising, privacy implication behind sharing personal

sensory information is a hindrance toward wide adoption. It is because even simple personal

information can be easily correlated with privacy-violating facts [FWC10]. For example,

UCLA’s Center for Health Policy Research has found that there is a high correlation between

where people live and certain diseases such as obesity and diabetes [Dri08]. World Tracker is a

web service for locating a mobile phone just using phone numbers, and its popular application

is tracking employees [wor]. An employee has been fired due to frequent breakaways from

his workplace, discovered by using World Tracker without the employee’s consent [Sei07].

Moreover, privacy concerns can be a hindrance to conducting pure research. For example,

200 people from a tribe had consented to provide DNA samples to “the study of the causes

of behavioral and medical disorders”. However, the researchers were sued later by the tribe

because they used the DNA samples for a research related to schizophrenia [Har10].

We categorize privacy into several types: maintaining secrecy of information itself (con-

fidentiality), hiding identity from information (anonymity), and protecting behavioral facts

that can be inferred from sensory information (behavioral privacy). Existing security tech-

niques can be used to provide the confidentiality, and various research efforts have been

conducted to achieve anonymity of relational data (as opposed to sensory data) [FWC10].

Anonymity of sensory data is less applicable than that of relational data because many ap-

plications involving sensory information need users’ identities to provide proper services. For

example, mHealth services should be provided to a correct patient. Therefore, we claim that

protecting the behavioral privacy is a key to success in such applications, and it become even

1https://xively.com
2https://foursquare.com
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more important as users start to share their data with others. We attempt to achieve the

behavioral privacy through SensorSafe.

Among many ways to preserve the behavioral privacy in sensory data, the following

two approaches are promising: sharing the right amount of data (adequate sharing), and

modifying data to make it hard to infer further information (data obfuscation). One of

the mechanisms for the former approach is rule-based sharing where users define their own

sharing rules, and the system enforces them when it disseminates data. The latter approach

includes several classes of computational techniques such as generalization, perturbation,

and transformation [GPT08, APG10, CRT06, CCC12]. Our work provides the rule-based

sharing mechanism and a playground for experimenting the data obfuscation techniques.

One of the challenges of SensorSafe is to process privacy rules efficiently because the amount

of sensor data easily becomes large due to the continuous collection for a long duration. In

addition, designing a flexible framework that can cover broad range of applications is also

important.

There are many research efforts in systems for the behavioral privacy. Lockr [TSG09]

provides an access control based on digitally signed social relationships. Persona [BBS09]

also provides an access control with attribute-based encryption and out-of-the-band key

exchange. Although the access control mechanisms are based on identity of data requester,

but more fine-grained way of access control (i.e., rule-based sharing) is needed to achieve

adequate sharing. Locaccino [TCH10] and Personal Data Vault (PDV) [MHM10] support

defining fine-grained time and location conditions in sharing rules. PDV further provides

automated recommendation of the rules and auditing of data dissemination. However, when

sharing context information inferred from sensor data, rule-based sharing should be designed

to have reasonable response time because an underlying database stores a large amount of

sensor data.

SensorSafe supports adequate sharing through privacy rules with fine-grained conditions,

which are applied to a large amount of sensor data. Our implementation of the rule processing

has practical performance as discussed in Section 6.1. SensorSafe also provides differentially-

private computation of statistical metrics (e.g., min, max, average, median, etc.) by adding
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the Laplacian noise [Dwo08]. We also discuss the effect of rule-authoring user interfaces and

provide details in how the implementation of the SensorSafe design has been evolved.

4.2 Rule-based Sharing

SensorSafe is a personal cloud service for a user to store private data such as raw data

samples from sensors or context inferences drawn from the sensor data. One of the main

features is a rule-based sharing, which enables an owner to control how data are shared with

other entities. In this section, we discuss the feature in details.

4.2.1 Privacy Rules

Rule-based sharing is a suitable mechanism for achieving adequate sharing. It is because each

person has a very different sense of privacy, and rule-based sharing can provide personalized

control of the amount of data that a user wants to share. In our system, users define their

privacy rules specifying whether they want to allow or deny sharing based on conditions

such as current contexts, locations, timestamps, data consumers, and sensor data themselves.

Users can also choose to share but modify data to a certain degree (data obfuscation) so they

can feel comfortable in sharing. As shown in Table 4.1, our privacy rule processor provides

abstraction of location and timestamps to more general semantics, and raw sensor data to

context labels. Figure 4.1 shows examples of privacy rules represented in JavaScript Object

Notation (JSON) [Bra14].

Our privacy rules enable users to specify whether they want to allow or deny sharing their

data based on various conditions: timestamp, location, sensor data values, and identities of

data recipients. The condition can also include values across different data streams, which

allow users to create rules based on context inferences. For example, if a user has an activity

data stream that has a series of activity labels such as stationary, walking, running, biking,

and driving, the user can specify a condition such as activity = ‘driving’. This condition

can be applied to different data streams, for example, location or accelerometer data, so users

can allow or deny sharing data collected when they are driving.
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Table 4.1: Options supported by the rule-based sharing.

(a) Conditions and actions

Options Attributes

C
o
n
d
it
io
n
s

Consumer User Name, Group Name
Location Label, Region
Time Range, Repeat (e.g., weekdays)
Sensor Sensor Name

Context
(e.g., Moving, Not Moving,
Still, Walk, Run, Bike, Drive,
Stress, Conversation, Smoke)

Actions Allow, Deny, Modify

(b) Examples of obfuscation options

Context Options

Location
Coordinates, Street Address,
Zip-code, City, State, Country

Time Hour, Day, Month, Year

Activity
Accelerometer Data,
Still/Walk/Run/Bike/Drive,
Move/No Move

Stress
ECG/Respiration Data,
Stressed/Not Stressed,

Smoking
Respiration Data,
Smoking/No Smoking

Conversation
Respiration Data,
Conversation/No Conversation,

{ target_users: [ researchers ] 
  target_streams: [ Stress, ECG, Respiration ] 
  condition: activity = ‘driving’ AND 
             ( weekday(timestamp) = 0 OR 
               weekday(timestamp) = 6 ) 
  action: deny  
} 
!
!
{ target_users: [ family ] 
  condition: [ * * 9-18 * * 1-5 ] 
  action: allow 
}

(a) “Do not share stress, ECG, and respiration data with re-
searchers when I drive on weekends.”

{ target_users: [ researchers ] 
  target_streams: [ Stress, ECG, Respiration ] 
  condition: activity = ‘driving’ AND 
             ( weekday(timestamp) = 0 OR 
               weekday(timestamp) = 6 ) 
  action: deny  
} 
!
!
{ target_users: [ family ] 
  condition: [ * * 9-18 * * 1-5 ] 
  action: allow 
}

(b) “Share all data collected in 9am-6pm on weekdays with fam-
ily.”

Figure 4.1: Examples of the privacy rules in JSON-like syntax. The repeating time syntax
in Figure 4.1(b) is similar to the Linux cron [Nem10] time expression.
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4.2.2 Rule Priorities

The rule processor translates rules to a database query before processing them. Therefore,

rule processing is essentially merging query conditions of multiple rules. There is an interest-

ing observation in this merging process in consideration of priorities. For example, let’s say

we have two rules: “Allow all data on my campus.” and “Deny all data at a certain building

on my campus”. It is safer to interpret the rules as “Share all data on campus but not at

the building”, which is equivalent with assuming that the latter rule has a higher priority.

If the former rule has a higher priority, then the interpretation will be: “Share all data on

campus”. We provide algorithms for merging rules with and without priorities.

Rules without priorities: We claim that more intuitive and safer interpretation of

rules without priorities is taking union of data permitted by allow -rules and subtracting

union of data prohibited by deny-rules from the union. That is,

∪
∀i,Di∈Dallowed

Di −
∪

∀j,Dj∈Ddenied

Dj

Rules with priorities: Interpretation of rules with priorities can be obtained by Algo-

rithm 1. Let Di a set of data affected by Ri, a rule with priority i. (Higher i means higher

priority) Also, let K the result set after applying all rules. Note that, at line number 4, the

deny-rule with priority 0 is ignored because higher allow-rules will override the rule making

it has no effect on the result set K.

4.3 Differentially-Private Data Release

Although the rules with allow or deny actions enable users to control sharing based on various

conditions, they only provide binary decisions: Share the data as they are or do not share

at all. It is possible that users do not want to share raw data samples but feel comfortable

sharing aggregate statistics over a certain duration. For example, let’s say a user is collecting

her daily step count data and wants to share the information with her friends or coworkers
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Algorithm 1 Applying rules with priorities.

1: if R0 is allow then
2: K ← D0

3: else if R0 is deny then
4: K ← ∅
5: end if
6:

7: for all Ri, increasing i starting from 1 do
8: if Ri is allow then
9: K ← K ∪Ri

10: else if Ri is deny then
11: K ← K ∩RC

i

12: end if
13: end for

Table 4.2: Differentially-private aggregates supported by SensorSafe.
Aggregate Operator ∆f
average |xmin − xmax|/n
sum max(|xmin|, |xmax|)
median |xmin − xmax|/2
minimum, maximum |xmin − xmax|
first, last, n-th |xmin − xmax|

as a motivation for them to do more exercise. However, she is a little concerned with sharing

at each day level because she feels there is too much information. Instead, she would be

happy to share the average step count over a week or a longer period.

To support such a user scenario, SensorSafe also allows users to create rules that share

only aggregate statistics instead of raw data samples. As shown in Table 4.2, we currently

support aggregate operators such as average, sum, median, minimum, maximum, first, last,

and n-th over durations ranging from one minute to one year. Users can use the aggregate

operators as actions for their privacy rules.

However, individual data samples can be easily revealed even with the aggregate values.

To give a simple example, let’s consider the above scenario that the user shares the average

step count over a week or longer. An adversary can query her SensorSafe and obtain two

average step counts, a1 and a2, for n days (n ≥ 7) and n + 1 days (the same n days with

one more contiguous day), respectively. The adversary can easily figure out the step count
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for the one additional day by calculating,

a2(n+ 1)− a1n =

∑n+1
1 si

n+ 1
(n+ 1)−

∑n
1 si
n

n = sn+1

, where si is a daily step count for a specific day. By querying as many times as needed, the

adversary can potentially reconstruct the entire daily step count data at each day level.

To address the above problem, we have adopted a differential privacy [Dwo08] mecha-

nism that adds random noise drawn from a Laplace distribution to aggregate values before

releasing them. According to the formal definition of differential privacy in [Dwo08], for a

certain privacy parameter ϵ, a randomized function Y satisfies ϵ-differential privacy if,

Pr[Y (D) ∈ S] ≤ exp(ϵ) · Pr[Y (D′) ∈ S]

for all data sets D and D′ that differ only in a single data sample, and all S ⊆ Range(K).

One such randomized function is to add Laplacian noise to the original query function f(D).

That is, Y (D) = f(D) + Z where Z has the Laplace distribution with mean 0 and scale

parameter ∆f/ϵ. In the scale parameter, ∆f is the maximum difference in the values that f

can generate on two data sets that differ only in a single data sample. Clearly, ∆f depends

on the type and the range of the function f , so we determine ∆f for each aggregate operator

we provide as follows.

Consider the data sets, D and D′, and let xmin and xmax be a minimum and a maxi-

mum that the data sets can take, respectively. For the average operator favg, consider a

case that D contains n − 1 samples of xmin, and D′ contains all samples in D and xmax,

or vice versa. This is the case for ∆favg, which is calculated by |favg(D) − favg(D
′) =

|xmin − ((n− 1)xmin + xmax)/n| = |xmin − xmax|/n. For the sum operator fsum, when D′

has xmin or xmax in addition to D, fsum(D) and fsum(D
′) have the maximum difference.

Thus, ∆fsum = max(|xmin|, |xmax|). For the median operator fmed, the maximum difference

occurs when D has only one sample, either xmin or xmax, and D′ has two samples, xmin and

xmax. When there are the even number of samples, the median is defined to be the mean of
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the two middle values. Thus, in this case, ∆fmed = |xmin − xmax|/2. For the minimum and

the maximum operators (fmin and fmax), the maximum difference for ∆fmin is caused when

D has any number of xmax, and D′ has all samples in D and xmin. Similarly, the maximum

difference for ∆fmax is caused when D has any number of xmin, and D′ has all samples in

D and xmax. In both cases, ∆fmin = ∆fmax = |xmin − xmax|. Lastly, the first, the last, and

the n-th operators (ffirst, flast, and fnth) behave similarly. The maximum difference occurs

when D and D′ differ in a single sample, so the samples at corresponding positions in D is

xmin and D′ is xmax or vice versa. In any case, ∆ffirst = ∆flast = ∆fnth = |xmin − xmax|.

As it is shown above, ∆f is affected by minimum and maximum values that a certain

data set can take. Theoretically, the minimum and the maximum values can be infinite,

but practically they are bounded by the type of data sets and a user’s characteristics. For

example, a study shows that an average of daily steps taken by adults ranges from 5,000 to

10,000 [Par10]. However, the range would vary a lot depending on a user’s occupation, for

example, an office worker vs. a marathoner. Therefore, we believe it is reasonable to find

the minimum and the maximum values from the personal data that has been collected for a

certain user. Although the bounds would not be accurate at the initial data collection stage,

they will gradually become more accurate as a user collects data.

We note that choosing the privacy parameter ϵ is not trivial because it affects privacy

vs. utility tradeoff. In addition, the notion of a privacy budget [DMN06] should be also

considered because every ϵ-differentially private query answer costs ϵ to the budget. In our

implementation, we let users choose from several default values that are generally acceptable

such as 0.01 or 0.1 [Dwo08].

4.4 Sensor Database and Privacy Rules

One approach to realize the privacy rule processing is placing a filtering layer on top of

an underlying database system, similar to a network firewall. In this approach, unfiltered

data are first retrieved from the database, and the filtering layer evaluates privacy rules on

each data sample to determine whether each sample has to be blocked. Although there are
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techniques such as pre-compiled binary rules [EK96] for faster evaluation, a better approach

is entirely avoiding the per-sample basis evaluations.

Therefore, we directly retrieve filtered data from the underlying database by including

rule conditions in database queries (e.g., using the SQL WHERE clause). In this approach,

the performance of applying privacy rules is affected by how sensor data are structured

in the underlying database. In general, sensor data have timestamps associated with each

data sample, and storing all the timestamps is a waste of storage space, especially when

the data are sampled at regular intervals. Therefore, in the initial versions of SensorSafe

[CCC11, CCS12], we adopted a concept of storing continuous sensor data in a series of

segments. Each segment typically contains hundreds or thousands of data samples with a

start timestamp and a sampling interval as metadata. The segment is the smallest unit of

data that can be retrieved from the database.

The major limitation caused by the concept of segmenting was that the per-sample

rule evaluation could not be avoided entirely. Specifically, consider a rule with conditions

based on data values. Although we can filter out many segments through queries using

per-segment statistics such as minimum and maximum, we still have to determine which

individual samples within a segment are subject to such rules. It means that there are still

rule evaluations on a per-sample basis.

Due to the problem, we redesigned our database layer using Informix TimeSeries3, which

is a relational database with extensions for time series data. Informix TimeSeries stores all

samples in the same table row to achieve storage efficiency by avoiding duplication of redun-

dant information, i.e., timestamps. One important feature provided by Informix TimeSeries

is virtual tables, which provide a relational view of time series data. In other words, we

can use standard SQL queries over the sensor data as if we have a relational table that

contains individual sensor readings at each row, while timestamps and values are contained

in distinct columns. Using the virtual tables, we can apply privacy rules by directly using

the SQL WHERE clause. All rule conditions are carefully joined together by the algorithms

presented in [CCS12], and inserted into a WHERE clause of a SQL query generated for a

3http://www.ibm.com/software/data/informix/timeseries
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data requester. In this way, we can avoid evaluating rules for every data sample.

In the following section, we further discuss the database layer with implementation de-

tails. We also provide benchmark results of the rule processing using the time-series database

in Section 6.1.

4.5 Implementation

In the first version of SensorSafe, we used a NoSQL database [HHL11], i.e., MongoDB

[Cho13]. The main reason for choosing MongoDB was its faster performance in write opera-

tions than that of read operations. This feature was desirable because applications involving

sensor data collection have much more write operations than read operations. Moreover, the

write operations in NoSQL databases are typically faster than relational databases such as

MySQL.

However, the concept of a single data record in MongoDB is a document, which is not

suitable for storing continuous stream of sensor data samples. It is because the concept of

a document is designed for storing a single large entity such as a blog article while a sensor

sample is a small entity containing a timestamp and a value only. A stream of sensor data

samples can be structured in multiple segments to fit the document concept as discussed

before. However, such data model is not suitable for privacy rule processing because rule

evaluations on a per-sample basis are unavoidable.

We have learned a lesson that it is important to choose a database that has the right

data model, considering specific operations that will be performed on data stored using the

model. In our case, Informix Timeseries has the better model than MongoDB because the

nature of sensor readings are time-series data and the rule-processing is naturally supported

by the SQL WHERE clause. Besides, the advantage of faster write operations in MongoDB

is not useful because write operations are not frequent enough as SensorSafe only handles a

single individual’s data.
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As mentioned before, SensorSafe was built on top of the Informix TimeSeries database4.

We used a Java servlet container, Jetty5, as a web service engine. We implemented RESTful

APIs using Jersey6, and used HTTPS to secure the API communications. Several authenti-

cation mechanisms were implemented such as OAuth [Ham10], API-Key7, and Basic HTTP

Authentication [FR14].

4.6 Rule-Authoring User Interfaces

When designing a user interface for managing privacy rules, it is important to consider us-

ability vs. expressiveness tradeoff. Letting users directly write rules in the JSON format

(shown in Figure 4.1) has the most expressive power because one can create complex condi-

tions using arbitrary combinations of Boolean operators. However, it is obvious that general

users without any programming experience would find it unusable. On the other hand, a

user interface with a too simple design might not be able to expose the full capabilities of

the underlying rule mechanisms. Therefore, we provide two kinds of GUI tools, On/Off

Controller and Rule Manager, which have different usability and expressiveness tradeoffs as

shown in Figure 4.2.

On/Off Controller has a set of simple switches. There is one switch for controlling all

data at once, and several switches for individual sensors and context inferences. Whenever

users feel uncomfortable sharing their data, they can simply press the appropriate switches.

To prevent users from forgetting to switch back on, On/Off Controller asks users for an

off-duration when they first press the switches. Users will receive reminders at five and ten

minutes before the duration expires, and they can also extend the duration at any time.

Rule Manager lets users create privacy rules using various GUI elements. Users can

choose what actions to take, which sensor data or context inferences to control, and whom

to share with. Users can also create conditions based on time and location labels. A time

4http://www.ibm.com/software/data/informix/timeseries
5https://en.wikipedia.org/wiki/Jetty_(web_server)
6https://jersey.java.net
7https://en.wikipedia.org/wiki/Application_programming_interface_key
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(a) On/Off Controller (b) Rule Manager

Figure 4.2: Graphical User Interfaces for the sharing controls.

label can be a one-time duration or a repeating time, for example, every weekday from 9 AM

to 6 PM. Users can define a location label by drawing a circle on a map. Both the On/Off

Controller and the Rule Manager internally generate corresponding rules in the JSON format

and store them in a user’s SensorSafe.

On/Off Controller is very simple to use, but users might forget to press the buttons,

leading to undesirable sharing of sensitive data. In addition, it only allows users to control

sharing based on specific time durations. To solve this problem, we have developed Rule

Manager. It has more expressive power than On/Off Controller. Users can create rules such

as “Do not share my activity data at home during weekends.” However, when a user has

many rules, it could be hard to figure out under what conditions his/her data are shared or

not. To help users understand their rules more easily, Rule Manager displays a table that

summarizes how a user’s data are shared based on time and location labels in a grid format

as shown in Figure 4.2(b).

We have conducted a user study to understand how the rule authoring user interfaces

affect users’ privacy concerns in sharing personal sensory information. We have found that

different GUIs change how much users feel comfortable in sharing such data. More details

are discussed in Chapter 7.
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CHAPTER 5

FlowEngine: Energy-Efficient Dataflows

In this chapter, we describe a mobile-side component of the kazaar architecture, called

FlowEngine. It is a dataflow execution runtime and a programming framework for context-

classifications on battery-operated devices. FlowEngine is useful not only for energy-efficiency

but also for data privacy because personal data can leave private devices in more abstract

forms. FlowEngine has been field-tested in our user study along with SensorSafe. We show

how it reduces resource usage in comparison to a data-bus framework in Section 6.2. In or-

der to further save energy, we propose a technique that exploits heterogeneous mobile CPUs

by scheduling dataflow tasks and dynamically controlling voltages and frequencies of CPU

cores.

5.1 Contexts by Systems

In modern pervasive applications, sensing of personal sensory information is an important

characteristic. Mobile devices can continuously perform sensing, and the sensed data are

used to infer a rich set of user contexts through machine learning algorithms. The sensory

information is used in many applications, for example, social location sharing1, mHealth

[ES10], participatory sensing [BEH06], and medical behavioral studies [PRH11]. However,

many challenges in the sensing aspect are still hindrances to wide adoption of such applica-

tions.

A key challenge in sensing on mobile devices is that they are resource-constrained in terms

of CPUs, memories, and batteries. Current mobile applications utilizing context inferences

1https://foursquare.com, http://www.getsaga.com
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involve heavy computation due to complex machine learning algorithms. Typically, indi-

vidual applications directly process raw sensor data and make their own context inferences.

However, if multiple applications make the same inferences, scarce resources are wasted due

to redundant computation. Even if the multiple applications make different context infer-

ences, they could still waste resources because it is possible to share common data processing

stages.

To tackle the above challenge in sensing on mobile devices, we claim that context in-

ferences should be provided as an operating system service. The system-managed context

inferences have several advantages over application-managed inferences. A system-level ser-

vice has a global view of how sensor data are processed, so it can optimize the computation

needed to perform context inferences across multiple applications. Individual applications

can also benefit from the service because they can now simply subscribe to the system-

provided context data, which will free application developers from implementing complex

data processing algorithms. Moreover, if core operating system services use the context in-

formation, there are opportunities for optimizing memory management, process scheduling,

I/O, and security on mobile devices [CKL11].

One important consideration in designing the system-managed context inference service

is that it should not limit an application’s ability to use algorithms that are best suited

for the application’s requirements. It means that we need a flexible programming model

for applications to specify their own context requirements. We have chosen the dataflow

programming model [Mor10] because the typical context inference workload consists of mul-

tiple series of computations for data preprocessing, feature extractions, and classifications.

As shown in Figure 3.1, dataflow nodes output their results to other nodes and take inputs

from other nodes, forming a graph structure. This can be well captured by the dataflow

programming model.

In several prior works, the dataflow programming model has been employed for execution

of context inference algorithms [CKL11, CLL11, JLY12]. Compared to the existing works,

FlowEngine further increases efficiency in resource usage through the following features:

push/pull connection mechanisms, parameterized connections, subgraph activation/deacti-
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vation, and graph merging. While the existing works also provide a push mechanism for

connecting dataflow nodes, but as we will discuss in later sections, our experience in devel-

oping several applications has revealed that not only a push but also a pull mechanism, and

parameterized connections are useful for optimizing computation loads.

We summarize key contributions as follows. First, FlowEngine is a dataflow exeuction

framework that features intuitive language, rich connections (i.e., push/pull and parame-

terized connections), subgraph controls, and graph merging. The features enable scarce

resources on mobile devices to be efficiently used by multiple applications. Second, through

the benchmark results, we show that FlowEngine can reduce 38.3% of CPU time and 54.3% of

memory usage compared to an existing work based on a bus architecture. Third, FlowEngine

has been field-tested in our user study with twelve participants for six days as discussed in

Chapter 7. Finally, FlowEngine is open source and readily available online2.

5.1.1 Dataflow Graph Language

It is important for a dataflow framework to provide flexible and intuitive programming

language for developing dataflow graphs. Without such support, application developers

have to write quite a bit of plumbing code3 that might be too dependent on underlying

details of a dataflow framework. Moreover, the language has to be simple and easy to learn

so application developers can quickly prototype their own programs.

Therefore, we have designed a language that allows application developers to simply

declare and connect dataflow nodes and develop their applications easily. Developers can

use parameters at both declaration-time and connection-time to customize the ways nodes

are instantiated and connected. Table 5.1 describes the syntax of our graph language for

various types of connections.

Figure 5.1 shows examples of our language used in the example applications shown in

Figure 3.1. Left columns are declaration of dataflow nodes, and right columns are connection

2http://github.com/nesl/FlowEngine
3Under-the-hood, low-level code that bridges applications and lower layers, which needs much effort of

programmers.
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Table 5.1: Dataflow language syntax.
Connection type Syntax Description
Push a -> b a pushes to b.
Pull a <- b a pulls from b.
Parameterized Push a -(value)-> b a pushes a parameterized result to b.
Parameterized Pull a <-(value)- b b pulls a parameterized result from b.

of the declared nodes. The Buffer node takes a declaration-time parameter for its size in

terms of seconds. The Goertzel node connection in Figure 5.1(a) takes three connection-time

parameters in the following format: (start, end, step).

5.1.2 Push/Pull Connections

Basic behaviors of a dataflow node are taking input data, processing them, and producing

outputs to other nodes. In our example applications shown in Figure 3.1, data originating

from sensors go through many nodes as they push their outputs to other nodes. This basic

behavior is supported by the push-connection mechanism.

However, it is possible that a dataflow node needs some of its inputs based on certain

conditions. If we only have the push-connections, such conditional data should be always

calculated by previous dataflow nodes because they do not have knowledge about when the

data are needed. The lack of information causes a waste of resources because the conditional

data are not always necessary. For example, the PeakValley node used in the stress/conver-

sation application finds peaks and valleys in respiration sensor data. It dynamically adjusts a

peak threshold value based on a default percentile value, but when it fails to find the proper

number of peaks, it adjusts its threshold with a more relaxed percentile value. With the

push-only model, both the default and the relaxed percentile values have to be always cal-

culated by the Percentile node and pushed to the PeakValley node, causing an unnecessary

computation.

To avoid such a situation, FlowEngine also provides a pull -connection mechanism. While

the push connection is initiated by a node that produces data, the pull connection is initiated

by a node that consumes data. The consumer node conditionally calls the pull interface so
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Accelerometer acc 
RootMeanSquare rms 
Buffer buf(60) 
Goertzel goertzel 
GPS gps 
MotionDetector motion 
Activity activity 
ActivityGraphControl \\ 
  control(gps,motion) 
. 
.

RespirationSensor res 
Buffer buf(60) 
Sort sort 
PeakValley pv 
Percentile percentile 
BreathingDuration bd 
Sort bdSort 
NthBest nth 
Conversation conv 
. 
.

ECGSensor ecg 
Buffer ecgBuf(60) 
RespirationSensor res 
Buffer resBuf(60) 
RRInterval rrInt 
Sort rrIntSort 
Median rrIntMedian 
PeakValley pv 
Ventilation vent 
Stress stress 
. 
.

acc —> rms 
rms —> buf 
buf —> goertzel 
goertzel -(1.0,5.0,1.0)-> \\ 
  motion,activity 
goertzel -(6.0,10.0,1.0)-> \\ 
  activity 
activity -> control 
motion -> control 
. 
.

res -> buf 
buf -> sort 
sort -> percentile 
buf -> pv 
percentile -(0.75)-> pv 
pv <-(0.65)- percentile 
pv -> bd 
bd -> bdSort 
bdSort -> nth 
nth -(2)-> conv 
. 
.

ecg -> ecgBuf 
res -> resBuf 
ecgBuf -> rrInt 
rrInt -> rrIntSort 
rrIntSort -> rrIntMedian 
rrIntMedian -> stress 
pv -> vent 
vent -> stress 
. 
.

(a) Activity
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(c) Stress

Figure 5.1: Dataflow programs of the three applications.
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Figure 5.2: Push- (solid lines) and Pull-Connections (dotted lines).
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Figure 5.3: Parameterized Connections

the producer node can calculate required data only when they are necessary. Figure 5.2

shows how the PeakValley node is connected to other nodes using both the push- and pull-

connection mechanisms.

5.1.3 Parameterized Connections

While typical dataflow nodes simply take inputs and generate a single result, multiple results

can be generated based on different parameters. For example, results of a node that finds

a certain percentile of its input data depend on specific percentage values. In the activity

application, a node based on the Goertzel algorithm [Goe58] that calculates a power of

a certain frequency from a discrete signal can generate multiple results based on selected

frequencies.

A naive approach to such parameterized results is to create multiple instances of a node

and let each instance generates a result based on a specific parameter. However, instantiation

of multiple nodes that perform the same operation is a waste of the memory. A better

way is to let a single node generate multiple results depending on parameters so that the

unnecessary instantiation of nodes can be avoided. In FlowEngine, we support this through

optional connection-time parameters in the push- and the pull-connections. For example,

the Goertzel node shown in Figure 5.3 generates results based on ranges of frequencies so

the connections take three parameters: start, end, and step frequencies.
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5.1.4 Subgraph Activation/Deactivation

A dataflow program can conditionally choose different data-paths depending on current

execution circumstances to conserve resources. For example, the activity application shown

in Figure 3.1(a) uses GPS and accelerometer sensor data. However, the application tries to

minimize the GPS usage because GPS consumes too much power [PKG10]. It is obvious

that the GPS sensor is only useful when a user is moving. On that account, the activity

application has an additional classifier that detects motion solely based on accelerometer, so

the GPS can be turned off as much as possible.

To support such a behavior, dataflow nodes in FlowEngine can activate or deactivate

portions of an entire dataflow graph. Such control nodes take input data from other nodes,

decide which nodes to control, and call enable or disable interfaces on the target nodes.

Once the control is initiated, FlowEngine traverses the graph toward source nodes to make

sure all nodes and connections affected by the target node are appropriately controlled. For

example, the ActivityGraphControl node in Figure 3.1(a) controls two target nodes: GPS

and MotionDetector. Initially, the GPS node is disabled, and the MotionDetector node is

enabled. When a user’s motion is detected by the MotionDetector node, the ActivityGraph-

Control node enables the GPS node and disables the MotionDetector node. After disabling

the MotionDetector node, FlowEngine goes to the Goertzel node and disables all connections

to the MotionDetector node. No further disabling is performed because the Goertzel node

is still required by the ActivityClassifier node.

5.1.5 Graph Merging

Even though multiple dataflow programs perform different context inferences, they can have

common nodes if they share the same sensors. For example, the stress and the conver-

sation inferences shown in Figure 3.1(b) have several common nodes originating from the

respiration sensor data such as Inhalation, Exhalation, IERatio, and Stretch. If we execute

such dataflow programs individually, it would be a waste of CPU and memory because the

common dataflow nodes will cause redundant computations generating the same outputs.
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Therefore, FlowEngine checks whether multiple programs have common nodes and merges

them to avoid redundant computations. Actually, Figure 3.1(b) is a result of merging the

two individual programs shown in Figure 5.1(b) and 5.1(c).

One important consideration in merging common nodes is that merging decisions on

individual nodes cannot be simply based on node types. Dataflow nodes with not only the

same type but also the same data-path preceding the nodes should be merged together. It is

because different instances of nodes with the same type can be used for different data-paths.

For example, there are several instances of the Mean node in the stress and the conversation

programs, but they calculate different mean values based on their input.

Therefore, each node instance in FlowEngine carries preceding data-path information

that contains all parameters and connections between nodes on the data-path starting from

source nodes. This information is used when FlowEngine receives a new dataflow program

and examines each existing and new node to determine whether they can be merged.

5.1.6 Node Library

FlowEngine provides a library of dataflow nodes that can be used by application develop-

ers when they design their own dataflow programs. Currently, the library includes every

node used in the three motivating applications so developers can quickly prototype their

own applications using the library. However, it is hard to cover all dataflow nodes that can

be potentially used by any applications, so we also allow developers to extend the existing

library. All nodes in FlowEngine have a common parent class called DataFlowNode. Appli-

cation developers can create a new dataflow node by extending the parent class, and then

FlowEngine is able to recognize the new node as a valid dataflow node.

5.1.7 Implementation

FlowEngine is implemented using multiple Android services. First, we abstract sensor-

specific communication details within device driver services. For example, a device driver

service can simply call sensor APIs provided by Android SDK, or implement a complex
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Bluetooth SPP4 protocol for wireless sensors. Second, the main FlowEngine service exe-

cutes dataflow programs submitted by applications. It obtains raw sensor data from the

device driver services, processes them through dataflow graphs, and outputs final context

classifications or intermediate results. Third, a separate service archives all data into a local

storage and continuously uploads them to SensorSafe. Finally, applications subscribe to the

context inference results provided by the FlowEngine service. All communication between

the services and applications are implemented using Binder, and the interfaces are defined

using Android Interface Definition Language (AIDL5).

5.2 Scheduling Dataflows using Heterogeneous Multiple Proces-

sors and Cores

As mentioned in Section 5.1, recent context-aware applications have high energy demand

due to heavy CPU load caused by machine learning algorithms. Besides, typical mobile

operating systems still ask users to charge on a daily basis. In order to remedy this, CPU

industries have invented an architecture fabricated with heterogeneous multiple processors

and cores (HMPCores) such as ARM big.LITTLE [Gre11]. However, software is yet to utilize

its potential in full.

The HMPCore architecture essentially gives operating systems one more control knob,

compared to existing CPU architectures. When the Dynamic Voltage and Frequency Scaling

(DVFS) technique first emerged, it made the first knob available: core frequencies. Then,

as Symmetric Multiple Processors (SMP) became popular, it enabled the second knob: the

number of active cores. Lastly, the HMPCore architecture enabled the third knob: core types,

which is a choice among cores with different power vs. performance tradeoffs. Figure 5.4 and

5.5 show an architecture diagram and the power vs. performance tradeoffs of two core types

composing an HMPCore CPU.

The power vs. performance tradeoffs come from differences in core architectures. Specifi-

4Serial Port Profile
5https://developer.android.com/guide/components/aidl.html

36

https://developer.android.com/guide/components/aidl.html


Figure 5.4: The SoC architecture of a HMPCore CPU [SLS13].

Figure 5.5: The power and performance characteristic of a HMPCore CPU [SLS13].
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cally, the big cores employ a more complex architecture, i.e., more registers, richer instruction

sets, deeper pipelines, bigger caches, etc., while the little cores employ a simpler architecture.

Although there are many types of CPUs with such differences, the idea of using a system

on a chip (SoC) consisting of dramatically different cores is a recent idea. First generations

of such SoCs (e.g., TI OMAP 5 [Cum03]) coupled CPUs with different instruction set archi-

tectures (ISA) for more dynamics. However, such loosely-coupled SoCs suffer from binary

executable incompatibility and cache inefficiencies while migrating tasks between cores. It

also has limitations on shared memory performance while communicating between different

CPUs. Although an OS dealing with such restrictions has been proposed [LWZ14], we should

be careful about the benefits gained by having more complex OS designs.

Due to the disadvantages of the loosely-coupled architecture, more recent mobile SoCs are

employing tightly-coupled designs (i.e., ARM big.LITTLE [Gre11]). These SoCs consist of

cores with the same ISA but different pipeline depths, cache sizes, etc. The main advantage of

the tight-coupling is minimal overhead in migrating tasks between different core types. The

same binary executables can be used, and special features such as Cache Coherent Interface

(CCI) preserve cache data during migration. One disadvantage is narrow dynamics in power

vs. performance tradeoffs, but it enables simple operating system designs. In addition, the

performance gain from simple design can exceed the penalty from using less little CPU.

While the hardware seems to be ready, software is still trying to fully utilize the three

knobs mentioned above. The most recent industry practice is Global Task Scheduling (GTS)

[Jef13], which is largely based on heuristic algorithms in task migration and scheduling

decisions. Knowing the importance of keeping the core operating system services simple and

fast, we explore potential applicability of an analytical approach for task scheduling and

DVFS decisions.

One challenge is understanding of application execution patterns and accurately predict-

ing application behaviors. It can be impractical to predict application behaviors precisely

because mobile applications involve frequent interactions with humans. However, we observe

that more applications are relying on background services with no user interventions, and

such services tend to consume more energy than interactive tasks due to the high resource
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demand of machine-learning algorithms.

An example showing the importance of context data in mobile operating systems is

the Apple M7 co-processor6. Although it is not as much flexible as the tightly-coupled

architectures, it shows that system’s support for context inferences is an important aspect

of mobile operating systems. One interesting observation is that we have seen such co-

processor integration in the history of CPU architectures. A Floating Point Unit (FPU) in

addition to a main CPU was introduced to accelerate specialized computations. Now, we are

witnessing similar changes in CPU architectures, except it is for energy efficiency. Although

motivations are different (i.e., computation vs. energy efficiency), FPU is a successful example

of a special-purpose hardware, which is a de facto standard for more than three decades7.

In the following sections, we describe an analytical approach to the HMPCore scheduling

problem. As mentioned before, we focus on context inference tasks, which are more tractable

execution patterns than those of general user-interactive applications. We propose a scheme

that works in following three steps: (1) it learns about timing and power characteristics of

tasks and HMPCores, respectively; (2) it determines the optimal HMPCore parameters by

numerically calculating them; (3) finally, it acts upon the decisions by proactively applying

the parameters before executing the tasks.

5.2.1 Learning Dataflows and Cores

In order to find an optimal HMPCore configuration, we first obtain characteristics of dataflow

tasks and cores as follows.

Timing Model Parameters

Typical dataflow tasks have repetitive execution patterns as shown in Figure 5.7. They

periodically wait for a chunk of sensor data, process them, and wait for an another chunk. In

addition, a context classification workload typically involves three stages: (1) data sampling;

6https://en.wikipedia.org/wiki/Apple_M7
7https://en.wikipedia.org/wiki/Floating-point_unit
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(2) feature extraction; (3) classification. These tasks have different timing characteristics

in terms of time taken for a one-shot task execution, Ttask, and an interval between the

executions, Tinterval. Generally, the data sampling stage has short Ttask and Tinterval, while

the classification stage has very long ones. Following list shows types of information needed

for characterizing such tasks.

• Ttask = g(f, c): g is a function that maps an operating frequency of a core (f) and a

core type (c, e.g., a big or a little core) to a one-shot task execution time, Ttask.

• Tinterval: an interval time between task executions.

• d: a total execution duration, e.g., a week.

The function g is introduced because Ttask can vary depending on many factors. The most

affecting ones are operating frequencies and core types as we can see in Figure 5.5. Other

factors include input data characteristics and existing CPU load at the time of execution.

We believe timing differences resulting from the input data characteristics are negligible and

expect they are dominated by the operating frequencies and the core types. On the other

hand, the existing CPU load at the time of execution will affect the timing characteristics a

lot. We assume dataflow tasks will be executed on dedicated cores, so timing characteristics

become more deterministic and analyzable. Although a scheduling algorithm with no such

limitations is desirable, we claim that a few dedicated cores for dataflow tasks are practical

considering the increasing number of cores in recent mobile SoCs (e.g., octa cores in Exynos

5 [SLS13]) and industry practices of coupling dedicated co-processors (e.g., Apple M7, TI

OMAP 5, etc.).

The most precise way to implement the function g is direct measurements with real input

data because the timing characteristics can be affected by the data. This approach can be

cumbersome because it requires measuring all possible combinations of frequencies and core

types. However, it can be automated easily and required only once. Obtaining CPU time

information of threads is readily available through the proc filesystem in case of Linux-based
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mobile operating systems. In addition, Tinterval can be also easily obtained from the dataflow

programs because they specify buffer sizes.

Power Model Parameters

Once we know characteristics of dataflow tasks, we need information about underlying CPU

cores. Following is a list of parameters needed to calculate an optimal CPU configuration.

• Pactive = h(f, c): h is a function that maps an operating frequency of a core (f) and

a core type (c, e.g., a big or a little core) to a power consumed when a core is active,

which is Pactive.

• Psleep: A power consumed when a core is deactivated.

• Ttrans: A time required to perform a power mode transition.

• Etrans: A total energy required to perform a power mode transition.

The function h could be constructed using information available in datasheets of SoCs,

but it is better to measure the function directly due to the process variabilities8 in silicon

chips, which make power consumption different even in the exactly same models. Although

the direct measurement is not feasible in most commercial off-the-shelf (COTS) products

without using external equipments, more devices are becoming equipped with such capabil-

ities [Lim13] (e.g., ODROID-XU9, Qualcomm MDP10, etc.)

The other parameters are usually available in datasheets. Otherwise, it should be mea-

sured beforehand. For example, according to measurements done by Ra et al. [RPK12] shown

in Figure 5.6, a COTS smartphone (Samsung Focus SGH-i917) takes about 12 ms to wake

up, and about 8 ms to sleep. The reported transition energy is Etrans = Ewakeup + Esleep =

3.065 mJ + 3.101 mJ = 6.166 mJ.

8https://en.wikipedia.org/wiki/Process_variation_(semiconductor)
9http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127

10https://developer.qualcomm.com/mobile-development/development-devices/

mobile-development-platform-mdp
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Figure 5.6: An example power trace of a COTS smartphone waking up, staying active, and
going back to sleep. The measurements are reported by Ra et al. [RPK12].

5.2.2 Determining an Optimal Configuration

After learning the dataflow and underlying core characteristics, we can numerically deter-

mine the least power-consuming configurations for HMPCores. It is possible due to the

deterministic nature of dataflow execution patterns. We predict energy required to execute

the tasks in every possible way to assign tasks to multiple combinations of HMPCores, and

pick an optimal one. Outputs of our algorithm include: (1) a selection of cores, which can

be the same or different types; (2) mappings of multiple tasks (or threads) to the selected

cores; (3) operating frequencies of the selected cores.

One interesting aspect of our algorithm is that it involves predicting a core’s active/sleep

pattern when multiple threads are running at the same time. It could have been inaccurate

or infeasible to predict due to the complex nature of OS scheduling behavior. However,

the behavioral simplicity of Completely Fair Scheduler (CFS) in Linux, which is just trying

to mimic an ideal CPU11, enabled the prediction feasible. As a result, execution times of

multiple threads on a single core can be predicted by simply multiplying them by the number

of threads. An overview of the proposed scheme is following.

1. Generate all possible ways to assign threads to HMPCores. It is done by an algorithm

11An ideal CPU: a CPU with no context-switch overhead.
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that distributes l distinct tasks to m distinct processors, where each distinct processor

pi has its own ni indistinct cores.

2. Given the dataflow/power model parameters and the task assignments, numerically

calculate power consumption.

• Decide whether each task assignment is actually schedulable considering the dataflow

timing characteristics.

• In case of multiple threads on a single core: expand overlapping executions by

Ttask ×Ntask.

3. Pick an optimal HMPCore configuration, which is the least power-consuming task

assignment, a selection of cores, and their operating frequencies.

5.2.2.1 A Task Assignment Algorithm

The goal of this algorithm is to find all possible ways to assign l distinct tasks to m distinct

processors, where each processor has ni identical cores. Note that one could have multiple

identical tasks because different applications could execute the same dataflows, which is not

desirable due to a waste of resources. However, a single system service such as FlowEngine

can detect the redundant tasks and prevent them from being instantiated. On the other

hand, one should be careful when deciding distinct tasks because the same tasks operat-

ing on different buffer sizes should be considered as indistinct tasks because their timing

characteristics are different.

We define several terms as follows.

• Let T a set of l distinct tasks. |T | = l, where T = {t1, t2, .., tl}

• Let P a set of m distinct processors. |P | = m, where P = {p1, p2, .., pm}

• Let Ci a set of ni indistinct cores in pi, where 1 ≤ i ≤ m. |Ci| = ni, where Ci =

{c1, c2, .., cni
}
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Because we distribute tasks to processors and then cores inside the processors, the al-

gorithm works in two steps. First, let’s define a function f : (T, P ) → F that distributes

l distinct tasks to m distinct processors. Let F T
P be a range set of f that takes two argu-

ments. Each argument is picked from a processor set P and a task set T , respectively. F T
P

can be defined by a set of ordered pairs, i.e., tuples. Each position in a tuple represents a

processor, and each element is a set containing tasks assigned to the processor. For example,

F T
P = {({}, {t1, t2}, {t3, t4}), ..}. The first element in F T

P means that no tasks are assigned

on p1, {t1, t2} on p2, and {t3, t4} on p3.

Second, for each tuple in F T
P and each task subset T ′

i in a tuple, we define another function

g : (T ′
i , Ci) → Gi, which distributes l′ distinct tasks to ni indistinct cores in a processor pi.

An example of a range set is G
T ′
i

Ci
= {⟨{}, {}, {t1, t2}, {t3, t4}⟩, ...}, where ⟨...⟩ means an ∅-

multiset , a multiset that allows multiple appearances of empty sets but not others. The first

element in G
T ′
i

Ci
means that in a processor with four cores, two cores do not run any tasks,

a core runs t1 and t2, and another core runs t3 and t4. Note the use of ordered pairs and

∅-multiset in the range sets of the two functions, f and g, respectively. It is because each

position in an ordered pair has meanings while positions are not meaningful in a set. An

ordered pair represents a task assignment onm distinct processors (which has different power

vs. performance tradeoffs). An ∅-multiset represents a task assignment on ni indistinct cores

(which has the same power vs. performance tradeoff).

At this point, we have F T
P , which is a set of all possible processor-level assignments.

Let kj be each tuple in F T
P , and remember a position in the tuple represents a specific

processor. For each element in a tuple kj (in other words, for each task subset of each

processor-level assignment), we have multiple sets representing core-level assignments, i.e.,

G1, G2, ...Gm, where Gi is a short for G
T ′
i

Ci
. Therefore, all assignments for a kj (a single

processor-level assignment) can be obtained by performing m-ary Cartesian product, i.e.,

Kj = G1 ×G2 × ...×Gm. Finally, we can obtain complete task assignments spanning from

processor- to core-level as a set containing all Kj for each tuple kj, i.e., S = {K1, K2, ...}.

A recursive algorithm for f : (T, P ) → F is described in Algorithm 2. Again, F T
m is a

range, which is a set of tuples describing all possible ways to distribute l distinct tasks to
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m distinct processors, where |P | = m. The ⊕ operator performs adding the left operand

to the right operand while a new element in a tuple preserves corresponding positions. For

example, {t1} ⊕ ({t2, t3}, {t4, t5}) = ({t1}, {t2, t3}, {t4, t5}). CT
i is a set of sets containing all

possible ways to select the i number of tasks from T .

Algorithm 2 A recursive algorithm for f : (T, P )→ F , finding F T
m. Note F T

1 = {(T )}
S ← {}
for i : 0→ l do
for C ∈ CT

i do

S ←
(∪|CT

i |
j=1 C ⊕ aj

)
∪ S, ∀aj ∈ F T−C

m−1

end for
end for
F T
m ← S

The above algorithm can be used without modification for obtaining all possible ways to

distribute l distinct tasks in a task subset T ′ to ni indistinct cores in Ci. However, redundant

assignments will be generated as we distribute tasks to identical cores. One way to remove

the redundant assignments is checking redundancy when a new element is added to the ∅-

multiset . A more desirable way is to prevent the redundant assignments from generated in

the first place by tweaking several parameters as follows.

• Let i starts from k to ⌊n/2⌋.

• If c1 < q, then pass the inner for-loop, where q is the task with the smallest index

number from the first upper level recursion.

The modified algorithm using the tweaks mentioned above is shown in Algorithm 3 as

follows.

Implementation of ∅-multiset Data Structure

∅-multiset is useful because it is a natural data structure to store distinct combinations of

task distribution on same cores in a single processor. We provide a simple way to implement
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Algorithm 3 Recursive algorithm for g : T ′ → Ci, finding GT ′

n,k,q, the solution set. Note

GT ′
1,·,· = {(T ′)}, and s(C) is the task with smallest index number in C ∈ CT ′

i , where CT ′
i is a

set of ∅-multiset .

S ← {}
for i : k → ⌊n/2⌋ do
for C ∈ CT ′

i do
if s(C) < q then continue with next C

else S ←
(∪|CT ′

i |
j=1 C ⊕ aj

)
∪ S, ∀aj ∈ GT ′−C

n−1,i,s(C)

end for
end for
GT ′

n,k,q ← S

the data structure using Java as shown in Appendix A. The MultiEmptySet class extends

the standard Java Set class with the following details.

• Keeping track of the number of ∅ insertions in a variable n.

• Keeping track of the smallest number for task indices so the function s(C) can perform

in O(1).

• A method size() returns super.size()+ (n− 1)

• Iterator extension: using the variable n above, it repeats ∅ for n times when the iterator

encounters it.

Time complexity of s(C) is O(1) because the implementation of ∅-multiset internally

maintains the smallest task index whenever a new element is inserted. Getting an element

is also O(1) because the underlying data structure is a hash map.

5.2.2.2 Checking Schedulability

Given the possible task assignments, not all of them can be actually schedulable because a

core might be too slow to run many threads and meet the timing constraints. Therefore,

we remove such assignments from further considerations. The schedulability check works as

follows.
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If there is only one thread on a core, the schedulability condition is simply Tp ≥ Tt. When

a core runs multiple threads, execution time Tti is extended in proportion to the number of

simultaneous threads running. This is due to the multi-thread behavior of the CFS scheduler

mentioned in Section 5.2.2. Note that not all tasks run at the exactly same time because

they are periodic. A thread is schedulable if its extended execution time T ′
ti
is shorter than

its period.

We describe a way to calculate T ′
ti
. Let A = ⌊Tti/Tpj⌋×Ttj , B = min(Ttj , Tti−⌊Tti/Tpj⌋×

Tpj), and Rj as follows.

Rj =


A+B

Tti

, if Ttj < Tti

1, if Ttj ≥ Tti

(5.1)

The extended task execution time T ′
ti
in the worst case is following.

T ′
ti
=

(
n∑

i=1

Tti · (Ri −Ri−1) · (n+ 1− i) + δCFS

)
+ δCC (5.2)

Now we can determine the schedulability. Namely, if T ′
ti
≤ Tpi , then the thread is schedulable

on this core with other threads.

Although CFS tries to mimic an ideal CPU, the context switch overhead cannot be

avoided in practice. Therefore, we introduce variables δCFS and δCC , which are overhead

caused by the CFS scheduler and cache coherency, respectively. The overhead variable δCFS

depends on the number of concurrent threads because the more number of threads, the more

context overhead. On the other hand, the δCC variable depends on whether a task’s parent

is assigned on the same core and the size of data it processes. The overhead is increased in

the following order: (1) if its parent is on the same core, there is no overhead because they

are using the same L1-cache; (2) if its parent is on the same processor but on a different

core, there is an overhead caused by L2-cache coherency; (3) if its parent is on a different

processor, there is an overhead from L3-cache coherency.
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5.2.2.3 Calculating Power Consumption

After preparing a schedulable set of task assignments, we calculate anticipated power con-

sumption for each assignment. There are two factors to consider: duty-cyclability of a task

along with power-mode transition energy of a CPU core, and the number of threads running

on a core. We first describe how to calculate the energy in case of a single thread.

Let Tinterval be time between two consecutive task executions, which can be calculated

by Tperiod − Ttask. If Tinterval ≥ Ttrans, the thread can be duty cycled. However, it should be

done only if there is energy saving. Therefore, we perform duty cycling only if the following

equation holds true.

Etrans < Tinterval × Pactive (5.3)

If there is no benefit of duty-cycling or a task is not duty-cyclable (i.e., Tinterval < Ttrans),

then the energy can be calculated as follows.

E = Pactive × d (5.4)

A single thread’s energy consumption when duty cycling is possible is following.

E = [Etrans + Ttask · Pactive + (Tperiod − Ttask − Ttrans) · Psleep] · d/Tperiod (5.5)

When multiple threads are running on the same core, a core’s activity pattern becomes

irregular as shown in Figure 5.7. However, it is feasible to predict the activity pattern

numerically because the CFS scheduler tries to mimic an ideal CPU. There is no context

switch overhead in the ideal CPU so a thread’s execution time can be simply multiplied by

the total number of threads running on a core simultaneously. For example, let’s say two

tasks t1 and t2 have the same execution time of 10 ms when they run individually. An ideal

CPU will finish both the tasks in 20 ms no matter how many times it switches between the

two tasks.

Now we describe how to predict the irregular activity pattern. Figure 5.7 shows an
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Figure 5.7: An example activity pattern of a single core running multiple dataflows.

example of constructing a merged activity pattern from three different threads. The pattern

tmerged is a result of simply overlapping the activity patterns of t1, t2, and t3. The overlapped

regions need to be expanded by the number of threads active at the same time. The pattern

tmerged is a result of the expansion.

To calculate the tmerged pattern, we use the worst-case extended execution time of tasks

T ′
ti
from the equation (5.2). The merged activity pattern should repeat every Pmerged =

LCM(T t1
period, ..., T

tn
period), and the smallest time granularity of the merged activity pattern is

TG = GCD(T t1
period, ..., T

tn
period). Each thread’s execution pattern can be represented as a bit-

vector, where each bit is the smallest time granularity TG. Then, we can perform bitwise-OR

of all bit-vectors, which will produce the final merged activity pattern.

Once we have the merged activity patterns, we can determine if each execution interval

is worth switching the core into sleep mode by considering Etrans as mentioned in Sec-

tion 5.2.2.3. Now we have the final activity pattern where unnecessary sleep intervals are

removed. Using the final activity pattern, we calculate a power consumption for all com-

binations of operating frequencies and task assignments (Section 5.2.2.2) filtered by the

schedulability check (Section 5.2.2.1). Finally, we simply pick an assignment with the least

energy consumption.
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5.2.3 Acting Upon the Decisions

Once we know the best task assignment and processor frequencies, the next step is acting

upon the decision. In order to maximize the energy savings, we should ensure all tasks are

executed with the optimal configuration. In our investigation to implement, we found that

current Linux DVFS12 mechanism is not in favor of granular control. According to the Kernel

Documentation13, changes of Operating Power Point (OPP) typically happens every 100 ms

on general PC platform. In addition, DVFS control decision is mostly in reaction to various

CPU load metrics. Main problems of the reactive mechanism include: (1) it can miss short

bursts of task executions; (2) it can react too late. Our scheme needs to know when a task

starts to execute precisely and proactively configure processors with the optimal settings.

Therefore, it is necessary to implement this scheme in coordination with the scheduler.

In this paper, we discuss an implementation direction in details, and remain evaluation

of the proposed scheme as a future work. We do not recommend modifying the scheduler

to include code for CPU power control due to the following reasons. First, it mixes up

orthogonal functionalities into a single software module. Second, the scheduler code has to

be fast and efficient because every line of code in the scheduler constitutes to the context

switch overhead. However, our scheme needs to know when a task starts precisely, to pre-

pare a processor with an optimal status before it starts executing the task. Therefore, we

recommend using kprobes [Kri05] to obtain a callback from scheduler code before it wakes up

dataflow tasks. Inside the callback function, we can configure corresponding processors with

an optimal setting. Using kprobes is especially useful because the callbacks run in the user

space that is easier to debug, and it minimizes the amount of code added to the scheduler.

12Dynamic Voltage and Frequency Scaling
13https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
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CHAPTER 6

Evaluation

We evaluate the implementation of the kazaar architecture in various aspects. First, perfor-

mance benchmark results of the database layer in SensorSafe show that the rule-based access

control over a large amount of sensor data is feasible. The rule processing has an average

latency of less than 25 ms when SensorSafe has ten rules and serves a single data recipi-

ent. Second, we demonstrate resource-saving performance of FlowEngine in comparison to a

data-bus framework, and explain why it is important to reduce computation redundancy in

finer granularity. Our benchmark results show that 38.3% of CPU time and 54.3% of mem-

ory usage have been reduced by adopting FlowEngine. Third, SensorSafe and FlowEngine

have been field-tested in our user study with twelve people for six days. We discuss how

users’ comfort levels have been increased by using our system.

6.1 SensorSafe Benchmarks

As described in Section 4.2, SensorSafe applies associated rules created by its owner whenever

it performs a read operation for stored data. Therefore, it is important for the rule processing

overhead to be reasonable because every read request is affected by the overhead. We

conducted several experiments to demonstrate whether the overhead of the rule processing

is reasonable by applying various numbers of rules. We measured latency and throughput

across three dimensions: 1) the rule type (time- and value-based), 2) the number of rules,

and 3) the number of simultaneous users requesting data.

All measurements were performed on a virtual machine running SensorSafe. The virtual

machine stored personal data from a participant in the user study described in Chapter 7.
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The virtual machine was hosted on our lab server with an Intel Xeon 2.7 GHz CPU and

64 GB memory. Each participant collected an average of 1.4 GB (σ = 0.3) of sensor data

and context inferences, which included an average of 56.6 million samples (σ = 13.6 million)

from the data collection for six days.

On a separate machine, we configured Apache JMeter [Hal08] to simulate requests from

multiple simultaneous users. All physical machines in our experiments were connected

through 100 Mbits/s LAN, and all requests generated by JMeter were authenticated using

API-Key and secured with HTTPS. Because the number of rules created by each participant

in the user study was not enough for measuring the rule processing overhead, we generated

different numbers of time-based and value-based rules with allow and deny actions. JMeter

created 1, 10, 50, and 100 threads simulating different number of simultaneous users. The

number of rules was varied from 0 to 100.

In order to bring out the performance overhead caused by the rule processing layer, we

deliberately queried only a small amount of data (i.e., less than 1 KB of sensor readings).

It is because the latency and throughput measurement is dominated by network and disk

access delays if we retrieve a large amount of data. Note that the overhead of rule processing

layer becomes more negligible as the amount of requested data grows larger.

Figure 6.1 illustrates the benchmark results. Error bars in (a) and (c) depict minimum

and maximum values. Mean, minimum, and maximum values were obtained from approxi-

mately 2,000 measurements for each experimental setting. The Y-axes in (a) and (c) are on

logarithmic scales.

N/A in X-axes denotes that the rule processing layer does not exist at all in SensorSafe.

By comparing the N/A case with only one (allow-everything) rule case, we can see the pure

overhead of the rule processing layer itself, which is about 3 ms increase in the average

latency and 7.7 requests/sec drop in the throughput.

We can also observe that the query latency degrades as the number of rules and the

number of simultaneous users are increased. Each time- and value-based rule adds about 0.5

ms and 0.34 ms, respectively, and each user adds about 6.2 ms of latency. The throughput is
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Figure 6.1: Benchmark results of SensorSafe.

saturated when the number of simultaneous users reaches 10, and the more number of rules

reduce the system throughput. However, even with 100 users and 100 rules, SensorSafe can

still support about 28.68 and 37.79 requests per second with time- and value-based rules,

respectively.

6.2 FlowEngine Benchmarks

To evaluate how the dataflow-based context service achieves resource efficiency, we have

reimplemented the stress and conversation applications based on the existing framework

[ESK11], called mStress, by applying our flow-based context framework.

Similar to FlowEngine, mStress also reduces redundant computation through buses, but
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the level of computation sharing is coarser. The mStress framework is built using four buses,

i.e., Packet Bus, Window Bus, Feature Bus, and Context Bus. Any computation nodes can

publish data and subscribe to a bus. Computation sharing is achieved by these shared buses

because once a node publishes a computed result to a bus, the result is sent to multiple

nodes subscribing to the bus. However, the level of sharing is fundamentally limited by

the number of the buses. To overcome this limitation, the mStress framework also allows

nodes to publish data to the same bus the nodes subscribe to, essentially increasing the level

of computation sharing. However, one cannot arbitrarily increase the level of sharing by

republishing new results on the same bus, because the bus will become too busy, causing

overhead for subscribed nodes to filter out unwanted data.

By using FlowEngine, we were able to achieve more fine-grained sharing of computations.

Figure 6.2 shows CPU time measured for each dataflow node. FlowEngine separated out

several primitive computation stages, i.e., Sort, Variance, and PeakValley. Specifically, the

Sort operation was redundantly performed by the Median and the Percentile nodes, but

using FlowEngine, the result from the Sort node is now shared between the two nodes. The

Mean and the StandardDeviation nodes were computed independently, but we separated out

the Variance node so the intermediate results from the Mean and the Variance nodes can be

shared among the StandardDeviation and the classifiers nodes (Stress and Conversation).

Separating out the PeakValley node was especially beneficial because it was consuming rel-

atively large CPU time and was redundantly computed in many respiration feature nodes,

i.e., Ventilation, Inhalation, IERatio, Stretch, BreathingDuration, Respiration, and Exha-

lation. After separating out the PeakValley node, CPU times consumed by the respiration

feature nodes were reduced significantly. Consequently, we were able to reduce the total

CPU time needed for one stress and one conversation context inference by 38.3% and the

memory usage by 54.3% as shown in Table 6.1. Although several nodes in Figure 6.2 show

a little overhead incurred by FlowEngine, they are largely compensated by savings achieved

by reducing redundant computations. Note that, in Figure 6.2, the primitive computation

stages (i.e., Sort, Variance, and PeakValley) do not have measurements in case of mStress

because they are mixed-up with other computations.

54



0

2

4

6

8

Sor
t

Var
ian

ce

M
ed

ian
 

M
ea

n 

Per
ce

nt
ile

 

Nth
Bes

t 

Sta
nd

ar
dD

ev
iat

ion
 

Qua
rti

leD
ev

iat
ion

 

Stre
ss

 

Con
ve

rs
at

ion
 

C
P

U
 ti

m
e 

(m
s)

 

 
mStress
FlowEngine

0

50

100

150

Pea
kV

all
ey

Ven
tila

tio
n 

In
ha

lat
ion

 

IE
Rat

io 

Stre
tch

 

Bre
at

hin
gD

ur
at

ion
 

Res
pir

at
ion

 

Exh
ala

tio
n 

Lo
m

bp
er

iod
og

ra
m

 
0

100

200

300

400

500

600

700

RRIn
te

rv
al  

Figure 6.2: CPU times of individual dataflow nodes in the stress and conversation program.

Table 6.1: Total CPU time and memory usage of FlowEngine.
mStress FlowEngine % reduced

CPU Time 1503.9 ms 927.8 ms 38.3 %
Memory Usage 36.8 MB 16.8 MB 54.3 %

In the mStress framework, it might have been possible to achieve the similar degree of

computation sharing by republishing intermediate results on the same bus. However, it

would have caused non-negligible overhead on the bus communication as mentioned before.

More importantly, we claim that the dataflow framework is a more natural way to support

fine-grained computation sharing than the bus-based framework because computations can

be shared arbitrarily in dataflow graphs without such an overhead. Besides, the dataflow

framework enables the intuitive programming language discussed in Section 5.1.1

55



CHAPTER 7

User Study

Through our user study1, we aim to answer the following questions: (1) Do users feel more

comfortable with sharing when they can control how much to share? (2) Do users gradually

feel more comfortable as they have more controllability? We first describe the study design

and discuss the results in the following sections.

7.1 Design

We recruited twelve participants for the user study, of which ten were graduate students and

two were housewives. Their ages varied from mid-20s to mid-30s. We gave them smartphones

and sensor chest bands to collect sensor data for six days. The participants were asked to

carry the phones and wear the chest bands during their normal hours. They were instructed

to wear the equipments in the mornings and take it off at nights.

The study phones had the three context applications mentioned in Section 3, which were

developed using FlowEngine. The phone continuously collected accelerometer and location

data, which were used to infer activities such as stationary, walking, running, biking, and

driving. The phone also collected ECG and respiration data from the chest band, which

were used to infer stress and conversation events.

The context service collected the raw sensor data and the inferences in a SD card, and

opportunistically uploaded them to a SensorSafe VM. We set up one SensorSafe VM for each

participant, twelve VMs in total.

1All user study protocols have been approved by the Institutional Review Board at University of Califor-
nia, Los Angeles (IRB#14-000124).
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7.1.1 Study Phases

The study duration of six days was divided into three phases (two days per a phase) to

compare how privacy concerns change with different degrees of controllability.

• Phase 1: The participants did not have any control over sharing, so they had to share

all data collected.

• Phase 2: We installed the On/Off Controller in the study phones and instructed them

to use the application whenever they felt uncomfortable with sharing their data.

• Phase 3: We additionally installed the Rule Manager on the study phones. The par-

ticipants were able to control sharing with expressive privacy rules with various time

and location conditions.

We made sure that the participants understood how to use RuleManger by giving a 10

minute instructional session and letting them create example rules.

7.1.2 Data Reviews

To help the participants understand what kind of sensory information were being collected,

and how their sharing control was working, SensorSafe automatically generated web pages

every day as shown in Figure 7.1. The red location points on the map and the red background

in the plots indicate not-shared data. The blue location points and white background indicate

shared data. (In this paper, we intentionally blurred the map image to protect the privacy

of the participants).

7.1.3 Surveys

At the end of each phase, we requested participants to take our online privacy surveys. The

questionnaire asked the participants to rate how much comfortable they felt with sharing

their data on a seven-point Likert scale: very uncomfortable (1); neutral (4); and very

comfortable (7). Each questionnaire consisted of seven sections. Section 1 through 6 asked

57



Figure 7.1: The data visualizations on a participant’s daily report.

the participants to rate their comfort levels of sharing with six types of data recipients, i.e.,

researchers, family members, friends, acquaintances, the general public with a participant’s

identity, and the general public without a participant’s identity. For data recipients except

the general public, we instructed the participants to assume they were sharing with their

identity because personal sensing applications typically require a user’s identity. Within

each section, there are seven questions for each sensor and context inference, i.e., GPS,

accelerometer, activity status, ECG, respiration, stress, and conversation. Section 7 asked

the participants to provide their general feedback in free-text form regarding their privacy

concerns and our user study.

7.2 Results

In this section, we discuss our analysis of the survey questionnaires. We first discuss general

findings from the analysis, and then verify if the hypotheses mentioned above hold true by

discussing test results for statistically significant differences. Unless otherwise noted, we

used paired one-tailed t-tests with a threshold of p = 0.05.

In Appendix B, we provide a figure showing a complete result of the survey, which

include plots of mean comfort levels of the twelve participants, regarding all combinations

of the distinct types of the data recipients and the sensory data. To facilitate interpretation

of the plots, we summarize the results into a more concise form as shown in Figure 7.2. It
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Figure 7.2: Summarized mean comfort levels of the twelve participants, with respect to the
distinct types of (a) the data recipients and (b) the sensory data.

depicts the means and standard deviations of the comfort levels, and the error bars show ±

one standard deviation from the mean.

7.2.1 Intuitive Findings

The participants were more concerned about with whom they shared than what they shared.

The fact that the differences in the means among the recipient types in Figure 7.2(a) were

greater than those among the data types in Figure 7.2(b) supports this. The order of

comfortableness from the least to the most was: (1) the general public with identity; (2)

acquaintances; (3) the general public without identity, and friends; (4) researchers; (5) family

members. It was interesting that sharing with the general public is more comfortable than

that with acquaintances, if one’s identity was removed. In other words, participants were

willing to make their private data publicly available after anonymization. On the other

hand, the participants were not much concerned about the data types, as supported by the

differences in the mean comfort levels that were not statistically significant (Figure 7.2(b))

7.2.2 T-Test Methodology

We performed three kinds of t-tests. The first t-test checks whether the mean comfort

levels in Phase 2 (binary control) are greater than those in Phase 1 (no control), which is
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denoted as 2>1? in the legend of Figure 7.3. The second one checks whether those in Phase

3 (expressive control) are greater than those in Phase 1 (no control), denoted as 3>1?. The

third one checks whether those in Phase 3 (expressive control) are greater than those in

Phase 2 (binary control), denoted as 3>2?. The three kinds of t-tests were performed on all

tuples in a two-fold Cartesian product of the recipient types and the data types, hence there

were 126 t-tests (3 kinds of t-tests × 6 recipient types × 7 data types).

Let’s consider the results of t-tests as a three-dimensional (3D) array where each element

contains true or false (i.e., a corresponding t-test was succeeded or failed). As mentioned

before, within each phase, there were no significant differences in mean comfort levels across

the data types (Figure 7.2(b)). Therefore, we collapsed the 3D-array along the data type

dimension and counted the number of true elements. Each element of the resulting 2D-array

contained the number of successful t-tests on each combination of the three t-test types and

the six recipient types. Figure 7.3 shows the content of the 2D-array in a more intuitive

form. On the Y-axis, we showed how many t-tests were successful for each combination of

the recipient types and the three kinds of t-tests.

Intuitively speaking, each count on the Y-axis of Figure 7.3 can be interpreted as an

indicator of how strongly a corresponding t-test holds true. For example, the left-most bar

in Figure 7.3, means that the first t-test (checking whether the binary control gives more

comfort than no control) is true at a degree of 5 out of 7 in case of researchers.

7.2.3 Hypothesis Verification

We describe the conclusions drawn from the t-test results shown in Figure 7.3 as follows.

• From the 1st t-test (2>1?), we found that the binary control gave weak comfort (0–

3 out of 7) compared to the no control. However, it gave moderate comfort (5) for

researchers.

• From the 2nd t-test (3>1?), we concluded that the expressive control gives much more

comfort than the no control for all recipient types (7 out of 7) except family (3) and
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Figure 7.3: Statistically significant differences in mean comfort levels.

public without identity (3).

• From the 3rd t-test (3>2?), in comparison to the binary control, we found that the

expressive control was effective for friends, acquaintances, and public with identity

(6–7 out of 7) but ineffective for researchers, family, and public without identity (0–1).

We emphasize that the 1st and 2nd t-tests (2>1? and 3>1?) support the first hypothesis

(i.e., users feel more comfortable when they can control), and the 1st and 3rd t-tests (2>1?

and 3>2?) supports the second hypothesis (i.e., users gradually feel more comfortable as they

can control more). However, how strongly the t-tests support the two hypotheses depends on

recipient types. Specifically, let’s categorize the recipients into two: (1) the sensitive group

(friends, acquaintances, public with identity); (2) the safe group (family, researchers, public

without identity). In general, the hypotheses hold true more strongly with the sensitive

group than the safe group.

7.2.4 Feedbacks

In the end-of-study feedbacks, users generally recognized the power of the rule-based sharing

mechanism, but they also complained about usability of the graphical user interface (GUI) of

the rule-based control. As shown in Figure 4.2, the on/off control GUI consisted of buttons,

while the expressive control GUI included tables, lists, check boxes, drop-down boxes, text-
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inputs, time-picker, etc. Therefore, the controllability came at a price of an effort to learn

how to use such a control. Although one could come up with a more usable GUI for the

expressive control, we claim that it is hard to become as convenient as the simple buttons,

which involve almost no efforts to learn.

Regarding the tradeoff between usability and controllability, it is important to provide a

privacy control with right usability based on an application’s use cases. From our user study

results, we conclude that if an application involves sharing with the safe group, privacy

control does not need to be sophisticated because the binary control would suffice. If an

application involves sharing with the sensitive group, it may have to provide a sophisticated

privacy control even though it requires a user’s effort to learn how to use it.

From other interesting feedbacks, we found that more considerate mechanisms for a user’s

subtle privacy needs are required. A user stated, “Sharing with researchers is a bit vague.

My comfort level would depend on the purpose of the study, on the utility to me, and on

whether my identity is known to the researchers.” Another user mentioned, “I feel, for

family, it’s a more complex question whether to share data. I want to share all the data with

them, but at the same time, I don’t want to let them overly worry about how I’m doing. It

is very complicated to describe such feelings in terms of the rules.”

The former concern indicates that other factors such as purposes, utilities, etc. can affect

data sharing decisions. In other words, user data can be subject to sophisticated privacy

policies defined by users. The recent ideas on policy-carrying data [SWA15] would be useful

for addressing such concerns. The latter concern shows that privacy is not simply a question

of share or not. The data obfuscation techniques (mentioned in Section 8.2) that can hide

privacy-sensitive information in sensor data could be used to remedy such concerns. However,

it is worth to think about if deceiving his family is what he really wants.
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CHAPTER 8

Related Work

In this chapter, we provide a summary of existing literature in pervasive sensing/actuation

systems, mobile context inferences, and various works in data privacy. We cover related

works in two broad dimensions, i.e., academic vs. practical, and personal vs. infrastructural

sensing systems. We point out that the kazaar architecture stands as an academic but more

towards a practical system because many realistic issues are considered in a design of the

architecture. It also stands between personal and infrastructural sensing systems because

the architecture itself is agnostic to types of sensing targets, so it is applicable to systems

streaming personal sensory information flows.

8.1 Pervasive Systems

We introduce pervasive sensing/actuation systems in personal area (using mobile devices)

and infrastructural area (using sensors/actuators embedded in buildings). In addition, com-

mercial Home Automation systems are presented because they are infrastructural systems

but deployed in personal buildings.

8.1.1 Personal Sensing

Early systems for sensor data collection include SenseWeb [SNL06], SensorWeb [CDB06],

and GSN [AHS07]. The initial systems are focused on data collection and visualization to

gain certain insights. Therefore, they have limited support for sharing data. More recently,

several research systems [CYH06, MRS09, MLF08] and commercial cloud-based services1

1https://xively.com, http://www.nimbits.com, https://www.thingspeak.com, etc.
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emerged. They facilitate sharing or distributing collected data through web APIs, but store

users’ data in a centralized server. As we discussed in Chapter 2, privacy of data owners are

not well supported in a centralized architecture.

8.1.2 Building Management

Building Management Systems2 (BMS) are designed for common building operations such

as Heating Ventilation and Air Conditioning (HVAC) controls. The primary target of such

systems is a centralized control, so their architecture inherently lacks support for data privacy.

Several research projects for building management have been proposed in [DJT10, DMA12,

RBB11]. They are primarily focused on designing usable and extensible frameworks, because

the commercial building management systems are hard to program and limited in extending

sensor/actuator interfaces. Sensor Andrew [RBB11] takes privacy into consideration, but it

provides access controls in coarse-grained way.

8.1.3 Home Automation

In commercial industries, Home Automation systems3 provide integration of sensors and

actuators into a single system at individual home. They provide services for better user

comfort, increased security, etc. They also support programming scripts for automated

control of various actuators. However, their application target is personal buildings, so they

lack support for sharing of sensor data with privacy in mind.

8.2 Data Privacy

An increased awareness of the privacy risks involved in sharing of personal information, cou-

pled with a series of high-profile privacy breaches in the recent past has spurred interest in

privacy research. To protect identity privacy, several metrics such as k-anonymity [Swe02],

2http://www.trane.com, http://www.johnsoncontrols.com, http://www.buildingtechnologies.

siemens.com
3http://micasaverde.com,http://www.homeseer.com,http://www.control4.com/residential
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l-diversity [MKG07], and t-closeness [LLV07] have been proposed. In addition, obfusca-

tion techniques such as perturbation, suppression, and generalization [FWC10] are used for

achieving these metrics. The above efforts are mainly directed towards protection against de-

anonymization attacks on personal data sets. However, de-anonymization attacks exploiting

the released quasi-identifiers (e.g., zip code, age, gender, etc.) have been performed, which

indicates the apparent weakness of these schemes [NS08, Han06, NS09]. Moreover, while the

above privacy metrics and algorithms are useful in context of relational data, they cannot be

directly applied to sensory information because it is hard to perform anonymization without

degrading much of its utility.

Several user studies have been conducted to investigate privacy concerns in sensory infor-

mation. Researchers have found that privacy concerns increase as users better understand

what kind of information can be inferred from sensor data [RGK11], but privacy profiles

can help users to share more data without changing their comfort levels [WCS13]. Our user

study complements the prior works and investigates how different sharing controls affect

user’s privacy concerns.

Moreover, the mere fact that a user does not share portions of their data could be also

privacy intrusive because it means the user is trying to hide something by not sharing it.

In this case, a data transformations or probabilistic techniques can be useful to mitigate

such privacy concerns [EBF13, GNG12]. Automated rule-learning mechanisms proposed in

[CMS11, BHA13] can be also adopted to help users manage privacy rules more effectively.

Ahmadi et al. [APG10] proposed a data transformation scheme that preserved a regression

model of the original data. There are also several techniques for protecting identity that can

be inferred from location information. Hoh et al. [HGH08] achieved k-anonymous location

updates using a temporal cloaking scheme. Krumm et al. [Kru07] introduced techniques

such as deleting, rounding, and addition of noise for obfuscating home location. Although

the above schemes protect against identity privacy, they do not deal with the behavioral

privacy.

To protect identity when sharing sensory information, a different set of techniques have
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been proposed. A popular strategy is to perturb the original sensor data while preserving its

aggregate characteristics. AnonySense [CKK08] uses a mix-network in their architecture that

anonymizes using sensor data from multiple users. PoolView [GPT08] is an architecture with

a perturbation scheme that adds noise to original sensor data but maintains a community

average and distribution.

8.3 Personal Data Stores

Researchers have widely adopted the concept of personal data stores to provide privacy

when personal information is shared. Several system architectures in online social networks

[CCL09, SSN10, TSG09, BBS09] provide a simple access control mechanism, which manages

who has access to what data. Loccacino [TCH10] and PDV [MHM10] provide rule-based

sharing control mechanisms. In comparison to SensorSafe, our rule-processing has practical

performance even with a large amount of sensor data, and we further provides the differen-

tially private data aggregates. Montjoye et al. proposed openPDS [MSW14] that executes

third-party computations on personal data stores, which is complementary to our system.

In addition, differential privacy has been adopted by several works [McS09, RSK10, CRF12,

LWG13], which protects against revealing an individual in data sets. The main difference in

our work is that we prevent a single user’s data samples from being revealed by a series of

aggregate queries.

In our earlier works [CCC11, CCS12], we extended the idea of personal data stores by

having a broker coordinating many data stores, and proposed a rule-based sharing control

mechanism with its initial implementation. In this paper, we improve the performance

of rule processing by redesigning the underlying database layer, and further provide the

differentially private aggregates. In addition, we conducted a user study to evaluate how

rule-based sharing control affects users’ privacy concerns.
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8.4 Contexts on Mobile Devices

Several early systems [LYL10, RBA10] that provides context inferences from sensor data

collected on mobile devices. The initial systems are based on stovepipe architectures and

focused on optimizing individual data-processing pipeline. Such architectures suffer from

energy inefficiencies due to the lack of global knowledge on context inference workloads. The

energy efficiencies are important not only for longer battery life but also for data privacy

because users can process more raw sensor data on their private devices.

According to a principle proposed by Chu et al. [CKL11], mobile operating systems

should provide context data directly. Our system also follows the principle because it has

several benefits over application-managed context. First, limited resources can be managed

better by reducing redundant computations using global knowledge of context workloads.

Second, sharing only intended inferences provides better data privacy. Third, operating

systems themselves can benefit from the context information by adapting core OS services

(e.g., scheduling, memory management, power management, etc.) to the current context.

The design principle of OS-provided context data has inspired several research systems.

Funf [API11] is a framework that allows applications to simply subscribe to various sensors

and context inferences on mobile devices. Kobe [CKL11] focuses on balancing energy, la-

tency, and accuracy tradeoff of inference algorithms for better management of the limited

resources. Orchestrator [KLM10] reduces resource usage by primarily conducting runtime

off-loading of context computation. SymPhoney [JLY12] considers coordination of context

inferences among multiple applications by scheduling. Our work on FlowEngine is especially

focused on reducing redundant computations by providing a fine-grained dataflow program-

ming framework.

The idea of using dataflow model for context inference algorithms has also been discussed

in other works. Kobe [CLL11] provides a programming interface for designing context infer-

ences in terms of feature and classifier modules. SymPhoney [JLY12] also includes a general

dataflow framework based on DataBank [JML12]. However, Kobe is focused on balancing

energy, latency, and accuracy of inference algorithms, and SymPhoney is focused on coor-
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dinating resource usage among concurrent sensing applications. Such techniques are com-

plementary, and we elaborate the dataflow execution framework to enable more fine-grained

sharing of computations through rich node connection and control mechanisms. Auditeur

[NDA13] is a recent work that also employs dataflow programming, but it specifically focuses

on processing acoustic data while we aim for a general-purpose framework.
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CHAPTER 9

Conclusion

This paper presents kazaar, a software architecture that embraces pervasive sensing applica-

tions with tangible privacy. The key components of the kazaar architecture, i.e., SensorSafe

and FlowEngine, improves data privacy by letting users actually own their data, retain bet-

ter control, and process more within private devices. Besides, we free developers’ mind from

complex data processing flows and executing applications energy-efficiently. The evaluation

based on the performance benchmarks and the user study demonstrates that our architecture

proposal is feasible.

We also discuss contrasting styles of software architectures for pervasive sensing applica-

tions. The centralized architecture provides good manageability, while the distributed one

respects individual’s privacy. We propose kazaar, which architecturally unifies the both to

achieve manageability and privacy at the same time, and provides users with tangible pri-

vacy experience. The key idea is to leverage virtualization techniques and operate personal

data stores as physically close to users as possible. As a result, users get freedom to unplug

when they want.

The reality of pervasive computing systems is still far from respecting individual’s privacy.

We envision pervasive computer systems should be designed with the following data privacy

principles in mind: (1) cognitive end-to-end obfuscation (cf. network terminal end-to-end);

(2) no traces on irrelevant devices; (3) self-destructible data; (4) traceable data inferences.

Future research directions in technically implementing such principles will be meaningful, so

people can use computer systems with better peace of mind.

We briefly describe a few ideas on how to implement the data privacy principles men-

tioned above. Note that many of following ideas can be only realized in the core of operating
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systems. The principle of traceable data inferences means that OS should provide a mecha-

nism that can identify whether certain data originate from privacy-sensitive data. Once this

tool is available, privacy-aware systems can determine whether to store certain data locally

or back to a private storage. The taint-tracking technique [EGH14] is a promising candidate

for such a mechanism. It can also help realize the self-destructible data. In addition, mo-

bile application auditing and software-defined networking can be used to leave no traces on

irrelevant devices. Finally, Lau et al. recently proposed to extend OSI 7 Layer for privacy

[LCS14], which is a good example of the cognitive end-to-end obfuscation.
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APPENDIX A

A Java Implementation of ∅-multiset Data Structure

import java.util .*;

public class HashMultiEmptySet <E>

extends HashSet <E>

implements MultiEmptySet <E>

{

private int totalNumEmpty = 0;

private int curNumEmpty = 0;

private boolean isEmpty(E elem) {

return ((Set)elem).size() == 0;

}

private Object emptySet () {

return new HashSet <E>();

}

@Override

public int size() {

return super.size() + totalNumEmpty - 1;

}

@Override

public boolean add(E elem) {

if (isEmpty(elem)) {

totalNumEmpty ++;
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if (totalNumEmpty == 1)

return super.add(elem);

else

return true;

} else {

return super.add(elem);

}

}

@Override

public Object clone () {

throw new UnsupportedOperationException(

"clone () not supported.");

}

@Override

public boolean remove(Object o) {

E elem = (E)o;

if (! isEmpty(elem)) {

return super.remove(elem);

} else /* if (isEmpty(elem)) */ {

if (totalNumEmpty <= 1) {

return super.remove(elem);

} else {

totalNumEmpty --;

return true;

}

}

}

@Override

public Iterator <E> iterator () {

return new Iterator <E>() {

private Iterator <E> i = getSuperIterator ();
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private boolean isEmptyHit = false;

public boolean hasNext () {

if (isEmptyHit) {

if (curNumEmpty == totalNumEmpty)

return i.hasNext ();

else if (curNumEmpty < totalNumEmpty)

return true;

else {

assert false;

return false;

}

} else {

return i.hasNext ();

}

}

public E next() {

E curElem;

if (! isEmptyHit) {

curElem = i.next();

if (isEmpty(curElem)) {

isEmptyHit = true;

curNumEmpty ++;

}

} else /*if (isEmptyHit)*/ {

if (curNumEmpty ++ < totalNumEmpty) {

return (E)emptySet ();

} else {

curNumEmpty = 0;

isEmptyHit = false;

curElem = i.next();

}

}

return curElem;
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}

};

}

private Iterator <E> getSuperIterator () {

return super.iterator ();

}

}
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APPENDIX B

Detailed Plots for the User Study Results
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Figure B.1: Mean comfort levels of the twelve participants, with respect to all combinations
of the distinct types of the data recipients and the sensory data.
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