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The month-to-month variability of tropical temperatures is larger in

the troposphere than at the Earth’s surface. This amplification behavior

is similar in a range of observations and climate model simulations, and

is consistent with basic theory. On multi-decadal timescales, tropospheric

amplification of surface warming is a robust feature of model simulations,

but occurs in only one observational dataset. Other observations show

weak or even negative amplification. These results suggest that either

different physical mechanisms control amplification processes on monthly

and decadal timescales, and models fail to capture such behavior, or (more

plausibly) that residual errors in several observational datasets used here

affect their representation of long-term trends.
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Tropospheric warming is a robust feature of climate model simulations driven

by historical increases in greenhouse gases (1–3). Maximum warming is predicted

to occur in the middle and upper tropical troposphere. Atmospheric temperature

measurements from radiosondes also show warming of the tropical troposphere since

the early 1960s (4–7), consistent with model results (8). The observed tropical warming

arises in part from a step-like change in the late 1970s (5, 6).

Considerable attention has focused on the shorter record of satellite-based atmo-

spheric temperature measurements (1979 to present). In both models and obser-

vations, the tropical surface warms over this period. Simulated surface warming is

amplified in the tropical troposphere, corresponding to a decrease in lapse rate (2,

3, 9). In contrast, a number of radiosonde and satellite datasets suggest that the

tropical troposphere has warmed less than the surface, or even cooled, which would

correspond to an increase in lapse rate (4–12).

This discrepancy may be an artifact of residual inhomogeneities in the observa-

tions (13–19). Creating homogeneous climate records requires the identification and

removal of non-climatic influences from data that were primarily collected for weather

forecasting purposes. Different analysts have followed very different data adjustment

pathways (4–7, 12, 14, 17). The resulting ‘structural uncertainties’ in observed esti-

mates of tropospheric temperature change (20) are as large as the model-predicted

climate-change signal that should have occurred in response to combined human and
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natural forcings (16).

Alternately, there may be a real disparity between modeled and observed lapse-

rate changes over the satellite era (9–11, 21). This would point towards the existence of

fundamental deficiencies in current climate models (and/or in the forcings employed in

model experiments), thus diminishing our confidence in model predictions of climate

change.

This scientific puzzle provides considerable motivation for revisiting comparisons

of simulated and observed tropical lapse-rate changes (10, 13, 21, 22) using more

comprehensive estimates of observational uncertainty and a wide range of recently-

completed model simulations. The latter were performed in support of the Fourth

Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), and

involve 19 coupled atmosphere-ocean models developed in nine different countries.

Unlike previous model intercomparison exercises involving idealized climate change

experiments (23), these new simulations incorporate estimated historical changes in a

variety of natural and anthropogenic forcings (24) (see Supporting Online Material;

“SOM”).

Our focus is on the amplification of surface temperature variability and trends in

the free troposphere. We study this amplification behavior in several different ways.

The first is to compare atmospheric profiles of “scaling ratios” in the IPCC simulations

and in two new radiosonde datasets: HadAT2 (Hadley Centre Atmospheric Temper-
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atures, version 2) and RATPAC (Radiosonde Atmospheric Temperature Products

for Assessing Climate). These were compiled (respectively) by the United Kingdom

Met. Office (UKMO) (6) and the National Oceanic and Atmospheric Administration

(NOAA) (7). The scaling factor is simply the ratio between the temperature variabil-

ity (or trend) at discrete atmospheric pressure levels and the same quantity at the

surface (25). Observed trends and variability in tropical surface temperatures (TS)

were obtained from the NOAA (26) and HadCRUT2v datasets (27).

Our second method for estimating scaling ratios uses the weighted-average temper-

atures of deep atmospheric layers (12, 17). These are available from the satellite-based

Microwave Sounding Unit (MSU), which monitors atmospheric microwave emissions

from the lower stratosphere (T4) and the troposphere (T2). MSU T2 data have also

been used to retrieve lower tropospheric temperatures (T2LT). We calculate synthetic

MSU temperatures from the IPCC simulations, and then compare these with ac-

tual MSU temperatures produced by research groups at the University of Alabama

in Huntsville (UAH) (12) and Remote Sensing Systems (RSS) in California (14, 17).

Synthetic T4, T2, and T2LT data are also computed from the HadAT2 and RATPAC

radiosonde datasets (see SOM).

T2 receives a contribution from the cooling stratosphere (28). This hampers its

use for estimating the amplification of surface temperature changes in the free tropo-

sphere. We therefore focus on T2LT, which is relatively unaffected by the stratosphere
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(15). Until recently, only UAH provided a satellite-based T2LT product (12). The RSS

group has now independently derived a second T2LT dataset (14).

Another strategy for removing stratospheric influences on T2 relies on a linear

combination of T4 and T2 (15) (see SOM). This procedure yields TFu, which is repre-

sentative of temperatures in the bulk troposphere (1000 to 100 hPa). Relative to T2LT,

TFu receives more of its signal from higher regions of the troposphere (15). Based on

simple moist adiabatic lapse rate (MALR) theory (29), we expect scaling ratios in

the deep tropics to increase with increasing height, and to peak at roughly 200 hPa.

Comparison of the amplification factors estimated with T2LT and TFu data allows us

to verify whether models and observations confirm this theoretical expectation.

Before discussing the scaling ratio results, it is instructive to examine the vari-

ability and trends in layer-averaged atmospheric temperatures and TS. Our analysis

period (January 1979 through December 1999) is constrained by the start date of

observed satellite data and the end date of the IPCC historical forcing experiment.

A total of 49 realizations of this experiment were available (24).

Time series of tropical T4 changes in UAH, RSS, and the IPCC simulations are

characterized by overall cooling trends and volcanically-induced stratospheric warm-

ing signals (Fig. 1A). High-frequency variability associated with the Quasi-Biennial

Oscillation (QBO) is evident in the observations, but not in the model simulations

(5) (see SOM). Satellite T4 trends lie within the range of model results, but the larger
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cooling trends estimated from radiosondes do not (Fig. 2A). Part of this discrepancy

may be due to residual stratospheric and upper tropospheric cooling biases in the

tropical radiosonde data (18, 19).

In observations, the tropical variability of tropospheric and surface temperatures is

dominated by the large El Niño events in 1982/83, 1987/88, and 1997/98 (Figs. 1B,C).

Since the IPCC runs are coupled model simulations, they cannot reproduce the time

sequence of observed El Niño and La Niña events, except by chance (2, 16). The

range of simulated El Niño/Southern Oscillation (ENSO) variability spans an order

of magnitude. Models with very strong ENSO variability have fluctuations in surface

and tropospheric temperatures that are noticeably larger than observed.

The observed tropical TS trends in the NOAA and HadCRUT2v datasets (0.12

and 0.14◦C/decade, respectively) are very similar to X, the average warming over

all model simulations (Fig. 2E) (30). In the troposphere, however, model-observed

trend agreement is sensitive to the atmospheric layer examined and the choice of

observational dataset. In both radiosonde datasets used here, T2 cools over 1979 to

1999, and trends are outside the spread of model results (Fig. 2B). Large stratospheric

cooling biases in the radiosonde data probably contribute to this disparity (18, 19).

Use of TFu removes most of the stratospheric influence on T2, and yields positive

temperature trends in all observed datasets (Fig. 2C) (5, 15, 28). All observed TFu

trends are within the envelope of model values.
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In the tropical lower troposphere, all datasets except UAH have positive T2LT

trends (Fig. 2D). The difference between the UAH and RSS trends (ca. 0.13◦C/decade)

is a factor of two larger than the claimed 95% confidence interval for the UAH global

T2LT trend (12). This difference is primarily attributable to the different ways in

which the two groups account for the effects of orbital drift on the sampling of the

diurnal temperature cycle (14). The UAH T2LT trend lies outside the range of model

solutions. The disparate behavior of T2LT and TFu in the UAH data (the former cools,

while the latter warms) is not evident in any other dataset (14, 15, 28).

Both model and satellite data indicate that variability in TS is amplified in the

tropical troposphere (Figs. 1B,C). Amplification of surface warming is a direct re-

sult of moist thermodynamic processes (29). We examine two different amplification

metrics: RS(z), the ratio between the temporal standard deviations of monthly-mean

tropospheric and TS anomalies, and Rβ(z), the ratio between the multi-decadal trends

in these quantities. Since most of the monthly-timescale variability in tropical surface

and tropospheric temperatures is driven by interannual fluctuations in ENSO, RS(z)

largely reflects amplification processes acting on annual timescales (31) (see Fig. S1).

Figure 3A shows RS(z) values in models and radiosondes. The theoretically-

expected profile is also displayed (32). In all cases, RS(z) increases above the boundary

layer, with maximum amplification at roughly 200 hPa. Below roughly 400 hPa,

there is close agreement between the scaling ratios in models, radiosondes and theory.
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Between 400 and 150 hPa, the theoretical scaling ratios are consistently larger than in

either the radiosondes or the IPCC simulations. Such departures may be due to the

fact that MALR theory is applicable to regions of the tropical ocean experiencing deep

convection. In contrast, the model and radiosonde temperature data used to calculate

RS(z) include many convectively-inactive areas, where the surface air temperature

change is not constrained by the moist adiabat set by the convectively-active regions.

Furthermore, active moist convection does not always penetrate above 400 hPa, which

would weaken the connection to a moist adiabat above this level.

When scaling ratios are calculated for multi-decadal linear trends, both radiosonde

datasets are clear outliers. HadAT2 and RATPAC Rβ(z) values never exceed 0.82,

indicating damping of the surface warming trend in the free atmosphere (Fig. 3B).

None of the 49 model realizations demonstrate such behavior. The shapes of the

radiosonde-based scaling ratio profiles also differ from model and theoretical results,

with peak values at generally lower atmospheric levels. Note that subsampling the

HadCRUT2v TS data at the locations of the HadAT2 radiosonde stations has little

impact on the observed RS(z) or Rβ(z) values (see SOM).

In the low- to mid-troposphere, model Rβ(z) results are in good agreement with

theoretical expectations. Model scaling ratios are therefore consistent with theory

on both monthly and multi-decadal timescales, while the radiosonde data are only

consistent with theory on monthly timescales.
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A qualitatively similar picture emerges from scatter plots of the individual compo-

nents of RS(z) and Rβ(z) (Fig. 4). These display scaling behavior for layer-averaged

atmospheric temperatures rather than for temperatures at discrete atmospheric levels.

Figure 4A shows s{TS} and s{T2LT}, the temporal standard deviations of monthly-

mean tropical TS and T2LT data. Both vary by a factor of ≥ 5 over the 19 IPCC

models. Values of s{TFu} span a comparable range (Fig. 4B). These large ranges

are primarily dictated by model differences in the amplitude of El Niño/Southern

Oscillation (ENSO) variability.

Despite this large spread of model variability estimates, the tropospheric ampli-

fication of s{TS} is internally consistent across a wide range of models and observed

data (Figs. 4A,B). The regression between the model s{TS} and s{T2LT} values has a

slope of 1.3, in accord with the theoretically-expected scaling ratio at the peak of the

T2LT weighting function. The regression line for s{TS} and s{TFu} is steeper (1.5).

This is because the TFu weighting function peaks higher in the atmosphere, where

scaling ratios are larger (Fig. 3A) (see SOM). All model and observational results

in Figs. 4A,B are tightly clustered around the fitted (red) regression lines, consis-

tent with the close model-observed agreement in lower tropospheric values of RS(z)

(Fig. 3A).

Amplification factors estimated from multi-decadal trends in TS, T2LT, and TFu

also display considerable internal consistency in the 19 IPCC models (Figs. 4C,D).
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This consistency occurs despite large inter-model differences in convective parameter-

izations, boundary layer formulation, and resolution, all of which affect the simulation

of tropical convection and tropospheric lapse rates. Furthermore, the model-model

consistency in Rβ(z) ratios is robust to differences in the natural and anthropogenic

forcings applied by each group (24) (see SOM). Many of these forcings are heteroge-

neous in space and time (2, 3, 33). These differences in forcings and physics do not

cause significant displacement of model results from the regression line in Figs. 4C

and 4D. The regression slopes in Figs. 4C and D are similar to those estimated from

monthly-timescale variability, with TFu results again yielding a steeper slope than

T2LT (c.f. Figs. 4A,B).

The real conundrum in Fig. 4 is the complex behavior of the observations. On

monthly timescales, the amplification behavior of models and observations is con-

sistent. On decadal timescales, however, only the RSS-based T2LT and TFu trends

have scaling factors that are in reasonable accord with model results (Figs. 4C,D)

(see SOM). Despite sustained warming of the tropical land and ocean surfaces, the

UAH T2LT trend is negative – i.e., Rβ(z) < 0. The UAH Rβ(z) value seems physically

implausible (14, 15). Prolonged surface warming should destabilize tropical temper-

ature profiles, thus enhancing conditions for moist convection and readjustment of

atmospheric temperatures to a MALR.

In contrast to the model results and theoretical expectations, both radiosonde
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datasets used here have Rβ(z) ratios � 1.0 (Figs. 4C,D). As in the case of the

satellite datasets, there are large structural uncertainties in radiosonde estimates of

tropospheric temperature change (4–7). Comparisons of tropical temperature data

from day- and night-time radiosonde ascents suggest that the error arising from solar

heating of temperature sensors has decreased over time (18, 19). Inadequate correction

for this effect may account for a residual cooling bias in tropospheric temperature

changes.

The existence of residual inhomogeneities in the observational data is entirely

likely. Current atmospheric observing systems were designed for real-time monitor-

ing of weather rather than long-term monitoring of climate. The construction of

reliable climate records from radiosondes is hampered by the above-noted changes

in instrumentation (18, 19), along with changes in observing practices and network

density (4–7, 11, 13). Similar concerns apply to satellite data, which are influenced

by intersatellite biases, orbital drift and decay, and uncertainties in instrument cali-

bration coefficients (11–14, 17).

Adjustments for these and other effects are applied at discrete points in an ob-

servational time series, such as times of transition to a new satellite. None of these

corrections is precisely known. Small errors in adjustments can introduce systematic

errors in the time series. These errors have little impact on monthly and interan-

nual variability, which accounts for most of the variance of tropospheric temperature
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fluctuations in the deep tropics (Fig. 1B). However, systematic errors can have a

significant effect on interdecadal variability. This helps to explain why model/data

comparisons of Rβ(z) ratios are sensitive to observational uncertainty, while RS(z)

ratios are not.

In summary, we have demonstrated that all observed datasets and model results

are remarkably consistent in terms of their relationship between monthly- and annual-

timescale temperature variations at the surface and in the free troposphere. This is

a strong verification of the model physics that governs the amplification of tropical

surface temperature changes. On decadal timescales, however, only one observed

dataset (RSS) shows amplification behavior that is generally consistent with model

results. The correspondence between models and observations on monthly and an-

nual timescales does not guarantee that model scaling ratios are valid on decadal

timescales. However, given the very basic nature of the physics involved, this high-

frequency agreement is suggestive of more general validity of model scaling ratios

across a range of timescales.

The RSS T2LT, T2, and TFu trends are physically consistent (all three layers warm

as the surface warms), while the UAH data show trends of different sign in the lower-

and mid-troposphere. These results support the contention that the tropical warm-

ing trend in RSS T2LT data is more reliable than T2LT trends in other observational

datasets. This conclusion does not rest solely on comparisons with climate models.
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It is independently supported by the empirical evidence of recent increases in tropo-

spheric water vapor and tropopause height (25, 34), which are accord with warming

but not cooling of the free troposphere.

We have employed basic physical principles, as represented in current climate

models, for interpreting and evaluating observational data. Our work illustrates

that progress toward an improved understanding of the climate system can best

be achieved by combined use of observations, theory, and models. The availabil-

ity of a large range of model and observational surface and atmospheric temperature

datasets has been of great benefit to this research, and highlights the dangers in-

herent in drawing inferences on agreement between models and observations without

adequately accounting for uncertainties in both.
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(r = 0.92).

32. The theoretical expectation plotted in Fig. 3 was computed by taking the dif-

ference of two pseudo-adiabats calculated from surface air parcels with tem-

peratures of 28.0 and 28.2◦C and 80% relative humidity. These are conditions

typical of deep convective regions over the tropical oceans. The pseudo-adiabats

correspond to equivalent potential temperatures of 353.2 and 354.1 K. The as-

sumed temperature difference of 0.2◦C corresponds approximately to the total

change in tropical ocean temperature over 1979 to 1999. Theoretical scaling

ratios are relatively insensitive to reasonable variations in the baseline values of

surface air temperature and relative humidity, as well as to the magnitude of

the surface air temperature increase.

33. V. Ramaswamy et al., in Climate Change 2001: The Scientific Basis, J. T.



B. D. Santer et al. 19

Houghton et al., Eds. (Cambridge Univ. Press, Cambridge, 2001), pp. 349-

416.

34. B. D. Santer et al., Science 301, 479 (2003).

35. Work at Lawrence Livermore National Laboratory (LLNL) was performed un-

der the auspices of the U.S. Dept. of Energy, Environmental Sciences Divi-

sion, contract W-7405-ENG-48. A portion of this study was supported by the

U.S. Dept. of Energy, Office of Biological and Environmental Research, as

part of its Climate Change Prediction Program. TMLW was supported by

NOAA Office of Climate Programs (“Climate Change Data and Detection”)

grant NA87GP0105. PWT and GJ were funded by the U.K. Dept. of the Envi-

ronment, Food, and Rural Affairs. The authors acknowledge the international

modeling groups for providing their data for analysis, the JSC/CLIVAR Work-

ing Group on Coupled Modelling (WGCM) and their Coupled Model Intercom-

parison Project (CMIP) and Climate Simulation Panel for organizing the model

data analysis activity, and the IPCC WG1 TSU for technical support. The

IPCC Data Archive at Lawrence Livermore National Laboratory is supported

by the Office of Science, U.S. Department of Energy. The static MSU weighting

functions and UAH MSU data were provided by John Christy (UAH). The au-

thors thank Isaac Held, Tom Delworth (both GFDL), Dave Easterling (NCDC),

Bruce Hicks (NOAA ARL), and two anonymous reviewers for useful comments.

Olivier Boucher (Hadley Centre), Greg Flato (Canadian Climate Centre) and



B. D. Santer et al. 20

Erich Roeckner (Max-Planck Institute for Meteorology) supplied information

on the historical forcings used by CNRM-CM3, CCCma-CGCM3.1(T47), and

ECHAM5/MPI-OM.



B. D. Santer et al. 21

Figure 1: Time series of monthly-mean tropical temperature anomalies in T4 (A),

T2 (B), and TS (C). Observed T4 and T2 data are from UAH (12) and RSS (17).

Observed TS results are from the NOAA (26) and HadCRUT2v datasets (27). The

latter were subsampled at the locations of HadAT2 radiosonde data (6). Model TS

results and synthetic MSU temperatures are from the IPCC historical forcing runs

(see SOM). Results shown are restricted to those models that included forcing by

both stratospheric ozone depletion and volcanic aerosols. All data were spatially-

averaged over 20◦N-20◦S, expressed as anomalies relative to climatological monthly

means over 1979 to 1999, and low-pass filtered. To facilitate model-data and model-

model variability comparisons involving models with different ensemble sizes, only

the first realization is plotted from each model.

Figure 2: Simulated and observed least-squares linear trends in tropical T4 (A), T2

(B), TFu (C), T2LT (D), and TS (E). Red bars represent X, the mean of the model

results (30). The black lines that encompass X are the maximum and minumum values

from 49 realizations of the IPCC historical forcing experiment (see SOM). Asterisks

identify observational trends outside the range of model results. All trends were

calculated from spatially-averaged (20◦N-20◦S) anomaly data over the 252-month

period January 1979 to December 1999. For anomaly definition and data sources, see

Fig. 1. The orange bar in panel E is the TS trend based on HadCRUT2v TS data

that were subsampled at the locations of HadAT2 radiosonde data (6).
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Figure 3: Atmospheric profiles of temperature scaling ratios in models, theory, and

radiosonde data. RS(z) is the ratio between the temporal standard deviations of T (z),

the temperature at discrete pressure levels, and the surface temperature T (s) (A).

Rβ(z) is similarly defined, but for trends over 1979 to 1999 (B). Model results are

from 49 realizations of the IPCC historical forcing experiment. Radiosonde scaling

ratios were calculated with HadAT2 and RATPAC T (z) data (6, 7). Scaling ratios

for HadAT2 are based on unsubsampled HadCRUT2v T (s) data. HadCRUT2v T (s)

data subsampled with HadAT2 coverage yield virtually identical scaling ratios (not

shown). RATPAC-derived scaling ratios use spatially-complete NOAA T (s) data.

Theoretically-expected values of RS(z) and Rβ(z) are also shown (32). All standard

deviations in panel A were calculated with linearly detrended data. Rβ(z) results

in panel B are not plotted for three model realizations with surface warming close

to zero (see SOM). All results are for spatial averages over 20◦N-20◦S. For anomaly

definition, data sources, and further processing details, see Fig. 1 and SOM.

Figure 4: Scatter plots of the individual components of the RS(z) and Rβ(z) scaling

ratios. Results are for the deep tropics (20◦N-20◦S). The two upper panels provide

information on amplification of the monthly-timescale TS variability in T2LT (A) and

TFu (B). The two bottom panels show the relationship between decadal-timescale

trends in TS and T2LT (C) and in TS and TFu (D). Each scatter plot has 49 pairs

of model results. The fitted regression lines (in red) are based on model data only.

The black lines denote a slope of 1. Values above (below) the black lines indicate
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tropospheric enhancement (damping) of surface temperature changes. There are two

columns of observational results in C and D. These are based on the NOAA and

HadCRUT2v TS trends (0.12 and 0.14◦C/decade, respectively). Since s{TS} (the

temporal standard deviation of TS) is very similar in the NOAA and HadCRUT2v

datasets, observed results in A and B use NOAA s{TS} values only. The blue shading

in the two bottom panels defines the region of simultaneous surface warming and

tropospheric cooling. For anomaly definition, analysis period, and data sources, refer

to Fig. 1 and SOM.
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Supporting Online Material

Calculation of synthetic MSU temperatures

We employed a static vertical weighting function to calculate synthetic satellite tem-

peratures from model and radiosonde data. For large area averages, this approach

yields decadal-timescale temperature changes similar to those obtained with a full

radiative transfer code (S1). The static weighting function was applied to vertical

profiles of monthly-mean, zonally-averaged atmospheric temperature anomalies (for

radiosonde data) and to temperature profiles at individual grid-points (for model

data). Results were then spatially averaged over the deep tropics (20◦N-20◦S).

Actual MSU temperatures

We used version 5.1 of the UAH MSU T4, T2, and T2LT data and version 1.3 of the

RSS MSU data. A T2 product independently produced by a group at the University

of Maryland (UM) shows tropospheric warming exceeding that in RSS and UAH (S2).

The UM dataset is currently available in global mean form only, and so could not be

used in our investigation of tropical temperature changes.
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Estimation of TFu

This was calculated as TFu = a T2 −b T4, with coefficients a = 1.1 and b = −0.1.

We applied these coefficients to the monthly-mean, spatially-averaged (20◦N-20◦S) T2

and T4 anomalies from satellites (UAH and RSS), radiosondes (HadAT2 and RAT-

PAC), and the IPCC historical forcing simulations. Note that a and b were derived

mathematically (from the T2 and T4 weighting functions) rather than empirically (S3).

Trends in TFu receive only a small contribution (< ±0.005◦C/decade) from the cool-

ing stratosphere. The peak of the broad effective weighting function for TFu occurs

between ca. 300 and 400 hPa. The peak weight for T2LT is lower in the atmosphere,

between ca. 600 and 700 hPa (S3).

Calculation of temporal standard deviations

All temporal standard deviations used for the calculation of RS(z) results in Figs. 3

and 4 were estimated from linearly detrended data. This was done because some

of the model simulations examined here have large decadal trends in surface and

atmospheric temperature, which inflate the temporal variance of the raw TS and

T (z) data. This aliasing effect makes it difficult to use standard deviations estimated

from raw data to separate amplification behavior on monthly and decadal timescales.
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Subsampling observed Ts data with radiosonde coverage

Subsampling surface temperature data at radiosonde locations actually degrades r,

the correlation between time series of monthly-mean T2LT and TS anomalies. For

example, r = 0.82 for tropical average anomalies calculated from the unsubsampled

HadCRUT2v TS data and the HadAT2 radiosonde T2LT data. The correlation is

decreased (r = 0.73) if the same radiosonde data are correlated with the HadCRUT2v

TS data subsampled at the radiosonde locations. This result must be related to the

fact that surface temperature fluctuations have smaller correlation length scales than

temperature fluctuations in the free troposphere (S4).

Modeling groups contributing to IPCC database

At the time this research was conducted, 19 modeling groups had performed a wide

range of simulations in support of the IPCC Fourth Assessment Report. Climate data

from these simulations were made available to the scientific community through the

U.S. Dept. of Energy’s Program for Climate Model Diagnosis and Intercomparion

(PCMDI).

One of the simulations (the so-called “20c3m” run) involved historical changes in

a number of anthropogenic and natural forcings. The following modeling groups

provided multiple realizations of the 20c3m run (the text in parentheses gives the
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official model designation): the National Center for Atmospheric Research in Boul-

der (CCSM3, five; PCM, four); the Max-Planck Institute for Meteorology in Ger-

many (ECHAM5/MPI-OM, three); the Institute for Atmospheric Physics in China

(FGOALS-g1.0, three), the Geophysical Fluid Dynamics Laboratory in Princeton

(GFDL-CM2.0, three; GFDL-CM2.1, three), the Goddard Institute for Space Studies

in New York (GISS-AOM, two; GISS-EH, five; GISS-ER, five); the Center for Climate

System Research, National Institute for Environmental Studies, and Frontier Research

Center for Global Change in Japan (MIROC-CGCM2.3.2(medres), three; MIROC-

CGCM2.3.2(hires), one); and the Meteorological Research Institute in Japan (MRI-

CGCM2.3.2, five). Individual realizations were supplied by the Canadian Centre

for Climate Modelling and Analysis (CCCma-CGCM3.1(T47)); Météo-France/Centre

National de Recherches Météorologiques (CNRM-CM3); the Institute for Numerical

Mathematics in Russia (INM-CM3.0); the Institute Pierre Simon Laplace in France

(IPSL-CM4); and the Hadley Centre for Climate Prediction and Research in the U.K.

(UKMO-HadCM3 and UKMO-HadGEM1). Some groups provided results for several

different model configurations.

Forcings used in 20c3m runs

Details of the natural and anthropogenic forcings used by differing modeling groups in

their IPCC “historical forcing” simulations are given in Table 1. This Table was com-
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piled using information that participating modeling centers provided to the PCMDI

(see http://www-pcmdi.llnl.gov/ipcc/model documentation). Model acronyms are

defined in the previous section.

A total of 11 different forcings are listed in Table 1. A letter ‘Y’ denotes inclusion of

a specific forcing. As used here, ‘inclusion’ signifies the specification of time-varying

forcings, with changes on interannual and longer timescales. Forcings that were varied

over the seasonal cycle only, or not at all, are identified with a dash. A question mark

indicates a case where there is uncertainty regarding inclusion of the forcing.

Stratification of 20c3m simulations

In Fig. 3, simulations were stratified according to model groups that included both

stratospheric ozone depletion and volcanic aerosols (O+V) and groups that omitted

these forcings. Only 9 (12) of the 19 IPCC models included forcing by volcanic aerosols

(stratospheric ozone). There is no indication that the RS(z) results in Fig. 3A reflect

this stratification. However, some of the largest Rβ(z) values in the lower troposphere

occur in realizations performed with CCSM3, GFDL-CM2.1, and GISS-EH (Fig. 3B).

All three of these models included changes in carbonaceous aerosols, which may act

to warm the lower troposphere relative to the surface, thus increasing Rβ(z) (S5).
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Simulated and observed changes in T4

The overall stratospheric cooling during the satellite era is related to stratospheric

ozone depletion (S6). The warming of T4 after the eruptions of El Chichón in April

1982 and Pinatubo in June 1991 is due to the absorption of incoming solar radiation

and upwelling terrestrial radiation by volcanic aerosols (S6, S7). A change in the phase

of the QBO during the Pinatubo eruption induced cooling of the equatorial strato-

sphere (S8), thus damping the stratospheric warming response to Pinatubo. QBO

variability is not well-simulated by most models in the IPCC archive, which partly

explains why the simulated T4 response to Pinatubo is larger and less attenuated in

the model simulations.

Anomalous Rβ(z) results

Two of the 49 model realizations (INM-CM3.0) and (ECHAM5/MPI-OM, run 2)

have Rβ(z) values < 1.0 for trends in T2LT and TFu. These anomalous results are

due to either very weak surface warming (INM-CM3.0) or very weak surface cooling

(ECHAM5/MPI-OM, run 2). Neither case is analogous to the radiosonde- or UAH-

based Rβ(z) � 1.0 results, which occur in conjunction with pronounced surface

warming. The ECHAM result arises from the chance occurrence of a large La Niña

event near the end of the 1979-1999 period. Run 1 of MRI-CGCM2.3.2 has very large

Rβ(z) values, which are associated with TS, T2LT, and TFu trends that are all close to
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zero (Figs. 4C,D).

Caption for Figure S1

Figure S1: Scatter plots of the individual components of the RS(z) scaling ratio.

Results are for the deep tropics (20◦N-20◦S). Panel A is identical to Fig. 4A, and

provides information on the monthly-timescale variability in TS and T2LT in a wide

range of model and observational datasets. The standard deviations of TS and T2LT in

panel B are based on annual-mean rather than monthly-mean anomalies. All standard

deviations were calculated from linearly detrended data. Observed s{TS} values are

from NOAA (S9). The fitted regression lines (in red) are based on model data only.

The black lines denote a slope of 1. For further details of datasets and analysis

periods, refer to Fig. 4. Note the close correspondence between the monthly-mean

and annual-mean results, which is due to the fact that monthly-timescale variability

in TS and T2LT is dominated by interannual fluctuations in ENSO.
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Table 1: Forcings used in IPCC simulations of 20th century climate change

Model G O SD SI BC OC MD SS LU SO VL

1 CCCma-CGCM3.1(T47) Y - Y - - - - - - - -

2 CCSM3 Y Y Y - Y - - - - Y Y

3 CNRM-CM3 Y Y Y - Y ? - - - - -

4 CSIRO-Mk3.0 Y - Y - ? ? ? ? ? ? ?

5 ECHAM5/MPI-OM Y Y Y Y - - - - - - -

6 FGOALS-g1.0 Y - Y ? - - - - - - -

7 GFDL-CM2.0 Y Y Y - Y Y - - Y Y Y

8 GFDL-CM2.1 Y Y Y - Y Y - - Y Y Y

9 GISS-AOM Y - Y - - - - Y - - -

10 GISS-EH Y Y Y Y Y Y Y Y Y Y Y

11 GISS-ER Y Y Y Y Y Y Y Y Y Y Y

12 INM-CM3.0 Y - Y - - - - - - Y a

13 IPSL-CM4 Y - Y ? - - - - - - -

14 MIROC3.2(medres) Y Y Y ? Y Y Y Y Y Y Y

15 MIROC3.2(hires) Y Y Y ? Y Y Y Y Y Y Y

16 MRI-CGCM2.3.2 Y - Y - - - - - - Y a

17 PCM Y Y Y - - - - - - Y Y

18 UKMO-HadCM3 Y Y Y Y - - - - - - -

19 UKMO-HadGEM1 Y Y Y Y Y Y - - Y Y Y

G = Well-mixed greenhouse gases O = Tropospheric and stratospheric ozone

SD = Sulfate aerosol direct effects SI = Sulfate aerosol indirect effects

BC = Black carbon OC = Organic carbon

MD = Mineral dust SS = Sea salt

LU = Land use change SO = Solar irradiance

VL = Volcanic aerosols.

a = Documentation claims inclusion of volcanic aerosols, but there are no stratospheric warming responses in T4.
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