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Summary

Current approaches to reducing the latent HIV reservoir entail first reactivating virus-containing 

cells to become visible to the immune system. A critical second step is killing these cells to reduce 

reservoir size. Endogenous cytotoxic T-lymphocytes (CTLs) may not be adequate because of 

cellular exhaustion and the evolution of CTL-resistant viruses. We have designed a universal 
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CAR-T cell platform based on CTLs engineered to bind a variety of broadly neutralizing anti-HIV 

antibodies. We show that this platform, convertibleCAR-T cells, effectively kills HIV-infected, but 

not uninfected CD4 T-cells from blood, tonsil or spleen, and only when armed with anti-HIV 

antibodies. ConvertibleCAR-T cells also kill within 48 hours more than half of the inducible 

reservoir found in blood of HIV-infected individuals on antiretroviral therapy. The modularity of 

convertibleCAR-T cell system, which allows multiplexing with several anti-HIV antibodies 

yielding greater breadth and control, makes it a promising tool for attacking the latent HIV 

reservoir.

Graphical Abstract

eTOC Blurb

An adaptable CAR-T cell platform based on cytotoxic lymphocytes engineered to bind a variety of 

broadly neutralizing anti-HIV antibodies can effectively kill HIV-infected primary cells and reduce 

viral reservoirs in the blood of infected individuals on antiretroviral therapy.

Introduction

The main obstacle to curing HIV-infected individuals is the existence of a reservoir of 

latently infected cells that persists despite long term antiretroviral therapy (ART). These rare 

cells harbor an integrated HIV provirus but generally do not express viral proteins, making 

them invisible to the immune system and difficult to eliminate (Chun et al., 1997; Finzi et 
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al., 1997; Richman et al., 2009; Wong et al., 1997). The establishment of latency may have 

various causes, including the infection of partially active cells transitioning to a resting state 

(Chun et al., 1995; Siliciano and Greene, 2011), the activation of a virus-encoded program 

(Razooky et al., 2015), or even the infection of resting CD4 T cells (Cameron et al., 2010). 

Regardless of the origin of the latent reservoir, the greater its size, the harder it is for the 

immune system to control viral levels (Lori et al., 1999), and the faster the virus rebounds in 

the event of ART interruption (Li et al., 2016). Although the advent of combination ART has 

revolutionized management of HIV infection and prevents development of AIDS, HIV-

positive individuals must adhere to lifelong treatment, not without adverse side effects 

(Renju et al., 2017). Despite falling short of complete viral eradication, a consistent ability 

to reduce the size of the viral reservoir and control its activity to achieve a sustained viral 

remission in the absence of ART would radically alter approaches to the treatment of 

infection around the world (Goulder and Deeks, 2018; Lori et al., 1999).

Some HIV-positive individuals who received treatment early during acute infection exert 

long-lasting control negating viral rebound after withdrawal of ART. In these rare 

individuals, termed post-treatment controllers (PTCs) (Hocqueloux et al., 2010; Saez-Cirion 

et al., 2013), the immune system manages to keep the latent reservoir small, and sometimes 

even reduces the reservoir size and controls viremia without drug intervention (Saez-Cirion 

et al., 2013). The reasons for PTCs’ better control of HIV load are still under investigation, 

but levels of CD4 T cell activation are lower in these individuals than in non-controllers. 

CD4 T and NK cell responses are also higher and levels of inflammation are low (Saez-

Cirion et al., 2013; Samri et al., 2016). We seek an intervention that routinely establishes 

post-treatment control in all HIV-infected people from both developed and developing 

countries.

One of the main approaches to reducing the size of the reservoir is “shock and kill” (Archin 

et al., 2012). This approach entails exposing cells to one or more latency reversing agents 

(LRAs) to induce viral gene expression, ideally with little or no toxicity to the host (Jean et 

al., 2019). Once successfully shocked, reservoir cells begin producing the viral protein Env, 

which is inserted on the cell surface. These cells may now be killed either due to a viral 

cytopathic effect, or by immune cells recognizing as foreign the viral Env protein/peptides 

expressed on the surface of the reservoir cells (Jones and Walker, 2016; Leonard et al., 

1988). However, only strong LRAs lead to cell killing via viral-induced cytopathic effects, 

and their clinical utility is quite limited because of their toxic side-effects, including 

potential triggering of a cytokine storm (Chun et al., 1999; Prins et al., 1999). More subtle, 

non-toxic cell compounds would be desirable, but they may only stimulate a small fraction 

of the latent reservoir necessitating serial administration (Jean et al., 2019). Regardless of 

the way reservoir cells are reactivated, the success of the shock-and-kill strategy crucially 

depends on an efficient means of killing the reactivated cells.

HIV infection is commonly associated with the exhaustion of cytotoxic T lymphocytes 

(CTLs) manifested by loss of both effector function and proliferative capacity (Cella et al., 

2010; Hersperger et al., 2010; Kalams et al., 1999; Shin and Wherry, 2007). In addition, 

CTL-resistant viral strains emerge, especially if treatment with ART is delayed beyond acute 

infection (Deng et al., 2015; Jain et al., 2013; Shan et al., 2012; Yang et al., 2002). Any 
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attempt to boost the cell-mediated immune response of HIV-infected individuals must 

overcome these two hurdles.

Our work focuses on designing a more reliable way to kill the reactivated cells. Such killing 

is pivotal for reducing the size of the reservoir and critical for implementing a “reduce-and-

control” strategy that, together with an immune intervention, might lead to post-treatment 

control. Two options for killing include: 1) improve the activity of the resident CTLs 

(Migueles et al., 2008), or 2) introduce new CTLs (Sung et al., 2018). Several broadly 

neutralizing antibodies (bNAbs) are now available that react with infected cells (Julg and 

Barouch, 2019; Mayer et al., 2017; McCoy, 2018; Sok et al., 2016). These bNAbs have the 

ability to recognize HIV-infected cells and contribute to their neutralization but still need a 

functional immune system to execute the bNAb-directed killing (Bar-On et al., 2018; Caskey 

et al., 2017). New CTLs have also been introduced by first removing patient T cells, 

inserting into these cells a chimeric antigen receptor (CAR) against a specific surface target 

along with costimulatory and signaling domains (e.g. 4–1BB and CD3ζ) (Guedan et al., 

2019) and then reinfusing the CAR-T cells into the patient (Pule et al., 2003). In the most 

successful application of this CAR-T cell approach, cells were engineered to express an anti-

CD20 antibody, which specifically recognizes the CD20 antigen (Onea and Jazirehi, 2016) 

expressed on malignant cells from patients with refractory B-cell lymphoma (Jacobson, 

2019; Onea and Jazirehi, 2016; Zheng et al., 2018). Although successful, one of the 

problems of current CAR-T cells is that once administered, the cells are always in an “on-

state” thus control is limited and there is little to no way to halt the activity of these cells 

should serious autoimmune side effects emerge (Bonifant et al., 2016; Zheng et al., 2018).

Similar strategies have been attempted to engineer CAR-T cells against HIV, by fusing 

single chain fragment variable (scFv) part of an anti-HIV Env antibody (Sung et al., 2018) 

(see Figure 1E) or the extracellular domains of the CD4 molecule that recognize HIV Env, to 

the zeta chain of the T cell receptor creating a CAR-T cell (Deeks et al., 2002). Although 

well-tolerated in humans, these CAR-T cells failed to produce clinical effects potentially due 

to lack of an adequate host response to LRAs (Wagner, 2018). The use of a single targeting 

motif on these CAR-Ts significantly limits the ability of these cells to address HIV’s 

diversity and high rate of viral epitope drift in patients. A more versatile platform that is 

inherently more responsive to viral fluidity is therefore needed to maximize the impact of a 

CAR-T based strategy.

CTLs and Natural killer (NK) cells express on their surface the NK group 2D receptors 

(NKG2D) which recognize a family of ligands overexpressed on cells stressed by viral 

infection or transformation (Cosman et al., 2001). The α1–α2 domains of these major 

histocompatibility complex class I chain-related (MIC) ligands – which include MICA, 

MICB, and UL16 binding proteins (ULBPs) 1–6 - bind to NKG2D which activates the 

cytolytic function of these cells (Bauer et al., 1999; Cosman et al., 2001; Steinle et al., 2001) 

(see Figure 1A). We leveraged the natural binding of MIC/ULBP ligands to NKG2D to 

develop an exclusive orthogonal ligand-receptor interaction to generate the components of a 

highly modular universal CAR-T cell platform (For more thorough biochemical 

characterization and application of the platform in other fields see U.S. Patent No. 

10,259,858 and (Landgraf et al., 2019). The engineered extracellular domain of the NKG2D 
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variant was tethered to the intracellular 4–1BB and CD3ζ co-signaling domains to generate 

the CAR while the mutant ligand domain was fused to an antibody to generate a bispecific 

molecule termed a MicAbody™. This two-part system, which we term convertibleCAR™-T 

(cCAR-T) cells, can readily be multiplexed with several distinct MicAbodies distinguished 

by their ability to engage unique epitopes. We reasoned that by combining bNAbs and 

cCAR-T, we might harness their individual benefits to expand the breadth of killing of HIV-

infected targets while minimizing the emergence of viral resistance. We have explored the 

killing properties of these cCAR-T cells against both productively HIV-infected cells from 

human blood, tonsil and spleen and reactivated blood CD4 T cells obtained from ART-

suppressed HIV-positive individuals. We describe our findings concluding this platform 

shows great potential as a robust approach to reduce the reservoir size.

Results

HIV bNAbs fused to an orthogonal MIC ligand direct T cells expressing an inert NKG2D-
based CAR construct to recognize HIV-1-infected primary cells

To combine bNAbs and CAR-T cells, we took advantage of a natural ligand-receptor system 

that normally participates in the body’s surveillance for malignant and virally infected cells. 

This system uses a ligand from the MIC/ULBP family, expressed on stressed cells, and its 

receptor NKG2D, expressed on CTL and NK cells (Figure 1A). The binding pocket of the 

NKG2D extracellular domain was mutated to render it inert and incapable of binding its 

natural ligands (Figure 1B). Compensatory mutations in the α1–α2 domain of a MIC ligand 

were introduced to eliminate binding to wild-type NKG2D and promote sub-nanomolar 

engagement of the mutant NKG2D (Figure 1F). This established a unique and exclusive 

orthogonal pairing system in which the mutant NKG2D was subsequently formatted as a 

CAR for expression on CD8 T cells (convertibleCAR-T cells, cCAR-T) and the mutant α1–

α2 fused to HIV bNAbs (Figure 1C and STAR method) to generate bispecific agents called 

MicAbodies. The mutant α1–α2 exclusively engages the mutant NKG2D-CAR expressed 

on the cCAR-T cells (Figure 1G and Table S1) while the Fv domains engage the cognate 

antigen of the HIV-Env protein on the surface of tonsil-derived infected cells (Figure 1H). 

This high avidity and specific interaction generates an immunologic synapse that activates 

the cytotoxic effector functions of the cCAR-T cells to kill the targeted cell.

Four MicAbodies from two types of HIV-specific bNAbs were constructed. The first two 

bNAbs, 3BNC60 and 3BNC117, recognize the CD4 binding site on the virus envelope 

(Malbec et al., 2013; Scheid et al., 2016; Scheid et al., 2011); the other two, PGT121 and 

10–1074, are HIV-V3 glycan loop domain-binding bNAbs (Malbec et al., 2013; Mouquet et 

al., 2012; Walker et al., 2011) (Table S2). Both types of bNAbs were shown to be potent in 

clinical trials when used alone or in combination (Bar-On et al., 2018; Caskey et al., 2019; 

Caskey et al., 2017; McCoy, 2018).

To test the specificity of cCAR-T killing, we constructed two additional MicAbodies as 

negative controls: one based on the B cell-specific, anti-CD20 monoclonal antibody, 

rituximab (Maloney et al., 1997) and the other on the breast cancer-specific monoclonal 

antibody, anti-HER2 or trastuzumab (Herbst and Hong, 2002) (Table S2). Using 

fluorophore-conjugated MicAbodies we demonstrated specific binding of MicAbodies to the 
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effector cCAR-T (Figure 1G) and specific binding of the HIV MicAbodies to the HIV-

infected (GFP positive) tonsil cells in a comparable manner to natural bNAb (Figure 1H).

Finally, to ensure that the effect of our system on infected cells would reflect specific 

binding to the cCAR-T, we introduced two mutations (D265A/N297A) in the MicAbody’s 

heavy chain (Table S2). These mutations abolish the MicAbodies’ ability to trigger cell 

killing via antibody-dependent cellular cytotoxicity (ADCC) often involving NK cells as 

effectors (Shields et al., 2001). Adding these mutations to the platform helps to ensure that 

killing is only triggered by the MicAbody-cCAR-T interaction, resulting in a safe, modular 

and regulatable killing platform.

We first tested the platform in vivo in subcutaneous lymphoma mouse model, where NSG 

mice were injected with Raji lymphoma cells. After tumor implantation, the mice were 

injected with Rituximab MicAbodies (20ug) every two days for 6 doses, and cCAR-T cells 

were injected one day after the first MicAbody dose. Tumor volumes were regularly 

monitored by caliper measurements. Conventional CAR-T (CD19 scFv) and cCAR-T armed 

with Rituximab MicAbodies displayed similar levels of control of tumor cell growth. 

Delivery of cCAR-T without MicAbody, produced no significant anti-tumor effects (Figure 

1I).

cCAR-T cells combined with HIV MicAbodies specifically kill HIV-infected primary CD4 T 
cells

Although viral load is commonly tested in blood and a large number of latency studies have 

been performed using blood cells (Shacklett et al., 2019), it is important to explore HIV 

infection and latency in lymphoid tissues since most of the reservoir resides there and 

replication of the virus mainly occurs in these tissues (Chun et al., 2008; Haase et al., 1996; 

Pantaleo et al., 1993; Yukl et al., 2010). We have principally used tonsil-derived cells for 

infection with HIV-GFP in this study (Doitsh et al., 2010)(see STAR methods, and Figure 

S1) principal findings have also been confirmed in both spleen and peripheral blood cells.

To determine the optimal effector-to-target ratio, we combined cCAR-T cells and tonsil-

derived cells at various effector: target (E:T) ratios in the presence of a mix of the four HIV-

specific MicAbodies and assessed killing efficiency by measuring the depletion of HIV-

infected CD4 T cells (HIV-positive cells were monitored by the expression of the GFP 

reporter). For each experiment, one million infected tonsil cells (containing ~1×104 GFP+, 

HIV-infected cells) were incubated for 48 hours with a range of cCAR-T cells from no-

CAR-T to 2×105 CAR-T cells (In the no-CAR-T controls, untransduced CD8 T-cells from 

the same donor were added). All experiments were conducted in the presence of ART 

(saquinavir 5μM) to prevent a spreading infection that could potentially confound the killing 

results.

We found that the killing efficiencies of cells infected with HIV-1 CCR5 (R5) tropic virus 

(BaL/GFP) correlated with the number of effector cCAR-T cells present. These results were 

consistent regardless of the concentration of MicAbodies tested (Figure 2A–B; GFP+ bars). 

Although specific killing of HIV infected cells (GFP+) improved as we added more effector 

cells, by an E:T ratio of 20:1, the viability of the uninfected bystander CD4 T cells began to 
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decrease both with high and low MicAbody concentrations (Figure 2A–B; GFP− bars). 

Based on these results, we selected an E:T ratio of 10:1 for all of subsequent experiments.

Next, a number of control experiments were performed to assess the specificity of cCAR-T 

killing HIV-infected cells. To confirm that the killing of target cells depended on HIV 

recognition, we tested unarmed cCAR-T or cCAR-T armed with the B cell-specific 

MicAbody rituximab or the anti-HER2 MicAbody, trastuzumab. No detectable killing of 

HIV-infected CD4 T-cells was observed with these control MicAbodies (Figure 2C left 

panel). Only when an HIV-specific MicAbody was added to the cCAR-T was a reduction in 

the number of HIV-infected, GFP-positive tonsil cells observed (Figure 2C, right panels). 

Infected CD4 T cell number was reduced by about 60% and specific killing was observed 

with all four HIV MicAbodies at doses spanning two orders of magnitude (0.1–10nM). We 

conclude that cCAR-T cells armed with HIV-specific MicAbodies can successfully kill HIV-

infected tonsil cells.

To determine whether in-well toxicity or non-specific cCAR-T toxicity was contributing to 

reducing cell viability, we monitored the non-HIV-infected CD4 T cells (GFP− cells) in each 

well. No decrease in viability of these uninfected CD4 T cells was observed in any of the 

wells (Figures 2A–2C; gray bars, GFP−). We conclude that cCAR-T cells armed with an 

HIV-specific MicAbody selectively kills HIV-1-infected cells without affecting uninfected 

bystander cells. To test a second lymphoid tissue, we performed killing experiments on cells 

derived from the spleens of healthy donors, finding similar results (Figure S3).

In about 50% of AIDS patients, the R5 tropic virus converts to an X4 (CXCR4) tropic virus 

(Schuitemaker et al., 1992; Schuitemaker et al., 2011). We therefore tested the ability of 

cCAR-T cells to kill tonsil-derived CD4 T cells infected with X4-NL4–3, a GFP− tagged 

X4-tropic virus (Levy et al., 2004). We found that cCAR-T killed these cells efficiently and 

selectively when combined with the Env/CD4-binding MicAbodies (3BNC60/117), which 

are known to neutralize both R5-tropic and X4-tropic viruses (Bruel et al., 2016). However, 

when cCAR-T cells were combined with the Env/V3-loop binding MicAbodies, known to 

preferentially neutralize R5-tropic over X4-tropic viruses (Bruel et al., 2016), the killing was 

reduced (Figure 2D and Figure S5). We conclude that the type of bNAb selected for 

MicAbody construction is critical in the context of X4-tropic viral infections. These 

observations support the importance of being able to multiplex the arming of the cCAR-T 

cells.

Laboratory-adapted HIV strains, such as R5-BaL and X4-NL4–3 used above, are less 

predictive of in vivo outcomes than strains mediating transmission between HIV-positive 

individuals, also known as Transmitted/Founder (T/F) viruses, which consistently display 

CCR5 co-receptor tropism (Keele et al., 2008; Li and Chen, 2019; Parrish et al., 2013; 

Schwartz et al., 2018). To test our system in a more clinically relevant setting, we infected 

primary cells with a T/F virus 109FPB4 (F4) (Cavrois et al., 2017; Neidleman et al., 2017). 

Our previous experiments with the R5-BaL and X4-NL4–3 strains used MicAbodies in the 

nanomolar (nM) concentration range, all of which induced similar levels of killing (Figure 

2). To identify the minimum amount of MicAbody sufficient to trigger CAR-T mediated 

killing, we assessed the killing of T/F infected cells in the presence of picomolar (pM) 

Herzig et al. Page 7

Cell. Author manuscript; available in PMC 2020 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MicAbody concentrations. After 48 hours of incubation, dose-dependent killing of up to 

65% of infected cells was observed with three of the four HIV-specific MicAbodies over a 

10–500pM concentration range (Figure 3A). In the case of the 10–1074-based MicAbody, 

no detectable killing of T/F HIV-infected cells occurred at any of the MicAbody 

concentrations. These results show that the cCAR-T cell platform can recognize and 

efficiently kill primary cells infected with both laboratory-adapted and T/F HIV strains, but 

that depending on which virus the CD4 T-cell harbors, killing may vary depending on the 

specificity of the selected MicAbody. Moreover, our results show that picomolar MicAbody 

concentrations are sufficient to trigger robust killing of infected cells by the cCAR-T cell 

platform.

cCAR-T cell-mediated killing correlates with HIV gene expression levels in target cells

Although highly specific, cCAR-T cell-mediated killing consistently plateaued at ~65% 

(Figure 3A). We sought to determine whether this plateau reflects a differential sensitivity of 

the infected cells to cCAR-T cells, possibly correlating with the levels of viral gene 

expression occurring in the infected cells. In these studies, cells were infected with HIV 

strains that express GFP as a multiply-spliced RNA under control of the viral LTR (Kutsch 

et al., 2002; Neidleman et al., 2017). In these viruses, GFP-IRES-Nef is inserted in the Nef 

coding region. Nef is expressed at physiological levels (Neidleman et al., 2017) and 

mediates CD4 downregulation of infected cells (Figure S2 panel C). Therefore, GFP 

expression is a quantitative marker of overall HIV gene expression. To assess a potential 

correlation between levels of HIV expression and sensitivity to cCAR-T killing, we gated 

HIV-infected cells based on their GFP fluorescence level (low or high) and tested their 

response to cCAR-T killing. While CD4 T cells with high GFP levels were readily 

eliminated by the cCAR-T system (killing efficiency up to ~90%; Figure 3B), many CD4 T 

cells with lower GFP levels survived exposure to the cCAR-T cells (killing efficiencies of 

~30%; Figure 3C). We conclude that killing is correlated with the amount of HIV gene 

products the infected cells produce and most likely with the amount of Env protein they 

express on their cell surface. This is consistent with the observation that targeted antigen 

density is a major determinant in CAR-T cell efficacy (Walker et al., 2017; Watanabe et al., 

2015).

Single-cell time-lapse microscopy shows a delay in bNAb-armed cCAR-T cell killing 
kinetics.

The convertibleCAR-T system requires a “three-body collision”: the cCAR-T cell, the 

MicAbody and the infected cell to create the cytolytic immunologic synapse. In order to 

monitor the killing kinetics, we used time-lapse microscopy. We incubated 3×106 primary 

cells infected with HIV-F4 with a mix of the four HIV specific MicAbodies in the presence 

of 3×105 cCAR-T cells on a μ-Dish slide. We then monitored the number of HIV-positive 

cells every 30 minutes for 48 hours. As observed in our end-point experiments (Figure 3 and 

Figure S4), cCAR-T cells killed 90% of the HIV-infected cells when the pool of MicAbodies 

was added (Figure 4). Interestingly, the killing did not commence until 10–15 hours after the 

initiation of the cultures. These findings suggest a requisite period of time for the effector 

cells to arm with MicAbodies and successfully collide with their target cells.
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Multiplexing two MicAbody types results in specific killing of two different types of target 
cells

HIV-1 has proven to evade every single-drug or single-antibody therapy, regardless of their 

level of initial efficacy. Thus, the use of more than one bNAb-based MicAbody will likely 

prevent the emergence of resistant viruses over time. Since the convertibleCAR-T system is 

a two-part modular system, one of its advantages is the ability to multiplex with different 

MicAbodies, thus attacking the virus-infected cells with more than one type of bNAb. To 

confirm effective multiplexing with cCAR-T, we armed these cells with two different types 

of MicAbodies, one specific for B cells (rituximab) and the other corresponding to a mix of 

HIV-specific MicAbodies and assessed their killing properties in cultures containing a 

mixture of HIV-1-infected primary cells and ~10% B cells. The killing of B cells was not 

diminished by co-arming with HIV-specific MicAbodies (Figure 5A). Similarly, the 

presence of the B cell-specific MicAbody did not significantly impair killing of HIV-

infected cells (Figure 5B). We conclude that multiplexing MicAbodies is possible with the 

cCAR-T system.

Ex vivo cCAR-T cell killing of reactivated reservoir cells present in the blood of HIV-
infected individuals on long term ART

We next turned to the effects of cCAR-T cells in the context of the latent HIV reservoir. In 

the prior in vitro primary-cell-based experiments, we used cells from the lymphoid tissues of 

healthy individuals productively infected ex-vivo with the various HIV strains. Since CD4 T 

cells from blood can only be productively infected after activation (Munoz-Arias et al., 

2015), we compared cCAR-T cell killing of tonsil-derived and activated blood-derived CD4 

T cells, and found that both were killed with a similar efficiency (Figure S4). To investigate 

potential effects of cCAR-T on the latent HIV reservoir, CD4 T cells were isolated from the 

blood of six HIV-positive individuals on suppressive ART(characteristics of the study 

participants are shown in Table S3). These cells were treated with a strong LRA (PMA + 

Ionomycin) and then cultured with cCAR-T cells armed with HIV MicAbodies at two 

concentrations. Since the specific virus genotype was not known, we used a mixture of the 

four HIV-specific MicAbodies. Two days after co-culture, RNA was extracted from the cells 

(caRNA) and HIV-RNA levels were assayed by Droplet Digital PCR (ddPCR) using an HIV-

specific probe (Shan et al., 2013) (Figure 6A). We observed a significant reduction in the 

amount of HIV RNA in cultures including cCAR-T cells and MicAbodies, but not in 

cultures including MicAbodies and untransduced parental CD8 T cells or unarmed CAR-T 

cells (Figure 6B). Our results, showing superior killing with lower MicAbody concentration 

(0.1nM), compared to 1nM, are probably the result of the pro-zone effect reducing killing 

efficiency with higher antibody concentrations (Vaidya et al., 2017). These results indicate 

that it is possible to attack the inducible latent reservoir with bNAb-armed cCAR-T cells. 

The use of this ex vivo system provides a proof-of-concept validation for the ability of 

cCAR-T cells armed with HIV specific MicAbodies to reduce the reactivated latent 

reservoir.
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Discussion

A modular CAR-T cell platform armed with HIV bNAbs that recognizes and kills HIV-
infected cells

Many attempts to cure HIV are focusing on “shock and kill” with the goal of activating virus 

expression in the latent reservoir followed by immune clearance of the reservoir cells, all 

performed under the cover of ART to prevent viral spread. Results with the first generation 

of LRAs, including histone deacetylase inhibitors (HDACi) and Protein kinase C (PKC) 

activators are disappointing due mainly to a lack of potency and/or unacceptable toxicity 

(Prins et al., 1999; Rasmussen and Lewin, 2016). The fact that CTLs present in HIV-infected 

individuals exhibit an exhausted phenotype and diminished killing capacity is also of 

concern as is the potential presence of CTL-resistant viruses within the latent reservoir. A 

delayed start of ART certainly sets the stage for the emergence of such resistance.

To ensure highly effective killing of reactivated reservoir cells, we developed and tested a 

platform, convertibleCAR-T cells, based on the binding of a mutant NKG2D receptor to an 

orthogonal MIC ligand fused to broadly neutralizing HIV antibodies (MicAbodies). The 

exclusive interaction engineered into this ligand-receptor pair ensures that on its own each 

component is functionally inert as was shown both in vitro and in vivo. As a consequence, 

neither the cCAR-T cells nor the MicAbody are able to kill target cells until they have bound 

to each other and the MicAbody has specifically engaged its epitope on an HIV-infected 

target cell to create an immunologic synapse. This system robustly incorporates many 

features that not only provide targeting flexibility and specificity but also enhanced 

controllability and safety. During HIV infection, soluble ligands (e.g. MICA and ULBP) for 

the natural NKG2D receptor are expressed but cleaved from the surface of infected cells, 

thereby compromising the ability of CTL and NK cells to kill infected cells (Matusali et al., 

2013). The mutation of the MIC ligand and NKG2D receptor such that each is unable to 

bind their natural substrates circumvents this problem. Additionally, the MicAbody has been 

rendered ADCC-deficient with mutations in the Fc region that disrupt the binding to Fcγ 
receptors present on NK cells (Shields et al., 2001). In summary, these modular features 

ensure that the cCAR-T cells and the MicAbodies are unable to kill target cells until they are 

bound to each other and the MicAbodies have specifically contacted an HIV-infected target 

cell to create the lethal immunologic synapse.

We are able to infect different lymphoid tissues and blood CD4 T cells with a variety of HIV 

strains and then to reduce the number of productively infected cells using cCAR-T cells 

armed with an HIV-specific MicAbody. Importantly, we can also use these cCAR-T cells to 

attack latent reservoir cells reactivated ex vivo, removing approximately 60% of the 

inducible reservoir within 48 hours. Furthermore, killing by cCAR-T is specific for infected 

cells, and occurs only when an HIV-specific MicAbody is present. Although killing 

efficiency correlates with viral protein expression, we predict that levels of Env present in 
vivo will be sufficient for recognition by the cCAR-T platform since these reactivated 

reservoir cells where shown to be bound to and be enriched using the same HIV bNAbs we 

are using (Cohn et al., 2018).
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Up to 90% of primary human cells infected at high levels with HIV can be killed using the 

cCAR-T cell system. Killing is dose-dependent and requires the addition of only picomolar 

quantities of MicAbodies. This killing rate is similar or superior to that previously reported 

for in vitro CAR-T killing of HIV-infected cells including: 1) testing of CD4-based CAR-T 

on U1 human latent cell-line showing a reduction of 30–60% of reactivated cells (Zhen et 

al., 2017); 2) a CD3ζ based CAR-T with scFv derived PGT128 (which binds the V3 loop, 

like PGT121 in present study) showing killing of 43% of infected activated peripheral blood 

mononuclear cells (PBMCs) (Hale et al., 2017) and 3) testing of VRCO1 scFv-based CAR-T 

killing showing that more than 50% of CD4 T cells from three HIV-positive individuals were 

killed but this response required a 12-day incubation and the addition of large numbers of 

CAR-T cells (Liu et al., 2016). In the future, it will be interesting to compare directly the 

killing efficiencies of these various types of HIV-specific CAR-T cell platforms.

The cCAR-T cell platform increases the flexibility and safety

Treatment of HIV-infected individuals with a single anti-retroviral drug almost invariably 

leads to the development of drug resistance, an observation that prompted the introduction of 

combination antiviral therapy. Administering a single type of CAR-T cell (Sotillo et al., 

2015) or a single bNAb (Caskey et al., 2017) could also select for emergence of resistant 

virus and loss of therapeutic benefit. To overcome this limitation, recent clinical trials with 

bNAb-based therapies are combining two strong bNAbs (10–1074 and 3BNC117) (Bar-On 

et al., 2018). However, classic CAR-T cells, as currently implemented, carry only a single 

anti-HIV scFv domain. Deploying a second targeting domain requires designing a second 

CAR-T cell, which is cumbersome and costly. However, in the convertibleCAR-T platform, 

multiplexing with two or more HIV-specific MicAbodies is easily accomplished. Indeed, our 

studies indicate that cCAR-T cells can be multiplexed with different antibodies promoting 

an effective attack on two different types of cells simultaneously.

cCAR-T containing the 10–1074 bNAb were unable to kill F4-infected cells but efficiently 

killed R5-BaL-infected cells. Our HIV-specific CAR-T platform is based on broadly 

neutralizing antibodies that can recognize and neutralize hundreds of strains, although a 

single antibody falls short of recognizing all strains (Eroshkin et al., 2014). This observation 

again strongly argues for arming cCAR-T cells with more than one bNAb-based MicAbody 

to increase the breadth of killing. The general ability to multiplex antibodies in the cCAR-T 

platform provides for great flexibility and an increased level of effectiveness. Additionally, 

the picomolar quantities needed for cytolysis supports the possibility of even higher levels of 

multiplexing if needed, leading to the possibility of implementing a single, defined cocktail 

of MicAbodies to achieve extremely broad coverage using a single CAR construct.

Another advantage of the cCAR-T system is that as a two-part system, it can be introduced 

into patients in an inert state. Only after the administration of the specific MicAbody or 

MicAbody mix will the cCAR-T start killing. This feature should allow clinicians to control 

both the dose and timing of administered HIV-specific MicAbody. By contrast, classical 

CAR-T cells are “on” all the time. Using a platform that is inert unless both parts are present 

promises to enhance safety and avoid some of the problems limiting the applicability of the 

current CAR-T systems in oncology, including increased cytokine production and CAR-T 
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killing of unintended healthy host cells expressing low levels of the tumor target (Fedorov et 

al., 2013; Kochenderfer et al., 2012; Ma et al., 2019).

To further increase the safety of cCAR-T cells, one could envision specifically activating or 

suppressing the cCAR-T cells in vivo, taking advantage of their exclusive ligand-receptor 

interaction. In theory, any molecule fused to the mutated MIC-ligand binding domain will 

deliver the heterologous molecule specifically to its cognate NKG2D partner on cCAR-T 

cells. An example would be linking interleukins to the MIC ligand to preferentially promote 

cCAR-T growth and survival (McGill et al., 2010; Richer et al., 2015; Younes et al., 2016). 

Of note, CAR-T cells can persist in vivo in HIV-infected individuals for more than ten years 

after administration (Scholler et al., 2012). If cCAR-T cells prove equally durable, they 

could become a silent reservoir that clinicians could tap into when the need arises by simply 

delivering exclusively to the cCAR-T cells activation and proliferation signals along with the 

condition-specific MicAbody. Similarly, it should be possible to deliver specific suppressing 

molecules to rapidly or transiently silence the cCAR-T cells in case of adverse side effects, 

or deliver a kill signal if rapid termination of cCAR-T activity is desired.

Developing affordable and universal CAR-T cells

In spite of the great therapeutic potential of cCAR-T cells, its application in the clinic still 

faces important hurdles. The first one is the cost of such a treatment for a single patient. 

Whereas producing the MicAbodies is affordable and easily scalable, removing cells from a 

patient followed by isolation, expansion and transduction of these autologous cells with the 

mutated NKG2D-CAR receptor followed by their expansion and reinfusion is both 

expensive and requires a high degree of technical expertise (Sarkar et al., 2018). In addition, 

the long process from bedside to laboratory and then back to bedside makes deploying the 

current cCAR-T treatment difficult to envision in developing countries, many of which carry 

crippling burdens of HIV disease (Kharsany and Karim, 2016; Wang et al., 2016).

Several efforts are underway to reduce the cost of CAR-T therapies and make it more 

scalable. One high priority is to create allogeneic “universal donor” cells (Ruella and 

Kenderian, 2017; Torikai and Cooper, 2016) to provide off-the-shelf cells that can be used 

for all patients (Graham et al., 2018). To achieve such universal donor cells, the T-cell 

receptor (TCR) complex can be disabled to prevent graft-versus-host disease (Yang et al., 

2015) and host versus graft elimination can be blocked by mutations within β2-

microglobulin that prevents MHC-I surface expression (Ren et al., 2017). Modern 

techniques for cell editing, including CRISPR, transcription activator-like effector nuclease 

(Talen) and Zinc finger nucleases (ZFNs), offer potential ways to knock out those key cell-

surface receptors responsible for graft versus host and host versus graft reactions (Osborn et 

al., 2016; Ren et al., 2017). Another promising approach involves the use of induced 

pluripotent stem cells (iPSCs) (Takahashi et al., 2007) as the source of the CAR-T cells. In 

this method, iPSCs are engineered to express the CAR prior to being differentiated into T 

cells (Themeli et al., 2013). These cells will act as effector cells in vivo, as has already been 

observed for hematopoietic stem/progenitor cells (HSPCs), which go through T cell 

development and selection in vivo (Zhen et al., 2017). It is now possible to convert iPSCs to 

various immune cells including T cells that contain chimeric antigen receptors (Lee, 2019; 
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Themeli et al., 2013). Such cells can be engineered to be HLA-compatible for large 

populations thus dramatically reducing cost and increasing scalability of the CAR-T 

approach (Xu et al., 2019). Such universal donor cells could be readily adapted to the cCAR-

T platform in view of its simplicity and modular design.

The urgent need for safe and effective LRAs

The other important hurdle to overcome before cCAR-T cells can be effectively tested in 

HIV-infected patients is the lack of safe and effective LRAs. To use cCAR-T in the kill 

phase of a “shock and kill” strategy, an effective shock must be delivered to render the 

latently infected cells visible to the immune system. The most commonly used LRAs 

include HDACi (Manson McManamy et al., 2014; Rasmussen et al., 2013) and PKC or 

PTEFb activators (Banerjee et al., 2012; Li et al., 2013; Mehla et al., 2010), which trigger 

latency activation in CD4 T cells. Unfortunately, these drugs showed either high toxicity or 

low efficiency in vivo (Prins et al., 1999; Rasmussen and Lewin, 2016). Furthermore, several 

types of LRAs, such as HDACi and PKC activators, exert suppressive effects on the cytolytic 

function of CTLs and by analogy would probably suppress activity of cCAR-T as well 

(Walker-Sperling et al., 2016). Nonetheless, approaches to improve shocking strategies, by 

lowering toxicity of some LRAs or administrating a weak LRA in multiple dosing, have 

shown some promise (Ke et al., 2018). Recently, combining new types of LRAs including 

toll-like receptor 7 (TLR-7) agonists (Jiang et al., 2018) and the PGT121 broadly 

neutralizing HIV antibody in SHIV-infected rhesus macaques resulted in prolonged times to 

rebound or in some cases no rebound (Borducchi et al., 2018). Of note, the TLR-7 agonist 

appears able to activate HIV-specific CTLs (Tsai et al., 2017), making it a preferable LRA 

for cCAR-T applications. Another emerging type of LRAs is the second mitochondria-

derived activator of caspases (SMAC) mimetics that act through activation of the non-

canonical NF-κB pathway and show promising LRA capabilities without the pleiotropic 

effect seen by other LRAs (Pache et al., 2015; Sampey et al., 2018). One apparent negative 

feature of all of these suggested LRAs is the small fractional response they elicit (Battivelli 

et al., 2018). In order to reach a robust level of reactivation, repetitive administration of the 

LRAs will be required. Using a controllable platform such as the cCAR-T could ensure high 

activity of the killer cells at the right time, and inert circulating killer cells between LRA and 

MicAbody administrations.

cCAR-T cells as a component of a reduce-and-control strategy

Absent a means for the safe and complete eradication of HIV in infected individuals, a 

reduce-and-control strategy seems to be an attractive option. This strategy involves both a 

reduction in the size of the reservoir and the introduction of an immune intervention that 

allows the infected host to control the virus despite the removal of ART. In its purest form, 

this strategy would imitate the natural, but rare state found in post-treatment controllers 

(PTCs). One of the hallmarks of post-treatment control is the presence of a small reservoir. 

A smaller reservoir size has been shown to be a good predictor of the ability of HIV-positive 

individuals to become PTCs (Saez-Cirion et al., 2013). Our ex vivo results show that we can 

reduce the reactivated reservoir size by 50% over the course of a two-day experiment. 

Introducing cCAR-T cells and refueling their killing activity with multiple, spaced doses of 

MicAbodies might provide a powerful way to prevent reservoir expansion in vivo, while 
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maintaining the patients on ART would prevent the spread of infection by the reactivated 

cells. Future studies will concentrate on developing MicAbodies with different HIV-specific 

bNAbs, testing combinations of MicAbodies and evaluating the cCAR-T platform in vivo. 

Studies are being carried out now to test cCAR-T cells and MicAbodies in mice, and future 

experiments are envisioned in experimentally infected macaques prior to moving to human 

testing. In summary, the convertibleCAR-T cell system draws together exciting advances in 

both broadly neutralizing HIV antibody biology and CAR-T cell technology, to create a 

promising killing platform for attacking the latent HIV reservoir.

STAR ★ Methods

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for reagents should be directed to and will be fulfilled by 

Dr. Warner C. Greene (warner.greene@gladstone.ucsf.edu). Plasmid sequences for the 

convertibleCAR-T construct (which includes the mutant NKG2D receptor detailed in this 

manuscript) and the bNAb-MicAbodies (including the orthogonal ULBP2 variant) will be 

made available upon request. Purified MicAbodies can be generated upon execution of a 

material transfer agreement (MTA) with inquiries directed to Dr. Kaman Kim 

(kaman@xyphosinc.com).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human samples—Blood from HIV-infected individuals were obtained from volunteers 

participating in the SCOPE cohort (Hunt et al., 2003). Participants gave their informed 

consents as part of the SCOPE cohort. Specific characteristics of these participants and their 

ART regimens are summarized in Table S3.

Mice—Six-week old female NSG mice (Jackson Laboratories, Bar Harbor, ME) were 

housed and studied in strict accordance with the Institutional Animal Care and Use 

Committee (IACUC). Studies were performed by ProMab Biotechnologies, Inc. (Richmond, 

CA).

Primary-cell cultures—Human healthy tonsils and spleen were obtained from the 

Cooperative Human Tissue Network (CHTN, https://www.chtn.org). Human lymphoid 

aggregate culture (HLAC) prepared from tonsil or spleen were culture in HLAC medium: 

RPMI supplemented with 15% heat-inactivated fetal bovine serum (FBS), 100 μg/ml 

gentamicin, 200 μg/ml ampicillin, 1 mM sodium pyruvate, 1% nonessential amino acids, 2 

mM L-glutamine, and 1% fungizone, at 37°C in 5% CO2 incubator.

Concentrated white blood cell preparations from healthy volunteers were obtained from 

Vitalant (www.vitalant.org) or from STEMCELL Technologies. PBMCs were cultured in 

RPMI supplemented with 10% FBS, 1000 U/ml Penicillin and 1 mg/ml Streptomycin and 2 

mM L-glutamine, at 37°C in 5% CO2. cCAR-T and parental CD8 cells were cultured in T 

cell medium (X-Vivo 15 media, 5% human AB serum; 10 mM neutralized N-acetyl-

LCysteine, 0.1% 2-mercaptoethanol, supplemented with 40U/ml IL-2). No personal 

identifiers were provided for either the uninfected lymphoid tissues or blood samples.
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Cell line—Female HEK293T cells were transfected with various molecular clones of HIV 

to produce high titer virus preparations. Female Expi293™ cells were used for protein 

expression. Cells were cultured in DMEM supplemented with 10% FBS, 1000 U/ml 

Penicillin and 1 mg/ml Streptomycin and 2 mM L-glutamine, at 37°C in 5% CO2.

Virus strains—HIV molecular clones (pNL4–3-GFP, pBaL-GFP, and pF4-GFP) were 

purified from E.coli and used to transfect HEK293T cells.

METHOD DETAILS

Protein Expression and Purification—The orthogonal MIC variant was cloned as a C-

terminal fusion to the human kappa light-chain via an APTSSSGGGGS linker. Additionally, 

D265A/N297A (Kabat numbering) mutations were introduced into the CH2 domain of the 

heavy chain of all antibody and MicAbody clones to reduce binding to all FcγR receptors in 

order to eliminate antibody-dependent cell cytotoxicity (ADCC) function. Cognate heavy- 

and light-chains for each bNAb clone were generated by swapping out the VH and VL 

domains (Table S2). Heavy- and light-chain plasmid DNAs (in the mammalian expression 

vector pD2610-V12, ATUM) for a given antibody clone were co-transfected into Expi293™ 

cells and purified by Protein A resin.

cCAR-T production—Leukopaks from healthy anonymous donors (STEMCELL 

Technologies) were used for primary T cell isolation. After a brief rinse in PBS + 2% FBS, 

cells were resuspended at 5×107 cells/ml in PBS + 2% FBS and CD8+ cells were enriched 

by negative selection (STEMCELL Technologies Human CD8 T Cell Isolation Kit). 50 μl of 

isolation cocktail was added per ml of cells and, after a 5 minute room temperature 

incubation, 50 μl of RapidSpheres™ (Stemcell) were added per ml of cells and total volume 

adjusted with PBS (to 35 ml total for each 21 ml of cells). Cells were isolated by applying an 

EasySep™ magnet for 10 min followed by transfer of buffer containing negatively enriched 

cells to new tubes for a second round of purification. Cells were then resuspended, counted, 

and cryopreserved at 10−15×106 cells/cryovial.

The extracellular domain of the mutant NKG2D was cloned with the CD8α signal sequence, 

hinge and transmembrane domains from CD8α, and the intracellular signaling domains 

from 4–1BB and CD3ζ into the pHR-PGK transfer plasmid for second generation Pantropic 

VSV-G pseudotyped lentivirus production along with packaging plasmids pCMVdR8.91 and 

pMD2.G as previously described (Roybal et al., 2016). For each batch of lentivirus 

produced, the three plasmids (pHR-PGK, 7.2 μg; pCMVdR8.91, 12.9 μg; and pMD2.G, 2.5 

μg) were combined with 720 μl Opti-MEM™ (Fisher) then mixed with Fugene-HD 

(Promega) before adding to 6×106 Lenti-X 293T cells (Takara Bio) that had been seeded one 

day prior in a 10 cm dish. Two days post-transfection, supernatants were collected by 

centrifugation and passed through 0.22 μm filters. 5X concentrated PEG-6000 and NaCl are 

added to achieve final concentrations of 8.5% PEG-6000 (Hampton Research #HR2–533) 

and 0.3 M NaCl, incubated on ice for two hours, then spun at 3500 rpm at 4°C for 20 

minutes. Concentrated viral particles were resuspended in 0.01 volume of PBS, and stored 

frozen at −80°C. Prior to lentiviral transduction, one vial of cryopreserved CD8 T cells was 

thawed and diluted into 10 ml of T cell medium “TCM” (X-Vivo 15 media, Lonza; 5% 
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human AB serum, Corning; 10 mM neutralized N-acetyl-L-Cysteine, Sigma-Aldrich; 1X 2-

mercaptoethanol, Thermo Fisher; 30 IU/ml human IL-2, R&D Systems). Cells were 

centrifuged at 400 × g for 5 minutes, resuspended in 10 ml TCM, adjusted to 1×106 cells/ml, 

1 ml dispensed into each well of a 24-well plate, and allowed to rest overnight. Cells were 

then activated for 24 hours with Dynabeads™ Human T-Activator CD3/CD28 (Thermo 

Fisher) per manufacturer’s protocol. Concentrated lentiviral particles (50 μl) were added per 

well, cells incubated overnight, then transferred to T25 flasks with an added 6 ml TCM. 

After three days of expansion, Dynabeads were removed and cells back-diluted to 5×105 

cells/ml with daily monitoring to ensure they did not exceed 4×106 cells/ml. Transduction 

efficiency was assessed by flow cytometry using a Rituximab-MicAbody that had been 

directly conjugated to Alexa Fluor 647 (Alexa Fluor Protein Labeling Kit, Thermo Fisher) 

per manufacturer’s protocol. Transduction efficiencies were above 70% for all cCAR-T 

tested.

Spinning disc time-lapse Microscopy—3×106 tonsil-derived cells were seeded in a 4-

well imaging chamber and placed under the microscope for subsequent imaging. Imaging 

was performed using an Axiovert inverted fluorescence microscope (Carl Zeiss), equipped 

with a Yokogawa spinning disk, a CoolSNAP HQ2 14-bit camera (PhotoMetrics), and laser 

lines for 488 nm (40% laser power, 400-ms excitation) and 561 nm (40% laser power, 200-

ms excitation). To facilitate time-lapse imaging, the microscope has a programmable stage 

with definite focus and a stage enclosure that maintains samples at 37 °C and 5% CO2 with 

humidity. Images were captured every 30 minutes for 48 hours. For each position a six-by-

six X-Y grid was sampled. The objective used was 20× air, 1.3 N.A. Analysis was done 

using ImageJ by applying the following steps: First, a threshold for a positive GFP signal 

was set to 1000 arbitrary units to create a binary mask to distinguish HIV infected cells at a 

size range of 100–400 pixels from background fluorescence. Total area of infected cells 

(GFP positive area) was analyzed at each time point and normalized to the area of infected 

cells at the first two hours.

Culture and infection of primary cells—Spleen and tonsil tissues were minced into 

small pieces, then passed through a 70-μm cell strainer into FACS buffer (PBS supplemented 

with 2% FCS and 2% EDTA). The cell suspensions were then passed through 40-μm cell 

strainer to prepare a single cell culture. Preprocessed HLAC cells or blood, were mounted on 

top of Ficoll-Paque and centrifuged at 400 g for 30 minutes. The middle mononuclear cell 

layer was washed twice with FACS buffer and cells were resuspended in HLAC medium. 

Prior to HIV infection, PBMC cells were activated by 100 IU/ml IL-2 in the presence of 10 

μg/ml Phytohemagglutinin (PHA) for 3 days.

HIV-1 infection—HEK293T cells were transfected using Fugene-HD in 24 well flat- 

bottom-plates with plasmid DNA (100 ng) corresponding to molecular clones of HIV-1 

expressing a GFP reporter and Nef using an internal ribosomal entry site (Neidleman et al., 

2017). The medium was replaced after 16 hours, and cells were tested for GFP expression. 

HLAC/PBMC were over-laid on the adherent GFP-expressing HEK293T cells for 24 hours. 

Suspension HLAC/PBMC cells were separated from the adherent cells after the 24-hour 
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incubation, and spreading infection was allowed to proceed until 4–10% of the HLAC CD4 

T cells were infected as determined by GFP epifluorescence measured by flow cytometry.

Reactivation of cells from HIV+ individuals—Leukopacks from HIV positive 

individuals on ART were processed using Ficoll-Paque gradients similar to that for healthy 

donor blood. CD4 T-cells were enriched by negative depletion with an EasySep Human 

CD4+ T-Cell Enrichment Kit (STEMCELL). Subsequently cells were activated with 50 

ng/ml Phorbol 12-myristate 13-acetate (PMA) and 1 μM ionomycin for 3 days to induce 

reactivation of latent proviruses within reservoir cells.

cCAR-T cell killing assay—Primary target cells were cultured until the level of infection 

rose above 4% in a Live/CD3+/CD8− gate as determined by FACS analysis. One million 

target cells (HLAC or PBMC) with ~104 infected cells were plated in a 96 V-bottom plate. 

105 cCAR-T cells or donor-matched untransduced CD8 cells were incubated with different 

concentrations or types of MicAbodies for 5 minutes and then added to the target cells for 48 

hours incubation. All experiments were performed in the presence of 5μM saquinavir to 

prevent spreading infection. For reactivated CD4 T-cells from HIV-positive individuals, 

5×106 CD4 T-cells were plated in the presence of 5×105 cCAR-T cells or matched 

untransduced CD8 T-cells in the presence or absence of a mix of the four HIV-specific 

MicAbodies. Cultures were incubated for 48 hours.

Measurement of cell-associated RNA by ddPCR—Two days after co-culture of 

reactivated CD4 T-cells from HIV-positive individuals with cCAR-T cells and MicAbody, 

cells were collected and centrifuged for 10 minutes and RLT lysis buffer (Qiagen) was 

immediately added to cell pellets. Cell associate RNA (caRNA) was extracted with the 

RNeasy kit (Qiagen) following manufacturer’s protocol. Extracted RNA was reverse 

transcribed and pre-amplified using previously described HIV-specific primers (Laird et al., 

2015) (see also Key Resources Table) using the Superscript III One-Step RT-PCR system 

(Life Technologies) with 10μl purified RNA in 25μl final volume. RT-PCR was carried out 

using the following steps: reverse transcription at 50°C for 30 minutes, denaturation at 95°C 

for 2 minutes, 10 cycles of amplification (94°C 15 seconds, 55°C 30 seconds, 68°C 30 

seconds) and a final amplification step at 68°C for 5 minutes on a ThermoFisher PCR 

instrument. Subsequently, ddPCR was applied to quantify pre-amplified cDNA. For ddPCR 

droplet generation, reactions were loaded into the Bio-Rad QX-100 emulsification device 

following the manufacturer’s instructions. Samples were transferred to a 96-well reaction 

plate and sealed with a pre-heated Eppendorf 96- well heat sealer (Bio-Rad). Finally, 

samples were amplified on a BioRad C1000 Thermocycler and analyzed on BioRad QX100 

ddPCR Reader using QuantaSoft Software (Bio-Rad). Each 25μl ddPCR mix comprised the 

ddPCR Probe Supermix (no dUTP), 900nM primers, 250nM probe (Laird et al., 2015), and 

5μl cDNA. The following conditions were used: 10 minutes at 95°C, and 40 amplification 

cycles (30 seconds denaturation at 94°C followed by 59.4°C extension for 60 seconds) and a 

final 10 minutes at 98°C.

ELISA binding assay—The extracellular domain of wild-type NKG2D or mutant 

NKG2D was fused to the C-terminus of human IgG1-Fc, DNA constructs for Fc-NKG2D 
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molecules were expressed in Expi293™ cells, secreted protein purified by Protein-A affinity 

chromatography and eluted material fractionated by size-exclusion chromatography (SEC) 

on an ÄKTA Pure system using Superdex 200 columns. For ELISA binding assays, 1 μg/mL 

of Fc-NKG2D reagents were coated onto microtiter plates and a dilution series of MicAbody 

introduced followed by detection with HRP-conjugated mouse-anti-human kappa chain 

antibody then developed with 1-Step Ultra TMB ELISA.

Flow cytometry—Equal volumes from all treatment wells were spun down and the cells 

were stained with fluorochrome-conjugated antibodies (see Key Resources Table). Fixable 

Viability Kit Zombie Violet (BioLegend) was used to exclude dead cells while 

simultaneously staining for surface markers (CD3/CD4/CD8/CD19). AccuCount counting 

beads (Spherotech) were added after the last wash to control for sampling errors and cells 

were fixed in 1% paraformaldehyde. Data were acquired on LSR-II (BD Bioscience), and 

FlowJo software was used for analysis (Treestar). Killing of HIV-infected cells was assessed 

by measuring the reduction in the number of GFP+ cells relative to control (see Figure S2 

for gating strategy).

In vivo assay—Female NSG mice were implanted with 1×106 Raji-Luc cells 

subcutaneously and reached tumor volumes of <100 mm3 on day 12, at which point 20 μg of 

Rituximab-MicAbody were injected intraperitoneally in a 100 μl volume and repeated every 

two days for a total of six doses. 1×107 CAR-T cells, comprised of a 1:1 absolute CD4:CD8 

ratio, was injected intravenously on day 13 in a 100 μl volume. Untreated animals received 

PBS. Tumor volumes were regularly monitored by caliper measurements and weights were 

also tracked to monitor overall health of the animals. n=3 mice per cohort.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details of individual experiments, including number of independent donors, mean 

values, standard error of the mean (SEM), and p values derived from two-tailed t-tests are 

described in the figure legends and specified in the figures. Statistical analyses were 

performed using Microsoft Excel software. p values ≤ 0.05 were considered statistically 

significant. For comparison between two treatments, a Student’s two-tailed t-test was used. 

For the in vivo mice assays a two-way ANOVA test was used to assess statistically 

significance of the results (p values ≤ 0.05). Asterisk coding in figures is as follows: * p ≤ 

0.05; ** p ≤ 0.01; *** p ≤ 0.001. Data are presented as means with error bars indicating 

SEM unless otherwise stated.

DATA AND CODE AVAILABILITY

This study did not generate datasets.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Inert MICA-tagged Ab and convertibleCAR-T cells (cCAR-T) only kill when 

combined

• cCAR-T decreases tumor size in a mouse lymphoma model as efficiently as 

scFv CAR-T

• cCAR-T kills HIV-infected primary cells with high efficiency and specificity

• cCAR-T reduces the inducible reservoir in blood of HIV+ individuals by 50% 

in 48h
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Figure 1: Construction of MicAbody/ConvertibleCAR-T Platform.
(A) The MIC/ULBP-ligand family are natural ligands for NKG2D receptors present on NK 

cells and CTLs. NKG2D binds to the α1–α2 part of the ligands (B) Protein engineering of 

the α1–α2 ligand domain and NKG2D receptor to create a cognate ligand-receptor pair that 

no longer recognizes the natural ligand or receptor. (C) Protein engineering of bispecific 

antibody based on bNAb and mutated α1–α2 on the antibody (MicAbody), and a mutated 

NKG2D CAR fused to 4–1BB and CD3ζ as the signaling domains. (D) Construction of 

cCAR-T cell based on the mutated NKG2D. The convertibleCAR system allows specific 

binding of MicAbody to the mutated NKG2D-based CAR expressed on the T-cell. (E) 

Conventional scFv-based CAR-T cell. (F) ELISA binding assay of MicAbody to WT 

NKG2D receptor or to the mutated form. AU – arbitrary absorbance units. The figure 

represents one of three independent biological experiments yielding similar results. (G) 

Antibodies conjugated to Alexa flour (AF) fluorophore were assessed for selective binding 

of to cCAR-T cell with mutated NKG2D. Blue- MicAbody; Red- parental bNAb; Black-no 

Ab. 10,000 events were acquired and each dot represents number of cells with the same 

MFI. (H) MicAbody binds to HIV/GFP+ cells similarly to the parental bNAb. Red- parental 

bNAb; Blue- MicAbody; Gray- Isotype control. See also Tables S1 and S2. (I) In vivo 
killing by the cCAR-T platform. Comparison of the effectiveness of cCAR-T platform with 

the scFv conventional CAR-T platform in controlling Raji lymphoma cell growth in NSG 

mice. n=3 for each cohort.
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Figure 2: Specific killing of primary CD4 T cells infected with CCR5-tropic HIV by 
convertibleCAR-T combined with HIV Env-specific MicAbodies.
To determine the optimal effector to target cell ratio, one million tonsil derived cells (~1×104 

HIV/GFP-infected target cells) were incubated with a range of cCAR-T effector cells from 

zero (0:1) to 2×105 (20:1) cCAR-T cells: target cells for 48 hours with the mix of four HIV 

Env-specific MicAbodies (Mix). In the absence of cCAR-T cells (0:1), the donor-matched 

untransduced CD8 T cells were present. GFP+ live GFP+/CD3+/CD8− cells were counted to 

assess reduction in target cells (GFP+) and live GFP−/CD3+/CD8− cells were counted to 

assess off target killing. HIV mix concentration was tested with high (0.5nM) (A) or low 

(10pM) (B) concentration of each individual MicAbody in the HIV MicAbody mix. Data 

derived from three independent experiments; mean + SEM. (C) Specific killing of R5 tropic 

HIV-1 (BaL) infected cells or (D) X4 tropic HIV-1 (NL4–3) used to infect tonsil cells 

followed by testing of individual HIV-specific MicAbody for arming of cCAR-T cells. One 

million tonsil derived cells (~1×104 infected cells) were incubated with 1×105 CAR-T cells 
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for 48 hours, in the presence of different concentrations (0.1–10nM) of HIV Env-specific 

MicAbodies. B-cell specific MicAbody (Ritux) and anti-HER2 specific MicAbody (HER2) 

were used as negative control MicAbodies. Results are presented relative to the no cCAR-T 

control. For each individual MicAbody, an internal control of no cCAR-T supplemented 

with the highest MicAbody concentration tested is presented. To assess off target killing or 

generalized in-well toxicity, viability of GFP− CD4 T cells was assessed. This experiment 

was performed four times using cells from independent donors. Data are represented as 

mean + SEM. * = p≤0.05, ** = p≤0.01, *** = p≤0.001 (compared to no cCAR-T presence). 

See also Figures S1–3 and S5.
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Figure 3: Arming cCAR-T cells with HIV Env-specific MicAbodies promotes effective killing of 
target cells infected with F4, a transmitted founder virus.
One million tonsil-derived cells, including approximately 1×104 CD4 T cells infected with 

the F4 transmitted founder virus containing a GFP reporter (F4-GFP), were incubated with 

1×105 CAR-T cells in the presence of different concentrations (10–500pM) of four different 

HIV-specific MicAbodies. After a 48-hour incubation, survival was assessed for the whole 

GFP-expressing population (A) and for cells gated on high (B) and low (C) GFP expression. 

Negative controls for the HIV Env-specific MicAbodies included B cell-specific MicAbody 

(Ritux) or anti-HER2 specific MicAbody (HER2). Additional controls for cCAR-T included 

No cCAR-T or CD8 cells supplemented with the highest MicAbody concentration tested 

(500nM). Ratios depicting fractional survival of GFP positive cells were determined by 

dividing the number of GFP positive cells found in the presence of MicAbody and cCAR-T 

by the GFP positive cells found in the MicAbody-only negative controls. Results are 

cumulated from four independent experiments. Data are represented as mean + SEM. N.S. = 

p > 0.05, * = p≤0.05, ** = p≤0.01, *** = p≤0.001. See also Figure S2.
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Figure 4: Time-lapse microscopy at single-cell resolution shows delay in killing initiation.
(A) Representative time-course of primary cells’ survival after infection with GFP-tagged 

F4-HIV and exposure to cCAR-T cells armed with a mix of the four HIV Env-specific 

MicAbodies (500pM each). Snapshots of 36 fields of view were taken every 30 minutes for 

48 hours for bright field (cell borders), GFP (HIV+ cells) and RFP (cCAR-T cells) in X20 

magnification on a confocal spinning disc microscope. Scale bar, 50 μm. See also Movie S1. 

(B) Quantitative analysis of HIV positive killing assay over 48 hours with cCAR-T and with 

or without MicAbodies. GFP quantification was made by ImageJ after reduction of 

background. The figure represents one of three independent biological experiments yielding 

similar results.
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Figure 5: Multiplexing two MicAbodies targeting different cell types results in specific killing of 
the two different target cells.
(A) Killing of primary B cells and (B) CD4 T cells infected with F4-GFP strain of HIV (by 

cCAR-T complemented with a B cell-specific MicAbody (Ritux) or HIV-specific 

MicAbodies mix. Non-transduced cCAR-T parental CD8 cell, combined with HIV and B-

cell MicAbodies (HIV+Ritux (CD8)) were tested as a negative control for MicAbody effect, 

and single MicAbody controls were tested to show maximal killing effect. Cell killing was 

normalized to the no cCAR-T controls. Data are the average of three independent 

experiments presented as mean + SEM. N.S. = p > 0.05, * = p≤0.05, ** = p≤0.01, *** = 

p≤0.001
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Figure 6: Ex vivo killing of reactivated CD4 T-cells from HIV-1-infected individuals on ART by 
cCAR-T and MicAbodies.
(A) Experimental description. CD4 T-cells from HIV infected individuals on long term ART 

were isolated and activated for 72 hours with 50 ng/ml PMA and 1 μM ionomycin. After 

incubation for two days with cCAR-T cells or matched untransduced CD8 T-cells and a mix 

of four different HIV specific MicAbodies (either 0.1 or 1nM of each MicAbody), cell-

associated RNA (caRNA) was extracted, and HIV RNA was quantitated by Droplet Digital 

PCR (ddPCR). (B) HIV RNA quantification results normalized to HIV RNA levels present 

in CD8 T cells and 1 nM HIV antibody mix. This experiment represents studies of 6 HIV-

infected individual. Data are represented as mean ± SEM. N.S. = p > 0.05, * = p≤0.05, ** = 

p≤0.01 See also Table S3.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

APC/Cy7 anti-human CD3 [SK7] Biolegend 344818

PE/Cy7 anti-human CD4 Biolegend 357410

PE anti-human CD8a [HIT8a] Biolegend 300908

APC anti-human CD19 [HIB19] Biolegend 302212

HRP-conjugated mouse-anti-human kappa chain Abcam ab79115

Bacterial and Virus Strains

NL4–3-GFP HIV-1 Doitsh et al., 2010 N/A

BaL-GFP HIV-1 Neidleman et al., 2017 N/A

F4-GFP HIV-1 Neidleman et al., 2017 N/A

One Shot Stbl3 Chemically Competent E. coli cells Life Technologies C7373–03

Biological Samples

Leukopaks from HIV positive individuals SCOPE cohort See Table S3 for individuals’ 
details

Blood from Healthy donors Vitalant Vitalant.org

Human Peripheral Blood Leuko Pak STEM CELL 70500.1

Tonsil and spleen from healthy donors CHTN chtn.org

Chemicals, Peptides, and Recombinant Proteins

Ionomycin Sigma-Aldrich I0634

Phorbal 12-myristate 13-acetate (PMA) Sigma-Aldrich P1585

Recombinant Human IL-2 Protein R&D Systems 202-IL-010/CF

Fugene HD – Transfection Reagent Promega E312

16% Paraformaldehyde (formaldehyde) aqueous solution Electron Microscopy 
Sciences

15710

EDTA, pH 8.0 Thermo-Fisher AM9260G

RPMI Fisher Scientific MT10040CM

DMEM Fisher Scientific MT10013CM

X-Vivo 15 media Lonza 04–418Q

N-acetyl-L-Cysteine Sigma-Aldrich A9165

Gibco™ 2-Mercaptoethanol Thermo-Fisher 21985023

Human AB Serum Corning 35–060-CI

FBS Gemini Bio-Products 100–106

PBS Fisher Scientific MT21031CV

Opti-MEM Life Technologies 31985–062

PHA-LECTIN Sigma-Aldrich L1668

Gentamicin Reagent Solution (10 mg/ml), Liquid Thermo Fisher 15710–072

Ampicillin sodium salt Sigma-Aldrich A9518

Sodium pyruvate solution 100 mM sterile-filtered Cell Culture Grade Sigma-Aldrich S8636
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REAGENT or RESOURCE SOURCE IDENTIFIER

Nonessential amino acids (MEM NEAA) Life Technologies 11140–050

L-Glutamine: Penicillin: Streptomycin Solution GEMINI Bio-products 400–110

Fungizone Amphotericin B 250UG/mL Invitrogen 15290–018

AccuCount counting beads Spherotech ACFP-70–10

MicAbody Xyphos Inc This paper and U.S. Patent No. 
10,259,858

PEG-6000 Hampton Research HR2–533

Critical Commercial Assays

EasySep direct human CD4+ T cell kit STEM CELL 19662

RosetteSEP™ system CD8 isolation kit STEM CELL 15023

Dynabeads™ Human T-Activator CD3/CD28 Thermo Fisher 1131D

SuperScript® III One-Step RT-PCR System with Platinum® Taq DNA 
Polymerase

Thermo Fisher 12574026

ddPCR™ Supermix for Probes (No dUTP) Bio Rad 1863023

Droplet generation oil for probes Bio-Rad 186–3005

One-Step RT-ddPCR Advanced Kit for Probes Bio-Rad 1864021

RNeasy Mini Kit Qiagen 74104

Zeno Human IgG Labeling Kit Thermo Fisher Z25408

Superdex 200 columns GE life sciences 28990944

Pierce™ Protein A Agarose Thermo Fisher 20334

Alexa Fluor Protein Labeling Kit Thermo Fisher A20173

1-Step Ultra TMB ELISA Thermo Fisher 34208

Deposited Data

None

Experimental Models: Cell Lines

HEK293T ATCC CRL-3216

Expi293™ Thermo Fisher A14635

Lenti-X 293T Takara 632180

Raji ATCC CCL-86

Experimental Models: Organisms/Strains

Mouse: NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) The Jackson Laboratory JAX: 005557

Oligonucleotides

For ddPCR Forward primer CAGATGCTGCATATAAGCAGCTG Thermo Fisher Laird et al., 2015

For ddPCR Reverse primer 
TTTTTTTTTTTTTTTTTTTTTTTTGAAGCAC

Thermo Fisher Laird et al., 2015

Probe for ddPCR FAM-CCTGTACTGGGTCTCTCTGG-MGB Thermo Fisher Laird et al., 2015

Recombinant DNA

pNL4–3.GFP Doitsh et al., 2010 N/A

pBaL.GFP Neidleman et al., 2017 N/A

pF4.GFP Neidleman et al., 2017 N/A

pD2610-V12 ATUM D2610-v12–03
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REAGENT or RESOURCE SOURCE IDENTIFIER

pHR-PGK Roybal et al., 2016 N/A

pCMVdR8.91 Roybal et al., 2016 N/A

pMD2.G Roybal et al., 2016 N/A

Software and Algorithms

ImageJ ImageJ/NIH https://imagej.nih.gov/ij/

FlowJo FlowJo v10 https://www.flowjo.com/

QuantaSoft Bio-Rad http://www.bio-rad.com/en-
us/sku/1864011-quantasoft-
software-regulatory-edition?
ID=1864011

Other

None
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