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Relativistic quaternionic wave equation
Charles Schwartza�

Department of Physics, University of California, Berkeley, California 94720
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We study a one-component quaternionic wave equation which is relativistically
covariant. Bilinear forms include a conserved four-vector current and an antisym-
metric second rank tensor. Waves propagate within the light cone and there is a
conserved quantity which looks like helicity. The principle of superposition is re-
tained in a slightly altered manner. External potentials can be introduced in a way
that allows for gauge invariance. There are some results for scattering theory and
for two-particle wave functions as well as the beginnings of second quantization.
However, we are unable to find a suitable Lagrangian or an energy-momentum
tensor. © 2006 American Institute of Physics. �DOI: 10.1063/1.2397555�

I. INTRODUCTION

Many attempts have been made to consider the extension of the usual quantum theory, based
on the field of complex numbers, to quaternions. The 1936 paper by Birkhoff and von Neumann1

opened the door to this possibility, and the 1995 book by Adler2 covers many aspects that have
been studied.

Here is a wave equation that appears to have escaped previous recognition:

��

�t
i = u · �� + m�j . �1.1�

The single wave function � is a function of the space time coordinates x , t. The usual elementary
quaternions i , j ,k, are defined by

i2 = j2 = k2 = ijk = − 1 �1.2�

and

u · � = i
�

�x
+ j

�

�y
+ k

�

�z
. �1.3�

Boldface type is used to designate a three-vector.
This combination Eq. �1.3� of elementary quaternions and space derivatives was originated by

Hamilton3 in 1846; its square is the negative of the Laplacian operator.
What one should note about Eq. �1.1� is that it employs quaternions which multiply the wave

function on both the right side and the left side. This distinction arises from the noncommutativity
of quaternion algebra and is central to the present study.

II. OTHER EQUATIONS

There are other quaternionic wave equations one can consider, based on the apparent struc-
tural similarities between quaternions and relativity. The simplest is
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��

�t
= u · �� , �2.1�

which, when squared, appears as a four-dimensional Laplace equation, and not a wave equation.
Going to two-dimensions we construct

�
�

�t
u · �

u · � −
�

�t
�� = m� . �2.2�

When this equation is squared, we do get a wave equation, but it is for a tachyon. If one sets m
=0 in this equation, it can be revised to appear as either two copies of the Weyl equation or the
Maxwell equations �keeping only the imaginary components�.

Various authors have shown that the familiar Dirac equation can be put into quaternionic
form. This may be done by putting an i to the right of � on one side of Eq. �2.2� �Ref. 4� or by
the use of biquaternions in a one-component equation.5 All of those representations involve eight
real functions—as does the usual Dirac equation—while the basic equation of the current study
�Eq. �1.1�� involves only four real functions.

There are two other known relativistic equations with four real components. One of these is
the Majorana representation of the Dirac equation,

i����� = m� , �2.3�

where all four of the gamma matrices can be made purely imaginary, so that one can take all four
components of the Dirac wave function to be real functions of space-time. Indeed, if we write our
quaternionic wave function as

� = �0 + i�1 + j�2 + k�3, �2.4�

and arrange these four real functions as a column vector, then our Eq. �1.1� can be put in exactly
this Majorana-Dirac form. One awkward feature of that formalism is that the usual Dirac Lagrang-
ian becomes useless for an action principle, since every single term is identically zero.

The other comparison involves the Weyl equation �two complex components�, which is usu-
ally reserved for massless particles. One can map quaternions onto a two-dimensional space of
complex numbers. The correspondence can be expressed in terms of the familiar Pauli matrices
u→−i�, and the wave equation �1.1� can be written in a pseudo-Weyl form as

i
��

�t
= − i� · �� + m�2�*. �2.5�

In this second example, one also has trouble with the usual Lagrangian in that the mass term is
identically zero.

Both of these equations, Majorana-Dirac and modified Weyl, are used in building supersym-
metry theories �see, for example, Ref. 6�, but only after one introduces a second set of wave
functions—with “dotted” spinor indices. Thus, they do return to eight real functions, which are,
furthermore, not simply real functions but elements of a Grassmann algebra.

These comparisons leave me without a definitive answer to the question of whether the focal
equation of this paper �Eq. �1.1�� is truly something new in theoretical physics. The work pre-
sented here will be to explore this quaternionic wave equation on its own terms and see what
interesting things arise.

III. SOME PROPERTIES

In the usual quantum mechanics there is “gauge invariance of the first kind:” we can replace
the complex wave function � by exp�i���. This freedom is also noted by saying that there is a ray,
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not just one vector, in Hilbert space corresponding to each physical state. �The reader will note
that this paper focuses entirely on the wave function approach to quantum theory and not the
Hilbert space version.� For the quaternionic wave function we have a larger set of freedoms: �
→q1�q2, where the two numbers q1 ,q2 are quaternions of unit magnitude. The one on the left
induces a change of basis in the elementary quaternions u seen in Eq. �1.1�, while the one on the
right changes the particular choice of i and j acting to the right of � in that equation. Thus, instead
of the usual U�1� group, we appear to have SU�2��SU�2� /Z2.

A first calculation is to take another time derivative of Eq. �1.1� and arrive at the second-order
wave equation,

�2�

�t2 = �2� − m2� , �3.1�

which is the ordinary Klein-Gordon equation for a relativistic particle of mass m.
Now we look at some bilinear forms. The first is �=�*�, where the complex conjugation

operator �*� changes the sign of each imaginary quaternion �and requires the reversal of order in
multiplication of any expression upon which it operates�. The second is the vector U=�*u�.
While � is real, U is purely imaginary, and we can write U= iU1+ jU2+kU3 in terms of three real
three-vectors.

Making use of the wave equation �Eq. �1.1��, we then calculate

��

�t
= � · U1, �3.2�

which is the familiar statement of a conserved current. We shall return to U2 and U3 shortly. �If
you ask what singled out U1 as the conserved current, it is the choice of the imaginary i sitting
beside the time derivative in the wave equation �1.1�.�

IV. SPACE-TIME SYMMETRIES

Now we look at the behavior of the wave equation �1.1� under familiar symmetry transfor-
mations. To achieve rotation of the spatial coordinates x, we make the transformation

� → eR�, R = u · �/2, �4.1�

where � is the axis and the angle of rotation.
For the Lorentz transformation, we start with the infinitesimal form

� → � + B�i, B = u · v/2, �4.2�

where v is the direction and amount of the velocity boost. Note the appearance of the imaginary
i acting on the right of � in this transformation. I leave it as an exercise for the reader to show that
this transformation of � does indeed induce the familiar Lorentz transformation of the space-time
coordinates in the wave equation �1.1�.

One can now readily show that the components of the conserved current �� and U1� tansform
as a Lorentz four-vector. With a bit more work, one can also see that the other two vectors U2 and
U3 transform as the components of an antisymmetric second rank tensor in four dimensions �also
called a six-vector�.

A useful notation for operators that may multiply quaternionic functions on the right or on the
left is the following:1

�a��b�� = a�b, �a��b��c��d� = �ac��db� , �4.3�

which allows us to write the finite Lorentz transformation operator as e�B�i�.

1A similar notation was introduced by the authors of Ref. 4.
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The generators of the Lorentz group may be constructed as

J = x � �−
1

2
u, K = x

�

�t
+ t � −

1

2
u��i . �4.4�

One can extend this to the full Poincare group by adding the displacement operators: ��= ��t ,��.
In the Appendix is a more extensive study of various tensors that can be built from solutions

of the wave equation.

V. MORE BILINEAR FORMS

Start by defining the derivative operator which acts in both directions, d�= �d0 ,d�= 1
2 ����

−����. This is a covariant four-vector, but let us now see how things behave when we combine it
with the Lorentz transformation of the wave function:

D� 	 �*d�� → D� +
1

2

i,�*d�v · u�� . �5.1�

The expression D� is purely imaginary, and so we can write D�=D1,� i+D2,� j+D3,�k. I hope that
the use of the subscripts �1,2,3�, denoting which imaginary component they come from, does not
cause confusion with the vector or tensor subscripts �. The expression inside the anticommutator
brackets �next to i� is real. This leads us to conclude that under the Lorentz transformation of �

D2,� and D3,� are unchanged, �5.2�

D1,� → D1,� + more complicated stuff. �5.3�

This means that under the full Lorentz transformation of both coordinates and wave function
D2 and D3 behave simply as four-vectors. The quantity D1, however, will be shown in the Ap-
pendix to be part of a higher rank tensor.

Before proceeding, we note that D�=0 can be reexpressed by using the wave equation �1.1�:

D�=0 = − i	 −
j

2
� · U3 + k�m� +

1

2
� · U2 , �5.4�

where 		�*u ·d� is a real three-scalar. Under the Lorentz transformation of the wave function,
we calculate 	→	+v ·D1.

We have the identity

��D� = 0; �5.5�

and we will be interested in the following time derivatives, which are derived by using the wave
equation �1.1�:

�

�t
	 = − � · D1, �5.6�

�

�t
D� = i�2mD2,� − � · ��*ud���� − 2mjD1,� + �i,�*d�u · d�� , �5.7�

�

�t
U = i��� + 2�*u � d� + 2mU2� + j�− 2mU1 + 2D3 − � � U3� + k�− 2D2 + � � U2� .

�5.8�

See the Appendix for a more systematic discussion of tensor quantities.
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VI. PLANE WAVES

One way of representing “plane-wave” solutions of the wave equation �1.1� is

��x,t� = exp�
u · p̂p · x�� exp��i
p + km�t� , �6.1�

where 
= ±1. The set of possible momentum vectors p= p̂p should cover only one-half of space
to avoid overcounting of solutions. With this, one can construct the solution for the general initial
value problem:

��x,t� =� d3x��


�

H

d3p

�2��3 exp�
u · p̂p · �x − x�����x�,t� = 0�exp��i
p + km�t� , �6.2�

where the subscript H reminds us that the integral covers only half of momentum space.
With the expansions

exp�
u · p̂p · �x − x��� = cos�p · �x − x��� + 
u · p̂ sin�p · �x − x��� , �6.3�

exp��i
p + km�t� = cos�t� + �i
p + km�sin�t�/ , �6.4�

where =�p2+m2, we sum over 
 and reduce Eq. �6.2� to the following:

��x,t� =� d3x��
H

d3p

�2��32�cos�p · �x − x�����x�,0��cos�t� + km sin�t�/�

+ u · p sin�p · �x − x�����x�,0�i sin�t�/� . �6.5�

Here we can recognize that the results of the integrals over p �which now may be extended to
cover the full momentum space� give us functions of the invariant R2= t2− �x−x��2, which vanish
outside the light cone �R2�0�. Thus we do have relativistic causality for this quaternionic wave
equation; something which we could have expected because the solutions satisfy the Klein-Gordon
equation.

The Klein-Gordon equation also has the property that positive �negative� frequency solutions
propagate only to positive �negative� frequency solutions. For the quaternionic equation, we have
no way to talk about this distinction between positive and negative frequencies; however, we do
find a substitute “selection rule” for wave propagation here.

First, we note the orthogonality relation

� d3x

�2��3 exp�− 
�u · p̂�p� · x�exp�
u · p̂p · x� = �
,
���p ± p�� , �6.6�

where I have not required that both sets of momentum variables belong to the same half-space.
Next, we use this orthogonality in Eq. �6.2�, where we represent ��x� ,0� as any superposition of
plane wave solutions with exclusively 
�= +1 �or exclusively −1�. The resulting ��x , t� will
contain only that same value for 
. It is tempting to call this “helicity conservation” in the
propagation of these quaternionic waves.

This interpretation is bolstered by the following observations. The operator u ·�, acting on a
plane wave solution �Eq. �6.1��, has eigenvalue −
p. Furthermore, one can readily show, from Eq.
�1.1�, that

d

dt
� d3x�*u · �� = 0. �6.7�
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VII. SUPERPOSITION

In the usual �complex� quantum theory, if we have two solutions to the Schrodinger �time
dependent� equation, �1 and �2, then any linear combinmation c1�1+c2�2 is also a solution for
arbitrary complex numbers c1 and c2. With our quaternionic wave equation �1.1�, the idea of
superposition requires a slightly different wording.

Note that the general plane wave solution �Eq. �6.1�� has an arbitrary amplitude � positioned
in the midst of certain quaternionic functions of space and time. Given any such solution, we find
another solution by changing the amplitude: �→q�q�, where q and q� are arbitrary quaternionic
numbers. Furthermore, if we have one solution of Eq. �1.1�—�1 with amplitude �1—and another
solution—�2 with amplitude �2—then we also have a solution by simply adding these two: �1

+�2. This version of the principle of superposition is implicit in Eq. �6.2�.

VIII. ADDING POTENTIALS

The original wave equation �1.1� can be extended by the introduction of external potentials, as
follows:

��

�t
i = u · �� + e�� − eu · A�i + m�eieWj , �8.1�

where �, A, W are real functions of space-time. The gauge transformation that leaves this equation
invariant is

� → �eie�, �8.2�

� → � −
��

�t
, �8.3�

A → A + �� , �8.4�

W → W − 2� . �8.5�

One can show that the previously discussed symmetries still hold, with �� ,A� a Lorentz
four-vector and W a scalar. This appearance of the four-vector potentials is �almost� exactly like
the usual way of introducing electromagnetism into quantum theory; however, the explicit appear-
ance of a gauge quantity W is something different.

The reflection symmetries of Eq. �8.1� are

� → �j, t,A,W change sign �T� , �8.6�

� → �k, x,�,W change sign �CP� , �8.7�

� → �i, t,x,A,� change sign �TCP� . �8.8�

The current conservation equation �3.2� is still true for this extended wave equation �8.1�,
however, Eq. �6.7� must be modified. For the situation where W=0, we calculate

d	

dt
=

d

dt
��*u · d�� = − � · D1 + e� � · A − 2eA · ��*u � d�� , �8.9�

where we have used the notations from Sec. V. From this we see that in the case where the only
external potential is �, then the space integral of 	, which we identified with helicity, is conserved.

122301-6 Charles Schwartz J. Math. Phys. 47, 122301 �2006�
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IX. MORE ON PLANE WAVES

The plane wave solutions to the wave equation �1.1�, which we set out in Sec. VI, contain an
amplitude � which we should study some more:

��x,t� = exp�
u · p̂p · x�� exp��t� , �9.1�

where �=�̂= �i
p+km�, =�p2+m2.
We can ask to evaluate the various bilinear forms discussed earlier in the case of this plane

wave solution. The easiest are

� = �*�, 	 = − 
p�, D0 = �� , �9.2�

but to do more we must be able to evaluate �*u · p̂�.
I now propose to classify the constants � in a particular way. The set �� is defined such that

it performs a specific rotation, as follows:

p̂ · u�� = ���̂ , �9.3�

which sends one unit imaginary quaternion into another. With this type, the solution can be written
as

� = �� exp��̂�t + 
p · x�� , �9.4�

which looks like the sort of plane waves we are used to. It should be noted that this definition of
�� is not unique but leaves us with a U�1� class of equivalent amplitudes,

�� → �� exp���̂� , �9.5�

just as in ordinary �complex� quantum theory.
With this � type of amplitude, we can now evaluate the plane wave values for the following

bilinears:

U · p̂ = i�

p


+ k�

m


, D = 
p�U · p̂� . �9.6�

Components of the vector U which are orthogonal to p will oscillate rapidly in space, thus any
space average of them will be vanishingly small.

Two other categories for the amplitudes �, called � and �, can be defined as

u · p̂�� = �� j , �9.7�

u · p̂�� = �� j�̂ . �9.8�

Note that the three numbers �̂ , j , j�̂ are mutually anticommuting quaternions. If we calculate any
of the bilinears involving u · p̂ with either the � or � type of amplitude, the result will be rapidly
oscillating in time, thus any time average will be vanishingly small.

If we stay with the � type amplitudes, we get the following values, in the plane wave states,
for various four-vectors that are defined in Sec. V or the Appendix:

j� = ��1,
p/� , �9.9�

V� = ��
p,p̂� , �9.10�

D2,� = 0, �9.11�

122301-7 Relativistic quaternionic wave equation J. Math. Phys. 47, 122301 �2006�
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D3,� = �m�1,
p/� . �9.12�

The four-vectors j and D3 look like what we would expect for the usual energy-momentum. The
four-vector V, however, is spacelike, not timelike; it is similar to the spin vector s�

=��,�,�,�P�S�,� in the usual theories, where s0 is the helicity.
The plane wave solutions are characterized by a parameter p which we sometimes call “mo-

mentum.” This is merely a linguistic habit carried over from conventional quantum theory �fol-
lowing de Broglie’s rule that momentum equals Planck’s constant divided by wavelength� and
should not be confused with the physical quantity called momentum until and unless that connec-
tion is established.

X. SCATTERING

Lets start with the wave equation plus a source,

�

�t
�i = u · �� + m�j + s�x,t�i , �10.1�

and write the retarded solution as

��x,t� = �
−�

t

dt�� d3x��
H

d3p

�2��3�



exp�
u · p̂p · �x − x���s�x�,t��exp���t − t��� .

�10.2�

For the general scattering problem, we replace the source s with V� and add in the initial �free
particle� solution �0�x , t�. If the interaction V is independent of time, then we have an integral
equation,

��x,t� = �0�x,t� + �
−�

t

dt�� d3x��
H

d3p

�2��3�



exp�
u · p̂p · �x − x���

�V�x����x�,t��exp���t − t��� . �10.3�

Now we make the “Born approximation” that �=�0 under the integral and let the time t go to
+�. Then, we find that the integral over t� gives us ��−0�, which is usually read as conserva-
tion of energy. This result appears to be generally true, not just in the first Born approximation.
One can now project this solution onto any plane wave solution and achieve the quaternionic
version of the S matrix.

In the special case when the scattering potential V comes from the term � in the extended
wave equation �8.1�, we also find—as a result of the integral over t�—that we have the selection
rule 
=
0. This is consistent with the result noted after Eq. �8.9�.

XI. SOME OTHER SOLUTIONS

We can write solutions for the extended wave equation �8.1� in some special cases.
One may ask whether there is a central potential, ��r�, which leads to bound states. The

easiest way to explore this is through “reverse engineering:” write down a plausible wave function
and see what potential fits the wave equation. The form

� = �f�r� + u · r̂g�r����t� �11.1�

leads to the requirements

122301-8 Charles Schwartz J. Math. Phys. 47, 122301 �2006�
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r4 d

dr
f2 = −

d

dr
�r4g2�, e� = − f�/g, ��t� = �0ekmt. �11.2�

If we try the asymptotic �r→�� behavior, g→�r−�, we find a similar behavior for f , provided
that 0���2. The wave function is then normalizable for ��1.5, and the potential is e��r�
=���2−�� /r at large r. Looking instead at r→0, one can do the same analysis and require �
�1.5; this suggests that we are dealing with something like a shielded Coulomb potential.

There are familiar procedures for taking the nonrelativistic limit of the Klein-Gordon or Dirac
equation. Here is the best I could do with the present relativistic equation. First, write �
=�nr exp�kt�, where =�m2+ p2�m−�2 /2m. Next, multiply the equation from the right with
i exp�−kt�. Finally, drop all terms that oscillate rapidly in time, as exp�±2kt�. The resulting
version of the full extended Eq. �8.1� is

��nr

�t
k � Hnr�nr, �11.3�

Hnr = − �2/2m + m�1 − cos�eW�� − �eu · A�k , �11.4�

which looks like an ordinary Schrodinger equation except that the single imaginary is called k
instead of i, and there is also the unfamiliar term with A. What looks like an effective potential
energy term �coming from the gauge quantity W� is positive, thus incapable of producing bound
states, although it might conceivably yield metastable states through the oscillation of the cosine
function.

XII. TWO-PARTICLE EQUATION

Previous studies of quaternionic quantum theory have gotten into trouble when they try to
write wave functions for multiparticle systems. In the ordinary �complex� theory, one simply
makes a direct product of one-particle wave functions, and because all the numbers there com-
mute, one can manipulate such a product to achieve various sensible results. In the quaternion
case, that approach leads to a horrid mess. �See, for example, Ref. 2, Chap. 9.�

The present work suggests a somewhat different approach. Consider this construction with
plane waves:

��1,2� = exp�
1u · p̂1p1 · x1���2�exp��1t1� , �12.1�

��2� = exp�
2u · p̂2p2 · x2�� exp��2t2� , �12.2�

which might be described as a “nested” product. The symbol � here is a quaternionic constant,
which can depend on all the parameters of this two-particle wave function. Note that we have
written this with independent time variables for the two particles.

These two-particle wave functions, with all their momentum-helicity labels, form a complete
orthogonal set of functions in the space of x1 and x2. Note, however, that this product is ordered
in a way that was meaningless in ordinary �complex� quantum theory but requires some extra
bookkeeping in the quaternionic case.

Let us introduce some more compact notation for such wave functions:

�op�1� 	 exp�
1u · p̂1p1 · x1��exp��1t1�� , �12.3�

where the � symbol separates those things that are to act on the left from what is to act on the right
of whatever follows. Then the two-particle wave function Eq. �12.1� can be written simply as

��1,2� = �op�1��op�2��; �12.4�

and we can also write the operator of the wave equation as

122301-9 Relativistic quaternionic wave equation J. Math. Phys. 47, 122301 �2006�
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D 	
�

�t
+ u · ��i − m�k . �12.5�

Next we have the propagators,

G�x − x�,t − t�� 	 �
p,


exp�
u · p̂p · �x − x����exp��i
p + km��t − t���� , �12.6�

where �p,
=�H�d3p / �2��3��
, and this leads to

DG�x − x�,t − t�� = 0, G�x − x�,0� = �3�x − x�� , �12.7�

G+�x − x�� 	 ��t − t��G�x − x�,t − t�� , �12.8�

DG+�x − x�� = �4�x − x�� . �12.9�

The coordinate x stands for the full space-time coordinates t ,x. Now Eq. �10.2� can be briefly
written as

��x� =� d4x�G+�x − x��s�x�� . �12.10�

Following that construction, we now write down a general two-particle quaternionic wave
function as follows:

��x1,x2� =� d4x1�G+�x1 − x1�� � d4x2�G+�x2 − x2��s�x1�,x2�� . �12.11�

Acting on this with two of those differential operators gives

D2D1��x1,x2� = s�x1,x2� . �12.12�

This is a two-particle wave equation of the Bethe-Salpeter type, involving separate times as well
as separate space coordinates. The term s might be left as an external source or might be used to
represent some interaction, such as V�1,2���1,2�. Note that the order in which the two differential
operators are applied is significant.

It seems easy now to extend this to any number of particles. This appears to be a significant
advance over previous studies of quaternionic wave equations, although there are still many issues
to be faced.

XIII. NO LAGRANGIAN

If I use the interacting wave equation �8.1�, and think that �* is something independent of �,
then the following would be suggested as a Lagrangian density:

L = i�*��

�t
i − i�*u · �� − i�*e�� + i�*eu · A�i − im�*�eieWj . �13.1�

Varying i�* gives immediately the full wave equation for �. Before varying �i on the right, we do
a few things: partially integrate in space and time; and move i from left side to right side in the
second and third terms and rearrange the i and j coefficients in the last term �this is justified
because those �*

¯� expressions are real�. Then we get the adjoint wave equation.
But that prescription is not what the usual action principle allows. The familiar game from

complex qm does not work here. If one varies each of the four real functions which make up both
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quaternionic functions � and �*, then we actually get 12 equations from the action principle. This
is due to the fact that this Lagrangian is imaginary, that is, it consists of three imaginary parts and
each of those parts must vanish after the variation. If we write

L = iL1 + jL2 + kL3, �13.2�

we find that the first term, L1, is Lorentz invariant �see Eq. �A9��; but what should we do with the
other two terms?

Our difficulty with a Lagrangian is different from the difficulty noted earlier for the Dirac-
Majorana equation or for the pseudo-Weyl equation. But we do have a problem here.

XIV. DISCUSSION

Several advances have been made in trying to develop a sensible quantum theory based on
quaternions, rather than complex numbers. So far, this work has been limited to the wave equation
formalism.

We have noted the lack of a conserved energy-momentum tensor �see the Appendix� as well
as the lack of a Lagrangian. Nevertheless, we can write down the time-development operator as

U�t� = eHt, H = − u · ��i + m�k . �14.1�

This operator H commutes with the angular momentum operator J, but whether we want to call it
the Hamiltonian is unclear. Perhaps these questions wait for a full model of how this quaternionic
wave system interacts with other physical systems.

Another approach that may be relevant to that problem, as well as to improving our treatment
of many-particle systems, is the method of second quantization. We are led to write down a
quaternionic quantum field operator as

��x,t� = �
p,


exp�
u · p̂p · x�ap,
 exp��i
p + km�t� �14.2�

involving some kind of annihilation/creation operators ap,
. With this we immediately get

N =
1

�2��3 � d3x� = �
p,


ap,

† ap,
, �14.3�

h =
1

�2��3 � d3x	 = − �
p,


ap,

† ap,

p . �14.4�

Can one be sure that the matrix product a†a is real? If these are matrices in a Fock space of the
sort we are familiar with, with nonzero elements only on one line parallel to the central diagonal,
then this product is real.

It remains unclear to this author whether the equation studied in this paper is merely an
alternative mathematical formulation of things already well known or whether it may have con-
sequential applications to some as-yet unidentified physics.
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APPENDIX: GENERAL TENSORS

We can construct Lorentz covariant tensors of any rank, as follows. Start with the direct
product of the “two-way” derivative operators:
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d�
n = d�1

d�2
¯ d�n

, �A1�

where the subscript � now stands for the set of indices �1¯�n. This expression is manifestly a
covariant tensor of rank n as far as the coordinate transformations are concerned, and our task is
to package these between the wave functions, which transform under infinitesimal Lorentz trans-
formations as given in Eq. �4.2�.

We note that the packages �*d�
n � are real for n even and imaginary for n odd, while these

conditions are reversed when we add the quaternions u inside the package.
We find the following constructions for covariant tensors of rank n+1, Q�,�

�n+1�=Q�,�

= �Q�,0 ,Q��:

Q�,� = ��*d�
n �,�− i

2
,�*d�

n u��� for n even, �A2�

Q�,� = ��− i

2
,�*d�

n ��,− �*d�
n u�� for n odd. �A3�

In the case n=0 this is just the four-vector current, previously written as j�= �� ,U1�. All these
tensors are real.

In addition, for n odd, we have the tensors of rank n,

R2,� = �− j

2
,�*d�

n ��, R3,� = �− k

2
,�*d�

n �� , �A4�

which generalize the previously noted four-vectors D2 ,D3. For n even, we have the tensors of rank
n+2, S�,�,�=−S�,�.�:

S�,0,� = − S�,�,0 = �− j

2
,�*d�

n u���, S�,�,� = ��,�,��− k

2
,�*d�

n u��� , �A5�

where � ,� ,�=1,2 ,3. This generalizes the previously noted six-vector �U2 ,U3�.
We can make lower rank tensors by contracting indices:

g�1,�2Q�,�
�n+1� = − �m2 +

1

4
�����Q��,�

�n−1�, �A6�

where �1 and �2 are in the set �, and the set �� has these two indices removed. An alternative is
to contract one of the � indices with the � index. We find, for solutions of the free wave equation
�1.1�, the following:

g�1,�Q�,�
�n+1� = − mR3,��

�n−1� for n even, �A7�

g�1,�Q�,�
�n+1� = 0 for n odd. �A8�

If we are looking to find a Lorentz scalar, a tensor of rank zero, take a closer look at the
second rank tensor Q�,�. The contraction is

Q�
� = �− i

2
,�*d0�� + �*u · d� = D1,0 + 	 �A9�

and this is exactly zero for the free equation �1.1� but not for the extended Eq. �8.1�, where it
equals −ej�A�.
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Now we look at the contraction of such tensors with the derivative operator. In what follows
we shall limit ourselves to solutions of the free equation �1.1�. It is transparent that ��1Q�,�=0 for
any �1 in the set of labels �. The same holds true for the tensors R and S. Furthermore, by using
the wave equation, one can show that

��Q�,� = 0 for n even, �A10�

��Q�,� = 2mR2,�
�n� for n odd. �A11�

For tensors of rank 1, we have just the previously identified j�, D2,�, and D3,�, all of which are
conserved.

At rank 2, the usual desire is for a conserved symmetric tensor, which one can call the
energy-momentum tensor. The closest we come here is the Q�,�, which is not symmetric and is
conserved only on the first index. Nevertheless, this does allow us to write integral quantities
which are conserved �their time derivatives vanish�, as follows:

V� = �V0,V� 	 � d3xQ0,�
�2� , �A12�

V0 = −� d3x�*u · d� , �A13�

V =� d3x�D1 + mU3 −
1

2
� � U1� . �A14�

This is not what we would identify as the energy-momentum, as noted at the end of Sec. IX.
For the second rank antisymmetric tensor we have

��S�,� = − 2mj� + 2D3,�, �A15�

S̃�,� = ��,�,�,�S�,�/2, �A16�

��S̃�,� = − 2D2,�. �A17�
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