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Abstract

Genetic association studies of many heritable traits resulting from physiological testing often

have modest sample sizes due to the cost and burden of the required phenotyping. This

reduces statistical power and limits discovery of multiple genetic associations. We present a

strategy to leverage pleiotropy between traits to both discover new loci and to provide mech-

anistic hypotheses of the underlying pathophysiology. Specifically, we combine a colocaliza-

tion test with a locus-level test of pleiotropy. In simulations, we show that this approach is

highly selective for identifying true pleiotropy driven by the same causative variant, thereby
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improves the chance to replicate the associations in underpowered validation cohorts and

leads to higher interpretability. Here, as an exemplar, we use Obstructive Sleep Apnea

(OSA), a common disorder diagnosed using overnight multi-channel physiological testing.

We leverage pleiotropy with relevant cellular and cardio-metabolic phenotypes and gene

expression traits to map new risk loci in an underpowered OSA GWAS. We identify several

pleiotropic loci harboring suggestive associations to OSA and genome-wide significant

associations to other traits, and show that their OSA association replicates in independent

cohorts of diverse ancestries. By investigating pleiotropic loci, our strategy allows proposing

new hypotheses about OSA pathobiology across many physiological layers. For example,

we identify and replicate the pleiotropy across the plateletcrit, OSA and an eQTL of DNA pri-

mase subunit 1 (PRIM1) in immune cells. We find suggestive links between OSA, a mea-

sure of lung function (FEV1/FVC), and an eQTL of matrix metallopeptidase 15 (MMP15) in

lung tissue. We also link a previously known genome-wide significant peak for OSA in the

hexokinase 1 (HK1) locus to hematocrit and other red blood cell related traits. Thus, the

analysis of pleiotropic associations has the potential to assemble diverse phenotypes into a

chain of mechanistic hypotheses that provide insight into the pathogenesis of complex

human diseases.

Author summary

Large genetic studies with hundreds of thousands of patients have been successful at find-

ing genetic variants that associate with disease traits in humans. However, smaller-scale

studies can often have inadequate power to discover new genetic associations. Here, we

use a small genetic study of Obstructive Sleep Apnea (OSA), to introduce a strategy that

both helps find genetic associations and proposes biological hypotheses for the mecha-

nisms behind those associations. To achieve this, we use large genetic studies carried out

on traits that are related to OSA, and look for genetic variants that affect both OSA in our

small study and the trait in question in the large study. By linking two or more traits at

select loci, we were able to, among other results, find a locus that affects the expression of

a gene in immune cells (DNA primase subunit 1), a marker of thrombotic and inflamma-

tory processes (plateletcrit) and OSA. This results in a novel genetic association to OSA

and a corresponding biological hypothesis behind its effect on OSA.

Introduction

Genome-wide association studies of human phenotypes ranging from gene expression to

human diseases are now routine. Cumulatively, the data indicate that complex traits are highly

polygenic [1,2], and genetic correlation between these traits indicates abundant pleiotropy [3–

5]. Interpreting the plethora of results raises two major challenges: first, generating testable

mechanistic hypotheses about the underlying pathophysiology; and second, increasing statisti-

cal power to identify associations in studies of traits with small or moderate sample sizes.

Leveraging pleiotropy can help address both of these challenges. Previous work has demon-

strated that including many correlated traits in association studies increases power to detect

associations common to multiple traits [3,6,7]. This approach is largely untried in genetic

investigations of Obstructive Sleep Apnea (OSA). Here, we demonstrate that using shared
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associations between correlated traits can identify effects in under-powered studies of OSA,

and that leveraging molecular and physiological endophenotypes in this way also generates

clear and testable biological hypotheses.

OSA is characterized by recurrent episodes of partial or complete obstruction of the pha-

ryngeal airway resulting in multiple physiological disturbances, including sympathetic nervous

system activation, increased energy cost of breathing, intermittent hypoxemia, and wide

swings in intrathoracic pressure. This disorder is highly prevalent in the general population,

affecting more than 10% of middle-aged adults, with increased prevalence observed with

aging, obesity, and cardiometabolic disease, and is more common in men [8]. OSA leads to

sleep disruption, particularly increased sleep fragmentation and decreased proportion of

restorative stages of sleep, resulting in daytime sleepiness, impaired quality of life and cognitive

deficits [9]. Moreover, OSA is associated with increased rates of hypertension, incident heart

disease, stroke, diabetes, depression, certain cancers, and overall mortality [10–19]. Despite the

large number of epidemiological studies indicating that OSA is closely associated with these

outcomes, there appear to be subgroup differences in susceptibility, e.g., middle-aged individu-

als and men are more likely to experience OSA-related cardiovascular disease in some studies

than older individuals and women, respectively [20]. This underscores gaps in our knowledge

of the pathophysiological pathways linking OSA to other diseases [21,22]. Pathophysiological

pathways linking OSA to other diseases and factors that influence individual differences in sus-

ceptibility are poorly understood. While there are several effective treatments for OSA, includ-

ing Continuous Positive Airway Pressure (CPAP), there appears to be substantial variation in

overall clinical response and attenuation of cardiometabolic consequences, suggesting hetero-

geneity in both the etiology of the disease and susceptibility to its physiological disturbances.

Indices of OSA, including the Apnea-Hypopnea Index (AHI; the number of breathing

pauses per hour of sleep), apnea event duration, indices of overnight hypoxemia, habitual snor-

ing, and excessive daytime sleepiness, show substantial heritability in family studies [23]. Past

studies have identified only a handful of associations with a variety of OSA-related traits. We

have previously described a GWAS of OSA traits measured by overnight polysomnography in

multi-ethnic cohorts totaling ~20,000 individuals [24]. In that study, we found two genome-

wide significant multiethnic associations: variants in a locus on 10q22 were associated with indi-

ces of average and minimum SpO2 and percentage of sleep with SpO2 < 90%, and variants in a

locus on 2q12 were associated with minimum oxygen saturation (SpO2). In another study, we

identified a locus in 17p11 with a male-specific effect on AHI [25]. Furthermore, in an admix-

ture mapping study in Hispanic/Latino Americans, we identified a locus on 2q37 associated

with AHI and one in a locus on 18q21 associated with AHI and SpO2 < 90% [26].

The low number of genetic associations reported to date only explains a small fraction of

OSA trait heritability. This relative paucity of findings is driven primarily by modest sample

sizes, a reflection of the expense and complexity of measuring physiological phenotypes by

overnight polysomnography or respiratory polygraphy. This also limits our ability to fine-map

associations down to causative variants and thus identify relevant genes. Data on hundreds of

thousands of individuals–sample sizes at which GWAS designs are well-powered to detect tens

of loci and, in combination with additional experiments, fine-map some of them–have yet to

be collected for OSA traits based on overnight polysomnography or respiratory polygraphy

and may never be available [1,2]. Biological interpretation of available genetic associations is

further complicated by the observation that most GWAS effects localize to enhancer regions

and other regulatory elements and are often distal to physiologically relevant genes [27,28].

Now that GWAS of massive sample sizes have been accumulated for various comorbid con-

ditions and endophenotypes related to OSA, we hypothesize that analysis of shared associa-

tions across correlated traits can identify effects in underpowered studies of OSA and generate
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clear and testable biological hypotheses. A number of computational methods increase power

for discovering genetic associations by capitalizing on pleiotropy between disease phenotypes

or between a disease and a molecular trait such as gene expression. One common approach

takes advantage of the genetic correlation among phenotypes [6,29–31]. This class of methods

gains substantial additional power by pooling association signals across traits. However, such

methods suffer from power loss when the correlation of genetic effect sizes is highly variable

across the genome or limited to a subset of loci. For example, an approach such as MTAG is

not suitable for small GWAS studies when the assumption of the homogeneity of genetic cor-

relation is violated. The estimated genetic effect of an underpowered trait can be inflated by

the strong genetic signals of well-powered traits that are pooled together even if the variant is

not causative for the underpowered trait [6]. An alternative approach analyzes individual loci

to detect pleiotropic alleles, with no regard to genetic correlation [4,7,32–41]. Only a handful

of existing methods account for the possibility that the apparent pleiotropy is driven by the

linkage disequilibrium (LD) between two distinct causative variants each of which drives only

one phenotype [4,36–40].

In this study, we apply a colocalization method to detect shared associations between OSA and

other related traits. We elected Joint Likelihood Mapping method (JLIM) [39] and eCAVIAR [38]

as colocalization methods, but our general strategy does not depend on any specific method. We

focus on a set of well powered intermediate traits which have previously been implicated in the

pathobiology of OSA. Given prior GWAS studies suggesting the involvement of inflammatory

genes in OSA [42–44], and cohort studies reporting high levels of inflammation, including eleva-

tions in neutrophils and monocytes in OSA [45,46], we included leukocyte and platelet related

traits in our pleiotropic comparisons. Similarly, we also included red blood cell related traits given

prior GWAS implicating iron metabolism [26] and erythrocyte function [24]. We will refer to

these as clinical traits. In addition, OSA is associated with lung [47,48], obesity and cardiovascu-

lar-related disorders [46,49–51], and we have included clinical traits that reflect these overlaps,

together with gene expression traits in tissues implicated in these diseases.

By linking different clinical and gene expression traits to OSA at specific loci, our analysis

suggests new hypotheses about OSA pathobiology across many physiological layers as well as

finding a new association.

Results

Creating a framework to identify associations in underpowered GWAS

through pleiotropy

We used a colocalization method to identify pleiotropic loci, where a genetic effect drives asso-

ciation to two traits. First, we selected genome-wide significant loci (association p< 5 x 10−8)

in our well-powered trait (here, a clinical trait), and from these we selected the subsets which

also show nominal association to OSA traits (p< 0.01 for any SNP in the locus). We then used

colocalization to directly evaluate if the association to the two traits was consistent with the

same underlying effect, indicating a pleiotropic effect. This two-step strategy allowed us to dis-

tinguish between cases where there was association only in the clinical trait; where there was a

shared association in both traits; and if there were distinct associations in both traits stemming

from different underlying effects (S1 and S2 Figs).

Simulations

We first used simulations to assess our strategy to identify true associations in an underpow-

ered study by detecting pleiotropic associations with a better-powered study of another trait
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and following up with replication in an independent cohort. To assess sensitivity and specific-

ity, we simulated variable proportions of shared and distinct causal effects, whilst assuming

high polygenicity for each trait and only one causative variant per locus. We simulated GWAS

statistics for pairs of traits corresponding to our own study design: we simulated situations

where no variant is causative for an underpowered trait (H0), where the same variant is causa-

tive for the association to both traits (H1), and where two distinct variants in LD drive each of

the associations at a locus (H2) (Methods). To simulate summary statistics from a well-pow-

ered GWAS (representing our clinical traits), we sampled values from a multivariate normal

(MVN) distribution using the local LD matrix as a variance-covariance parameter [52] with

clinical trait sample size of 150,000. To simulate a GWAS of limited power (representing our

OSA discovery cohorts), we used genotypes from ancestry-matched samples as a reference

from which we simulated quantitative traits in 10,000 samples as surrogates for the OSA

GWAS. Most overlapping associations are expected to be due to distinct variants [39]; we sim-

ulated scenarios with just 5% and 20% of true associations being driven by the same variant in

both traits (H1). For example, in the first case, we simulated 2,500 loci with 3.5% correspond-

ing to H1, 66.5% corresponding to H2 and 30% corresponding to no association in the under-

powered trait (H0). The focus of our simulation study was the ability to replicate the

association signal for the primary phenotype in an independent cohort. This means success-

fully discriminating between (H1+H2) and H0. We leave the interpretability question (discrim-

inating H1 from H2) to Discussion.

We tested two colocalization methods–JLIM and eCAVIAR (a popular Bayesian colocaliza-

tion test) [38,39]. We also tested a popular pleiotropy-informed test, conditional false discov-

ery rate (cFDR) [32,33]. cFDR is not based on the LD-informed colocalization of the

association signals. All methods appear underpowered in the discovery dataset at a sample size

typical of current genetic studies of OSA (n = 10,000); the methods are only able to find associ-

ations if the observed effect is larger than the true effect (S3 and S4A Figs). Among the true

associations identified by JLIM, eCAVIAR and cFDR, there is an enrichment of H1 loci. In

spite of this enrichment, many loci identified in the discovery cohort are driven by distinct var-

iants (H2): (for the simulation with 5% of the true associations being H1, 54.7, 55.8 and 61.5%

of loci identified by JLIM, eCAVIAR and cFDR, respectively, are H2). At the same time, almost

all proportions of successfully replicated associations are driven by the same variant (H1) in

our simulation regimes (Figs 1C and 1D and S4B–S4F).

Because the colocalization tests (such as JLIM and eCAVIAR) and cFDR are using different

features of the data, we found that taking a consensus between them can effectively exclude the

majority of H2 from the analysis (S3 Fig). In the intersection of JLIM and cFDR, only 3.5% of

identified loci are H2; in the intersection of eCAVIAR and cFDR, only 5.3% are H2 (S4A Fig).

Even though the elimination of H2 loci increases the false discovery rate (fraction of H0) in the

discovery sample, it substantially increases the rate of successful replication. The main reason

for the increase in the rate of successful replication is the prioritization of H1 loci of larger true

effect size and the corresponding reduction of multiple testing burden at the replication stage.

The benefit of this approach increases with the fraction of loci driven by distinct effects (H2)

(S5 Fig). It also increased when the fraction of loci of no true effect (H0) is low (as in the case

of very high polygenicity [53] (S6 Fig)).

To test if the consensus method allows for more replicated loci simply due to the smaller

number of candidate loci, we tightened the p-value threshold of cFDR to select the same num-

ber of candidates in discovery as the consensus method (S7 Fig) or to control the rate of H0

loci (S8 Fig). We also explored a range of other simulation conditions, including varying the

total number of examined well-powered trait-associated loci, correlation of effect sizes between

well-powered and underpowered traits, trans-ethnic validation cohort, and the presence of
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Fig 1. The projected number of replicated loci and proportion of shared causative variants among the replicated loci. A total of 2,500

association peaks from well-powered GWAS studies (n = 150,000) were tested for the shared effect in simulated discovery cohorts (n = 10,000),
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multiple causative variants in locus (S9–S12 Figs). Consistently, the consensus method resulted

in more replicated loci than cFDR alone when the sample size is limited.

Next, we compared the rate of successful replication between the consensus approach and

Bayesian meta-analysis methods. In contrast to colocalization methods, the Bayesian meta-

analysis approach leverages the correlation of effect sizes between traits rather than SNP-level

colocalization of causative variants [29–31]. We chose to compare two such Bayesian meta-

analysis methods, MetABF and CPBayes, with the consensus approach using the simulated

dataset. Again, when the sample size was limited (n < 20,000), our consensus method found

more replicated associations than meta-analysis approaches (S13 and S14 Figs). As the sample

size of the validation cohort increases, both MetABF and CPBayes identified more H2 loci,

which led to more replicated loci than the consensus method. Since the meta-analysis methods

are designed for a pleiotropy analysis of more than two traits, in principle, they can boost the

power by using more than one well-powered trait. To test if the multi-trait meta-analysis can

outperform the pairwise meta-analysis, we simulated nine additional well-powered traits, gen-

erating GWAS statistics for one underpowered trait and ten well-powered traits in each locus

(Methods). For the additional well-powered traits, we randomly decided whether the simu-

lated causative variant was to be the same as or distinct from that of the main well-powered

trait. Using this simulated dataset, we examined the power of the above Bayesian methods and

non-parametric meta-analysis (iGWAS) [7] in multi-trait and pairwise settings. Overall, we

could not see a clear advantage of multi-trait meta-analyses over pairwise tests in our simu-

lated data (S15 Fig). Rather, particularly for CPBayes and iGWAS, multi-trait tests substan-

tially underperformed pairwise tests. This result demonstrates that for underpowered studies,

the consensus approach focused on SNP-level colocalization outperforms meta-analysis tech-

niques in pairwise and multi-trait settings when the association signals are driven by distinct

rather than the same effect in a large fraction of loci.

Finally, we found that looking at more trait combinations with more GWAS peaks results

in proportionally more discoveries (Fig 1E). Overall, our simulations demonstrate that casting

a wide net across many traits (increasing the number of GWAS peaks) and taking the consen-

sus between pleiotropy mapping methods is a viable strategy to increase discoveries in under-

powered studies. We therefore felt justified in pursuing this strategy using real data, to make

additional discoveries in traits related to OSA.

Identifying pleiotropic associations between clinical traits and sleep apnea-

related traits

Based on clinical relevance [54] and heritability [23], we focused on four OSA-related traits

measured in five European-ancestry cohorts: the apnea-hypopnea index (AHI) [25], average

respiratory event (apneas or hypopneas) duration [26], and minimum and average oxygen sat-

uration (SpO2) during sleep [24]. We used summary statistics from the remaining multi-ethnic

cohorts in our replication effort.

and then select loci were tested for replication in simulated validation cohorts of the same genetic ancestry (n = 10,000–35,000). The candidate

loci were identified by conditional false discovery rate (cFDR), colocalization tests (JLIM and eCAVIAR), or the intersection of cFDR and

colocalization test. The p-value cutoff was set to 0.01 for cFDR and JLIM, and for eCAVIAR, the equivalent posterior threshold was calibrated

using H0 simulation data. The 2,500 GWAS peaks consist of the loci simulating no causal effect for underpowered traits (H0) and those

simulating the same causal effect between two traits (H1) or distinct causal effects (H2). The H1:H2 ratio was set to 1:19 (A and C) or 1:4 (B and

D). The effect sizes of causative variants are correlated (ρ = 0.7) under H1 but uncorrelated under H2. Bonferroni correction was applied on

replication tests. In Panel E, we contrast the number of replicated loci expected in Panel A (dashed line) with a more extreme scenario (10,000

GWAS peaks, consisting of 2,500 with H1:H2 of 1:19 and 7,500 with H1:H2 of 1:39; solid lines). In all, the proportion of H0 was set to 30% of all

examined loci. The shaded area denotes the 95% CIs.

https://doi.org/10.1371/journal.pgen.1010557.g001
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We assembled a collection of GWAS summary statistics for a total of 55 candidate intermedi-

ate traits from across these physiological areas: erythroid, leukocyte and platelet counts and func-

tion, from a study combining the UK Biobank and INTERVAL datasets (170,000 individuals of

European ancestry) [55]; cardiovascular, metabolic and respiratory traits from the UK Biobank

(380–450,000 European ancestry participants) [56,57], and cardio-metabolic traits (36,000 Euro-

pean ancestry participants) [58]. We then compared associations in each of these clinical traits to

our OSA traits (6,781 European ancestry participants; S1 Table), to identify potential associations

in the latter. A complete list of clinical traits we considered is presented in S2 Table.

We tested for directional causal effects of the selected clinical traits on our OSA related

traits using Mendelian Randomization (MR) [59]. Due to the low sample sizes in OSA traits,

no comparison reached statistical significance after multiple test correction (S3 Table). After

excluding the extended MHC region and the sex chromosomes, we identified 3,191 genome-

wide significant associations (p< 5 x 10−8) in the 55 clinical traits, of which 2,939 had a corre-

sponding suggestive association to one of the four OSA traits (p< 0.01 at any SNP in the

locus; S4 Table). We then explicitly tested for evidence of pleiotropy between clinical and OSA

traits using JLIM (2,142 to 2,236 tests for each OSA trait). We found evidence that in 61/2,939

of these regions the OSA and clinical trait associations are consistent with a shared, pleiotropic

underlying causative variant by JLIM (false discovery rate (FDR) < 0.20) and at the same time

show evidence of association to OSA by cFDR (Tables 1 and S5).

To independently validate our 61 putative OSA trait associations from the discovery stage,

we compiled summary statistics for the same traits in 15,594 individuals of Asian, African,

European and Hispanic ancestries/backgrounds (S6 Table). These individuals do not overlap

with those from the cohorts used in our colocalization analysis using JLIM. We did not

attempt to replicate pleiotropic associations; we only replicated the OSA association statistics.

JLIM relies on local LD patterns being preserved between clinical and OSA trait cohorts, so we

cannot use multi-ethnic data in our discovery analysis of pleiotropy. We found that 2/61 vari-

ants in S5 Table show significant association with the same OSA trait as the initial observation,

after Bonferroni correction for the number of tests performed. The variant in SNP rs17476364

(Fig 2) links 11 of 12 red blood cell related clinical traits analyzed with average SpO2 during

sleep. It is an intronic variant in the hexokinase 1 (HK1) region in chromosome 10, and has

been previously reported, as it reached genome-wide significance in association to minimum

and average SpO2 [24]. Another variant in SNP rs2277339 is a missense coding variant in

DNA primase subunit 1 (PRIM1) in chromosome 12. It links plateletcrit (ratio of platelet vol-

ume to whole blood volume, a marker of thrombotic as well as a broad range of inflammatory

processes [60]) to AHI. In the UK Biobank, it has documented significant associations to

height, waist to hip-ratio, age at menopause and multiple red blood cell related traits [61]. Fur-

ther 8 variants, shown in Table 1, were below nominal association p values < 0.05 in the repli-

cation set, but did not survive multiple test correction.

Incorporating gene expression to construct molecular hypotheses of sleep

apnea physiology

Non-coding regions with evidence of gene regulatory activity carry a large proportion of heritabil-

ity in most traits analyzed in large GWAS [62]. We reasoned that some OSA causative variants

would reside in such regulatory regions, and thus act on gene regulation. We therefore sought

shared associations between gene expression traits and the clinical traits for which we identified a

pleiotropic association in the 61 loci in Tables 1 and S5. To do so, we compiled expression quantita-

tive trait loci (eQTL) data for protein-coding genes expressed in lung, liver, spleen and skeletal

muscle from individuals with European ancestry from the GTEx Project [63], and monocyte, T cell
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and neutrophil populations in individuals from BLUEPRINT [64]. We chose these tissues for

potential relevance to OSA pathology: the lung is involved in OSA-related hypoxemia [47,48]; pre-

vious GWAS associations have implicated the neuromuscular junction in overnight SpO2 levels,

and abnormalities in upper airway muscle function are fundamental mechanisms for sleep apnea

[24,65]; the spleen and liver are known to mediate filtration of erythrocytes, iron homeostasis and

production of inflammatory cytokines; and leukocytes are key modulators of inflammation, an

antecedent risk factor of OSA development [66]. We calculated FDR based on JLIM p-values over

the 5,860 comparisons against 1,009 protein-coding genes of which transcription start sites are

within 1 Mb from the index SNPs of clinical traits.

We were able to identify shared associations between eQTL and clinical traits in 7/61 loci

(FDR< 0.05; Table 2). This includes several notable examples, including rs2277339, one of

our two replicated SNPs (Table 1). The rs2277339 SNP is a missense variant of PRIM1 but also

an eQTL for PRIM1 levels in monocytes and T cells (Fig 3A). Another example is a locus on

chromosome 16 where we find that an eQTL for MMP15 (matrix metallopeptidase 15) expres-

sion in lung tissue is pleiotropic with a measure of lung function (FEV1/FVC, the ratio of

Table 1. Loci with significant pleiotropic associations between a clinical trait and an OSA trait with nominally significant replication.

SNP Coordinate Clinical trait Clinical trait

p-value

OSA trait OSA trait

p-value

JLIM

p-value

JLIM

FDR

Replication

p-value

rs17010961 4:86,723,103 Systolic blood pressure 7.9E-24 Avg O2 saturation 1.6E-05 1.4E-04 0.011 7.4E-03

rs2595105 4:111,552,761 Basal metabolic rate 7.0E-13 Min O2 saturation 1.0E-03 2.4E-03 0.177 0.036

rs4711750 6:43,757,082 Granulocyte % of myeloid white cells 6.7E-09 AHI 3.2E-03 9.0E-03 0.198 0.011

Reticulocyte fraction of red cells 6.7E-11 9.0E-03 0.108

High light scatter reticulocyte % of red cells 5.4E-11 1.1E-02 0.191

rs16926246 10:71,093,392 High cholesterol 2.8E-09 Min O2 saturation 1.1E-05 3.0E-03 0.051 0.039

Avg O2 saturation 3.5E-05 1.0E-03 0.015 1.3E-03

rs17476364 � 10:71,094,504 Hematocrit 7.7E-159 AHI 7.3E-06 3.0E-05 0.001 0.016

Reticulocyte count 1.9E-96 3.0E-05 0.001

Red blood cell count 1.8E-48 3.0E-05 0.002

Hematocrit 7.7E-159 Avg O2 saturation 3.9E-05 4.2E-04 0.017 8.5E-05 †

Reticulocyte count 1.9E-96 4.2E-04 0.019

Red blood cell count 1.8E-48 3.8E-04 0.020

Hematocrit 7.7E-159 Min O2 saturation 3.1E-07 5.0E-05 0.002 0.014

Reticulocyte count 1.9E-96 5.0E-05 0.002

Red blood cell count 1.8E-48 5.0E-05 0.003

rs11245326 10:126,357,352 White blood cell count 4.3E-09 Event Duration 9.2E-05 2.2E-03 0.057 0.017

rs2277339 12:57,146,069 Plateletcrit 1.1E-10 AHI 5.2E-03 1.0E-02 0.154 8.2E-04 †

rs2297066 14:103,566,835 Platelet distribution width 2.4E-23 AHI 1.8E-03 3.2E-04 0.015 0.011

Mean platelet volume 7.2E-70 3.9E-04 0.025

Platelet count 4.8E-39 1.0E-03 0.064

rs998584 6:43,757,896 Reticulocyte count 2.5E-13 AHI 1.6E-02 1.3E-02 0.133 0.016

rs765807623 14:103,571,697 Plateletcrit 7.0E-09 AHI 1.8E-03 3.8E-04 0.027 0.011

Each row denotes one SNP and its corresponding associations to clinical and OSA traits. Each SNP may be associated with more than one clinical trait. At SNPs marked

with �, not all clinical traits are shown for clarity. Here, we only show variants with nominally significant replication p-values. See S5 Table for the full table of 61 loci

(137 trait pairs), including those with insignificant replication p-values. Two variants marked with † indicates pleiotropic loci with significant out of sample replication

p-values after Bonferroni correction (0.05/61). AHI stands for Apnea-Hypopnea Index. Coordinates correspond to hg19. The clinical trait p-value column refers to the

association p-value of the SNP to the clinical trait. The OSA trait p-value refers to the association p-value of the SNP to the OSA trait in meta-analyzed discovery cohorts

(S1 Table). The replication p-value refers to the association p-value of the SNP to the OSA trait in meta-analyzed validation cohorts (S6 Table). The JLIM p-value

corresponds to the tests for the shared effect between the clinical and OSA phenotypes.

https://doi.org/10.1371/journal.pgen.1010557.t001
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Fig 2. Pleiotropy at HK1 locus. A) Putatively pleiotropic locus linking a clinical trait (hematocrit) with an OSA trait

(average SpO2). The evidence of shared effect between the clinical and OSA traits is significant (JLIM p = 4.2 x 10−4,

FDR = 0.017). This SpO2 association replicates in validation cohorts after Bonferroni correction of 61 tests (p = 8.5 x

10−5). B) Pairwise comparison of–log10(p-values) between two traits confirms that the association signals are driven by

the shared underlying effect. Each dot represents a SNP in the tested locus.

https://doi.org/10.1371/journal.pgen.1010557.g002

Table 2. Candidate causal chains.

SNP Coordinate Clinical trait OSA trait JLIM

p-value

JLIM

FDR

Tissue /

Cell type

Gene eQTL

p-value

JLIM

p-value

JLIM

FDR

rs11153147 6:109,304,058 Mean corpuscular volume Avg O2

saturation

1.1E-

02

0.17 T-cell SESN1 (Sestrin 1) 1.4E-

35

5.0E-

05

0.01

Muscle SESN1 (Sestrin 1) 2.6E-

05

5.0E-

05

0.05

T-cell FOXO3 (Forkhead box O3) 1.7E-

11

5.0E-

05

0.01

rs4784886 16:58,065,459 FEV1/FVC Min O2

saturation

3.4E-

04

0.03 Lung MMP15
(Matrix metallopeptidase 15)

3.3E-

10

5.0E-

05

0.02

rs10160596 11:65,351,364 Mean corpuscular

hemoglobin concentration

Event Duration 1.0E-

02

0.17 Lung SCYL1
(SCY1 like pseudokinase 1)

5.1E-

04

5.0E-

05

0.02

rs146671954 9:136,934,203 Red cell distribution width /

Sum eosinophil basophil

counts

AHI 6.9E-

04

0.02 Lung BRD3
(Bromodomain containing 3)

2.2E-

07

1.0E-

04

0.02

rs2277339 12:57,146,069 Plateletcrit AHI 1.0E-

02

0.15 monocyte PRIM1 (DNA primase subunit

1)

3.2E-

06

5.0E-

05

0.04

T-cell PRIM1 (DNA primase subunit

1)

1.5E-

05

5.0E-

05

0.01

rs7162943 15:89,615,275 Mean platelet volume Avg O2

saturation

1.0E-

03

0.07 monocyte ABHD2 (Abhydrolase domain

containing 2, acylglycerol

lipase)

2.9E-

15

1.0E-

04

0.04

rs34233420 17:38,004,929 Lymphocyte count AHI/

Min O2

saturation

3.4E-

04

0.02 T-cell GSDMA
(Gasdermin A)

2.5E-

13

5.0E-

05

0.01

Each row represents a SNP with links across an OSA trait, clinical trait and gene expression trait. The link between clinical and OSA traits were thresholded at

FDR < 0.2, and the link between clinical and expression traits were thresholded at FDR < 0.05. AHI stands for Apnea-Hypopnea Index. Coordinates correspond to

hg19. The eQTL p-value refers to the association p-value of the SNP to the gene expression trait of the gene in the tissue/cell type indicated. The JLIM p-value

corresponds to the test for the shared effect between the OSA and clinical traits (center columns) or between gene expression and the clinical trait (right columns).

https://doi.org/10.1371/journal.pgen.1010557.t002
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forced expired volume per second to forced vital capacity), which in turn is pleiotropic with an

association with minimum SpO2 during sleep (Fig 3B). The lead SNP for MMP15 (rs4784886)

is marginally associated with minimum SpO2 in the validation cohort (nominal p = 0.051).

Overall, of the eight identified genes, four genes (MMP15, SESN1, FOXO3 and BRD3) are

known to be induced by hypoxia and oxidative stress, and three genes (FOXO3, BRD3 and

GSDMA) are implicated in inflammatory responses. The colocalization of associations to gene

expression in specific cell types, clinical and sleep apnea traits suggests biological hypotheses of

the pathophysiology underlying OSA.

We also investigated pleiotropy between gene expression traits and OSA in the three loci

harboring known genome-wide significant OSA associations in the discovery sample (Tables 3

and S7). In each locus, we compared OSA trait summary statistics to eQTLs for genes within

1Mb from the most associated variant, where there exists a SNP with eQTL association p-

value < 5x10-8 in the locus. We replicated a previously found pleiotropic effect in a locus on

chromosome 17 [24], where minimum oxygen saturation (SpO2) colocalizes with expression

of the epsilon subunit of the nicotinic receptor (CHRNE), in various tissues, including neutro-

phils, monocytes, spleen and muscle (Fig 4).

Discussion

In our comparison of clinical (respiratory, cardiometabolic, hematologic, inflammatory) traits

to OSA-related traits, the strongest finding lies in an intronic region of hexokinase 1 (HK1)

Fig 3. Candidate causal chains linking a clinical trait, OSA trait and gene expression. A) A candidate association in chromosome 12 with putative

pleiotropic associations between the plateletcrit (clinical trait; red), AHI (OSA trait; blue) and expression of PRIM1 (DNA primase subunit 1) in monocytes

(yellow). B) A candidate association in chromosome 16 with putative pleiotropic associations between the clinical trait FEV1/FVC (red), minimum O2

saturation (blue) and expression of MMP15 (matrix metallopeptidase 15) in lung (yellow).

https://doi.org/10.1371/journal.pgen.1010557.g003
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and is associated with average overnight oxygen saturation level (SpO2). This locus is pleiotro-

pic with most of the red blood cell related traits tested (Fig 2) and corresponds to one of the

most significant genome-wide associations we had previously reported from this data [24].

Prior to this analysis, two alternative hypotheses for the etiology of this signal had been pro-

posed: that HK1 acted by modulating inflammation, or that it affected OSA by altering eryth-

rocyte function. Our results provide evidence that is consistent with the erythrocyte pathway

hypothesis. Mutations in HK1 have been implicated in anemia, together with severe hemolysis

and marked decreases in red blood cells [67]. As discussed previously [24], it is possible that

HK1 affects the Rapoport-Luebering shunt through glycolytic pathway intermediates, which in

turn mediates oxygen carrying in mature erythrocytes. Factors that influence arterial oxygen

levels can lead to a more severe OSA phenotype (i.e., lower average levels of oxygen saturation

predispose to greater hypoxemia with each breathing obstruction). Lowered oxygen carrying

Table 3. Genome-wide significant loci in OSA traits colocalizing with eQTL.

SNP Coordinate OSA trait OSA assoc

p-value

Gene Tissue /

cell type

eQTL

p-value

JLIM

p-value

JLIM

FDR

rs12150370 17:4,777,634 Min O2 Saturation 9.0E-06 CHRNE
(cholinergic receptor nicotinic

epsilon subunit)

Muscle 9.3E-20 2.0E-05 0.0006

Neutrophil 2.5E-20 2.0E-05 0.0006

Spleen 3.4E-13 8.0E-05 0.001

Monocyte 8.8E-14 9.0E-05 0.001

C17orf107
(chromosome 17

open reading frame 107)

Spleen 1.4E-08 5.0E-05 0.001

Three loci with known genome-wide significant association to OSA traits were tested for the shared effect with gene expression levels in seven tissue/cell types. The FDR

cutoff of 0.05 was applied. The eQTL p-value refers to the association p-value of the SNP to the gene expression trait of the gene indicated, measured in the tissue/cell

type indicated. The JLIM p-value refers to a pleiotropy test between the OSA and gene expression traits. See S7 Table for the full list of comparisons tested.

https://doi.org/10.1371/journal.pgen.1010557.t003

Fig 4. Pleiotropic locus linking gene expression and an OSA related trait. A locus in chromosome 17 has associations between minimum

oxygen saturation (blue) and expression of CHRNE (cholinergic receptor nicotinic epsilon subunit) in muscle tissues (yellow). Gene expression

trait p-values and the appropriate gene in the locus are shown in yellow. Pairwise comparisons of–log10(p-values) between associated traits are

shown in Panel B with matching colors in axis labels.

https://doi.org/10.1371/journal.pgen.1010557.g004
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capacity and thus more tissue hypoxia could also contribute to breathing instability (and thus

apneas) via Hypoxia-Inducible Factor-1 (HIF-1) and enhanced carotid body sensitivity and

chemoreflex activation, or through long-term respiratory facilitation and plasticity [68,69].

The analysis of pleiotropy can be used to concatenate more than one phenotype to create

candidate “causal chains,” which by linking eQTLs to well-powered traits to sleep apnea

related traits can hint at promising biological targets. Among the most significant results for

this multicomponent model is DNA primase subunit 1 (PRIM1). We found that a missense

variant in PRIM1 colocalizes with its own expression levels in monocytes and T cells, platelet-

crit and AHI. The association of this variant with AHI was replicated in an independent vali-

dation cohort. The PRIM1 deficiency is known to cause lymphopenia along with severe

growth retardation, microcephaly and “triangular face” [70]. The impact of PRIM1 on cranio-

facial morphology may contribute to OSA by causing a narrow airway, and thereby increasing

the risk of airway obstruction during sleep; however, an inflammatory mechanism is also

possible.

Another example of causal chains is matrix metallopeptidase 15 (MMP15), a gene whose

expression in lung tissue is affected by an eQTL that colocalizes with a lung function pheno-

type (FEV1/FVC) which itself colocalizes with minimum SpO2 during sleep. Matrix metallo-

peptidases (MMPs), a family of proteolytic enzymes that can be activated by inflammation and

oxidative stress, participate in and potentiate tissue remodeling by breaking down the extracel-

lular matrix. MMPs have been suggested to play an etiological role in OSA-related pathophysi-

ological responses that may lead to multiple organ dysfunction [71], and specifically, may lead

to OSA by contributing to abnormalities in the extracellular matrix of the skeletal muscle in

the upper airway, predisposing to passive airway collapse [72]. In particular, MMP15 (mem-

brane-type 2 MMP) is known to be upregulated by HIF-1α under hypoxic conditions [73,74]

and is expressed in alveolar epithelial cells in Idiopathic Pulmonary Fibrosis (IPF) [75], an

Interstitial Lung Disease (ILD) characterized by chronic inflammation, progressive formation

of scar tissue and decreased lung function. OSA is highly prevalent in ILD as well as associated

with subclinical markers of ILD [47]. OSA is also common in Chronic Obstructive Pulmonary

Disease (COPD), and this overlap is especially associated with more severe hypoxemia [76].

Our results suggest a common causal pathway linking these lung diseases with OSA.

We also found that GSDMA (Gasdermin A) eQTL in T cells colocalizes with associations to

the lymphocyte count, AHI as well as oxygen saturation. While Gasdermin A is considered to

be expressed mostly in epithelial cells rather than in T cells, broadly, gasdermins mediate

inflammatory responses via pyroptosis, a form of programmed cell death leading to the release

of proinflammatory molecules, and play a key role in NLRP-inflammasome responses.

Increased level of gasdermin D has been shown to mediate hypoxia-related muscle injury in

an animal model of OSA [77]. Inflammatory mechanisms may increase risk for OSA through

effects on soft tissue structures in the upper airway, muscle function, and/or neural control of

breathing, as suggested by a prospective study of inflammation leading to higher risk of OSA

[66].

Another interesting result is an eQTL in the epsilon subunit of the nicotinic acetylcholine

receptor CHRNE that colocalizes with a genome-wide significant association in minimum oxy-

gen saturation. This receptor is present at neuromuscular junctions, and mutations in this sub-

unit are known to cause congenital myasthenic syndrome in humans that can result in

progressive respiratory impairment [78]. As discussed above, abnormal skeletal muscle

responses in the upper airway are considered to be central in the pathogenesis of OSA.

We have shown that we can leverage pleiotropy between OSA and physiological traits to

identify the known OSA association in the HK1 locus. We could not identify two other known

OSA associations at 2q12 and 17p11 using this approach, as there is no apparent pleiotropy
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between OSA and our library of clinical traits. Adding gene expression traits to this analysis

increases our discovery ability, as we can identify the 17p11 association as pleiotropic with an

eQTL for CHRNE in neutrophils, monocytes, spleen and muscle (Table 3). Furthermore, in

simulations, we showed that using a large array of clinical trait-associated loci has a potential

to boost the power to identify associations in underpowered studies by casting a wider net (Fig

1E). These results warrant further investigation on using gene expressions in diverse cell types

and conditions as a library of well-powered traits for underpowered association studies.

Replication in an independent cohort is frequently necessary to validate GWAS findings in

small discovery samples. In this study, we significantly replicate the association of two loci to

OSA after Bonferroni correction and identify additional eight loci that replicate only nomi-

nally but are probably enriched with true positive associations to OSA (S16 Fig). We randomly

selected 28,558 unlinked autosomal SNPs (r2< 0.1 within 100kb windows) from our initial

OSA GWAS in individuals of European ancestry. We focused on AHI since we detected the

most SNPs reaching nominal replication in this trait. We found that 11,910 of these would

have been selected for our colocalization analysis, in line with expectation for the presence of a

SNP within the 100kb distance satisfying our in-sample threshold of association p< 0.01. Out

of these, 6,123 had a significant out-of-sample nominal replication (association p< 0.05). In

comparison, our pleiotropy analysis results for AHI are 4.6-fold enriched at this threshold (4/

20 independent hits with r2< 0.1), suggesting the presence of true associations to sleep traits

(one-sided Fisher Exact Test p = 0.018). In fact, the 76/975 associations that did not show sig-

nificant evidence of pleiotropy were also slightly enriched for nominal replication relative to

the set of randomly selected variants (one-sided Fisher Exact Test p = 0.00048, 1.6-fold enrich-

ment). This suggests that additional pleiotropic effects–and therefore true OSA associations–

remain to be discovered above the FDR cutoff we applied to our colocalization results although

we cannot rule out the possibility that the random SNPs may not fully recapitulate the func-

tional properties of GWAS SNPs from clinical traits.

From a methodological perspective, the analysis of pleiotropy has become an important

tool in the analysis of complex trait genetics. Most complex traits are highly polygenic, imply-

ing that many variants associated with a single trait will also be associated with other traits or

will be in LD with such variants. Different computational methods are required for different

applications and for different genetic architectures. If the goal is to increase power to detect an

association and the genetic correlation is broadly dispersed over many loci, methods explicitly

capitalizing on the broad genetic correlation are capable of producing large power gains [6,29].

In cases where the majority of overlaps in GWAS association peaks between traits are driven

by LD between distinct causative variants, power can still be increased with the help of other

methods that leverage pleiotropy to reduce multiple testing burden [32,33]. Development of

another group of approaches was motivated by the need to link genetic associations to genes

via eQTL data [36,38,39] but, as shown here, these methods can be easily adapted to the analy-

sis of other traits. Because of the abundance of association signals, especially for cellular and

molecular traits, distinguishing between true pleiotropy due to the same underlying causative

variants and different causative variants in LD is important for all the applications. Therefore,

in our study of OSA, we selected a method that explicitly models LD structure in the locus.

The drawback of this choice is the need to restrict the discovery sample to a demographically

homogeneous subset while using the available multi-ethnic cohort for replication. While colo-

calization tests can distinguish the same and distinct causative variants in overall, the specific-

ity is diminished in cases where association signals of two traits are driven by distinct causative

variants in high LD (S2 Fig). For example, when the distinct causative variants are in LD

between 0.8 and 0.95 (3.7% of simulated data assuming the random LD distribution), eCA-

VIAR and JLIM misclassify 1.8 and 2.3% of H2 loci, respectively, as driven by the same variant
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(JLIM p< 0.01 or at equivalent posterior probability threshold for eCAVIAR). JLIM estimates

accurately calibrated p-values under H0 and conservatively approximate p-values under H2.

For underpowered GWAS studies, with limited sample sizes, we lowered JLIM’s genetic reso-

lution parameter θ to 0.5 in this study. JLIM does not attempt to distinguish distinct causative

variants beyond its specified genetic resolution from the same causal effect. When distinct

causative variants for two traits are separated with LD r2< 0.5, JLIM maintains the ability to

distinguish the same and distinct effects in simulations (S2D–S2F Fig). And the overall speci-

ficity of JLIM to distinguish H1 from H2 is similar or higher compared to other colocalization

method such as eCAVIAR in our simulated datasets (S2B Fig).

Pleiotropy does not necessarily imply a causal relationship between phenotypes. Confound-

ing by unadjusted covariates in GWAS data can further complicate the interpretation of causal

chains due to the difficulty to distinguish between direct and indirect associations. Nonethe-

less, as we demonstrate here, a shared genetic basis between OSA and organismal, cellular and

molecular traits can reveal new aspects of the underlying biology. This will likely be of benefit

for other clinically relevant traits that are difficult to study at the scale required for GWAS.

Traits that are burdensome or expensive to phenotype, rare diseases that are hard to sample

and diseases that affect under-represented populations could all lead to underpowered genetic

studies, which are unlikely to get dramatically higher sample sizes in the near future. There-

fore, there is an unmet need to optimize the signals that can be extracted from small GWAS,

and the strategy presented here should help in achieving this goal.

Materials and methods

Ethics statement

This research was approved by Partners Healthcare IRB (protocol #2010P001765).

OSA Cohorts

To study pleiotropic associations underlying the risk of OSA, we prepared two sets of cohorts:

the discovery cohorts to identify pleiotropic variants and independent replication cohorts to val-

idate their associations to OSA traits. For the discovery cohorts, we used individual-level geno-

type data in order to determine the significance of pleiotropy by permutation (JLIM) [39]. At

the replication stage, we do not carry out any pleiotropy analysis, we only check for genetic asso-

ciation to OSA, so summary-level association statistics were sufficient. In addition, we restricted

the genetic ancestry of GWAS discovery cohorts to that of European ancestry, to match GWAS

of clinical traits. This was in order to avoid potential issues due to the mismatch of LD patterns

in our pleiotropy analysis. In contrast, we did not require the replication cohorts to have any

specific ancestry. Thus, our replication cohorts included all available ethnicities.

The discovery cohorts included the subset of samples of European ancestry from the follow-

ing five cohorts: the Atherosclerosis Risk in Communities Study (ARIC) [79], Osteoporotic

Fractures in Men (MrOS) Study [80], Multi-Ethnic Study of Atherosclerosis (MESA) [81],

Cardiovascular Health Study (CHS) [82] and the Western Australian Sleep Health Study

(WASHS) [83]. ARIC is a study that investigates atherosclerosis and cardiovascular risk fac-

tors. It is one of the cohorts included in the Sleep Heart Health Study, which collected poly-

somnography and genotype data [84]. Genotype data were obtained through dbGaP

(phg000035.v1.p1). MESA is a population-based study focused on cardiovascular risk factors,

which included participants of four ethnicities: African-, Asian-, European- and Hispanic/

Latino-Americans ranging from ages of 45 to 86 years old. We only included samples from

European-Americans in the discovery cohort. Polysomnography data measuring sleep-related

traits were later obtained from individuals who did not use overnight oxygen, CPAP or an oral
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device for sleep apnea [85]. MrOS is a multi-center prospective epidemiological cohort assem-

bled to examine osteoporosis, fractures and prostate cancer in older males [86]. An ancillary

study (MrOS Sleep) measured sleep disturbances and related outcomes [87]. CHS is a cohort

aimed to study coronary heart disease and stroke in individuals aged 65 and older, and geno-

type data were obtained through dbGaP (Illumina CNV370 and IBC; phg000135.v1.p1 and

phg000077.v1.p1). WASHS is a clinic-based study designed to examine OSA and its associated

genetic risk factors in patients referred to a sleep clinic in Western Australia. Not all individu-

als had measurements for the four OSA-related traits of interest. Details on genotyping, impu-

tation and QC procedures have been previously reported [24]. See S1 Table for the details.

The replication cohorts were: the Hispanic Community Health Study/Study of Latinos

(HCHS/SOL) [88,89], Starr County Health Studies (Starr) [90], Cleveland Family Study (CFS)

[91] and Framingham Heart Study (FHS) [92], in addition to non-European samples of CHS

and MESA. HCHS/SOL is a population-based study to examine protective and risk factors for

many health conditions among Hispanic/Latinos living in four urban areas within the USA

(Chicago IL, Miami FL, San Diego CA and Bronx NY). Starr is a cohort collected to study risk

factors for diabetes in a population of Mexican-Americans in Texas, later phenotyped for sleep

traits [93]. CFS is a family-based study, which recruited patients with OSA, their relatives and

neighborhood control families to study the familial and genetic basis of sleep apnea (356 fami-

lies of African American or European American ancestry). We included only unrelated indi-

viduals from CFS. FHS is an epidemiological cohort established to study cardiovascular

disease risk factors, using follow-up medical examinations every two years for the population

of European Ancestry in Framingham, MA. Data from the first Sleep Heart Health Study were

obtained between 1994–1998. Genotype data were obtained through dbGaP (Affymetrix 500k;

phg000006.v7). See S6 Table for the details of each cohort.

We examined the following four OSA-related traits in the discovery and replication

cohorts: minimum and average oxygen saturation (SpO2), apnea-hypopnea index (AHI) and

event duration. Briefly, the minimum and average SpO2 were calculated from oximetry-based

SpO2 measurements over the entire recorded sleep interval excluding occasional waking peri-

ods. AHI was scored by counting the number of episodes of complete (apnea) or partial

(hypopneas) airflow reduction associated with� 3% desaturation per hour of sleep. The event

duration was measured for the average length of apneas and hypopneas, from the nadir of the

first reduced breath to the nadir following the last reduced breath (in seconds). The full

description of phenotyping protocols is present in the original studies which first reported

their genetic analysis in the context of OSA [24–26]. We rank-normalized all OSA traits, sepa-

rately in each cohort, in order to obtain normally distributed phenotypes.

Clinical trait data

For clinical traits, we used GWAS summary statistics calculated for various traits in the UK

Biobank [56,94], blood cell-related phenotypes in a general UK population [55] and cardio-

metabolic phenotypes in individuals of European ancestry [58]. There is no sample overlap

between clinical trait GWAS data and our discovery or replication cohorts. The full list of clini-

cal traits is shown in S2 Table. The GWAS summary statistics for UK Biobank traits and blood

cell counts were downloaded from their websites. The summary statistics of cardio-metabolic

traits from [58] were obtained directly from the authors.

Identifying pleiotropic variants affecting both clinical traits and OSA

We applied Joint Likelihood Mapping (JLIM version 2.0) [39] to test whether the association

signals of clinical and OSA traits were driven by a shared genetic effect. We ran JLIM only on
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the loci in which there was strong evidence of association to a clinical trait (genome-wide sig-

nificant) and a suggestive association to the OSA trait (p< 0.01 at any SNP in the locus). In

these loci, JLIM compares the likelihood of observed association signals under the following

three competing possibilities: the OSA trait has no causative variant in the locus (“H0”), the

same OSA causative variant is shared with the clinical trait (“H1”), and the OSA causative vari-

ant is distinct from the clinical trait causative variant (“H2”), as shown in S1 Fig. Since underly-

ing association data have the limited genetic resolution, we test for modified hypotheses Hy
1

and Hy
2

instead of H1 and H2. Hy
1

represents that the causative variants of two traits are identi-

cal or in high LD (r2>θ), and Hy
2

assumes that the causative variants are separated by the LD

threshold (r2<θ). In our simulation of underpowered GWAS (see below for the details), only a

small fraction (9.0%) of loci had lead SNPs in tight LD (r2>0.8) with causative SNPs; only

15.7% of loci had the modest LD of r2>0.5 between lead and causative SNPs. This contrasts

with well-powered GWAS data, for which, in 91.4% of simulated loci, lead SNPs were in LD of

r2>0.8 with causative SNPs. To account for this limited statistical resolution of underpowered

GWAS data, we lowered θ to 0.5 from the default of 0.8 in this study.

JLIM calculates the ratio between the likelihood of the data under Hy
1

compared to that

under Hy
2

and evaluates the significance of this statistic by permuting the phenotypes simulat-

ing the lack of causal effect under H0. The false positives due to Hy
2

are indirectly controlled by

the asymptotically conservative behavior of JLIM: with sufficiently large effect sizes or sample

sizes, the cumulative distribution function of JLIM statistic shifts lower under Hy
2

than under

H0 as previously shown analytically [39]. Thus, under the asymptotic condition, JLIM guaran-

tees that the p-value estimated under H0 can be used to control for Hy
1

as well. However, under

non-asymptotic conditions, in particular in case of underpowered cohorts of limited sample

sizes, the power to distinguish Hy
1

from Hy
2

will be diminished. This reduced specificity is more

pronounced when the LD between distinct causative variants for two traits is substantial (See

Supplements of [39] for the detail). JLIM assumes that only up to one causative variant is pres-

ent for each trait in a locus. However, simulations showed that the accuracy of JLIM remained

robust in the presence of multiple causative variants in a locus (S12 Fig).

To run JLIM, we used the genetic association statistics of OSA traits calculated over all com-

mon SNPs in a 200kb analysis window around the focal SNP (the lead SNP of a clinical trait).

We derived these statistics from our discovery cohorts by combining association signals of

each cohort using an inverse-variance weighted meta-analysis approach. The association sta-

tistics were calculated in individual cohorts by linear regression adjusting for age, sex, BMI

and the top three principal components. The principal components were calculated from

genome-wide genotype data in each cohort separately. We used mean imputation for missing

covariate values. Multi-allelic SNPs and rare variants with minor allele frequencies (MAF)

below 0.05 were excluded from the analysis. We only used variants present in all of the discov-

ery cohorts. To reflect the limited resolution for fine-mapping of causative variants in under-

powered studies, we relaxed JLIM’s genetic resolution parameter θ to 0.5 from the default

value of 0.8. All other parameters were set to the default. We ran JLIM only in the discovery

cohorts.

JLIM 2.0 requires individual-level genetic data for underpowered traits in order to run per-

mutations. This limits the applicability of our approach to more general cases where only sum-

mary-level data are available. The direct permutation on individual-level genetic data,

however, enables robust estimation of p-values even under the vagaries of imputation noise

across cohorts for underpowered traits. For the permutation procedure, we used the same

pipeline described above to generate permuted association statistics for JLIM. OSA phenotypes

were randomly shuffled in each cohort separately. For each permutation, the association
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statistics were calculated in the same way including all the covariates. Then, the cohort-level

association statistics calculated on permuted data were combined across cohorts by meta-anal-

ysis. This permutation procedure was repeated up to 100,000 times, adaptively, to estimate

JLIM p-values.

We accounted for the multiple testing burden with the False Discovery Rate (FDR), sepa-

rately for each clinical and OSA trait combination. Specifically, we used the Benjamini-Hoch-

berg procedure to calculate the FDR as follows:

FDRu;v pð Þ ¼
pNu;v

jfljJLIMu;vðlÞ < pgj

where u and v indicate a combination of clinical and OSA traits, JLIMu,v(l) is the JLIM p-value

of tested locus l, and Nu,v is the number of loci tested between the trait pairs u and v. JLIM hits

were obtained at the FDR threshold of 0.2. The JLIM/cFDR consensus was defined by the

intersection between the JLIM (FDR < 0.2) and cFDR hits defined at the same p-value thresh-

old. Specifically, given the JLIM p-value cutoff of FDR 0.2, i.e., p0.2 such that FDRu,v(p0.2) = 0.2,

the cFDR hits were defined by the association p-value below p0.2 for an OSA trait. Note that

the p-value of association to a clinical trait is always ascertained to be less than 5 x 10−8 in our

analysis. The cFDR association p-values were examined at the focal SNP.

Comparison with eCAVIAR

eCAVIAR (version 2.2) was run in the default setting. The reference LD matrix was set to the

LD estimated from the subjects of European ancestry (n = 10,000) randomly subsampled out

of our OSA discovery cohort. Colocalization Posterior Probability (CLPP) was calculated for

lead SNPs of well-powered clinical traits to identify pleiotropic loci. The CLPP thresholds were

calibrated to be equivalent to p-value cutoffs using unfiltered null simulation datasets (H0),

which were not preconditioned on the minimum association p-values in loci.

Replication of OSA associations in independent samples

We validated the OSA associations identified in the discovery cohorts by replicating them in

out-of-sample multi-ethnic replication cohorts (S6 Table). There was no sample overlap

between our discovery and replication cohorts. We combined the p-values of associations

across the six replication cohorts by applying an inverse variance-weighted meta-analysis tech-

nique. We defined the p-value of association < 0.05 as nominal evidence of replication and the

p-value< 0.05/61 as a more stringent Bonferroni-corrected replication cutoff, given that 61

independent SNPs were uncovered for their pleiotropic associations to OSA in the discovery

cohort (Tables 1 and S5).

Comparison of nominal replication rates with random SNPs

To assess the sensitivity of our pleiotropy analysis, we compared the nominal replication rate

of random SNPs with that of candidate pleiotropic variants identified in the discovery cohort.

We started with 87,938 SNPs randomly selected across the autosomes, excluding chromosome

6 to avoid the major histocompatibility complex locus. Then, we used Plink to apply LD prun-

ing on the random set of SNPs and obtained a subset of 28,558 independent SNPs. The LD

pruning procedure ensured that the r2 between SNPs was less than 0.1 in the distance of 100kb

in the LD background of non-Finnish Europeans (n = 404) from the 1000 Genomes Project.

For the fair comparison between random and predicted pleiotropic SNPs, we further filtered

these random SNPs based on the OSA association p-values in 200kb windows. Overall, we
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kept only 11,910 random independent SNPs that have an AHI-associated SNP (p< 0.01)

within 100kb distance. On all loci examined for the pleiotropy, we similarly applied the LD

pruning procedure on the focal SNPs to obtain a subset of independent SNPs. During the

pruning steps, SNPs with more significant JLIM p-values were preferentially retained. After

the LD pruning, we obtained 995, 1,024, 967 and 961 independent SNPs for AHI, average

SpO2, minimum SpO2 and event duration, respectively; of which 20, 12, 6 and 11 SNPs are

predicted to be pleiotropic in the discovery cohort.

Identifying pleiotropic variants affecting both gene expressions and OSA

We used cis-expression quantitative trait loci (eQTLs) from the Gene-Tissue Expression proj-

ect (GTEx release v8) [63] and BLUEPRINT epigenome project [64], to examine pleiotropy

between the variation in gene expression levels and OSA phenotypes. Among the GTEx data-

sets, we only considered liver (n = 178), spleen (n = 179), skeletal muscle (n = 588) and lung

(n = 436) tissues for our analysis, based on the potential relevance of these tissues to OSA and

their sample sizes. Again, we used eQTLs calculated only with samples of European ancestry

for this analysis. The genome-wide summary statistics of European American eQTLs were

obtained from the GTEx Consortium. For the analysis of immune cell eQTLs, we used BLUE-

PRINT datasets which consisted of genotypes of participants and expression profiles of CD14+

monocytes (n = 191), neutrophils (n = 196) and CD4+ T cells (n = 167). The RNA transcripts

of BLUEPRINT samples were derived from unstimulated primary cells collected from healthy

individuals of European ancestry. The genome-wide summary statistics of BLUEPRINT

eQTLs were downloaded from the eQTL Catalogue [95].

We start with the 61 index SNPs corresponding to the candidate pleiotropic loci identified

by JLIM FDR< 0.2 and cFDR consensus (S5 Table). Using GTEx and BLUEPRINT eQTLs,

we scanned for pleiotropy between eQTLs and clinical traits. We considered all protein-coding

genes whose transcription start sites (TSS) were less than 1Mb away from the focal SNP of a

clinical trait (1,011 unique genes; 5,690 eQTLs). The protein-coding genes were defined by

Ensembl annotation (release 104). The genes with eQTL association p-value > 0.05 at all SNPs

in the locus were excluded due to weak evidence of association to gene expression. Overall, a

total of 5,860 clinical traits/eQTLs pairs (1,009 unique genes; 5,023 eQTLs) were tested for the

pleiotropy using JLIM in the default setting (Table 2). JLIM version 2.5 was used to test for

pleiotropy only using summary-level eQTL data that are publicly available. The p-values were

calculated by adaptive resampling (up to 10,000 iterations). The null distribution of JLIM sta-

tistic was generated by random sampling of phenotypes from a normal distribution, sampling

of genotypes from the reference LD panel (1000 Genomes, non-Finnish Europeans), and then

linearly regressing the sampled phenotypes on the genotypes. Multiallelic SNPs and rare vari-

ants with MAF < 0.05 were excluded from the analysis. The multiple testing burden was

accounted for with the False Discovery Rate (FDR) by applying the Benjamini-Hochberg pro-

cedure separately to each tissue/cell type and clinical trait combination.

Using gene expression as clinical traits

In three loci with known genome-wide associations to OSA traits, we tested for pleiotropy

between gene expression and OSA traits using cis-eQTLs as clinical traits. We examined four

GTEx tissues and three BLUEPRINT immune cell types, similarly to the above causal chain

analysis. There are a total 57 eQTLs in the three loci satisfying: 1) the eQTL p-values < 5 x 10−8

for a SNP within the 200kb window centered at the known OSA-associated SNP, and 2) the

transcription start sites being within 1 Mb from the OSA-associated SNP. Using these 57

eQTLs as clinical traits, we applied JLIM in the default setting (S7 Table). For the OSA traits,
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we used the association statistics from our discovery cohorts. The JLIM FDR was calculated

using the Benjamini-Hochberg procedure (a total of 57 tests).

Simulated datasets

To compare the accuracy of JLIM to other methods, we simulated genetic loci with pleiotropic

associations under different scenarios with unbalanced sample sizes. For one of two traits, we sim-

ulated a well-powered GWAS of a quantitative trait with a sample size of 150,000. For the other

trait, we simulated an underpowered GWAS with a much smaller sample size of 10,000. To gener-

ate datasets of realistic LD backgrounds, we used real genotypes of 80 randomly picked loci across

the genome. Each locus was 200kb in length. Chromosome 6 and the sex chromosomes were

excluded from our simulations due to the difference in LD patterns from the rest of genome.

In these loci, we generated 80,000 sets of association statistics under each of the following

six scenarios (H0, H1 and four configurations of H2). For the simulations of H0, the SNP in the

midpoint of the genomic segment was chosen as the causative variant for well-powered traits,

but no causal effect was simulated for underpowered traits. For H1, the midpoint SNP was

taken as the shared causative variant for both well-powered and underpowered traits. For H2,

the midpoint SNP was selected to be causal for well-powered traits, but a distinct SNP was

selected as the causative variant for underpowered traits. The distinct SNP was randomly cho-

sen in the intervals of LD relative to the midpoint SNP, selecting one in each of the following

LD ranges: |r|< 0.3, 0.3 < |r|< 0.6, 0.6< |r|< 0.8 and 0.8< |r|< 0.95.

For each pair of causative variants, we randomly sampled the genetic effect sizes (β1, β2),

corresponding to well-powered and underpowered traits, respectively, from the following

bivariate normal distribution:

ðb1; b2Þ � Nð0;SÞ

S ¼
s2

1
rs1s2

rs1s2 s2
2

" #

where s2
1

and s2
2

are per-SNP heritability of two traits, set to 5 x 10−5 under the assumptions of

the heritability of 0.5, causal fraction of 0.01 and 1,000,000 independent markers across the

genome. The parameter ρ was used to represent the correlation of causal effect sizes between

two traits. For H1, we generated simulated data under no correlation (ρ = 0) as well as moder-

ate to high correlation (ρ = 0.5, 0.7 or 0.9). For H2, we assumed ρ = 0 since the causative vari-

ants are not shared. For H0, β2 was set to 0.

JLIM only requires GWAS summary statistics for the well-powered trait. Therefore, for all

SNPs j = 1,. . .,m in each locus, we generated summary statistics by sampling the observed asso-

ciation statistics z = (z1,. . .,zj,. . .,zm) from the following multivariate normal distribution [52]:

z � Nð
ffiffiffiffiffiffi
N1

p
Db;DÞ

where N1 is the GWAS sample size (150,000), m is the number of markers in the locus, D is the

m x m local LD matrix, and β is the m-dimensional vector of true causal effects (on standard-

ized genotype values) of all SNPs in the locus. Here, β was set to β1 at the causative SNP and to

0 at all other SNPs. The p-values of association were calculated from the z scores as follows:

pj ¼ 2Fð� jzjjÞ

where zj is the association statistic at SNP j and F is the standard normal cumulative distribu-

tion function.
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JLIM 2.0 requires individual-level genotype data as well as association statistics for the sec-

ond trait. Therefore, for the underpowered trait, we generated a discovery cohort with simu-

lated phenotypes for all individuals; then, we calculated the association statistics by linear

regression between genotypes and phenotypes, instead of sampling the summary statistics

from a multivariate normal distribution. The genotype data of 10,000 individuals were

obtained by subsampling from six cohorts of European Ancestry (MESA, ARIC, MrOS, CHS,

CFS, FHS and WASHS). The phenotype value yi of each individual i was generated by random

sampling from the following standard normal distribution:

yi � Nðxib2; 1Þ

where xi is the genotype of the causative variant in the individual i (standardized to the mean

of 0 and the variance of 1). The association statistics and p-values of association were obtained

by regressing the phenotypes yi on the genotypes of each SNP in the locus. We excluded multi-

allelic sites and variants with MAF < 0.05 from the analysis.

The above process generated up to 480,000 sets of association data under scenarios of H0,

H1 and H2 in the genetic background of 80 loci (i.e., 80 x 6 x 1,000). Because of sampling noise,

in a minority of simulations, association data of some loci failed to pass the genome-wide sig-

nificance threshold for well-powered traits. We rejected such simulation runs to mimic our

data analysis, where we only included loci in which the clinical trait association p-value was

genome-wide significant. Similarly, we excluded instances where there exists no SNP with the

p-value of association < 0.01 for underpowered traits. In total, we retained 25,958, 31,858,

28,602, 29,131, 27,025 and 25,115 sets of association data for H0, H1, and H2 of distinct causa-

tive variants in low to high LD, respectively.

Next, we estimated the distribution of LD between random pairs of SNPs in the 80 simu-

lated loci and titrated the causative variants of H2 simulations to follow this distribution. Spe-

cifically, we subsampled H2 datasets to fit to the following composition: 72% for |r| < 0.3, 19%

for 0.3 < |r|< 0.6, 5% for 0.6< |r|< 0.8 and 4% for 0.8 < |r| < 0.95 (S2C Fig). After this, we

generated GWAS datasets of T loci by random subsampling of H0, H1 and H2. T represents the

total number of GWAS loci available from well-powered traits and varied from 500 to 5,000.

The proportion of H0 out of T loci varied from 0 to 30%. The relative ratios of loci simulating

H1 and H2 were set to 1:19, 1:9, 1:4 or 1:0.

To assess the power to replicate the pleiotropic associations in independent validation

cohorts, we calculated the expected association statistic zvj for the underpowered trait at the

focal SNP j:

E½zvj � ¼
ffiffiffiffiffi
Nv

p
b2rjj0

where the focal SNP j was defined by the lowest p-value of association to the well-powered

trait, Nv is the sample size of validation cohort for the underpowered trait, ranging from

10,000 to 35,000, β2 is the effect size for the underpowered trait at its causative SNP j0, and rjj0 is
the LD between two SNPs j and j0. For the LD backgrounds of validation cohorts, we used

CEU and YRI from the 1000 Genomes Project to represent ancestry-matched and trans-ethnic

validation cohorts, respectively. The expected number of replicated signals after Bonferroni

correction was calculated by estimating:

E 2Fð� jE½zvj �jÞ <
0:05

M

� �

where M is the number of pleiotropic associations found in each subsampled GWAS dataset of

T loci.
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Last, we also evaluated the accuracy of our method under the presence of multiple causative

variants that were shared between two traits in H1. In addition to the midpoint SNP, we ran-

domly picked another SNP in the locus as a second shared causative variant. The effect sizes of

the two causative variants for well-powered and underpowered traits were sampled from the

same bivariate normal distribution. We generated GWAS datasets for the well-powered and

underpowered traits in a similar manner as the simulations of single causative variants. The

correlation of effect sizes between well-powered and underpowered traits (ρ) was set to 0.7 for

H1. The proportion of H0 was assumed to be 30% of examined GWAS loci (2,500). The relative

proportion of H1 and H2 was set to 1:19. The proportion of loci with two causative variants

was set to 1/4 of all H1 as expected under Poisson distribution with the causal fraction of 0.01.

Simulated datasets for the meta-analysis of more than two traits

GWAS data were simulated for ten well-powered and one underpowered traits under H0, H1

and H2 (S15A Fig). One of the well-powered traits was ascertained to have a genome-wide sig-

nificant association (the main well-powered trait). Here, we simulated association statistics

only for the causative SNP of the main well-powered trait rather than simulating for entire

SNPs in the locus. For simplicity of simulation, we assumed that the lead SNP of the main

well-powered trait is in tight LD with its causative variant. The rest of well-powered traits have

the same or distinct causative variants from the main well-powered trait. The number of addi-

tional well-powered traits simulating the same causative variants was randomly decided by

sampling from a binomial distribution Binom n ¼ 9; p ¼ 1

20

� �
, and the rest were assumed to

have distinct causative variants. For underpowered traits, the causative variant was assumed to

be absent, same or distinct from the main well-powered trait depending on whether the locus

was simulated under H0, H1 or H2, respectively. Effect sizes of all traits sharing the same causa-

tive variant were sampled together from a multivariate normal distribution with the correla-

tion of effect sizes between traits set to 0.7. Effect sizes of traits simulating distinct causative

variants were sampled independently and then multiplied by a random variable representing

the LD between causative and tested SNPs. The association statistics were generated with the

sample sizes of n = 150,000 for well-powered traits and n = 10,000 for underpowered traits. In

total, 3,751, 613 and 6,229 sets of simulated association statistics were generated under H0, H1

and H2, respectively. From these simulated H0, H1 and H2 datasets, GWAS datasets of 2,500

loci were generated by random subsampling at the proportions of 30%, 3.5% and 66.5%,

respectively (H1:H2 ratio of 1:19). We evaluated the power to replicate the candidate pleiotro-

pic loci using the subsampled GWAS datasets (1,000 iterations). The power to replicate after

Bonferroni correction was estimated in the same way as other simulations. The validation

cohort were assumed to be of the same genetic ancestry as the discovery cohort, and the sample

sizes varied from n = 10,000 to 35,000. For pairwise analyses, we used only the main well-pow-

ered trait and underpowered trait. On the other hand, for full multi-trait analyses, we used the

entire data including all ten well-powered traits and one underpowered trait.

Meta-analysis methods

We benchmarked the power to replicate pleiotropic associations in underpowered cohorts by

applying three meta-analysis methods–MetABF, CPBayes and iGWAS–on simulated datasets.

We ran MetABF in the subset-exhaustive mode to scan all possible subsets of pleiotropic traits.

The parameter for the correlation of effect sizes was set to the known value of simulation (ρ =

0.7). MetABF was run three times with the scale parameter of causal effect sizes set to 0.1, 0.2

and 0.4, and the Approximate Bayes Factors (ABF) were averaged over the three runs as rec-

ommended by the authors. MetABF reports the ABF relative to H0, thus we calculated the ABF
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of pleiotropy to the underpowered trait relative to that of no pleiotropy to the underpowered

trait by summing ABFs over subsets. In contrast, we ran CPBayes in the fully automatic setting.

All parameters of the pleiotropy were directly learned from the data. We used the PPAj (Poste-

rior Probability of Association) of the underpowered trait to identify pleiotropic associations.

In comparison to the two Bayesian methods, iGWAS is a non-parametric meta-analysis test.

We ran iGWAS in the default setting. For all three methods, candidate pleiotropic associations

were identified in the discovery cohort at the same p-value cutoff of 0.01. For the Bayesian

methods, we applied the equivalent ABF and PPAj thresholds by calibrating them to have the

false positive rate of 0.01 in our null simulation (H0).

Supporting information

S1 Acknowledgments. Full list of acknowledgments for funding for data used in this study.

(DOCX)

S1 Fig. Schematic of JLIM analysis. Examples of trait pairs simulated under the null (no

causal effect for an underpowered trait, H0), shared effect between well-powered and under-

powered traits (H1), and distinct effects between two compared traits (H2). H1 and H2 are

competing alternative hypotheses. The simulated true causal variants are indicated by red

arrows.

(TIF)

S2 Fig. Sensitivity for H1 and specificity to distinguish H1 from H2. (A) Sensitivity to detect

H1 at the same false positive rate for H0. The same p-value cutoff was used for JLIM and cFDR.

For eCAVIAR, a posterior cutoff was calibrated to match the p-value cutoff using unfiltered

H0 simulation data. (B) The rate of misclassifying H2 as H1. H2 loci include all loci simulating

distinct causative variants in LD between 0 to 0.95. Again, the cutoffs of cFDR, eCAVIAR and

JLIM were calibrated to the same specificity using H0. (C) The distribution of LD for randomly

selected pairs of SNPs. This distribution has been drawn from the LD patterns between ran-

dom pairs of SNPs within 80 random loci (200kb each) in the population of European ances-

try. This distribution was used to simulate the LD between distinct causative variants in H2.

(D,E,F) The rate of misclassifying H2 as H1, broken down by the LD between simulated dis-

tinct causative variants for two traits. The cutoff of JLIM p-values was set to (D) 0.05, (E) 0.01

or (F) 0.005. The dashed horizontal line indicates the JLIM p-value cutoff. θ represents the

genetic resolution parameter for JLIM, set to 0.5 in this study. JLIM does not claim to distin-

guish H2 beyond the specified genetic resolution limit (r2> θ; light grey bars).

(TIF)

S3 Fig. Winner’s curse. The true and observed genetic effect sizes for underpowered traits are

shown to highlight the winner’s curse in a discovery cohort. We show data from 10,000 loci

each simulated under (A) H1 and (B) H2. In all panels, each dot represents the genetic effects

measured at the index SNPs. The index SNPs are defined as the lead SNPs of association to

well-powered clinical traits. Occasionally, the index SNPs deviate from the causative SNPs due

to sampling noise, and when this happens, we calculated the true effect size at the index SNP

by multiplying the true effect of the causative SNP by the LD between the index and causative

SNPs. The loci detected at JLIM p< 0.01 are indicated by cyan dots, and their density distribu-

tion are shown in contours. The loci found by cFDR (association p< 5 x 10−8 for well-powered

trait and< 0.01 for underpowered trait) are represented by dots above the black horizontal

line.

(TIF)
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S4 Fig. The number of loci that were identified in simulated discovery and validation

cohorts, broken down by the configuration of causative variants. (A) The number of loci

identified in a discovery cohort by pleiotropy analysis. (B-F) The number of loci replicated in

a validation cohort, subdivided by the configuration of causative variants: (B) H1, H2 with the

LD between causative variants to be in the ranges of (C) |r|< 0.3, (D) 0.3< |r|< 0.6, (E) 0.6<

|r|< 0.8 and (F) 0.8< |r|< 0.95. In all panels, simulation was conducted under the following

parameters: A total of 2,500 association peaks from well-powered GWAS studies (n = 150,000)

were tested for pleiotropy in simulated discovery cohorts (n = 10,000), and then the candidate

pleiotropic loci were tested for replication in simulated validation cohorts of the same genetic

ancestry (n = 10,000–35,000). The candidate loci were identified by conditional false discovery

rate (cFDR), eCAVIAR, Joint Likelihood Mapping (JLIM), or the intersection of eCAVIAR or

JLIM and cFDR, all at the p-value cutoff of 0.01 (or equivalent posterior cutoff). The 2,500

GWAS peaks consist of the loci simulating no causal effect for underpowered traits (H0) and

those simulating the same causal effect between two traits (H1) or distinct causal effects (H2).

The proportion of H0 was set to 30%, and the remaining 70% of loci were split to H1 and H2 at

the ratio of 1:19. The effect sizes of causative variants are correlated (ρ = 0.7) under H1 but

uncorrelated under H2. Bonferroni correction was applied on replication tests. The shaded

area denotes the 95% CIs.

(TIF)

S5 Fig. The projected number of replicated loci in simulations, varying the relative ratio

between H1 and H2. A total of 2,500 association peaks from well-powered GWAS studies

(n = 150,000) were tested for pleiotropy in a discovery cohort (n = 10,000), and then the candi-

date pleiotropic loci were tested for replication in an independent validation cohort of the

same genetic ancestry (n = 10,000–35,000). The candidate loci were identified by conditional

false discovery rate (cFDR), Joint Likelihood Mapping (JLIM), or the intersection of both, all

at the p-value cutoff of 0.01. The 2,500 GWAS peaks consist of the loci simulating no causal

effect for underpowered traits (H0) and those simulating the same causal effect between two

traits (H1) or distinct causal effects (H2). The proportion of H0 was set to 30%, and the remain-

ing 70% of loci were split to H1 and H2 at the ratio of (A) 1:19, (B) 1:9, (C) 1:4, and (D) 1:0.

The effect sizes of causative variants are correlated (ρ = 0.7) under H1 but uncorrelated under

H2. Bonferroni correction was applied on replication tests. The shaded area denotes the 95%

CIs.

(TIF)

S6 Fig. The projected number of replicated loci in simulations, varying the proportion of

H0 loci. A total of 2,500 association peaks from well-powered GWAS studies (n = 150,000)

were tested for pleiotropy in a discovery cohort (n = 10,000), and then the candidate pleiotro-

pic loci were tested for replication in an independent validation cohort of the same genetic

ancestry (n = 10,000–35,000). The candidate loci were identified by conditional false discovery

rate (cFDR), Joint Likelihood Mapping (JLIM), or the intersection of both, all at the p-value

cutoff of 0.01. The 2,500 GWAS peaks consist of the loci simulating no causal effect for under-

powered traits (H0) and those simulating the same causal effect between two traits (H1) or dis-

tinct causal effects (H2). The proportion of H0 was varied to (A) 0%, (B) 10%, (C) 20% and (D)

30%, and the remaining loci were split to H1 and H2 at the ratio of 1:19. The effect sizes of caus-

ative variants are correlated (ρ = 0.7) under H1 but uncorrelated under H2. Bonferroni correc-

tion was applied on replication tests. The shaded area denotes the 95% CIs.

(TIF)
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S7 Fig. The projected number of replicated loci in simulations where the cFDR threshold

was tightened to identify the same number of candidate loci as the JLIM/cFDR consensus

method in a discovery cohort. A total of 2,500 association peaks from well-powered GWAS

studies (n = 150,000) were tested for pleiotropy in a discovery cohort (n = 10,000), and then

the candidate pleiotropic loci were tested for replication in an independent validation cohort

of the same genetic ancestry (n = 10,000–35,000). The candidate loci were identified by condi-

tional false discovery rate (cFDR) or by the JLIM/cFDR consensus method. (A) The consensus

method (red line) selected 12.9 candidate pleiotropic loci by taking the intersection between

JLIM p< 0.01 and cFDR (association p< 0.01 for an underpowered trait). For the compari-

son, we tightened cFDR threshold to underpowered trait assoc p< 0.0012 so to identify the

same number of candidate loci in a discovery cohort (black line). (B) Similarly, the consensus

method (red line) found 7.5 candidate loci by taking the intersection between JLIM p< 0.005

and cFDR (assoc p< 0.005 for underpowered trait). The cFDR threshold was tightened to

underpowered trait assoc p< 0.00060 for the same number of candidates (black line). In both

panels, the 2,500 GWAS peaks consist of the loci simulating no causal effect for underpowered

traits (H0) and those simulating the same causal effect between two traits (H1) or distinct

causal effects (H2). The proportion of H0 was set to 30%, and the remaining 70% of loci were

split to H1 and H2 at the ratio of 1:19. The effect sizes of causative variants are correlated (ρ =

0.7) under H1 but uncorrelated under H2. Bonferroni correction was applied on replication

tests. The shaded area denotes the 95% CIs.

(TIF)

S8 Fig. The projected number of replicated loci in simulations where the cFDR threshold

was calibrated to have the same false positive rate for H0. A total of 2,500 association peaks

from well-powered GWAS studies (n = 150,000) were tested for pleiotropy in a discovery

cohort (n = 10,000), and then the candidate pleiotropic loci were tested for replication in an

independent validation cohort of the same genetic ancestry (n = 10,000–35,000). The candi-

date loci were identified by conditional false discovery rate (cFDR) or by the JLIM/cFDR con-

sensus method. (A) The consensus method (red line), by taking the intersection between JLIM

p< 0.01 and cFDR p< 0.01, showed the empirical false positive rate of 0.0038 in simulated H0

dataset. To match this false positive rate, we tightened cFDR threshold to p< 0.0038 (black

line). (B) Similarly, the consensus method (red line) showed the empirical false positive rate of

0.0018 in H0 when the intersection was taken at JLIM and cFDR p< 0.005. To match the false

positive rate, the cFDR threshold was tightened to p< 0.0018 (black line). The cFDR p-value

refers to the p-value of association to an underpowered trait. In both panels, the 2,500 GWAS

peaks consist of the loci simulating no causal effect for underpowered traits (H0) and those

simulating the same causal effect between two traits (H1) or distinct causal effects (H2). The

proportion of H0 was set to 30%, and the remaining 70% of loci were split to H1 and H2 at the

ratio of 1:19. The effect sizes of causative variants are correlated (ρ = 0.7) under H1 but uncor-

related under H2. Bonferroni correction was applied on replication tests. The shaded area

denotes the 95% CIs.

(TIF)

S9 Fig. The projected number of replicated loci in simulations where the number of associ-

ation peaks available from well-powered traits varied. A total of (A) 500, (B) 1,000, (C)

2,500 and (D) 5,000 association peaks from well-powered GWAS studies (n = 150,000) were

tested for pleiotropy in a discovery cohort (n = 10,000), and then the candidate pleiotropic loci

were tested for replication in an independent validation cohort of the same genetic ancestry

(n = 10,000–35,000). The candidate loci were identified by conditional false discovery rate

(cFDR) or by the JLIM/cFDR consensus method. The consensus method (red line), by taking
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the intersection between JLIM p< 0.01 and cFDR p< 0.01, showed the empirical false positive

rate of 0.0038 in simulated H0 dataset. To match this false positive rate, we tightened cFDR

threshold to p< 0.0038 (black line). The cFDR p-value refers to the p-value of association to

an underpowered trait. The GWAS peaks consist of the loci simulating no causal effect for

underpowered traits (H0) and those simulating the same causal effect between two traits (H1)

or distinct causal effects (H2). The proportion of H0 was set to 30%, and the remaining 70% of

loci were split to H1 and H2 at the ratio of 1:19. The effect sizes of causative variants are corre-

lated (ρ = 0.7) under H1 but uncorrelated under H2. Bonferroni correction was applied on rep-

lication tests. The shaded area denotes the 95% CIs.

(TIF)

S10 Fig. The projected number of replicated loci in simulations where the correlation of

effect sizes for H1 varied. A total of 2,500 association peaks from well-powered GWAS studies

(n = 150,000) were tested for pleiotropy in a discovery cohort (n = 10,000), and then the candi-

date pleiotropic loci were tested for replication in an independent validation cohort of the

same genetic ancestry (n = 10,000–35,000). The candidate loci were identified by conditional

false discovery rate (cFDR) or by the JLIM/cFDR consensus method. The consensus method

(red line), by taking the intersection between JLIM p< 0.01 and cFDR p< 0.01, showed the

empirical false positive rate of 0.0038 in simulated H0 dataset. To match this false positive rate,

we tightened cFDR threshold to p< 0.0038 (black line). The cFDR p-value refers to the p-

value of association to an underpowered trait. The 2,500 GWAS peaks consist of the loci simu-

lating no causal effect for underpowered traits (H0) and those simulating the same causal effect

between two traits (H1) or distinct causal effects (H2). The proportion of H0 was set to 30%,

and the remaining 70% of loci were split to H1 and H2 at the ratio of 1:19. The effect sizes of

causative variants are correlated with (A) ρ = 0.0, (B) ρ = 0.5, (C) ρ = 0.7 and (D) ρ = 0.9

under H1 but uncorrelated under H2. In all panels, Bonferroni correction was applied on repli-

cation tests. The shaded area denotes the 95% CIs.

(TIF)

S11 Fig. The projected number of replicated loci in simulations of trans-ethnic replication.

A total of 2,500 association peaks from well-powered GWAS studies (n = 150,000) were tested

for pleiotropy in a discovery cohort (n = 10,000), and then the candidate pleiotropic loci were

tested for replication in an independent validation cohort of (A) the same (CEU) and (B) dif-

ferent (YRI) genetic ancestry (n = 10,000–35,000). The LD patterns of genetic ancestry were

obtained from the 1000 Genomes Project data. In both panels, the candidate loci were identi-

fied by conditional false discovery rate (cFDR) or by the JLIM/cFDR consensus method. The

consensus method (red line), by taking the intersection between JLIM p< 0.01 and cFDR

p< 0.01, showed the empirical false positive rate of 0.0038 in simulated H0 dataset. To match

this false positive rate, we tightened cFDR threshold to p< 0.0038 (black line). The cFDR p-

value refers to the p-value of association to an underpowered trait. The 2,500 GWAS peaks

consist of the loci simulating no causal effect for underpowered traits (H0) and those simulat-

ing the same causal effect between two traits (H1) or distinct causal effects (H2). The propor-

tion of H0 was set to 30%, and the remaining 70% of loci were split to H1 and H2 at the ratio of

1:19. The effect sizes of causative variants are correlated with ρ = 0.7 under H1 but uncorre-

lated under H2. Bonferroni correction was applied on replication tests. The shaded area

denotes the 95% CIs.

(TIF)

S12 Fig. The projected number of replicated loci in simulations of multiple causative vari-

ants for H1. A total of 2,500 association peaks from well-powered GWAS studies
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(n = 150,000) were tested for pleiotropy in a discovery cohort (n = 10,000), and then the candi-

date pleiotropic loci were tested for replication in an independent validation cohort of the

same genetic ancestry (n = 10,000–35,000). The candidate loci were identified by conditional

false discovery rate (cFDR) or by the JLIM/cFDR consensus method. The consensus method

(red line), by taking the intersection between JLIM p< 0.01 and cFDR p< 0.01, showed the

empirical false positive rate of 0.0038 in simulated H0 dataset. To match this false positive rate,

we tightened cFDR threshold to p< 0.0038 (black line). The cFDR p-value refers to the p-

value of association to an underpowered trait. The 2,500 GWAS peaks consist of the loci simu-

lating no causal effect for underpowered traits (H0) and those simulating the same causal effect

between two traits (H1) or distinct causal effects (H2). The proportion of H0 was set to 30%,

and the remaining 70% of loci were split to H1 and H2 at the ratio of 1:19. In Panel (A), only

one causative variant was simulated for H1, whereas in Panel (B), up to two causative variants

were simulated for H1. The proportion of loci with two causative variants was set to 1/4 of all

H1 as expected under Poisson distribution with the causal fraction of 0.01. The effect sizes of

causative variants are correlated with ρ = 0.7 under H1 but uncorrelated under H2. Bonferroni

correction was applied on replication tests. The shaded area denotes the 95% CIs.

(TIF)

S13 Fig. Comparison with Bayesian meta-analysis methods with a validation cohort from

the same ancestry. A total of 2,500 association peaks from well-powered GWAS studies

(n = 150,000) were tested for pleiotropy in a discovery cohort (n = 10,000), and then the candi-

date pleiotropic loci were tested for replication in an independent validation cohort of the

same genetic ancestry (n = 10,000–35,000). The candidate loci were identified by the JLIM/

cFDR consensus method, MetABF and CPBayes. The consensus method (red line), by taking

the intersection between JLIM p< 0.01 and cFDR p< 0.01, showed the empirical false positive

rate of 0.0038 in simulated H0 dataset. Bayesian posterior thresholds for MetABF (green) and

CPBayes (purple) calibrated using H0 loci to match the false positive rate of the consensus

method. The 2,500 GWAS peaks consist of the loci simulating no causal effect for underpow-

ered traits (H0) and those simulating the same causal effect between two traits (H1) or distinct

causal effects (H2). The proportion of H0 varied to (A) 0%, (B) 10%, (C) 20% and (D) 30%,

and the remaining loci were split to H1 and H2 at the ratio of 1:19. In all panels, the effect sizes

of causative variants are correlated with ρ = 0.7 under H1 but uncorrelated under H2. Bonfer-

roni correction was applied on replication tests. The shaded area denotes the 95% CIs. In (E),

the fraction of H1 among replicated loci is compared among three methods when the propor-

tion of H0 is 30% (similar for different proportions of H0).

(TIF)

S14 Fig. Comparison with Bayesian meta-analysis methods with a validation cohort from

the different ancestry (YRI). A total of 2,500 association peaks from well-powered GWAS

studies (n = 150,000) were tested for pleiotropy in a discovery cohort (n = 10,000), and then

the candidate pleiotropic loci were tested for replication in an independent validation cohort

of the different genetic ancestry (YRI; n = 10,000–35,000). The candidate loci were identified

by the JLIM/cFDR consensus method, MetABF and CPBayes. The consensus method (red

line), by taking the intersection between JLIM p< 0.01 and cFDR p< 0.01, showed the empir-

ical false positive rate of 0.0038 in simulated H0 dataset. Bayesian posterior thresholds for

MetABF (green) and CPBayes (purple) calibrated using H0 loci to match the false positive rate

of the consensus method. The 2,500 GWAS peaks consist of the loci simulating no causal effect

for underpowered traits (H0) and those simulating the same causal effect between two traits

(H1) or distinct causal effects (H2). The proportion of H0 varied to (A) 0%, (B) 10%, (C) 20%

and (D) 30%, and the remaining loci were split to H1 and H2 at the ratio of 1:19. In all panels,
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the effect sizes of causative variants are correlated with ρ = 0.7 under H1 but uncorrelated

under H2. Bonferroni correction was applied on replication tests. The shaded area denotes the

95% CIs. In (E), the fraction of H1 among replicated loci is compared among three methods

when the proportion of H0 is 30% (similar for different proportions of H0).

(TIF)

S15 Fig. Simulated power of multi-trait meta-analysis compared to pairwise analysis. Ten

well-powered traits and one underpowered trait were simulated under H0, H1 and H2. One of

the well-powered traits is ascertained to have a genome-wide significant association peak, and

the rest of well-powered traits were randomly decided to have the same or distinct causative

variants by sampling from a binomial distribution Binom(n = 9, p = 1/20). The underpowered

trait harbors no causative variant, the same causative variant or distinct causative variant

depending on whether it is simulating H0, H1 or H2. Effect sizes of all traits sharing the same

causative variant were sampled together from a multivariate normal distribution with the cor-

relation parameter of 0.7. Effect sizes of traits simulating distinct causative variants were sam-

pled independently. GWAS association statistics at the focal SNP were generated with the

sample sizes of n = 150,000 for the well-powered traits and n = 10,000 for the underpowered

trait. The validation cohort of the same ancestry was simulated with the sample sizes of

n = 10,000 to 35,000. From these simulated H0, H1 and H2 loci, a total of 2,500 GWAS loci

were randomly selected at the proportions of 30%, 3.5% and 66.5%, respectively (H1:H2 ratio

of 1:19). (B) We applied iGWAS, CPBayes and MetABF on these data. Dashed lines indicate

pairwise analyses for which only one genome-wide significant well-powered trait was com-

pared with an underpowered trait. Solid lines indicate multi-trait analyses using the full set of

ten well-powered traits and one underpowered trait. Candidate pleiotropic loci were selected

for replication analysis at the cutoffs of p-value of 0.01 (iGWAS), or equivalent posterior prob-

ability thresholds calibrated in the H0 dataset (CPBayes and MetABF). Bonferroni correction

was applied on replication tests in the validation cohort.

(TIF)

S16 Fig. Pleiotropic loci identified by the intersection of JLIM and cFDR are enriched with

SNPs that nominally replicate out of sample. The plot shows the fractions of randomly

selected and putative pleiotropic loci with OSA associations that are nominally replicated in

the meta-analyzed independent validation cohort (S6 Table).

(TIF)

S1 Table. Sample sizes of discovery cohorts used for the pleiotropy analysis.

(XLSX)

S2 Table. Clinical traits used for the pleiotropy analysis.

(XLSX)

S3 Table. Mendelian randomization analysis p-values testing effect of exposure on out-

come.

(XLSX)

S4 Table. Overall number of total tests, identified pleiotropic loci, and nominally repli-

cated signals.

(XLSX)

S5 Table. List of identified pleiotropic loci and their replication p-values for the corre-

sponding OSA traits (JLIM FDR < 0.2).

(XLSX)
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S6 Table. Sample sizes of validation cohorts used for the replication study.

(XLSX)

S7 Table. Full results of pleiotropy tests between eQTLs and OSA traits in three known

OSA GWAS loci at the eQTL p-value < 5e-8.

(XLSX)
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tality: results from the Wisconsin Sleep Cohort Study. Am J Resp Crit Care. 2012; 186(2):190–4. https://

doi.org/10.1164/rccm.201201-0130OC PMID: 22610391

13. Kendzerska T, Gershon AS, Hawker G, Leung RS, Tomlinson G. Obstructive Sleep Apnea and Risk of

Cardiovascular Events and All-Cause Mortality: A Decade-Long Historical Cohort Study. Plos Med.

2014; 11(2):e1001599. https://doi.org/10.1371/journal.pmed.1001599 PMID: 24503600

14. Oldenburg O, Wellmann B, Buchholz A, Bitter T, Fox H, Thiem U, et al. Nocturnal hypoxaemia is associ-

ated with increased mortality in stable heart failure patients. Eur Heart J. 2016; 37(21):1695–703.

https://doi.org/10.1093/eurheartj/ehv624 PMID: 26612581

15. Nagayoshi M, Punjabi NM, Selvin E, Pankow JS, Shahar E, Iso H, et al. Obstructive sleep apnea and

incident type 2 diabetes. Sleep Med. 2016; 25:156–61. https://doi.org/10.1016/j.sleep.2016.05.009

PMID: 27810258

16. BaHammam AS, Kendzerska T, Gupta R, Ramasubramanian C, Neubauer DN, Narasimhan M, et al.

Comorbid depression in obstructive sleep apnea: an under-recognized association. Sleep Breath.

2016; 20(2):447–56. https://doi.org/10.1007/s11325-015-1223-x PMID: 26156890
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