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ABSTRACT OF THE DISSERTATION 

 

Large-eddy simulation, atmospheric measurement and inverse modeling of greenhouse 

gas emissions at local spatial scales 

 
by 

 
Anders Andelman Nottrott 

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering) 

University of California, San Diego 

2014 

Professor Jan Kleissl, Chair 

 

Anthropogenic greenhouse gas (GHG) emissions enhance the atmospheric 

greenhouse effect, tend to increase the average global temperature, and contribute to 

global climate change. Those consequences motivate the establishment of regulatory 

frameworks to control and reduce GHG emissions. The credibility of emissions 

regulations depends on reliable, independent methods for long-term monitoring, 

verification and accounting of the actual emissions of market participants. Therefore the 

objectives of the present study are: (1) to evaluate the performance of state of the art trace 
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gas dispersion models for the atmospheric boundary layer; (2) to develop novel 

measurement and modeling techniques for quantifying GHG emissions from spatially 

distributed sources using a top-down approach. Top-down methods combine atmospheric 

measurements of GHG concentration with meteorological data, and inverse transport 

models to quantify emissions sources. 

The ability of Weather Research and Forecasting, large-eddy simulation (WRF-

LES) to model passive scalar dispersion from continuous sources in the atmospheric 

boundary layer was investigated. WRF-LES profiles of mean and fluctuating 

concentration in the daytime convective boundary layer were similar to data from 

laboratory experiments and other LES models. Poor turbulence resolution near the 

surface in neutral boundary layer simulations caused under prediction of mean dispersion 

in the crosswind direction, and over prediction of concentration variance in the surface 

layer. WRF-LES simulations also showed that the concentration intermittency factor is a 

promising metric for detecting source location using atmospheric measurements. 

A source determination model was developed to predict the location and strength 

of continuous, surface level, trace gas sources using concentration and turbulence 

measurements at two locations. The need for measurements at only two locations is 

advantageous for GHG monitoring applications where large sensor arrays are unfeasible 

due to high equipment costs and practical constraints on sensor placement. Atmospheric 

measurements of turbulence and methane concentration made during an outdoor, 

controlled release experiment were used to demonstrate the feasibility of the source 

determination model. The model predicted trace gas flux with less than 50% uncertainty, 
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and provided an upper bound for fluxes from localized sources. The model can be used 

for detection and continuous, long-term monitoring of fugitive GHG emissions.



 

1 

1. Introduction 

1.1 Objective of the dissertation 

 The objectives of the present study are: (1) to evaluate the performance of state of 

the art trace gas dispersion models for the atmospheric boundary layer; (2) to develop 

novel measurement and modeling techniques for quantifying greenhouse gas emissions 

from spatially distributed sources using a top-down approach. The models and 

experiments in this study considered trace gas emissions from continuous, isokinetic, 

neutrally buoyant sources, and all results apply to atmospheric boundary layer turbulence 

over flat, homogeneous terrain. Chapter 2 describes an application of the Weather 

Research and Forecasting, Large Eddy Simulation (WRF-LES) to model trace gas 

dispersion in the atmospheric boundary layer. Chapter 2 is based on physical modeling 

techniques that directly simulate large scale turbulence characteristics to solve the 

forward dispersion problem. Chapter 3 describes a source determination method that 

combines atmospheric measurements of trace gas concentration and turbulence at two 

locations with an inverse dispersion model, to locate and quantify emissions from 

distributed sources. The source determination method in Chapter 3 is based on a quasi-

analytical, Gaussian footprint model that solves the inverse dispersion problem. Analysis 

of concentration and turbulence measurements obtained during an outdoor, methane 

controlled release experiment are presented in Chapter 4. The feasibility of the source 

determination method developed in Chapter 3 was assessed using data from the field 

experiment.
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1.2 Motivation 

1.2.1 The atmospheric greenhouse effect 

Radiative energy from the sun drives the Earth-atmosphere system, and Earth’s 

atmosphere plays a vital role in regulating the climate of our planet through the 

atmospheric greenhouse effect. The atmospheric greenhouse effect is simply defined as 

“the infrared radiation energy trapped by atmospheric gasses and clouds” (Raval & 

Ramanathan, 1989). Approximately 69% of shortwave (solar) radiation incident at the 

top of the atmosphere is absorbed by the Earth-atmosphere system and transformed into 

thermal energy (Kiehl & Trenberth, 1997). Longwave (thermal) radiation at the surface 

of the Earth is trapped and re-radiated by the atmosphere. The amount of heat trapped at 

the surface depends on total radiative forcing. Total radiative forcing is generally a 

function of the atmospheric concentration of greenhouse gasses, aerosols (i.e. fine 

particles suspended in the atmosphere), land surface changes (e.g. deforestation) and 

natural events (e.g. volcanic eruptions). Those variables are drivers of global climate 

change and interact to produce complex climate feedbacks.  

A gas that absorbs radiative energy in the thermal infrared band (wavelengths 

approximately 5.6 μm to 1 cm) and enhances the atmospheric greenhouse effect is 

referred to as a greenhouse gas (GHG). Water vapor (H2O) and carbon dioxide (CO2) are 

strong GHGs responsible for approximately 60% and 26% of the clear sky atmospheric 

radiative forcing, respectively (Kiehl & Trenberth, 1997). Methane (CH4), nitrous oxide 

(N2O) and ozone (O3) are also GHGs and contribute most of the remaining atmospheric 

radiative forcing. H2O, CO2, CH4, N2O and O3 were the primary GHGs present in the 

atmosphere during preindustrial times, i.e. before the year 1750. Anthropogenic processes 
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(such as energy production, transportation, and manufacturing) emit CO2, CH4 and N2O, 

and also produce many additional GHGs which were not present in the preindustrial 

atmosphere (Ramanathan et al, 1985). The focus of this work is on quantifying 

anthropogenic emissions of greenhouse gasses at local spatial scales of O(1 km2). 

Recent atmospheric measurements of CO2, CH4 and N2O have revealed 

significant concentration increases for those gasses during the last century. The annual 

change in the global mean CO2 concentration increased from 0.7 ppm yr-1 in the year 

1960 to 1.8 ppm yr-1 in 2005. In 2013 the atmospheric concentration of CO2 measured at 

Mauna Loa Observatory in Hawaii surpassed 400 ppm (Keeling et al, 2013), more than 

100 ppm greater than in the year 1750. The increase in atmospheric CO2 was primarily 

attributed to emissions from fossil fuel combustion and effects of land use changes on 

plant and soil carbon. Atmospheric concentration of CH4 was about 1.77 ppm in 2005, 

approximately twice the preindustrial level. The increase in atmospheric CH4 was mostly 

caused by anthropogenic emissions from cultivation of ruminant animals, rice agriculture, 

biomass burning and industrial emissions. Atmospheric concentration of N2O was about 

0.319 ppm in the year 2005, about 18% greater than the preindustrial level. Increased 

atmospheric concentration of N2O is primarily due to agriculture and associate land use 

change, although the relative contribution from individual anthropogenic source remains 

uncertain (IPCC, 2007). 

Each GHG species has unique thermal radiative properties and a different 

atmospheric residence time. Therefore, the integrated radiative forcing over a specified 

time interval is different for every GHG. The global warming potential (GWP) of a GHG 

quantifies the potential climate impact of long-lived GHGs, and is a useful metric to 
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compare the relative climate impacts of different gasses. CO2, CH4 and N2O are 

considered long-lived GHG species because they have atmospheric residence times of 

O(1-100 yr). The GWP is referenced against CO2 (the most abundant GHG) so that CO2 

has a GWP of 1 over all time scales. The 20-year GWP of CH4 and N2O are 72 and 289, 

respectively (IPCC, 2007).  

1.2.2 Regulation of anthropogenic GHG emissions 

GHG emissions from human activity enhance the greenhouse gas effect, tend to 

increase the average global temperature and contribute to global climate change. In that 

context, humanity has a collective interest in monitoring, verification and accounting of 

GHG emissions. Trading of carbon emissions credits and carbon taxes are the two most 

widely implemented frameworks for the regulation and control of GHG emissions (Ekins 

& Barker, 2002). 

In the former strategy, which is often referred to as “Cap-and-Trade”, a regulatory 

agency limits the total allowable GHG emissions within their jurisdiction and equally 

distributes emissions credits (permits) among producers that emit GHGs. Producers that 

emit less than their GHG quota trade (sell) excess credits in a regulated market to 

producers that emit more than their GHG quota. Year-over-year reductions in the total 

allowable GHG emissions within the market are enforced by the regulatory agency to 

achieve long term reductions in GHG emissions. California’s Global Warming Solutions 

Act (California AB 32), for example, established a GHG Cap-and-Trade program which 

includes an enforceable GHG emissions cap and tradable permits to large GHG emitters 

such as refineries, power plants, and industrial facilities (CARB, 2013). 
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A carbon tax is an indirect tax levied on GHG (carbon) emissions. A regulatory 

agency sets the price for carbon (GHG) emissions and producers pay fees based on the 

mass of GHGs they emit. A carbon tax is considered an indirect tax because it is linked to 

a market externality (i.e. air pollution) rather than income. The carbon tax system 

incentivizes reduction of total GHG emissions because producers pay fewer taxes when 

they reduce their GHG emissions. The Federal Council of Switzerland imposes a carbon 

tax on all fossil fuels (e.g. oil, natural gas). The price of carbon emissions was set at 60 

CHF (67 USD) per metric ton CO2 in the year 2014 (BAFU, 2013). 

The credibility of regulatory frameworks for control and reduction of GHG 

emissions depends on having a reliable method for independent verification and long-

term monitoring of the actual emissions of market participants. While long-term 

verification and monitoring is relatively straightforward for centralized GHG emissions 

sources, like power plants and refineries, it is complicated for distributed sources like oil 

and gas fields, where GHG sources from gas infrastructure, petroleum extraction and/or 

carbon sequestration operations are sparsely distributed over areas on the order of 1-1000 

km2. The development of a method to quantify GHG emissions from distributed sources 

using long-term, continuous measurements remains an open problem, and that is the 

focus of this work. 

1.2.3 Quantifying GHG emissions 

There are two methodologies for quantifying greenhouse gas (GHG) emissions, 

bottom-up and top-down. Bottom-up estimates combine a priori information about GHG 

emissions from known sources (e.g. energy production/consumption, industrial processes, 

agriculture, land use and waste handling) to develop temporal and spatial emissions 
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inventories. The EDGAR and EPA GHG databases are examples of bottom-up emissions 

inventories. Bottom-up inventories may be combined with atmospheric transport models 

(e.g. the WRF model; Sections 2.1.1 and 2.2.1) to estimate and forecast atmospheric 

concentration of GHGs (Petrón et al, 2012; Yver et al, 2013). Top-down estimates use 

direct atmospheric measurements of GHG concentration coupled with meteorological 

data and inverse transport models (see Sections 1.3.5, 3.2.2 and A.2) to quantify GHG 

emissions from a priori unknown sources (Humphries et al, 2012; Lewicki & Hilley, 

2012). 

There are advantages and disadvantages to each method. The bottom-up approach 

quantifies GHG emissions in the absence of atmospheric measurements, which is 

advantageous because existing measurements of GHG are sparse in both space and time. 

However, bottom-up inventories suffer from large uncertainties in reported emissions and 

the spatial distribution of emissions sources (Christen et al, 2011; Miller et al, 2013). 

Top-down estimates measure GHG concentration directly and have a high sensitivity to 

changes in the strength and distribution of actual sources (Lewicki & Hilley, 2012). The 

sparse spatiotemporal coverage of direct atmospheric GHG measurements has hindered 

the development of top-down methodologies. The lack of direct measurements has been 

primarily due to inadequacy of existing measurement equipment for field deployment, 

and the high cost of measurements (Keeling, 2008). The recent development of a robust, 

accurate and affordable cavity ring-down spectrometer (CRDS), and the associated field 

calibration systems (Crosson, 2008; Welp et al, 2012), has made accurate, long-term, 

continuous field measurements of GHGs feasible. With the proliferation of new 

technology and the availability of large volumes of continuous GHG concentration data a 
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new problem has arisen, namely a lack of capable modeling tools to interpret the 

measurements. This work is focused on the development of new top-down modeling and 

data analysis techniques to interpret long-term, continuous GHG measurements from 

stationary sensors, and obtain information about the location and strength of individual 

emissions sources. 

1.3 Background 

1.3.1 Governing equations for the atmospheric boundary layer 

The atmospheric boundary layer (ABL) defined as the part of the troposphere that 

is directly influenced by the earth’s surface, and is generally confined to the lowest 1-3 

km of the atmosphere (Stull, 1988). The ABL is characterized by complex turbulent flow 

and responds to surface forcings on timescales of O(1 hr). The state of the ABL is 

quantified by the governing equations of motion which describe the thermodynamic state 

of the ABL, conservation of mass, conservation of momentum, conservation of heat and 

moisture, and conservation of passive scalar quantities. 

The ideal gas law describes the thermodynamic state of gases in the ABL  

𝑃 = 𝜌𝑅𝑇𝑣 , 1.1 

where 𝑃 is air pressure, 𝜌 is the density of moist air, 𝑇𝑣 is the absolute, virtual air 

temperature, and 𝑅 is the ideal gas constant for dry air. The continuity equation 

(conservation of mass) is written 

𝜕𝑡𝜌 + 𝜕𝑗(𝜌𝑢𝑗) = 0 , 1.2 

where 𝑢𝑗  is the component of fluid velocity in the 𝑗𝑡ℎ direction, 𝜕𝑡 denotes a time 

derivative, 𝜕𝑗 denotes a gradient in the 𝑗𝑡ℎ direction and 𝑗 ∈ 𝒁 = [1,3], and summation 
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over j is implied. Assuming normal ABL conditions Businger (1982) showed that Eq. 1.2 

reduces to 𝜕𝑗𝑢𝑗 = 0. 

The Navier-Stokes equations are an application of Newton’s Second Law for 

conservation of momentum. The general form of the Navier-Stokes equations for the 

ABL is 

𝜕𝑡𝑢𝑖 + 𝑢𝑗𝜕𝑗𝑢𝑖 = −𝛿𝑖3𝑔 − 𝑓𝑐𝜀𝑖𝑗3𝑢𝑗 −
1
𝜌
𝜕𝑖𝑝 + 𝜈𝜕𝑗2𝑢𝑖 . 1.3 

𝑔 is gravitational acceleration, 𝑓𝑐 is the Coriolis parameter, 𝑝 is pressure and 𝜏𝑖𝑗 is the 

stress tensor. 𝛿𝑖𝑗 is the Kronecker Delta and 𝜀𝑖𝑗𝑘 is the Alternating Unit Tensor. Einstein 

summation notation is used in Eq. 1.3 and 𝑖, 𝑗 ∈ 𝒁 = [1,3]. The coordinate system for Eq. 

1.3 is defined for flat terrain so that the 𝑖 = 1 direction is aligned with the mean wind 

direction and normal to the gravitational acceleration vector, 𝑖 = 2 is normal to the mean 

wind direction and the gravitational vector, and 𝑖 = 3 is aligned with the gravitational 

acceleration vector. The first term in Eq. 1.3 represents momentum storage and the 

second term describes advection of momentum by the mean wind. The third term defines 

the gravitational acceleration vector in the 𝑖 = 3 direction. The fourth term describes the 

influence of the earth’s rotation on the ABL flow using the f-plane approximation. The 

fifth term describes pressure-gradient forces that drive the mean wind. The sixth term 

represents the influence of viscous stresses assuming the ABL flow behaves as a 

Newtonian, incompressible fluid. 

The conservation equations for heat and moisture are applications of the First Law 

of Thermodynamics and describe the contribution of sensible and latent heat fluxes to the 

thermodynamic state of the ABL. These equations are important for quantifying heat and 
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moisture fluxes between the surface to atmosphere, and the reader is referred to Stull 

(1988) for details of their derivation. Conservation of passive scalar quantities (i.e. trace 

gasses) is discussed in Section 1.3.3. 

Although Eq. 1.3 is a complete description of the ABL flow, its form provides 

little insight into the nature of ABL turbulence. A more useful form of Eq. 1.3 can be 

obtained by decomposing the velocity vector and pressure into mean and fluctuating 

(turbulent) components using the Reynolds averaging technique. 

𝑢𝑖 = 𝑢𝚤� + 𝑢𝑖′ 1.4a 

𝑝 = �̅� + 𝑝′ 1.4b 

The over-bar in Eq. 1.4 represents a time averaged quantity and the prime symbol denotes 

an instantaneous fluctuation or deviation from the time averaged quantity. Substituting 

these decomposed variables into Eqs. 1.3 and taking a time-average yields a momentum 

conservation equation for the mean velocity in the turbulent ABL. 

𝜕𝑡𝑢𝚤� + 𝑢𝚥�𝜕𝑗𝑢𝚤� = −𝛿𝑖3𝑔 − 𝑓𝑐𝜀𝑖𝑗3𝑢𝚥� −
1
�̅�
𝜕𝑖�̅� + 𝜈𝜕𝑗2𝑢𝚤� − 𝜕𝑗𝑢𝚤′𝑢𝚥′������� 1.5 

Eq. 1.5 is called the Reynolds Averaged Navier-Stokes (RANS) equation. The 

interpretation of the first six terms in Eq. 1.5 is analogous to Eq. 1.3, but for the mean 

velocity. The last term in Eq. 1.6 describes the divergence of the turbulent momentum 

flux, or the influence of the Reynolds’ stress on the motion of the mean fluid. Recasting 

Eq. 1.3 in RANS form shows that turbulent motions in the ABL have a significant 

contribution to the mean flow in the ABL. 
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Turbulence kinetic energy (TKE) is a measure of turbulence intensity defined as 

�̅� = 0.5𝑢𝚥′𝑢𝚥′�������, where summation over 𝑗 is implied. The TKE budget equation describes 

the physical processes that generate turbulence (Stull, 1988). 

𝜕𝑡�̅� + 𝑢𝚥�𝜕𝑗�̅� = 𝛿𝑖3
𝑔
�̅�𝑣
�𝑢𝚤′𝜃𝑣′�������� − �𝑢𝚤′𝑢𝚥′��������𝜕𝑗𝑢𝚤� − 𝜕𝑗𝑢𝚥′𝑒����� −

1
�̅�
𝜕𝑖𝑢𝚤′𝑝′������ − 𝜀 1.6 

�̅�𝑣 in Eq. 1.6 is the mean virtual potential temperature. The first term in Eq. 1.6 is the 

local TKE storage term and the second term describes advection of TKE with the mean 

wind. The third term in Eq. 1.6 is the buoyant production term which describes 

contribution of heat flux to turbulent production or loss. Buoyant production of 

turbulence occurs over land during the day when the surface is warmer than the air due to 

solar heating. Buoyant destruction of turbulence occurs at night over land when the 

surface is cooler than the air. The fourth term is the mechanical shear production term. 

The vertical momentum flux is negative in the ABL due to surface drag. Therefore the 

fourth term in Eq. 1.6 tends to increase TKE. The fifth term describes the transport of 

TKE by turbulent motions in the fluid. The sixth term is the pressure correlation term 

which quantifies how TKE is redistributed in the flow by pressure perturbations. The last 

term in Eq. 1.6 represents the viscous dissipation of TKE which is always a loss term. 

1.3.2 Atmospheric boundary layer stability 

The structure of ABL turbulence depends on the atmospheric stability condition, 

which is generally a function of buoyant and shear forces. During the daytime solar 

radiation heats the ground and creates an unstable layer near the surface which drives 

convective circulation in the bottom ~10% of the ABL. That region is known as the 

surface layer (SL) or the constant flux layer. Above the SL is the mixed layer (ML) 



11 
 

 
 

which is characterized by large thermals (updrafts and downdrafts) and roll vortices. The 

ML is also impacted by mesoscale convection patterns. The top of the boundary layer is 

marked by a strong capping inversion, which inhibits vertical motion, traps pollutants and 

may produce gravity waves (Driedonks & Tennekes, 1984). At night the ground is 

usually cooler than the air which creates stable stratification that inhibits vertical motions. 

Turbulence in the stable boundary layer (SBL) is sporadic and driven by wind shear. 

Stable stratification causes flattening of vertical eddies, and produces large horizontal 

vortices (Karman-vortex streets) and gravity waves (Etling, 1990). During early morning 

and late evening the heat flux at the surface is nearly zero and the ABL stratification 

becomes neutral. The neutral ABL is a relatively transient state compared to the 

convective and stable regimes, and is characterized by strong shear stress in the surface 

layer. TKE in the neutral ABL is maintained by shear production (Grant, 1992). 

Atmospheric stability is quantified in terms of the TKE budget equation (Eq. 1.6). 

The flux Richardson number (𝑅𝑖𝑓) is a dimensionless ratio of the buoyant production to 

shear production terms (Stull, 1988). 

𝑅𝑖𝑓 =

𝑔
�̅�𝑣
�𝑢𝚤′𝜃𝑣′��������

�𝑢𝚤′𝑢𝚥′��������𝜕𝑗𝑢𝚤�
 1.7 

The critical value of 𝑅𝑖𝑓 = 1. A flow is dynamically unstable when 𝑅𝑖𝑓 > 1, and 

dynamically stable when 𝑅𝑖𝑓 < 1. 𝑅𝑖𝑓 = 0 for neutral flows. 

A dimensionless stability parameter for the surface layer (𝜁) can be derived by 

multiplying the buoyant production term in Eq. 1.6 by −𝜅𝑧/𝑢∗3, where 𝑧 ≡ 𝑥3 is the 

vertical direction, 𝑢∗ ≡ ��𝑢1′𝑢3′���������
𝑠
2

+ �𝑢2′𝑢3′���������
𝑠
2
�
1/2

  is the friction velocity (i.e. surface 
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shear stress; the 𝑠 subscript denotes a value at the surface) and 𝜅 ≈ 0.4 is the von Kármán 

constant. 

𝜁 =
−𝜅𝑧𝑔(𝑢𝚤′𝜃𝑣′�������)𝑠

�̅�𝑣𝑢∗3
≡
𝑧
𝐿

 1.8a 

𝜁 is the ratio of two length scales and provides the definition of the Obukhov length (𝐿). 

𝐿 =
−�̅�𝑣𝑢∗3

𝜅𝑔(𝑢𝚤′𝜃𝑣′�������)𝑠
 1.8b 

𝜁 > 0 in the stable boundary layer, 𝜁 < 0 in the convective SL and 𝜁 = 0 in the neutral 

SL. A value of 𝜁 in the range -0.5 to -0.05 indicates forced (mixed) convection and 

𝜁 < −1 in strongly convective conditions. 

1.3.3 Turbulent dispersion 

Dispersion of trace gasses in the atmospheric boundary layer is driven by 

turbulent diffusion (Roberts & Webster, 2002), a topic pioneered by GI Taylor in 1922. 

Scalar (i.e. trace gas) diffusion in fluid flows is governed by the advection-diffusion 

equation 

𝜕𝑡𝑐 + 𝑢𝑗𝜕𝑗𝑐 = 𝐷𝜕𝑗2𝑐 + 𝑄𝑛 , 1.9 

where 𝑐 is the scalar concentration, 𝑢 is the fluid velocity, 𝐷 is the molecular diffusivity, 

𝜕𝑡 denotes a time derivative, 𝜕𝑗 denotes a gradient in the 𝑗𝑡ℎ direction and summation 

over 𝑗 ∈ [1,3] is implied. 𝑄𝑛 is a general source term. Taylor’s Fickian approach leads to 

the definition of the eddy diffusivity coefficient. This result is obtained by a Reynolds 

decomposition of the velocity (Eq. 1.4a) and concentration 𝑐 = 𝑐̅ + 𝑐′. Substituting these 

decomposed variables into Eq. 1.9 and taking a time-average yields a conservation 

equation for scalar transport in turbulent flows. 
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𝜕𝑡𝑐̅ + 𝑢𝚥�𝜕𝑗𝑐̅ = 𝐷𝜕𝑗2𝑐̅ − 𝜕𝑗𝑢𝚥′𝑐′����� + 𝑄𝑖 1.10 

Eq. 1.10 can be simplified by the assumption that, in many flows (and away from 

boundaries), the turbulent diffusion is much greater than the molecular diffusion, i.e. 

𝑢𝚥′𝑐′������ ≫ 𝐷𝜕𝑗𝑐̅. This simplification leads to Eq. 1.11 which is applicable to the atmospheric 

boundary layer (ABL). 

𝜕𝑡𝑐̅ + 𝑢𝚥�𝜕𝑗𝑐̅ = −𝜕𝑗𝑢𝚥′𝑐′����� + 𝑄𝑖 1.11 

The scalar flux density terms are then parameterized by eddy diffusivity coefficients (𝐾), 

𝑢𝚥′𝑐′����� = −𝐾𝑗𝜕𝑗𝑐̅. 1.12 

Eq. 1.12 is a simple and useful model analogous to Fick’s first law of diffusion, because 

the scalar flux density is proportional to the mean scalar concentration gradient. Although 

eddy diffusivity coefficients are flow dependent and are not known a priori, Richardson 

(1926) proposed the now well-known 4/3 power law for the eddy diffusivity, 

𝜀 = 𝛼𝑙𝑐
4/3, 1.13 

where 𝑙𝑐 is the length scale of the particle clouds size and 𝛼 is a constant of 

proportionality. This self-similarity relationship was confirmed in field experiments 

(Stommel, 1949; Okubo, 1971) and by rigorous mathematical analysis (Batchelor, 1952), 

however, a wide range of values for the parameter 𝛼 have been observed (0.002 > 𝛼 >

0.01; Fischer, 1979). 

Eqs. 1.9, 1.10 and 1.11 are cast in a Eulerian reference frame so that the entire 

flow field is specified as a function of position 𝑥𝑖 and time 𝑡. In a Eulerian frame the 

observer is stationary and the fluid moves in time (relative to the observer) through 

specific locations in space. However, in the context of scalar diffusion it is perhaps more 
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natural to observe the flow from a Lagrangian reference frame. In a Lagrangian frame the 

observer follows the motion of an individual “fluid parcel” in space and time (i.e. the 

fluid parcel is stationary in time with respect to the observer) and individual fluid parcels 

are marked by a time-independent vector field 𝒃. The disadvantage of Eulerian equations 

in turbulent flows is that the Eulerian equations contain non-linear advection terms for 

the velocity 𝑢𝑖 and concentration 𝑐 fields. The unknown Reynolds stresses 𝑢𝚤′𝑢𝚥′�������  and 

scalar flux densities 𝑢𝚤′𝑐′������ arising from the non-linear terms require closure 

approximations that depend on the velocity and concentration fields, and so these 

approximations are not uniformly valid (Wilson & Sawford, 1996). For example, the 

parameterization in Eq. 1.12 assumes that the scalar flux density is linearly proportional 

to the mean concentration gradient and requires that the length scale of turbulence 𝑙𝑇 is 

small compared to the length scale of the concentration distribution 𝑙𝑐 (Deardorff, 1978). 

The Lagrangian form of the scalar mass conservation equation (Eq. 1.9) is 

𝒅𝒕𝑐 = 𝐷𝜕𝑗𝑐. 1.14 

In Eq. 1.14 the bold derivative symbol is used to denote the material (or Lagrangian) 

derivative. The advantage of Eq. 1.14 over Eq. 1.9 is that the non-linear advective terms 

are contained implicitly without approximation in the time derivative that follows the 

particle motion. The same simplification used in Eq. 1.11 can be applied yield 𝒅𝒕𝑐 = 0 

from Eq. 1.14, because molecular diffusion can be neglected in the infinite Reynolds 

number limit. Using that assumption the Lagrangian form of the scalar mass conservation 

equation simply states that individual fluid parcels retain their concentration as they move 

through the fluid in time and gives rise to the concept of “marked fluid parcels” (Wilson 
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& Sawford, 1996). Thus the displacement statistics of marked particles in a fluid flow are 

exactly related to the concentration statistics of a passive tracer dispersing in that flow. 

Working in a Lagrangian reference frame it is possible to define a timescale of 

diffusion. Taylor (1922) considered a stationary, homogeneous, isotropic turbulence field 

with passive tracer particles diffusing from a point source. The position 𝑋𝑖 of an 

individual particle after some time 𝑇 is a function of the particle’s Lagrangian velocity 

𝑈𝑖. 

𝑋𝑖 = � 𝑈𝑖𝑑𝑡
𝑇

0
 1.15 

Assuming that 𝑈𝑖 is a random function of 𝑡 due to the random nature of the turbulent 

flow, Eq. 1.15 may be interpreted as a “random walk” of the particle during time 𝑇. If 

many particles are released from the same point then it is expected that 〈𝑋𝑖〉 = 0, where 

the angle brackets denote an ensemble mean over many realizations of Eq. 1.15; clearly 

the variance 〈𝑋𝑖2〉 ≠ 0. An expression for 〈𝑋𝑖2〉 may be written as (Draxler, 1976), 

〈𝑋𝑖2〉 = 2𝑢𝚤′𝑢𝚤′�������� � 𝑅𝑖(𝜏)𝑑𝜏𝑑𝑡.
𝑡

0

𝑇

0
 1.16 

𝑢𝚤′𝑢𝚤′������� in Eq. 1.16 is the Eulerian velocity variance, 𝑅𝑖 is the Lagrangian autocorrelation 

function of the velocity and the subscript 𝑖 ∈ [1,3] represents a component of the three-

dimensional velocity vector. The Lagrangian autocorrelation function is defined as 

𝑅𝑖(𝜏) =
𝑈𝚤(𝑡)𝑈𝚤(𝑡 + 𝜏)������������������

𝑈𝚤(𝑡)𝑈𝚤(𝑡)������������� . 1.17 

In the limit of high Reynolds number turbulence, as in the ABL, the acceleration of fluid 

particles in the Lagrangian reference frame is autocorrelated over time scales on the order 
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of the Kolmogorov timescale 𝑡𝜂 = (𝜈 𝜖̅⁄ )1 2⁄ , where ν the kinematic viscosity of the fluid 

and 𝜖 ̅is the mean dissipation rate of turbulence kinetic energy. 𝑡𝑛is the characteristic 

timescale of viscous dissipation and is much smaller than the integral timescale of the 

energy-containing eddies in the flow (Borgas & Sawford, 1990). This observation 

permits the assumption that the 𝑋𝑖 and 𝑈𝑖 evolve as a Markov process (Wilson & 

Sawford, 1996). 

A straightforward definition of a Markov process was given by van Dop et al 

(1985): “A stochastic process is Markovian when its future state depends only on its 

present state (and some transition rule).” The conceptual interpretation of this assumption 

in the context of dispersion is that the future state (i.e. the position and velocity) of a 

particle transported in time within the flow depends only on the current state of the 

particle, and the local properties of the turbulence field in the vicinity of the particle. The 

Markovian assumption establishes the shape of Eq. 1.17 as decaying exponential that 

tends toward 𝑅𝑖 = 0 as 𝜏 → ∞ and 𝑅𝑖 = 1 at 𝜏 = 0. The timescale of Lagrangian motions 

(𝑇𝐿) is then defined from Eqs. 1.16 and 1.17 as 

𝑇𝐿 = � 𝑅𝑖𝑑𝜏
∞

0
. 1.18 

 

The Langevin equation (Eq. 1.19) applies to Markovian processes and is commonly 

employed to predict the evolution of Lagrangian particle trajectories in simulations of 

scalar dispersion. 

𝑑𝑈𝑖 = 𝑎𝑖(𝑿,𝑼, 𝑡)𝑑𝑡 + 𝑏𝑖𝑗(𝑿,𝑼, 𝑡)𝑑𝑊𝑗(𝑡) 
 

1.19 
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The Langevin equation is a stochastic differential equation (SDE) represented here in the 

most general form. 𝑎𝑖 and 𝑏𝑖𝑗 are known as the drift and diffusion terms, respectively and 

are functions of the turbulence field. 𝑑𝑊𝑗 is a vector component of Gaussian random 

noise that is uncorrelated with other components and uncorrelated in time (Wilson & 

Sawford, 1996); 𝑑𝑊𝑗 has a variance equal to 𝑑𝑡. Eq. 1.19 is integrated along with its 

companion 𝑑𝑋𝑖 = 𝑈𝑖𝑑𝑡 to obtain the Lagrangian particle velocity and position. The 

difficulty in modeling Eq. 1.19 is to determine the drift and diffusion coefficients for 

complex turbulent flows like the ABL. The first rigorously derived solution for Gaussian 

forcing in non-stationary, inhomogeneous turbulent flows was developed by Thomson 

(1987). 

1.3.4 Large-eddy simulation 

In three-dimensional large-eddy simulation (LES), large turbulent motions are 

directly represented, while the effects of small scale motions are parameterized with a 

subgrid-scale (SGS) model. Typically LES of the atmospheric boundary layer can be 

classified as LES with near-wall modeling, meaning that the filter and grid are 

sufficiently fine to resolve 80% of the turbulence kinetic energy away from the wall (the 

large scales), but the viscous layer at the wall is not resolved and must be modeled. Pope 

(2000) summarized the primary steps in LES. A filtering operation is performed to 

decompose the full turbulent velocity field 𝒖(𝒙, 𝑡) into the sum of the filtered (or 

resolved) component 𝒖�(𝒙, 𝑡) and a SGS (residual) component 𝒖′′(𝒙, 𝑡) so that 

𝑢𝑖 = 𝑢𝚤� + 𝑢𝑖′′, 𝑖 ∈ [1,3]. 1.20 

The filtering operation is defined as 
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𝒖�(𝒙, 𝑡) = �𝐺(𝒓,𝒙)𝒖(𝒙 − 𝒓, 𝑡)𝑑𝒓. 1.21 

In Eq. 1.21 G is the filter function and the integration is performed over the entire 

domain. The filtering operation is applied to the governing equations (Eqs. 1.2 and 1.3) to 

yield the LES equations (Deardorff, 1970). 

𝜕𝑖𝑢𝚤� = 0 1.22 

𝜕𝑡𝑢𝚤� + 𝜕𝑗𝑢𝚤�𝑢𝚥� = 𝜈𝜕𝑗𝜕𝑗𝑢𝚤� −
1
𝜌
𝜕𝑖𝑝� − 𝜕𝑗𝜏𝑖𝑗 + 𝐹𝚤� 1.23 

𝐹𝚤� is a general external forcing term. Closure of Eq. 1.23 is obtained by modeling the SGS 

stress tensor, 𝜏𝑖𝑗 = 𝑢𝚤𝑢𝚥� − 𝑢𝚤�𝑢𝚥� . The simplest model for the SGS stresses is the eddy-

viscosity model. However, a number of more advanced models have been developed for 

improved accuracy. Eqs. 1.22 and 1.23 are solved numerically for 𝒖�(𝒙, 𝑡), which is an 

approximation to the large-scale motions in one realization of a turbulent flow. In the 

context of computational methods for LES, the tilde accent can reflect the application of 

an explicit low-pass filter as defined by Eq. 1.21, or implicit filtering arising from the 

discrete solution of the LES equations on a finite numerical grid (Kirkil et al, 2012). The 

scalar advection-diffusion equation (Eq. 1.9) can also be solved in an LES framework to 

generate high spatiotemporal resolution concentration fields for scalars dispersing in the 

ABL. 

𝜕𝑡�̃� + 𝑢𝚥�𝜕𝑗�̃� = −𝜕𝑗𝑢𝚥′𝑐′� + 𝑄𝑛�  1.24 

LES explicitly represents effects of individual turbulent eddies on scalar dispersion over 

the full range of ABL stability conditions, capturing both plume meandering caused by 

large scale structures and small scale turbulent dispersion caused by smaller eddies. Thus 
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LES provides the ability to simulate realistic timeseries and time dependent statistics of 

scalar concentration and flux in the ABL, which is not possible with analytical or 

stochastic models. 

1.3.5 The “inverse problem” 

The “inverse problem” for atmospheric dispersion is the process of quantifying 

pollutant emissions from an unknown source (or sources) through the application of 

measurements and dispersion models. The inverse problem spans a wide range of 

applications from entomology to public health and safety, and is often addressed in the 

context of emergency assessment for industrial hazards and terrorism (Singh et al, 2013). 

However, inverse modeling also has important applications for monitoring, verification 

and accounting of GHG emissions. 

The source-sensor relationship describes the influence of upwind sources on 

downwind concentration measurements. The source-sensor relationship is quantified 

using footprint models and source determination models, both of which are inverse 

models. Due to the multi-scale and random nature of turbulence all inverse models for 

dispersion in the atmospheric boundary layer (ABL) are under-constrained spatially (and 

possibly temporally) by the availability of concentration measurements, and thus use 

deterministic or stochastic models that simulate atmospheric turbulence to quantify the 

source-sensor relationship. 

  An important distinction exists between footprint models and source 

determination models in the context of the inverse modeling. Footprint models are 

concerned with quantifying the relative influence of trace gas sources within the 

measurement region of a flux or concentration sensor, i.e. what the sensor “sees” 
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(Schmid, 2002). Source determination models are used to locate and quantify the rate of 

emissions from a source (or sources) for which location and strength are not known a 

priori (Zheng & Chen, 2011). Source determination models are used for localization of 

sources that have a finite spatial extent and inhomogeneous spatial distribution within the 

sensor footprint. Thus a footprint model is a component of a source determination model 

and additional data – such as temporal measurements of trace gas flux or concentration 

and atmospheric turbulence data – are necessary to infer the location and strength of 

sources within the sensor footprint. 

The source-sensor relationship depends on a number of factors. Aside from rather 

obvious variables, like wind direction and the distance and height difference between the 

sensor and source, Lecelrc and Thurtell (1990) showed that atmospheric stability has a 

strong influence on the source-sensor relationship. Stability, which is defined by the 

relative contributions of buoyant and shear production of turbulence, dictates the nature 

of turbulence within the ABL (see Section 1.3.2). Kljun et al (2002) investigated the 

source-sensor relationship for different ABL stability conditions by modeling flux and 

concentration footprints. They showed that the peak location and areal extent of the 

footprint function varied greatly as the ABL stability ranged from strongly convective 

through stable. Generally, the peak of the concentration footprint occurs closer to the 

sensor in convective conditions than in stable conditions. The 50% level source area is 

smaller in convective conditions than in stable condition. 
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2. Modeling passive scalar dispersion in the atmospheric boundary layer with 

WRF large-eddy simulation 

2.1 Introduction 

2.1.1 Motivation 

This chapter is an assessment of the capability of the Weather Research and 

Forecasting (WRF) Large-eddy simulation software (hereafter WRF-LES) to model 

passive scalar dispersion, and thereby GHG dispersion, in the atmospheric boundary 

layer (ABL). The advantage of WRF-LES over other LES codes is that WRF-LES is 

integrated within the broader WRF source code which has multi-scale (synoptic to 

mesoscale) weather simulation capabilities. Two-way nesting of mesoscale and local 

(LES) scale boundary conditions will be feasible for operational modeling in the near 

future (Talbot et al, 2012). This capability will enable realistic simulations of dispersion 

from distributed, local scale GHG emissions sources; a process which is significantly 

impacted by mesoscale forcing. A recent investigation of the influence of different 

subgrid-scale (SGS) stress models on ABL turbulence simulation in WRF-LES by Kirkil 

et al (2012) showed that representation of surface layer turbulence at the resolved scale is 

especially poor in WRF-LES, particularly in the neutrally stratified ABL. Poor 

representation of surface layer turbulence occurred regardless of the chosen SGS model 

and was attributed to excessive artificial diffusion in the numerical differencing scheme 

(E. Bou-Zeid, Personal communication, 2012). Thus the goals of this assessment are 

twofold. The first is to conduct a detailed investigation and validation of passive scalar 

dispersion in the ABL modeled using WRF-LES. The second is to understand how
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WRF-LES can be used as a modeling tool to interpret and derive source information from 

long-term GHG concentration time series measured in the ABL. 

The WRF-LES model and setup for numerical experiments are discussed in 

Section 2.2. Results of WRF-LES simulations are presented in Section 2.3. The vertical 

structure of boundary layer turbulence statistics is discussed in Sections 2.3.1 and 2.3.2, 

mean dispersion trajectories and concentration profiles investigated in Sections 2.3.3 and 

2.3.4 and concentration fluctuations are investigated in Sections 2.3.5 and 2.3.6. A 

discussion of the results is presented in Sections 2.4 and 2.5, respectively. Conclusions 

are summarized in Section 2.5. 

2.1.2 Literature review 

Wills & Deardorff (1976, 1981) conducted pioneering experiments on scalar 

dispersion in a laboratory scale model of the convective atmospheric boundary layer 

(CBL). Data from those experiments established trajectories for plume rise and spread in 

the CBL downwind of a localized point source of a pollutant. Wills & Deardorff (1976) 

demonstrated that Taylor’s frozen turbulence hypothesis can be applied to transform the 

dispersion field from a continuous point source (CPS) to that of an instantaneous line 

source (ILS). That result is important for numerical simulation of ABL dispersion 

because it can be leveraged to reduce computational cost in LES (see Section 2.2.3). 

Later experiments (Deardorff & Willis, 1984) investigated concentration fluctuations 

downwind of localized scalar sources in the CBL. Large concentration fluctuations 

occurred and the magnitude of those fluctuations decayed rapidly as a function of 

downwind distance from the source due to small scale mixing. Shaughnessy & Morton 

(1977) and Fackrell & Robbins (1982) studied dispersion from CPSs in neutrally 
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stratified boundary layers. Profiles of mean concentration and concentration fluctuations 

downwind of ground level sources in the neutral ABL maintain a self-similar shape, 

while dispersion fields from elevated releases preserve downwind self-similarity only in 

the crosswind direction. The nature of concentration fluctuations downwind of elevated 

point sources in the neutral ABL depends on the ratio of source size to characteristic 

length scale of turbulent structures (Fackrell & Robbins, 1982). However, this effect was 

less apparent in their data for ground level sources. Venkatram and Wyngaard (1988) 

present an excellent review of scalar dispersion in the ABL. 

ABL dispersion processes span a wide range of length scales, from the integral 

scale down to the smallest inertial scales and the dissipation range. The large-eddy 

simulation (LES) technique resolves turbulent structures down to the inertial scales and is 

well suited to investigate the multi-scale nature of dispersion. Nieuwstadt (1992) studied 

dispersion from a CPS in a LES of the CBL, and decomposed the dispersion field into 

two components: a small scale component due to the mixing action of inertial scale 

eddies and a meandering component caused by large scale motions in the ABL. 

Nieuwstadt found that meandering was the dominant driver of mean plume spreading 

near the source, but became small relative to the small scale component as the vertical 

and crosswind dimensions of the plume approach the integral length scale of the 

boundary layer. Henn & Sykes (1992) used LES to study concentration fluctuations 

downwind of a CPS (modeled as volume source at grid resolution) dispersing in a CBL. 

Henn & Sykes observed large variability in scalar concentration due to the formation of 

“concentration filaments” generated by vortical structures in the ABL turbulence field. 

Yee & Chan (1997) expanded the work of Henn & Sykes and developed a model 
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probability distribution function for concentration fluctuations using a gamma 

distribution. The LES study of Dosio et al (2003) investigated passive scalar dispersion 

over a wide range of stability conditions from near neutral to strongly convective and 

developed new parameterizations for mean dispersion that are valid from nearly-neutral 

through strongly convective conditions. 

2.2 Methodology 

2.2.1 Background 

The Weather Research and Forecasting model (WRF; Skamarock & Klemp, 

2008) is a community model developed by the National Center for Atmospheric Research 

(NCAR) and the National Oceanic and Atmospheric Administration (NOAA). WRF has 

multi-scale, nested simulation capability (from synoptic to local scales), includes real-

world land-use and topographic data, and has the capability to ingest regional-scale 

meteorological forcing data (i.e. data assimilation). WRF is designed to run on massively 

parallel computers, and it is well documented with a broad user base and support group. 

The Advanced Research WRF (ARW) implements a fully compressible, Euler non-

hydrostatic dynamics solver that is conservative for scalar variables. ARW can run in a 

LES mode (WRF-LES). 

 

Large-eddy simulation provides a framework to obtain turbulence data for ABL wind and 

scalar fields at greater spatiotemporal resolution than mesoscale atmospheric models or 

direct measurements. The LES technique directly resolves large turbulent motions in 

three-dimensions by computing a numerical solution to the filtered Navier-Stokes 

equations, while the effects of small scale motions are parameterized with a SGS model 
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(see Section 1.3.4). The filtered mass conservation and Navier-Stokes equations are 

(Deardorff, 1970) 

𝜕𝑖𝑢𝚤� = 0 , 2.1 

𝜕𝑡𝑢𝚤� + 𝜕𝑗𝑢𝚤�𝑢𝚥� = 𝜈𝜕𝑗𝜕𝑗𝑢𝚤� −
1
𝜌
𝜕𝑖𝑝� − 𝜕𝑗𝜏𝑖𝑗 + 𝐹𝚤� , 2.2 

where 𝑢𝚤�  is the 𝑖𝑡ℎ component of filtered velocity field, 𝑝� is the filtered pressure and 𝜏𝑖𝑗 is 

the subgrid-scale stress tensor. 𝜈 and 𝜌 are the fluid kinematic viscosity and density, 

respectively. 𝐹𝚤�   is a general forcing term, e.g. Coriolis force due the earth’s rotation. 𝜕𝑗 

represents a spatial derivative while 𝜕𝑡 is a derivative with respect to time. Einstein’s 

summation notation is used in Eqs. 2.1 and 2.2 where 𝑖, 𝑗 ∈ [1,2,3]. Closure of Eq. 2.2 is 

obtained by modeling 𝜏𝑖𝑗 (for more details of SGS models in WRF-LES see Kirkil et al, 

2012). Eqs. 2.1 and 2.2 are written for incompressible flow and represent an 

approximation of the compressible solution (in a Boussinesq approximation sense) that is 

solved in WRF-LES. The WRF-LES dynamical core uses finite differences (rather than a 

pseudospectral method) to compute spatial derivatives. Passive scalar dispersion is 

modeled in WRF-LES by solving the filtered advection-diffusion equation for the 

atmospheric boundary layer 

𝜕𝑡𝜙� + 𝑢𝚥�𝜕𝑗𝜙� = −𝜕𝑗𝑢𝚥𝜙� + 𝑆(𝑥𝑗), 2.3 

where 𝜙� is the resolved (filtered) scalar mass concentration, 𝑢𝚥𝜙�  is the SGS scalar mass 

flux and 𝑆(𝑥𝑗) is the continuous source function. Molecular diffusion is assumed to be 

negligible in the high Reynolds number limit. The SGS scalar flux is modeled as 

𝑢𝚥𝜙� = −𝐾𝜙𝜕𝑗𝜙�, where Kϕ is the SGS scalar eddy diffusivity coefficient. 
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Nieuwstadt (1992) defined the downwind trajectory of a scalar concentration field 

in terms of the centroid and first moment of the spatial distribution of the concentration 

field. The parameters used in this paper to describe the downwind plume trajectory in the 

x-z plane are (see Figure 2.1): the local (or instantaneous) plume centerline height (𝑧𝑙), 

the average plume centerline height (𝑧̅), the total vertical dispersion (𝜎𝑧), the total vertical 

dispersion relative to the source height (𝜎𝑧′), the spreading component about the local 

centerline height (𝑠𝑧) and the meandering component about the average centerline height 

(𝑚𝑧). Analogous parameters are defined for the crosswind trajectory in the x-y plane. The 

reader is referred to Nieuwstadt (1992) and Appendix A.1.1 for mathematical definitions 

of these variables. 

2.2.2 WRF configuration 

WRF ARW Version 3.3 was used in this study and the WRF-LES ‘namelist’ 

configuration is listed in Table 2.1. Fifth and third-order finite difference schemes for 

momentum and scalars were used in the horizontal and vertical directions, respectively. 

The third order Runge-Kutta scheme was used for time integration. The passive scalar for 

 
Figure 2.1: Schematic of a dispersing ILS illustrating parameters that describe the 
downwind trajectory of the scalar field. The x-axis is aligned with the mean wind 
𝑀 = (𝑢�2 + �̅�2)1/2. The parameters shown here are functions in the x-z plane, and 
equivalent parameters in the x-y plane are analogous. Adapted from Nieuwstadt (1992). 

 



27 
 

 

ABL dispersion simulations was activated by setting the ‘tracer_opt’ namelist parameter 

to a value of ‘2’. SGS diffusion for the scalar was enabled by adding a call to the 

‘horizontal_diffusion’ and ‘vertical_diffusion’ subroutines in ‘module_em.F’. A mass 

source of passive scalar was initialized by modifying the tracer variable loop in 

‘solve_em.F’ subroutine. Periodic lateral boundary conditions were enforced for the 

velocity, temperature and scalar, and a no penetration/absorption condition was enforced 

for the scalar at the lower and upper boundaries so that the total scalar mass in the 

domain was conserved. 

Table 2.1: Namelist configuration for WRF-LES 
Namelist Option Setting (Value) 

Turbulence and mixing (diff_opt) Mixing in physical space; full diffusion (2) 
Eddy coefficient (km_opt) 3D Smagorinsky first order closure (3) 

Subgrid-scale model (sfs_opt) Nonlinear backscatter and anisotropy (0) 
Damping layer option (damp_opt) w-Rayleigh damping (3) 

w-Rayleigh damping coefficient (dampcoef) 0.2 

Coriolis force (pert_coriolis) Coriolis only acts on wind departures from 
geostrophic balance (true) 

Lateral boundary conditions (periodic_x, 
periodic_y) Periodic lateral boundary conditions (true) 

Upper boundary condition (top_lid) Rigid lid (true) 
Surface layer option (sf_sfclay_physics) Monin-Obukhov scheme (1) 
Surface heat and moisture fluxes (isfflx) Specified surface heat flux (2) 
Scalar advection option (scalar_adv_opt) Positive-definite advection of scalars (1) 

 
2.2.3 Description of numerical experiments 

Seven simulation cases (five domain configurations) were run for a range of ABL 

stability conditions from neutral through strongly convective (Table 2.2) in flat, 

homogeneous terrain. The aerodynamic roughness length was 𝑧𝑜 = 0.15 m for all 

domains and the Coriolis parameters were 𝑓 = 8.5·10-5 Hz and 𝑒 = 0 Hz. All simulations 

were spun up until surface averaged shear stress and domain averaged turbulence kinetic 

energy were nearly constant in time. The upper 250 meters of the domain for the CBL 

cases was allocated as damping layer to prevent the reflection of gravity waves, and the 
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inversion height (𝑧𝑖; defined as the lowest point of the temperature inversion) ranged 

from about 900-1200 m depending on the surface heat flux and time in the simulation. 

The inversion strength was initialized to ∂T/∂z = 0.081 K/m beginning at the base of the 

inversion extending upward for a distance of 100 m. Above that height the inversion 

strength was initialized to ∂T/∂z = 0.003 K/m up to the top of the domain. Empirical 

testing of WRF-LES for the neutral ABL simulations demonstrated that a deep neutral 

boundary layer could not be maintained because turbulent mixing at the inversion caused 

warm air from above the inversion to be entrained downward into the boundary layer. 

This resulted in the formation of a stable temperature profile throughout the boundary 

layer after a few hours of simulation time. Therefore, a damping layer of thickness 250 m 

was applied at the top of the domain to maintain a deep neutral ABL and to simulate 

dynamic effects of a temperature inversion in the neutral ABL simulation. The domain 

resolution was varied to investigate the resolution dependence of concentration 

fluctuations and observed errors in turbulence fields. 

Table 2.2: Domain and boundary layer parameters for different numerical experiments in 
this study. Δz values are approximate because WRF uses vertical pressure coordinates. 
Simulation names are similar to Dosio et al (2003). Inversion heights in this table were 
initial values at the start of each simulation. 
Name Lx, Ly 

[m] 
Lz 

[m] 
Δx, Δy 

[m] 
Δz 
[m] 

Ug 
[m s-1] 

𝒘′𝜽′������
𝒔 

[m s-1 K-1] 
zi 

[m] 
u* 

[m s-1] 
w* 

[m s-1] 
L 

[m] 
B3 7680 1750 30 8 0.5 0.05 1000 0.12 1.19 -2.69 
B5 7680 1750 30 8 5 0.1 1000 0.28 1.48 -18.6 

B5HR 3040 1500 10 2.75 5 0.1 900 0.29 1.48 -19.2 
SB2 7680 1750 30 8 10 0.1 1000 0.49 1.48 -109 

SB2HR 3040 1500 10 2.75 10 0.1 900 0.50 1.48 -100 
N 8640 1067 30 8 15 0 815 0.6 0 -∞ 

NHR 7680 1067 15 4 15 0 815 0.6 0 -∞ 
 
Continuous point sources of a passive scalar were modeled as instantaneous line 

sources aligned parallel to the streamwise direction under the assumption of Taylor’s 
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hypothesis (Willis & Deardorff, 1976). This approach is applicable to domains that are 

spatially homogeneous in the horizontal directions and it reduces the computational cost 

of dispersion simulations. The simulation run time for dispersion at long downwind 

distances is reduced by approximately Lx/Mp using the CPS to ILS transformation (Lx/Mp 

is the amount of time required to advect the scalar plume across the entire streamwise 

dimension of the domain). Ensemble average statistics of scalar concentration at any 

downwind location can be computed from instantaneous streamwise spatial transects of 

scalar concentration taken at the appropriate moment in time. The transformation from 

CPS to ILS is also compatible with periodic boundary conditions because it eliminates 

the need for sponge boundary conditions for the scalar on the streamwise domain 

boundaries which are required to prevent recirculation of the scalar when simulation run 

times are greater than Lx/Mp. Different source heights (zs) were used for passive scalar 

releases to facilitate comparison of data from the present LES study with data from 

previous laboratory and numerical experiments. Source heights zs = 0.0033zi, 0.07zi, 

0.19zi were used in simulations B3 and B5, zs = 0.0033zi, 0.07zi in simulation SB2 and zs 

= 0.0043zi, 0.07zi in simulation N. zs = 0.07zi in simulation NHR and zs = 0.0033zi in 

simulations B5HR and SB2HR. Sources in domains B3, B5, SB2 and N were initialized 

using 1 grid cell in the crosswind horizontal direction and 2 grid cells in the vertical 

direction (Δy x 2Δz; after Henn & Sykes, 1992 and Dosio et al, 2003). Sources in 

domains B5HR and SB2HR were initialized with 3Δy x 6Δz. The source was initialized 

with 2Δy x 4Δz in domain NHR. The initial source volume and scalar mass were constant 

for all simulations, and sources were represented with more grid points in the higher 

resolution domains. 
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2.3 Results 

2.3.1 Variance profiles 

Figures 2.2 and 2.3 show normalized vertical profiles of the Reynolds stresses, 

temperature variance, kinematic heat flux for CBL and neutral ABL (cases B3, N and 

NHR) compared with data from established LES codes, laboratory experiments and 

aircraft data. Good agreement was observed between WRF-LES and validation data for 

the CBL (Figure 2.2). The peak in the vertical velocity variance occurred around 0.4zi 

and the vertical profile of kinematic heat flux was linear over the depth of the boundary 

layer. Agreement between WRF-LES and validation data was also reasonable for the 

neutral ABL simulations (Figure 2.3). The magnitude of the maximum streamwise 

velocity variance in WRF-LES is larger than the other data, however, Moeng et al (2007) 

observed streamwise velocity variances as large as 9𝑢∗2 in WRF-LES (using a less 

realistic SGS model). The peak in the vertical velocity variance occurred above the 

surface layer at a height of 0.2zi in the low resolution domain (case N), but occurred 

closer to the surface around 0.1zi in the high resolution domain (case NHR). This 

observation is consistent with the results of Kirkil et al (2012), and indicates that the SGS 

model is under-dissipative resulting in large 𝜕𝑢� 𝜕𝑧⁄ . Bou-Zeid et al. (2005) demonstrated 

that the Lagrangian scale-dependent dynamic (LASD) SGS model produces a streamwise 

velocity and variance profile consistent with similarity theory and observations, however, 

the application of the LASD SGS model in WRF-LES did not significantly improve the 

vertical profile of vertical velocity variance (Kirkil et al, 2012). The variance profiles in 

Figure 2.3 are all within the range of the LES code inter-comparison presented in Andren 

et al (1994). 
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Figure 2.2: Vertical profiles of resolved velocity variance, temperature variance and heat 
flux normalized by the convective velocity scale and/or convective temperature scale for 
the CBL (WRF-LES case B3). WRF-LES resolved scales (solid line); LES of Raasch & 
Etling (1991; crosses); water channel data of Willis & Deardorff (1976; triangles); 
aircraft data of Lenschow et al (1980; dots). 

 
 

    
Figure 2.3: Vertical profiles of velocity variance and momentum flux normalized by the 
surface shear stress in the neutral ABL (WRF-LES case N). WRF-LES simulation N 
resolved scales (solid line) and subgrid-scales (dotted line); WRF-LES simulation NHR 
resolved scales (dash-dotted line); LES of Moeng & Sullivan (1994; crosses); WRF-LES 
using nonlinear backscatter and anisotropy SGS model with Δx = Δy = 32 m and Δz = 8 
m Kirkil et al (2012; triangles); aircraft data from Grant (1986; dots). 

 
2.3.2 Validity of CPS to ILS transformation 

Continuous point source releases of passive scalars were modeled as 

instantaneous line sources under the assumption of Taylor’s hypothesis. The 

transformation between downwind distance and time is 𝑥 = 𝑀𝑝𝑡, where 𝑀𝑝 is the mean 
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wind speed at the average vertical centerline height of the plume 𝑧̅. This transformation is 

only valid when the intensity of turbulent velocity fluctuations is small compared to the 

mean wind speed, i.e. 𝑢𝚤� 2 𝑀𝑝
2 ≪ 1� . Figure 2.4 shows vertical profiles of velocity 

variances divided by mean wind speed for all simulations. The assumption of Taylor’s 

hypothesis is not valid for case B3 but is reasonable for all other cases. Dosio et al (2003) 

found that although the CPS to ILS transformation was not strictly valid for their B3 case 

the mean downwind trajectory of the dispersion field matched experimental data quite 

well. Nevertheless, Figure 2.4 indicates that concentration fluctuations from the ILS 

dispersion field in the B3 boundary layer are not comparable to concentration fluctuations 

from a CPS released in the same turbulence field, so data from the B3 case was not used 

to investigate scalar concentration fluctuations. 

   
Figure 2.4: Vertical profiles of velocity variance to mean wind speed ratio for all 
simulation cases. B3 (short dash line), B5 (dash-dot line), SB2 (solid line) and N (long 
dash line). Data from the high resolution cases B5HR, SB2HR and NHR (not shown) are 
similar. 

 
2.3.3 Plume trajectories 

A dimensionless downwind distance parameter 

𝑋 =
𝑤∗
𝑧𝑖

𝑥
𝑀𝑝

=
𝑤∗
𝑧𝑖
𝑡, 2.4 
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is defined after Willis & Deardorff (1976), where x is the downwind distance from the 

source and t is the downwind travel time (consistent with the transformation described in 

Section 2.3.2). A modified dimensionless downwind distance Xm is defined by 

substituting the convective velocity scale in Eq. 2.3 with a mixed velocity scale wm. wm 

applies when the buoyant and shear turbulent production are of similar magnitude. 

Moeng & Sullivan (1994) proposed the relationship 𝑤𝑚3 = 𝑤∗3 + 5𝑢∗3. Figure 5 shows the 

components of mean dispersion parameters modeled with WRF-LES for a surface layer 

release in the CBL compared with data from laboratory experiments. The modeled mean 

dispersion parameters generally fall within the range of the experimental data, with the 

exception of the total horizontal crosswind dispersion (Figure 2.5c) which becomes 

smaller than the experimental data for X > 1.25. This behavior was also observed in the 

LES study of Dosio et al (2003). It is interesting that the contribution of the meandering 

component (my) to σy becomes constant downwind of X > 1.25 although σy continues to 

grow. This observation indicates that beyond X > 1.25 the horizontal crosswind 

dispersion is primarily driven by the spreading component of dispersion (sz).  
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Figure 2.5: Validation of mean dispersion parameters for a passive scalar release in the 
CBL (case B3) plotted as a function of dimensionless downwind distance X (Eq. 2.4). 
The source was located at X = 0 and zs = 0.07zi. a) Mean plume height, b) total vertical 
dispersion and vertical meandering component, and c) total horizontal crosswind 
dispersion and crosswind meandering component. WRF-LES results are plotted as 
continuous lines and experimental data are plotted as symbols; Willis & Deardorff (1976; 
dots), Briggs (1993; diamonds) and Weil et al (2002; crosses and triangles). Each line in 
Figure 2.5b,c shows a different component of dispersion, and the label above each line 
indicates the variable that corresponds to the appropriate component of dispersion (refer 
to Section 2.2.1, Figure 2.1 and Appendix A.1.1). 

 
Figure 2.6 shows mean dispersion trajectories downwind of point sources in 

moderately convective (case SB2) and neutral (case N) ABLs compared with results from 

the LES of Dosio et al (2003). The mean plume height (Figure 2.6a) and total vertical 

dispersion (Figure 2.6b) are in close agreement with Dosio et al for both the SB2 and N 

cases. The total horizontal crosswind dispersion (σy/zi; Figure 2.6c) for the WRF-LES 

SB2 case is similar to the Dosio et al data for Xm < 1.25, but begins to diverge farther 

downwind. However, σy/zi in the WRF-LES simulation N is significantly smaller than the 

Dosio et al data. We investigated the dependence of σy(Xm ) on SGS scalar flux by setting 

the −𝜕𝑗𝑢𝚥𝜙�  term in Eq. 2.3 to zero (Appendix A.1.2). Excluding the −𝜕𝑗𝑢𝚥𝜙�  term in case 

N caused a 5% decrease in σy(Xm ) at Xm  = 0.25. Including the −𝜕𝑗𝑢𝚥𝜙�  term, σy(Xm) was 

about 10% larger at Xm  = 0.25 for the surface layer release (zs = 0.07zi) in the NHR case 

compared to case N. The fact that σy(Xm) becomes larger and more accurate with 

a) b) c) 
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increasing resolution indicates a deficiency in the SGS model, likely an under prediction 

of Kϕ,h (see Section 2.4). 

   
Figure 2.6: Validation of mean dispersion parameters for a passive scalar release in cases 
SB2 and N plotted as a function of dimensionless downwind distance Xm (Eq. 2.4). The 
source was located at Xm = 0 and zs = 0.07zi. a) Mean plume height, b) total vertical 
dispersion, and c) total horizontal crosswind dispersion. WRF-LES results are plotted 
with continuous lines (SB2 long and short dash lines; N solid and dash-dot lines). WRF-
LES data are compared to LES data from Dosio et al (2003) plotted with crosses for SB2 
and circles for N. Each pair of lines in Figure 2.6b (long dash/solid and short dash/dash-
dot) shows a different component of dispersion. The label above indicates the variable 
that corresponds to the appropriate component of dispersion (refer to Section 2.1, Figure 
2.1 and Appendix A.1.1). 

 
2.3.4 Mean concentration profiles 

Figure 2.7 shows contours of dimensionless mean concentration 𝑐∗ =

𝑐̅(𝑥,𝑦, 𝑧)𝑧𝑖2𝑀𝑝/𝑆 for a surface layer source in the B3 simulation. Figure 2.7a is a vertical 

cross-section along the plume centerline, while Figure 2.7b shows total 𝑐∗ from the 

surface to the inversion height. The magnitude and shape of 𝑐∗ contours are very similar 

to the laboratory measurements of Willis & Deardorff (1976), although the plume width 

(Figure 2.7b) is slightly underestimated by WRF-LES for X > 1.25 (consistent with 

Figure 2.5c). Profiles of average scalar concentration in the CBL do not exhibit self-

similar behavior when normalized σy or σz, because CBL turbulence is dominated by 

large coherent structures and therefore non-Gaussian (for example refer to laboratory data 

in Willis & Deardorff, 1976). 

a) b) c) 
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Figure 2.7: Contours of dimensionless mean concentration 𝑐∗ = 𝑐̅(𝑥,𝑦, 𝑧)𝑧𝑖2𝑀𝑝/𝑆 for a 
surface layer (zs = 0.07zi) release in the B3 simulation. a) Vertical cross-section along the 
plume centerline; b) integrated over the z-direction from the surface to the inversion 
height. The dashed lines indicate the plume centerline (𝑧̅ and 𝑦�). 

 
Figure 2.8 shows vertical profiles of mean concentration along the plume 

centerline at different locations downwind of ground-level and surface layer sources 

released in case N. Figure 2.8a shows the expected self-similarity of the mean 

concentration field due to the presence of the ground. Consistent with the water channel 

experiments of Fackrell & Robins (1982), self-similarity does not occur in the vertical 

direction for surface layer releases (Figure 2.8b). Figure 2.9 confirms self-similarity of 

the crosswind horizontal concentration profiles in the neutral boundary layer simulation 

(Shaughnessy & Morton, 1977). The slight negative skewness apparent in Figure 2.9 

occurred because the mean wind direction was not exactly parallel to the direction of the 

ILS when the source was initialized due to the Coriolis force. Although the data shown in 

Figure 2.9 are for a surface layer source, self-similarity was also observed for the ground-

level source. 

a) b) 
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Figure 2.8: Vertical profiles of mean concentration at various downwind locations along 
the plume centerline. a) A ground-level source (zs = 0.0043zi), and b) a source in the 
surface layer (zs = 0.07zi) in case N. The mean concentration is normalized by the 
maximum mean concentration at each downwind location. Figure 2.8a: x/zi = 2.1 
(triangles); 3.0 (squares); 3.9 (diamonds); 4.7 (circles); 5.6 (leftward arrows); 6.5 (stars). 
A fit to data from Fackrell & Robbins (1982) is shown by the line in Figure 2.8a. Profiles 
in Figure 2.8b are offset by 𝑐̅/𝑐�̅�𝑎𝑥 = 1 for readability. 

 

  
Figure 2.9: Self-similarity of horizontal crosswind profiles of mean concentration at 
various downwind locations at the height of the plume vertical centerline (𝑧̅) for a surface 
layer (zs = 0.07zi) source in case N. The mean concentration is normalized by the 
maximum mean concentration (i.e. mean concentration at y = 0) at each downwind 
location. x/zi = 2.4 (triangles); 3.2 (squares); 4.0 (diamonds); 4.9 (circles); 5.8 (leftward 
arrows); 6.6 (stars). 

 
2.3.5 Concentration fluctuations 

Available data on concentration fluctuations in the CBL are somewhat 

unstructured making direct validation of the present LES experiments challenging. Figure 

2.10 shows vertical and horizontal profiles of normalized concentration variance at 

different distances downwind of an elevated release located at zs = 0.19zi in case B5. The 

variance profiles in Figure 2.10a illustrate downward motion of the plume (i.e. looping) 

a) b) 
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downwind of the source which is a characteristic feature of neutrally buoyant releases 

from elevated sources in the CBL (Henn & Sykes, 1992). Figure 2.10b shows crosswind 

horizontal profiles of concentration variance, normalized by the mean variance in the 

region |𝑦| < 0.25𝜎𝑦, at the centerline height of the plume. The WRF-LES model 

correctly captures the peak in the concentration variance that occurs in the range 0.5 <

𝑦/𝜎𝑦 < 1.5 (Venkatram & Wyngaard, 1988) although there is considerable scatter in the 

WRF-LES data. Figure 2.11 shows a comparison of ground-level concentration standard 

deviation from the same elevated release as in Figure 2.10 with data from Henn & Sykes 

(1992). The data are of similar magnitude but do not match exactly because the sources 

were located at slightly different heights in the boundary layer. The larger standard 

deviation of the WRF-LES data may be due to the higher spatial resolution used in our 

simulations compared to Henn & Sykes. 

 

       
Figure 2.10: Vertical and horizontal profiles of normalized concentration variance at 
different distances downwind of an elevated release located at zs = 0.19zi in case B5. a) 
Vertical profiles of concentration variance normalized by the maximum variance at each 
downwind position. b) Crosswind horizontal profiles of concentration variance at the 
vertical centerline height normalized by the mean variance in the region |𝑦| < 0.25𝜎𝑦. 
x/zi = 0.23 (triangles); 0.70 (squares); 1.2 (diamonds); 1.6 (circles). Profiles in Figure 
2.10a are offset by 𝑐2���/(𝑐2���)𝑚𝑎𝑥 = 1 for readability. 

 

a) b) 
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Figure 2.11: Standard deviation of ground-level concentration fluctuations downwind of 
an elevated source normalized by the mean ground level concentration. WRF-LES data 
for a source located at zs = 0.19zi in case B5 (solid line). LES data from Henn & Sykes 
(1992) for an elevated source at zs = 0.25zi (crosses). 

 

Figure 2.12 shows vertical profiles of normalized concentration variance for 

ground-level and surface layer sources in case N. Wind tunnel experiments of Fackrell & 

Robbins (1982) showed that vertical profiles of normalized variance for ground-level 

sources are self-similar along the plume centerline axis with a maximum value at z/σz ≈ 

0.75. Fackrell & Robbins also hypothesized that the value of 𝑐2��� should tend toward zero 

at the surface although their lowest measurements did not extend below 0.05zi. The 

WRF-LES data in Figure 2.12a are approximately self-similar. Although there is a local 

     
Figure 2.12: Vertical profiles of concentration variance at different downwind locations 
along the plume centerline for a) a ground-level source (zs = 0.0043zi), and b) a source in 
the surface layer (zs = 0.07zi) in case N. The concentration variance in normalized by the 
maximum variance at each downwind location. Figure 2.12a: x/zi = 0.59 (triangles); 1.3 
(squares); 3.9 (diamonds); 4.7 (circles); 5.6 (arrows). A fit to data from Fackrell & 
Robbins (1982) is shown by the line in Figure 2.12a. Profiles in Figure 2.12b are offset 
by 𝑐̅/𝑐�̅�𝑎𝑥 = 1 for readability. 

 

a) b) 
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maximum in the WRF-LES profiles at z/σz ≈ 0.75, the normalized variance approaches a 

value of 1 at the surface rather than 0. The vertical profiles for the surface layer source 

(Figure 2.12b) exhibit the correct upward trend for �𝑐2����
𝑚𝑎𝑥

, but also show a local 

maximum in concentration variance at the surface. Figure 2.13 shows crosswind 

horizontal profiles of normalized concentration variance at different distances downwind 

at the height of plume vertical centerline for the surface layer release (zs = 0.07zi). The 

data in Figure 2.13 exhibit the weak peak in concentration variance that occurs at y/σy ≈ 

0.5 but do not preserve self-similarity (see Figure 7 in Fackrell & Robbins, 1982). 

 
Figure 2.13: Crosswind horizontal profiles of concentration variance at the height of the 
plume vertical centerline, normalized by the variance at the horizontal centerline of the 
plume (i.e. the variance at y = 0) for a surface layer release zs = 0.07zi in case N. x/zi = 
0.79 (triangles); 1.5 (squares); 2.4 (diamonds); 3.2 (circles); 4.0 (leftward arrows); 4.9 
(stars). 

 
2.3.6 Intermittency factor for ground-level sources 

The intermittency factor (γ) for a timeseries of a scalar (c) is defined as the 

fraction of time during which the magnitude of c exceeds a threshold value (cT): 𝛾 ≡

𝜏 𝑇⁄ , T is the total length of the timeseries and τ is the total length of time during which c  

> cT. The intermittency factor is an alternative metric to standard statistical moments for 

quantifying concentration variability in a timeseries of measurements. Figure 2.14 shows 

contours of γ in the x-z plane along the horizontal centerline of the plume for ground-
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level releases in simulations B5HR, SB2HR and N. Direct comparison of γ with data 

from experiments or other LES studies is difficult because γ depends on both source area 

relative to the characteristic length scale of turbulence (Fackrell & Robbins, 1982) and 

the velocity of the source gas (Venkatram & Wyngaard, 1988). Nevertheless the 

magnitude and shape of contours downwind of the source in Figure 2.14a are comparable 

to data from the lab experiments of Willis & Deardorff (presented in Venkatram & 

Wyngaard, 1988). The intermittency factor profiles for the B5 and SB2 simulations were 

nearly identical to Figures 2.14a,b although the profile for SB2 exhibited a stronger 

downwind gradient in γ near the surface. A value of γ ≥ 0.95 downwind of a ground-level 

source in the neutral ABL (Figure 2.14c) is consistent with the wind tunnel experiments 

(Fackrell & Robbins, 1982). The most interesting feature of Figures 2.14a,b is the 

gradient in γ that occurs near the surface downwind of sources in the CBL. That gradient 

may provide the ability to estimate the source-sensor distance for sources upwind of an in 

situ concentration measurement in the daytime atmospheric surface layer. 

 

  
Figure 2.14: Contours of the intermittency factor (γ) in the x-z plane along the horizontal 
centerline of the plume for ground-level releases located at X = 0. a) Simulation B5HR 
(zs = 0.0033zi); b) simulation SB2HR (zs = 0.0033zi); c) simulation N (zs = 0.0043zi). The 
threshold was 𝑐𝑇 = 0.1𝑐̅. 

 

a) b) c) 
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2.4 Discussion and conclusions 

WRF-LES is a useful and relatively accessible tool for simulating turbulence and 

passive scalar dispersion in the atmospheric boundary layer. There are real practical 

advantages of WRF-LES when compared with other LES codes including, the 

regular/modular structure of the source code, extensive documentation and example 

simulations, widely connected user base (more than 20,000 WRF ARW users worldwide) 

and helpful support group. The most significant disadvantage of WRF-LES appears to be 

excessive numerical diffusion in the dynamic solver which causes poor resolution of 

surface layer turbulence in shear driven boundary layers (Kirkil et al, 2012). We have 

shown that this problem can be mitigated by increasing the spatial resolution of the 

numerical grid (Figure 2.3), but the computational cost of that solution is usually 

prohibitive. 

WRF-LES accurately modeled mean dispersion parameters for passive scalars in 

the CBL. However, as the relative contribution of shear production to buoyant production 

increased (i.e. 𝐿 → −∞) WRF-LES tended to underestimate the growth of the crosswind 

horizontal plume width as a function of downwind distance. This error was especially 

significant in the neutral atmospheric boundary layer (Figure 2.6c). The underestimation 

of σy/zi in the WRF-LES simulation N was attributed to a bias in the horizontal SGS eddy 

diffusivity coefficient for scalars (Kϕ,h). WRF-LES assumes Kϕ,h = 3Km,h, where Km,h is 

the horizontal SGS eddy diffusivity coefficient for momentum, and Km,h is calculated by 

the SGS model for the momentum equation (Eq. 2.2). This is claim is supported by the 

fact that a 10% increase in σy/zi was observed when a source of identical volume was 

modeled in case NHR instead of case N (see Appendix A.1.2). It is unlikely that the 



43 
 

 

underestimation of σy(X) was related to poor resolution of the source, because the bias 

increased with downwind distance where the plume is resolved by O(10-100) grid cells. 

The observed bias in the scalar field is consistent with the underestimation of the 

streamwise and crosswind horizontal turbulent velocity variances in Figure 2.4. Future 

WRF-LES research should focus on improving parameterizations for the eddy diffusivity 

coefficients in the wall-layer where a zonal approach like the Two-Layer Model (TLM; 

Piomelli & Balaras, 2002) may be appropriate. That self-similarity was preserved in the 

mean concentration profiles downwind of the ground-level source in the neutral 

simulations (Figures 2.8a and 2.9) indicates that relative plume dispersion was modeled 

correctly. It is worth noting as an aside that replacing wm by 𝑢∗ results in better agreement 

between the neutral boundary layer data in Figure 2.6c. That observation indicates that 

wm is not an appropriate velocity scale for normalizing the downwind distance (Xm) in the 

neutral boundary layer, because wm ≠ u* when 𝑤′𝜃′������
𝑠 = 0.  

A disadvantage of LES for dispersion simulations is that the minimum source size 

is limited by the spatial resolution of the numerical grid. The smallest source volume that 

can be practically represented in full scale simulations of the ABL is of O(100-1000 m3) 

due to the high computational cost of LES. This limitation results in a low pass filtering 

of the true concentration timeseries. Weil et al (2012) addressed this issue by 

incorporating a stochastic, Lagrangian particle dispersion model into an LES of the CBL. 

Validation of scalar concentration fluctuations modeled with WRF-LES was complicated 

by the fact that measures of concentration variability depend on source size, effluent 

velocity and grid resolution; all of which vary considerably among data presented in 

existing literature. Reasonable agreement was observed between concentration variance 
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profiles calculated from the LES data of Henn & Sykes (1992) and data from the present 

study in the CBL (Figures 2.10 and 2.11). However, for case N WRF-LES greatly 

overestimated the magnitude of the concentration variance in the neutral surface layer 

compared to wind tunnel experiments (Figure 2.12a). This issue is likely related to poor 

turbulence resolution in the neutral surface layer, because smaller 𝑢𝚤2��� causes less 

dispersion of concentration filaments which results in large concentration fluctuations 

and increased concentration variance near the surface. Timeseries of scalar concentration 

in the atmospheric boundary layer are non-stationary and non-Gaussian. Therefore the 

intermittency factor (γ) is a useful alternative metric to mean and variance for quantifying 

concentration variability, because the relationship between the low order moments of a 

timeseries of concentration measurements and the probability distribution for the 

instantaneous concentration magnitude is not straightforward (Yee & Chan, 1997). A 

gradient in the intermittency factor (γ) was observed near the surface downwind of 

ground-level sources in the daytime convective boundary layer. This finding indicates 

that γ is a promising metric for estimating source-sensor distance in practical, local-scale 

source determination applications where the location of upwind sources within the 

concentration footprint of a measurement sensor is unknown. However, the relationship 

between γ and source-sensor range may depend on mesoscale forcing, topography and/or 

source area effects which would need to be quantified using site specific models and in 

situ measurements. 
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3. Triangulation method for source determination at local spatial scales 

3.1 Introduction 

3.1.1 Motivation and background 

The development of top-down, inverse models (refer to Sections 1.2.3 and 1.3.5) 

to quantify greenhouse gas (GHG) emissions from distributed sources using long-term, 

continuous measurements remains an open problem with important applications for the 

control, regulation and financial valuation of GHG emissions. This chapter describes a 

source determination model that uses in situ, surface level measurements of trace gas 

concentration and atmospheric turbulence at only two locations as model input. Source 

determination models are used to locate and quantify the rate of emissions from a source 

(or sources) for which location and strength are not known a priori (Section 1.3.5). The 

source location is determined by triangulation (Figure 3.1). Localization of trace gas 

sources by triangulation has been proposed by Gruber et al (1960) and Henry et al (2002), 

and is analogous to the technique of beamforming in signal processing (Chen et al, 2002). 

After the source location is determined a concentration footprint model (i.e. an inverse 

dispersion model) is used to quantify the source strength. We have developed a novel 

model framework which combines aspects of source-sensor orientation and uncertainty in 

source location with a concentration footprint model to quantify the accuracy of the 

proposed source determination method at local spatial scales of O(1 km2). 

Due to the multi-scale and random nature of turbulence, all inverse models for 

dispersion in the atmospheric boundary layer (ABL) are under-constrained spatially (and 

possibly temporally) by the availability of concentration measurements. Thus inverse 

atmospheric dispersion models use deterministic or stochastic methods to simulate
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atmospheric turbulence and quantify the source-sensor relationship. Many previous 

studies have developed source determination models that use concentration 

measurements obtained from an array of detectors to quantify a priori unknown source 

parameters for single and multiple point releases (Singh et al, 2013; Lewicki & Hilley, 

2012; Humphries et al, 2012; Zheng & Chen, 2011; Keats et al, 2007). The methods used 

in those studies provide accurate predictions of source location and strength, however, all 

results incorporated measured concentration data from a large number of sensors 

(between 5 and 42) arrayed downwind of the source. A large sensor array is impractical 

for GHG monitoring applications due to high equipment costs and practical constraints 

on feasible sites for sensor placement (such as topography and land/infrastructure 

ownership). Henry et al (2002), Christen et al (2011) and Nottrott et al (2013a, 2013b) 

have shown that it is possible to obtain the azimuth of ground level sources of trace gases 

in the vicinity of a single concentration sensor by partitioning concentration 

measurements as a function of wind direction. However, in the absence of a priori 

information about source strength, or at least one additional set of concentration 

measurements, it is not possible to constrain the source-sensor distance. 
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3.1.2 Model formulation 

 
Figure 3.1: A diagram illustrating source localization by triangulation using 
measurements from sensors T1 and T2 (green circles) separated in space by distance rT. 
The origin of the coordinate system is located at sensor T1 and the location of sensor T2 
is (XT2,YT2). The source Q (red circle) is located at the intersection of the dash-dotted lines 
(XQ,YQ) which are defined by the source azimuth angle measured at each sensor (αT1 and 
αT2). rQ is the distance between T1 and Q, γ is the angle between rQ and rT, and β = αT1 –
 αT2. The polygon bounded by the dotted lines represents the spatial uncertainty of the 
source location due to uncertainty in the source azimuth measurement (δα) at each sensor. 
The azimuth angles αT1 and αT2 are defined relative to the Y axis. 

 

We have developed a framework which combines aspects of source-sensor 

orientation and uncertainty in source location with a concentration footprint model to 

quantify the accuracy of our source determination method at local spatial scales of O(1 

km2). Our source determination method uses in situ, surface level measurements of trace 

gas concentration and atmospheric turbulence at only two locations as input. The source 

location is determined by triangulation (Figure 3.1) using coincident measurements of 

trace gas concentration and wind direction to determine the direction of the source 

relative to two sensors. Localization of trace gas sources by triangulation has been 

proposed by Gruber et al (1960) and Henry et al (2002), and is analogous to the technique 
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of beamforming in signal processing (Chen et al, 2002). After the source location is 

determined, a concentration footprint model (i.e. an inverse dispersion model) is used to 

quantify the source strength. Measurements of wind speed, turbulence intensity and 

atmospheric boundary layer stability quantify the inputs to the concentration footprint 

model. 

The azimuthal direction (α) of a ground level, continuous source of a trace gas 

relative to a single concentration sensor can be determined from coincident timeseries of 

concentration and wind direction measurements. Nottrott et al (2013a, 2013b) found that 

the azimuthal direction of methane (CH4) sources at ranges upwind of 0.1-5 km could be 

determined with an uncertainty of approximately ±3° by measuring CH4 concentration 

fluctuations as a function of wind direction. Henry et al (2002) partitioned hourly 

averaged concentration of cyclohexane (C6H12) by wind direction, and used a 

nonparametric regression to determine the azimuthal distribution of an upwind source 

relative to a single concentration sensor. Henry et al (2002) used measurements from two 

towers, at downwind ranges of 7 km and 10 km, to triangulate the position of C6H12 

source with an error of about ±1 km. The angular uncertainty of the source azimuth was 

reported as ±3° and ±7° at 7 km and 10 km downwind, respectively. Chen et al (2009) 

and Christen et al (2011) showed that long term variability in wind direction on time 

scales of days to months permits detection of sources in a nearly 360° azimuthal direction 

around a measurement location. Thus, the location of a trace gas source at almost any 

azimuthal location relative to two concentration sensors can be detected from a long 

measurement record. 
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After the source location has been determined a concentration footprint model is 

used to quantify the source-sensor relationship and predict the flux of trace gas from the 

source. Many different analytical and stochastic footprint models have been developed 

for the ABL, and an excellent review of those models is presented in Schmid (2002). We 

used a quasi-analytical concentration footprint model in this paper to illustrate the 

application of our source determination method, however, the choice of concentration 

footprint model is not integral to our method. 

Mathematical and practical details of the source determination model are 

described in Section 3.2. The accuracy of the triangulation method for source 

localization, the effect of uncertain source location on source strength prediction, and an 

example source determination application are presented in Section 3.3. Applications and 

limitations of the source determination method are discussed in Section 3.4. Conclusions 

are summarized in Section 3.5. 

3.2 Methodology 

3.2.1 Triangulation method for source localization 

Eq. 1 describes the location of the source (XQ,YQ) relative to sensors T1 (0,0) and T2 

(XT2,YT2) as a function of the source azimuth angles αT1 and αT2 measured at each sensor 

(refer to Figure 3.1). 

�−𝑠𝑖𝑛
(90° − 𝛼𝑇1) 𝑐𝑜𝑠(90° − 𝛼𝑇1)

−𝑠𝑖𝑛(90° − 𝛼𝑇2) 𝑐𝑜𝑠(90° − 𝛼𝑇2)� �
𝑋𝑄
𝑌𝑄
�

= � 0
𝑌𝑇2𝑐𝑜𝑠(90° − 𝛼𝑇2) − 𝑋𝑇2𝑠𝑖𝑛(90° − 𝛼𝑇2)� 

3.1 



51 
 

 
 

The solution to Eq. 3.1 represents the intersection of two lines (written here in point-slope 

notation) that pass through points (0,0) and (XT2,YT2) each having a slope defined by 

angles αT1 and αT2, respectively. 

 
Figure 3.2: Example spatial distributions of Δ (black points) for ten source locations (red 
points) with δα = 1.2° and N = 100. The concentration sensors (green points) are located 
at (0,0) and (0,250). 
 

Measurements of α naturally contain some error so that the source azimuth angle 

relative to the sensor is known to α±δα. Uncertainty in α leads to spatial uncertainty in the 

source location, i.e. the triangulation problem is noisy. We modeled the uncertainty in α 

using a Monte Carlo method. Values of αT1 and αT2 corresponding to the true source 

location (XQ,YQ)0 were taken as the mean values in two independent, random, normal 

probability distributions P(αT1) and P(αT2) with standard deviations δα. The spatial 

distribution of probable source locations is given by the set 𝛥 = ��𝑋𝑄 ,𝑌𝑄�𝑛:𝑛 ∈ 𝒁 =

[1,𝑁]�. The spatial dispersion of the points in Δ describes the uncertainty in the source 

location. Δ was generated by solving Eq. 3.1 with N values of αT1 and αT2 randomly 

drawn from distributions P(αT1) and P(αT2). Figure 3.2 shows examples of Δ for ten 
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different source positions. The spatial uncertainty of the source location increases with 

source-sensor distance (rQ). 

3.2.2 Concentration footprint model for source strength prediction 

We used a concentration footprint model to estimate the source strength (flux) 

based on the predicted source-sensor locations calculated with Eq. 3.1. For illustrative 

purposes, we used a quasi-analytical concentration footprint function (𝜂𝑐) derived from 

Hsieh et al (2000) and Kormann & Meixner (2001). The model has a simple algebraic 

formulation, is applicable over the full range of ABL stability conditions, and agrees well 

with other footprint models. Mathematical details and validation of the model are 

presented in Appendix A.2. The choice of concentration footprint model is not integral to 

our source determination method. A more complex footprint model, e.g. a stochastic 

footprint model based on turbulence parameterizations or large-eddy simulations, could 

be applied within our source determination framework to improve source strength 

predictions in complex terrain (see Section 3.4 for further discussion on this point). 

The atmospheric concentration measured downwind of a localized source of an 

arbitrary trace gas is the total concentration (𝐶𝑇), which is the sum of the background 

(ambient) concentration (𝐶𝑏) and the concentration enhancement (𝐶𝑒) due to emissions 

from the source, 𝐶𝑇 = 𝐶𝑏 + 𝐶𝑒. The concentration enhancement is calculated by 

subtracting background concentration from the total concentration, 𝐶𝑒 = 𝐶𝑇 − 𝐶𝑏. 𝐶𝑏 can 

be determined by measuring the concentration upwind of the source (Kaharabata et al, 

2000) or by computing the lower envelope of the downwind concentration signal 

(Vinogradova et al, 2007). The source flux (F) is calculated from the concentration 

footprint by dividing the mean concentration enhancement (𝐶𝑒���) by the value of the 
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concentration footprint function at the source location, 𝐹 = 𝐶𝑒���/𝜂𝑐�𝑥𝑄 ,𝑦𝑄 , 𝑧𝑚�. Refer to 

Appendix A.2 for additional details. 

3.2.3 Quantifying error in the source strength prediction due to uncertain source location 

Flux and concentration footprint models contain a large amount of uncertainty in 

practical applications due to various assumptions made in order to achieve closure of 

model equations. Hsieh et al (2000) and Kljun et al (2002), for example, showed that 

differences in the crosswind integrated footprint functions among six different footprint 

models were often > 50% near the peak of the footprint function. The predicted location 

of the footprint maximum varied significantly between models and was strongly 

dependent on ABL stability conditions. However, differences between modeled 

footprints were usually < 20% upwind of the footprint maximum location for all stability 

conditions. 

In light of those differences we assumed that the present concentration footprint 

function (Section 3.2.2) is perfectly accurate in order to quantify the uncertainty in the 

source strength calculation due to error in the source localization (Section 3.2.1) 

independently from errors contained in the footprint model. A set of values describing the 

relative error in the source strength prediction due to uncertain source location is defined 

by 

𝛦 =
𝜂𝑐(𝛥′, 𝑧𝑚)

𝜂𝑐 ��𝑋𝑄 ,𝑌𝑄�0
′

, 𝑧𝑚�
 . 3.2 

E is the ratio of 𝜂𝑐 at the predicted source locations (Δ) to 𝜂𝑐 at the true source location. 

𝜂𝑐(𝑥, 𝑦, 𝑧𝑚) is the concentration footprint function in sensor relative coordinates, 

(XQ,YQ)0 is the true source location, and the prime superscript indicates a two-
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dimensional transformation from absolute spatial coordinates (X,Y) to the sensor relative 

coordinates (x,y) of each sensor. The set E contains twice as many values as the set Δ (i.e. 

Δ contains N values and E contains 2N values), because the probable source locations in 

Δ are projected onto the concentration footprint of both sensors T1 and T2. 

3.2.4 Additional constraints in the source determination method 

We imposed two additional constraints in the source determination method to 

exclude spurious solutions that can occur in the context of solving Eq. 3.1 using the 

Monte Carlo method. The assumption that αT1 and αT2 can be represented by normal 

probability distributions P(αT1) and P(αT2) admits a finite probability of obtaining a 

spurious or undefined solution to Eq. 3.1. The solution to Eq. 3.1 is spurious if αT1 and 

αT2 drawn from P(αT1) and P(αT2) return a value of (XQ,YQ)n that lies upwind of the 

sensors. The solution to Eq. 3.1 is undefined if the source azimuths measured at each 

tower are equal, i.e. values of αT1 and αT2 drawn from P(αT1) and P(αT2) are equal. The 

probability of a spurious or undefined solution to Eq. 3.1 is <1% for 1.645𝛿𝛼 < 𝛽 <

(180° − 1.645𝛿𝛼), where 1.645 is the t-distribution critical value for a 90% confidence 

interval. Thus the source location is set to be undefined when 𝛽 ≤ 1.645𝛿𝛼 or 𝛽 ≥

180° − 1.645𝛿𝛼. Spurious solutions are excluded from Δ when 1.645𝛿𝛼 < 𝛽 <

(180° − 1.645𝛿𝛼). 

If the source is located in a region of low sensitivity within the concentration 

footprint of either sensor, the source can only be reliably detected by one sensor, only one 

value of α can be measured, and the source location cannot be determined by 
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triangulation. Therefore, the source location was determined to be undefined when 

𝜂𝑐 ��𝑋𝑄 ,𝑌𝑄�0
′

, 𝑧𝑚� / max[𝜂𝑐(𝑥,𝑦, 𝑧𝑚)] < 0.05 for either sensor T1 or T2. 

3.2.5 Performance assessment 

The performance of the source determination method was assessed by parametric 

analysis. There are four parameters in the triangulation method (Section 3.2.1), and three 

parameters that determine the concentration footprint (Appendix A.2.1). Figure 3.1 

illustrates the four parameters in the triangulation method: rQ the distance between T1 

and Q, rT the distance between T1 and T2, γ the angle between rQ and rT, and δα the 

uncertainty in the source azimuth measurement. The three parameters in the 

concentration footprint model are z0 the aerodynamic roughness length, L the Obukhov 

length, and zm the measurement height. 

The effect of relative source-sensor arrangement and uncertainty in αT1 and αT2 on 

the uncertainty in the source location was investigated by varying the parameters rQ, rT, γ, 

δα. Results are shown for rT = 0-1000 m; γ = 0-180°; rQ = 0-1000 m. δα = 1.2°, 2.4° 

corresponding to 99% confidence intervals of δα ≈ 3° and 6° (consistent with Henry et al, 

2002; Nottrott et al, 2013b). zm = 10 m and z0 = 0.05 m corresponding to long grassy 

ground cover and farmland (Stull, 1988). N = 100 in the Monte Carlo method.  

The error in the source strength prediction (E; Eq. 3.2) is generally a function of 

the spatial uncertainty of the source location, and the gradient of the concentration 

footprint function in the region of the true source location. The functional dependence of 

E on the gradient of the concentration footprint function was studied for different ABL 

stability conditions by varying L. Four different ABL stability conditions were simulated: 

strongly unstable (B3), forced convection (SB2), neutral stratification (N) and stable 
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stratification (S). Values of surface sensible heat flux �𝑤′𝜃′�������
0
, surface shear stress u*, 

Obukhov length L, surface wind speed 𝑢�(10 m) and crosswind horizontal r.m.s. velocity 

fluctuation 𝑣� for each simulation are listed in Table 3.1. 

Table 3.1: Values of surface sensible heat flux �𝑤′𝜃′�������
0
, surface shear stress u*, Obukhov 

length L, surface wind speed 𝑢�(10 m) and crosswind horizontal r.m.s. turbulent velocity 
fluctuation 𝑣� for the four ABL stability cases. �𝑤′𝜃′�������

0
, u* and L for cases B3, SB2, N and 

S are based on data from large-eddy simulations of Nottrott et al (2014) and Beare et al 
(2006). 𝑢�(10 m) was calculated from Eq. A.2.5. 𝑣� was calculated from Eq. A.2.6 with 
zi = 1000 m for cases B3 and SB2. 

Name �𝒘′𝜽′�������
𝟎
 

[m K s-1] 
u* 

[m s-1] 
L 

[m] 
𝒖�(𝟏𝟎 𝐦) 

[m s-1] 
𝒗� 

[m s-1] 
B3 0.050 0.12 -2.7 1.0 1.0 

SB2 0.10 0.49 -110 6.0 1.4 
N 0 0.60 -∞ 7.8 1.1 
S -0.012 0.26 96 3.7 0.46 

3.3 Results 

3.3.1 Uncertainty of source location 

  
Figure 3.3: The absolute spatial uncertainty of the source location normalized by the 
source-sensor distance, plotted for different source-sensor arrangements for azimuth 
angle uncertainty a) δα = 1.2° and b) δα = 2.4°. The color scale shows median(||Δ||)/ rQ 
(the median Euclidian distance of the points in set Δ normalized by rQ) as a function of γ 
and rT/rQ (see Figures 3.1 and 3.2). White areas correspond to parameter combinations 
for which the source location cannot be determined due to the conditions described in 
Section 3.2.4. 
 

γ [o]

r T /r
Q

 

 

0 50 100 150
0

2

4

6

8

10

0

0.05

0.1

0.15

0.2

0.25

γ [o]

r T /r
Q

 

 

0 50 100 150
0

2

4

6

8

10

0

0.05

0.1

0.15

0.2

0.25a) b) 



57 
 

 
 

The uncertainty of the source location is quantified by the spatial dispersion of the 

set Δ. A length scale that describes the absolute spatial uncertainty of the source location 

is defined by median(||Δ||). Figure 3.3 shows median(||Δ||)/rQ as a function of γ and rT/rQ 

(see Figure 3.1 for explanation of the variables). median(||Δ||)/rQ is a useful metric for the 

error in the source localization because it quantifies the magnitude of the spatial 

uncertainty of the source location relative to the source-sensor distance. median(||Δ||)/rQ 

is self-similar in γ and rT/rQ for the geometry shown in Figure 3.1 by the property of 

similar triangles. However, the number of parameter combinations for which the source 

location cannot be determined (i.e. the white areas in Figure 3.3) depends on δα and zm 

because of the constraints described in Section 3.2.4. Noise in Figure 3.3 is due to finite 

sample size N = 100 in the Monte Carlo method and is proportional to N-1/2. 

The advantage of the self-similar solution is that the spatial uncertainty of the 

source location can be determined for all possible source-sensor configurations using the 

data in Figure 3.3. Figure 3.3 shows that the source location can be determined to < 10% 

of the source-sensor distance rQ for a wide range of source-sensor arrangements. The 

uncertainty in the source location is large for small values of rT/rQ and large values of γ, 

because the lines defined by αT1 and αT2 are nearly parallel, i.e. β is only slightly larger 

than δα (refer to Figure 3.1). 

The magnitude of median(||Δ||)/rQ is proportional to δα by the arc length formula 

for a circle, i.e. the uncertainty in the source location scales linearly with δα. Figure 3.4 

confirms that median(||Δ||)/rQ is approximately twice as large for δα = 2.4° compared to 

1.2°. 



58 
 

 
 

The azimuthal direction of the source (α) can only be measured by both sensors if 

the variation in the mean wind direction (μ) is sufficient to carry the trace gas emitted 

from the source toward each tower. The change in μ required to measure α at both sensors 

is plotted in Figure 3.5 as a function of γ and rT/rQ. Values of μ > 100° have been 

observed at many locations over monthly and seasonal intervals, although the actual 

value of μ is site specific. 

 
Figure 3.4: The ratio of median(||Δ||)/rQ for δα = 2.4° to 1.2°. The median value of the 
data in Figure 3.4 is 2.00 and the standard deviation is 0.05. 
  

 
Figure 3.5: The change in mean wind direction μ [°] required to measure α at both 
sensors as a function of rT/rQ and γ. 
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3.3.2 Impact of uncertain source location on source strength prediction 

Uncertainty in the source location causes errors in the source strength prediction 

(Section 3.2.3, Eq. 3.2), because the exact location of the source within the concentration 

footprint of the sensor is not known. We quantified the relative error of the source 

strength prediction by the median absolute deviation of the set E, MAD(E-1). It is 

important to note, however, that the quantity MAD(E-1) does not account for uncertainty 

in the source strength due to errors in the concentration footprint model. Figure 6 shows 

the quantity MAD(E-1) for atmospheric boundary layer conditions ranging from strongly 

convective to stable. MAD(E-1) is approximately proportional to absolute spatial 

uncertainty of the source location median(||Δ||), so that greater uncertainty in the source 

location leads to greater errors in the source strength prediction. MAD(E-1) is correlated 

with the spatial gradient of the concentration footprint �(𝜕𝑥𝜂𝑐)2+�𝜕𝑦𝜂𝑐�
2
�
1/2

, where 𝜕𝑥 

and 𝜕𝑦 indicate spatial derivatives in the x and y directions, respectively. Therefore, the 

error in the source strength prediction depends on the relative location of the source 

within the sensor footprint and the ABL stability condition. The data in Figure 6 show 

that relative error in the source strength prediction is <10% for most source-sensor 

arrangements.  It is important to realize that MAD(E-1) is a function of the concentration 

footprint (Appendix A.2, Eq. A.2.3b), and therefore is not self-similar in rQ and δα. 
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Figure 3.6: The relative error in the source strength prediction due to uncertainty in the 
source location plotted for different source-sensor arrangements for ABL stability cases 
a) B3, b) SB2, c) N, and d) S. The color scale shows MAD(E-1), the median absolute 
deviation of the set E-1, plotted as a function of rT/rQ and γ. Refer to Table 3.1 for 
descriptions of the different stability cases. Noise in Figure 3.6 is due to finite sample 
size N = 100 in the Monte Carlo method. White areas correspond to parameter 
combinations for which the source location cannot be determined due to the conditions 
described in Section 3.2.4. 
 

3.3.3 Source determination example 

Figures 3.7 and 3.8 show output of the source determination method in X and Y 

spatial coordinates (see Figure 3.1) for an example sensor configuration with zm = 10 m, 

rT = 250 m, δα = 1.2°. Figure 3.7 shows the uncertainty of the source location, and the 

required variation of the mean wind direction to detect the source at both sensors. Figure 

3.7a indicates that the source location can be determined with acceptable accuracy (i.e. 

median(||Δ||) << rQ) for a large spatial area surrounding the sensor locations. Figure 3.7b 

a) b) 

c) d) 



61 
 

 
 

shows that the required variation of the mean wind direction for source detection is 

generally < 45° for this particular sensor configuration. 

   
Figure 3.7: a) Absolute spatial uncertainty of the source location, median(||Δ||) [m], and 
b) required variation in mean wind direction μ [°] plotted as a function of sensor relative 
spatial coordinates X and Y (as defined in Figure 3.1 with the origin at T1) for an example 
sensor configuration. zm = 10 m, rT = 250 m, δα = 1.2° and rQ = 0-1000 m. Magenta 
crosses correspond to the location of sensors T1 and T2. White areas in the region 
(X2+Y2)1/2 < 1000 m correspond to parameter combinations for which the source location 
cannot be determined due to the conditions described in Section 3.2.4. 

 

Figure 3.8 shows the percent error in the source strength prediction due to 

uncertainty in the source location. MAD(E-1) < 20% in forced convection ABL 

conditions (Figure 3.8a) for the region where median(||Δ||) << rQ. MAD(E-1) < 10% for 

median(||Δ||) << rQ in stable ABL conditions (Figure 3.8b). However, it is expected that 

the concentration footprint function used in this paper (Appendix A.2.1) will be least 

accurate for the stably stratified ABL due to strong anisotropy of the turbulent velocity 

field (Sarkar, 2003) and enhanced plume meandering (Etling 1990). 
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Figure 3.8: Percent error in the source strength prediction due to uncertainty in the 
source location, MAD(E-1) [%], for stability cases a) SB2 and b) S.  The source/sensor 
parameters are the same as in Figure 3.7. Refer to Table 3.1 for descriptions of the 
different stability cases.  
 

3.4 Discussion and conclusions 

The proposed source determination method provides a useful, practical 

framework for predicting the location and strength of a priori unknown trace gas sources 

from concentration and turbulence measurements at two locations. Remarkable features 

of the method are the use of only two sensors to monitor a large geographic area O(1 

km2), and the application of a concentration footprint rather than a flux footprint (as in 

Lewicki & Hilley, 2012) to quantify the source strength. There are several advantages of 

using the concentration footprint instead of the flux footprint for source determination. 

The upwind extent of the concentration footprint for a given sensor is much larger than 

the flux footprint. For example, Kljun et al (2002) showed that, for a sensor located 50 m 

above ground level (AGL), the upwind extent of the 50%-level source area for the 

concentration footprint is more than two times greater than that of the flux footprint. 

Measurements of mean concentration at the sensor location can be used to estimate 

source strength from a concentration footprint, while measurements of the vertical 
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concentration flux are necessary to determine source strength from the flux footprint. 

Measurement of vertical concentration flux requires high frequency temporal sampling 

(Kaimal & Finnigan, 1994) and increases the cost and complexity of the measurement 

system. 

The lowest cost measurement system includes two concentration sensors with 1 

Hz sampling capability, a two-dimensional ultrasonic anemometer, a pyranometer and an 

infrared radiometer. Wind direction and concentration measurements are used to compute 

the source azimuth relative to each sensor (αT1 and αT2). Wind speed, solar radiation and 

downwelling longwave radiation are used to parameterize daytime ABL stability 

conditions for the concentration footprint model with the Pascal-Gifford stability classes 

(Hanna et al, 1982). Although the Pascal-Gifford stability classes only provide an 

approximate empirical characterization of ABL stability conditions, it is expected that 

such a classification would be sufficient in light of large uncertainties in flux and 

concentration footprint models (see Appendices A.2.1 and A.2.2). An eddy-covariance 

system consisting of a three-dimensional, ultrasonic anemometer and an open-path, 

infrared gas analyzer (to correct sonic temperature fluctuations for water vapor effects) 

for direct measurement of u* and L could be used for more accurate characterization of 

ABL stability, however, at significantly greater cost. Wind and ABL stability 

measurements at both concentration sensors may be required if rT is large, or if 

significant terrain or vegetation is present in the vicinity of the concentration sensors. The 

ability to detect low concentration sources or sources located far upwind of the sensor is 

limited by the sensitivity and precision of the instrument, which determines the ability to 

resolve concentration enhancements above the background concentration level. 
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The triangulation method for source localization (Section 3.2.1) has a self-similar 

solution that quantifies the uncertainty in the source location for any given source-sensor 

geometry (Figure 3.3). Uncertainty in αT1 and αT2 was modeled using independent, 

random normal probability distributions P(αT1) and P(αT2). That approach does not 

account for any systematic bias in measurements of αT1 and αT2. A systematic bias could 

be caused by large roughness elements (e.g. trees, buildings, terrain, etc.) between the 

source and sensor that distort the wind and trace gas concentration fields, or if rQ >> rT. 

The magnitude of δα (i.e. the uncertainty in α) depends on a number of factors 

including the measurement frequency, length of the measurement period, source-sensor 

distance and terrain. Nottrott et al (2013a, 2013b) showed that using metrics of 

fluctuating trace gas concentration (e.g. intermittency factor or 99th percentile 

concentration enhancement) rather than mean concentration can improve estimates of α 

and reduce the magnitude δα. At long distances downwind from the source the crosswind 

horizontal plume width (σy) approaches the distance between the concentration sensors 

(rT), which may cause the magnitude of δα to increase with increasing source-sensor 

distance. A standard Gaussian plume model (Hanna et al, 1982) predicts σy ≈ 180 m for 

forced convective conditions and σy ≈ 40 m for stable stratification at 1000 m downwind 

of the source. That calculation suggests that, although Figure 8 indicates that the accuracy 

of the source strength prediction is <15% for most sources at (X2+Y2)1/2 ≈ 1000 m, in 

practice the source strength uncertainty may be larger for sources at upwind ranges ≥ 

1000 m. The data of Henry et al (2002) also support this claim. This problem could be 

alleviated by increasing rT. 
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The assumption that the concentration footprint function used in this paper 

(Section 3.2.2) is perfectly accurate provides a means to quantify uncertainty in the 

source strength calculation that is caused by uncertainty in the source location, 

independently from errors contained in the footprint model. We used a simple quasi-

analytical footprint model for illustrative purposes. However, the choice of concentration 

footprint model is not integral to the general source determination method. In reality the 

total error in the source strength prediction also depends on errors contained in the 

concentration footprint model. The accuracy of the concentration footprint model 

depends on ABL stability conditions, and is degraded by inhomogeneous surface 

characteristics like terrain and vegetation (Finnigan, 2004). The contribution of the error 

in the footprint function to the total error in the source strength prediction should be 

assessed with ensemble statistics from different footprint models and experiments. We 

have shown that flux and concentration footprints calculated with different models vary 

considerably (Appendix A.2.2). Although a number of flux footprint models have been 

compared with experimental data (e.g. Hsieh et al, 2000; Kljun et al, 2004; Lewicki & 

Hilley, 2012), to the knowledge of the authors, no such comparisons have been made for 

concentration footprints. 

Figure 3.3 quantifies the ability of the source determination method to resolve 

individual sources when multiple sources are present in the sensor footprint. Individual 

sources can be resolved with 99% confidence if they are separated by a distance of 

2·median(||Δ||)/rQ. That distance is directly proportional to δα (Section 3.3.1, Figure 3.4). 

In practice, however, crosswind horizontal dispersion may cause plumes from nearby 

sources to merge downwind, making measurement of unique values of αT1 and αT2 
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difficult. That issue could be mitigated by measuring at night when crosswind dispersion 

of the instantaneous plume is minimal. However, Etling (1990) observed that plume 

meandering in the crosswind horizontal direction is enhanced in the stable ABL which 

may cause de-correlation between the observed wind direction and source azimuth. Two 

nearby sources with very different source strengths will be difficult to resolve using the 

proposed source determination method, because emissions from a source with a high 

emissions rate or large spatial extent may overpower emissions from a smaller source in 

the concentration signal measured downwind.  
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4. Top-down emissions quantification using atmospheric measurements from a 

methane controlled release experiment 

4.1 Introduction 

4.1.1 Motivation 

A large scale, outdoor, controlled release experiment to measure methane (CH4) 

emissions from quasi-point sources at local spatial scales O(0.01 – 1 km2) was completed 

in June, 2013 (Arata et al 2013; Aubrey et al 2013; Dubey et al 2013; Nottrott et al 

2013b). The purpose of the experiment was to evaluate and demonstrate capabilities of in 

situ and airborne remote sensor technologies for top-down emission quantification in a 

realistic environment. Top-down estimates use atmospheric measurements of GHG 

concentration to directly quantify GHG emissions from a priori unknown sources (see 

Section 1.2.3). In this chapter surface-level, in situ measurements from fast response 

concentration sensors will be used to demonstrate the feasibility of the top-down source 

determination model developed in Chapter 3. The two main components of the source 

determination model of Chapter 3 are the determination of the source location by 

triangulation (Section 3.2.1), and prediction of the source strength using a concentration 

footprint model (Section 3.2.2). The error associated with each of those components was 

evaluated in the context of field measurements. 

4.1.2 Literature review 

The accuracy of the source localization depends on the ability to calculate the 

azimuth angle of a fugitive emissions source relative to a concentration sensor using 

coincident wind direction and concentration measurements. Henry et al (2002) 

partitioned hourly averaged concentration of cyclohexane (C6H12) by wind direction, and
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used a nonparametric regression to determine the azimuthal distribution of an upwind 

source relative to a single concentration sensor. Henry et al (2002) used measurements 

from two towers, at downwind ranges of 7 km and 10 km, to triangulate the position of 

C6H12 source with an error of about ±1 km. The angular uncertainty of the source azimuth 

was reported as ±3° and ±7° at the 7 km and 10 km downwind towers, respectively. 

Nottrott et al (2013a) found that the azimuthal direction of CH4 sources at ranges of 1-5 

km could be determined with an uncertainty of approximately ±3° by measuring the 99th 

percentile CH4 concentration enhancement distribution as a function of wind direction. 

The accuracy of the source azimuth calculation using the 99th percentile CH4 

concentration enhancement distribution was evaluated using experimental data (Sections 

4.2.7 and 4.3.2). 

The accuracy of the source strength prediction depends on the uncertainty in 

source location and the accuracy of the concentration footprint model. The impact of 

uncertain source location on the source strength prediction was evaluated in Section 

3.3.2. Flux and concentration footprint models contain a large amount of uncertainty in 

practical applications due to the various assumptions requred to achieve closure of model 

equations. Many previous studies have validated flux footprint models against measured 

data (e.g. Flesch et al, 1995; Hsieh et al, 2000; Lewicki & Hilley, 2012), however, no 

such comparisons have been made for concentration footprint models, to the knowledge 

of the author. The accuracy of the quasi-analytical concentration footprint model 

described in Appendix A.2 was evaluated using experimental data. 

The controlled release experiment described in this chapter was unprecedented in 

scope, and type and density of instrumentation. Previous outdoor controlled release 
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experiments have investigated the effects of turbulence on timeseries of surface-level, 

point measurements of scalar concentration (Hanna & Insley, 1989; Mylne & Mason, 

1991). Hanna & Insley (1989) reviewed data from six laboratory and outdoor controlled 

release experiments in near neutral to convective atmospheric stability. They studied 

energy spectra of concentration timeseries, and cross-spectra for coincident concentration 

and turbulent wind measurements at frequencies up to 1 Hz. They observed strong 

correlation between collocated measurements of the crosswind horizontal turbulent 

velocity component and trace gas concentration at the Eulerian timescale of turbulence. 

Mylne & Mason (1991) measured concentration on vertical and horizontal arrays at 50 to 

1000 m ranges downwind of a controlled release from a quasi-point source in near neutral 

to weakly convective conditions. They proposed a method to enhance the frequency 

content of fast response concentration measurements that are subject to inherent filtering 

caused by instrument design. Mylne & Mason (1991) found that the probability 

distribution of concentration timeseries could be approximated by a clipped-normal 

probability distribution function (PDF). However, Yee and Chan (1997) showed that a 

clipped-gamma PDF provides a better representation of low order statistics of 

concentration timeseries in the atmospheric boundary layer. None of these studies 

investigated the relationship between concentration fluctuations and source direction. 

Details of the design and setup of the controlled release experiment are provided 

in Sections 4.2.1 and 4.2.2. Data quality control and post processing are described in 

Sections 4.2.3 through 4.2.6. A method for determining the azimuth of fugitive emissions 

sources using atmospheric measurements is described in Section 4.2.7. Results and 

discussion are presented in Sections 4.3 and 4.4, respectively. 
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4.2 Methodology 

4.2.1 Experiment location 

 
Figure 4.1: A topographic map of the Rocky Mountain Oil Field Test Center (RMOTC) 
area. Controlled release locations are marked by red points, and the predominant wind 
direction is indicated by the blue arrow (see Figure 4.2). Data from the site labeled XS is 
presented in this chapter. The resolution of the map is 1.3 arc-seconds (~5 m). 
Topographic data was obtained from the USGS National Elevation Dataset (NED). 

 
The controlled release experiment was conducted in June 2013 at the U.S. 

Department of Energy, Rocky Mountain Oilfield Test Center (RMOTC), approximately 

60 miles north of Casper, WY. The RMOTC facility is a large area of approximately 12 

km2 set in a basin which is surrounded by low hills to the southwest and southeast (Figure 

4.1). Controlled release experiments were located in the northern part of RMOTC to 

minimize wake turbulence generated by terrain and interference from petroleum 

extraction operations occurring in the southern part of the RMOTC facility. Data from the 

site labeled XS (Figure 4.1) is included in this chapter. The experiment was planned for 

June based on a high probability of favorable wind and weather conditions. Figure 4.2 
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shows the climatology of wind speed and direction for the RMOTC area during the 

month of June obtained from the National Oceanographic and Atmospheric 

Administration (NOAA) hourly average data Aviation Digital Data Service (ADDS). 

  
Figure 4.2: Climatology of a) wind speed and b) direction at the Casper/Natrona 
International Airport near Casper, Wyoming U.S.A. The climatology includes 6 years of 
hourly averaged wind data obtained from the National Oceanographic and Atmospheric 
Administration (NOAA) hourly average data Aviation Digital Data Service (ADDS). 
Vertical error bars indicate the standard deviation of the data. 

 
4.2.2 Experiment design 

The experiment was conducted during a seven day period between June 20th and 

26th, 2013. The controlled release rate of CH4 was different on each day, varying from 

15-5000 scf hr-1 (0.80-26 g s-1). Figure 4.3 shows a schematic of the experiment setup. 

CH4 gas was released from a diffuser, which was designed to simulate fugitive methane 

emissions from natural gas extraction and transmission infrastructure. Two 15 m high 

towers were arrayed downwind of the release location. The CH4 supply for the 

experiment was stored in liquid form inside a large tube trailer. Compressed CH4 was 

passed through an expansion regulator that was outfitted with a heat exchanger to ensure 

that gas was emitted from the diffuser at the ambient air temperature. 
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The diffuser distributed the CH4 source over an approximately 1 m2 area, and 

ensured that the gas flowing from the source was in isokinetic equilibrium with the 

surrounding fluid (Figure 4.4a). CH4 gas was supplied to the diffuser through a 90 m long 

inlet hose, so that the relative location of the release point and towers could adjusted for 

variable wind conditions. The CH4 flux was measured using an Onicon Inc. F-5100 

thermal mass flow meter which has a measurement accuracy of ±2%. 

 
Figure 4.3: A schematic of the experiment setup. The coordinate system is aligned so 
that the streamwise velocity component (u) is along the x-axis, the crosswind horizontal 
velocity component (v) is along the y-axis, and the vertical velocity component (w) is 
along the z-axis. The diagram is not drawn to scale. The blue line represents the 
instantaneous edge of the CH4 plume. Photographs of the experiment setup are shown in 
Figure 4.4. 

 
Turbulent wind measurements and high frequency CH4 concentration 

measurements were made on two 15 m high towers located 50-120 m downwind of the 

release location (Figures 4.4b). The upwind tower (XS1) was instrumented with three 

Campbell Scientific CSAT3 3-dimensional ultrasonic anemometers, a Licor LI-7500 

open path CO2/H2O gas analyzer, and a Picarro G2311-f fast response cavity ring-down 
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spectrometer (CRDS) for CO2, CH4 and H2O concentration measurements. The 

downwind tower (XS2) was only instrumented with a Picarro G2311-f CRDS. Inlets for 

the Picarro CRDS were placed a three different heights on both towers. Table 4.1 lists the 

configuration of each tower. The CSAT3 anemometers and LI-7500 gas analyzer were 

sampled at 20 Hz using a Campbell Scientific CR5000 datalogger. The Picarro CRDS 

sensors include onboard data logging capabilities and were sampled at 10 Hz. Air 

temperature (Campbell Scientific T107), and shortwave and longwave components of 

upwelling and downwelling radiation (Kipp & Zonnen CNR 4 Net Radiometer) were 

measured on a tripod approximately 250 m upwind of the XS1 tower at heights 2 m AGL 

and 5.75 m AGL, respectively. Ground surface temperature was measured over an area of 

approximately 3.1 m2 using and Apogee SI-111 infrared radiometer. Air temperature, net 

radiation and surface temperature were sampled at 1 Hz and averaged on a 1 minute 

interval. All sensors were calibrated according to manufacturer specifications prior to 

field deployment. 

Geographic coordinates of controlled release locations and towers were measured 

using a Trimble Geo 7X handheld GPS unit. ESRI ArcMap software was used to map 

and calculate the relative locations of controlled release points and towers. The spatial 

uncertainty of those calculations was <1 m. Refer to Table 4.2 for information on the 

relative locations of controlled release points and towers. 
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Figure 4.4: Photographs of a) the diffuser and b) measurement towers during the 
experiment. The XS1 tower is on the right in Figure 4.4b, and the predominant wind 
direction was from left to right. 

 
 
Table 4.1: Configuration of towers during the controlled release experiment. Sensor 
heights are listed in meters above ground level (AGL). Refer to Figure 4.3 for the layout 
of the experiment setup. 

 XS1 XS2 
CSAT3 [m] 4.75 8.93 12.89 - - - 
LI-7500 [m] - 8.81 - - - - 

CRDS inlet [m] 4.50 8.66 12.56 4.60 8.49 12.57 

4.2.3 Data quality control 

All data were carefully quality controlled. Instruments were inspected and cleaned 

daily to ensure that measurements were not degraded by dust or moisture, and care was 

taken to minimize interference from personnel, vehicles and wildlife. Both the CR5000 

datalogger and the CRDS incorporate a number of automated tests for data quality and 

flag bad data. All flagged data were excluded from the analysis. Additional post 

processing tests for data quality included visual inspection of raw data and sensor inter-

comparison. 

4.2.4 Post processing of ultrasonic anemometer data 

The CSAT3 ultrasonic anemometers were leveled in the field by visual 

inspection, and a tilt correction algorithm (Wilczak et al, 2001) was applied in post 

processing to ensure that the means of the vertical (w) and crosswind horizontal (v) 

a) b) 
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velocity components were zero over integral time periods. The integral time period was 

calculated from 𝑧𝑖/𝑢∗, where 𝑧𝑖 is the boundary layer height and 𝑢∗ is the measured 

friction velocity (refer to Section 1.3.2). The boundary layer height was estimated from 

energy spectra of surface-level, turbulent velocity fluctuations (Liu and Ohtaki, 1997). 

Sonic temperature was corrected for water vapor in the air with data from the LI-7500 

using the methods described in Schotanus et al (1883) and Kaimal et al (1991). The 

compass alignment of the ultrasonic anemometers was measured using a Brunton pocket 

transit device with an accuracy of about ±1°, assuming a magnetic declination of +9.5° 

for the RMOTC location (Maus et al, 2010). 

Corrected data from the sonic anemometers were used to compute the turbulent 

momentum fluxes (𝑢𝚤′𝑢𝚥′�������, where 𝑖, 𝑗 ∈ 𝒁 = [1,3]), sensible and latent heat fluxes (𝑤′𝜃𝑣′������� 

and 𝑤′𝑞′������), and the Obukhov length (Eq. 1.8b). Those quantities were used as inputs to the 

concentration footprint model (refer to Appendix A.2). 

4.2.5 Post processing of CRDS concentration data 

The Picarro G2311-f CRDS samples CO2, CH4 and H2O concentration at 

approximately 10 Hz, however, measurements are not triggered on a regular interval so 

the actual sampling rate varies between approximately 9 Hz and 13 Hz. The output data 

from the CRDS was linearly interpolated to a 10 Hz interval in post processing to obtain 

a timeseries with a regular samping rate. The interpolated 10 Hz concentration data were 

used in the analysis presented here. Data from the CR5000 datalogger and the CRDS 

analyzer were not synchronized because they were measured on different platforms. The 

time lag for the CRDS system relative to the CR5000 datalogger was determined from 

the maximum cross-correlation between timeseries of CH4 concentration (cCH4) measured 
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with the CRDS, and the turbulent components of vertical velocity and virtual potential 

temperature (w’ and θv’) measured with the CSAT3. 

The CH4 concentration measured downwind of the controlled release is the total 

concentration (𝑐𝑇) which is the sum of the background (ambient) concentration (𝑐𝑏) and 

the concentration enhancement (𝑐𝑒) due to the controlled release source. 

𝑐𝑇 = 𝑐𝑏 + 𝑐𝑒 4.1 

A background detection algorithm was developed to determine the minimum envelope of 

the measured concentration timeseries and calculate the concentration enhancement. The 

background concentration was determined by sampling a subset of the concentration 

timeseries using a sliding time window. The window size was chosen to be several times 

larger than the Eulerian timescale of crosswind velocity fluctuations (TE,v) in order to 

capture a representative sample of concentration measurements (consistent with the 

observations of Hanna & Insley, 1989). The background concentration was defined to be 

the mode of the concentration measurements within the sliding window. The choice of 

the mode for the value of background concentration is based on the work of Yee & Chan 

(1997) who showed that the probability distribution of surface-level, scalar concentration 

measurements downwind of a localized source can be represented by a clipped-gamma 

distribution function. Thus, the most probable value of measured concentration is defined 

by the mode of the distribution. And the most probable measured concentration value is 

associated with the background due to the high level of intermittency in the measured 

timeseries (see Section 2.3.6). Figure 4.5 illustrates that the method described above is 

robust, and correctly identifies both large and small concentration fluctuations above the 
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background level. The concentration enhancement is calculated as 𝑐𝑒 = 𝑐𝑇 − 𝑐𝑏 and any 

negative values are set to zero. 

  
Figure 4.5: Timeseries of CH4 concentration measured at XS1, 4.50 m AGL on the 
afternoon of June 23rd, 2013. The black line is the total concentration (𝑐𝑇), and the red 
dashed line is the calculated background concentration (𝑐𝑏). The average background 
concentration was 1.851 ppm. Units of the horizontal axis are relative time since the 
beginning of the measurement period. 

 
The CRDS output inherently contains some filtering of the true concentration 

signal which is caused by of the physical design of the CRDS system. The transfer 

function between the true 10 Hz concentration signal and the output signal from the 

CRDS is difficult to quantify because it is a function of parameters like inlet line length, 

cavity size, cavity shape, optical properties of mirrors and fiber optics. That issue is 

common in closed path spectroscopy. Mylne and Mason (1991) used a first order, 

autoregressive sharpening filter to approximate the instrument filtering transfer function 

and increase the high frequency gain of the output signal. 

𝑐𝑛 =
(𝜖 − 1)𝑐𝑛−1′ + 𝑐𝑛′

𝜖
 4.2 

𝑐𝑛 is the true concentration for the nth measurement and 𝑐𝑛′  is the nth concentration 

measurement output by the CRDS. The sharpening coefficient (𝜖) varies between 0 and 
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1, and was determined from empirical tuning to be 0.77 for the instrument at XS1 and 

0.73 for the instrument at XS2. According to the Nyquist-Shannon sampling theorem, 10 

Hz sampling rate using a perfect concentration sensor would be required to attain 5 Hz 

temporal resolution of the concentration signal. The application of the sharpening filter in 

Eq. 4.2 to 10 Hz atmospheric data measured with the Picarro G2311-f CRDS indicates 

that the inherent filtering of the CRDS results in an actual temporal resolution of 

approximately 2 Hz rather than the ideal value of 5 Hz (Appendix A.3.1). That result 

suggests that the response time of the Picarro G2311-f CRDS may be insufficient for 

eddy covariance measurements in the atmospheric surface layer. 

4.2.6 Measurement periods 

Six measurement periods were selected for detailed analysis. Criteria for 

acceptable measurement periods were high data quality, continuous data availability over 

several integral time periods and quasi-steady atmospheric stability conditions. 

Measurement periods and experiment parameters for each tower are listed in Table 4.2.  

Table 4.2: List of measurement periods selected for analysis, and experiment parameters 
during each measurement period. tm is the length of the measurement period, QA is the 
measured controlled release rate during, zm is the height of the CH4 concentration 
measurement, rQ is the horizontal distance between the source and the sensor, and αA is 
the actual azimuth between the source and the sensor (relative to true North). 

 Interval 
Name Date Time 

[MST] 
tm 
[s] 

QA 
[g s-1 m-2] 

zm 
[m] 

rQ 
[m] 

αA 
[°] 

XS1 

623A 06/23/13 0915-1200 9900 5.452±0.091 8.66 43±1 215±1 
623B 06/23/13 1210-1325 4500 5.452±0.091 4.50 43±1 215±1 
624A 06/24/13 0940-1040 3600 0.659±0.048 4.50 46±1 209±1 
624B 06/24/13 1120-1230 4200 0.659±0.048 4.50 52±1 199±1 
625 06/25/13 1025-1135 4200 26.312±0.252 8.66 86±1 257±1 
626 06/26/13 0830-1200 12600 0.080±0.080 4.50 93±1 249±1 

XS2 

624A 06/24/13 0940-1040 3600 0.659±0.048 4.60 60±1 213±1 
624B 06/24/13 1120-1230 4200 0.659±0.048 4.60 64±1 205±1 
625 06/25/13 1025-1135 4200 26.312±0.252 8.49 95±1 264±1 
626 06/26/13 0830-1200 12600 0.080±0.080 4.60 107±1 246±1 
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4.2.7 Source azimuth detection method 

 
Figure 4.6: a) A timeseries of the total concentration (𝑐𝑇) measured at 8.66 m AGL, 42.7 
m downwind of a 5.452±0.091 g s-1 m-2 controlled release on June 23rd, 2013. b) The 
probability distribution of concentration measurements in the timeseries. P99 is the 99th 
percentile value of the distribution. 

 
The source azimuth relative to the concentration sensor (α) was determined by 

measuring the instantaneous concentration as a function of wind direction. Yee et al 

(1995) and Nottrott et al (2014) have shown that the signature of a localized source 

dispersing in the atmospheric surface layer is an intermittent, spiky concentration signal. 

Figure 4.6a is a timeseries of concentration measurements downwind of a 5.452±0.091 g 

s-1 m-2 controlled release on June 23rd, 2013. The data in Figure 4.6a are characterized by 

a high level of intermittency. Most of the measurements are near the background 

concentration (about 1.85 ppm), however, there are a large number of concentration 

spikes in the range of 3-40 ppm. Figure 4.6b shows the probability distribution of the 

concentration fluctuations along values for the mean, median, mode and 99th percentile 

(P99) of the distribution. The median and mode are indicators of background 

concentration, while the mean is not a good representation of the background or 

intermittent large concentration spikes. The P99 value is representative of concentration 
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spikes due to the strong skewness of data. Thus the P99 value is a reliable metric for 

detecting localized sources upwind of a concentration sensor. 

The source azimuth relative to the concentration sensor was determined by 

grouping concentration measurements by wind direction (μ), and calculating the P99 

concentration for each bin. The result is the distribution of P99 CH4 concentration as a 

function of wind direction (Figure 4.7). The centroid of the distribution indicates the 

measured source azimuth relative to the sensor (αm). The αm is given by, 

𝛼𝑚 =
∫ 𝜇𝑃99𝐶𝐻4 𝑑𝜇360°
0°

∫ 𝑃99𝐶𝐻4 𝑑𝜇360°
0°

 4.3 

Empirical testing showed that the centroid of the distribution is a better indicator of the 

source azimuth than the maximum of the distribution, because it is less sensitive to 

individual large concentration events that occur when the wind exactly is not directly 

aligned with the true source azimuth (αA). 

 
Figure 4.7: Distribution of the 99th percentile CH4 concentration (P99CH4) as a function 
of wind direction (solid black line) for the data shown in Figure 4.6. The centroid of the 
distribution indicates the measured source azimuth relative to the concentration sensor 
(αm). The width of the wind direction bins is 10°. 
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4.3 Results 

4.3.1 Meteorology and turbulence conditions 

Meteorological conditions for each measurement period are listed in Table 4.3. 

The clear sky index (kt) is defined as the ratio of measured global horizontal irradiance 

(GHI) to the clear sky global horizontal irradiance (GHIcsk). The clear sky global 

horizontal irradiance was modeled using the American Society of Civil Engineers 

standard (Allen et al, 2005). The value of kt varies between 1 in clear skies and about 0.1 

in overcast conditions, and is an indicator of cloudiness and atmospheric turbidity. Clear 

sky conditions occurred during measurement periods 623A, 623B and 624A. Large 

cumulus clouds during periods 624B, 625 and 626 may have contributed to the formation 

of secondary updrafts and downdrafts due near the surface due to localized patches of 

surface cooling from cloud shadows. 

Table 4.3: Meteorological variables during each measurement period. GHI is the global 
horizontal irradiance, kt is the clear sky index (refer to Section 4.3.1), Tair is the air 
temperature, Tsfc is the ground surface temperature, 𝑢� is the mean streamwise wind 
velocity and μ is the wind direction (relative to true North). Average and standard 
deviations taken over the entire measurement interval are listed for each variable. 

Interval 
Name 

GHI 
[W m-2] 

kt 
[-] 

Tair 
[°C] 

Tsfc 
[°C] 

𝒖� 
[m s-1] 

𝝁 
[°] 

623A 879±64 0.97±0.01 20.5±1.3 33.5±3.2 4.7±1.5 215±22 
623B 948±11 0.99±0.00 23.7±0.6 39.1±1.1 3.5±2.4 211±23 
624A 891±41 1.00±0.04 28.7±0.4 43.3±1.1 0.25±3.8 182±22 
624B 788±248 0.81±0.26 30.4±0.5 43.5±3.6 3.2±2.1 213±28 
625 589±339 0.62±0.36 24.7±0.5 36.5±4.9 5.7±2.1 263±25 
626 777±210 0.89±0.20 27.7±1.8 41.3±4.7 4.6±1.7 251±23 

 
Sensible and latent heat fluxes, crosswind horizontal turbulence intensity, surface 

shear stress and Obukhov length are listed in Table 4.4 for the six measurement periods. 

The sensible heat flux was relatively constant throughout all measurement periods, while 

significant variability was observed in the latent heat flux. Among periods 623A, 623B, 
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624A and 624B the latent heat flux is generally greater in the morning than the afternoon. 

The exceptionally large latent heat flux on 625 was due to rain in the early morning of 

June 25th, 2013. The surface level stability conditions were primarily characterized by 

forced convection. Strong convection during the 624A interval was caused by near zero 

wind speeds (see Table 4.3). 

Table 4.4: Turbulence parameters during each measurement period. 𝑤′𝜃𝑣′������ is the sensible 
heat flux, 𝑤′𝑞′������ is the latent heat flux, 𝑣′2����

1/2
 is the root mean square of the turbulent 

component of crosswind horizontal velocity, u* is the friction velocity (surface shear 
stress) and L is the Obukhov length. Averages are taken over the entire measurement 
interval. 

Interval Name 𝒘′𝜽𝒗′������� 
[K m s-1] 

𝒘′𝒒′������ 
[gH2O gair

-1 m s-1 10-4] 
𝒗′𝟐����

𝟏/𝟐
 

[m s-1] 
u* 

[m s-1] 
L 

[m] 
623A 0.23 0.61 1.8 0.41 -22 
623B 0.29 0.59 2.1 0.43 -21 
624A 0.23 0.41 1.4 0.27 -7.8 
624B 0.22 0.30 1.9 0.36 -17 
625 0.21 0.94 2.0 0.39 -22 
626 0.24 0.20 1.8 0.39 -20 

 
4.3.2 Accuracy of source azimuth detection 

The accuracy of the source azimuth detection method described in Section 4.2.7 

was evaluated using data from both towers during the six measurement periods (see 

Table 4.2). Figure 4.8 shows the measured azimuth angle (αm) plotted as a function of the 

actual azimuth angle (αa) in a correlation plot. The vertical error bars represent the 99% 

confidence interval of αm. The 99% confidence interval of αm is based on the width of the 

wind direction bins used Figure 4.7, assuming there is a uniform probability that αm lies 

anywhere within the bin. Using a bin width of 10° the standard deviation (63% 

confidence interval) associated with the uncertainty in αm is σm = 3.3°, and the 99% 

confidence interval is 2.576σm = 7.7° based on the standard t-table. The data in Figure 4.8 
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show that the azimuth detection method described in Section 4.2.7 accurately predicts the 

source direction relative to the concentration sensor. 

 
Figure 4.8: A correlation plot of the measured source azimuth angle (αm) as a function of 
the actual azimuth angle (αa). The dashed line is the 1:1 line corresponding to a perfect 
correlation between αm and αa. The vertical error bars represent the 99% confidence 
interval of αm. XS1 data indicated by points; XS2 data indicated by crosses. 

 
 

 
Figure 4.9: The difference between the actual measured source azimuth angle (αa – αm) 
as a function of a) mean streamwise wind velocity (𝑢�) and b) atmospheric stability (refer 
to Section 1.3.2). The horizontal error bars in Figure 4.9a represent the standard deviation 
of the mean streamwise wind velocity during each measurement interval. The vertical 
error bars represent the 99% confidence interval of αm. XS1 data indicated by points; XS2 
data indicated by crosses. 

 
 

200 220 240 260

200

220

240

260

α
a
 [o]

α m
 [o ]

-0.6 -0.5 -0.4 -0.3 -0.2
-10

-5

0

5

10

15

20

z
m

/L

α a - 
α m

 [o ]

a) b) 



84 
 

 

Figure 4.9 shows the difference between the actual and measured source azimuth 

angle as a function of mean wind speed and atmospheric stability. Generally, the absolute 

error in the measured azimuth angle is <5° except during calm winds. Large errors in the 

measured azimuth angle are expected during calm winds because there is a low 

correlation between the wind direction and measured concentraiton. 

4.3.3 Accuracy of the concentration footprint model 

 
Figure 4.10: A correlation plot of the modeled CH4 flux (Qm) as a function of the 
measured CH4 flux (Qa). The dashed line is the 1:1 line corresponding to a perfect 
correlation between Qm and Qa. The inset shows a magnified view of data for release 
rates <1 g s-1 m-2. Horizontal error bars represent the measured variability in CH4 
controlled release rate. The axes of the inset are the same as the main graph. XS1 data 
indicated by points; XS2 data indicated by crosses. 
 

The accuracy of the quasi-analytical concentration footprint model (refer to 

Section 3.2.2 and Appendix A.2) for source strength prediction was assessed using data 

from the six measurement periods. Figure 4.10 is a correlation plot of the modeled CH4 

flux (Qm) calculated using the concentration footprint model as a function of the 
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measured CH4 flux (Qa). The horizontal error bars in Figure 4.10 represent the measured 

variability in CH4 controlled release rate. Strong correlation was observed between the 

measured and modeled flux rates for fluxes <1 g s-1 m-2. There was a large uncertainty 

associated with data for the lowest flow rate because a standard, analog welding regulator 

valve was used instead of the digital flow meter in order to achieve a flow rate <0.65 

g s-1. At higher flux rates the model significantly underestimated the source flux. 

 
Figure 4.11: The relative error of the modeled CH4 flux (𝑄𝑚 − 𝑄𝑎)/𝑄𝑎 as a function of 
the measured flux plotted on a semi-log scale. The inset shows a magnified view of the 
data for the largest flux rates. Horizontal error bars represent the measured variability in 
CH4 controlled release rate. Vertical error bars represent the contribution of the measured 
uncertainty in CH4 controlled release rate to the relative error. The axes of the inset are 
the same as the main graph. XS1 data indicated by points; XS2 data indicated by crosses. 
 

Figure 4.11 shows the relative error of the modeled CH4 flux (𝑄𝑚 − 𝑄𝑎)/𝑄𝑎 as a 

function of the measured CH4 flux. Horizontal error bars represent the measured 

variability in CH4 controlled release rate. Vertical error bars represent the contribution of 

the measured uncertainty in CH4 controlled release rate to the relative error. Error 
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propagation was calculated using the partial derivative method (Taylor, 1997). The data 

in Figure 4.11 show that absolute relative error of the modeled flux is generally <50% 

with the exception of the lowest flux. However, there is a large uncertainty in the relative 

error associated with the lowest flux due to the type of regulator valve used to control the 

CH4 flow rate. 

 

 
Figure 4.12: The absolute error between the modeled and measured CH4 flux |𝑄𝑚 − 𝑄𝑎| 
plotted as a function of the measured CH4 flux on a log-log scale. The dashed line is the 
1:1 line. The error bars have the same meaning as in Figure 4.11. XS1 data indicated by 
points; XS2 data indicated by crosses. 
 

The absolute error between the modeled and measured CH4 flux |𝑄𝑚 − 𝑄𝑎| is 

plotted as a function of the measured CH4 flux in Figure 4.12. The absolute error for all 

modeled fluxes, except the lowest flux, falls below the 1:1 line. That result is important 

because it demonstrates that the concentration footprint model provides an upper bound 

for the trace gas flux from fugitive emissions sources. 

4.4 Discussion and conclusions 

Atmospheric measurements of turbulence and CH4 concentration made during an 

outdoor, controlled release experiment were used to demonstrate the feasibility of the 
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source determination method developed in Chapter 3. The two main components of the 

source determination model were evaluated. A novel, data based method for detecting the 

azimuth between a fugitive emissions source (for which the location is not known a 

priori) and a concentration sensor was described in Section 4.2.7. The azimuth detection 

method provided accurate predictions of the source azimuth when applied to data from 

the experiment. The uncertainty of the source azimuth predictions from the experiment 

(<5°) was consistent with the uncertainty reported by Henry et al. (2002) for more distant 

sources (±3-7°). It is worth noting that Henry et al. (2002) used one year of concentration 

and wind data, while the results in Section 4.3.2 were obtained from only a few hours of 

data. Figure 4.7 demonstrates that an azimuth detection method based on metrics of 

concentration fluctuations is more sensitive to low flux sources than a method based on 

mean concentration. Unfortunately, due to the arrangement of the towers, the predicted 

azimuth data from the field experiment could not be used to determine the source location 

directly. However, the analysis in Sections 3.3.1 and 3.3.3 showed that the source 

location could be accurately determined based on the level of observed uncertainty  in the 

azimuth detection method (Figure 4.8). 

The accuracy of a concentration footprint model for fugitive emissions flux prediction 

(Appendix A.2) was assessed in Section 4.3.3. The model underestimated source strength 

by up to 50%, and the magnitude of the error appeared to increase with source strength 

(Figures 4.10 and 4.11). An important assumption in Eq. A.2.1 is that the source gas is 

emitted at the same velocity as the surrounding fluid. A possible explanation for the 

increase in model error with source strength is that the assumption of an isokinetic source 

was violated at the largest flow rates. Indeed, visualization of the 26 g s-1 m-2 flux by 
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infrared thermography revealed strong jets emanating from the perforations in the 

diffuser. However, a flux of 26 g s-1 m-2 is at least one order of magnitude greater than 

would be expected in fugitive leak detection applications, and would likely be detectable 

from audible, visual, tactile and/or olfactory queues. For smaller leaks, the source 

determination model in Chapter 3 can be combined with the measurement techniques 

described in this chapter for detection and long-term, continuous monitoring applications. 
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5. Conclusion 

The credibility of regulatory frameworks for control and reduction of greenhouse 

gas (GHG) emissions depends on having a reliable method for independent verification 

and long-term monitoring of the actual emissions of market participants. While long-term 

verification and monitoring is relatively straightforward for centralized GHG emissions 

sources, like power plants and refineries, it is complicated for distributed sources, where 

GHG sources from natural gas infrastructure, petroleum extraction and/or carbon 

sequestration operations are sparsely distributed over areas on the order of 1-1000 km2. 

This work generated new insights into the performance of state of the art trace gas 

dispersion models, and developed novel measurement and modeling techniques for 

locating and quantifying fugitive emissions from distributed sources. 

5.1 Conclusions 

5.1.1 Large-eddy simulation 

Large-eddy simulation provides a framework to obtain turbulence data for wind 

and scalar fields in the atmospheric boundary layer at greater spatiotemporal resolution 

than mesoscale atmospheric models or direct measurements. At the present time, the 

computational cost of large-eddy simulation (LES) remains prohibitive for real-time 

modeling and operational forecasting. However, two-way nesting of mesoscale and local 

(LES) scale boundary for operational modeling will be feasible in the near future. This 

capability will enable realistic simulations of dispersion from distributed, local scale 

GHG emissions sources. The Weather Research and Forecasting model (WRF) has multi-

scale, nested simulation capability (from synoptic to local scales), includes real-world 
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land-use and topographic data, and has the capability to ingest regional-scale 

meteorological forcing data (i.e. data assimilation). 

The WRF model currently provides the best platform for the development of a 

unified synoptic to local scale atmospheric modeling system. WRF large-eddy simulation 

code (WRF-LES) accurately modeled mean plume trajectories and concentration fields. 

WRF-LES statistics of concentration fluctuations in the daytime convective boundary 

layer were similar to data obtained from laboratory experiments and other LES models. 

However, poor turbulence resolution near the surface in neutral boundary layer 

simulations caused under prediction of mean dispersion in the crosswind horizontal 

direction and over prediction of concentration variance in the neutral surface layer. 

5.1.2 In situ atmospheric measurements for GHG monitoring 

The development of top-down methodologies for quantifying fugitive greenhouse 

gas emissions has been hindered by sparse spatiotemporal coverage of direct atmospheric 

GHG measurements. The lack of direct measurements has been primarily due to 

inadequacy of existing equipment for field deployment, and the high cost of 

measurements. The recent development of robust, accurate and affordable spectrometers 

for GHG measurements has made accurate, long-term, continuous field measurements of 

GHGs feasible. In-situ, point measurements of GHG concentration are advantageous for 

top-down emissions measurements because they are capable of continuous sampling rates 

up to 10 Hz, highly accurate and sensitive to ppb scale changes in concentration for many 

GHG species. Fast response turbulence measurements can be collocated with 
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concentration measurements to quantify the influence of upstream sources on point 

measurements in the context of atmospheric dispersion. 

Recently, there has been significant interest in the application of airborne remote 

sensors to map column integrated GHG concentration over large spatial areas (Thorpe et 

al, 2013). However, there are several major limitations of airborne remote sensing 

methods in the context of long-term, continuous monitoring. Although the spatial 

coverage of remote sensing measurements O(1-1000 km2) is larger than the sampling 

footprint of an in situ tower measurement O(1 km2), remote sensors (like the Airborne 

Visible/Infrared Imaging Spectrometer; AVIRIS) can only capture instantaneous 

snapshots of column integrated GHG concentration. Thus the temporal frequency of 

remotely sensed measurements is limited to a few samples on a monthly interval by the 

high cost of flying time, the minimum concentration detection threshold for surface 

sources is high due to the long optical path length between the aircraft and the ground, 

and emission rate calculations are complicated by unknown surface winds and turbulence 

variables which drive GHG dispersion. Passive remote sensors also suffer from reduced 

sensitivity during cloudy and dusty conditions, and are inoperable at night. 

By contrast, surface-level, in situ, concentration measurements are autonomous, 

and cheaper and easier to maintain than airborne remote sensors. A source determination 

model was developed to predict the location and strength of continuous, surface level, 

trace gas sources using concentration and turbulence measurements at only two locations. 

The requirement for measurements at only two location is advantageous because a large 

sensor array is impractical for GHG monitoring applications due to high equipment costs 

and practical constraints on feasible sites for sensor placement (such as topography and 
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land/infrastructure ownership). The model can be applied to determine the optimal 

placement of sensors required to monitor sources, or to determine the monitoring 

capability of an existing sensor arrangement over local scale geographic area. 

Atmospheric measurements of turbulence and CH4 concentration made during an 

outdoor, controlled release experiment were used to demonstrate the feasibility of the 

source determination method in a realistic setting. A method for determining relative 

source-senor location by triangulation was applied to accurately predict the location of an 

a priori unknown fugitive emissions source. A concentration footprint model was used to 

constrain the trace gas flux from the source. Comparison with atmospheric measurements 

showed that the footprint model predicted the trace gas flux with less than 50% 

uncertainty and provided an upper bound for the trace gas flux from fugitive emissions 

sources. That observation has important implications for verifying GHG emissions in the 

context of regulatory limits. The source determination model can be used for detection 

and long-term, continuous monitoring of fugitive emissions. 

5.2 Applications and future work 

As development of a unified synoptic to local scale atmospheric modeling system 

continues, future WRF-LES research should focus on improving parameterizations for 

the eddy diffusivity coefficients in the wall-layer. A zonal approach like the Two-Layer 

Model (TLM; Piomelli & Balaras, 2002) may be appropriate. WRF-LES could be 

specialized for source determination applications in complex, inhomogeneous terrain by 

incorporating a backward Lagrangian stochastic dispersion model such as the Stochastic 

Time-Inverted Lagrangian Transport (STILT) model (Nehrkorn et al, 2010). 
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The source determination model of Chapter 3 and the measurement techniques 

described in Chapter 4 can be combined in a number of interesting applications. A 

network of stationary monitoring systems could be deployed to monitor and pinpoint 

fugitive emissions from enhanced oil recovery and carbon sequestration operations, 

where CO2 and other gasses are pumped into subterranean, depleted oil reservoirs. A 

mobile (i.e. vehicle based) monitoring system would improve the spatial coverage of the 

source determination model, and improve leak detection capabilities and industrial safety 

of oil and utility companies. Leveraging geographic information system (GIS) data about 

the location of gas infrastructure and measurements of isotopic trace gas ratios would 

improve the attribution capabilities of the source determination method. 
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Appendix 

A.1 Supplemental information for WRF-LES simulations 

A.1.1 Mathematical definitions for the scalar concentration field distribution 

Mathematical definitions of the variables that define the trajectory of a scalar 
concentration field downwind of the source (refer to Section 2.2.1 and Figure 2.1). Eqs. 
A.1.1-A.1.6 are reproduced from Nieuwstadt (1992). 

𝑧𝑙 =
∬ 𝑐𝑧 𝑑𝑦 𝑑𝑧𝐴(𝑥)

∬ 𝑐 𝑑𝑦 𝑑𝑧𝐴(𝑥)

 , A.1.1 

𝑧̅ =
∫ 𝑐𝑧 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑉

∫ 𝑐 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑉

 , A.1.2 

𝑠𝑧2 =
∫ 𝑐(𝑧 − 𝑧𝑙)2 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑉

∫ 𝑐 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑉

, A.1.3 

𝑚𝑧
2 =

∫ 𝑐(𝑧𝑙 − 𝑧̅)2 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑉

∫ 𝑐 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑉

, A.1.4 

𝜎𝑧2 = 𝑠𝑧2 + 𝑚𝑧
2 A.1.5 

𝜎𝑧′2 =
∫ 𝑐(𝑧 − 𝑧𝑠)2 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑉

∫ 𝑐 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑉

 A.1.6 

𝑧𝑙 is the local (or instantaneous) plume centerline height, 𝑧̅ is the average plume 
centerline height, 𝑠𝑧 is the spreading component about the local centerline height and 𝑚𝑧 
is the meandering component about the average centerline height, 𝜎𝑧 is the total vertical 
dispersion, 𝜎𝑧′ is the total vertical dispersion relative to the source height. A(x) in Eq. 
A.1.1 refers to the cross-sectional area of the numerical domain in the y-z plane, V in Eqs. 
A.1.2-A.1.6 is the total volume of the numerical domain and zs is the source height. The 
same variables may also be used to define the crosswind horizontal trajectory of the 
plume. Note that 𝜎𝑦2 = 𝜎𝑦′2, because ys = 0 by definition.
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A.1.2 Impact of SGS model and grid resolution on horizontal crosswind dispersion 

 
Figure A.1.1: Impact of SGS model and grid resolution on the total horizontal crosswind 
dispersion in the neutral ABL for a surface layer source at zs = 0.07zi. Case N without 
SGS dispersion (dotted line), case N with SGS dispersion (dashed line) and case NHR 
with SGS dispersion (solid line). WRF-LES data are compared to LES data from Dosio et 
al (2003) plotted with crosses. 
 

A.2 Supplemental information for the source determination model 

A.2.1 A quasi-analytical concentration footprint model 

The crosswind integrated flux footprint (f) is given by 

𝑓(𝑥, 𝑧𝑚) =
1

𝜅2𝑥2
𝐷𝑧𝑢𝑃|𝐿|1−𝑃 exp �

−1
𝜅2𝑥2

𝐷𝑧𝑢𝑃|𝐿|1−𝑃�, A.2.1 

where x is the upwind distance from the sensor, z is the vertical direction, zm is the sensor 
height AGL, L is the Obukhov length, κ is the von Kármán constant, and D and P are 
empirical coefficients that are piecewise functions of L. 𝑧𝑢 = 𝑧𝑚(𝑙𝑛(𝑧𝑚 𝑧0⁄ ) + 𝑧0 𝑧𝑚⁄ −
1) and z0 is the aerodynamic roughness length. The crosswind integrated concentration 
footprint (c) can be related to f by the stationary, two-dimensional advection-diffusion 
equation (Kormann & Meixner, 2001). 

𝑢
𝜕𝑐
𝜕𝑥

= −
𝜕𝑓
𝜕𝑧

 A.2.2 

First-order closure is used in Eq. A.2.2, crosswind dispersion is assumed to be constant in 
the z direction and horizontal turbulent diffusion along streamlines is assumed to be 
negligible compared to advection. The assumption of negligible along wind diffusion is 
commonly used because it simplifies the calculation of the concentration footprint 
function. Kljun et al (2002) assessed the validity of this assumption using a three-
dimensional, stochastic flux footprint model. Kljun et al found that, for a sensor located 
at 20 m AGL, the effect of neglecting the along wind diffusion component was small in 
convective conditions. Neglecting the along wind diffusion component in the neutrally 
stratified ABL caused the location of max(f) and max(c) to shift upwind relative to the 
sensor by about 25%, and resulted in a 20-30% reduction in the magnitude of max(f) and 
max(c). A 63% upwind shift relative to the sensor of the location of max(f) was observed 
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for a sensor located at 100 m AGL in the neutrally stratified ABL, but the change in the 
magnitude of max(f) was negligible. 

The crosswind integrated concentration footprint was obtained by differentiating 
Eq. A.2.1 with respect to z and integrating Eq. A.2.2. u in Eq. A.2.2 was taken to be the 
mean streamwise velocity at the measurement height 𝑢�(𝑧𝑚). The crosswind distributed 
flux and concentration footprints (ηf and ηc) are related to the crosswind integrated 
footprint by 

𝜂𝑓(𝑥,𝑦, 𝑧𝑚) = 𝐷𝑦(𝑥, 𝑦)𝑓(𝑥, 𝑧𝑚), A.2.3a 
𝜂𝑐(𝑥, 𝑦, 𝑧𝑚) = 𝐷𝑦(𝑥,𝑦)𝑐(𝑥, 𝑧𝑚), A.2.3b 

where y is the crosswind horizontal direction and 𝐷𝑦(𝑥,𝑦) is a Gaussian crosswind 
distribution function (Schmid, 1994) given by 

𝐷𝑦(𝑥,𝑦) =
1

√2𝜋𝜎
exp �

−𝑦2

2𝜎2
�, A.2.4a 

𝜎 = 𝑣�𝑥/𝑢�(𝑧𝑚). A.2.4b 
𝑣� in Eq. A.2.4b is the crosswind horizontal r.m.s. turbulent velocity. In practice 𝑢�(𝑧𝑚) 
and 𝑣�(𝐿) would be obtained from measurements, but in this paper we parameterized 
𝑢�(𝑧𝑚) and 𝑣�(𝐿) with empirical correlations. 𝑢�(𝑧𝑚) was calculated from the Monin-
Obukhov similarity theory using flux-profile relationships from Högström (1988). 

𝜕𝑢�
𝜕𝑧

=
𝑢∗
𝜅𝑧
𝜙𝑀(𝑧/𝐿) A.2.5a 

𝜙𝑀(𝑧/𝐿) = �[1 − 19.3(𝑧/𝐿)]−1/4

1 + 4.8(𝑧/𝐿)      𝐿 < 0
𝐿 ≥ 0 A.2.5b 

𝑣�(𝐿) was parameterized by empirical correlations from Panofsky et al (1977) and 
Wyngaard (1975). 

𝑣�(𝐿) = �𝑢∗(12 + 𝑧𝑖/|𝐿|)1/3

1.75𝑢∗
    𝐿 < 0
𝐿 ≥ 0 A.2.6 

A.2.2 Validation of the footprint function by inter-model comparison 

The crosswind integrated footprint function (f) computed using Eq. A.2.1 for 
convective, neutral and stable ABL conditions produced identical results to Hsieh et al 
(2000). We compared f (Eq. A.2.1) and ηf (Eq. A.2.3a) to the model of Kormann & 
Meixner (2001) for convective, neutral and stable conditions (Figure A.2.1). Differences 
between modeled values of magnitude of f and the location of max(f) were <20% in 
convective and neutral conditions (Figure A.2.1a). The magnitude of f modeled with Eq. 
A.2.1 was 2.5 times larger than the model of Kormman and & Meixner in weakly stable 
stratification, although the location of max(f) was nearly identical between the two 
models. Major differences were observed between the models for the normalized 
crosswind distributed flux footprint function 𝜂𝑓/max�𝜂𝑓� (Figure A.2.1b). The data in 
Figure A.2.1b show that the width of the ηf decreases as L increases, however, Kormann 
& Meixner observed the opposite behavior. Schmid (1994) showed that the width of ηf 
increases with increasing 𝑣�, and the different trend in observed for the width of ηf as a 
function of L was attributed to the different parameterization of 𝑣�(𝐿)  (Eq. A.2.6) used in 
the two models. Plotting Figure A.2.1b using the same parameterization for 𝑣�(𝐿) as 
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Kormann & Meixner (2001) caused to the width of the ηf increase with L (not shown). 
This finding is significant because it emphasizes the importance of using the correct 
value of  𝑣� when computing ηf and ηc. It is worth noting that Kljun et al (2002) also found 
that the width of ηf increased with L, but they did not list their parameterization for 𝑣�(𝐿). 
In practice 𝑣�(L) depends on site specific characteristics (e.g. terrain and vegetation), and 
should be measured directly rather than parameterized. 

 
Figure A.2.1: a) Crosswind integrated flux footprint (f) from Eq. A.2.1 and b) contours 
of the normalized crosswind distributed flux footprint 𝜂𝑓/max�𝜂𝑓� from Eq. A.2.3a. zm = 
10 m and z0 = 0.1 m. u* = 0.2 m s-1, L = -10 m for the convective case (solid line); u* = 
0.8 m s-1, L = -∞ m for the neutral case (dashed line); u* = 0.5 m s-1, L = 10 m for the 
stable case (dash-dotted line). Refer to Figure 4 in Kormann & Meixner (2001) for 
comparison. 

 
Kljun et al (2002) developed a three-dimensional Lagrangian stochastic inverse 

dispersion model (LPDM-B) to calculate trace gas and concentration footprints. Figure 
A.2.2 shows crosswind integrated flux and concentration footprints calculated from Eqs. 
A.2.1 and A.2.2 for zm = 20 m and z0 = 0.05 m in convective and neutral ABL stability 
conditions using the same parameters as in Kljun et al (2002). Generally f and c 
computed from Eqs. A.2.1 and A.2.2 are similar to results from LPDM-B. The location of 
max(f) shifted upwind relative to the sensor by about 120-190% in the LPDM-B model 
compared to Eq. A.2.1, and the location of max(c) shifted downwind relative to the 
sensor by 25-40% in LPDM-B compared to Eq. A.2.2. The magnitude of max(f) was 75% 
smaller in LPDM-B than Eq. A.2.1. max(c) was 80% larger in LPDM-B than Eq. A.2.2 
for convective conditions and max(c) was 40% smaller in LPDM-B than  Eq. A.2.2 for 
neutral stratification. Kljun et al (2004) noted that the location of the max(f) modeled 
with Eq. A.2.1 was similar to other flux footprint models for zm <20 m in all stability 
conditions. However, when zm >20m in strongly convective and strongly stable ABL 
conditions the location of max(f) modeled with Eq. A.2.1 differed considerably from 
other models. The proposed concentration footprint model is reasonable based on the data 
in Figures A.2.1 and A.2.2, and the analysis in this paper is restricted to sensor heights zm 
<20. 
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Figure A.2.2: Crosswind integrated a) flux footprint (f; Eq. A.2.1) and b) concentration 
footprint (c; Eq. A.2.2) for forced convective (solid line) and neutral (dashed line) 
conditions. zm = 20 m and z0 = 0.05 m. . u* = 0.2 m s-1, L = -36 m for the forced 
convective case; u* = 0.8 m s-1, L = -∞ m for the neutral case. Refer to Figures 6 and 7 in 
Kljun et al (2002) for comparison. 

 

A.3 Supplemental information for the methane controlled release experiment 

A.3.1 Impact of sharpening filter on the frequency content of measured concentration 

fluctuations 

 
Figure A.3.1: Normalized energy spectra of the concentration time series measured at the 
XS1 tower on a) June 24th, 2013 and b) June 26th, 2013 before sharpening (back line) and 
after sharpening (red line). The green line shows the -5/3 Kolmogorov slope. Note that 
the difference between the unsharpened and sharpened energy spectra becomes large at 
frequencies >2 Hz. 
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