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Fundamental physical phenomena are studied with a “cause and effect” approach. This enables 

understanding and prediction by employing mathematically formulated physical laws. Such approaches 

are less successful in biological systems, since they are subject to dual causation. That is, both 

physicochemical laws and evolving genetic constraints govern organisms. Biological systems respond 

immediately to stimuli (proximal causation) against a constant genetic background; however, these 

responses depend upon evolving genetic programs. Alterations in genetic programs are manifestations 
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of distal causation, representing changes induced by genetic drift and natural selection. Constraint-

based reconstruction and analysis is an emerging modeling approach that can account for both 

physicochemical constraints in biological systems and some evolutionary selective pressures. Here, 

constraint-based modeling is deployed to integrate disparate data types with genome-scale metabolic 

models to gain insight into mechanisms in proximal and distal causation, and conceptual advances are 

presented with respect to how these data are interpreted using constraint-based models. Specifically, 

these advances are used to suggest mechanisms determining proximal responses with respect to disease 

progression in human brain metabolism and the regulation of prokaryotic metabolism in dynamic 

environments. In addition, methods are presented that use genome-scale models of metabolism to 

analyze various data types to identify determinants of distal causation. Specifically, these methods are 

deployed to show that the evolution of enzyme specificity is guided by network context and the need to 

produce biomass. Moreover, these pressures further tune expression levels of metabolic pathways in 

laboratory evolved bacteria. Thus, through network reconstruction and data integration, vast amounts of 

data can be queried and provide detailed insight into proximal and distal causation in complex 

biological networks. 
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Chapter 1: Constraint-based modeling as a tool in predicting dual 

causality in biology 

“Causality in biology is a far cry from causality in classical mechanics”  

- Ernst Mayr1 

Fundamental physical phenomena are studied with a “cause and effect” approach that enables 

understanding and prediction by employing mathematically formulated “physical laws” (Figure 1.1.a). 

Biological systems, however, are subject to dual causation, since both physicochemical laws and 

genetic constraints govern their functions. Biological systems respond immediately to stimuli (proximal 

causation) against a constant genetic background (Figure 1.1.b); however, these responses depend on 

evolving genetic programs (Figure 1.1.c). The alterations in genetic programs are manifestations of 

distal causation, representing changes induced by genetic drift and natural selection. Within the 

constraints of physical law, evolution alters the proximal responses in an unpredictable manner. 

Therefore, as Ernst Mayr stated 50 years ago, “[for] almost any biological phenomenon . . . there is 

always a proximate set of causes and [a distal] set of causes; both have to be explained and interpreted 

for a complete understanding of the given phenomenon.”1 

These are significant considerations since the genotype-phenotype relationship is the most 

fundamental relationship in biology. For decades this relationship has been subject to mostly argument, 



2 
 

 
 

reasoning and qualitative analysis. However, our ability to fundamentally understand the genotype-

phenotype relationship began changing in the mid-1990s, upon completion of first prokaryotic genome 

sequencing projects. Full genome sequences provide comprehensive, albeit not yet complete, 

information about the genetic elements that create the form and function of an organism. The 

comprehensive understanding for some cellular processes, such as metabolism, has resulted in 

structured knowledge-bases that can be mathematically represented2-4. This mathematical representation 

enables the computation of phenotypic states5-8 based on genetic and environmental parameters. 

Remarkably, this provides a mechanistic representation of the microbial metabolic genotype-phenotype 

relationship. 

 Constraint-based models of genome-scale metabolic networks capture the inherent dual 

causation in the genotype-phenotype relationship by simultaneously accounting for constraints from 

physicochemical laws and genetics. The realization that these quantitative genotype-phenotype 

relationships could be constructed from a genome has driven the emergence of a whole new area of 

research that began after the first full genome sequences became available in the mid 1990s. More 

recently, the flood of increasingly rich high-throughput data has accelerated the evolution of constraint-

based reconstruction and analysis (COBRA) methods from a set of basic tools for metabolic network 

analysis into a powerful analytical framework that is now widely used. Here we describe: 1) the basic 

features of the COBRA framework, 2) the ‘phylogeny’ of the evolving groups of COBRA methods, and 

3) the COBRA ‘ecology,’ i.e., how various COBRA methods complement each other to answer larger 

questions in biology. 
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Figure 1.1. Proximal and distal causation. (a) A physical system can exist in any state, subject to 
physicochemical laws (blue). However, the space of allowed physical states is constrained by the 
selection of materials used to build the physical system, how these materials are connected, and how the 
system interacts with processes outside of the system boundaries (green). For example, a solid rocket 
motor can exist in a few states, and the motor composition and connections define these states. 
However, a failure in one component in the complex system can move the actual system from an 
ignited state to a failed state. Physical laws can be employed to predict how one might transition the 
rocket from a non-ignited state to the ignited and functioning state. These predictions are used to design 
the rocket. In like manner, an understanding of physical laws and the system can help identify what 
caused a rocket motor to fail. The processes that cause the motor to change states are the determinants 
of proximal causation. (b) A cell also has constraints on phenotypes it can display, imposed by its 
components and how they are organized. Through detailed study of these components and their 
interactions, we hope to understand proximal causation in cells, i.e., the physiological and 
environmental factors that cause a cell to change its phenotype. Despite the complexity, progress 
continues in our understanding of proximal causation in biology. (c) Understanding causation in 
biological systems is further complicated by evolution. Distal causation addresses the factors driving 
phenotype changes through evolution, and the mechanisms are often poorly understood. 
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Constraint-based modeling defined and its relation to causation 
The COBRA approach is based on a few fundamental concepts. These concepts include 1) the 

imposition of physicochemical constraints that limit computable phenotypes (Figure 1.2.a-d), 2) the 

identification and mathematical description of evolutionary selective pressures (Figure 1.2.e), and 3) a 

genome-scale perspective of cell metabolism that accounts of all metabolic gene products in a cell 

(Figure 1.2.d,f).  These fundamental concepts are briefly described here. 

Constraints on reaction networks: determinants of proximal causation. 

Metabolism is a complex network of biochemical reactions. The occurrence of any reaction is 

limited by three primary constraints: reaction substrate and enzyme availability, mass and charge 

conservation, and thermodynamics. For metabolism, reaction substrates must be present in a cell’s 

microenvironment or produced from other reactions, and enzymes must be available. Mass conservation 

further limits the possible reaction products and their stoichiometry, while thermodynamics constrain 

reaction directionality. This information for all possible metabolic reactions in an organism can be 

detailed and catalogued in metabolic reconstruction knowledgebases 2, 3. 

 In the COBRA framework, the constraints detailed in a metabolic reconstruction are converted 

into an in silico model by mathematically describing the metabolic network and adding network inputs 

and outputs (e.g., uptake and secretion products). Much like a cell has one genome and many 

transcriptional states, an organism has one metabolic reconstruction from which context-specific 

models can be derived, each representing cellular functions under different conditions. 

 Model constraints are mathematically described by a matrix representing the stoichiometric 

coefficients of each reaction (Figure 1.2.a-b)9. Known upper and lower bounds on the flux through each 

reaction are imposed as additional constraints. Mathematically, these constraints define a multi-

dimensional “solution space” of allowable reaction flux distributions. An actual expressed flux state 

resides within this solution space. Additional constraints can further shrink the solution space to focus 

in on the actual flux state of the network (Figure 1.2.c). These additional constraints may include 

enzyme capacity, spatial localization, metabolite sequestration, and multiple levels of gene, transcript, 

and protein regulation (Figure 1.2.d). Such constraints mechanistically describe proximal causation in a 
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cell, since they account for the genetics and physical laws constraining metabolism and the cell 

phenotype. 

 

Figure 1.2. Fundamentals of the genome-scale metabolic genotype-phenotype relationship. 
COBRA is based on three primary fundamental concepts: network constraints (a-d), objective functions 
(e), and the association of reactions with the genome. (a) A mixture of molecules (red) can react to yield 
end products (blue). (b) The stoichiometry of this reaction network is described mathematically in a 
stoichiometric matrix, with each column representing the reaction stoichiometry. Negative and positive 
values represent reactants and products, respectively. Reaction flux is limited by thermodynamics and 
catalytic capacities (Vm = Vmax), described by upper and lower bounds on each reaction flux (green). (c) 
Reaction constraints result in a “solution space” that contains all feasible flux distributions. Additional 
constraints (e.g., mass balance, the steady-state assumption, and measured metabolite consumption 
rates) reduce the space of feasible flux distributions, as shown by the pink line. (d) In vivo biochemical 
networks involve additional complexity. Gene regulation can change the abundance of catalysts (e.g., 
the transformation of D to E). Often components are localized in different organelles (e.g., E and F), 
thereby blocking reactions. (e) The biomass objective function describes an evolutionary pressure for 
microbial growth, and describes the metabolic demands to make basic metabolite building blocks for all 
of the cellular components (e.g., membranes, macromolecules, ATP, etc.). (f) The association of 
metabolism with the genome is done by mathematically linking the genome to transcripts, proteins, and 
chemical reactions. The gene-protein-reaction (GPR) schema is used to describe gene association in the 
models, and provide an interface for the integration of high-throughput data. 
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Mathematical statement of cell objectives: determinant of distal causation. 

In non-biological chemical networks, the material flow through pathways can be predicted in a 

“cause and effect” manner, using mathematical models that describe the associated physical laws. This 

description can be achieved in a “time-invariant” manner, since reproducing the same physical 

conditions will drive flux through the same pathways.  

 In contrast, causation in biology is “time-variant”. A vast array of chemical reactions may 

occur inside a cell, and many “pathways” can link a starting molecule to a given product. However, 

regulatory mechanisms have evolved to select when and where pathways will be used in an organism 

under a given condition. The selection of active pathways is a reflection of evolution and the result 

distal causation. Thus, if the cellular objectives that drive evolution are understood or can he 

hypothesized, optimal flux states of biochemical reaction networks can be predicted. In the COBRA 

framework these cellular objectives are described mathematically and used for computation of 

phenotypic states.  

  Many cellular objectives can be defined in the context of metabolism (Figure 1.2.e). For 

example, as a proxy for growth, a biomass reaction can be defined that contains all necessary precursors 

for synthesizing the cell components for growth (e.g., with amounts of amino acids for proteins and the 

nucleic acids for RNA)10. The biomass function and other objective functions can be used with 

optimization algorithms, such as linear programming11, 12 to predict metabolic pathway usage and 

cellular phenotypes12-14.  

Since these objective functions mathematically state cellular aims and can predict phenotypes, 

they capture pressures guiding evolution, and therefore represent a determinant of distal causation. The 

objective function is thus an important part of the COBRA framework. It is not based on fundamental 

physical principles, but based on biological functions that are selected for over many generations. 

 A genome-wide basis for modeling metabolism.  

Constraint-based modeling has rapidly developed since the advent of whole-genome 

sequencing in 199515, 16. A genome provides the genetic basis for the metabolic network in a target 

organism, and genome annotation allows the delineation of gene-protein-reaction associations (GPRs), 
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which describe the relationships between genes, enzymes, and the reactions they catalyze (Figure 

1.2.f)17. Annotated genomes and associated biochemical and genetic data have facilitated the 

development of carefully curated and validated metabolic network reconstructions containing thousands 

of reactions. When a reconstruction knowledgebase for an organism is converted into a genome-scale 

model (GEM), the mathematical representation forms the constraints, and the objective function can be 

used to represent the optimal biological functions that it strives to achieve. Thus, simulation of 

phenotypic states can be performed using a GEM for a target organism. 

 There are two primary implications stemming from the genome-scale view of metabolism of 

GEMs. First, since, in principle, they account for all known metabolic genes in a cell, they can be used 

for analyzing genome-scale datasets (e.g., proteomic, transcriptomic, metabolomic, etc.)18, while 

accounting for how the components are chemically connected (Figure 1.2.f). Second, since each 

metabolic gene is associated with the biochemical functions of its gene product, simulations of 

metabolite flow through the network can provide clear, mechanistic predictions of how each gene 

product affects the metabolic network function. Thus, cell phenotypes can be readily computed and data 

can be interpreted with GEMs, thereby providing mechanistic insight into how the cell genotype may 

contribute to the cell phenotype. 

A “phylogeny” of constraint-based methods and applications  
COBRA methods have ‘evolved’ and ‘diversified’ over the past decade, leading to the 

development of more than 100 different methods, many of which have been implemented in available 

software packages. These developments may be likened to an evolutionary process, in which specific 

scientific questions have selected for algorithmic innovations, yielding a phylogenetic tree of COBRA 

methods (Figure 1.3). Here we classify these methods into major groups and describe examples that 

address the broader scientific questions. 
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Figure 1.3. The “phylogeny” of constraint-based modeling methods. Over the past years, the 
constraint-based modeling community has rapidly expanded. Because of the versatility and scalability 
of these models, more than 100 methods have been developed for their modeling and analysis, all based 
on the analysis of the underlying metabolic network structure (i.e., the stoichiometric matrix). A 
phylogenetic tree is used to depict the similarities between applications of the methods and the 
underlying algorithms for many of the methods.  

Global characterization of solution spaces  
Metabolic pathways are conceptual abstractions that group reactions together. However, 

sometimes these “pathways” fail to reflect the actual usage of metabolic networks19. Fortunately, the 

“pathways” needed for specific metabolic functions can be identified without biases from traditional 

pathway concepts. In constraint-based modeling, this is approached through unbiased and biased 

methods, represented by the two primary branches of the phylogenetic tree (Figure 1.3). While biased 
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methods will be described later, unbiased methods describe all steady-state flux distributions, including 

reaction sets that function together without belonging to the same traditional pathway concepts. 

 Elementary flux mode (EFM) analysis and extreme pathway (ExPa) analysis provide global 

and unbiased characterization of allowable phenotypes, and have been reviewed and compared 

previously20-22. These methods identify reaction sets (i.e., pathways) that carry flux through the 

network, and combinations of these reaction sets describe the entire solution space (i.e., all steady-state 

phenotypes). These methods have enjoyed many applications, including assessing pathway regulation23, 

aiding in designing ethanol-secreting E. coli24, identifying synthetic lethals25, and demonstrating the 

trade-off between reducing translation costs and rapidly responding to environmental changes26. These 

methods are generally applied to small models or small portions of GEMs27, since their computational 

complexity scales exponentially28, 29. However, simplifications are beginning to permit their use on 

larger models30-33. 

 Alternative approaches have concurrently been developed to describe the entire “solution 

space” in an unbiased fashion34, 35. For example, Markov-chain Monte Carlo sampling (MCMC) 

methods35 characterize all feasible steady-state reaction fluxes. This provides a probability distribution 

of feasible fluxes for each reaction under the user-provided growth conditions. These methods have 

successfully provided insight into several biological properties, such as the high flux backbone of 

central metabolism in E. coli36, condition-specific regulation of yeast37, 38 and E. coli39 metabolism, and 

disease states in cardiac myocytes40, erythrocytes41, and the human brain42.  

Finding the “optimal” metabolic state with FBA methods 

EFM, ExPa, and MCMC methods characterize all possible flux states a metabolic network can 

deploy. However, a cell does not use most possible flux states. Thus, biased COBRA methods include 

the optimization of an objective function to focus in on physiologically relevant flux distributions. Flux 

Balance Analysis (FBA) is the most basic and commonly used biased method for simulating genome-

scale metabolism. In FBA, the cellular objective is defined, and metabolites in the media are supplied to 

the metabolic network. Linear programming is then used to optimize an objective function (e.g., the 

biomass objective function) subject to the constraints imposed by the metabolic network and metabolite 
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uptake rates11, 12, 43. This calculation finds one solution in the solution space that is believed to best 

represent the true cellular phenotype. The solution includes a prediction of the optimal objective 

magnitude (e.g., biomass yield or growth rate) and potential flux values for each reaction (Figure 1.4.a).  

 

Figure 1.4. Flux balance analysis (FBA). (a) In FBA, a cellular objective (e.g., biomass production) is 
optimized. This provides the predicted flux for each reaction in the network. (b) FBA and related 
methods can be classified into groups that use FBA in its purest form, methods that assess alternate 
optimal solutions, and methods with additional biological constraints. Several variants on FBA also 
exist that apply perturbations to genes or reactions. (c) FBA solutions are typically not unique, i.e., there 
are alternate optimal solutions that use different pathways to achieve the same objective value (e.g., 
growth rate). (d) Additional constraints can be applied to reduce the solution space size, and may 
remove competing optimal solutions, or (e) change the optimal solution. If the optimal solution is 
moved, then the choice of the new optimal solution may depend on the solver and/or algorithm, as 
shown for the MOMA method. (f) The addition of constraints can enhance predictions. For example, 
when constraints on molecular crowding are added, the model-predicted order of substrate metabolism 
is consistent with experimental observation. Panel f reproduced from 44, Copyright 2007, National 
Academy of Sciences, USA. NTPs, nucleotide triphosphates; AAs, amino acids; FVA, flux variability 
analysis; v, reaction flux; μmax, predicted maximum growth rate. 
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 FBA successfully makes quantitative predictions using a few governing constraints on the 

model. For example, a pre-genome era application of FBA recapitulated the acetate overflow phenotype 

of E. coli45. Using GEMs, FBA has since predicted growth rates46, pathway usage47, 48, reaction 

stoichiometry49, and the effect of gene expression noise on fitness50. It allowed the analysis complex 

phenotypes, such as metabolism in non-growing cells51. In addition, numerous variations on FBA have 

been developed to assess alternative optimal solutions or to account for additional constraints on 

metabolic flux in cells (Figure 1.4.b). 

 Predicted flux values from FBA can vary due to alternate optimal solutions (i.e., the same 

objective value using different reactions). Alternate optimal solutions are enumerated using mixed-

integer linear programming (MILP)52 and the ranges spanned by alternate optima are found for each 

reaction using flux variability analysis (Figure 1.4.c)53, 54. Some unlikely alternate optima can be 

removed by employing additional model constraints (Figure 1.4.d). The consideration of all alternate 

optima is critical when interpreting an FBA solution, since the flux through a single reaction can vary 

considerably depending on which solution is found. For example, the COBRA method Minimization of 

Metabolic Adjustment (MOMA)55 predicts a new flux vector and objective value after a perturbation 

(e.g., gene deletion). To do this, MOMA calculates one “wild type” FBA solution, and finds the nearest 

solution after perturbing the network (i.e., the minimum change to reaction fluxes from the FBA 

solution). Since the new predicted flux vector and growth rate can differ considerably depending on 

which alternate optimal solution is used (Figure 1.4.e), all possible results from alternate optima must 

be assessed. 

 To focus in on realistic microbial phenotypes in FBA predictions, additional biologically-

relevant constraints have been proposed. These include constraints imposed by genomic organization56, 

economy in enzyme usage47, 57-59, metabolite dilution60, and changes in transcript level61, 62. These 

refinements of FBA further decrease the range of feasible reaction fluxes to obtain solutions closely 

resembling cellular physiology under certain growth conditions. For example, constraints from 
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molecular crowding have been applied to FBA solutions (FBAwMC)44. In FBAwMC, reaction flux is 

constrained to reflect internal limitations on enzyme abundance in the crowded cytoplasm. This method 

predicted that molecular crowding contributes to substrate preferences in E. coli. In a medium with 

multiple carbon substrates, FBAwMC accurately predicted that glucose would be consumed first, 

followed by mixed-substrate consumption and a late utilization of glycerol and the excreted acetate 

(Figure 1.4.f), suggesting that molecular crowding may contribute to substrate preference. A similar 

variation on FBA accounts for crowding on the cytoplasmic membrane (FBAME)63 by limiting the flux 

through the glucose transporter and the three cytochromes in E. coli. This constraint recapitulated the 

simultaneous use of respiratory and fermentative pathways and predicted the effect of glucose and 

oxygen availability on cytochrome oxidase expression. Thus, by imposing molecular crowding 

constraints on metabolic flux, both FBAwMC and FBAME have provided additional insights into cell 

physiology. 

Modeling gene, reaction, or metabolite perturbation 
Since genome-scale metabolic networks capture the activities of hundreds of enzymes, mutant 

phenotypes can be assayed through in silico gene perturbation and simulation. Such approaches 

immediately demonstrated the predictive power of COBRA methods on the first GEMs15, 16. In these 

studies, metabolic genes were “knocked out” in the model by restricting the flux through their 

associated reactions to zero. When growth of mutant E. coli was simulated with FBA, 86% of the 

mutant phenotypes (i.e., growth or no growth) were accurately predicted16. This success rate was far 

greater than any other phenotype-predicting algorithm at the time. These initial analyses were followed 

by variations of the gene deletion concept, with methods such as MOMA55, Regulatory On/Off 

Minimization64, and Metabolite Essentiality Analysis (MEA)65(Figure 1.4.b). 

 Gene and reaction perturbation studies have aided health-related applications, such as 

assessing unexpected metabolic effects of off-target protein-drug interactions66 and predicting novel 

anti-microbial targets67. For example, MEA65 was applied to the metabolic GEM of Vibrio vulnificus68 

in an effort to identify potential antibiotic targets for this pathogenic relative to the causative agent of 

cholera. MEA identifies metabolites that, if removed, inhibit biomass production. Such metabolites 
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could be blocked in vivo with analogues that bind or modify active sites on enzymes that normally 

synthesize or catabolize the associated essential metabolite69. Here, this analysis yielded five candidate 

metabolites that could be targeted. Thus, only 352 analogues had to be screened for antimicrobial 

properties, which is much fewer than commonly used for drug discovery screens. One of several small 

molecules that showed antimicrobial properties was subjected to additional study, and this candidate 

molecule considerably out-performed sulfamethoxazole, an existing therapeutic for V. vulnificus 

infection. While additional drug safety assessment and optimization is required for this candidate drug, 

this study demonstrates how COBRA methods can guide antibiotic screens and provide immediate 

insight into their mode of action. 

In silico design of production strains  
Metabolic engineering approaches often perturb and screen cells for desired phenotypes. 

However, engineered strains can decrease product yield over time, since products drain cellular energy 

and resources. Several COBRA methods aim to address this by predicting perturbations (e.g., gene 

deletions or additions) that force the strain to couple product yield to a cellular objective, such as 

growth. Thus, as cells grow exponentially, they may also improve their productivity70 (Figure 1.5.a). 

Most COBRA strain-design methods systematically identify reactions that, when perturbed, 

may couple a product to a selective pressure (Figure 1.5.b). For example, OptKnock71 employs MILP 

on a wild-type model (Figure 1.5.c.i) to find reaction deletion sets that force product secretion under 

optimal growth (Figure 1.5.c.ii). However, since OptKnock optimizes both the biomass objective 

function and product yield, strain designs occasionally have alternate optima with other secretion 

products (Figure 1.5.c.iii). To avoid this challenge, the product can be added to the biomass function 

(Objective Tilting72) or MILP can be used to find designs that provide the maximum lower bound on 

product yield while maximizing growth (RobustKnock73)  (Figure 1.5.c.iv). 
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Figure 1.5. Principles of model-guided strain design. (a) Non-growth-coupled production strains 
witness a decrease in product yield over time, while growth-coupled strains can enhance product yield. 
(b) A number of methods have been developed to predict growth-coupled production strains by 
modeling reaction deletion, gene deletion, or reaction addition. (c) Growth-coupled strain designs are 
predicted to force product secretion while growing optimally. Different algorithms, such as OptKnock, 
Objective tilting, and RobustKnock can provide different optimal growth-coupled strain designs. (d) 
Many algorithms predict the set of reactions that must be blocked to obtain a desired product. However, 
a few methods provide a more realistic view by modeling genetic modifications, since some genes 
catalyze multiple reactions, and other reactions are spontaneous. 

 

For algorithmic simplicity, most strain design methods focus on perturbing reactions. 

However, strain designs based on reactions can require additional gene deletions (isozymes). Moreover, 

predictions are occasionally not feasible when they require the removal of one reaction catalyzed by a 

multi-specific enzyme (Figure 1.5.d). To avoid such predictions, heuristic approaches, such as 

OptGene74 and GDLS75, identify growth-coupled production strain designs that directly involve gene 

deletions. Thus, strain designs from such methods are more realistic and easier to test in vivo. 

 Strain-design predictions are not limited to manipulations of the host cell’s metabolic 

pathways. The repertoire of products may be expanded in silico by adding genes from other organisms 

to confer novel metabolic functions. In silico methods have used graph theoretical approaches76-78 or 

kinetic parameters78 to build novel biosynthetic pathways, which were subsequently tested or ranked 

using FBA or related methods. Unfortunately, without accounting for the host metabolic network, these 
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approaches cannot guarantee growth-coupled strain designs. Thus, without further engineering (e.g., 

with scaffolds79-81) predicted biosynthetic pathways may not yield product when implemented in vivo. 

However, this concern has been addressed by 1) manually removing genes to growth-couple the new 

pathways 78, 2) systematically following pathway prediction with OptKnock82, or 3) conducting the 

novel pathway search within the host-cell metabolic network to optimize the balance between added 

and deleted reactions, as done in OptStrain83. Thus, approaches have been developed to couple the 

synthesis of a non-native product to a cellular objective.  

 The concept of designing strains that couple a product to a defined selective pressure is not 

only intriguing, but COBRA-based in silico predictions have been successfully implemented in vivo70, 

82. It is anticipated that these tools will continue to aid metabolic engineering projects.  

Refining representations of dual causation 
Simulating proximal and distal causality with COBRA requires accurate representations of 

metabolic network stoichiometry and objective functions. While metabolic reconstructions are usually 

carefully built and rigorously tested, they are often incomplete. In addition, metabolic networks may 

contain a few errors in stoichiometry, thermodynamics, gene associations, or biomass composition, 

resulting from ambiguities in associated biochemical studies 84 or genome annotation 85. Moreover, 

biomass compositions can vary between environments86, and biomass optimization does not always 

describe the cellular objective87, especially under nutrient limitation, stationary phase, or stress51, 88. To 

address these concerns, phenotypic screens have been analyzed with gap-filling COBRA methods 

(Figure 1.6.a) to predict missing pathways and their associated genes89, 90, to identify reactions with 

incorrect directionality or inclusion84, 91-93, and to predict subcellular localization of reactions within 

microbes with multiple organelles94. Complementary COBRA methods also improve the definition of 

cellular objectives by integrating data to systematically assess95-97, predict98, or modify objective 

functions84, 86, 92.  

 Recently, high-throughput genetic interaction screens have helped refine metabolic networks 

and the biomass objective function of yeast84, 99. For example, model-predicted epistasis in S. cerevisiae 

was compared with 176,821 experimentally measured genetic interaction pairs. Although the COBRA 
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model predictions were enriched for high-confidence measured genetic interactions, it did not predict 

many epistatic interactions. The authors developed an algorithm that reconciled discrepancies between 

model-predicted and experimentally measured interactions. Several predicted model improvements 

were experimentally validated. For example, the authors found that quinolinate formation from 

aspartate was wrongly included in the yeast reconstruction. In addition, the algorithm predicted that 

glycogen should be removed as an essential component in the biomass objective function, since it is not 

essential for growth. Thus, this study demonstrated that COBRA methods could be deployed to improve 

the yeast metabolic network and provide condition-specific updates to the biomass objective function. 

 

Figure 1.6. Model-guided model refinement. COBRA methods can systematize the refinement of 
biochemical knowledge. (a) Computational methods can be used improve network topology by filling 
network gaps and determining subcellular localization. In addition, several methods exist to reconcile 
model objectives with experimental data in an effort to understand cellular objectives under a given 
condition. Lastly, the refinement of model thermodynamics is an important part of constraint-based 
modeling. Thus, methods exist to remove thermodynamically infeasible solutions, to derive 
thermodynamic data from the model, or use thermodynamic parameters to improve reaction 
directionality constraints. (b) When a metabolic network is not adequately constrained, metabolites can 
cycle infinitely in loops. Akin to Kirchhoff's loop law for electrical circuits, this property is 
thermodynamically infeasible. Thus, methods like ll-FVA, which uses the loopless-COBRA constraints 
on flux variability analysis, are able to systematically remove these loops by adding a constraint that 
limits solution to the regions of the solution space that are not involved in these loops.   
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Thermodynamics 
COBRA methods provide quantitative predictions without detailed parameterization of each 

reaction, beyond declaring directionality to reflect reaction thermodynamics. Directionality is often 

determined from biochemical assays, but such assays may not recapitulate the conditions and 

metabolite concentrations inside the cell. Therefore, reaction directionality in vitro may be inconsistent 

with in vivo flux. In addition, unrealistic fluxes can be predicted in silico if a reaction is reversible in a 

model, but irreversible in vivo. Thus, to improve model predictions, methods are now applying more 

rigorous thermodynamic constraints (Figure 1.6.a) by removing thermodynamically infeasible pathway 

usage100-102 or constraining flux based on Gibbs free energy calculations57, 103, 104. Methods are also 

being used to infer thermodynamic parameters 105. 

 Most COBRA models contain sets of reactions that can cycle metabolites amongst themselves 

(Figure 1.6.b). In these cases, FBA cannot predict reliable flux values for these reactions, since their 

metabolites can be cycled infinitely. Such “loops” are biologically unrealistic since no net 

thermodynamic driving force exists, akin to Kirchhoff's second law for electric circuits. Thus the net 

flux around these loops should be zero100. While these loops often do not affect predicted non-loop 

reaction flux, their existence can severely upset predictions from other methods, such as MOMA (E. 

Ruppin, personal communication). Approaches to systematically remove loops have been proposed100-

102. For example, loopless-COBRA101 improves FBA solutions by employing MILP to cancel out loop 

flux (Figure 1.6.c).  

 While loop-removal methods can be easily deployed without extra parameterization, detailed 

thermodynamic approaches may provide more biologically meaningful reaction flux predictions. 

Thermodynamic parameters for many metabolites are not known. Fortunately, recent advances in group 

contribution theory provide Gibbs free energy of formation estimates for metabolites in COBRA 

models106. With these predicted values, standard Gibbs free energy change of every reaction can be 

predicted. These values can help determine reaction directionality57, 107, predict reasonable 

concentration levels103, and allow the use of metabolite concentrations108 and ranges on kinetic 

parameters104 as constraints. A recent study109 used estimated metabolite free energy with 
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experimentally measured equilibrium constants to quantitatively assign reaction directionality. This 

approach also incorporated in vivo pH, temperature, and ionic strength to quantitatively assign reaction 

directionality to the E. coli metabolic network. When the authors compared the model-predicted and 

experimentally measured growth rates, they found that the qualitative assignment of directionality to 

certain reaction classes (e.g., ABC and proton coupled transporters) was necessary, in addition to 

quantitative assignment, to match model predictions with experimental data. Since thermodynamics 

represents one primary model constraint necessary for accurate COBRA predictions, it is expected that 

further developments in this area will be of great importance to the field.  

Incorporating regulatory constraints and signaling 
Transcriptional regulation and signaling networks interface extensively with metabolism to 

produce cellular phenotypes (Figure 1.7.a). By incorporating regulatory and signaling constraints into 

the function of metabolic networks, interactions between the systems can be captured to enhance 

COBRA predictions. There are two primary paradigms that dictate how regulatory constraints are 

implemented in constraint-based models (Figure 1.7.b). Either experimental data is overlaid on the 

metabolic network61, 62, 110-113 to constrain flux through specific reactions (Figure 1.7.c), or a 

mathematical representation of transcription regulation114, 115 or signaling116, 117 is interfaced directly 

with the metabolic network to aid in modeling (Figure 1.7.d). 
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Figure 1.7. Incorporating and inferring regulation. (a) Signaling, transcription regulation, and 
metabolism are interlinked in the cell. Therefore it is desirable that the networks be integrated for more 
holistic modeling of organisms. (b) Two primary paradigms exist in COBRA modeling for integrating 
transcription regulation and metabolism. (c) Algorithms such as GIMME and MBA use high-
throughput data and model simulations to identify which pathways are likely expressed and active in the 
cells when the data were sampled. This results in a tailored context-specific representation of the 
metabolic network. (d) Algorithms such as rFBA, iFBA, and SR-FBA incorporate detailed 
mathematical representations of the known molecular mechanisms of transcription regulation. These 
approaches contain binary regulatory logic that dictates, under a specific signal, which metabolic 
pathways are suppressed and cannot carry flux. (e) Hybrid methods, such as PROM are arising, in 
which transcriptomic data are used to infer the levels of constraints imposed by the regulatory network. 
PROM also uses probabilistic measures to allow for a more continuous regulation of reaction flux. For 
example, Gene 2 is tightly regulated by a transcription factor (TF). Thus, when the TF is activated by a 
signal, reaction flux is more tightly constrained than Gene 1, which is only loosely regulated.  

 

 Not all pathways are active under all growth conditions. Thus, ‘omic data can be used to 

constrain models accordingly (Figure 1.7.c)61, 62, 110-113. Methods such as GIMME110, Shlomi-NBT-08111, 

and MBA112 each remove pathways lacking expression in ‘omic data to obtain functional models that 

are consistent with the data. In particular, these approaches have provided novel insights and 

discoveries in tissue-specific human metabolism42, 66, 118, 119. However, they were also recently used to 
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model metabolic interactions between M. tuberculosis and a human alveolar macrophage86, which will 

be discussed later.  

 To expand model predictions beyond metabolism, mathematical descriptions of regulatory 

mechanisms are being integrated with metabolic models (Figure 1.7.d). Such integrated metabolic and 

regulatory models can improve phenotype predictions and even find novel regulatory interactions. This 

was done for the nutrient-controlled transcriptional regulatory network for S. cerevisiae120, which 

included Boolean regulatory interactions between 55 transcription factors and 750 metabolic genes. 

This integrated regulatory-metabolic network was used to simulate growth under different 

environmental and genetic perturbations using regulatory FBA (rFBA)121. The model predicted new 

transcriptional regulatory interactions, and elucidated regulatory cascades using chromatin 

immunoprecipitation data and transcription factor binding motifs. While integrated models of 

metabolism and transcription regulation can provide improved phenotype predictions, this study 

showed they can also expand regulatory knowledge. It is anticipated that these models may further 

demonstrate metabolic pathway usage in conditions for which ‘omic data are not available. 

 A few variations on rFBA have been suggested115, 116. Despite their success, rFBA and related 

methods have two primary weaknesses. First, they assume binary responses for all transcriptional 

regulatory interactions, when real biological systems exhibit a range of behavior in transcriptional 

regulation, from binary to continuous. Second, few organisms have been studied enough to provide 

adequate regulatory information for rFBA. However, a method called probabilistic regulation of 

metabolism (PROM) addresses these concerns122. When ample transcriptomic data are available, 

PROM uses an organism’s known transcriptional regulatory network to infer probabilities in how it 

integrates with the metabolic network, yielding an improved regulatory-metabolic network model. 

Moreover, PROM can apply intermediate responses (as opposed to binary), since it uses conditional 

probabilities for modeling transcription regulation instead of hard Boolean rules (Figure 1.7.e). 

 PROM was deployed to model the integrated regulatory-metabolic network of M. tuberculosis 

122. All TFs modulating metabolic gene expression were systematically deleted from the model and in 

silico growth phenotypes were compared with experimentally measured phenotypes. PROM correctly 
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predicted 96% of the TF knockout phenotypes, including 5 of the 6 TFs that were essential for optimal 

growth. This suggests that this method may help predict antibiotic targets for both regulatory and 

metabolic genes.   

An ecosystem of COBRA methods to address larger scientific questions  
Individual COBRA methods have answered numerous scientific questions, and many with 

respect to biological causation. However, a great strength of the COBRA framework is that many 

methods can be deployed in parallel or in series to obtain additional insights into a question of interest. 

Moreover, different models can be easily swapped or combined to test hypotheses relevant to different 

species. Thus by using a community of methods and several data types, deeper insights into larger 

questions may be attained. Here I provide examples of how COBRA methods have complemented each 

other and provided insight into microbial community interactions. 

The community structure in an organism’s microenvironment helps to shape metabolic 

pathways usage. Thus the prediction of proximal and distal responses in biology can be affected by 

neighboring organisms. Organisms will compete for scarce resources and/or depend on the metabolic 

capabilities of their cohabitants. Evolution often selects for cells that leverage this community structure, 

as is regularly manifested in cellular metabolism123, 124. COBRA methods are now modeling and 

characterizing several aspects of metabolism’s role in microbial community structure125-127. These 

studies are providing insight into mutualism128, competition129, parasitism86, 130, and community 

evolution124, 131. 
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Figure 1.8. Integrating COBRA methods to study community interactions. COBRA methods are 
providing insight into the metabolic interactions in various types of microbial communities. (a) To 
study the mutualistic behavior of co-dependent mutant E. coli, researchers used MOMA to simulate 
synergistic growth of pairs of auxotrophic E. coli. (b) Shadow prices from FBA simulations of these 
pairs were used to compute cooperation efficiencies between strains, which were subsequently 
compared with measured fitness improvements. (c) Competition in communities was modeled using 
DMMM to understand how communities of Geobacter and Rhodoferax compete for resources, and how 
the demographics varies under different nutrient ratios, thereby affecting the efficiency of 
bioremediation efforts. Host-pathogen interactions between M. tuberculosis and a human macrophage 
were studied using COBRA. (d) GIMME leveraged transcriptomic data to build host-pathogen models 
at different stages of infection. (e) Since the cellular objective of internalized M. tuberculosis is not 
known, refinements to the objective function were predicted from transcriptomic data. (f) The reliability 
of these models was assessed by comparing gene deletion analysis simulations with experimental gene 
essentiality data. (g) Flux states of internalized M. tuberculosis were simulated using MCMC sampling 
and found a suppression of central metabolism and activation of the glyoxylate shunt, represented here 
by enolase and isocitrate lyase, respectively. The role of communities in evolution has been studied 
using Reductive evolutionary simulation. In particular, this method predicted the minimal set of genes 
needed to for Buchnera to grow in the rich innards of the aphid. The predicted minimal gene sets (h) 
and order of gene loss (i) were consistent with the gene content and phylogenetic structure of several 
Buchnera species. 
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Mutalism  

Synthetic mutualism between auxotrophic mutants of E. coli was recently studied using 

COBRA methods128. The authors grew pairs of auxotrophic mutants and then modeled their coupled 

metabolism using MOMA to identify mutant pairs that complement each other’s growth by exchanging 

essential metabolites (Figure 1.8.a). Shadow prices from FBA were used to assess balance between the 

cost (from metabolite loss) and the benefit (from receiving missing essential metabolites) to each 

rescued auxotroph. The cooperative efficiency (i.e., the ratio of uptake benefit to production cost) 

recapitulated the observed growth of the co-cultures. Significant increases in growth (Figure 1.8.b) were 

witnessed in co-cultures that exchanged beneficial, but less costly metabolites (i.e., higher cooperative 

efficiency). While it is difficult to directly measure the exchange of metabolites between the 

auxotrophs, the computed cooperation efficiency provides an indirect quantitative assessment of the 

metabolite cross-feeding in this mutualistic system. 

Competition  

Metabolic competition for scarce nutrients has also been assessed with COBRA methods. 

Dynamic multi-species metabolic modeling (DMMM) characterized the competition for acetate, Fe(III), 

and ammonia between Geobacter sulfurreducens and Rhodoferax ferrireducens in subsurface anoxic 

environments (Figure 1.8.c)129. DMMM simulates the growth rate of both organisms and the rates of 

change of external metabolites, to dynamically predict population changes in the community. Using 

DMMM, the community composition was predicted under geochemically distinct conditions of low, 

medium, and high acetate flux. Under low acetate flux, DMMM predicts Rhodoferax dominates the 

community when sufficient ammonia is available, whereas Geobacter dominates under low ammonia 

and high acetate flux. This difference was attributed to the nitrogen fixation abilities of Geobacter, as 

well as its higher acetate uptake rate compared to Rhodoferax. Moreover, it was also predicted that 

under nitrogen fixing conditions, Geobacter increases its respiration at the expense of biomass 

production, thus showing how balancing community structure can impact the efficacy of uranium 

bioremediation in low ammonium zones. 

Parasitism  



24 
 

 
 

Host-pathogen interactions are now being studied with COBRA methods130. A recent study 

modeled the metabolic interactions between a human alveolar macrophage and M. tuberculosis86. 

Context-specific models of infection were built with GIMME110 and Shlomi-NBT-08111 using 

transcriptomic data from three types of M. tuberculosis infections (Figure 1.8.d).  Next, the objective 

function was iteratively revised using infection-specific gene expression data in order to represent the 

metabolic activity of the pathogen in vivo (Figure 1.8.e). Gene deletion analysis was compared with in 

vivo gene essentiality data (Figure 1.8.f), and MCMC sampling was also used to demonstrate a 

significant alteration in metabolic pathway usage in M. tuberculosis during macrophage infection, 

including a suppression of glycolysis and an increased dependency on glyoxylate metabolism (Figure 

1.8.g). This constraint of central metabolism during M. tuberculosis infection was also suggested by 

DCP, another method related to FBA132. This suppression of certain metabolic pathways with an 

increased dependency upon normally latent pathways may provide novel antibiotic targets. 

Community evolution  

A central tenet of evolutionary theory is that over time, genetic drift and selective pressure 

causes organisms to optimize their cellular machinery for a particular niche. This assumption of cellular 

optimization has made COBRA methods useful tools to investigate hypotheses concerning organismal 

evolution, as recently reviewed by Papp, et al.7 In nature, the optimization and evolution of microbial 

metabolism is a multi-species affair, as demonstrated by the aphid endosymbiant Buchnera aphidicola. 

This descendant of the Enterobacteriaceae family has suffered drastic loss of genomic material as it 

evolved in its host’s nutrient-rich innards. Since B. aphidicola is related to E. coli, reductive 

evolutionary simulation (a derivative of gene deletion analysis)124 on the E. coli model was used to 

predict the minimal metabolic gene sets. It was found that these minimal sets are highly consistent with 

the metabolic gene content of B. aphidicola (Figure 1.8.h). In addition, the predicted order of gene loss 

could explain ~40% of the variation in the phylogenetically reconstructed gene loss time among the 

genomes of five Buchnera species (Figure 1.8.i)131, thus suggesting that the bacterium optimized its 

pathway usage for its new rich habitat. However, metabolic pathways retained in the computed minimal 

gene sets highlight the bacterium’s role in community evolution. Retained pathways contained reactions 
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needed for producing riboflavin and essential amino acids lacking from the aphid diet, thereby 

highlighting their role in the symbiotic relationship124. Thus, COBRA methods are helping to describe 

the role of the community environment to distal causation, and how evolution shapes gene content in 

symbiotic communities7. 

On the pathway to causation in biology 
Dual causation and the sheer complexity of biological systems have presented considerable 

challenges in achieving the quantitative rigor in the life sciences that is enjoyed in other fields of 

science. This has been in part because the assessment of causation requires 1) a means to quantitatively 

model physical phenononae under the constraints of physical laws, 2) detailed knowledge of the 

properties of components in the system, and 3) an understanding of how these components interact.  

Fortunately, in the past decade, cell and molecular biology has become increasingly 

quantitative as the molecular parts that define the form and function of organisms have been measured 

and their interactions have been characterized. COBRA has arisen as a quantitatively rigorous 

framework that integrates these data from high-throughput technologies with knowledge from decades 

of careful studies on the biochemical properties of the gene products. Lastly, COBRA provides a 

quantitative framework that accounts for the constraints imposed by physical laws and allows for the 

quantitative prediction of phenotypes and the underlying mechanisms.  

The remaining chapters of this dissertation aim to demonstrate how COBRA methods 

contribute to the goal of assessing causation in complex biochemical networks by showing how these 

methods can be integrated with various data sources (Figure 1.9). For each case study, an open question 

with respect constraint-based modeling is addressed. To do this, an algorithmic or conceptual advance 

to COBRA is presented. Ultimately, each of these studies integrates COBRA methods with numerous 

data types to assess causation with respect to several biological questions. 

Thus, by mathematically describing cell biochemistry and evolutionary selective pressures, 

reconstructed networks and COBRA methods are now presenting a basis for the quantitative analysis 

and prediction of complex metabolic genotype-phenotype relationships. 
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Figure 1.9. A roadmap for this dissertation, in which high-throughput data can be integrated with 
genome-scale simulations of metabolism to study causation in biochemical systems. In each 
chapter, an open question in constraint-based reconstruction and analysis is addressed with the 
development on new algorithms and resources. Several data types are integrated to answer these 
questions, and then further used to address causation with respect to a biological question of interest.  
 

 

Chapter 1 is a modified version of material in Lewis, N.E., Nagarajan, H., and Palsson, B.Ø. 

Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. 

Nature Reviews Microbiology (2012). I was the primary author, while the co-authors participated in and 

supervised the drafting of this review. 
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Section I: Proximal causation in metabolism 
Life continues because the chemical organization therein is structured such that it can respond 

and adapt to moderate fluctuations in environment, and utilize the resources in these habitats to 

propagate its genetic programs. These responses to variations in environment represent proximal 

responses.  

 For decades, scientists have been trying to predict these proximal responses and identify their 

causative factors through the use of various modeling techniques, such as statistical models, 

phenomenological models, and models that detail the biomolecular components in a cell. As 

demonstrated in the previous chapter, constraint-based modeling and analysis has been successful over 

the past decade because it allows one to model complex phenotypes, using detailed biochemical 

knowledge on hundreds or thousands of genes and proteins, simultaneously. In the following two 

chapters, conceptual developments are presented with respect to the usage of constraint-based modeling 

as a context in which large high-throughput transcriptomic and proteomic data sets are analyzed. These 

approaches subsequently provide insight into proximal causation in response to internal pathologies and 

environmental variation. Specifically, the chapters presented here demonstrate causation in human 

neurological disease phenotypes and microbial metabolic regulation in response to fluctuating 

environmental conditions. Through both of these chapters it is clear that across widely different 

organisms, proximal responses may be modeled and causation in physiology and pathophysiology can 

be predicted.  
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Chapter 2: Large-scale in silico modeling of metabolic interactions 
between cell types in the human brain. 

Constraint-based reconstruction and analysis of genome-scale microbial metabolic networks 

has matured over the past decade, and has provided a wealth of insight into how organisms function and 

respond to environmental cues. For example, these predictions have aided in metabolic engineering, and 

provided a mechanistic bridge between genotypes and complex phenotypes5, 6. Computational 

methods133 and a detailed SOP3 have been outlined for the reconstruction of high-quality prokaryotic 

metabolic networks, and many methods can be deployed for their analysis43, 134. Constraint-based 

modeling of metabolism entered a new phase with the publication of the human metabolic network 

(Recon 1)135, based on build-35 of the human genome.  Methods allowing tissue-specific model 

construction have followed110-112. 

Tissue metabolic functions often rely on interactions between many cell types. Thus, methods 

are needed that integrate the metabolic activities of multiple cells. Here, using Recon 1, we analyze and 

integrate omics data with information from detailed biochemical studies to build multicellular 

constraint-based models of metabolism. We demonstrate this process by constructing and analyzing 

models of human brain energy metabolism, with an emphasis on central metabolism and mitochondrial 

function in astrocytes and neurons. Moreover, we provide three detailed examples, demonstrating the 

use of models to provide insight into the metabolic mechanisms underlying physiological and 

pathophysiological states in brain.   
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Building metabolic models of multiple cell types 
Omics datasets can be difficult to analyze due to their size. However, such datasets can be used 

to construct large mechanistic models for specific tissues and cell types110, 111 that serve as a context for 

further analysis. The workflow for generating multicellular models, as depicted in Figure 2.1, consists 

of the following four steps: 

Step 1. An organism-specific metabolic network is reconstructed from genome annotation, lists of 

biomolecular components, and the literature3. Metabolic pathways and associated gene 

products are not completely known for any species. Thus, a reconstruction is refined 

through iterations of manual curation, hypothesis generation, experimental validation, 

and incorporation of new knowledge. Recon 1 has been through five iterations135. 

Step 2. Many gene products are not expressed in all cells at any given time136. Therefore, gene 

product presence from omic data is mapped to Recon 1 using the gene-protein-reaction 

associations to obtain a draft reconstruction for the tissue of interest. This process may 

be performed manually or algorithmically110, 111. 

Step 3. Initial context-specific reconstructions are incomplete and may contain false positives due 

to proximal tissue contamination. Moreover, few high-throughput datasets are cell-type 

specific. Thus, the initial reconstruction represents the union of metabolic networks 

from various cell types. To address this problem, the literature is searched to verify 

enzyme localization and partition the model into compartments representing different 

cell types and organelles. Upon completion, the reconstruction is converted into a model 

by specifying inputs, outputs, relevant parameters, and by representing the network 

mathematically9. See Thiele and Palsson3 for details of proper manual curation. 

Step 4. Once the network is accurately reconstructed and converted into an in silico model, it is 

used for simulation and analysis5, 6, 134 for hypothesis generation and to obtain insight 

into systems-level biological functions.  
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Figure 2.1. A workflow for bridging the genotype-phenotype gap with the use of high-throughput 
data and manual curation for the construction of multicellular models of metabolism. Metabolic 
models of multicellular tissues can be constructed to gain insight into biology and make testable 
hypotheses. First, a species-specific reconstruction is built based on genome annotation, experimental 
data, and knowledge obtained from the literature. Second, high-thoughput data can be mapped to the 
reconstruction in order to find a context-specific network (e.g., representing a tissue). Third, 
multicellular models are constructed as the context-specific network is organized into compartments 
representing different cell types, based on cell-specific knowledge and data. These networks are linked 
together with the transport of shared metabolites, and then formulated into a model. Fourth, the models 
are utilized for simulation and analysis to gain insight and generate testable hypotheses. For example, 
the models can be used to a) predict disease-associated genes, such as glutamate decarboxylase in this 
work. b) High-thoughput data can be analyzed in the network context to identify sets of genes that 
change together and affect specific pathways, such as the brain-region-specific suppression of central 
metabolism in Alzheimer’s disease patients. c) Physiological data can be analyzed in the context of the 
model, therefore allowing, for example, the calculation of the percentage of the brain that is cholinergic.   

 

 This workflow was used to build three different multicellular models of brain energy 

metabolism. Each model represents one canonical neuron type (i.e., glutamatergic, GABAergic, or 

cholinergic), its interactions with the surrounding astrocytes, and the transport of metabolites through 
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the blood-brain barrier (Figure 2.2). This reconstruction focuses on the core of cerebral energy 

metabolism, including central metabolism, mitochondrial metabolic pathways, and pathways relevant to 

anabolism and catabolism of three neurotransmitters: glutamate, γ-aminobutarate (GABA), and 

acetylcholine. Thus, the three models contain the high flux pathways and important reactions in neuron 

and astrocyte metabolism. These models currently represent the largest and most detailed models of 

brain energy metabolism 137-139. Our models contain 1066, 1067, and 1070 compartment-specific 

reactions, transformations, and exchanges, involving 983, 983, and 987 metabolite/compartment 

combinations, for the glutamatergic, GABAergic, and cholinergic models, respectively, and are 

associated with a total of 403 genes. The validity of these models is demonstrated through various tests 

and comparisons to physiological data. Specifically, our model predicts ATP production rates within 

8% of the average published value, and internal flux measurements are consistent with experimentally 

measured values 42. Moreover, three analyses using the models are detailed here. Since most of these 

analyses cannot be done on previous brain models or Recon 1 as published, this work provides novel 

insight into brain energy metabolism. 

 

Figure 2.2. General structure of the models. Three models were built from the brain reconstruction. 
Each model consists of various compartments: 1) the endothelium/blood, 2) astrocytes, 3) astrocytic 
mitochondria, 4) neurons, 5) neuronal mitochondria, and 6) an interstitial space between the cell types. 
Each neuron metabolic network was tailored to represent a specific neuron type, containing genes and 
reactions generally accepted to be unique to the neuron type.  Mito = mitochondrion, Int = interstitial 
space, CMR = cerebral metabolic rate. 
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Identifying a potentially neuroprotective gene in AD 
Alzheimer’s disease (AD) is characterized by histopathological features, including 

neurofibrillary tangles and β-amyloid plaques. Moreover, there is a strong metabolic component, in 

which metabolic rates of various brain regions decrease years before the onset of dementia140.  

Several central metabolic enzymes exhibit altered expression or activity in AD, such as 

pyruvate dehydrogenase (PDHm), α-ketoglutarate dehydrogenase (AKGDm), and cytochrome c oxidase 

(CYOO)141-143. The activities of these enzymes are affected by the AD-related proteins β-amyloid and 

Tau kinase144, 145. In silico, as the activity of these enzymes decreases, neurons demonstrate impaired 

metabolic capacity, and deficiencies in PDHm activity leads to a decreased cholinergic 

neurotransmission capacity (see 42 for more details).  

AKGDm deficiency shows the greatest impairment in post-mortem AD brain (57% decrease in 

activity)142. An in silico analysis shows that this deficiency impairs the metabolic rate in glutamatergic 

and cholinergic neurons (Figure 2.3.a), since it limits oxidative phosphorylation (OxPhos) capacity in 

neurons (Figure 2.3.b-c). Such impairment of OxPhos leads to neuronal apoptosis146. Surprisingly, 

however, OxPhos is not impaired in the GABAergic neuron model (Figure 2.3.d). This model-derived 

result is consistent with the experimental observation that glutamatergic and cholinergic neurons are 

more affected in moderate stages of AD147, while most GABAergic cells are relatively unaffected until 

late stages148. Therefore, the models were further interrogated to identify a mechanism that allows 

GABAergic neurons to absorb the perturbation, thereby leading to the cell-type-specific effects.  
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Figure 2.3. Decrease in α-ketoglutarate dehydrogenase (AKGDm) activity, associated with 
Alzheimer’s disease (AD), shows cell-type and regional effects in silico consistent with 
experimental data. Kernel density plots show the distribution of feasible fluxes for various reactions 
(a-e). An in silico reduction of AKGDm flux from normal activity (a-e, solid lines) to AD brain activity 
(a-e, dashed) decreases (a) the oxidative metabolic rate for glutamateric and cholinergic neurons, but 
not GABAergic neurons. This results from a decrease in the feasible fluxes for oxidative 
phosphorylation (e.g., cytochrome c oxidase) for both (b) glutamatergic and (c) cholinergic neurons, but 
not (d) GABAergic cells. This cell-type-specific protection from the AKGDm deficiency results from 
(e) an increased flux through the GABA shunt in GABAergic cells, by bypassing the damaged AKGDm 
(f). GABAergic cells maintain a higher GABA shunt flux because of the expression of glutamate 
decarboxylase (GAD). Neuroprotective properties of GAD are supported by gene expression. (g) 
Severely damaged brain regions in AD patients have lower GADNMN expression in control brain, while 
high GADNMN regions (SFG and VCX) show little damage. In AD brain, (h) severely affected regions 
(HIP and EC) show an increase in GADNMN and the GAD-inducing DLX family, suggesting that non-
GAD expressing neurons may be lost in AD. EC = entorhinal cortex, HIP = hippocampus, MTG = 
middle temporal gyrus, PC = posterior cingulate cortex, SFG = superior frontal gyrus, VCX = visual 
cortex, NMN = neuron marker normalized, inhib = inhibited. All reaction and metabolite abbreviations 
are defined in 42. 
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Simulations show that GABAergic neurons absorb the AKGDm perturbation through the 

GABA shunt (Figure 2.3.f), a pathway that uses 4-aminobutyrate transaminase and succinate-

semialdehyde dehydrogenase to bypass part of the TCA cycle. However, our models suggest that 

glutamatergic and cholinergic neurons cannot, despite carrying a small flux through the shunt enzymes 

(Figure 2.3.e). Support for these results includes recent evidence that suggests that cerebellar granule 

neurons, which have higher levels of GABA, can absorb perturbations to AKGDH through this shunt149.  

To identify the mechanism allowing only GABAergic neurons to use the GABA shunt to 

absorb the AKGDm perturbation, an in silico analysis was performed to identify genes that contribute 

to this (see 42 for details). This analysis suggests that the two isoforms of glutamate decarboxylase 

(GAD) could provide the cell-type specific neuroprotection. GAD allows the GABA shunt to carry a 

higher flux following the AKGDm perturbation in GABAergic neurons; however, the lack of GAD in 

other neuron types greatly limits the use of the GABA shunt in silico (Figure 2.3.e). Therefore, by 

fueling the GABA shunt, GAD may play a neuroprotective function, thus contributing to the sparing of 

GABAergic systems in earlier AD148. 

Certain populations of glutamatergic and cholinergic cells tend to be lost earlier in AD, but 

others survive. Interestingly, while GAD is canonically a GABAergic gene, it occasionally shows low 

expression in other neuron types, including glutamatergic and cholinergic cells150. Therefore, such 

populations of non-GABAergic, GAD-expressing neurons would also be protected. Thus, we follow 

with an analysis of the correlation of GAD expression and AD pathology for further validation.  

If GAD has neuroprotective capacity in vivo, two properties of GAD expression are expected. 

First, brain regions with less GAD per neuron will be more affected in AD, while regions with abundant 

GAD will be spared. To test this hypothesis, we used a compendium of published microarrays of non-

tangle-bearing neurons from six brain regions in Alzheimer patients and age-matched non-Alzheimer 

controls151. Among control patients, GAD expression levels among the brain regions is consistent with 

the extent of neuron loss found in AD patients; i.e., brain regions with more neuron loss in AD (e.g., the 

entorhinal cortex and hippocampus) have lower GAD expression in control patients, while relatively 
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unaffected regions in AD (e.g., superior frontal gyrus and visual cortex) show much higher levels of 

GAD expression (Figure 2.3.g). 

For the second property, neurons with low GAD expression should be lost in AD; therefore, 

GAD expression per neuron should increase in histopathologically affected regions. Consistent with the 

hypothesis, there is a significant increase in the expression of the brain-specific GAD2 in the entorhinal 

cortex and hippocampus in AD (p=0.0050 and 0.018, respectively) (Figure 2.3.h). As a control, all other 

neuron-specific genes tested failed to show a correlation with AD pathology, except the Dlx genes, 

which induce GAD expression in the brain (Figure 2.3.h)152. Therefore, these results lend additional 

support to the possibility that GAD may be providing a neuroprotective effect, and that this effect is 

correlated with the regional specificity of AD. Moreover, the model was able to guide the identification 

of a gene and the mechanism for its role in AD, while the subsequent microarray analysis provides 

experimental support for the model prediction. 

Microarray analysis shows pathway suppression in AD  
Atrophy alone cannot explain the extent of impaired metabolism in AD in many brain 

regions153. Therefore, in such regions, there must be metabolic pathway suppression within surviving 

cells. To test this, we used PathWave154, a method that identifies differentially expressed pathways in 

omic data based on intra-pathway connectivity in a user-provided metabolic network (see Methods). 

In this analysis, each brain region demonstrates different amounts of changed metabolic 

pathways. The visual cortex and superior frontal gyrus lack any differentially expressed pathways, 

consistent with previous work that shows little change in metabolic rate in AD in these regions151. 

However, the posterior cingulate cortex (PC) and middle temporal gyrus (MTG) have the largest 

numbers of significantly differentially expressed pathways (23 and 18 pathways, respectively). These 

two regions show significantly decreased metabolic rates in AD, but show fewer histopathological 

effects151. Both the entorhinal cortex (EC) and hippocampus (HIP) also show decreases in expression of 

nine metabolic pathways, though the number of suppressed pathways may be lower since these regions 

suffer a high amount of neuron loss, and only histopathologically healthy neurons were expression 

profiled. Therefore, more affected neurons may already have been lost or not profiled. 
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In the PathWave analysis, the four brain regions that show significantly low metabolic rates in 

AD (PC, MTG, HIP and EC)153 all show a significant suppression of glycolysis and the TCA cycle 

(Figure 2.4). In addition, the HIP, MTG and PCC show a suppression of the malate-aspartate shuttle 

and OxPhos. Individual regions also show a suppression of other pathways, such as heme biosynthesis 

(MTG, PC), ethanol metabolism (EC, PC), and several amino acid metabolism pathways. Thus, using 

PathWave with our models, we find that the decreased metabolic rate in specific regions in AD is 

associated with the down-regulation of central metabolic gene expression in histopathologically normal 

neurons. 
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Figure 2.4. Metabolically affected brain regions in AD show significant suppression of central 
metabolic pathways. In certain AD brain regions, the metabolic rate of glucose decreases more than 
can be explained by brain atrophy. PathWave analysis demonstrates that histopathogically normal cells 
from the metabolically affected brain regions (EC, HIP, MTG, and PC) demonstrate a significant 
suppression of central metabolic pathways, such as (a) glycolysis and (b) the TCA cycle and 
surrounding reactions. Metabolically less affected regions (SFG and VCX) show no significant 
suppression. Reaction suppression shown here is a composite expression of the reaction associated 
genes and the genes of closely connected reactions. Only significantly changed reactions are shown 
(FDR = 0.05). EC = entorhinal cortex, HIP = hippocampus, MTG = middle temporal gyrus, PC = 
posterior cingulate cortex, SFG = superior frontal gyrus, VCX = visual cortex. All reaction and 
metabolite abbreviations are defined in 42. 
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Models detail properties of cholinergic metabolic coupling 
Studies have demonstrated that the use of cytosolic acetyl-CoA for the synthesis of the 

neurotransmitter acetylcholine comes from the acetyl-CoA formed in the mitochondria. This tight 

coupling of acetylcholine to mitochondrial metabolism allows treatments that increase glucose uptake 

in the brain to improve cognitive functions in rats155 and humans with severe cholinergic cognitive 

pathologies, such as Alzheimer’s Disease and Trisomy-21156. Pathways that transport acetyl-CoA 

carbon to the cytosol have been suggested; however, the mechanism is still not clear157.  

Constraint-based modeling was used to aid in the identification of two pathways that could 

indirectly transport acetyl-CoA into the cytosol, and provide insight into needed complementary 

pathways. To identify possible pathways, reaction sets were identified by randomly removing reactions 

from Recon 1 until a minimum set was determined that couples the mitochondrial and cytosolic acetyl-

CoA pools. This was repeated until more than 21,000 unique minimal reaction sets were identified. 

Singular value decomposition was then used to identify dominant pathway features that frequently co-

occur. 

The first singular vector is dominated by reactions that occur most frequently in the reaction 

sets (e.g., water transport across the cell membrane). However, the second and third singular vectors are 

dominated by reaction sets that usually co-occur or never co-occur (Figure 2.5). These reactions cluster 

into three distinct pathways, providing hypotheses to aid in the reconstruction process. The omic data 

used in the reconstruction process, and a thorough literature search eliminated the pathway using 

cytosolic acetyl-CoA sythetase (Figure 2.5.a), and validated the other two, involving the transport and 

metabolism of acetyl-CoA-derived citrate or acetoacetate, using ATP-citrate lyase (ACITL) or cytosolic 

acetyl-CoA C-acetyltransferase (ACACT1r), respectively (Figure 2.5.b-c).  
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Figure 2.5. Singular Value Decomposition (SVD) of feasible pathways elucidates potential 
pathways that allow for coupling of mitochondria acetyl-CoA metabolism and cytosolic 
acetylcholine production. 21,000 unique feasible reaction sets were computed, each showing transport 
of mitochondrial acetyl-CoA carbon to the cytosol in human metabolism. SVD of a matrix of all 21,000 
pathways yielded 3 primary pathways that allow this coupling of mitochondrial metabolism to 
acetylcholine production, by carrying the acetyl-CoA carbon on (a) N-acetyl-L-apartate, (b) citrate, or 
(c) acetoacetate. As shown by the second singular vector, reactions in the pathway with citrate tend to 
be missing from pathways when the reactions for the acetoacetate pathway are included. The third 
singular vector shows a similar relationship of the N-acetyl-L-aspartate pathway. The omic data and 
known enzyme localization only support the usage of citrate and acetoacetate as potential carriers in 
neurons.  

 

Our model contains these two pathways and shows a correlation between the flux through 

mitochondrial pyruvate dehydrogenase and choline acetyltransferase (r = 0.45, p = 3x10-247), consistent 

with the experimental observation of a tight coupling between mitochondrial metabolism and 

acetylcholine production. ACITL and ACACT1r also correlate with choline acetyltransferase flux (p < 

3 x 10-90). Moreover, it has been reported that the inhibition of ACITL reduces the acetylcholine 

production rate by 30%157. The in silico inhibition of ACITL reduces acetylcholine production by 7.3%. 

The in silico decrease is smaller because the model can immediately adapt to the perturbation, while in 

vivo regulatory responses would take time to adapt. Therefore, it is expected that the model change is 

smaller. Interestingly, the inhibition of ACACT1r reduces acetylcholine production by 39%. Thus, it 

seems that cholinergic neurotransmission depends on redundant pathways, and that acetoacetate may 

play a more dominant role in transporting mitochondrial acetyl-CoA to the cytosol. 

The coupling of mitochondrial metabolism to acetylcholine synthesis aids in the treatment of 

cholinergic disorders. However, knowledge of the abundance of cholinergic neurotransmission also aids 

in this purpose. It is difficult to identify cholinergic neurons, based solely on cell morphology, since 

cholinesterases and immunohistochemical markers for cholinergic neurons are also found in non-
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cholinergic neurons and other tissues158. Therefore, it is unknown what percentage of all 

neurotransmission is cholinergic.  

Using our cholinergic model, we compute the percent contribution of cholinergic 

neurotransmission based on published data159. The data used for this purpose were obtained from rat 

brain minces, incubated in solutions containing [1-14C]pyruvate or [2-14C]pyruvate. Both acetylcholine 

and radiolabeled CO2 were measured at various titrations of several different pyruvate dehydrogenase 

inhibitors.  

The cholinergic model was subjected to similar levels of pyruvate dehydrogenase inhibition. 

The simulations successfully reproduced the experimentally-witnessed linear relationship between 

acetylcholine production and metabolic rate, and acetylcholine production was correlated with CO2 

release (r = 0.68).  

The fraction of cholinergic neurotransmission for the brain was computed by randomly 

choosing points from both the distributions of experimental data and distributions predicted by the 

simulations. A scaling factor was subsequently found that reconciles the two. This was repeated for 14 

different combinations of pyruvate labeling and pyruvate dehydrogenase inhibitors159, yielding a 

median predicted cholinergic portion of total brain neurotransmission of 3.3% (Figure 2.6.a). After 

adding this new parameter to the model, the predictions corresponded well with the experimental data 

sets (Figure 2.6.b), including six datasets representing three pyruvate dehydrogenase inhibitors withheld 

from the previous computations (Figure 2.6.c-d). Thus, the model was used in conjunction with 

experimental data to gain insight into physiological observations and derive important physiological 

parameters dependent on systems-level activity. 
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Figure 2.6. Model-aided prediction of cholinergic contribution is consistent with experimental 
acetylcholine production. Percent brain cholinergic neurotransmission was predicted based on 14 sets 
of experimental data in which brain minces were fed [1-14C]-pyruvate or [2-14C]-pyruvate, followed by 
measurement of 14C-labeled CO2 and acetylcholine. (a) For each experiment, the feasible amount of the 
brain that can generate the experimental response was computed, centering at 3.3%.  (b) This parameter 
was employed in the analysis, and the updated model predictions were consistent with experimental 
data, such as seen in the case of treating the brain minces with [1-14C]-pyruvate and increasing levels of 
the pyruvate-dehydrogenase inhibitor bromopyruvate. Moreover, the updated model predictions were 
consistent with measured 14C-labeled CO2 and acetylcholine production for brain minces that were 
treated with three PDHm inhibitors withheld from previous computations for both supplementation with 
(c) [1-14C]-pyruvate and (d) [2-14C]-pyruvate. Error bars on the simulation results represent 25th and 75th 
percentiles. ChAT = choline acetyltransferase. 

 

Implications of these proximal responses  
In this study a workflow was presented for generating tissue-specific, multicellular metabolic 

models. Through the analysis and integration of omic data, followed by manual curation, this workflow 

was used to build a first-draft manually-curated multicellular metabolic reconstruction of brain energy 

metabolism. Three models were generated from this reconstruction, representing different types of 

neurons coupled to astrocytes. We employed these models in three distinct analyses, each of which 

yielded predictions and insights into proximal responses and causation in AD and cholinergic 

neurotransmission, with respect to how the cells respond to metabolic perturbations. For example, we 

found that glycolysis seems suppressed in seemingly healthy neurons, and predicted a mechanism by 

which neurons selectively are lost in AD. Moreover, we were able to provide additional support for 

pathways that contribute to acetylcholine synthesis, a process that doctors have tried to enhance in AD 

patients in the past.  

As experimental methods and data resolution improve, the accuracy of these models and their 

ability to predict causation in disease and responses to treatment may also improve. Improvements in 
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neuroimaging and metabolomics will allow for more precise quantification of metabolite flow through 

the blood-brain-barrier, which is of interest since dysfunction of this system accompanies many 

neurological disorders and injuries 160. In addition, improvements in transcriptomics and proteomics 

will provide higher-resolution quantification of cell- and organelle-specific genes and proteins. This 

data will allow models to account for neuron groups in specific brain regions, subcellular heterogeneity 

within cells, and the inclusion of less abundant glial cells. For example, higher-resolution models may 

provide insight into proximal causation during metabolic changes in specific cell populations, such as 

the structures closely related to the olfactory system, which are affected in the early stages of 

Alzheimer’s disease 161.  

As seen in this work, novel insight into mammalian tissue-specific metabolism may be gained 

as more multicellular models are constructed. Our models demonstrate metabolic coupling and 

synergistic activities that more coarse-grained models miss, since the three analyses presented here 

were not possible using Recon 1 or the previous models of brain metabolism. The compartmentalization 

of metabolic processes within cells162, between cells163, and in host-pathogen interactions has an 

important role in normal physiology. Therefore, such models may provide greater insight and more 

accurately predict how cells respond to the environment and carry out their true cellular functions. 

In a broad sense, this study serves as an example of how mechanistic genotype-phenotype 

relationships can be built. From the genotype one can begin to reconstruct the network for an organism. 

The integration of high-throughput data and careful manual curation can add context-specific 

mechanistic network structure to genomic information. Thus, this network becomes a representation of 

the complex genetic interactions and biochemical mechanisms underlying observed phenotypes. This 

complex, but mechanistic, relationship between the genotype and phenotype can be used as a 

foundational structure upon which additional high-throughput data can be analyzed and predictive 

simulations can be conducted, thus leading to improved understanding, testable hypotheses, and 

increased knowledge5, 6, 164. Ultimately, this network encapsulates the functions of all known 

components, its use for elucidating mechanisms of proximal causation and using the network for 

predictive simulation. 
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Methods 
Reconstruction of iNL403: This work focuses on the core of cerebral energy metabolism and 

the pathways that play a critical role in cell-type specific functions in the brain. The pathways included 

in this work include mitochondrial metabolic pathways, central metabolic pathways closely tied to 

mitochondrial function, and additional pathways that are needed for modeling neuron and astrocyte 

functions. To reconstruct these pathways, a list of known human mitochondrial, glycolytic, and 

transport reactions were extracted from the manually-curated human metabolic reconstruction (Recon 

1)135. From this list, reactions were directly added to the brain reconstruction if brain-localized protein 

or gene expression was suggested by the Human Protein Reference Database (release 5) (HPRD)165 or 

H-inv (version 4.3) (HINV)166, both of which provide tissue expression presence calls for each gene. 

Proteomic data from live human brain, acquired for the HUPO brain proteome project (BPP) 

(www.ebi.ac.uk/pride)167, were also used (See Supplementary Table 7 in 42 for accession numbers). 

Additional reactions were added as dictated by biochemical data from the literature. Reactions and 

pathways were manually curated to verify presence in the human brain and to determine cell-type 

localization, thus yielding a first-draft metabolic reconstruction of the brain metabolic network. 

Reactions unique to the different neuron types were determined from the literature (see notes in the 

Supplement of 42), and consist largely of the reactions needed to make and metabolize their associated 

neurotransmitters. A list of all reactions, supporting data, citations, and a comparison with previous 

brain metabolism models can be found elsewhere 42. Models in SBML format and model updates can be 

obtained from http://systemsbiology.ucsd.edu/In_Silico_Organisms/Brain. 

Constraint-based modeling: Constraint-based modeling and analysis of metabolic networks 

has been previously described9, 134. Briefly, all of the reactions are described mathematically by a 

stoichiometric matrix, S, of size m x n, where m is the number of metabolites and n is the number of 

reactions, and each element is the stoichiometric coefficient of the metabolite in the corresponding 

reaction. The mass balance equations at steady state are represented as 

0=• vS , 
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where v is the flux vector9. Maximum and minimum fluxes and reaction reversibility, when known, are 

placed on each reaction, further constraining the system as follows: 

maxmin vvv ≤≤ . 

At this point the model can then be used with many constraint-based methods134 to study network 

characteristics.  

 The S matrix was constructed with the mass and charge balanced reactions from the 

reconstruction. Select metabolites, known to cross the blood-brain barrier, were added as exchange 

reactions, allowing those metabolites to leave or enter the extracellular space in the model. A few 

metabolites from network gaps were allowed to enter or leave the system from the cytosol or 

mitochondria. This was only used when transporter mechanisms or subsequent pathway steps where not 

known, and when their entrance or removal from the system was necessary for model function. When 

available, cerebral metabolic rates were used from published data to constrain the upper and lower 

bounds of the exchange reactions168, 169. All parameters are detailed in 42.  

Monte Carlo sampling: Monte Carlo sampling was used to generate a set of feasible flux 

distributions (points). The method is based on the artificially centered hit and run algorithm with slight 

modifications. Initially, a set of non-uniform pseudo-random points, called warm-up points, is 

generated. In a series of iterations, each point is randomly moved, always remaining within the feasible 

flux space. This is done by 1) choosing a random direction, 2) computing the limits of how far one can 

travel in that direction, and 3) choosing a new random point along this line. After many iterations, the 

set of points is mixed and approach a uniform sample of the solution space, thus providing a 

distribution for each reaction that represents the range and probability of the flux for each reaction, 

given the network topology and model constraints. For more detail, see the Supplementary Notes of 42. 

Simulating enzyme deficiencies: Enzyme deficiencies were obtained from the literature142. To 

simulate each deficiency, the distribution for all candidate flux states was determined using Monte 

Carlo sampling. From this distribution, the most probable flux was found and reduced by the fraction 
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reported in the literature. All candidate states were then recomputed and compared with normal 

candidate flux states. 

Alzheimer’s disease microarray analysis: Microarrays were obtained from the Gene 

Expression Omnibus (GSE5281). Arrays consist of 161 Affymetrix Human Genome U133 Plus 2.0 

Arrays that profile the gene expression from laser-capture microdissected histopathologically normal 

neurons from six different brain regions of Alzheimer’s disease patients and age-matched controls. 

These arrays were not used in model construction.  

Arrays were gcrma normalized using the bioconductor package for R. Pearson’s correlation 

coefficients were computed for all array pairs, and arrays with r < 0.8 were discarded (i.e., 

GSM119643, GSM119661, GSM119666, and GSM119676).  

Different arrays had different levels of glial contamination. Therefore, to assess the amount of 

GAD (neuron-specific), the GAD1 and GAD2 levels on each array were normalized as follows. For 

each array, the relative amount of neuron material was determined by computing a ratio for four 

neuron-specific genes to the median level across all arrays. Neuron-specific genes were chosen to 

represent different neuron parts, including the soma, axon, and synaptic bouton (TUBB3170, NeuN171, 

SYN1172, and ACTL6B173). These were summed to compute a relative amount of neuron material (NM) 

for each array, j,  

∑=
i i

ji
j g

g
NM ,

, 

for each neuron marker gene gi. Since GAD genes are neuron-specific in the central nervous system, 

these were normalized for each array by the associated relative amount of neuron material, thus termed 

GADNMN for neuron-marker normalized GAD. It is assumed in this study that the neuron markers used 

here do not change their expression level per neuron between Alzheimer’s patients and age-matched 

control, since no published studies have demonstrated that these genes change expression in healthy 

cells through the progression of Alzheimer’s disease. It is possible that there is down-regulation of 

some neuron markers among neurons bearing neurofibrillary tangles, since synapse loss is a hallmark of 

Alzheimer’s disease147. However, the arrays used in this study profile histopathologically normal 
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neurons and the surrounding glial cells. Therefore, it is not expected that there will be significant 

changes in the expression of these key neuronal genes in the data used here. Lastly, the inclusion of 

multiple genes from different cell regions helps to minimize the effects from expression changes not 

attributable to glial cell contamination. The results presented in this work are robust to the removal of 

each neuron marker gene (See 42 for details).  

PathWave analysis: PathWave allows for the elucidation of pathways that significantly 

change together. Its advantage over other methods, such as Gene Set Enrichment Analysis, is that it 

takes metabolic network connectivity into account in order to identify changes in pathways.  

PathWave was used as published previously154. The reactions in each model were subdivided into 

biologically relevant functional pathways. Reactions that were involved in multiple pathways were 

added to each associated pathway.  

Since PathWave analyzes microarray data based on closely connected reactions, pathways 

were simplified by removing all metabolites with connectivity greater than eight in the metabolic 

network. Exceptions are listed in 42. For each of these simplified metabolic pathways, reactions were 

laid into a 2-dimensional, regular square lattice grid. To optimally preserve neighborhood relations of 

the reactions, adjacent nodes of the network were placed onto the grid as close to each other as possible. 

We mapped each expression data set, obtained from the Gene Expression Omnibus (GSE5281), onto 

the corresponding reactions of the transcribed enzymes. If a reaction was catalyzed by a complex of 

proteins, the average expression was taken. The resulting expression values of each reaction were z-

transformed. Haar wavelet transforms on the optimized grid representation of each pathway were 

performed to explore every possible expression pattern of neighboring reactions and to define groups of 

reactions within a pathway that showed significant differences between samples of different conditions.  

To obtain significance values, the sample labels were permutated (n = 10,000) and scores were 

calculated for each wavelet and permutation. The scores represent the absolute value of the logarithm of 

the p-value for each wavelet feature, calculated by t-tests. For the best hit (highest score of the non-

permutated wavelet features) a p-value was obtained from the reference distributions and represented 

the significance for the corresponding pathway. The p-value for each pathway was corrected for 
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multiple testing (FDR = 0.05)174. Only pathways with more than three significantly differentially 

regulated reactions were further considered (FDR = 0.05). To obtain local patterns in the pathways, all 

wavelet features were statistically tested applying t-tests and corrected for multiple testing. Statistically 

significant features contained those sub-graphs of the metabolic network that showed differentially 

regulated patterns. Reconstructing these sub-graphs allowed us to directly detect the regions of interest 

in the metabolic network (see 42 for details). 

Identifying pathways for acetylcholine synthesis: An FBA-derived approach was employed 

to identify all possible pathways coupling the mitochondrial and cytosolic acetyl-CoA pools using 

known reactions in human metabolism. First, the potential pathways were identified using Recon 1135. 

A reaction that supplies mitochondrial acetyl-CoA was added to the model. A second reaction was 

added to remove cytosolic acetyl-CoA from the model. Lastly, all other metabolite uptake and secretion 

constraints were opened. Reactions were randomly removed until a minimum pathway was identified, 

capable of carrying flux between mitochondrial and cytosolic acetyl-CoA. This was repeated until more 

than 21,000 unique sets of reactions were identified. An r x p binary matrix was then built with the p 

unique reaction sets consisting of r reactions. Each element (i,j) of this matrix was 0 if reaction i was 

absent from pathway j or 1 if reaction i was in pathway j. Rows for all reactions that were never 

necessary were subsequently removed from the matrix. Singular value decomposition was then used, 

followed by varimax factor rotation of the first five singular vectors. Singular vector loadings 

demonstrated the dominant sets of reactions, and their major dependencies that could be used to couple 

mitochondrial acetyl-CoA metabolism and cytosolic acetylcholine metabolism.   

Predicting cholinergic neurotransmission: The percentage cholinergic neurotransmission 

was computed based on published data159. The previously published data were obtained from rat brain 

minces that were incubated in solutions containing [1-14C]pyruvate or [2-14C]pyruvate. Both 

acetylcholine and radiolabeled CO2 were measured at various titrations of several different inhibitors of 

pyruvate dehydrogenase (PDHm) (see 42 for all inhibitors).  

Simulations were conducted using the cholinergic model. The models were allowed to take up 

the same substrates provided experimentally159, at rates consistent with the data (see 42 for details). 
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Monte Carlo sampling was used to identify all feasible flux states. This was done for various levels of 

PDHm inhibition, ranging from 0 to 90% inhibition. The percentage cholinergic neurotransmission was 

computed by randomly selecting a feasible flux state from each level of PDHm inhibition and 

computing the slope of the sum of labeled CO2-producing fluxes and choline acetyltransferase for the 

different simulations. A similar slope was computed from randomly sampled points from the reported 

experimental distributions. The ratio of these slopes represents a feasible percentage cholinergic 

neurotransmission. This was repeated 1000 times and the median value was reported. Comparisons with 

the experimental data were done by suppressing the in silico pryruvate dehydrogenase flux until the 

measured CO2 release rate was obtained. At this level of suppression, the resulting predicted 

acetylcholine production rate was compared with the experimentally measured rates. See 42 for more 

details.  

 
 

 

Chapter 2, in part, is a reprint of the material as it appears in Lewis, N.E., Schramm, G., 

Bordbar, A., Schellenberger, J., Andersen, M.P., Cheng, J.K., Patel, N., Yee, A., Lewis, R.A., Eils, R., 

König, R., Palsson, B.Ø. Large-scale in silico modeling of metabolic interactions between cell types in 

the human brain. Nature Biotechnology, 28:1279–1285 (2010). I was the primary author, while the co-

authors participated in the research that served as the basis for this study. 
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Chapter 3: Prokaryotes use enzyme post-translational modification to 
globally regulate metabolism 
 

When cells meet a new environment, genetic programs can be wired to respond. For example, 

if a bacterium senses an increase in a desirable sugar, the protein sensing the sugar may send a signal 

through the cell to express the necessary transporter and enzymes. Thus, the cell has genetically-

encoded regulatory programs that can behave in a cause and effect manner to defined stimuli.  

Among their many regulatory programs in a cell, post-translational modifications are known to 

modulate the activity of many eukaryotic metabolic enzymes. However, for decades it has been 

commonly assumed that prokaryotes do not widely utilize PTMs such as phosphorylation and 

acetylation, except to regulate a handful of enzymes and two component systems. This assumption has 

been challenged when several recent studies found a large number of proteins with lysine acetylation 

175, 176 or succinylation 177 and numerous serine, threonine, and tyrosine phosphorylation sites 178 in E. 

coli. Similar results have surfaced for other prokaryotes and archaea 179-182. A common finding in these 

studies is that there is an abundance of protein phorphorylation or acetylation events, and that many of 

these PTMs are found on metabolic enzymes. Initial biochemical assays have demonstrated that a few 

of these PTMs may have roles in metabolic regulation 177, 180. However, the question remains if 

remaining PTMs on metabolic enzymes also exhibit regulatory functions, or if the regulatory roles are 

isolated to a few enzymes in central metabolism.  
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Here we address this question from many angles and demonstrate that prokaryotes employ 

enzyme acetylation and phosphorylation to regulate metabolic flux in fluctuating nutritional 

environments. First, we show that PTMs occur on enzymes that require regulation, and that they are 

complementary to non-covalent metabolic regulation. Second, across most changes in nutrient 

availability, PTMs are enriched among enzymes at branch points in which flux must be partially 

diverted from one pathway to another. Third, the PTMs are usually found close to the enzyme catalytic 

site, suggesting that many PTMs induce changes in protein structure by modifying electrostatic 

interactions in the enzymes. Lastly, an assessment of enzymes that require regulation suggested 

different metabolic conditions that may lead to the activation of protein kinases and acetyltransferases, 

and these predictions were supported by growth phenotypes of mutant E. coli in which the associated 

genes were deleted. Together, all of these lines of evidence clearly show that many protein PTMs in 

prokaryotes regulate metabolic flux in response to dynamic variations in environmental conditions. 

Metabolically-regulated enzymes can be predicted in silico 
When cells are confronted with a change in nutritional environment, they often respond by 

changing their metabolic pathway usage accordingly. Metabolic pathway usage can be approximated 

using constraint-based modeling, which estimates the steady-state flux through all pathways and 

reactions in a genome-scale metabolic network 183.  

A constraint-based modeling method, called Regulated Metabolic Branch Analysis (RuMBA), 

simulates the coordinated regulation required to immediately adapt pathway usage in response to 

fluctuations in nutrient availability. Specifically, RuMBA predicts which enzymes will require 

immediate regulation to guide the metabolic flux from one growth condition to the steady-state flux 

needed for the second condition (see Methods and Appendix 3.1 for details). Thus, this method is 

tailored to predict metabolic regulation, as opposed to other modes of regulation that act at longer time 

scales, such as transcriptional regulation and protein degradation.  

To predict which enzymes will require regulation in a sudden nutritional shift, this method 

analyzes metabolic flux through each branch point in the network and determines where flux must be 

diverted from one pathway to another. This diversion of flux by metabolic regulation at a branch point 
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allows the network to rapidly shift toward the desired steady-state flux distribution for the new 

nutritional environment. Such a mechanism would provide a clear fitness advantage for a few reasons. 

First, it would waste less energy on transcription and translation in response to transient fluctuations in 

metabolite concentrations in the microenvironment or within the cell. It would only require that each 

cell maintain a small number of modifying enzymes. Second, this mechanism would allow for 

immediate responses to nutritional changes, while transcription and translation can take as long as a 

generation or two in rapidly growing cells to respond to sudden nutrient changes 184, and likely longer to 

fine-tune expression 47, 185. Third, the response could provide immediate fitness improvement for both 

external environmental changes and internal imbalances resulting from noisy gene and protein 

expression in each cell.  

As an example of how RuMBA predicts sites of metabolic regulation, consider the scenario of 

metabolism shifting from glucose to acetate. As E. coli grows on glucose, fermentation products are 

usually secreted. As the primary substrate is exhausted, the cells often will change their metabolic 

network expression to maintain growth on a fermentation product, such as acetate 186. To rapidly 

achieve this new steady-state of growth on acetate, the cells may employ metabolic regulatory 

mechanisms to force the flux at each branch-point toward the reaction that ideally would carry more 

flux. This can be done through metabolic regulation until transcription and translation can catch up and 

fine-tune enzyme levels.  

One extensively-studied metabolic branch-point relevant to the glucose-acetate shift is the split 

between the TCA cycle and the glyoxylate shunt 186, 187. At this flux split, isocitrate is consumed using 

either isocitrate dehydrogenase (ICDH) to synthesize alpha-ketoglutarate, or isocitrate lyase (ICL) to 

synthesize glyoxylate (Figure 3.1.a). ICDH is used almost exclusively during glucose metabolism, 

while it is used less during growth on acetate 186, 187, since ICL is used substantially for anaplerosis. 

Consistent with this, RuMBA predicts that this branch point must be regulated (p << 1 x 10-5) since 

there is a significant diversion of flux from ICDH to ICL during the shift from glucose to acetate 

metabolism (Figure 3.1.b).  
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How extensively do model-predicted regulation sites coincide with known sites of metabolic 

regulation? To assess this, 1219 non-covalent metabolic regulation events in E. coli were collected and 

compared with the model-predicted regulation sites. Many of the most significant predictions are 

known to be regulated (Figure 3.1.c), and far more are regulated than expected by chance (Figure 

3.1.d). Allosteric regulation is particularly enriched, which further supports this concept since this class 

of regulation is more fit for guiding flux towards a new steady state, while competitive inhibition may 

be more fit for stabilizing a current steady state. Thus, these results suggest that RuMBA can be used to 

reliably predict which enzymes may require regulation in fluctuating nutritional environments.   

 

Figure 3.1. Metabolic regulation is important for fluctuating nutritional environments, and 
metabolically-regulated enzymes can be predicted in silico. As external nutrient availability varies in 
the cell microenvironment or variations in enzyme copy number in cells occur, metabolic regulation can 
help a cell rebalance its metabolism while the transcription and translation programs are deployed and 
fine-tuned. (a) This often occurs at branch-points in the metabolic network, such as the branch point at 
isocitrate, which divides flux between the TCA cycle and the glyoxylate shunt. (b) Randomly-sampled 
flux distributions for growth on acetate and glucose show that isocitrate dehydrogenase (ICDH) is used 
almost exclusively for growth on glucose minimal media, while a significant amount of flux is diverted 
to isocitrate lyase when the cell is metabolizing acetate. (c) RuMBA was used to identify the reactions 
and their associated enzymes that require significant regulation (i.e., enzymes for which their relative 
flux at a branch point must increase or decrease in the shift form glucose to acetate). Many of these 
predictions are enzymes that are known to undergo metabolic regulation (blue;left) and known to be 
regulated by metabolites that have recently been shown to significantly change in their intracellular 
concentration between glucose and acetate metabolism (right). (d) In fact, the RuMBA predictions are 
significantly enriched in known metabolically-regulated enzymes, particularly for allosteric regulation.  
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PTMs cluster on regulated enzymes in E. coli 
In addition to small molecule-mediated metabolic regulation, post-translational modifications 

(PTMs) have been long known to regulate many eukaryotic metabolic enzymes. However, in 

prokaryotes, this role for PTMs has only been shown for a few enzymes, because of the dearth of 

known prokaryotic phosphorylation and acetylation sites. Through advances in proteomics, a few 

hundred PTMs have been recently identified in prokaryotes, so the question remains if PTM-mediated 

metabolic regulation is used widely in prokaryotes. A recent report provided evidence that acetylation is 

important in the regulation of a few enzymes in central metabolism in Salmonella enterica 180; however, 

it is still commonly assumed that phosphorylation is relevant almost solely to two-component signaling 

in prokaryotes, and a recent study has suggested that some PTM sites on eukaryotic metabolic enzymes 

arose after eukaryotes diverged from prokaryotes 188.  

If PTMs are more globally relevant to metabolic regulation in prokaryotes, they should be 

enriched in metabolism, especially among branch-points where flux is shifted between pathways during 

a substrate shift. Four recent proteomic studies identified a few hundred E. coli peptides with serine, 

threonine, or tyrosine phosphorylation 178, lysine acetylation 175, 176, and lysine succinylation177. Of these 

proteins, 56% are metabolic enzymes represented in the E. coli metabolic network 189 (Figure 3.2.a), 

which is far more than expected by chance (p = 3x10-15 when accounting for all proteins and p < 3x10-8 

when only accounting for proteins with measured gene expression across 12 growth conditions). 

Furthermore, these metabolic PTMs are also more likely functional. When the conservation of modified 

residues on the metabolic enzymes is compared to the proteomes of 1057 other prokaryotic genomes, 

they are more highly conserved than similar non-modified residues on the same proteins (p = 

0.0041;rank-sum test).  

The immediate question is if these PTMs regulate metabolic flux under variations in 

environmental condition. When compared to the predicted enzymes requiring regulation for the 

glucose-acetate shift, enzymes with PTMs are complementary to enzymes with known regulation via 

non-covalent interactions (Figure 3.2.b). Furthermore, PTMs are enriched among these predicted sites 
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of regulation (p = 9.4x10-6; hypergeometric test), suggesting that PTM-mediated metabolic regulation 

may play an important complementary role to other modes of regulation.  

PTMs are associated with enzymes requiring regulation between many nutritional changes 
To test if PTMs are generally associated with enzymes requiring regulation to rapidly adapt to 

variations in the nutritional environment, we used MCMC sampling, followed by RuMBA to identify 

enzymes requiring metabolic regulation for 15,051 shifts between 174 different media compositions. 

Across these 15,051 shifts, enzymes with PTMs are regulated in more substrate shifts than enzymes 

without PTMs (p = 6.0 x10-6; Wilcoxon rank-sum test). In addition, in 92% of the 15,051 substrate 

shifts, PTMs were enriched (hypergeometric test; FDR < 0.01) in the RuMBA predictions. When a 

media shift failed to show significant enrichment of PTMs, this tended to stem from high structural 

similarity between the primary carbon sources in both media formulations (as measured by Tanimoto 

coefficients). In these non-significant shifts, the media are often metabolized in a similar manner, and 

so few branch points will require regulation.  

It seems that PTMs are associated with enzymes requiring regulation in fluctuating nutritional 

environments. Are the PTMs more frequently associated with enzymes that require regulation in more 

growth condition changes? K-means clustering was conducted on a binary matrix detailing which 

enzymes need to be metabolically regulated for each substrate pair. In this, four clear clusters of 

enzymes appear. In the cluster with the highest frequency of predicted regulation, 43% of the enzymes 

have known PTM sites. In contrast, only 9% of the two clusters with occasional regulation have 

measured PTMs, and only 3% of the reactions with no predicted regulation are associated with PTMs. 

These PTMs may be either non-functional, functional outside of metabolism, intermediates in their 

catalytic function (e.g., metabolite phosphorylation), or examples of limitations in the model’s 

predictive capacity. However, this significant overlap of known PTM targets and model-predicted 

regulation suggests that PTMs are indeed important for regulating the diversion of flux at important 

branch points to facilitate the fast transition to the new substrate’s steady state flux distribution. 
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PTMs on in silico-regulated enzymes are more likely functional 
The results presented here suggest that many newly-discovered PTMs are associated with 

enzymes that require metabolic regulation. This would help cells make a rapid transition to a new 

steady state when there is a sizable fluctuation in nutrient availability. However, it is also possible that 

some of these PTMs are non-functional since they may pose little or no burden on cell fitness190. Thus, 

the question remains as to if the majority of these PTMs are functional for metabolic regulation or not. 

This fraction of non-functional PTMs is expected to be low, since only 3% of enzymes that are never 

predicted to require regulation actually have detected PTMs on them (Figure 3.2.e). A thorough 

assessment of PTMs in the context of their protein structures provides further support that many 

detected PTMs are indeed functional.  

PTMs occur near active-site residues and alter protein structure 
More often, PTMs that regulate metabolism are located near the catalytic site of the enzyme, 

thereby making conformational changes to the active site or blocking substrate binding. Thus, if many 

of the PTMs in E. coli provide regulatory roles, they should be located near active sites. To test this, all 

available protein structures for modified proteins were acquired (n = 62), and distances were computed 

between residues with PTMs and all other residues. These were compared to distances between PTM 

residues and residues that are known to modulate enzyme activity (i.e, known catalytic sites, residues 

used for substrate binding, and residues that modify enzyme activity if mutated).  

PTMs were significantly closer to residues relevant to enzyme function than amino acids 

without annotation on 48% of the 62 modified proteins (Wilcoxon rank-sum test; FDR < 0.07) (Figure 

3.3.a). Moreover, 37% of the proteins have at least one residue of known catalytic importance within 

10Å of the nearest PTM. It is likely that this value is an underestimate, since functional residues are not 

fully annotated on most of the proteins. 

To further assess the regulatory potential of these PTMs at the active sites, we looked to see if 

they were enriched among the most frequently regulated enzymes, as predicted by RuMBA. Of the 30 

enzymes with PTMs nearest to their active sites, 16 were within the top 5% most frequently regulated 
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RuMBA predictions (i.e., regulated in more than 2617 of the 15051 possible media shifts), which is 

more than expected by chance (hypergeometric test; p = 0.0062). 

In enzymes, PTMs often regulate function by altering protein structure. These changes can 

alter the binding affinity of substrates or cofactors191, or affect protein complex formation. In some 

cases such regulation occurs through steric blocking of binding sites. However, frequently PTMs 

function by changing electrostatic interactions between residues 188. For example, some PTMs, such as 

acetylation can disrupt salt-bridges between lysines and acidic residues. These disrupted salt-bridges 

would otherwise aid the stabilization of one protein conformation, possibly changing enzyme activity 

by modifying the catalytic site. Similarly, other PTMs, such as phosphorylation might disrupt or create 

new salt bridges with basic residues.  

Consistent with these properties, many of the metabolic PTMs may disrupt or form salt 

bridges. In fact, without accounting for modifications in protein structure following post-translational 

modification, at least 31 of the 62 modified metabolic proteins with known structures have a PTM 

which would disrupt or add a salt bridge. Of these, 58% of the enzymes are within the 5% most 

regulated enzymes according to RuMBA, which is more than expected (p = 0.001). Thus it seems that 

salt bridges may occur on these modified enzymes to modulate protein structure and regulate activity. 
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Figure 3.3. PTMs are preferentially located near enzyme active sites. (a) The distance between each 
PTM and all functional residues (i.e., active site residues or amino acids used for substrate binding) was 
significantly shorter than expected for at least 48% of the proteins. (b) In addition, 37% of the proteins 
had a modified residue closer than 10Å to a functional residue. (c) For example, lysine-54 is acetylated 
in serine hydroxymethyltransferase. This acetylation would likely disrupt a salt bridge with glutamate-
36 and possibly affect enzyme activity since these residues are near the substrate binding site. Moreover 
this PTM may inhibit dimerization since the salt bridge residues are on different subunits of the active 
dimer. (d) In the enolase active site, serine-371 can be phosphorylated and lysine-341 can be acetylated, 
which may respectively stabilize or destabilize the Mg2+ required for enzyme activity. (e) Transaldolase 
B has a deep catalytic pocket with several residues contributing to catalysis. In particular, D17, E96, 
and K132 (highlighted in blue) are important to the reaction mechanism. However, two phosphorylation 
sites on S37 and S226 will form salt bridges that may occlude the active site, while a third phosphate on 
T33 will directly block K132. 

 

PTMs and associated salt bridges may inhibit dimerization or alter active sites  
The results presented above suggest that many of the measured PTMs may provide a 

regulatory role since they are often located near functional sites and may often modulate electrostatic 

interactions. Moreover, PTMs with these properties seem to correlate with RuMBA-regulated enzymes. 

These can be explained statistically, but can detailed mechanisms be identified for specific proteins? 

Here we describe details for a few representative enzymes.  



59 
 

 
 

Serine hydroxymethyltransferase converts serine to glycine to form 5,10-methylene-

tetrahydrofolate, which is an important source of C1 units in the cell. This enzyme can also catalyze a 

D-alanine transaminase reaction, forming pyruvate from D-alanine. Both of these reactions are 

predicted to require regulation in ~12% of all possible substrate shifts. This enzyme has several PTMs 

near its active site. For example, K54 is acetylated in this enzyme (Figure 3.3.c), and this acetylation 

would likely disrupt a salt bridge with E36. This may subsequently disturb Y55, which is essential for 

correct positioning of the covalently-attached pyridoxal 5'-phosphate (PLP) cofactor 192, and therefore 

the acetylation of K54 may possibly disturb enzyme activity. It is also interesting to note that this 

enzyme functions as a homodimer, and since the aforementioned salt bridge is between residues on two 

different subunits, an acetylation may also decrease the efficacy of dimerization, which would inhibit 

catalysis by decreasing the affinity of PLP for the enzyme 193.  

Another example of particular interest is enolase. Several modifications have been detected on 

this enzyme, most of which are near either its RNaseE interaction site, or its glycolytic active site. Two 

modified residues are relevant to the reversible conversion of 2-phospho-D-glycerate to 

phosphoenolpyruvate. The active site where this occurs contains a Mg2+ ion (Figure 3.3.d). The loss of 

this ion inhibits the enzyme as enolase rapidly denatures 194. In the enolase active site, S371 can be 

phosphorylated and K341 can be acetylated, which may respectively stabilize or destabilize the Mg2+ 

required for enzyme activity. A few biochemical assays support this conclusion, since 

dephosphorylation 195 of enolase has been shown to inhibit the enzyme, and acetylation increases in 

Salmonella enolase under conditions with lower enolase flux 180. However, neither of these previous 

studies identified the modified residue responsible for the inhibition. 

One modified enzyme that is predicted to be regulated by RuMBA is transaldolase B, a 

member of the non-oxidative branch of the pentose phosphate pathway (PPP) that contributes to the 

reversible link between the PPP and glycolysis. The protein structure of transaldolase B in E. coli 

(b0008) contains a deep catalytic pocket in which the reversible transfer of a dihydroxyacetone moiety 

to erythrose 4-phosphate is catalyzed to form sedoheptulose 7-phosphate. This reaction employs several 

residues, but in E. coli, the primary residues involved are D17, E96, and K132 196 (Figure 3.3.e). 
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Interestingly, four phosphorylated residues have been detected within a few angstroms of the active site. 

Two of these (S37 and S226) are positioned, such that the phosphorylation may form salt bridges with 

basic residues, and these salt bridges may occlude the active site of the enzyme. Another 

phosphorylation site, T33, resides within 4Å of K132, the central active site residue. Therefore, its 

phosphorylation should directly block enzyme activity.  

PTMs may regulate flux responses under general nutritional changes 
PTMs are enriched in most substrate shifts and particularly among enzymes in more sensitive 

branch-points. Moreover, these PTMs are often located near functional residues and may play important 

roles in blocking active sites, regulating protein stability, and altering complex formation. What causes 

these modifications? There are not many known protein kinases, phosphatases, and acetyltranferases in 

most prokaryotes. While some of these likely have activities specific to maybe one or a few proteins 197, 

it is possible that some modifying enzymes add and remove PTMs in response to changes in specific 

metabolites or redox states. Furthermore, these proteins may target metabolic enzymes needed to rectify 

these general metabolite imbalances. For such a situation, it would be expected that many of the 

reactions experiencing significant diversion of flux will be shared by many substrate shifts. Therefore, 

the activity of one kinase, for example, might phosphorylate several proteins relevant to the metabolism 

of one general class of enzymes.  

To investigate the possible types of nutritional changes that might modulate the activity of 

different kinases, phosphatases, and acetyltranferases, the RuMBA predictions involving enzymes with 

known modifications were analyzed. Through k-means clustering (k=4) of RuMBA results from all 

shifts, metabolic modules were identified that involve metabolites relevant to specific pathways (Figure 

3.2.f). The three regulated clusters are enriched in enzymes that interact with glycolytic intermediates, 

the glyoxylate shunt, and purine metabolism, respectively (Figure 3.4.a-c). These modules are 

associated with specific shifts in nutritional environment, and the third module interestingly is 

associated with shifts that predict high changes in growth rate (Figure 3.4.c). 
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Figure 3.4. Clusters of PTM-associated RuMBA predictions provide insight into environmental 
shifts that are associated with the regulation of different pathways. Clustering of RuMBA 
predictions identifies modules with similar regulation patterns, including glycolysis, the glyoxylate 
shunt, and nucleotide metabolism and the pentose-phosphate pathway. Regulation of nucleotide 
metabolism is particularly high when model-predicted growth rates significantly change between two 
media conditions. Within these clusters, (a) shifts that significantly changed glycolysis included shifts 
between sugars and organic and amino acids. (b) The glyoxylate shunt was usually regulated in shifts 
between fermentation products and amino acids, sugars, or nucleotides. (c) Nucleotide metabolism and 
the pentose phosphate pathway were frequently required regulation when shifts involved nucleotides 
and various acids, and often involved significant changes in growth rates between the substrates. 
 

To see if growth in these different conditions is affected to the removal of kinases, 

phosphatases, and acetyltransferases, mutant strains of E. coli were grown on a few different media that 

were enriched in the different clusters. Specifically, mutants were grown on M9 minimal media 

supplemented with glucose, L-lactate, or inosine to cover different classes of carbon sources (i.e., a 

glycolytic sugar, an organic acid byproduct, and a nucleoside). Mutants grown on these different 

substrates included ΔaceK, ΔcobB, ΔpphA, ΔyeaG, ΔyfiQ, ΔyiaC, ΔyihE, and ΔynbD. Interestingly, 

several of these mutants showed faster growth than the wild-type strain on a given substrate, but slower 

growth on another (Figure 3.5). It should be noted, that while many of these showed significantly 
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different growth rates compared to WT, the magnitude of the difference averaged around 7%-9% of the 

WT growth rate. If these enzymes are primarily for regulating flux under short fluctuations, it is 

anticipated that transcription regulation will usually balance the growth after several generations, so the 

effect on growth rate will be small at steady state. Consistent with this, we saw a small but significant 

difference in growth rate for different enzymes that control post-translational regulation. Thus, even 

though the targets for these modifying enzymes have yet to be elucidated, they clearly contribute to 

growth fitness and show preferential response on different media conditions. Furthermore, the removal 

of these enzymes more often inhibited growth on glucose, but frequently increased the growth rate on 

L-lactate and/or inosine. Thus, there may likely be a preference for the usage of these enzymes to 

enhance growth on substrates that confer a higher growth rate, since WT growth is much slower on L-

lactate and inosine. Thus, it is possible that they are either modifying metabolic enzymes or modifying 

other proteins that affect the metabolic rate. 

 

Figure 3.5. Protein kinase, phosphatase, acetyltranferase, and deacetylase mutants show variable 
fitness with compared to wild type on different media conditions. Mutants were grown on glucose, 
L-lactate, and inosine M9 minimal media, and many showed decreased or increased fitness on the 
substrates, suggesting their potential role in regulating metabolism. Difference in growth rate is shown 
with a significance lower that p = 0.05 (*) or lower than p = 0.01 (**).  

PTM regulation, optimality, noise, and proximal causation 
In a cause and effect-like manner, cells are programmed to respond to changes in their 

microenvironment. This has been studied extensively with respect to transcription regulation. In 

addition, non-covalent allosteric and competitive enzyme regulation has been studied for decades in 

prokaryotes. Except for a few cases, prokaryotic PTMs have been ignored with respect to metabolic 

regulation. For example, the general assumption has been that phosphorylation was isolated primarily to 
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two-component signaling. This perception began to change when recent proteomic studies identified a 

large amount of lysine acetylation and serine, threonine, and tyrosine phosphorylation in multiple 

bacteria and archaea. Surprisingly, these were usually enriched in metabolic enzymes. However, since 

then, only a few hand-picked enzymes from the pentose-phosphate pathway and the TCA cycle have 

been tested for their dependence on PTMs to modulate enzyme activities 177, 180. Here we have taken a 

multi-faceted approach to provide support that many of the known PTMs modulate enzyme activity and 

will be important for regulating flux throughout the E. coli metabolic network, especially in dynamic 

nutritional environments.  

Many properties of microbial metabolism have arisen as organisms evolve toward optimality, 

given their environment and historical contingency. For example, through adaptive laboratory evolution 

(ALE), it was demonstrated that bacteria will evolve transcription regulatory programs to enhance 

growth 198-202, improve gene and protein expression efficiency 185, and optimize metabolism 47. Since 

metabolism provides the energy and resources for all cell functions, microbes can evolve to enhance 

metabolic efficiency and reduce waste 47, 185. However, many of these ALE studies were conducted in 

well-mixed and static nutritional environments. Therefore, the microbes had adequate time to adapt at 

the levels of transcription and translation. Such adaptations require many generations to fine-tune 47, 184, 

185, and as such, response time is much longer than might be required for microbes in more  dynamic 

natural environments. Different adaptive mechanisms are needed for optimizing growth in natural 

environments, since the periodicity of micro-environmental changes can be shorter than needed to 

optimize growth with transcriptional regulation.   

At the cellular level, the external metabolic microenvironment and internal expression of 

metabolic enzymes are dynamic and fraught with noise. Several sources of noise affect the ability of 

cells to optimize metabolism and growth. Both extrinsic (e.g., fluctuations in metabolite concentration) 

and intrinsic (e.g., gene and protein levels) sources of noise 203 limit the efficacy of metabolism and 

decrease the rate of biomass formation 50. While noise is more carefully controlled for genes catalyzing 

essential reactions 50, the repertoire of essential genes changes extensively for different growth 

conditions in fluctuating environments 204, 205. Moreover, even when redundant pathways exist, some of 
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these can require higher protein costs 47, suboptimal cofactor usage, or decreased catalytic efficiency 206. 

Bursting in transcription 207, 208 further complicates this issue, since this process can periodically infuse 

a non-optimal surplus of an enzyme in a single cell. 

Variations in expression level complicate the achievement of optimal expression for a given 

cell. Thus, it is anticipated that the sub-optimal enzyme expression on the single-cell level will lead 

high variability in metabolite concentrations internally and possibly yield a variety of byproducts in the 

external cellular microenvironment. These fluctuations may be stabilized through gene expression in a 

single cell and through the community, since each cell has its own unique perturbed metabolic network. 

However, fine-tuning of transcription and translation for a pathway can take more than a generation for 

exponentially-growing cells 184, and the ability for communities to balance levels of secreted byproducts 

is limited by diffusion and cell density. Thus, it would be beneficial for the cells to have mechanisms to 

partially rectify aberrant metabolism and metabolic fluctuations in the cell microenvironment, without 

having to rely on transcription and translation. 

Metabolic regulation plays such a role in reducing metabolic noise to allow for more optimal 

metabolism. For that reason, numerous feed-back mechanisms have been identified in which products 

from metabolic pathways can inhibit up-stream enzymes if end-product begins to build up 26. Such 

feedback provides a critical role in reducing transient noise in the metabolic network. Enzyme post-

translational modification can play a similar role; however, variations in a metabolite of interest would 

instead stimulate a kinase or acetyltransferase, and this enzyme would subsequently modify its target 

protein(s). These covalent modifications would allow for more prolonged regulation of target enzymes. 

Moreover, due to the relatively small number of known protein kinases and acetyltransferases in 

prokaryotes, we anticipate that these mechanisms are primarily reserved for reacting to more prominent 

changes in the metabolic environment, such as when E. coli moves through the digestive tract from 

regions in which lactose and arabinose are preferentially metabolized to regions in the intestine where 

maltose is metabolized 209-211). Thus, these rapid, more general modes of regulation may provide 

temporary enhancements of metabolic efficiency while transcription and translation catch up. These 

rapid responses will provide an immediate boost in fitness. While this only provides a short advantage 
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in each fluctuation, more dynamic conditions and variations in internal enzyme expression 50, including 

bursting 207, 208, will increase the frequency of metabolic state shifts and thereby compound each fitness 

boost. Thus, the rapid-response advantage would quickly provide a substantial fitness gain. 

One question that remains to be answered here is which kinases, phophatases, and 

acetyltransferases are modifying the various targets. Unfortunately, little research has been done in this 

realm, and methods are still being optimized. However, most common prokaryotes have at most a 

couple dozen enzymes that can add or remove the PTMs. Moreover, the field has not addressed the 

possibility of how many of these PTMs stem from self-catalysis (e.g., autophosphorylation) or non-

enzymatic chemical addition of reactive acetyl- or phopho- moieties. However, irrespective of the mode 

of addition of these PTMs to the enzymes, our results suggest that many likely regulate metabolism 

since 1) they are often localized close to active sites, 2) the modified residues are more conserved, 3) 

the modifications tend to modulate salt-bridge formation, and 4) they occur on enzymes that are 

predicted here to require regulation. 

In conclusion, prokaryotes undergo proximal responses to dynamic metabolic conditions 

through various regulatory mechanisms. Through a multi-faceted approach, we demonstrated that post-

translational modifications play a previously underappreciated role in regulating prokaryotic 

metabolism. By analyzing proteomic data in the context of protein sequence, enzyme structures, and 

genome-scale metabolic modeling, it is clear that PTMs are employed to respond to familiar extrinsic 

fluctuations and intrinsic expression noise with their concomitant variability in metabolite 

concentrations. Through these mechanisms cells gain a fitness advantage while more costly and slower 

transcriptional processes catch up. As these mechanisms are further studied and quantitatively assessed, 

models will be able to more accurately predict the proximal responses of microbial metabolism and 

growth. 

Methods 
Acquisition of post-translational modifications and metabolic regulation: Lists of 

metabolic proteins with post-translational modifications (PTMs) were obtained from studies that 

identified sites of protein acetylation, phosphorylation, and succinylation in E. coli by mass 
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spectrometry 175-178. All reported occurrences of non-covalent metabolite-mediated metabolic regulation 

were obtained from Ecocyc 212. Metabolic regulation events labeled in Ecocyc as allosteric, 

noncompetitive, uncompetitive, and competitive were used in this analysis to distinguish between 

different regulatory properties of these enzymes.  

Model parameterization: The iAF1260 E. coli metabolic model was used with published 

uptake and secretion rates 189. A few irreversible reactions were removed because they had reversible 

duplicates in the model. These include: GLCtexi, URIt2pp, URAt2pp, THMDt2pp, KAT1, INSt2pp, 

INDOLEt2pp, ICHORSi, CYTDt2pp, and ADNt2pp. 

For the 174 simulated media formulations in E. coli, glucose uptake was set to zero in the 

iAF1260 model, and flux balance analysis was used to find which of all other carbon sources could 

support growth, as reported in the reconstruction of iAF1260. For each of the 174 growth-supporting 

carbon sources, an uptake rate was set, which was consistent with uptake rate of glucose in the 

published iAF1260 model (i.e., 8 mmol grDW-1 hr-1), normalized by the number of carbons in the 

metabolite. For example, since glucose has 6 carbons, the uptake rate of glycerol, with 3 carbons, was 

set as 16 mmol grDW-1 hr-1 (which is similar to the actual reported glycerol uptake rate in M9 minimal 

media 213). While this was used to standardize the media conditions, variations in carbon uptake rates 

did not significantly impact the results presented in this work. 

Markov chain Monte Carlo sampling: The distribution of feasible fluxes for each reaction in 

the models used here were determined using Markov chain Monte Carlo (MCMC) sampling 35, as 

previously described 42, 86, and was implemented with the COBRA Toolbox v2.0 214. Uptake rates were 

used to constrain the models as detailed above. To model more realistic growth conditions 87, sub-

optimal growth was modeled. Specifically, the biomass objective function (a proxy for growth rate) was 

provided a lower bound of 90% of the optimal growth rate as computed by flux balance analysis 43. 

Thus, the sampled flux distributions represented sub-optimal flux-distributions, while still modeling 

fluxes relevant to cell growth and maintenance. 

MCMC sampling was used to simulate thousands of feasible flux distributions (referred to here 

as “points”) using the artificially centered hit-and-run algorithm with slight modifications, as described 
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previously 42, 86. Briefly, a set of non-uniform points was generated. Each point was subsequently 

moved in random directions, while remaining within the feasible flux space. To do this, a random 

direction is first chosen. Next, the limit for how far the point can travel in the randomly-chosen 

direction is calculated. Lastly, a new random point on this line is selected. This process is repeated until 

the set of points approaches a uniform sample of the solution space, as measured using the mixed 

fraction metric, which measures uniformity by measuring how many of the sample points pass through 

the middle line of the solution space 101. A mixed fraction of approximately 0.50 was obtained, 

suggesting that the space of all possible flux distributions is nearly uniformly sampled.  

Regulated Metabolic Branch Analysis: Regulated Metabolic Branch Analysis (RuMBA) 

provides a list of enzymes and reactions that may need to be metabolically regulated to immediately 

adapt to a fluctuation in the nutritional environment. See Appendix 3.1 for a detailed discussion and a 

validation of the method.  

Markov chain Monte Carlo sampling of the metabolic solution space is used to obtain a 

uniformly distributed assessment of feasible flux values each reaction can have at steady state. 

Subsequently, flux through each branch point metabolite in the network with a connectivity less than 30 

is assessed. For each metabolite, all reactions that can produce or consume it are identified. For each 

MCMC sample point in the solution space, all incoming fluxes are summed up, as are all outgoing 

fluxes. Then, for each ith reaction, the fraction of total flux through the metabolite, vmet, that is 

contributed by the reaction of interest, is computed as follows: 

met

i
i v

v
f = , 

where vi is the flux through reaction i and fi is the fraction of all flux passing through the metabolite of 

interest, that is passing through reaction i. Since this is done for many random feasible sets of flux 

values through all of the reactions at the branch point, a distribution of fi fractions is computed for each 

reaction for the two growth conditions of interest. A p-value is computed that measures the overlap of 

the fi values for that reaction under the given growth condition, i.e., the probability of finding an fi value 

in the first growth condition that is equal to or more extreme than an fi value for the same reaction in the 
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second growth condition.  The p-values are subsequently corrected for multiple hypotheses (FDR < 

0.01).  

A small fraction of reactions can show miniscule, but significant changes due mostly to slight 

differences in predicted growth rates. Thus, the list of the regulated reactions and their associated 

enzymes is filtered to focus on the more significant results. Reactions that change their predicted flux 

level by less that 50% are filtered out from the list of reactions requiring regulation. This was done by 

simulating changes in reaction flux occurring in a shift between two conditions, as done previously 78, 86. 

The distributions of sampled fluxes for each reaction were compared between two media conditions. 

First, flux magnitudes were normalized between each pair of media conditions (media A and B). To do 

this, a ratio of total flux through the metabolic network was computed and used to normalize each 

sample point. To compute this ratio, each sample point was taken and the magnitudes of all n non-loop-

associated reaction fluxes were summed to acquire a value for the total network flux. For both media 

conditions, the median total network flux was taken and used to normalize each reaction flux for all 

sample points in media B, as follows:   

𝑣𝑖,𝑗,𝐵
∗ = 𝑣𝑖,𝑗,𝐵

𝑚𝑒𝑑𝑖𝑎𝑛({∑ |𝑣𝑟,1,𝐴
𝑛
𝑟=1 �,…,∑ |𝑣𝑟,𝑗,𝐴

𝑛
𝑟=1 �,…,∑ |𝑣𝑟,𝑝,𝐴

𝑛
𝑟=1 |})

𝑚𝑒𝑑𝑖𝑎𝑛({∑ �𝑣𝑟,1,𝐵�𝑛
𝑟=1 ,… ,∑ �𝑣𝑟,𝑗,𝐵�𝑛

𝑟=1 ,… ,∑ �𝑣𝑟,𝑝,𝐵�}𝑛
𝑟=1 )

, 

where v*i,j,B, is the normalized flux through reaction i in sample point j under media condition B, 

obtained after multiplying the sampled flux vi,j,B, by the ratio of the median total flux magnitude for the 

reaction for all p sample points under growth on medium A to the median total flux magnitude for the 

reaction for all p sample points under growth on medium B. 

Once the flux values were normalized, the changes of fluxes between two conditions were 

determined as previously described 86. Briefly, calls on differential reaction activity were made when 

the distributions of feasible flux states (obtained from MCMC sampling) under two different conditions 

did not significantly overlap. For each metabolic reaction, a p-value was obtained by computing the 

probability of finding a flux value for a reaction in one condition that is equal to or more extreme than a 

given flux value in the second condition. Significance of p-values was adjusted for multiple hypotheses 

(FDR ≤ 0.01). When the magnitude of flux changed less than 50% of the initial flux magnitude, these 
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reactions were filtered out from the set of predicted regulation sites and excluded from further analysis. 

However, results were robust for a wide range of filter levels.  

Clustering of reaction changes: An m x n matrix with m gene-reactions pairs (predicted to be 

regulated in at least one media shift; m = 1814) and n total media shifts (n = 15,051) was made, 

detailing in which shifts each gene-reaction pair is predicted to require regulation (FDR < 0.01). The 

gene-reaction pairs were subjected to k-means clustering (k = 3). Clustering was repeated 100 times 

with different seed values to find consensus clusters.  

Determination of expressed genes: Expression profiles were obtained from previous studies 

114, 215-217. The Affymetrix CEL files were normalized using gcrma, implemented in R. Genes were 

considered not expressed if they did not have a mean expression level across biological replicates that 

were significantly higher than the five highest-expression non-E. coli negative control probe sets on the 

array (1-tail t-test; FDR = 0.05). The sets of expressed genes from each study were used to estimate the 

number of expressed proteins. 

Residue conservation: All protein sequences of 1057 prokaryotic species were acquired from 

the KEGG database. Homologs to all E. coli proteins containing at least one known PTM were 

identified by using the Smith-Waterman algorithm. When more than two proteins in one species had the 

same percent identity, the protein with the lowest e-value was chosen. In the rare case in which multiple 

proteins from a species had identical % identity scores and e-values, all qualifying proteins were 

included.  

Each metabolic E. coli protein with a PTM (n=109) was thus grouped with its homologs, and 

the pair-wise Smith Waterman alignment between the individual E. coli protein and each of the 

homologs was used to quantify the conservation of post-translationally modified residues, as calculated 

(i.e., the percent of pair-wise comparisons where the aligned residue was identical in the 

homolog).  Conservation of non-modified residues for these amino acids was calculated in an identical 

fashion. 

Salt bridge prediction and measurement of distance from PTMs to active site residues: 

Protein structures for modified enzymes were obtained from the Protein Data Bank. Potential salt 
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bridges that could be disrupted by a PTM were determined by finding all residues within 4Å of a lysine 

or serine that could form a salt bridge. Potential new salt bridges were found by searching for basic 

residues within 8Å of a phosphorylated serine, threonine, or tyrosine.  

Distances between modified residues and all other amino acids were calculated between 

centroids of each amino acid. These were used to compare distance between random residues and 

modified residues with distances between modified residues and functional residues. Functional 

residues are defined as active sites on proteins, substrate binding sites, and residues which modulate 

enzyme activity if replaced, and were all acquired from Ecocyc, Uniprot, and the literature. 

Mutant growth assays: Wild type E. coli and several mutants missing kinases, phosphatases, 

or acetyltransferases (ΔaceK, ΔcobB, ΔpphA, ΔyeaG, ΔyfiQ, ΔyiaC, ΔyihE, and ΔynbD) were obtained 

from the Kieo collection 218. Gene deletion was verified by PCR of the scar region, and strains were 

subsequently grown overnight M9 media, supplemented in 2g/L glucose, L-lactate, or inosine in a 

seeding culture. An aliquot of culture was returned to fresh media such that the OD600 was ~0.03. 

Cultures were subsequently grown at 37°C with constant stirring. Turbidity was periodically measured 

at OD600 as a proxy for cell count, and growth rates were computed from OD measurements at mid-

exponential phase.    

Appendix 3.1: A detailed assessment of RuMBA  
Metabolic regulation is a rapid means to redirect flux in a metabolic network, while 

transcriptional regulation and regulation of enzyme abundance are processes that act on a longer time 

scale. Therefore, it is expected that following a shift to a new growth condition, allosteric regulation and 

post-translational enzyme modification will redirect flux at important branch points. The rational for 

this response is that, in vivo, there are regular fluctuations in the cellular microenvironment and frequent 

environmental changes 209-211. Thus, it would be advantageous for the cell to have a means to rapidly 

regulate metabolic pathway usage using reversible mechanisms while slower and more permanent 

regulatory mechanisms are being activated. The relative costs and timescale of a few types of regulation 

are listed below in Table 3.1. 



71 
 

 
 

Table 3.1. Potential responses to changes in media composition in the microenvironment. 

 

Two methods have been developed to predict which enzymes will require significant changes 

in activity level following a change in carbon substrate for shorter and longer timescales. Tentatively, I 

call these RuMBA and FSS, respectively.  

A variant on FSS has been used previously 78, 86. Another method similar to FSS has also been 

recently published, showing its conceptual accuracy 37. A brief discussion of this method provides a 

conceptual basis to understand RuMBA. Constraint-based modeling, the framework upon which both 

RuMBA and FSS are based, uses the metabolic network topology to define a space of possible 

phenotypes by adding a series of known biologically-relevant governing constraints (e.g., uptake rates 

for media components, byproduct secretion rates, growth rates, etc.). This space of possible phenotypes 

represents all possible combinations of metabolic steady-state pathway usage that a cell can use in the 

given growth conditions. Assuming the constraints are accurate, the actual steady state flux distribution 

(or pathway usage) should be within the in silico solution space (Figure 3.6.a). The range and 

distribution of flux through each reaction within these solution spaces are dependent on the constraints, 
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such as reaction thermodynamics, metabolite uptake rates, etc. Therefore, the space is condition-

specific, i.e., the various dimensions of the space might move when the model is simulated under two 

different growth conditions. For example, as shown in Figure 3.6.b-c, the flux may be significantly 

higher in the second growth condition (reaction 2), or show no significant change between the two 

growth conditions (reaction 1). 

The predicted changes in pathway use from FSS represent the changes that lead to the optimal 

pathway usage in different growth conditions. However, to achieve this optimality, the activity of 

numerous enzymes must be fine tuned, and often, many proteins need to be up-regulated to meet this 

requirement. These adjustments require significant changes in transcription and translation, which can 

take a generation or two for entire pathways.  

 

Figure 3.6. Condition-specific shifts in the flux solution space. (a) Constraint-based modeling 
employs governing constraints to define a space of feasible phenotypes, which are represented by 
allowable steady-state fluxes for each reaction. When growth conditions change (e.g., a change in 
carbon source, or aerobicity), the space of feasible fluxes can change. (b) For example, reaction 2 shows 
a change in the range of feasible flux levels under the new growth condition, which can be shown in the 
metabolic map (c). These changes can be mapped back to the genes and proteins associated with each 
reaction. 
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On a shorter time scale, when changes in enzyme level are either less efficient (e.g., protein 

degradation) and/or not feasible to obtain, a more reasonable adaptive response involves a temporary 

suppression of the activity of an enzyme to avoid sending metabolites down less efficient pathways, or 

to boost the activity of present enzymes that will be needed in the new growth conditions. Thus 

regulation at metabolic branch-points becomes of great importance, so that metabolites can be shuttled 

down the most efficient pathways. 

RuMBA leverages this idea to compute the shift of the solution space for short-time scale 

changes in metabolic pathway activity at metabolic branch points. To do this, Markov chain Monte 

Carlo sampling of the metabolic solution space is used to obtain a uniformly distributed assessment of 

feasible flux values each reaction can have at steady state.  

To assess each branch point metabolite in the network, all reactions that can produce or 

consume it are identified. For example, aconitase produces isocitrate, while isocitrate dehydrogenase 

and isocitrate lyase both consume it (Figure 3.7.a). For each sample point in the solution space (Figure 

3.7.b-c), all incoming fluxes are summed up, as are all outgoing fluxes. Then, for each ith reaction, the 

fraction of total flux through the metabolite, vmet, that is contributed by the reaction of interest, is 

computed as follows: 

met

i
i v

v
f = , 

where vi is the flux through reaction i and fi is the fraction of all flux passing through the metabolite of 

interest, that is passing through reaction i. Since this is done for many random feasible sets of flux 

values through all of the reactions at the branch point, a distribution of fi fractions is computed for each 

reaction for the two growth conditions of interest (Figure 3.7.d). Therefore a p-value can be computed 

that measures the overlap of the fi values for that reaction under the given growth condition, thus 

quantifying how significantly the flux changes from one enzyme to another when environmental 

conditions change. The function of a phosphorylation event can subsequently be predicted if the change 

in phosphorylation is also known.  
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To test this method, three E. coli enzymes were identified (in the literature) that undergo 

differential protein phosphorylation between growth on glucose and acetate. RuMBA was employed to 

predict the effect of phosphorylation on these three enzymes (Figure 3.7.e). At late log phase, enolase 

has been shown to have seven times higher phosphorylation when E. coli was grown on glucose than 

when grown on acetate 195. In silico, RuMBA predicts that enolase will have a reduced flux level on 

acetate. Therefore, one may predict that the phosphorylation event would activate its forward flux. It 

was determined that when treated with acid phosphatase, enolase was inhibited 195. Similarly, RuMBA 

predicts that on acetate, the flux through isocitrate dehydrogenase (ICDHyr) decreases, while the flux 

through isocitrate lyase (ICL) should increase. Experimentally, the phosphorylation of ICDHyr 

increases and may increase for ICL (phosphorylation is high when grown on acetate, but has not been 

rigorously tested on glucose). Thus, it is predicted that phosphorylation of ICDHyr inhibits enzyme 

activity, while it activates ICL. Both of these predictions are consistent with published data 219, 220. 
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Figure 3.7. RuMBA accurately predicts the known metabolic regulatory function of protein 
phosphorylation. RuMBA computes the shift of flux from one pathway to another when growth 
conditions are changed. At metabolic branch points, such as the split between isocitrate dehydrogenase 
(ICDHyr) and isocitrate lyase (ICL), RuMBA predicts that different branches will be used under 
different growth conditions. (b) When E. coli is grown on glucose, RuMBA predicts that most of the 
flux through aconitase (ACONT) continues in the TCA cycle through (ICDHyr). However, when 
switched to acetate minimal media, a significant amount of flux is siphoned off into the glyoxylate 
shunt through ICL. (c) RuMBA predicts this shift by using MCMC sampling to compute a uniform 
sample of feasible steady-state flux values (points) for all reactions that produce or consume a 
metabolite of interest, such as isocitrate. (d) The fraction of flux that goes through each branch is 
computed for each point, yielding a distribution of fractional split values. (e) RuMBA results can then 
be compared to experimentally measured flux values for the given growth conditions, yielding 
predictions for the metabolic regulatory function of phosphorylation events. RuMBA accurately 
predicts experimentally measured effects. 
 

 

Chapter 3, contains some material from Lewis, N.E., Chang, R.L., Kim, D., Hefzi, H.H., 

Palsson, B.Ø. Prokaryotes use enzyme post-translational modification to globally regulate metabolism. 

In preparation. I was the primary author, while the co-authors provided support in the research that 

served as the basis for this study. 
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Section II: Distal causation in the evolution of proximal capabilities 
 

Proximal causation is limited by physicochemical constraints, such as the conservation of mass 

and thermodynamic laws. However, proximal causation in biological systems is also constrained by 

their genetic programs. These genetic programs often evolve to improve an organism’s fitness and its 

likelihood to reproduce. Thus, evolution is considered to be a driven by factors of distal causation in 

biology. One does not have to travel far for examples of distal causation shaping an organism’s genetic 

program, thereby further shaping limitations and capabilities of proximal responses.  

The following chapter provides one such example of how selective pressures have shaped the 

catalytic promiscuity of microbial enzymes. Importantly, by using constraint-based modeling to 

integrate and analyze various high-throughput data types, it is clear that there is an interplay between 

metabolic network context, environmental conditions, and the need to generate biomass, which imposes 

distal effects on the evolution of enzyme function and ultimately the metabolic capabilities of microbes.  
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Chapter 4: Network context and selection in the evolution to enzyme 
specificity 

 

It is a widely held view that ancestral enzymes had low substrate specificity and catalytic 

efficiency 221. Through mutation, duplication, and horizontal gene transfer, gene families diversified and 

promiscuous enzyme functions were refined to exhibit specific and more efficient catalytic abilities 222. 

While several models of this evolutionary process have been suggested 222-224, it is clear that these 

evolutionary mechanisms continue to refine catalytic activities of enzymes today as organisms 

continually adapt to environmental changes in nature 223, 225 and in the laboratory 225-228. 

 In contrast to this view in which proteins continuously evolve towards absolute-specificity 

(i.e., catalyzing one physiologically relevant reaction in an organism), increasing evidence shows that 

most enzymes actually display non-physiological promiscuous activities, and that many are multi-

specific, where multiple physiologically important are catalyzed by one enzyme 222. Thus, a 

fundamental question arises: why would some enzymes evolve to absolute-specificity, while others 

maintain the promiscuous and multi-specific, characteristics (Figure 4.1)?  
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Figure 4.1. Evolution of enzyme specificity through the divergence prior to duplication model. 
When an organism is introduced into a new environment, an existing enzyme with promiscuous activity 
may be mutated or amplified if one promiscuous activity provides a beneficial function in the new 
environment. This results in a multi-specific enzyme, carrying multiple physiologically-relevant 
activities. It is believed that the difficulty of tuning multiple enzymatic activities on one enzyme drives 
the duplication (or horizontal gene transfer (HGT)) and further refinement of individual enzyme 
activities. Why, then, are there so many multi-specific enzymes? Here it was found that the network 
context, environment, and the need to synthesize biomass all impose stronger selection for absolute-
specificity when enzymes maintain a higher flux, are more essential, and/or require more regulation of 
flux. 
 

 This question is addressed here through an in silico metabolic network analysis, fortified with 

new and published experimental data. We demonstrate striking differences in how hundreds of 

absolute-specific and multi-specific enzymes are used in the context of the entire metabolic network of 

E. coli. Moreover, these characteristics are found to be general properties of metabolic networks across 

archaea, bacteria, and eukaryotes suggesting that enzyme usage in the network context may influence 

the evolution of enzyme specificity.  

Multi-specificity is abundant in microbial metabolism 
How extensive is multi-specificity amongst known metabolic enzymes? A carefully curated 

comprehensive reconstruction of the E. coli metabolic network has been developed, validated and 
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extensively used over the past 20 years 5, 189. We use it here to study enzyme specificity in a network 

context. The reconstructed network includes the biochemical functions of 1,260 genes (36% of the 

functionally annotated ORFs), 1,147 proteins and complexes, and 2,382 reactions 189. Moreover, >92% 

of the biochemical functions of the gene products in the reconstruction have been experimentally 

determined 189 and studied in more than 61,727 published studies.  

 In this reconstruction, 671 enzymes are absolute-specific and catalyze 450 metabolic reactions, 

while 410 multi-specific enzymes catalyze 866 metabolic reactions. Enzyme classification is not 

significantly influenced by depth of study on specific enzymes, since the degree of multi-specificity 

does not correlate with knowledge depth of the enzymes, and several deeply studied pathways actually 

contain fewer multi-specific enzymes than expected by chance. Interestingly, multi-specific enzymes 

catalyze 66% of the non-spontaneous metabolic reactions in the network (termed here “multi-specific 

reactions”), and more than 80% of these can be active in common growth conditions. Thus, contrary to 

the general view of enzymes, multi-specificity plays a prominent role in E. coli metabolism. 

Absolute-specific enzymes carry a higher flux load 
It is possible that multi-specific enzymes are retained where there is weaker selection based on 

the enzyme usage in the metabolic network. Higher demands on enzyme usage may provide an 

evolutionary selective pressure to enhance catalysis and reduce the required quantity of enzyme. 

Absolute-specificity may also be selected since catalytic improvements for one substrate on a multi-

specific enzyme can decrease the efficiency of its other catalytic activities 228. Thus, is absolute-

specificity selected based on enzyme usage? While technical challenges limit the resolution and scope 

of experimental flux determination, genome-scale metabolic networks can estimate reaction flux after 

being converted into computational models 183. Importantly, these estimates have shown consistency 

with smaller-scale 13C-based studies 97 and various -omic datatypes 47. Thus, we computed steady-state 

flux loads for E. coli, using a Markov-chain Monte Carlo (MCMC) sampling method 36. This approach 

allows the simulation of flux for suboptimal growth, thereby better reflecting growth in nature. Flux 

loads were computed under 174 different media compositions in which E. coli can grow. For each 
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growth condition, the median flux load for each reaction was rank-ordered to determine the relative flux 

loads between reactions.  

 Across all simulated growth media, absolute-specific reactions tend to maintain a higher flux 

than multi-specific reactions (Figure 4.2.B; p = 1.73x10-43). Thus, enzyme specialization may allow for 

an increased specific activity of high-flux enzymes, thereby partially offsetting the cost of gene 

duplication 229 by requiring fewer enzyme molecules to maintain the required flux load. While in 

general, absolute-specific reactions carry a higher flux load the existence of low-flux absolute-

specificity suggests that additional drivers for protein evolution exist. An assessment of these low-flux 

absolute-specific reactions shows an abundance of enzymes that synthesize essential cell components 

(e.g., cofactors and prosthetic groups).  

 

 

Figure 4.2. Flux level and essentiality correlate with enzyme specificity.  (A) The number of 
absolute- and multi-specific genes, proteins, and reactions in E. coli metabolism. (B) Reaction flux 
magnitudes are rank-ordered and binned for 174 different media conditions. Color intensity shows the 
percentage of reactions within the given flux rank range. (C) A higher percentage of essential genes in 
vivo are absolute-specific. (D) In silico growth (i.e., biomass function flux) on glucose minimal medium 
is predicted to be dependent on few multi-specific reactions. (E) For all 174 simulated growth 
conditions, absolute-specificity is significantly enriched among in silico-predicted reactions essential 
for growth, representing 55% of the essential reactions (inset). A-S: absolute-specific, M-S: multi-
specific. 
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Absolute-specific enzymes are more essential 
Thus, to carefully regulate the synthesis of cofactors and other essential cell components, are 

the absolute-specific enzymes more essential for cell growth than multi-specific enzymes? Absolute-

specific enzymes are significantly enriched among experimentally-determined essential genes 218 (p = 

8.65x10-5, Figure 4.2.C). In addition, in silico simulation demonstrates that cell growth is rarely directly 

dependent on multi-specific reaction flux (Figure 4.2.D), while absolute-specific reactions are more 

frequently essential for growth across all 174 tested media conditions (Figure 4.2.E). Possibly, the 

abundance of absolute-specificity among essential enzymes stems from selection to limit substrate 

competition in the synthesis of necessary biomass components. 

Absolute-specific enzyme flux varies more in fluctuating environments 
 Natural environments are dynamic and metabolite concentrations fluctuate considerably at the 

microbial scale 230. As nutrient concentrations change, gene essentiality 204 and reaction flux also vary 

37, 97. Thus, in view of the flux load and essentiality results, does the need to control variations in flux in 

dynamic environments induce selective pressures against multi-specificity? Changes in pathway usage 

in dynamic environments were predicted by simulating several shifts in carbon, oxygen, and nitrogen 

sources for E. coli, using experimentally measured phenotypic data to parameterize the model. For each 

substrate shift, the model predicted whether metabolic reaction flux should increase or decrease. To 

provide some support for these predictions, we compared them with microarray data, obtained for each 

condition (both new data and from previous studies 215), and found that these predictions are consistent 

with measured differential gene expression.  

 Across all shifts in media, there is a considerable difference in the percentages of active 

absolute-specific and multi-specific reactions that significantly change their flux. In most substrate 

shifts, absolute-specific reaction flux is more than twice as likely to change than multi-specific reaction 

flux. This result is robust for more stringent classifications of multi-specificity (Figure 4.3.A). Thus, 
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flux through absolute-specific reactions is considerably more sensitive to environmental change, while 

multi-specific reaction flux varies less.  

 

Figure 4.3. Specificity correlates with differential flux in dynamic environments. (A) 
Experimental-data were acquired and used with the model to predict the percentage of reactions that 
change in four nutritional shifts. The percentage of reactions changing is reported here for the following 
reaction classes: absolute-specific (green), multi-specific (yellow), conditional multi-specific reactions 
(brown, see SOM for details), and multi-specific with more than two E.C. numbers (tan). (B) A 
systematic computational screen of all 15,051 possible shifts between 174 carbon substrates shows that 
absolute-specific reactions tend to change more frequently (upper), and that this difference is 
particularly clear for shifts that cause more reactions to change (lower).  
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To show that this is a general property of E. coli metabolism, 15,051 pairwise environmental 

shifts were simulated. In 96% of these shifts, absolute-specific reactions change more frequently than 

multi-specific reactions (Figure 4.3.B, upper). This property is especially apparent for environmental 

shifts that induce more than ~5% of the model reactions to change flux (Figure 4.3.B, lower). Since 

absolute-specific reactions are subject to greater flux changes in nutritionally dynamic environments, it 

is anticipated that these environmental fluctuations may guide evolution towards absolute-specificity to 

allow for focused enzyme regulation associated with sensitive flux levels. 

Absolute-specific enzymes are subject to more metabolic regulation 
Does this more selective variation in absolute-specific enzyme flux result in more regulation of 

their activity than multi-specific enzymes? Metabolic regulation of enzyme activity is commonly 

mediated through metabolite-protein interactions or post-translational modifications (PTMs) 177, 231. To 

quantify the prevalence of metabolic regulation, a few hundred known metabolite-mediated regulatory 

interactions and enzyme PTMs were identified for E. coli and assessed with respect to absolute- and 

multi-specific enzymes. Allosteric, uncompetitive, and noncompetitive regulatory interactions are 

enriched in absolute-specific enzymes (p-value = 9x10-4), as are PTMs (p-value = 5x10-3). Metabolic 

regulation is depleted among multi-specific enzymes, presumably reflecting the decreased need to 

change flux through these reactions in varying environments. Moreover, when their flux does change, it 

tends to do so in the same direction, thereby negating the need for more complex regulation. 

 To further assess the association of specificity with regulation, we quantified how frequently 

each reaction changes flux across all 15,051 media shifts. K-means clustering identified three dominant 

reaction clusters (Figure 4.4.A). Two clusters show frequent changes in flux, and these are enriched in 

absolute-specific enzymes (particularly associated with central and amino acid metabolism), while the 

reaction cluster with few flux changes is significantly enriched in multi-specific enzymes (Figure 4.4. 

B-C). Metabolic regulation is significantly enriched within the cluster experiencing the most change, 

but depleted from the cluster with few flux changes (Figure 4.4.D-E). Thus, by inference, there exists a 
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pressure to enhance enzyme specificity for reactions that require more careful regulation of enzyme 

activity in order to control fluxes that are more sensitive to dynamic nutritional environments. 
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Functional properties of enzyme specificity are conserved 
The aforementioned results are properties of how the E. coli metabolic network functions as a 

whole. However, if these properties influence selection of enzyme specificity in protein evolution, one 

may expect these properties to be conserved. Thus, we examined conservation of these properties using 

carefully curated genome-scale metabolic models of microbes from the other major domains of life: the 

archeon Methanosarcina barkeri 49, and the eukaryotes Saccharomyces cerevisiae 38 and 

Chlamydomonas reinhardtii 232. 

As in E. coli, the three organisms contain numerous multi-specific enzymes (Figure 4.5.A-C). 

Enzyme activities were subsequently estimated using MCMC sampling while simulating common 

growth conditions for each organism, including experimentally measured substrate uptake rates 49, 232, 

233. In each organism, absolute-specific enzymes maintained a higher flux on average than multi-

specific reactions. Moreover, when environmental shifts were simulated for each organism, multi-

specific enzymes were substantially less likely to change flux between growth conditions. Thus, 

through the diversification of microbes, higher flux and a need for regulation in varying environments 

remain as general features of selection for absolute-specificity of enzymes.  
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Figure 4.5.  Enzyme-specificity characteristics hold for microbes in all domains of life, as shown 
here for (A) M. barkeri, (B) C. reinhardtii, and (C) S. cerevisiae. Multi-specificity is abundant, as 
shown by the gene, enzyme, and reaction (G/E/R) composition for each species. Moreover, absolute-
specific reactions load higher magnitudes of flux, and are enriched in reactions that are predicted to be 
metabolically regulated for each change in nutritional environment.  
 

The contribution of network context and cell needs to enzyme evolution 
Absolute-specificity represents the textbook view of enzymes being “specific catalysts”. 

However, evidence suggests that enzyme function may arise from the amplification of promiscuous 

activities that provide a fitness advantage in a new environment 224, 234. Thus enzymes may be initially 

multi-specific 206, 228, 235, 236. Only through mechanisms such as gene duplication 222-224 or horizontal gene 

transfer, do catalytic activities evolve beyond promiscuous intermediates toward absolute-specificity. 

While some multi-specificity may represent recently-amplified promiscuous activities, this work 

suggests that multi-specific enzymes are possibly widespread because they receive less selective 

pressure from their use in the network context. Their lower essentiality, smaller flux load, and reduced 

regulatory requirements may not provide adequate fitness advantages to offset the required costs of 
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gene duplication and maintenance 229, 237 when catalytic functions are separated into several absolute-

specific enzymes. However, if an environmental change elicits the right fitness challenge, the functions 

of the genome-scale network may cause these multi-specific enzymes to evolve towards absolute-

specificity. 

 Awareness is increasing of how the functions of biomolecular networks influence evolution, as 

genome-scale network studies have demonstrated its role in gene essentiality, genome reduction, 

epistasis, and specific evolutionary trajectories. Similarly, the results presented here add to our 

understanding of evolutionary selection by showing that enzyme evolution is guided by the 

physiological functions that the metabolic network, as a whole, must generate to support organism 

survival. By analyzing the network function underlying cell physiology, and using it to integrate many 

disparate data types into a coherent whole, systems biology allows one to elucidate the sources and 

consequences of distal causation through intricate selection pressures that are not apparent at the level 

of a single enzyme.    

 

Methods 
 

E. coli culturing and phenotyping: Phenotype information, including metabolite uptake rates 

and growth rates were previously obtained for aerobic growth on glucose, glycerol, and propylene 

glycol and anaerobic growth on glucose 114, 217, 238. To complete the set of phenotypes for shifts in 

carbon, oxygen, and nitrogen metabolism, we obtained growth phenotyping data for different nitrogen 

conditions. This was done by taking glycerol stocks of E. coli K-12 MG1655 and inoculated 2 g/L 

glucose M9 minimal media to grow the culture at 37°C overnight. Aliquots were then grown 

anaerobically on 2 g/L glucose M9 minimal media supplemented with either ammonium or nitrate (20 

mM) at 37°C. Cells were grown exponentially while sampling growth rates and media multiple times. 

Growth rates were determined by measuring the optical density of cultures at 600nm. Glucose uptake 

and acetate secretion were measured by HPLC. The nitrate metabolic rate was approximated from the 

iAF1260 model of E. coli using the measured growth rate and glucose uptake rate.  
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 Gene-expression profiling: To provide support for the MCMC sampling-based computational 

flux change predictions, we compared these with gene expression changes. This was done using novel 

expression data sets published here and published data from glucose, glycerol, anaerobic, and nitrate 

conditions 114, 215, 217. The glycerol-glucose shift provides support for the changes between substrates 

that are metabolized similarly, while we additional data we present here support our results for 

substrates that differ substantially in how they are metabolized, despite only differing by one oxygen in 

the molecular formulae (propylene glycol and glycerol).  

 Since E. coli cannot normally grow on propylene glycol, a strain of E. coli K-12 MG1655, 

adapted for glycerol growth was evolved to also metabolize propylene glycol 238. This strain was 

subsequently grown and expression profiles on both 2g/L glycerol M9 minimal media and 2g/L 

propylene glycol M9 minimal media at 37°C. Affymetrix E. coli Antisense Genome Arrays were used 

for all transcriptional analyses. Each experimental condition was tested in triplicate in the respective 

carbon sources (i.e., glycerol or propylene glycol) using independent cultures and processed following 

the manufacturer-recommended protocols. Cultures were grown to mid-exponential growth phase 

aerobically (OD600 = 0.3) in minimal media supplemented with appropriate carbon source. Three ml of 

cultures were added to 2 volumes of RNAprotect Bacteria Reagent (Qiagen) and total RNA was then 

isolated using RNeasy columns (Qiagen) with DNase I treatment. Total RNA yields and quality were 

measured using a Nanodrop 1000 (Thermo Scientific) and agarose gels. cDNA synthesis, 

fragmentation, end-terminus biotin labeling, and array hybridization were performed as recommended 

by the Affymetrix standard protocol.  

 The Affymetrix CEL files were normalized using gcrma (version 2.20.0) implemented in R 

(version 2.11.1).  Genes were considered not expressed if their median expression level across 

replicates was lower than the median value of intergenic (IG) probes, and removed from further 

analysis if they were not expressed in all conditions. Differentially expressed genes were determined 

using a two-tailed t-test followed by false discovery rate (FDR) p-value adjustment (FDR ≤ 0.01). 

 Designation of absolute- and multi-specificity. For this study we classified 1,147 enzymes 

from the E. coli genome-scale model (iAF1260) 189 as follows following the detailed process shown in 
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Figure 4.6.A-B. First, we selected 1,081 proteins which are reported as having enzymatic activity in the 

Ecocyc Database 212. In this step, 66 proteins were removed since they did not have experimentally-

validated catalytic activities. These included non-catalytic members of enzyme complexes (e.g., the 

electron transferring protein flavodoxin (b0684)) or predicted enzymes (e.g., predicted carbamate 

kinase (b0521)). Among these 1,081 enzymatic proteins, 671 and 410 proteins were classified as 

absolute- and multi-specific enzymes, respectively (Figure 4.6.A). These absolute-specific and multi-

specific enzymes are encoded by 713 genes and 477 genes, respectively. We note that the majority of 

multi-specific enzymes in this study include enzymes exhibiting true multi-specificity (i.e., multiple 

enzymatic activities with physiological importance), but we anticipate that some reactions may 

represent examples of well-characterized catalytic promiscuity. While it is unlikely that any 

experimental technique could clearly differentiate between the two, this property should not 

substantially affect the conclusions in this work, since variations on the categorization led to 

qualitatively similar results. 

 Following enzyme classification, reactions associated with these enzymes were grouped into 

absolute- and multi-specific reaction classes. If a reaction is catalyzed by an absolute-specific enzyme, 

the reaction is classified as “absolute-specific reaction” (Figure 4.6.B). Otherwise it was classified as a 

“multi-specific reaction”. The reaction lists were also filtered to remove reactions with ambiguous 

classification. Specifically, 63 reactions associated with both of absolute- and multi-specific isozymes 

were filtered out from the further analysis. We also note that transport reactions were removed as they 

usually do not represent canonical metabolic catalysis beyond, for example, ATP hydrolysis for in ABC 

transporters. However, the presence of transporters did not qualitatively change the results in this work. 
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Figure 4.6.  Absolute-specificity and multi-specificity classification process in iAF1260. (A) 
Enzymes and genes classification steps. (B) Reaction classification steps.  
 

 Markov chain Monte Carlo sampling: The distribution of feasible fluxes for each reaction in 

the models used here were determined using Markov chain Monte Carlo (MCMC) sampling 35, as 

previously described 42, 86, and was implemented with the COBRA Toolbox v2.0 214. Published uptake 

rates were used to constrain the models. To model more realistic growth conditions 87, sub-optimal 

growth was modeled. Specifically, the biomass objective function (a proxy for growth rate) was 

provided a lower bound of 90% of the optimal growth rate as computed by flux balance analysis 90. 

Thus, the sampled flux distributions represented sub-optimal flux-distributions, while still modeling 

fluxes relevant to cell growth and maintenance. 

 MCMC sampling was used to obtain thousands of feasible flux distributions (referred to here 

as “points”) using the artificially centered hit-and-run algorithm with slight modifications, as described 

elsewhere 42, 86. Briefly, a set of non-uniform points was generated. Each point was subsequently moved 

randomly, while remaining within the feasible flux space. To do this, a random direction is first chosen. 
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Second, the limit for how far the point can travel in the randomly-chosen direction is calculated. Lastly, 

a new random point on this line is selected. This process is repeated until the set of points approaches a 

uniform sample of the solution space, as measured using the mixed fraction metric described previously 

101. A mixed fraction of approximately 0.50 was obtained, suggesting that the space of all possible flux 

distributions is nearly uniformly sampled.  

 For each reaction, a distribution of feasible steady-state flux values is acquired from the 

uniformly sampled points, subject to the network topology and model constraints. For the E. coli model 

such distributions of feasible flux values could be determined for 2,314 of the 2,382 reactions. The 

remaining 68 reactions were involved in loops 100 and therefore reliable flux estimates were not 

available. Thus, sampling distributions for these 68 reactions were removed from all analysis in this 

work. Similar measures were taken for all other models in this work. 

 Model parameterization: In general, metabolic models were used in their published format 

with published uptake and secretion rates 49, 114, 189, 232, 233. For the 174 simulated media formulations in 

E. coli, glucose uptake was set to zero in the iAF1260 model, and flux balance analysis was used to find 

which of all other carbon sources could support growth (all of these carbon sources were supported by 

documented assays in the reconstruction of iAF1260). For each of the 174 growth-supporting carbon 

sources, an uptake uptake rate was set, which was consistent with uptake rate of glucose in the 

published iAF1260 model (i.e., 8 mmol grDW-1 hr-1), normalized by the number of carbons in the 

metabolite. For example, since glucose has 6 carbons, the uptake rate of lactate, with 3 carbons, was set 

as 16 mmol grDW-1 hr-1 (which is similar to the actual reported lactate uptake rate in M9 minimal media 

217). While this was used to standardize the media conditions, variations in carbon uptake rates did not 

significantly impact the results presented in this work. 

 All models were selected based on the availability of carefully curated genome-scale metabolic 

network reconstructions with measured metabolite uptake rates. Specific media conditions for the 

eukaryotic and archaea models included the following. M. barkeri growth was simulated on minimal 

media containing methanol, acetate, pyruvate, or H2 and CO2. S. cerevisiae growth was simulated with 

glucose, acetate, ethanol, and maltose minimal medium. For C. reinhardtii, three growth conditions 
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were used: light with no acetate, light with acetate, dark with acetate. Details on media formulations are 

provided elsewhere 49, 232, 233. 

 Flux load ranking: We compared the flux magnitudes of absolute- and multi-specific 

reactions. In order to avoid biases resulting from variations between growth conditions, we used a rank-

based metric to compare flux between conditions. This was done as follows. The median flux 

magnitude values were calculated from the MCMC-sampled flux loads for each of the 174 different 

media formulations. For each condition, reactions were filtered out if they were transporter related, 

involved in loops, non-enzymatic, or could not carry flux. The median flux loads for each reaction were 

then rank-ordered and the distributions of ranks were compared for absolute- and multi specific 

reactions. In comparing the relative flux loads between reactions, higher flux magnitudes correspond to 

higher rank in this study. The significance of higher flux magnitudes in absolute-specific reactions were 

evaluated by using one-tailed t-tests and Fisher’s method. 

Essentiality: Previously, 300 essential genes in E. coli were identified experimentally 218, and 

this list was used here. To complement this analysis, an in silico analysis was used to assess reaction 

essentiality with respect to the synthesis of biomass precursors, since we hypothesize that the selective 

pressure would exert its influence through the reactions themselves. The in silico approach used MCMC 

sampling to simulate growth (>90% of the in silico-predicted optimal growth rate). The distributions of 

feasible flux values of each reaction was used to assess the correlation of flux between it and the 

biomass reaction (a pseudo-reaction that simulates the consumption of all biomass precursor 

metabolites in order to produce biomass) 10. Reactions that significantly contribute to or are essential for 

growth are identified by having a significant p-value from the computation of the Pearson’s correlation 

coefficient. While we selected a p-value cutoff of 1x10-10, the results were consistent for any reasonable 

p-value cutoff. These correlated reactions contain no redundant pathways, and would therefore provide 

the most stringent selective pressures since they are the most essential reactions. 

 Prediction of flux changes between media conditions: To simulate changes in reaction flux 

occurring in a shift between two conditions, the sampled fluxes for each reaction were compared 

between two media conditions as follows. First, reactions that carried no flux in both conditions or that 
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were involved in loops 100 were removed and not used in further analysis. Next, flux magnitudes were 

normalized between each pair of media conditions. To do this, the flux value of each sample point was 

divided by the sum of all flux magnitudes for the of a sample point. 

∑
=

=
n
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ijijij fluxabsfluxfluxnormed
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)(/_

, n = number of reactions 

Once the flux values were normalized, the changes of fluxes between two conditions were determined 

as previously described 86. Briefly, differential reaction activity was determined by assuming that a 

reaction is differentially activated if the distributions of feasible flux states (obtained from MCMC 

sampling) under two different conditions do not significantly overlap. For each metabolic reaction, a p-

value was obtained by computing the probability of finding a flux value for a reaction in one condition 

that is equal to or more extreme than a given flux value in the second condition. Significances of p-

values were adjusted for multiple hypotheses (FDR ≤ 0.01). 

Clustering of reaction changes: An m x n matrix with m absolute- and multi-specific 

reactions and n media shifts (n = 15,051) was made, detailing in which shifts each reaction significantly 

changed flux (FDR < 0.01). The reactions were subjected to k-means clustering (k = 3). Clustering was 

repeated 100 times with different seed values to find consensus clusters. Enrichment tests in the clusters 

were done using the hypergeometric test. 

Enrichment of post-translational modifications and metabolic regulation: Lists of 

metabolic proteins with post-translational modifications (PTMs) were obtained from studies that 

identified sites of protein acetylation, phosphorylation, and succinylation in E. coli 175-178. All reported 

occurrences of non-covalent metabolite-mediated metabolic regulation were obtained from Ecocyc 212. 

Metabolic regulation events labeled in Ecocyc as allosteric, noncompetitive, uncompetitive, and 

competitive were used in this analysis to distinguish between different regulatory properties of these 

enzymes. Enrichment and depletion of PTMs and metabolite-mediated metabolic regulation events in 

the gene lists and reaction clusters were determined using the hypergeometric test. 

Cosine similarity: The patterns of how multi-specific reactions change when sharing the same 

enzyme was estimated by using the cosine similarity metric. For each shift, the median flux magnitudes 
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of a reaction in conditions x and y were represented as a vector (Rα(fx, fy)). The similarity score of two 

reactions, α and β, was then measured by the cosine similarity of the two vectors, Rα and Rβ. 

βα
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The similarity score of reactions catalyzed by the same enzyme (ei) was calculated as the mean value of 

all pair-wise cosine similarity scores for reactions catalyzed by that multi-specific enzyme. 
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For example, for an enzyme e1 that catalyzes three reactions (r1, r2, and r3), the flux similarity score of 

e1 is calculated as an average value of cosine distances of three reaction pairs. Similarity scores for 

multi-specific enzymes were compared to randomized tests. The randomized tests were achieved by 

averaging 2,000 cosine similarity scores of randomly paired reactions. 

 

 

 
 

Chapter 4, in part, is a reprint of the material as it appears in Nam, H.J., Lewis, N.E., Lerman, 

J.A., Lee, D.H., Chang, R.L., Kim, D., Palsson, B.Ø. Network context and selection in the evolution to 

enzyme specificity. Submitted. I was a joint-primary author and the corresponding author, while the 

remaining co-authors provided support in the research that served as the basis for this study. 
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Section III: Distal causation in action: experimental evolution shapes 
metabolism 
 

Retrospective evolutionary analysis has in many instances demonstrated how distal causation 

has shaped proximal metabolic capabilities. However, can one see these changes in our lifetime? 

Fortunately, some evolutionary theories may be experimentally tested through adaptive laboratory 

evolution (ALE). ALE has successfully demonstrated changes to the transcriptional regulatory network 

200 and the metabolic network topology 239. These changes provide further support that through distal 

causation in biology, the interaction between cellular objectives and selection pressures guides the 

evolution of metabolic networks 239. The subsequent chapters demonstrate this by showing that biomass 

production is so important to cells under a growth rate selective pressure, that the cells will optimize 

their gene and protein expression to enhance the efficiency of metabolism. The cells do this not only for 

nutritional sources they are accustomed to, but they also evolve their metabolic capabilities to optimize 

metabolism for novel nutritional sources. This optimization happens at both the levels of metabolic 

pathways and specific enzymes. 
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Chapter 5: Laboratory evolved E. coli optimize cellular metabolism 
 

When prokaryotes are grown at low to mid-log phase for hundreds of generations through 

periodic serial passage, they acquire an increased growth rate 48, 200, 240-243. This example of laboratory 

adaptive evolution is expected, since faster growing mutants quickly outgrow slower growing cells, 

even if the initial fitness difference is small 244. Molecular changes that confer the growth improvement 

have been previously studied using fluxomics 245, 246, transcriptomics 110, 217, 247, 248, and whole genome 

resequencing 200, 201, 243, 249. For example, whole genome resequencing of adapted strains demonstrated 

that only a small number of mutations arise after hundreds of generations 200, 201. While each evolved 

strain acquired a different set of mutations, each set of mutations yielded a similar growth phenotype. 

When these mutations were introduced into the wild-type strain by allelic replacement, the wild-type 

cells acquired the evolved-strain growth rates 201. However, the mechanism linking the mutations to the 

improved growth rate in most evolved strains has yet to be clearly identified, except for cases in which 

strains had a mutation in RNA polymerase (RNAP) or glpK 201, which altered activity of transcription 

and glycerol uptake.  

Although the genetic changes have been identified and characterized, the resulting 

coordination of cellular processes that lead to the altered phenotypes have only been studied briefly 

from a network perspective. For example, it has been shown that after hundreds of generations of 

adaptive evolution at exponential growth, Escherichia coli grows as predicted using flux balance 
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analysis (FBA) on genome-scale metabolic models (GEMs). However, the pathway usage has only been 

compared indirectly with optimal pathway usage predictions from FBA and other modeling approaches. 

Such studies of adaptively evolved strains have shown an activation of normally latent metabolic 

pathways 246, expression improvements to the strains that make them more consistent with a high 

growth rate for various minimal media conditions 110, improved respiration 250, optimization of a small 

growth-coupled circuit 185, and protection from the uptake of compounds that can be toxic to a specific 

species 48. In addition, the measured growth rates of evolved strains were shown to be consistent with 

most growth rate predictions from an in silico genome-scale metabolic model (GEM) of E. coli 240, 251.  

While all of these studies have elucidated some characteristics of the complex adaptation 

process, it is not known 1) if absolute genome-scale gene and protein expression levels and expression 

changes are consistent with optimal growth predictions from in silico GEMs, or 2) if measured 

expression changes can be linked to physiological changes that are based on known mechanisms or 

pathways. To begin to address these questions, we use constraint-based modeling of E. coli K-12 

metabolism 5, 134 to analyze a compendium of “omics” data obtained from adaptive evolution 

experiments. First we show that the data are consistent with pathway usage from the computationally-

predicted optimal growth states. We next show that expression changes during the adaptation process 

relative to wild type further converge to predicted enzyme usage from the optimal growth rate 

predictions (Figure 5.1). Lastly we demonstrate that changes in known regulatory processes acting on 

the metabolic network, but not accounted for in the GEMs, are consistent with the improved-growth 

phenotypes of the adapted strains.  
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Figure 5.1. A variant of Flux Balance Analysis shows consistency with proteomic and 
transcriptomic data. Parsimonious Enzyme Usage FBA (pFBA) is used to label all metabolic genes 
based on simulation results. (A) pFBA classifies each gene based on its ability to contribute to the 
optimal growth rate predictions and flux level. These classes include: (i) Essential genes; (ii) pFBA 
optima, which includes genes that are predicted to be used for optimal growth in silico; (iii) ELE, which 
includes genes that will increase cellular metabolic flux if used; (iv) MLE, which includes genes 
predicted to decrease the growth rate if used; and (v) pFBA no-flux, which includes genes that cannot 
be used in the given growth conditions. (B) The omic data show good coverage of essential genes and 
the pFBA optima, and low coverage of the genes that are predicted to be non-functional. In addition, in 
laboratory evolution experiments, these optimal states are up-regulated, while non-functional genes are 
down-regulated. These results support predicted optimal growth states, and suggest that laboratory 
evolved strains further enhance these optimal growth states. 
 

The proteomic and transcriptomic landscape of evolved E. coli  
Multiple strains of E. coli were subjected to adaptive evolution via serial passaging in three 

different M9 minimal media conditions: lactate, glycerol, and glucose (glucose grown strains had the 

glycolytic gene pgi deleted to perturb the normal flux into glycolysis). For each growth condition, 3-6 

replicates of the adaptive process were performed in parallel until each strain had reached and 

maintained a steady growth rate, which typically took 700-1000 generations (see 217, 246 for details). 

Through adaptive evolution, all strains improved their growth rate and efficiency in converting 

substrate to biomass (yield) within the exponential growth phase (Figure 5.2).   
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Figure 5.2. In adaptive evolution via serial passaging, E. coli evolves to a higher growth rate and 
biomass yield at exponential growth. Growth rates and substrate uptake rates were acquired for each 
strain prior to and following adaptive evolution (as reported previously 217, 249. For growth on (A) 
glycerol, (B) lactate, and for (C) the Δpgi strain grown on glucose, the evolved strains (red) all 
improved their growth rate and biomass yield at exponential growth, compared to the unevolved parent 
strains (blue). 

 

Fifty quantitative proteomic data sets were obtained from the wild-type and evolved strains. 

Within these data sets, 983 proteins were identified with high confidence, of which 731 were identified 

in all strains. Transcriptomic data for strains corresponding to two of the three growth conditions 

(lactate and glycerol) have been previously published 217 and are also analyzed alongside the proteomic 

data in this study using the E. coli GEM as a context for the analysis. 

In the omics datasets for the adaptation process, hundreds of genes and proteins are 

differentially expressed, representing 32-59% of the identified proteins and expressed genes in the data 

sets. The proteomic and transcriptomic data show significant agreement in the direction of differential 

expression for cases in which both the gene and protein significantly changed expression level (see 47 

for details).  

We first analyze the omics data with reference to enzyme usage in the computed optimal states 

from GEMs, then look at the changes that occur during evolution by analyzing the differential 

expression relative to the wild-type cells. Finally, we look at changes that correspond to the action of 

non-metabolic genes represented in the data sets.  

Analysis of omics data in the context of computed optimal growth states 
Both the omics data sets and the computed solutions can be compared in the context of 

network functions. The transcripts and proteins found in the omics data sets can be mapped onto the 
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reconstructed genome-scale network. Computed optimal solutions can also be presented on the network 

map and compared to the omics data. A comparative analysis can then be performed. 

To determine if gene and protein expression support properties of optimal predicted network 

function, we employed a variant of flux balance analysis (FBA), referred to as Parsimonious enzyme 

usage FBA (pFBA) (Figure 5.1.a). As described below, this method employs in silico simulations to 

identify functional properties of metabolic pathway genes under the given growth conditions. We 

applied pFBA to the omics data sets to determine if absolute expression and differential expression 

during adaptation supports the enzyme usage in computed optimal solutions. All reports of absolute 

expression coverage are a combination of WT and evolved strain data, since there are few proteins that 

are missing in the WT strains but identified the evolved strains, and vice versa (fewer than four for any 

single growth condition). To provide additional insight into the conclusions in this study, an alternative 

method, Flux Variability Analysis 252, was also used and yielded supportive results (see 47 for details). 

pFBA (Figure 5.1.a), assumes that under exponential growth, there is a selection for the fastest 

growing strains and for strains that require the lowest overall flux through the metabolic network (a 

proxy for minimizing the total necessary enzyme mass to implement the optimal solution). This 

additional constraint introduces a small improvement over normal FBA. While these assumptions may 

not hold true in all growth conditions for all organisms 87, 253, 254, previous studies in E. coli 97, 240, 241 and 

data presented here support these assumptions under our experimental conditions.  

pFBA finds the subset of genes and proteins that may contribute to the most efficient 

metabolic network topology under the given growth conditions, called here the pFBA optima. The 

genes contributing to pFBA solutions can be classified as follows:  

1) Essential genes: metabolic genes necessary for growth in the given media. 

2) pFBA optima: non-essential genes contributing to the optimal growth rate and minimum gene-

associated flux. 

3) Enzymatically less efficient (ELE): genes requiring more flux through enzymatic steps than 

alternative pathways that meet the same predicted growth rate. 

4) Metabolically less efficient (MLE): genes requiring a growth rate reduction if used. 
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5) pFBA no-flux: genes that are unable to carry flux in the experimental conditions. 

See Figure 5.1.b for average sizes of these classes. 

Do omics data support pFBA optimal growth states? Computed pFBA solutions correspond 

well with the set of identified proteins and expressed genes, as well as gene expression levels. Almost 

all in silico-predicted essential genes are expressed. In addition, there is much higher omics data 

coverage of the genes and proteins in pFBA optima as compared to the less efficient classes (ELE and 

MLE) and the conditionally non-functional pFBA no-flux class (Figures 5.3 and 5.1.b). In the 

transcriptomic data, more than 82% of all genes that can contribute to the pFBA optima are expressed. 

Of the missing genes (mean of 38, representing about 18% of the pFBA optima), about 82% have 

known isozymes or redundant pathways in the pFBA optima that can replace their functions. 

Coverage of proteins in the pFBA optima is less comprehensive than coverage from the 

transcriptomic data (Figure 5.3.b); however, about 40% of the missing proteins in the Essential and 

pFBA optima classes are members of the GO classes “membrane,” “integral to membrane,” or 

“transport.” These classes are significantly depleted from the proteomic, and commonly depleted in 

other proteomic data sets 255. Moreover, more than 59% (>50 proteins) of the missing pFBA optima 

proteins have isozymes in the pFBA optima that could replace their function if these proteins are not 

expressed.  

Neither proteomic nor transcriptomic data alone show expression of all genes or proteins that 

can contribute pFBA optima. Complete coverage, however, is not expected due to model alternate 

optima, inaccurate probes on the arrays, and hard-to-detect proteins. However, when the expressed 

genes and identified proteins are mapped back onto the metabolic network, the union of the proteomic 

and transcriptomic data corresponds to 97.7% of the non-essential active gene-associated reactions in 

the glycerol and lactate optimal solutions (Figure 5.3.c). Unsupported reactions include a few 

transporters (H2O, NH4
+) and reactions that are necessary for cofactor biosynthesis.  
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Figure 5.3. pFBA classes are consistent with omic data. Simulations for each growth condition were 
used to classify each gene according to the efficiency of its associated reaction(s). The coverage of (A) 
expressed genes above a statistical cutoff and (B) identified proteins were determined. More genes and 
proteins in the essential and pFBA optima classes were expressed than genes and proteins in the less 
efficient (ELE and MLE) and conditionally non-functional (pFBA no-flux) pathways. Almost half of 
the missing essential and pFBA optima proteins are membrane associated, hence its lower coverage. (C) 
99% and 98% of the active reactions associated with the essential genes and pFBA optima, respectively, 
are supported by the union of expressed genes and proteins. Gene expression levels are also consistent 
with the pFBA classes, as shown in density plots for growth on (D) glycerol and (E) lactate. (F) 
Pairwise comparisons of classes show the significant ordering of expression levels as Essential > pFBA 
optima > ELE > MLE > pFBA no-flux (one-sided Wilcoxon test) for growth on glycerol (upper 
triangle) and lactate (lower triangle). 

 

   Beyond presence and absence, the expression levels of genes are consistent with the various 

pFBA classes. That is, the expression levels are greatest for the essential genes and lowest for the pFBA 
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no-flux genes (Figure 5.3.d-e), and is significant for almost all pairwise comparisons (Figure 5.3.f). All 

of the above results suggest that the pFBA optima are expressed and likely active in E. coli K12. 

Many metabolic genes and proteins are differentially expressed with adaptation 
There is high coverage of expressed genes and proteins in the optimal computed states. Since 

the efficient use of the metabolic network is presumed to underlie the optimal growth phenotype 

following adaptation, the question arises: Do metabolic genes dominate the differential changes during 

adaptation? Differential expression of proteins and genes in the adaptation process occur in many 

functional classes; however, a large fraction of these differentially expressed proteins and genes are 

associated with metabolic Clusters of Orthologous Groups (COGs) 256 (Figure 5.4). Specific metabolic 

COGs that show the highest enrichment include carbohydrate transport and metabolism for the lactate 

and glycerol evolved strains (p < 0.009) and amino acid and nucleotide metabolism in the pgi deletion 

strains (p < 0.012). 

This high coverage of metabolism supports its important role in the evolved growth phenotype, 

and allows the analysis of the data in the context of the genome-scale metabolic network reconstruction 

189. The dominant contribution of metabolic genes to the changes in the omics data sets is further 

validated when the data are evaluated using singular value decomposition (SVD), which demonstrates 

that metabolic GO classes co-vary and separate evolved and unevolved strains.  

Since some specific metabolic subsystems may change more than others, we mapped the 

differential gene and protein expression to the metabolic network using PathWave 154, a method that 

identifies groups of topologically close reactions that show concerted expression changes. Among the 

different data sets, this analysis shows significant changes in central carbon metabolism, tRNA 

charging, and/or the metabolism of specific amino acids. Changes in such regions of the metabolic 

network play a key role in providing the metabolic precursors for biomass production, and thus may 

contribute to an increased growth rate. However, for greater insight, changes in biomass-coupled 

pathways must be quantitatively associated to the actual growth state of the cell. 
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Figure 5.4. Proteins and genes associated with metabolic processes dominate differential 
expression in evolved strains. Adaptively evolved strains have hundreds of altered gene and protein 
expression levels covering a broad range of COGs. However, the relatively large coverage of genes and 
proteins in COGs associated with metabolism (red brackets) clearly suggests the importance of changes 
in the metabolic network. The most significantly enriched metabolic COG is “carbohydrate metabolism 
and transport”. In addition, the proteomic data suggest that the transcription and translation machinery 
may also play an important role in the physiological changes witnessed in the adaptively evolved 
strains. 

 

Adaptive evolution overcomes dosage limitations of essential genes 
While pathways that produce key biomass precursors are significantly changed, it is not clear 

if necessary growth-coupled essential genes are consistently changed as would be needed for an 

increased growth rate. To address this question, we first used pFBA to identify all genes that are needed 

for growth in silico and compared these with experimental data (e.g., see Figures 5.5.a-b). Since in 

silico growth is dependent on these essential genes, they may be needed in higher abundances for higher 

growth rates. The adaptive evolution strains, with their improved growth rates, are consistent with this 

hypothesis. In the evolved strains, computationally predicted essential genes and proteins are 

significantly up-regulated (Figure 5.5.c) and have fewer down-regulated genes and proteins than 
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expected (Table 5.1). Moreover, down-regulated essential proteins are more abundant in the WT strains 

than up-regulated proteins (p < 2 x 10-8). Thus, the down-regulation may be the result of tuning protein 

expression for over-expressed proteins in WT. This result, with the up-regulation of essential genes and 

proteins, suggests that the computationally predicted essential genes are indeed growth coupled as 

predicted in silico. Moreover this result suggests that these essential genes not only confer cellular 

viability, but they also may act as cellular bottlenecks due to dosage limitations. Expression changes 

during adaptive evolution allow these limitations to be overcome, thereby increasing the growth rate. 

 

Table 5.1. p-values from hypergeometric tests involving the presence of pFBA classes in the up 
and down-regulated genes and proteins 

h0 Glyc Prot Lac Prot Δpgi Prot Glyc MA Lac MA 

Essential genes are not enriched in 
up-regulation 

8.88x10-5 2.17x10-2 2.05x10-7 1.58x10-7 4.52x10-2 

Essential genes are not depleted in 
down-regulation 

4.08x10-5 1.14x10-1 1.76x10-5 8.25x10-7 5.63x10-7 

pFBA optima are not enriched in 
up-regulation 

2.85x10-4 9.88x10-5 4.37x10-8 4.01x10-11 6.96x10-4 

MLE is not depleted in up-
regulation 

1.83x10-2 2.01x10-2 5.62x10-4 6.12x10-6 4.12x10-1 

pFBA no-flux class is not depleted 
in up-regulation 

3.07x10-3 8.70x10-2 8.15x10-4 2.18x10-7 6.28x10-4 

pFBA no-flux class is not 
enriched in down-regulation 

4.63x10-4 2.96x10-1 3.30x10-4 6.98x10-9 6.06x10-7 

MLE = Metabolically Less Efficient, Glyc = glycerol, Lac = lactate, 
MA = microarray, Prot = proteome 
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Figure 5.5. The sub-network providing optimal growth emerges in adaptively evolved strains. (A) 
For each growth condition, pFBA was used to classify all genes and their associated reactions. (B) 
Subsequently, these classifications were compared to differentially expressed genes or proteins for each 
growth condition (a representative portion of the metabolic network with glycerol strain proteomic data 
is shown). (C) A quantitative assessment was done, in which the sum of all down-regulated genes in 
each class (x axis) was plotted against the fold-change sum of all up-regulated genes (y axis), and then 
scaled by the variance of the sum of randomly selected differentially expressed genes. The cloud 
represents the normalized distribution of the summed up and down regulated genes or proteins of 
randomly chosen differentially expressed genes. This analysis shows that for all data sets, genes and 
proteins within the essential set and the pFBA optima demonstrate more up-regulation and much less 
down-regulation than expected from randomly selected differentially expressed metabolic genes and 
proteins. This emergence of the optimal pathways is enhanced by the lack of up-regulation and the 
significant down-regulation within the less efficient ELE and MLE pathways and the conditionally 
inactive pFBA no-flux pathways. ELE = enzymatically less efficient, MLE = metabolically less 
efficient. 
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The emergence of the optimal metabolic states in adaptive evolution 
All evolved strains profiled here show improvements in both growth rate and yield (Figure 

5.2). The up-regulation of essential genes may partially support the increased growth rate; however, it 

doesn’t address the question as to if non-essential gene and protein expression is more consistent with 

the enzyme usage in computed optimal growth states. In addition, the highly interconnected nature of 

metabolic networks may preclude a growth improvement from up-regulated essential genes, if pathways 

that are up and downstream of the essential genes do not change accordingly. To answer these 

questions, we compared the differential gene and protein expression to computational simulations of 

genome-scale optimal growth states (Figure 5.5.a-b). Thus, all up and downstream pathways may be 

considered. 

Using pFBA, we find that in all strains, the pFBA optima are significantly up-regulated in the 

transcriptomic and proteomic data. This up-regulation is significant for both the number of genes (Table 

5.1), and the net fold change (Figure 5.5.c). Further support for the use of the pFBA optima comes from 

the findings that, in-general, the less-efficient MLE genes are not significantly up-regulated (Table 5.1), 

and that they are down-regulated in most data sets (Figure 5.5.c). Among those that are up-regulated, 

few contribute to any coherent functional metabolic pathways. Only one MLE gene is consistently up-

regulated in all datasets and functional in the context of a non-down-regulated pathway. This protein, 

deoxyuridinetriphosphatase (E.C. 3.6.1.23), which dephosphorylates dUTP, is up-regulated in all 

datasets. While this process wastes resources, this enzyme is needed to preclude dUTP from being 

integrated into the genome, and the absence of this enzyme decreases the growth rate in E. coli 257. A 

few other MLE genes were up-regulated in multiple, but not all datasets (see 47). 

The up-regulation of the pFBA optima, and the lack of up-regulation among less efficient 

pathways reveal that the adaptive evolution process leads to the further emergence of pathways that 

help to maximize the predicted growth rate. Thus the differential changes are consistent with the 

computed optimal growth state. 
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Adaptation suppresses conditionally inactive pathways  
Since excess enzyme mass creates a large maintenance demand on cells 258, cells under growth 

selective pressure are expected to modulate expression levels of enzymes as needed for growth 185. 

While we showed an up-regulation of optimal pathways, it is expected that genes and proteins 

associated with non-functional reactions should be down-regulated, thereby saving resources for 

improved growth performance.  

Gene and protein expression changes in the pFBA conditionally nonfunctional class (pFBA 

no-flux) are consistent with this hypothesis. For all experimental conditions, there is a significant down-

regulation of pFBA no-flux genes, except for the lactate strain proteomic data (Table 5.1). Moreover, 

when compared with the non-evolved strains, the mean abundances of expressed pFBA no-flux proteins 

and transcripts are significantly lower in all evolved strains (p << 1 x 10-16 and p = 8.3 x 10-8, 

respectively). Flux variability analysis further supports the suppression of conditionally non-functional 

metabolic reactions. Thus, during the process of adaptive evolution, computationally-predicted 

nonfunctional pathways are suppressed through a concerted down-regulation of genes associated with 

such pathways. 

Only down-regulation is tied to known regulon structure 
The analysis of the omics data shows that strains under growth pressure adjust their 

transcriptional program towards the in silico predicted optimal growth states in metabolism. However, 

the mechanisms controlling these changes are outside the scope of the reconstructed metabolic network, 

and their activities are not predicted. Thus, the question arises: are known transcriptional regulatory 

mechanisms consistent with the observed differential expression changes? 

Across all conditions, the down-regulated transcripts and proteins correspond to several known 

regulons, and each condition has a unique set of differentially expressed regulons. For example, down-

regulated molecular species in the glycerol evolved strains include the flagellar FlhC/FlhD regulon, the 

GatR regulon (transport and catabolism of galactitol), and Hns (chromosome organization). For lactate-

evolved strains, the carbohydrate metabolism regulators Crp and DgsA regulons are enriched in the 

down-regulated genes and proteins, respectively. Among the Δpgi strains, the four most significantly 
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enriched regulons in the down-regulated proteins include Crp, IhfA/IhfB, MetJ, and ArcA. All of these 

are associated with carbon or nitrogen metabolism. Moreover, down-regulated members of these 

regulons account for a higher fraction of the expressed genes and proteins outside of the optimal growth 

solutions. Together, these results suggest that known regulatory programs may be employed in a 

condition-specific manner for the down-regulation of genes and proteins in the adaptation process.  

Conversely, no data set reflects known regulons among the up-regulated transcripts or proteins. 

The only exception is for the glycerol-evolved strain microarrays, in which a few amino acid 

biosynthetic regulons are enriched (ArgR, LysR, MetJ), along with the purine synthesis regulon (PurR), 

and Fis. These results suggest that few known transcriptional regulatory programs are consistently used 

to up-regulate genes and ultimately proteins. Therefore it seems that there are unknown regulatory 

mechanisms at work, potentially due to mutations found in transcriptional regulators in the evolved 

strains 200, 201, 249. Mutations in these regulators have previously led to drastic alterations in gene and 

protein expression 199, 200, 259, 260. Further interrogation of these mutated regulators will aid in associating 

the expression changes to known regulatory pathways. 

Adaptively evolved strains largely eliminate the stringent response 
Changes in transcriptional regulation observed here lead to altered physiological responses 

associated with metabolism, such as the stringent response. All experiments here were performed in 

media without amino acids. Under such conditions, the stringent response increases transcription of 

amino acid biosynthesis genes needed for growth 261, and simultaneously decreases the growth rate; 

however, evolved strains manage to attain a higher growth rate, despite the stringent response. 

To find a rebalancing of genes involved in the stringent response, we compared the microarray 

data from the glycerol and lactate-evolved strains to published data sets that profile the stringent 

response in E. coli K-12 MG1655 261. Out of the 170 differentially expressed stringent response genes, a 

total of 97 genes are also significantly differentially expressed in the evolved strains.  In both evolved 

strain conditions, approximately 90% of the expression changes occur in the opposite direction as the 

stringent response. That is, after adaptation to minimal media, the E. coli strains show expression 

patterns consistent with a decreased stringent response during growth. Only eight genes show changes 
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in the same direction in the evolved strains and the stringent response. Of these, half are amino acid 

biosynthetic genes (ilvM, ilvD, and thrL) or play a secondary role in amino acid biosynthesis (folE).  

Thus, there is a clear suppression of the stringent response in the evolved strains, but alternative 

mechanisms allow the needed up-regulation of amino acid biosynthesis genes normally activated by the 

stringent response. 

Implications of the laboratory evolutions towards metabolic optimality 
Wild-type lab strains of E. coli adapt to new growth conditions when placed under a growth 

rate selective pressure 48, 240-243.  The genetic and physiological characteristics of the adaptation have 

been described 200, 201, 243, 249.  The underlying genotype-phenotype relationship can be detailed using 

systems biology; namely the acquisition and analysis of omics data and the use of genome-scale 

models.  

In this study we obtained a compendium of quantitative proteomic profiles of the evolved 

strains and used a similar set of previously published microarrays 215, 217. The analysis of the data sets, 

using conventional statistical methods and GEM computations, yielded three key results. First, the 

proteomic and transcriptomic data are consistent with enzyme usage in optimal growth state 

computations using GEMs. Second, the essential and non-essential metabolic genes associated with the 

predicted optimal growth states are induced during the adaptive process. This is accompanied by a 

suppression of proteins and transcripts outside of the optimal growth solutions. Third, regulatory 

mechanisms, not accounted for in genome-scale metabolic network models, contribute to the altered 

metabolic states and the improved growth phenotype. Known transcriptional regulatory mechanisms 

contribute to the down-regulation of genes and proteins, and physiologically, there is a suppression of 

the stringent response. These results have three main implications. 

First, in this work we found a high coverage of genes and proteins associated with the 

predicted optimal growth states. This result provides added support for the validity of predicted 

pathway utilization using GEMs and for the assumptions underlying their computation. More 

specifically, FBA pathway flux predictions are computed by relating uptake and secretion rates, given 

the stoichiometry of the metabolic network and a biomass objective function. The biomass function 
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represents the stoichiometric balance of metabolites needed for growth. Thus, FBA allows the 

computation of the growth yield (the amount of biomass produced per mole of substrate), and predicts 

pathways that can be used to obtain this yield. FBA further computes the optimal growth rate, assuming 

the cell will optimize this growth yield, given the measured substrate uptake rate and cellular 

maintenance costs 262 (for discussion on the subtle differences between computed growth yields versus 

growth rates, see 48). 

The physiological relevance of the FBA optimal growth rate assumption has been discussed 87. 

In particular, it has been proposed that two possible mechanisms can lead to improved growth rates: 1) 

the improved efficiency of converting substrate to biomass (consistent with FBA predictions) or 2) the 

speeding up of metabolism by increasing the expression level of any enzymes (efficient or less 

efficient) in order to speed up metabolism. Previous studies have presented evidence supporting both 

scenarios under the adaptive evolution experimental conditions by measuring growth rates, substrate 

uptake rates, and by-product secretion rates 48, 97, 240, 241. The present study provides additional 

experimental support for both an improved efficiency and a speeding up of metabolism in adaptively 

evolved strains by showing the up-regulation of the pathways in the optimal growth rate solutions, and 

not in the less efficient pathways.  The up-regulation of the essential genes allow for a higher growth 

rate since they are more tightly coupled to the in silico predicted growth rate. The up-regulation of the 

pFBA optima allows for improved efficiency in converting substrate to biomass (biomass yield). Thus 

the up-regulation of the essential and non-essential genes in the optimal pathways allows for both the 

“speeding up” of metabolism and increased efficiency, as the measured substrate uptake increases 217, 

249and is metabolized through the up-regulated optimal pathways.  

The second implication of this work is that a few simple mutations may perturb the function of 

the entire network, and that the resulting phenotype can be better understood using GEMs. Previous 

studies have demonstrated that simple mutations in metabolic network enzymes produce a transient 

response that minimizes flux changes 55, 64. However, in this work, each strain studied had ample time 

for more drastic changes in gene and protein expression as a result of the mutations in metabolic 

enzymes and global regulators attained in the adaptive time-course 200, 201, 249. Even though the cellular 
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biochemistry is tightly woven into a large network, the measured expression changes shifted towards 

the computed optimal growth predictions. This finding demonstrates that some physiological 

observations cannot be simply explained with a direct link to a single mutation. However, the genotype-

phenotype link, which usually is complex, may be better identified by analyzing the data in the 

biomolecular network context. 

The third implication of this work is that genome-scale models of other systems such as 

transcriptional regulation, transcription, and translation are needed for a more complete understanding 

of the genotype-phenotype link. This work demonstrated the successful model-based analysis of a large 

fraction of differentially expressed genes and proteins. However, we also witnessed changes beyond the 

scope of the model, such as in the transcription and translation machinery components (Figure 5.4). 

Many of these, such as tRNA charging enzymes, the ribosomal proteins, and subunits of the RNAP, 

were up-regulated in most strains (data not shown). Each of these could allow for faster growth by 

providing increased translation and transcription rates 263, 264. Metabolic models do not directly account 

for these mechanisms. Thus, it is anticipated that genome-scale models of transcription and translation 

265 will be useful in evaluating the functional consequences of changes in these systems. Moreover, 

efforts are also being made to address additional growth rate-associated parameters, such as changes to 

the cell surface to volume ratio and molecular crowding constraints 44, 254.  

Metabolism, transcription, and translation are important for modulating growth rate. However, 

the expression changes for these systems are possibly controlled by alterations in transcriptional 

regulation 200. In the evolved strains, there are mutations in several regulatory proteins, such as RNAP, 

Crp, Hfq, or AtoS 200, 201, 249. Unfortunately, the normal wiring within these regulons is still not 

completely characterized. However, efforts are being made to identify the missing links in the E. coli 

transcriptional regulatory network (TRN) 216. As genome-scale TRN models are completed and linked 

to the comprehensive transcription unit architecture for E. coli 266, greater insight into the scope of the 

regulatory changes in the evolved strains may be determined. 

In conclusion, experimental adaptive evolution is a useful approach to develop an 

understanding of the metabolic genotype-phenotype relationship in bacteria and to aid in the 
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identification of principles underlying evolution. To identify such principles, various types of data are 

being generated. For the strains in this study, these data types include the genome sequences, gene 

expression profiles, proteomic data, fluxomic data, and physiological data. The analysis of these omics 

data types using optimality properties of GEMs enables the elucidation of principles of distal causation 

and the identification of large-scale mechanisms that confer selected optimal phenotypes.  

Methods 
Parsimonious enzyme usage FBA (pFBA): pFBA is a bi-level linear programming 

optimization using the genome-scale constraint-based model of E. coli K-12 189. FBA was used to 

compute the optimal growth rate (using experimentally measured substrate uptake rates 217, 249, followed 

by a minimization of the sum of all gene-associated reaction fluxes while maintaining optimal growth. 

This proxy computes the pFBA optima, representing the set of genes associated with all maximum-

growth, minimum-flux solutions, thereby predicting the most stoichiometrically efficient pathways. The 

idea underlying this method is similar to the “max biomass per unit flux” objective presented previously 

97, but the mathematical implementation is different (see 47). 

Five classes of genes emerge, associated with reactions that 1) are essential for optimal and 

suboptimal growth, 2) are inside the pFBA optima, 3) are enzymatically less efficient (ELE), requiring 

more enzymatic steps than alternative pathways that meet the same cellular need, 4) are metabolically 

less efficient (MLE), requiring a reduction in growth rate if used, or 5) cannot carry a flux in the given 

environmental condition/genotype (pFBA no-flux).  

Here, the pFBA optima were computed for wild-type E. coli under growth in lactate M9-

minimal media, glycerol M9-minimal media, and a Δpgi mutant on glucose M9-minimal media, using 

experimentally-measured substrate uptake rates (see 47). The steps were as follow. First, each gene is 

removed from the model, and FBA was used to test gene essentiality. Second, Flux Variability Analysis 

(FVA) with no biomass constraint was conducted to identify reactions that cannot carry a flux. Third, 

FBA helped identify the optimal growth rate, which was subsequently set as a lower bound for the 

biomass function. Fourth, FVA was conducted again to find all metabolically less-efficient reactions. 

Fifth, flux through all gene-associated reactions was minimized using linear programming, and this flux 
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was set as an upper bound for the summed network flux. Sixth, FVA was conducted on the model, 

holding the maximum predicted growth rate and minimum network flux constant, thereby identifying 

all reactions that are active in alternate optimal solutions 267. Genes were assigned to the five categories 

as follow. All genes necessary for growth in silico were classified as “essential”. Non-essential genes 

associated with reactions that were active when maximizing biomass and minimizing flux were 

classified as “pFBA optima” genes. Genes that were only associated with reactions that could not carry 

a flux were identified as “pFBA no-flux” genes. “ELE” genes were identified as those associated with 

reactions that could carry a flux while optimizing biomass, but not when minimizing flux (genes 

associated with the pFBA optima were filtered out). All remaining genes, which were associated with 

reactions that could carry a flux when not optimizing biomass, were classified at “MLE” genes.  

The sets of pFBA genes and proteins were compared with all non-essential up-regulated 

proteins and mRNAs using the hypergeometric test to determine if there were more up-regulated 

proteins in the pFBA optima than expected by chance. A similar approach was used to find the 

enrichment and depletion of up- and down-regulated species in the essential, non-functional, and less 

efficient pathways; however, all genes were used for these tests. Significant tests are shown in Table 

5.1. In addition, the significance of fold change within up- and down- regulation in the classes was 

tested by summing up all up- and all down-regulated genes within each class and then comparing to 

10000 random sets of the same number of differentially expressed metabolic genes. 

Regulon enrichment: Regulon structure was determined from RegulonDB 6.0 268. 

Significance of enrichment of regulons in up and down-regulated genes/proteins was determined using 

the hypergeometric test with a false discovery rate of 0.1. The results, however, were robust with FDR 

cutoff choice. 

Gene expression profiling: Microarrays corresponding to the same glycerol and lactate-

evolved strains in this study have been published previously as described in the corresponding studies 

215, 217. The arrays were re-normalized for this study using gcRMA. Genes which did not have a gene 

expression level significantly above a set of negative controls on the arrays (FDR = 0.05) were removed 

from the data set and were not considered in further analyses. 
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Cell preparation: E. coli K-12 MG1655 strains used for this study were prepared previously 

217, 246. Briefly, for the Δpgi strains, pgi was removed as described in 269, and transferred to M9 glucose 

minimal media. Wild-type strains were also transferred to glycerol or lactate M9 minimal media. 

Adaptive evolution was conducted by growing the strains in batch culture until they reached mid-

exponential growth. At this point the culture was diluted by serial passage into fresh media. The 

quantity of passaged cells was determined based on the growth rate from the previous day. Multiple 

replicates for each strain were evolved in parallel for about 700, 800, and 1000 generations for the 

glycerol, pgi deletion, and lactate evolved strains, respectively. Despite the different number of 

generations, all strains were evolved until they converged to a stable maximum growth rate which was 

maintained for at least 5 days 217, 246. Growth rates and substrate uptake rates were determined and 

reported previously 217, 246. Instantaneous steady-state biomass yields for the exponential growth phase 

(see 47) were determined as similarly shown previously 72 by dividing the mid-exponential growth rate 

by the substrate uptake rate at that time: 

SUR
grY EB =,

, 

where gr is the growth rate at mid-exponential phase (1/h) and SUR is the substrate uptake rate (g 

substrate / gDW biomass / h). This figure provides a measure of how efficiently the strains can convert 

substrate into biomass while in exponential growth. 

For subsequent experiments, all strains were streaked out on solid media, and a single colony 

was then isolated, grown up, and frozen down. Glycerol stocks of each strain at day 1 and the evolution 

endpoint were placed in fresh media and grown up to an OD of 0.500 at 600nm. Cells were then 

pelleted, washed in PBS, and frozen prior to proteomic profiling. 

Cell Lysis:  Each cell pellet (~50 µL in size as measured in a microfuge tube) was resuspended 

in 1.5 mL of nanopure water. Lysis was achieved using pressure cycling technology with the 

Barocycler™ (Pressure BioSciences, West Bridgewater, MA) for 10 cycles going between ambient 

pressure for 20 sec and 2.4 x 105 kPa for 20 seconds.  The lysate was collected and placed immediately 

on ice. Each lysate was concentrated down to about 500 µL using a speed vac (ThermoSavant, San 
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Jose, CA).  The protein concentration of each cell lysate was measured using a Coomassie Plus protein 

assay (Pierce, Rockford, IL) using a bovine serum albumin standard.   

Protein Reduction, Trypsin Digestion and Alkylation:  Each lysate was dried down and 150 

µL of 8M guanidine HCL, and 3 µL of Bond Breaker TCEP solution (Pierce, Rockford IL) was added. 

The samples were vortexed and incubated at 60 °C for 30 min. Iodoacetamide was added to a 

concentration of 20 mM and then each sample was incubated at room temperature for 30 min. The 

samples were diluted 10 fold with freshly prepared 50 mM ammonium bicarbonate solution, pH 7.8 and 

CaCl2 was added to a final concentration of 1 mM. Finally, trypsin was added in a 1:50 (wt/wt) ratio of 

trypsin to sample protein, and the samples were digested at 37 °C for 4 hrs.  

Peptide Concentration and Cleanup: Each digest was desalted using Supelco (St. Louis, 

MO) Supelclean C-18 tubes as described elsewhere 270.  Each sample was concentrated using vacuum 

centrifugation to adjust the concentration to be 1 mg/mL. 

SCX Fractionation of Peptides and Data Preprocessing:  300 µg of a pooled sample of all 

glycerol adaptation samples, lactate adaptation samples, and Δpgi study samples were fractionated 

separately into 25 SCX LC fractions for analysis using a LTQ iontrap mass spectrometer to obtain 

tandem MS (i.e. MS/MS) data for peptides as described previously 271.  The MS/MS spectra were 

analyzed using the peptide identification software SEQUEST 272 in conjunction with the annotated 

protein translations from the genome sequence of E. coli.  44,610 peptide identifications that met the 

criteria of:  1) a minimum XCorr value of 2;  2) a minimum discriminate score of 0.6 273;  and 3) a 

Peptide Prophet Probability of at least 0.99 were used to build an Accurate Mass and Time (AMT) 

database with peptide sequences and normalized elution times. 

Accurate Mass and Time Tag Analysis of Peptides:  LC-MS spectra were analyzed using 

the accurate mass and elution time (AMT) tag approach 274. A detailed description of this method is 

provided in the Supplementary Notes. The AMT tag approach, in the end, provides peptide 

identifications along with their abundances for all the data sets.  The data for each peptide identified in 

each sample were represented by the median value obtained across the 3 LC-MS runs. These data were 

loaded into the software tool DAnTE 275 for further analysis.  Peptide abundances were transformed to 
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log base 2 and an outlier check was applied by observing the Pearson correlations between data sets.  

Any data sets with weak correlations were excluded from further analysis.  A linear regression based 

normalization method available in DAnTE was then applied within each replicate category. The central 

tendency adjusted peptide abundances were used to infer the corresponding protein abundances via the 

‘Rrollup’ algorithm in DAnTE 275.  During the Rrollup step, the Grubbs outlier test was applied with a 

p-value cutoff of 0.05 to further remove any outlying peptides.  Protein expression values were 

computed with all data sets combined, and for individual growth conditions (see 47) for differential 

expression analysis.  

Computation of differential expression: Differential expression was computed for all 

identified proteins and all transcripts with a significantly higher expression than negative controls on 

the microarrays (FDR = 0.05). The grand mean was subtracted from the data sets of interest, and 

differentially expressed genes and proteins were determined with a two-sample t-test. False discovery 

rate cutoffs were determined as discussed in 276. 

 
 

 

Chapter 5, in part, is a reprint of the material as it appears in Lewis, N.E., Hixson, K.K., 

Conrad, T.M., Lerman, J.A., Charusanti, P., Polpitiya, A.D., Adkins, J.N., Schramm, G., Purvine, S.O., 

Lopez-Ferrer, D., Weitz, K.K., Eils, R., König, R., Smith, R.D., Palsson, B.Ø. Omic data from evolved 

E. coli are consistent with computed optimal growth from genome-scale models. Mol. Syst. Biol., 6:390 

(2010). I was the primary author, while the co-authors provided support in the research that served as 

the basis for this study. 
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Chapter 6: Evolved E. coli learns to optimize metabolism on a non-
native substrate 

A common assertion in evolution is that an organism evolves to improve its fitness. For 

example, studies have shown that the metabolic capabilities of microbes can evolve and that this 

plasticity likely facilitates the rapid adaptation to new and dynamic environments. Examples have 

surfaced showing how metabolism evolves both at the level of individual proteins and their 

organization in the metabolic network. At the level of a protein, new metabolic functions can be 

acquired as promiscuous enzyme activities are amplified 206, 235 or enhanced through mutation 225. The 

recruitment of promiscuous activities for new environmental conditions is of particular interest, since 

enzyme promiscuity has allowed bacterial strains to metabolize synthetic compounds 277-280, and even 

grow on man-made antibiotics as the sole carbon source 281, 282. In addition to these enzyme-level 

adaptations, the organization of enzymes in metabolism can evolve. Specific metabolic capacities 

encoded in the metabolic network can be lost through silencing and genome reduction if not needed 131 

or they can be acquired through horizontal transfer 283. Furthermore, adaptive laboratory evolution 

studies have shown that when bacteria is subjected to a growth-rate selective pressure, they can tune 

gene and protein expression to levels that are more consistent with model-predicted optimal metabolic 

efficiency phenotypes 47, 48, 185, 240.  

Emergent metabolic functions from short-term laboratory evolution studies have been 

successfully associated with causal mutations on specific enzymes 198, 225, 226, 238, but have not addressed 
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how the cell adapts to the downstream requirements of metabolizing the new substrates. After acquiring 

the ability to metabolize a new nutrient, can microbes also rapidly adapt the expression of enzymes 

throughout metabolism to optimally metabolize a new, non-native substrate? Also, if an emergent 

metabolic function is associated with specific improvements throughout the metabolic network, what 

are the mechanisms that underlie this adaptation? 

To address these questions, we evolved E. coli to grow on a substrate upon which the wild-

type strain cannot grow 238, 284. Through two different evolutionary approaches, over the course of 

~1400-1600 generations, E. coli learned to grow on minimal media with L-1,2-propandiol (L-1,2-pdo) 

as the sole carbon source. Expression profiles and proteomic data were obtained for these strains, and 

causal mutations were assessed. Through this study we show the following. Reproducible mutations are 

identified in all evolved strains, and these enhance L-1,2-pdo catabolism. Several lines of evidence 

affirm that the pathway for L-fucose metabolism is retooled for the first few steps of L-1,2-pdo 

metabolism. Moreover, changes in the transcriptome and proteome suggest that E. coli obtains the 

specific expression patterns throughout metabolism to efficiently metabolize L-1,2-pdo. Lastly, cAMP-

receptor protein (CRP) is harnessed to help provide the expression state needed for optimal metabolism 

of L-1,2-pdo. Thus, as E. coli gains this new metabolic functionality, it can rapidly adapt both at the 

level of individual enzymes and the level of metabolic network expression, by modifying enzyme usage 

and transcription to optimize the utilization of the new substrate. 

E. coli can learn to grow on L-1,2-propandiol 
While E. coli K12 MG1655 is unable to metabolize L-1,2-propandiol, only a few genetic 

changes are required to grow with L-1,2-pdo as its sole carbon source 238, 285. This adaptation was 

carried out using two different approaches. For the first approach, E. coli was grown on glycerol 

minimal media at mid-exponential phase for 44 days (~700 generations) 217 (strain GC). Subsequently, 

over 11 days (~250 generations) glycerol was gradually replaced with 1,2-propandiol until the glycerol 

had been completely replaced 238. As previously reported, growth briefly stopped and then suddenly 

resumed after a couple days. Cultures were then maintained at mid-exponential growth on L-1,2-pdo for 
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46 days (~450 generations). At this point the cultures had reached and maintained a steady growth rate, 

which did not significantly increase for several days (strains PA and PB). 

For the second approach, wild type E. coli was maintained at mid-exponential growth, initially 

in glycerol minimal media, supplemented with the mutagen N-Methyl-N′-nitro-N-nitrosoguanidine 

(NTG). Over the first 12 days of the evolution (~125 generations), glycerol was gradually removed as 

L-1,2-pdo was titrated in. Similar to the previous approach, growth briefly stopped, but resumed after a 

couple days. Exponential growth was maintained at this point for 105 days (~1500-1600 generations) 284 

(strains PM1 and PM2). A strain was also grown exponentially in glycerol with mutagen for 59 days 

(1080 generations) for control purposes (GM1). 

For both of these evolutionary approaches, strains were expression-profiled on glycerol M9 

media prior to the complete removal of glycerol in the evolution (Day 45 and Day 8 for the non-

mutagenized and the mutagenized evolutions, respectively). In like manner, at the end of the evolution 

experiment, strains were expression profiled on both L-1,2-pdo minimal media and glycerol minimal 

media. Proteomic data were also acquired at the same time points for one of the non-mutagenized 

evolutions. As the result of previous whole-genome resequencing results from a few L-1,2-pdo evolved 

strains 238, 284, a few genes were subjected to Sanger sequencing in all strains.  

 

Figure 6.1. E. coli can be evolved to grow on a new substrate.  E. coli was evolved to grow on L-1,2-
propanediol (L-1,2-pdo) with two approaches. (a) Evolutions began on glycerol M9 minimal media, 
since L-1,2-pdo is structurally similar to glycerol. E. coli was maintained at exponential growth by 
passaging cells into fresh media each day. The cells evolved by (b) adapting to grow optimally on 
glycerol and then slowly replacing glycerol with L-1,2-pdo or (c) adding mutagen and rapidly replacing 
the glycerol with L-1,2-pdo. Strains were expression profiled before complete replacement of glycerol 
with L-1,2-pdo and at the end of the evolution experiment. In addition, the strains were further 
characterized through targeted resequencing, proteomic analysis, and phenotypic assays. (d) IDs by 
which the strains will be referenced throughout the text. 
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L-1,2-pdo is metabolized by reversing the anaerobic branch of L-fucose metabolism 
The first laboratory evolution of an L-1,2-pdo metabolizing strain of E. coli K-12 was found to 

require the presence of a previously uncharacterized oxidoreductase that catalyzes the oxidation of L-

1,2-pdo to L-lactaldehyde 285. This enzyme was therefore named L-1,2-propanediol oxidoreductase 

(POR), encoded by the fucO gene. Subsequent studies found that in WT E. coli, POR participates in the 

anaerobic fermentation of L-fucose through an L-lactaldehyde intermediate to form L-1,2-pdo, which is 

secreted as a waste product (Figure 6.2.a). However, when L-fucose is metabolized aerobically, 1,2-pdo 

is not synthesized, since the Fe2+ ion is oxidized under aerobic conditions to avoid the wasteful 

secretion of L-1,2-pdo 286. Instead L-lactaldehyde is oxidized to form L-lactate  287, which subsequently 

enters central metabolism (Figure 6.2.a). Thus, it has been suggested that as E. coli evolves to grow on 

this new substrate, existing enzymes are employed. However, the enzymes are retooled and combined 

to form a pathway for the new substrate. That is, the flux through POR is reversed and the anaerobic 

POR enzyme is used in aerobic metabolism. 

While the pathway has been suggested previously and seems intuitive, it has only been 

indirectly validated and no tests have demonstrated that the network can recycle all of the cofactors 

required for its metabolism. Therefore, here we provide several additional lines of experimental 

evidence and systems-level support that this pathway is likely used for the evolved metabolic capability 

of L-1,2-pdo.  

Mutations to the FucAO operon allow the metabolism of L-1,2-pdo 
If a simple reversal of flux is needed to metabolize L-1,2-pdo, why cannot wildtype E. coli 

metabolize this substrate? Two independent studies reported that evolved L-1,2-pdo catabolizing strains 

required a constitutive aerobic expression of POR, and found that mutations occurred that enhanced 

POR’s stability and kinetic properties with respect to aerobic L-1,2-pdo oxidation 238, 286. Interestingly, 

similar mutations were found on all L-1,2-pdo-evolved strains presented here.   

Constitutive expression of fucO was previously seen when an IS5 insertion element appeared 

in the fucAO promoter 238, 288. Consistent with this finding, all of the end point strains reported here 

contain an IS5 element in the fucAO promoter. Interestingly, all 15 end-point clones tested from the 
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evolutions in this study had the IS5 element inserted about 210 nucleotides upstream of the fucAO 

transcription start site. 

Mutations associated with enhanced catalytic properties and protein stability were also found 

in all tested clones. Previously, a mutation in POR (L8M) in the PA strain was identified that enhanced 

the Vmax by 10 fold with respect to reversing the native anaerobic reaction and encouraging the 

oxidation of L-1,2-pdo 238. In addition, I7L and L8V mutations have been shown to reduce the 

occurrence of metal-catalyzed oxidation of the Fe2+ ions in POR, thereby improving its activity in 

aerobic conditions 288. These substitutions reside in an 11 residue group that contributes to the POR 

dimerization interface 289 and is essential for POR function. Interestingly, all evolved strains contained 

mutations within this essential 11 residue stretch (I7L for the PB strain and R5L for PM1 and PM2).  

Proposed uptake pathway is supported by gene and protein expression 
While mutations clearly target the first enzyme of the proposed pathway, the question remains 

as to if the remaining steps of the pathway are used in the metabolism of L-1,2-pdo. qPCR results 

previously showed that aldA and lldD are up-regulated in the PA evolved strain 238. To see if this occurs 

in the other end-point strains, we expression profiled all strains 1) on glycerol before they were adapted 

to L-1,2-pdo, 2) on L-1,2-pdo after the adaptation, and 3) after returning the end-point strains to 

glycerol (Figure 6.1). To differentiate between evolutionarily-important expression changes and those 

specific to NTG treatment, the GM1 strain (evolved with NTG on glycerol) was expression profiled as a 

control.  

All L-1,2-pdo-evolved strains demonstrated significant up-regulation of fucO, aldA, and lldD 

when growing on L-1,2-pdo (Figure 6.2.b). The expression of aldA and lldD subsequently decreased 

when the strains were returned to glycerol minimal media. Similar gene expression levels were not seen 

in the glycerol-evolved GC and GM1 strains. The GC and PA strains were further assayed by 

quantitative proteomics. In comparison to the pre-L-1,2-pdo evolution GC strain, all three enzymes 

were strongly up-regulated in the L-1,2-pdo evolved PA strain while growing on L-1,2-pdo (Figure 

6.2.c), and the constitutively-expressed POR was still highly expressed after being returned to glycerol-
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minimal media. Thus, gene and protein expression of the L-1,2-pdo evolved strains support the 

hypothesis that this pathway is used in L-1,2-pdo metabolism. 

The proposed uptake pathway can maintain flux 
The pathway detailed here seems simple and transcriptomic and proteomic data provide 

experimental support for it, but two questions remain with respect to how this pathway fits in the 

context of the entire metabolic network. First, this proposed pathway requires several cofactors that 

must be recycled. Can the cell balance the usage of all of these cofactors? Second, are there alternative 

pathways that can be employed? To investigate these questions, flux through all metabolic pathways 

was simulated for growth on L-1,2-pdo, using a genome-scale model of E. coli metabolism 189. For 

these simulations, Markov chain Monte Carlo sampling 35 was used to look at all possible flux 

distributions that the cells could support at steady state, while maintaining 95% of the optimal growth 

rate on L-1,2-pdo minimal media. These simulations provided strong support for the usage of the 

proposed pathway. In silico, POR converts L-1,2-pdo to L-lactaldehyde, which is subsequently oxidized 

by lactaldehyde dehydrogenase (Figure 6.2.d). No known alternative pathways can catalyze this. L-

lactate is subsequently oxidized primarily using quinone as a cofactor, and to a lesser degree 

menaquinone. Thus, as POR flux is reversed from its normal role in L-fucose fermentation, the rest of 

the proposed pathway can maintain flux and the metabolic network is able to adequately recycle all of 

the cofactors. Moreover, unless unknown enzymes are participating, this pathway is responsible for 

metabolizing L-1,2-pdo. 

Gene deletions affirm the uptake pathway 
Model simulations suggest that no known alternative pathways exist that metabolize L-1,2-

pdo. However, can any promiscuous activities or unknown enzymes account for the metabolism of L-

1,2-pdo? To test this, each gene in the proposed pathway was deleted from the PA strain. The growth 

phenotypes of these deletion strains were compared to flux balance analysis (FBA) predicted growth 

phenotypes, which predict the use of this pathway. Both the ΔfucO and ΔaldA mutants were unable to 

grow in silico or in vivo, suggesting that no other enzymes are contributing to the catalysis of these or 
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supporting reactions (Figure 6.2.e). On the other hand, the ΔlldD mutants were able to grow. However, 

growth was lost with the subsequent deletion of the ykgEFG operon, an operon showing homology to a 

recently-discovered operon with L-lactate dehydrogenase activity in Shewanella oneidensis 290. While 

the ykgEFG operon seems to provide lactate dehydrogenase activity to rescue the ΔlldD mutants, it 

probably does not provide most of the lactate dehydrogenase activity in the evolved strains, since the 

genes show lower expression in all of the evolved strains (data not shown), and little or no up-

regulation through the laboratory evolution. Thus, these gene deletion mutants clearly demonstrate that 

fucO, aldA and lldD constitute the pathway that connects L-1,2-pdo metabolism to central metabolism. 

 

Figure 6.2. The pathway used to metabolize L-1,2-propanediol. (a) In wild type E. coli K12, L-
lactaldehyde, an intermediate in L-fucose metabolism, enters central metabolism under aerobic 
conditions or is converted to L-1,2-pdo and secreted as a byproduct under anaerobic conditions. The 
evolved E. coli is able to reverse the anaerobic process and metabolize L-1,2-pdo under aerobic 
conditions. This is supported by several lines of evidence. (b) fucO mRNA is highly expressed in all 
strains that have been adapted on L-1,2-pdo, but is not expressed in strains with no such adaptation. The 
remaining genes in the pathway show slightly higher expression when evolved strains are grown on L-
1,2-pdo (bars with yellow underneath). (c) Quantitative proteomic data shows a significant increase in 
the abundance of all enzymes in the pathway when the PA evolved strain is grown on L-1,2-pdo. (d) In 
silico flux through the pathway is simulated using MCMC sampling, and kernel density plots 
demonstrate that all feasible flux solutions use this pathway and no known alternative pathways exist 
that carry L-1,2-pdo to central metabolism. (e) This is further supported by in vivo and in silico gene 
deletion phenotypes. 



126 
 

 
 

Evolution enhances gene expression in many pathways to support growth on L-1,2-pdo 
Each substrate an organism metabolizes requires a unique combination of reactions for its 

efficient metabolism. Even the nearest consumable substrates to L-1,2-pdo (i.e., L-fucose and L-lactate) 

require significantly different flux through many metabolic pathways, due in part to differences in redox 

balance and products from the unique reaction usage. Can E. coli quickly adapt to these substrate-

specific requirements throughout the metabolic network when it encounters a new substrate, or does it 

only induce the immediate pathway needed to infuse the new substrate into central metabolism? (Figure 

6.3.a) 

To address this question, the gene expression data were compared with model simulations that 

predict which enzymatic reactions and pathways are needed for optimal L-1,2-pdo metabolism (Figure 

6.3.b). This comparison was done as follows, using a method called Gene Inactivity Moderated by 

Metabolism and Expression (GIMME) 110. GIMME first finds all reactions associated with highly 

expressed genes in the given growth condition (Figure 6.3.b.i). The metabolic network model is then 

used to identify the minimal reaction set with low gene expression that must be added to allow the cell 

to grow as witnessed experimentally (Figure 6.3.b.ii). Through this process, a score is assigned, called 

the normalized consistency score (NCS). The NCS is a quantitative measure of how fit the expression 

data are for achieving the measured phenotype (e.g., growth on L-1,2-pdo minimal media), given the 

predicted metabolic network requirements.  

GIMME was used to compute the consistency of each dataset (before and after evolution) with 

the pathway requirements to maintain at least 90% of the optimal growth rate on different media 

conditions. If the cultures improve gene expression for a specific growth condition, the NCS for that 

condition should increase. To test if expression improved for growth on L-1,2-pdo, we compared the 

parent strains growing on glycerol (day 45 and day 8 for the evolved and NTG-evolved strains, 

respectively) to the L-1,2-pdo-evolved strains after being returned to glycerol. This was done because 

arrays from strains on L-1,2-pdo could not be reliably obtained for early L-1,2-pdo-evolved strains (i.e., 

the first few days following the replacement of glycerol with L-1,2-pdo in the media). Across gene 

expression data sets for all L-1,2-pdo-evolved strains, the NCS improved for optimal growth on L-1,2-
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pdo, while there was no significant improvement for glycerol metabolism (Figure 6.3.c). Moreover, the 

improvement in NCS for L-1,2-pdo metabolism was significantly greater than glycerol (p = 2.2 x 10-7; 

one-sided Wilcoxon rank-sum test). This improved NSC resulted in part by improvements in specific 

pathways in amino acid metabolism, folate metabolism, and central metabolism (Figure 6.3.d). The 

improvements to amino acid metabolism may result from a previously-reported relaxation of the 

stringent response seen in laboratory-evolved E. coli 47, 199. However, since the NCS is significantly 

higher for L-1,2-pdo and many other pathways are improved, it seems that the L-1,2-pdo evolution 

enhances a diverse range of metabolic pathways necessary specifically for L-1,2-pdo metabolism 

throughput the metabolic network. 
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Figure 6.3. Evolution specifically enhances L-1,2-pdo metabolism throughout the metabolic 
network. The metabolism of each carbon substrate usually requires a unique balance of many different 
metabolic pathways. (a) Thus, as E. coli evolves to grow on L-1,2-pdo, it not only induces the 
immediate pathway that sends the new substrate into central metabolism, but it further adapts the 
expression of more distal metabolic pathways to improve metabolic efficiency for the new substrate. (b) 
This is assessed using the GIMME method, which (i) identifies all metabolic pathways with high gene 
expression values and then (ii) finds to minimal set of low-expression reactions that must be added to 
obtain the measured phenotype. Model flux and gene expression levels are used to assign a quantitative 
score of how well the data fit the measured phenotype (e.g., growth on L-1,2-pdo), called the 
normalized consistency score (NCS). (c) Through the different evolutions, the NCS improves for 
growth on L-1,2-pdo, with significantly less improvement for the similar substrates glycerol, L-fucose, 
and L-lactate. Mean NCS improvement values from jackknife resampling results are plotted here, with 
error bars representing ±1 S.D. of NCS for all strains. (d) For each evolution endpoint, improvements in 
the NCS for L-1,2-pdo growth can be attributed to several subsystems throughout the metabolic 
network, including amino acid metabolic pathways, and a significant improvement in TCA cycle 
fitness.  
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Evolved strains show L-1,2-pdo-specific expression regulation 
The improved NCS for L-1,2-pdo metabolism suggests that E. coli shapes its gene expression 

throughout the metabolic network to meet the unique requirements of L-1,2-pdo. Moreover, when 

GIMME is used to compare the expression data to the metabolic requirement of the two nearest 

consumable metabolites, L-lactate and L-fucose, these substrates also yield lower NCS improvements 

than seen for L-1,2-pdo (p = 0.018 and p = 0.047, respectively; one-sided Wilcoxon rank-sum test; 

Figure 6.3.c). Thus, as E. coli adapts to this new substrate, its gene expression program migrates toward 

the expression state needed specifically for efficient L-1,2-pdo metabolism. However, an improvement 

in the NCS only represents a general metric for an improvement in gene expression for growth on L-

1,2-pdo. Does this coarse-grained metric correspond to tangible improvements in the expression of 

specific genes needed for L-1,2-pdo metabolism?  

To address this question, a different approach was employed to predict which specific enzymes 

were needed in particularly higher or lower quantities to grow specifically on L-1,2-pdo. While this 

approach has been described in detail previously 42, 78, 86, we briefly review it here. In this approach, all 

possible steady-state flux distributions are sampled using Markov chain Monte Carlo sampling 35. This 

provides a distribution of feasible reaction flux for each reaction. When flux is simulated under two 

different conditions, the distributions of feasible flux values can be compared. If, for a given reaction, 

the flux magnitude significantly changes, its associated gene and protein expression usually changes 

accordingly. Using this approach, we predicted which metabolic genes and proteins are needed in 

increased or decreased quantities when the L-1,2-pdo-evolved strains are transferred to glycerol 

minimal media (Figure 6.4.a). When these predictions are compared with experimentally-measured 

transcriptomic and proteomic data (Figures 6.4.b-d), most differentially-expressed genes and proteins 

change as predicted in silico to support near-optimal metabolism on the respective substrates. Thus, the 

evolved strain has adapted its transcriptional program to more efficiently metabolize the new substrate.   
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Figure 6.4. Expression is shaped to support model-predicted expression of specific genes and 
proteins for L-1,2-pdo metabolism. (a) By comparing randomly sampled flux loads for each reaction 
on glycerol and L-1,2-pdo minimal media, specific genes and proteins are identified that are required 
for efficient growth on either of the growth conditions. Enzymes that require significantly higher flux 
on glycerol or L-1,2-pdo are often consistent with differential (b) gene or (c) protein expression, as 
shown here for glycolysis and the TCA cycle for the PA strain. (d) All L-1,2-pdo-evolved strains show 
higher (or lower) gene expression for specific enzymes that are predicted to require a higher (or lower) 
flux load on L-1,2-pdo. Few genes deviate from this trend, and far fewer deviate than expected from 
permuted data.   
 

Gene expression enhancements for L-1,2-pdo metabolism are facilitated by CRP 
The transcriptomic and proteomic data show that E. coli gene expression evolves to meet the 

requirements for model-predicted optimal growth. At the same time, extant transcriptional programs are 

retained, since the evolved strains can mostly return to the glycerol growth expression state. These lines 

of evidence both suggest that as the cells evolve to grow on L-1,2-pdo, they are able to harness a 

preexisting transcriptional regulation program to help optimize the metabolic network for this new 
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growth state. To identify such candidate transcription factors, known regulons were systematically 

screened against the expression profiles to identify regulons that were most consistent with the 

differential expression patterns seen when the L-1,2-pdo-evolved strains were returned to glycerol 

minimal media (Figure 6.5.a). Specifically, activator/repressor activities from all 165 regulons from 

RegulonDB v6.0 268 were compared to statistically-significant up and down regulation in the 

transcriptomic data.  For each evolution endpoint, gene expression was consistent with the activity of a 

few regulons. However, only CRP was significant for all L-1,2-pdo-evolved strains, but not activated in 

the control mutagenized glycerol-evolved strain. Thus, to enhance growth on L-1,2-pdo, the CRP 

regulon is activated. 

CRP is activated when intracellular cAMP levels increase. Consistent with this concept, we 

found that cAMP levels decreased when the PA strain was transferred back to glycerol minimal media 

(Figure 6.5.b).  It is anticipated that the increased cAMP level leads to the binding of cAMP to CRP, 

and then cAMP-CRP activates the genes needed for growth on L-1,2-pdo. However, cAMP-CRP 

activates several additional operons needed for the metabolism of other sub-optimal carbon substrates. 

Therefore, a number of unnecessary genes are up-regulated in the L-1,2-pdo evolved strains (e.g., genes 

for propionate metabolism).  

The mutagenized strains show a weaker activation of the CRP regulon(Figure 6.5.c). 

Interestingly, CRP-regulated genes that are regulated in the non-mutagenized strains, but not in the 

mutagenized strains include genes that are predicted to not be necessary for growth on L-1,2-pdo and 

essential genes that are normally repressed by CRP. In addition, these genes are only known to be 

regulated by CRP, according to RegulonDB v6.0. On the other hand, genes that continue to be regulated 

by CRP are all regulated by other transcription factors. It is possible that these additional transcription 

factors could be still regulating these genes, even after CRP activity is relaxed.  

The question remains as to why CRP is less active in the mutagenized strains. CRP gene 

expression does not vary significantly between the various strains before and after adaptation. However, 

both mutagenized strains acquired a G774S mutation in the regulatory region of adenylate cyclase. 

Current studies are now underway to see how this mutation affects the synthesis of cAMP, and 
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therefore CRP activity. Preliminary analysis suggests that this mutation may decrease cAMP levels, 

thereby suppressing CRP’s regulatory role. Thus, if the final experiments confirm this, it will seem that 

the mutagenized strains acquired an adaptive mutation that is able to further enhance expression in a 

manner that is specific to the metabolism of L-1,2-pdo. 

 

Figure 6.5. A systematic screen of regulon activity in the transcriptomes of evolved strains 
identifies CRP as an important regulator in aiding the evolution of E. coli to metabolize L-1,2-
pdo. Activator/repressor knowledge for each transcription regulator was quantitatively compared to the 
differential gene expression when L-1,2-pdo-evolved strains were returned to glycerol. Differential 
gene expression over the course of evolution on mutagen and glycerol (GM1) was used as a control to 
account for the influence of mutagen. (b) The cAMP levels were measured for the PA and GC strains, 
and from this it is clear that cAMP levels increase when PA is growing on L-1,2-pdo. (c) Differential 
gene expression was compared with all genes that are reported to be regulated by CRP. Genes with 
higher (or lower) expression on L-1,2-pdo and known to be activated (or repressed) by CRP are 
“consistent” with CRP being active on L-1,2-pdo and shown in blue. Genes that are not significantly 
differentially expressed are white. It seems that CRP is activated in all conditions, though the activation 
is much lower for the mutagenized strains. Most genes that are still “consistent” with CRP activity in 
the mutagenized strains are known to be regulated by other transcription factors. 
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Experimentally-elucidated mechanisms of distal causation  
A common assertion in evolution is that an organism evolves to improve its fitness, although it 

is often not immediately clear what mechanisms drive optimization and what the evolutionary optimal 

phenotype might be. However, genome-scale metabolic network models can connect the nutritional 

environment with optimal growth fitness by accounting for all of the known biochemical reactions that 

occur in the cell and linking these together to simulate cell growth 10. These models thereby provide a 

mechanistic link between the metabolic genotype and the phenotype of a cell, given knowledge of a 

cell’s environment. Thus, the use of such a model in this study provided insight into how a new 

environment influences the evolution of a new metabolic capacity. The growth rate selective pressure in 

the ALE experiments first enables the emergence of the ability to grow solely on a new carbon substrate 

and subsequently guides the metabolism of this new substrate toward a state of enhanced metabolic 

efficiency. These results have fundamental implications with respect to the role of optimality in the 

evolution of enzymes and the biomolecular networks in which they reside.   

It has been proposed that through evolution, the introduction of a new environmental condition 

may induce the emergence of novel physiological metabolic functions through amplification and 

mutation of existing proteins 222, 224. Specifically, if a fitness advantage is provided, an enzyme may be 

amplified when it contains a fold exhibiting a weak promiscuous catalytic activity for the new nutrient 

291. Several recent studies support this hypothesis. For example, several auxotrophic strains of E. coli 

were rescued when semi-random protein sequences (designed to form four helix bundles) were 

overexpressed 236. Similarly, several native enzymes can be overexpressed in E. coli to rescue a mutant 

lacking 4-phosphoerythronate dehydrogenase 206 or transaldolase 292, and another study found that 

~20% of 104 E. coli auxotrophs could be rescued by overexpressing unrelated E. coli proteins 293. 

Furthermore, when any one of 61 native proteins are overexpressed in E. coli, resistance to a number of 

toxins and antibiotics is conferred 235. Here we found that a mutation in the promoter region of fucAO, 

leads to the constitutive expression of the POR protein, which can break down L-1,2-pdo. 

Models of enzyme evolution also suggest that the specificity of these amplified promiscuous 

activities is enhanced through mutation and selection. It has been proposed that mutations will 
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randomly occur, and non-deleterious mutations can be retained. In particular, mutations providing a 

fitness advantage, without significantly destabilizing the native function, will be fixed in the population. 

The feasibility of this process has been demonstrated extensively using directed evolution approaches 

228, 294, and ALE approaches in which the regulatory properties of GlpK 227 and the catalytic properties 

of ProA and ProB 225 were enhanced to meet the demands of a new environment. The mutations found 

in L-1,2-pdo-evolved strains also increased the catalytic efficiency for the reverse reaction in POR. 

Moreover, it has been suggested that these mutations stabilize the Fe2+ ion in POR, thereby protecting 

the ion from oxidation and allowing it to function in aerobic conditions 288. 

A key component that is assumed by these evolutionary models, but never explicitly 

addressed, is that the products of these evolved enzymes must enter the metabolic network to generate 

energy and/or biomass. This assumption, however, is non-trivial. Metabolism is a complex and highly 

interconnected network, and its chemical reactions are constrained by stoichiometry and 

thermodynamics. In these networks, all cofactors must be balanced and ample energy must be generated 

to recycle the cofactors. Therefore, breaking down a new substrate to a metabolite that is recognized by 

another enzyme in the cell is not enough. Pathways must exist that will yield a net gain in energy or 

biomass production for the cell to use the metabolite. Furthermore, the combination of pathways needed 

for a new substrate may conflict with transcription regulation 295, which has often been optimized to 

enhance metabolism for other environmental conditions 26. Previous ALE studies have shown that the 

expression of metabolic pathways can change to improve fitness on defined media by up-regulating 

important enzymes and suppressing unnecessary proteins 47, 185. This study builds upon those previous 

studies by demonstrating that preexisting transcriptional regulators can actually respond to facilitate the 

improvement of the entire metabolic network for a new substrate. 

We anticipate that this is facilitated by the fact that the metabolism of L-1,2-pdo leads to the 

synthesis of L-lactate, a substance that the organism already could consume. Moreover, L-lactate has 

previously shown a level of catabolite derepression 296, potentially through CRP activity, since L-lactate 

oxidation was previously inhibited in a CRP mutant 295. Thus, the evolution of a new metabolic function 

may be facilitated by transcriptional regulatory mechanisms previously used for the metabolism of 
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similar substrates. However, this study goes further to demonstrate that these transcriptional programs 

can be shaped for a new substrate. That is, the results from the GIMME analysis suggest that while CRP 

aided in the adaptive process, additional mechanisms provided further refinement of the transcriptional 

response to enhance the specific requirements for L-1,2-pdo metabolism. Moreover, adaptation with 

mutagen showed that the mutation to adenylate cyclase helped to soften the CRP response, presumably 

to decrease the expression of genes that are unnecessary for L-1,2-pdo metabolism. Thus, while the 

adaptation to L-1,2-pdo relied on existing mechanisms, this evolution provides examples of how cells 

will evolve to enhance the efficiency of metabolism, even for new metabolic functions that are more 

complicated to attain. 

In conclusion, this study provides an example of how the use of a systems-level analysis of 

adaptive laboratory evolution 7, 47, 198, 297 can provide fundamental insights into the evolution and 

diversification of microbial species as they respond to variations in their environmental conditions 239. 

Moreover, it demonstrates that in well-controlled conditions, distal causation can be estimated through 

the use of detailed genome-scale models of metabolism.  

Methods 
Strains and culture condition: For transcriptome and proteome analyses, the PA L-1,2-PDO-

evolved E. coli K-12 MG1655 (eBOP12-6 strain) 238 and its parental glycerol-evolved E. coli (GC 

strain, F- λ- ilvG- rfb-50 rph-1 glpKG-184→T) 201 were grown from freezer stocks in M9 minimal media 

supplemented with 2 g/L of L-1,2-PDO or glycerol (Sigma Aldrich) at 37°C. M9 media contained (per 

liter of deionized water) 0.8 g of NH4Cl, 0.5 g of NaCl, 7.5 g of Na2HPO4·2H2O, and 3.0 g of KH2PO4. 

The following components were sterilized separately and then added (per liter final volume of media): 2 

mL of 1 M MgSO4, 0.1 mL of 1 M CaCl2, and 0.5 mL of a trace element solution containing (per liter) 1 

g of FeCl3·6H2O, 0.18 g of ZnSO4·7H2O, 0.12 g of CuCl2·2H2O, 0.12 g of MnSO4·H2O, and 0.18 g of 

CoCl2·6H2O. To determine the fitness gain in propionate, the PA eBOP12-6 strain was grown in M9 

minimal media containing 2 g/L of sodium propionate using magnetic stir bars for aeration at 37°C. 

Growth rates were determined by measuring the optical density at 600 nm (OD600) of triplicate cultures 

over several time points in which 0.05 < OD600 < 0.3. Growth rates were defined as the slope of the 
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linear best-fit line through a plot of ln(OD600) versus time. During the knock-out process, the strains 

were cultured on Luria-Bertani media supplemented with 50 µg/mL of kanamycin or 100 µg/mL of 

ampicillin when necessary. 

Generation of mutant strains: The knock-out E. coli mutants were generated by homologous 

recombination using the lambda Red recombinase system 269 on the PA strain. In short, the gene to be 

deleted was replaced by a kanamycin gene flanked by flippase recognition target sites and the insert 

was removed with a flippase recombination enzyme. In order to verify the genotypes of all mutants, 

colonies were isolated from solid media and tested with PCR. Wild-type E. coli colonies were tested in 

parallel as a negative control.  

Transcriptome analysis: Affymetrix E. coli Antisense Genome Arrays were used for all 

transcriptional analyses. Each experimental condition was tested in triplicate on the carbon source used 

for evolution (glycerol or L-1,2-PDO) using independent cultures and processed following the 

manufacturer-recommended protocols. Cultures were grown to mid-exponential growth phase 

aerobically (OD600 ≈ 0.3) in minimal media supplemented with appropriate carbon source. Three ml of 

cultures were added to 2 volumes of RNAprotect Bacteria Reagent (Qiagen) and total RNA was then 

isolated using RNeasy columns (Qiagen) with DNase I treatment. Total RNA yields and quality were 

measured using a Nanodrop 1000 (Thermo Scientific) and agarose gels. cDNA synthesis, 

fragmentation, end-terminus biotin labeling, and array hybridization were performed as recommended 

by the Affymetrix standard protocol. Raw CEL files were normalized using gcrma as previously 

described 215. Genes that did not have an expression level above a set of negative controls on the arrays 

(FDR ≤ 0.05) were removed from the dataset and not considered in further analyses. Significant 

differential expression was statistically assessed using the SAM test (FDR ≤ 0.05). Fold change values 

for genes that are not statistically differentially expressed were obtained and a fold change cutoff for 

differential expression was set as 2 standard deviations beyond the mean fold change for these genes.  

Proteome analysis: Frozen (-80°C) stocks of PA eBOP12-6 and GC strains were used to start 

cultures which were grown overnight in 3 mL of M9 minimal media containing 2 g/L of L-1,2-PDO 

and glycerol, respectively. Each was sub-cultured 1:100 into 50 mL of M9 minimal media and allowed 
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to grow with shaking. Cells were harvested at mid-exponential phases of growth (OD600 ≈ 0.3) by 

centrifugation for 30 min at 5,000 ×g, the supernatant discarded, and the remaining pellets were flash-

frozen in an ethanol/dry-ice bath. The pellets were stored at -80°C until they were transported on dry-

ice to the Pacific Northwest National Laboratory (PNNL; Richland, WA). Three independent biological 

samples were separately analyzed in triplicate (resulting in a total of nine datasets) for each condition 

for each strain. Samples were prepared as previously described 47. Briefly, lysis of each sample was 

achieved using pressure cycling (via a barocycler), and whole cell lysate was reduced, alkylated, and 

tryptically digested. Desalted peptides were separated by reversed-phase liquid chromatography (LC) 

and detected online by a coupled Thermo Scientific LTQ Orbitrap Velos mass spectrometer. Peptides 

were identified by comparison with an established accurate mass and time (AMT) tag database as 

described previously 47. Protein intensities for each sample were calculated by the RRollup feature of 

DAnTE 275, and changes in protein abundance were calculated from ratios of average intensities in 

corresponding samples. Analysis of variance (ANOVA) was also performed using DAnTE and used to 

determine the significance of individual peptide identifications. For identification of each protein, 

corresponding peptide ANOVA q-values were averaged to generate a protein level score. Proteins were 

considered differentially abundant if average ANOVA q-value ≤ 0.05, fold change ≥ 2.0, and proteins 

were identified in at least two of 3 biological replicates for each condition. Inherent to bottom-up 

proteomic technology, intensity values are not determined for all possible proteins. These “missing” 

values can result when a protein has low abundance or when a protein is not expressed. For those 

proteins for which an ANOVA could not be performed due to missing values across datasets, proteins 

were deemed significant if identification was made for each biological replicate in one condition and 

not for any biological replicates in the alternate condition. Specific details regarding sample 

preparation, LC-MS analysis, MS instrument settings, and a detailed description of the AMT tag 

methodology 274, 298, 299 are provided elsewhere 47. RAW files for all datasets may be downloaded at 

http://omics.pnl.gov 300 

Constraint-based modeling: All constraint-based model simulations were done using a 

genome-scale metabolic model of E. coli K-12 MG1655 metabolism as previously published 189. The 
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ykgEFG operon was added to the model based on experimental evidence of this operon contributing 

lactate dehydrogenase activity 290. Calculations were conducted in Matlab 7.6 using the COBRA 

Toolbox 2.0 214 with the Tomlab CPLEX solver. 

Markov chain Monte Carlo sampling: The distribution of feasible fluxes for each reaction in 

the models used here were determined using Markov chain Monte Carlo (MCMC) sampling 35, as 

previously described 42, 86, and was implemented with the COBRA Toolbox v2.0 214. Published uptake 

rates were used to constrain the models. To model more realistic growth conditions 87, sub-optimal 

growth was modeled. Specifically, the biomass objective function (a proxy for growth rate) was 

provided a lower bound of 95% of the optimal growth rate as computed by flux balance analysis 43. 

Thus, the sampled flux distributions represented sub-optimal flux-distributions, while still modeling 

fluxes relevant to cell growth and maintenance. 

MCMC sampling was used to obtain thousands of feasible flux distributions (referred to here 

as “points”) using the artificially centered hit-and-run algorithm with slight modifications, as described 

elsewhere 42, 86. Briefly, a set of non-uniform points was generated. Each point was subsequently moved 

randomly, while remaining within the feasible flux space. To do this, a random direction is first chosen. 

Second, the limit for how far the point can travel in the randomly-chosen direction is calculated. Lastly, 

a new random point on this line is selected. This process is repeated until the set of points approaches a 

uniform sample of the solution space, as measured using the mixed fraction metric described previously 

101. A mixed fraction of approximately 0.50 was obtained, suggesting that the space of all possible flux 

distributions is nearly uniformly sampled.  

For each reaction, a distribution of feasible steady-state flux values is acquired from the 

uniformly sampled points, subject to the network topology and model constraints. For the E. coli model 

such distributions of feasible flux values could be determined for 2,314 of the 2,382 reactions. The 

remaining 68 reactions were involved in loops 100 and therefore reliable flux estimates were not 

available. Thus, sampling distributions for these 68 reactions were removed from all analysis in this 

work. Similar measures were taken for all other models in this work. 
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GIMME: This method integrates genome-scale gene expression data to find the subset of 

metabolic reactions that are likely active in the given strain based on gene expression levels and the set 

of reactions that are needed to satisfy known network functions. Briefly, this analysis yields i) a 

network containing all metabolic reactions that are best supported by the expression data, ii) a report of 

the penalties assigned for having to add low expression genes, and iii) a normalized consistency score 

(NCS) that represents how well dataset supports the optimal growth predictions. These were obtained 

by setting the substrate and oxygen uptake rates to the experimentally measured values and then setting 

a lower limit on growth rate in the model (90% of the optimal growth rate as predicted by FBA). Gene 

expression data was then used by GIMME to build a model using all genes with an expression level 

above a given threshold. Any genes below this given threshold that were required to meet the 90% 

growth rate cutoff were subsequently assigned a penalty score. This penalty score is the product of the 

associated reaction flux and the difference between the threshold and the gene expression level. These 

penalty scores were summed up and then transformed into a NCS that quantitatively describes how well 

the data support a functional model of growth under the given condition 110. The sensitivity of these 

NCS was determined using Jackknife re-sampling by removing each gene and then re-computing NCS 

scores. For the GIMME analysis in this study, a threshold is chosen as a cutoff log2 expression level on 

the Affymetrix data. While a threshold of 10 was chosen for this work, all NCSs from seven to 15 were 

tested and yielded similar results to those reported here (data not shown). Reactions that demonstrate 

improved consistency following adaptive evolution were determined by modeling L-1,2-PDO or 

glycerol growth using data from growth on glycerol because the parental GC strain cannot grow on L-

1,2-PDO. The penalty scores from each reaction, before and after adaptive evolution, were subsequently 

compared. The hypergeometric test was used to find metabolic subsystems from iAF1260 that were 

enriched within the top 2.5% most significantly improved gene-associated metabolic reactions. To 

maintain consistency between conditions, substrate uptake rates were set such that the net carbon atom 

uptake was 30 mmol C gDW-1 hr-1 (e.g., for glycerol, L-1,2-pdo, and L-lactate had an uptake rate of 10 

mmol C gDW-1 hr-1, and L-fucose has an uptake rate of 5 mmol C gDW-1 hr-1). 
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Assessment of regulon activity: Consistency of differential expression with the activity of 

each transcription regulator was determined by comparing differential expression changes with 

activator/repressor assignments in RegulonDB v6.0 268. That is, all genes known to be activated or 

repressed by a transcription factor were compared to up- and down-regulation assignments from the 

microarray data.  

Predicting differential expression of metabolic genes: Genes that are specifically needed in 

higher abundance for growth on L-1,2-pdo (as opposed to glycerol) were predicted by simulating 

changes in reaction flux occurring in a shift between the two conditions. While this has been described 

in detail previously 78, 86, it was done here as follows. The distributions of MCMC-sampled fluxes for 

each reaction were compared between the two media conditions. First, flux magnitudes were 

normalized between each pair of media conditions (media A and B). To do this, a ratio of total flux 

through the metabolic network was computed and used to normalize each sample point. To compute 

this ratio, for each sample point, the magnitudes of all n non-loop-associated reaction fluxes were 

summed to acquire a value for the total network flux. For both media conditions, the median total 

network flux was taken and used to normalize each reaction flux for all sample points in media B, as 

follows:   

𝑣𝑖,𝑗,𝐵
∗ = 𝑣𝑖,𝑗,𝐵

𝑚𝑒𝑑𝑖𝑎𝑛({∑ |𝑣𝑟,1,𝐴
𝑛
𝑟=1 �,…,∑ |𝑣𝑟,𝑗,𝐴

𝑛
𝑟=1 �,…,∑ |𝑣𝑟,𝑝,𝐴

𝑛
𝑟=1 |})

𝑚𝑒𝑑𝑖𝑎𝑛({∑ �𝑣𝑟,1,𝐵�𝑛
𝑟=1 ,… ,∑ �𝑣𝑟,𝑗,𝐵�𝑛

𝑟=1 ,… ,∑ �𝑣𝑟,𝑝,𝐵�}𝑛
𝑟=1 )

, 

where v*i,j,B, is the normalized flux through reaction i in sample point j under media condition B, 

obtained after multiplying the sampled flux vi,j,B, by the ratio of the median total flux magnitude for all p 

sample points under growth on medium A to the median total flux magnitude for all p sample points 

under growth on medium B. 

Once the flux values were normalized, the changes of fluxes between two conditions were 

determined as previously described 86. Calls on differential reaction activity were made when the 

distributions of feasible flux states (obtained from MCMC sampling) under two different conditions do 

not significantly overlap. For each metabolic reaction, a p-value was obtained by computing the 

probability of finding a flux value for a reaction in one condition that is equal to or more extreme than a 
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given flux value in the second condition. P-values were adjusted for multiple hypotheses (FDR ≤ 0.01), 

and genes associated with reactions for which flux significantly increased or decreased were predicted 

to be up- or down-regulated, respectively.  

Intracellular cAMP assay: The intracellular concentration of cAMP was determined as 

previously described 301. Briefly, cells were cultured as described above and collected during 

logarithmic growth when reached OD600 of 0.2 - 0.3. Culture samples were rapidly vacuum-filtered 

through a triton-free nitrocellulose filter (Millipore, 25 mm diameter; pore size, 0.45 μm). The volume 

of culture filtered was based on the optical density, filtering the volume that would contain 

approximately the same number of cells as 1 mL of culture with an OD600 of 1 (i.e., 5 mL collected 

from a culture at OD600 0.2). Filtration was immediately followed by washing with 10 mL of fresh 

media at 30°C to wash away extracellular cAMP. The cells collected on the filter were then 

immediately quenched by submersion in 5 mL ice-cold 65% ethanol, vortex-mixed vigorously, and 

stored at -20°C. Prior to assay, the 65% ethanol was evaporated by a speedvac and the dried residue was 

re-dissolved in cAMP assay buffer supplied with a kit. The cAMP levels were assayed using the 

enzyme-linked immunoassay kit (GE Healthcare) following the manufacturer’s instructions for the non-

acetylation protocol. One fifth of each sample was used per assay. Each strain was cultured in triplicate 

and each sample was assayed twice. 

 

 

 

Chapter 6, in part, is a reprint of the material as it appears in Lewis, N.E., Lee, D.H., Rutledge, 

A., Conrad, T.M., Kim, D., Adkins, J.A., Smith, R.D., Palsson, B.Ø. E. coli learns to grow optimally on 

a non-native carbon substrate through laboratory evolution. Under revision. I was a joint-primary 

author, while the co-authors provided support in the research that served as the basis for this study. 
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Conclusion: Towards a predictive understanding of phenotype 
 

Biological systems are subject to both proximal and distal causation, and to some degree, the 

mechanisms underlying both distal and proximal causation are being accounted for by in silico 

constraint-based models. Thus, these models can be used for simulation and analysis to understand 

biomolecular mechanisms responsible for proximal responses and some selective pressures guiding the 

evolution of metabolism.  

Essentially, the study of causation in biology requires a detailed characterization of the 

molecular and chemical basis of biology. This is because the physicochemical properties of cell 

components (e.g., gene products and small molecules in a cell and its microenvironment) impose 

constraints on all possible cell phenotypes. Moreover, the cell genotype defines the repertoire of gene 

products that can be produced, which limits the phenotypes an organism can express. Ultimately, 

causation stems from an organism’s genotype and the environment in which an organism is found. 

Thus, in order to build predictive models that can assess causal mechanisms, one must obtain the 

following detailed knowledge: 1) all of the relevant components in the cell and its microenvironment 

(e.g., genes, transcripts, proteins, metabolites, etc.), 2) the detailed interactions between these 

components and how these interactions can be described mathematically, and 3) physical laws 

constraining the function of these components (e.g., mass balance, thermodynamics, kinetics, etc.). For 

metabolism, decades of research has identified many cell components, and carefully studied the 
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biochemical interactions between enzymes and metabolites. In like manner, the molecular biology of 

many components has been intensely studied, elucidating interactions between proteins, RNA, DNA, 

etc. In addition, over the centuries, deep theoretical understanding has been obtained with respect to 

physical laws. Moreover, the details of how these laws constrain the functions cellular components are 

being studied on an ongoing basis. The challenge remains as to how this knowledge can be expanded 

and leveraged to provide mechanistic insights into how organisms function. 

Over the past couple decades, emerging technologies have enabled the systematic discovery of 

cellular components and some of their interactions. These include genome sequencing, transcriptomics, 

proteomics, metabolomics, chromatin immunoprecipitation, yeast 2 hybrid assays, etc. Advances in 

bioinformatics have enabled the interpretation of these data. Much focus has been given to statistical 

analyses, which have yielded great insights and guided numerous detailed mechanistic studies. 

However, on their own, these methods often only provide predictions of clusters of components that 

might contribute to biological processes (Figure 7.1.a). This is because these methods often only 

identify correlations between components as experimental conditions change. Thus, these analyses do 

not directly provide a clear picture of the biological system (Figure 7.1.a, right). If detailed mechanistic 

information is introduced (e.g., from metabolic or regulatory networks), this context can provide higher-

resolution insights into how variations in cell components lead to a cell phenotype (Figure 7.1.b). 

However, detailed follow-up experiments are often needed to address causation. Even higher resolution 

insights can be attained as additional data sources are integrated into such analyses (Figure 7.1.c). 

Furthermore, modeling frameworks, such as constraint-based modeling, provide the mathematical 

language in which all of these data can be integrated with existing biochemical knowledge and 

employed to simulate phenotypes and provide mechanistic insights into causation.  
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Figure 7.1. Increasing the resolution of knowledge with multi-omic data integration. (a) 
Exploratory analysis of large –omic datasets has successfully provided insight into large biological 
systems and guided more detailed studies.  However, on their own, these approaches cannot give a 
detailed picture of the mechanisms underlying biological functions since they rely on correlations 
between biomolecular components. (b) Additional insights into the roles of variations in biological 
datasets can be obtained as these data are analyzed in the context of detailed biochemical networks. 
Such studies can provide higher-resolution and more mechanistic insights into biological functions. (c) 
Since the analysis of a single data type only captures one angle of the cellular biochemistry, more 
detailed and accurate mechanisms can be identified as multiple types of data are integrated and 
analyzed in the context of solid biochemical knowledge. Such analyses can potentially further clarify 
mechanisms, thereby providing a higher-resolution picture of real biological functions. 
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In this work I have focused on how detailed mechanistic predictions can be obtained by 

analyzing multiple data types in the context of detailed metabolic and regulatory networks. Each study 

required advances in model-based data integration, analysis, and interpretation. The ultimate goal of 

each of these studies was to gain insight into the mechanisms connecting genotype to phenotype (i.e., 

proximal causation), and the selective pressures causing the evolution of genotype (i.e., distal 

causation). Eventually, we hope to understand these complex molecular interactions and selective 

pressures. As we understand the basis for proximal causation in biological systems, we will be more 

able to predict phenotypes and individual-specific responses to perturbations. As we understand distal 

causation, we will be able to avoid problematic adaptation (e.g., drug resistance) 302 and more 

efficiently engineer biology 294. While this extent of biological knowledge currently is beyond our reach 

for many cell processes, continued integrated efforts in 1) component identification, 2) interaction 

description, and 3) physicochemical constraint elucidation will together help us link genotypes with 

complex phenotypes, and thereby increase the resolution in our understanding of why biological 

systems do what they do. 
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