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ABSTRACT OF THE DISSERTATION 

 

RobuSTore: A Distributed Storage Architecture 

with Robust and High Performance 

by 

Huaxia Xia 

Doctor of Philosophy 

University of California, San Diego, 2006 

Professor Andrew A. Chien, Chair 

 

Emerging large-scale scientific applications involve access to distributed 

large-scale data collections, and require high and robust performance. However, the 

inherent disk performance variation in distributed shared systems makes it difficult to 

achieve high and robust performance with traditional parallel storage schemes. We 

propose RobuSTore, a novel storage architecture, which combines erasure codes and 

speculative access to tolerate the performance variation. RobuSTore uses erasure 

codes to add flexible redundancy then spreads the encoded data across a large number 

of disks. Speculative access to the redundant data enables application requests to be 

satisfied with only early-completed blocks, reducing performance dependence on the 

behavior of individual disks.  
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To demonstrate the feasibility of the RobuSTore architecture, we design a 

system framework to integrate erasure coding and speculative access mechanisms, and 

discuss the critical choices for the framework. 

We evaluate the RobuSTore architecture using detailed software simulation 

across a wide range of system configurations. Our simulation results affirm the high 

and robust performance of RobuSTore compared to traditional parallel storage 

systems. For example, to read 1 GB data from 64 disks with random data layout, 

RobuSTore achieves an average bandwidth of over 400 MBps, nearly 15x that 

achieved by a baseline RAID-0 scheme. At the same time, RobuSTore achieves 

standard deviation of access latency of only 0.5 seconds, less than 25% of the total 

access latency, which improves about 5-fold comparing to RAID-0. To write 1 GB 

data to 64 disks, RobuSTore achieves average bandwidth of 180 MBps, five times 

faster than RAID-0 even if RobuSTore writes 300% redundant data. RobuSTore 

secures these benefits at moderate cost of about 2-3x storage capacity overhead and 

50% network and disk I/O overhead. 
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Chapter 1. Introduction 

Existing and emerging large-scale scientific applications and data-intensive 

applications require dramatically higher levels of performance from distributed storage 

systems. These applications involve access to extremely large data collections and 

sharing of these data collections for collaboration amongst hundreds of widely 

distributed users. Distributed storage systems with both high and robust performance 

are critical to these applications. Throughout, we use the term robust to mean low 

variation in data-access latency. 

This dissertation proposes a distributed storage architecture called RobuSTore, 

which combines erasure coding and speculative access mechanisms to deliver high 

and robust storage performance. Its erasure coding mechanism encodes the original 

data into fragment blocks with symmetric redundancy, allowing flexible data 

reconstruction from subsets of the fragment blocks over the distributed storage system. 

The speculative access mechanism utilizes fully the available disk bandwidths to 

read/write redundant fragment blocks from/to heterogeneous distributed disks. 

Combining these two mechanisms in RobuSTore achieves both efficient disk 

bandwidth utilization and symmetric data redundancy for high and robust disk 

performance. 

To demonstrate the feasibility of RobuSTore architecture, we design a system 

framework that integrates the erasure coding and speculative access mechanisms, and 

then evaluate the system’s performance using detailed software simulation across a 

wide range of system configurations. Our simulation results demonstrate the high and 

1 
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robust performance of RobuSTore when compared to traditional parallel storage 

systems. 

The remainder of this chapter is organized as follows. Section 1.1 explains the 

performance requirements from recent data-intensive applications and the necessity 

and the possibility of using distributed storage systems. Section 1.2 follows with the 

technology challenges faced by traditional parallel mechanisms in distributed 

environments. Section 1.3 presents the thesis statement. Section 1.4 outlines the 

contributions of this dissertation and Section 1.5 summarizes with a roadmap of the 

entire dissertation. 

 

1.1. Motivation 

Existing and emerging large-scale scientific applications and data-intensive 

applications require dramatically higher levels of performance from distributed storage 

systems. These applications are increasingly common; they are emerging in virtually 

every area of science, engineering, and commerce, including biology [1], high-energy 

physics [2], geology [3], astronomy [4], and many other fields. These applications 

usually involve massive data collections with objects as large as 10 gigabytes and 

collections larger than tens of petabytes. For example, the BIRN Project [1] in Medical 

School of UCSD involves constructing custom indices in a collection of 1,000,000 

10GB-size images that total ten petabytes of data. These applications usually have 

widely distributed data sources and owners, and up to thousands of users, which 
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implies enormous network bandwidth requirements. The workloads are usually 

read-dominated, and often require fast, even real-time access. 

High performance is essential for these applications to access their large data 

objects. These objects may be as large as 10s of gigabytes, so transfer rates of 

hundreds of MBps or even multiple GBps are required to achieve interactive, real-time 

data accesses. Furthermore, the whole data set, a collection of these large data objects, 

may come to tens of petabytes, and requires high data-access bandwidth to be shared 

among multiple distributed users. For example, accessing 1 TB data takes 11 days if 

the access bandwidth is 1 GBps; it takes three years if the access bandwidth is 10 

MBps, which is typical speed for many present-day NFS file servers. 

Robust performance is important for both user interaction and resource 

scheduling. With robust performance, an interactive user can predict the access latency 

for each access and have comfortable access experiences. Furthermore, resources in a 

distributed environment are usually shared by many users, so resource scheduling is 

important for achieving better resource utilization and for guaranteeing the quality of 

service. Robust and thereby predictable performance is a key for a successful resource 

scheduling. 

The applications also require the storage systems to be distributed. Though 

widely-used parallel storage systems can provide high levels of performance, they are 

not good candidates for these data-intensive applications. Parallel storage systems 

typically have centralized implementations, and consequently are not able to handle 

large amount of requests from thousands of users efficiently, due to limited network 
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bandwidth to the central storage site. Also, they fail to provide efficient mechanisms to 

support widely distributed data sources and owners. Instead, a distributed storage 

system is a more promising approach. The enormous network bandwidth requirements 

can be easily satisfied by accessing many widely distributed storage sites in parallel, 

even if each storage site has only limited network bandwidth. Moreover, distributed 

storage systems have the advantages of higher data reliability and higher availability. 

With carefully designed redundancy mechanism, these systems are able to tolerate 

effectively such single-site failures as power failures, disk failures, or network 

failures. However, one major challenge in distributed storage systems is how to 

deliver high-quality data-access performance, which is the focus of this dissertation. 

Recent technological advances in networks, microprocessors, and hard drives 

make intensive data sharing across distributed storage servers possible. First, the 

emergence of high bandwidth wide-area networks (WAN) provides the basic 

capability for large data transfers in widely distributed storage systems. Over the past 

few years, low-cost optical transmissions and the dense wavelength division 

multiplexing (DWDM) technique have enabled the construction of private WANs with 

private 10 Gbps (or even 40 Gbps) connections [5]. Indeed, individual fibers have the 

potential to carry hundreds of 10 Gbps communication channels, called lambdas, 

thereby providing terabits of bandwidth in each fiber bundle. Numerous research 

infrastructures with private, high-speed lambdas have been deployed (OptIPuter [6], 

National LambdaRail [7], Netherlight [8], and the Global Lambda Interchange Facility 

(GLIF) [9]).  
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Furthermore, rapid increases of CPU processing power make complicated 

calculation overheads in distributed storage systems affordable. Moore’s Law, which 

postulates that the number of transistors on a CPU chip doubles every 18 months, is 

still valid in today’s industry, as microprocessors pass one billion transistors. 

Finally, the exponential growth of hard drive capacity enables us to exploit 

data redundancy to improve the robustness and disk performance of distributed storage 

systems. According to Kryder’s Law [10], the data density of hard drives doubles 

roughly every 13 months, while the price of single drives remains almost constant, 

producing dramatically cheaper data capacity. We can therefore aggregate thousands 

of disks in a distributed storage system, access them in parallel, and exploit the 

abundant total disk bandwidth. 

Hence, the needs of applications make it desirable, and technology advances 

make it possible to achieve high and robust performance in distributed storage systems. 

It should be noted, however, that there are many other important concerns for 

data-intensive applications such as reliability, availability, security, integrity, and so 

forth. However, these other topics are not the focus of this dissertation which, instead, 

focuses on high and robust performance in large-scale distributed storage systems. 

 

1.2. Challenges 

One major challenge for distributed storage systems is heterogeneity. 

Individual disks distributed at different sites may exhibit dramatic performance 
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differences due to the federated and evolving nature of such infrastructures. First, each 

site may have different disk types, which may lead to different performance. For 

instance, an ATA disk may deliver a peak bandwidth of around 10-60 MBps, while a 

SCSI disk can deliver a peak bandwidth of up to 160 MBps; if some sites use 

RAID-like parallel disks, hundreds of MBps, or even multi-GBps, of bandwidth can 

be achieved. With disk manufacturers introducing new generations of products in 

rapid sequence, many federated storage systems incorporate different disk models. 

Next, performance may vary by as much as 100-fold even for the same disk 

type. This is because a modern hard drive is a hierarchical system consisting of a 

complex collection of caches and rotating disks, whose access latencies may differ 

dramatically depending on cache status, disk layout, physical contiguity, and disk head 

seeking distance. Furthermore, in addition to disk performance variation, network 

performance variation may further exacerbate the situation. Finally, since distributed 

storage systems are usually shared by many users, the dynamic competitive workloads 

lead to dynamic network and disk access behaviors. Interleaved access streams can 

incur additional seeks that cause as much as a 100-fold variation in performance. 

The property of heterogeneity and a requirement for robust performance 

present new challenges for distributed storage system design. Traditional parallel 

access mechanisms do not work well in such a heterogeneous environment. With data 

striping and replication mechanisms, traditional parallel file systems can aggregate 

disk performance by careful layout scheduling and control. However, these 

approaches do not perform well in the face of uncontrolled performance variation, 
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even if replication is used. This is because in such systems, each block in a file is 

unique and independent of the others, and parallel access has to wait for the arrival of 

copies of all blocks to get all the data. Simple replication helps a little, but only relaxes 

the completion requirements slightly.  In general, the slowest disks in these systems 

limit the overall access time. 

 

 

Figure 1-1. Conventional Parallel Storage. The four disks have different performance, 

with two replicas of eight blocks. 

 

Figure 1-1 shows an example depicting the challenge for traditional parallel 

file systems. Data on each file consists of eight blocks, labeled from block 0 to block 

7. These eight data blocks are replicated to 16 blocks, and are striped and distributed 

across four disks, as shown in the upper part of the figure. A speculative access is 
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completed when all blocks from 0 to 7 arrive. Since the disk’s performance variation 

leads to different block arrival times, the first copy of block 7 arrives much later than 

the copies of all the other blocks. Therefore, even if multiple copies of other blocks 

have already arrived, the client has to wait for block 7, which leads to much longer 

data access latency. Even worse, if block 7 from disk 3, for example, gets lost or 

delayed, the client would have to wait for the arrival of the second copy of block 7 

from disk 2, which implies a high variation of access latency. 

These new challenges in heterogeneous storage environments demand a set of 

mechanisms to tolerate high variation in disk access in order to achieve robust access 

latency and high performance for accessing large storage. 

 

1.3. Thesis and Approach 

Our research studies the feasibility of delivering robust and high performance 

in distributed storage systems by exploiting erasure codes and speculative access. The 

thesis of our study is as follows: Robust and high storage performance can be achieved 

in distributed high-speed network environments by using erasure codes to generate 

symmetric data redundancy and by using speculative access to aggregate efficiently 

the performance of multiple storage devices. 

Subsidiary theses required to substantiate this result include: 

(1) Erasure codes can be carefully designed to deliver high encoding and 

decoding throughput, limited only by processor memory bandwidth. 
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(2) High access bandwidth can be achieved in distributed storage systems for 

large reads and writes. 

(3) Robust access latency can be achieved in distributed storage systems, with 

access latency variation less than 20%. 

(4) Achieving the above benefits can incur but moderate overhead costs. 

We designed RobuSTore storage architecture to realize the idea of combining 

erasure codes and speculative access in storage. RobuSTore uses erasure codes to add 

symmetric data redundancy and stripes the encoded data blocks across a large number 

of distributed disks. With such layouts, clients can speculatively retrieve the data 

blocks and reconstruct the original data using the fast-returning blocks. As a result, 

RobuSTore can reduce performance dependence on the slow disks so that it can 

efficiently aggregate large number of distributed storage devices to deliver robust and 

high-access performance. 

We evaluated RobuSTore architecture under a wide range of system 

configurations, via both theoretical analysis and detailed simulation. These studies 

show how RobuSTore architecture is able to increase absolute data access 

performance and reduce performance variation in distributed storage environments. 

We also study the overheads introduced by RobuSTore, including storage space 

overhead, disk access overheads, and network bandwidth overheads. Our simulation 

results show that RobuSTore architecture is a promising distributed storage system 

design. 
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1.4. Contributions 

The primary contributions of the dissertation are: 

• The RobuSTore idea that combines erasure codes and speculative parallel disk 

access to improve data access performance and to reduce disk performance 

variation. 

• Design of a system framework that realizes the RobuSTore idea and enables 

systematic exploration of the design space. 

• Evaluation of the robustness of RobuSTore architecture for a wide range of 

system configurations, and demonstrating reductions in access latency 

variation as much as five-fold. 

• Evaluation of the performance of RobuSTore architecture under a wide range 

of system configurations, and demonstrating read/write bandwidth 

improvements as great as 15-fold. 

• Studying RobuSTore overheads and showing that only moderate storage 

capacity overhead (~2-3x) and network bandwidth and disk I/Os overhead 

(50%) are required to secure all the benefits from the RobuSTore design. 

 

1.5. Dissertation Roadmap 

This dissertation presents the RobuSTore idea of combining erasure codes and 

speculative access to achieve high and robust performance in distributed storage 

systems. Chapter 2 describes the background of distributed and parallel file systems, 
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and the fundamentals of erasure codes. Chapter 3 presents the problem definition, the 

thesis statement, and a brief description of our approach. Chapter 4 gives a high-level 

overview of the RobuSTore scheme, and presents the idea of combining erasure codes 

and speculative access. 

Next, in Chapter 5 we study several critical system design choices. First, we 

discuss the usage of erasure coding in distributed storage systems. We compare 

different erasure coding algorithms and conclude that LT codes are best suited for 

RobuSTore. We also present an implementation of improved efficient LT codes in 

Chapter 5. Further, we study how to integrate LDPC codes in RobuSTore, explore the 

choices of striping the coded blocks to distributed disks, and examine mechanisms to 

improve read, write, and re-write performance. Finally, we discuss several 

higher-level system design issues in large-scale distributed storage systems, including 

security management and I/O request-cancellation mechanism. 

Chapter 6 evaluates RobuSTore by comparing it against three conventional 

parallel storage schemes using detailed software simulation, showing that RobuSTore 

improves access bandwidth by up to 15 times and access robustness by up to five 

times, with only a moderate 50% overhead of disk access. 

Finally, Chapter 7 summarizes the major conclusions for this work and 

outlines a number of promising future research directions.

 



Chapter 2. Background and Related Work 

This chapter provides background to help the reader understand the remainder 

of the dissertation better, and also presents related work. We provide an overview of 

storage systems in Section 2.1, followed by an introduction to erasure-coding 

algorithms in Section 2.2.  In Section 2.3 we briefly discuss the usage of erasure 

codes in storage systems. 

2.1. Storage Systems 

2.1.1 Hard Disk Drive Structure and Behavior 

A hard disk drive (HDD, also hard drive or hard disk) is a non-volatile 

data-storage device that stores data on a magnetic surface layered onto hard disk 

platters. Hard disk drives have dominated secondary storage since soon after the 

introduction of the first hard drive by IBM in 1955. The basic architecture of hard 

drives has been almost unchanged since then. A typical hard disk drive consists of a 

spindle on which magnetic platters spin at a constant RPM, and read-write heads 

move along and between the platters on a common arm. The surface of each platter 

contains data which are organized into a hierarchy of tracks, and sectors, as depicted 

in Figure 2-1. The tracks on all the platter surfaces that have the same track number 

make up a cylinder. Cylinders in a modern disk are usually grouped into multiple 

zones based on their distance from the center of the disk. A track in an outer zone has 

more sectors than a track in an inner zone. 

12 
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Figure 2-1. Hard Disk Drive Organization. 

 

A disk access is a complex operation. First, the file system’s software checks 

the main memory to see if the required data is there. Modern file systems maintain a 

free main memory to cache the disk data, as a so-called filesystem cache. The 

filesystem cache is generally all unused main memory, which could be around 1 to 16 

GB in a present-day workstation. If the data are not in the filesystem cache, the file 

system will attempt to acquire the data bus, and then send the request to the disk 

controller. 

The disk controller checks the hard disk cache first. Hard disk caches are 

usually 2 to 16 MB, so it is usually useful for frequent repeated access or prefetch. If 

data are missed again in the hard disk cache, the controller will put the request in a 

request queue. The controller schedules the request processes following some 

scheduling algorithm. 

Once the request is finally scheduled and hits the disk, the arm should be 

moved to the proper track. This operation to move the arm to the desired track is 
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called a seek, and the time is called seek time. A modern hard disk usually has an 

average seek time of about 10ms. After that, the rotation of the platter eventually 

places the requested sector under the head; the data is then read and transferred back to 

the file system. The time for the requested sector to rotate under the head is the 

rotation delay. For example, a commodity 7200 rpm hard disk has a rotation delay of 

0 to 8 ms. 

The next component of disk access, transfer time, is the time it takes to transfer 

the data from the platter to the disk controller buffer. The actual data transfer time 

depends on data size, rotation speed, and the recording density of a track. The transfer 

rate of a modern hard disk is typically 30 to 140 MBps. 

Therefore, the overall access time can range from almost zero, if the data are in 

the cache, up to 20 ms per sector. Even if the cache is not considered, different disk 

layouts may incur different access performance. For example, if all the requested data 

sectors are contiguous on a disk, then the access bandwidth will be the peak disk 

transfer rate of 30 to 140 MBps; if the requested data sectors are all scattered around 

due either to poor disk layouts or to interleaving access from competitive applications, 

the access bandwidth could be less than 0.1 MBps. 

 

2.1.2 Distributed Storage Systems 

A distributed file system is a file system that supports the sharing of files and 

resources in the form of persistent storage over a network. The first file servers were 

developed in the 1970s; Sun's Network File System (NFS) [11] became the first 
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widely used distributed file system after its introduction in 1985. Notable distributed 

file systems other than NFS include the Andrew file system (AFS) [12] and the 

Common Internet File System (CIFS) [13]. 

Existing distributed file systems typically assume slow (10 ~ 100 Mbps) 

wide-area networks, so caching and prefetching are the primary foci, and single-server 

performance is sufficient.  Generally, little effort is spent on aggregating the 

performance of multiple servers. LAN storage systems, including NFS[11], Sprite[14], 

and LOCUS [15], usually depend on file caching and metadata caching to achieve 

acceptable performance. Sprite uses write buffer to avoid disk operations for 

temporary files and to write many small files in a buck write. NFS accelerators like 

Prestoserve [16] and NetApp Filer [17] exploit high-speed NVRAM to improve write 

performance of NFS. All these systems assume moderate network bandwidth, so 

single-server performance is generally acceptable. Wide-area file systems such as AFS 

and Coda [12], xFS [18], and Pangaea [19] spend much more effort enabling 

partitioned networks or disconnected execution (lazy update), and assume slow 

networks. None of these systems addresses the aggregation of multiple storage devices 

for high performance; IO bandwidth achieved by one client is usually bounded by the 

speed of a single-storage server. 

A few distributed storage systems use RAID-like striping to improve the 

access performance. These systems separate data into multiple plain-text blocks, and 

stripe these blocks across multiple storage servers. For example, Zebra [20] increases 

throughput by striping the log-structured new data across multiple servers, delivering 
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up to 4-5 times the bandwidth of NFS. Another example is pNFS [21, 22], which is an 

extension to the latest version of NFS, NFSv4 [23]. It is an on-going research project 

to support data striping and parallel accessing in NFSv4. However, these systems are 

all based on simple plain-text-based data striping and replication. This simple scheme 

does not work well in heterogeneous shared environments, which we will demonstrate 

in Chapter 6. 

 

2.1.3 Parallel Storage Systems 

Due to the limited single disk capability, parallel access to multiple disks is 

required to get high performance. RAID and cluster file systems are two classes of 

parallel storage systems. 

RAID (Redundant Array of Independent Disks) was proposed by Patterson, 

Gibson and Katz in 1988 [24]. It achieves high performance by aggregating multiple 

disks of a single server. There are different combinations of disks, or “RAID levels”, 

targeting different performance and fault-tolerance goals. The most commonly used 

RAID levels are 0, 1, and 5. In RAID-0, data are split into many plain-text blocks and 

striped across multiple disks. RAID-1 uses an extra set of mirrored disks to improve 

fault-tolerance. A scheme combining RAID-0 and RAID-1 is called RAID-0+1, which 

has two mirrored disk sets and striped data in each set. RAID-5 adds parity check 

blocks during the block-level striping to provide good fault-tolerance with moderate 

storage space overhead. These RAID levels are depicted in Figure 2-2. 
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The performance improvement of RAID is limited because RAID can only 

aggregate a small number of disks in a single server. Especially, each server usually 

has only limited network bandwidth of 100 MBps ~ 1 GBps, which is not sufficient 

for large-scale shared accesses. 

 

Figure 2-2. RAID Levels. 

 

Cluster file systems address the issues of performance and capacity of single 

server by aggregating disks from multiple servers in one or multiple local clusters. 

Popular cluster file systems include Vesta [25], PIOFS [26], Paragon [27], Galley 

[28], PVFS [29], GPFS [30], Lustre [31], Panasas [32], etc. These file systems use 

similar data striping mechanism as in RAID-0: they split original data into many 

plain-text blocks and stripe them to multiple disks or servers. They achieve significant 

performance improvement by using techniques such as parallel I/O, optimized disk 

layout, intelligent and coordinated caching, prefetching, write-back techniques, and 

collective I/O, etc. 
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However, cluster file systems are not able to satisfy the application 

requirements for robust and high performance in shared environments. First, the 

limited network bandwidth of the storage cluster is the bottleneck for multiple remote 

accesses, since all the disks are at the same site and share the same external network. 

Second, these systems use a simple parallel scheme that is not fit for a distributed 

shared environment. While disk performance is both heterogeneous and dynamic in a 

distributed shared environment, most cluster file systems assume uniform arrays of 

storage devices in a system-area network (SAN) or local-area network (LAN) 

environment. Some recent systems such as Lustre [21] and Panasas [32] can utilize 

heterogeneous disks by allocating more storage objects on faster or larger disks; 

however, this is done by manual static configuration and cannot handle dynamic disk 

performance. Experimental results in Chapter 6 will demonstrate these disadvantages 

of simple parallel file systems. 

 

2.1.4 Peer-to-Peer Storage Systems 

Similar to RobuSTore, some peer-to-peer (P2P) file sharing systems (Kazaa 

[33], BitTorrent [34]) improve access performance by fetching from massively 

replicated data copies in parallel. The P2P accesses avoid the bandwidth bottleneck of 

centralized servers.  However, the massive replication is unstructured and expensive 

in terms of storage space overhead. Furthermore, these systems focus on the shared 

Internet where access networks limit per-node bandwidth to 1-10 MBps.  
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2.1.5 Summary of Storage Systems 

In a distributed environment, each remote server might be a file server with a 

single disk, a server with a disk array, or even a parallel storage system. To make the 

discussion easier, we refer to remote filer servers as disks. It should be kept in mind 

that disks’ performance may have a high variation range, from less than one MBps up 

to hundreds of MBps. 

 

2.2. Erasure Coding Algorithms 

Erasure codes are a set of coding algorithms providing block-based 

redundancy. A wide range of error-correcting codes, ranging from Hamming [35] to 

Reed-Solomon [36, 37] to Viterbi [38], can be used to provide reconstruction 

flexibility. Recently, attention has focused on advances in erasure codes, a class of 

codes which tolerate and efficiently recover block-level data loss, a natural match for 

block and packet-based data-handling systems [39-42]. These codes have found 

widespread use in a range of innovative storage systems for achieving high levels of 

data availability and reliability [43-45]. 

In the following sub-sections, we first describe the basic concepts of erasure 

codes and introduce the terminologies. Then in 2.2.2 we describe several popular 

erasure codes, including parity codes, Reed-Solomon Codes, Tornado codes, Luby 

Transform Codes, and Raptor codes.  
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2.2.1 Basic Concepts and Terminologies 

Erasure codes are a large set of coding algorithms that use a software-based 

approach to add data redundancy for reliable data transfer. Erasure codes can be used 

to transmit information reliably from a sender to a receiver; the sender first encodes 

the original message word into a code word with redundancy symbols and transmits 

the code word over the transmission channel. A receiver can reconstruct the original 

source message once it receives a sufficient number of symbols. 

In general, an erasure code transforms a message of K symbols into a message 

with N (N>K) symbols in such a way that the original message can be recovered from 

a subset of those symbols. The ratio of K/N is called the rate of the code, denoted R 

(0<R<1); the ratio of the redundant data is degree of data redundancy, denoted as 

D = N/K – 1 

  = 1/R – 1 

A special case is the digital fountain codes, which can transform K-symbol messages 

into a practically infinite number of code symbols. These codes can be used with a 

flexible rate as needed, and hence are called rateless codes. The rateless codes are also 

referred to as digital fountain codes. 

We need to distinguish between the concepts of word length and data length. 

In coding theory, a word is the whole message to be encoded or decoded, which 

consists of a number of symbols. The number of symbols in a word is called the word 

length. In practice, a symbol could be a bit, a byte, or a large data block, so the actual 

data length may be significantly different from the word length. We use erasure codes 
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for large data accesses; in our case, a symbol is a one MB or larger data block. In the 

later chapters, we also refer to a symbol as a data block and refer to a word as a data 

segment; accordingly, we refer to a code symbol as a coded block. 

According to the reconstruction efficiency, erasure codes can be categorized 

into optimal erasure codes and near-optimal erasure codes. If any K symbols from the 

output N symbols are sufficient to recover the original message, the erasure code is an 

optimal erasure code. Unfortunately optimal codes are costly in terms of memory 

usage and CPU time when N is large, and so near-optimal erasure codes are often used. 

A near-optimal erasure code requires (1+ε)K blocks to recover the message, where 

ε>0. Reception overhead is ε if (1+ε)K encoding symbols are required to reconstruct 

the original K symbols. A code with lower reception overhead requires a smaller 

number of symbols for decoding; however, it usually has a higher cost in CPU time. 

Next, we will briefly describe several optimal codes and near-optimal codes. 

 

2.2.2 Optimal Erasure Codes 

An optimal erasure code with rate R transforms a message of K symbols into 

K/R symbols in such a way that any K suffices to decode the original message; that is, 

the reception overhead is zero. Parity codes and Reed-Solomon codes are the two most 

popular optimal erasure codes. 
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Parity Codes 

A parity code includes the original symbols and one parity symbol. The parity 

symbol is the XOR of all the original symbols, indicating whether the number of ones 

in the corresponding bits is odd or even. Parity codes are used in many communication 

protocols and hardware designs as the simplest error-detecting mechanism. They are 

also used as simple erasure codes in redundant arrays of independent disks (RAID) [24] 

to recover single-disk failure. 

 

Reed-Solomon Codes 

Reed-Solomon codes were invented in 1960 [36] and are widely used in mass 

storage systems to correct the burst errors associated with media defects, such as in 

CDs and DVDs. In the codes, the data symbols are represented by the coefficients of a 

polynomial over a finite field. The polynomial is then evaluated at numerous points 

over the field, and these values are sent as the block of the encoded message. The 

number of points evaluated is larger than the degree of the polynomial, so that the 

polynomial is over-determined; the coefficients can therefore be recovered from 

subsets of the plotted points. 

The major disadvantage of Reed-Solomon Codes is its high computation 

overhead. Standard algorithms for decoding Reed-Solomon codes require quadratic 

time to K, which is too slow for even moderate values of K. Therefore, most 

Reed-Solomon code implementations use K < 255 and can only achieve decoding 

bandwidth up to tens of MBps. 
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2.2.3 Near-Optimal Erasure Codes 

Because of the high computation cost of optimal codes, people often employ 

near-optimal erasure codes that have positive reception overhead, i.e., (1+ε)K output 

blocks are required to reconstruct the message of K blocks for ε> 0. The most popular 

instances of near-optimal erasure codes are low-density parity-check (LDPC) codes 

[46, 47]. An LDPC code is a linear code that has a parity check matrix with a small 

number of nonzero elements in each row and column. It is often expressed as a sparse 

bipartite graph with each edge corresponding to one nonzero element of the matrix. 

During encoding, each code symbol on the right side of the graph is calculated as the 

XOR of its neighboring symbols on left side of the graph, as shown in part (a) of 0. 

Thus, the encoding time is proportional to the number of edges on the graph. During 

decoding, if we know the value of a code symbol and all but one of its corresponding 

original symbols, we can calculate the unknown original symbol as the XOR of the 

code symbol and the known original symbols, as shown in part (b) of Figure 2-3. 

Popular LDPC codes include Tornado Codes [40], LT Codes [48], and Raptor 

Codes [49]. We briefly describe these codes below. 
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Figure 2-3. LDPC Codes. (a) A graph defines a mapping from message bits to check 

bits. (b) Bits x1, x2, and c1 are used to solve for x3.

 

Tornado Codes 

Tornado codes were first described in 1997 [40]. They are erasure block codes 

based on irregular spare graphs, and were the first erasure codes with linear-time 

encoding and decoding algorithms. 

A Tornado code C(B0, B1,…, Bm, A) is a cascade of bipartite graphs B0, B1, …, 

Bm, A. The graph Bi has Kβi input symbols (from Bi-1) and produces Kβi+1 check 

symbols, where 0<β<1. At the last level, a conventional optimal erasure code is used. 

The cascade is ended with an erasure-correcting code A of rate 1-β with βm+1k 

message symbols. The total number of check symbols produced by this sequence is 
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given by Kβ/(1-β). The final code word is composed of the original message symbols 

and all the check symbols. The overall code rate is 1-β. 

The edge degree distributions of these graphs are carefully chosen so that a 

simple belief propagation decoder, that sets the value of a graph node only if the 

values of all its neighbors are known, achieves a high probability of successful 

decoding. 

 

LT Codes 

Luby Transform (LT) codes were proposed by Michael Luby in [48] as the 

first full realization of the digital fountain approach. LT codes are the first rateless 

erasure codes from which the data can generate a potentially limitless number of 

encoding symbols. 

LT codes only include one level of irregular bipartite coding graphs, with an 

unlimited number of parity nodes on the right side. Each encoding symbol is generated 

independently of all other symbols by the following process: 

(1) Generate a random number d from the degree distribution ( )dµ . 

(2) Choose uniformly at random d distinct input symbols as neighbors of the 

encoding symbol. 

(3) Set the value of the encoding symbol as the XOR of the d neighbors. 
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Note that the final code word only consists of the parity symbols; the original 

symbols are not included, although some parity symbols have a degree of one and 

hence are copies of the corresponding original symbols. 

A good degree distribution is essential to LT code design to achieve good 

decoding performance. In order to balance minimal redundancy with the production of 

enough edges to keep the decoding successful within an established probability, Luby 

proposed the robust Soliton distribution ( )dµ , which is defined as: first, define 

ln( / )R c k kδ=  for some suitable constant c>0 and δ>0, 

1/ for i=1
( )     

1/ ( 1) for i=2, ..., k
k

i
i i

ρ
⎧

= ⎨ −⎩
 

and  
/ for i=1, ..., k/R-1

( ) ln( / ) /     for i=k/R
0 for i=k/R+1, ..., k

R ik
i R R kτ δ

⎧
⎪= ⎨
⎪
⎩

Then the robust Soliton distribution is: 

( ) ( ( ) ( )) /i i iµ ρ τ= + β , where . 
1

( ( ) ( ))
k

i

i iβ ρ τ
=

= +∑

 

Raptor Codes 

Raptor codes are the latest class of digital fountain codes proposed by Amin 

Shokrollahi [49] for reliable multicasts. They are an extension of LT codes with linear 

time encoding and decoding. The key idea of Raptor codes is to relax the condition 

that all input symbols need to be recovered. If LT codes need to recover only a 
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constant fraction of their input symbols, then the decoding graph need only have O(K) 

edges, allowing for linear-time encoding. All input symbols still can be recovered by 

concatenating traditional erasure-correcting codes with LT codes. A graphic 

presentation of a Raptor code is given in Figure 2-4. 

 

 

Figure 2-4. Raptor codes. The input symbols are pre-encoded by traditional erasure 

codes, then encoding with LT codes. 

 

The encoding process consists of two steps. First the input symbols are 

pre-encoded using a traditional erasure code to get m intermediate symbols; then an 

appropriate LT code is applied to the intermediate symbols to get N output symbols. 

The decoding process first decodes the output symbols to get any K intermediate 

symbols, and then uses the traditional code to get K input symbols. 

For a given integer K, and any real δ>0, Raptor codes produce a potentially 

infinite stream of symbols so that any subset of symbols of size K(1+δ) is sufficient to 

recover the original K symbols with high probability. The encoding time is 

proportional to O(nln(1/δ)); the decoding time is proportional to O(kln(1/δ)).  
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2.3. Erasure Codes in Storage Systems 

A number of distributed storage systems use erasure codes to improve data 

reliability and availability. Weatherspoon et al. [50] analyzed the impact of erasure 

coding and replication on availability, concluding that erasure-coded systems have 

mean time to fail many orders of magnitude higher than replicated systems with 

similar storage and bandwidth requirement. Numerous storage systems, such as 

Oceanstore [43], Frangipani [51], Total Recall [45], PASIS [52], Koh-i-Noor [53], 

Typhoon [54], and [55] have exploited erasure codes for data reliability and 

availability. While some of these systems increase performance opportunistically by 

exploiting data redundancy, for none of them is this a focus. 

Collins and Plank’s [56] work is most closely related to RobuSTore. Their 

work uses Reed-Solomon codes or LDPC codes to improve access bandwidth in 

wide-area storage systems. They concluded that Reed-Solomon codes improve the 

storage access bandwidth more significantly than LDPC codes. However, they 

assumed slow shared networks with bandwidth less than 10MBps, and a small number 

of blocks (N≤100). In contrast to Collins and Plank’s work, RobuSTore is designed for 

high bandwidth dedicated networks and explores a much wider array of design choices 

in data coding, redundancy, layout, and access. In such environments, Reed-Solomon 

codes cannot provide required high bandwidth due to their high computation cost. 

Further, Collin and Plank only studied configurations with different N and different 

block selection methods, while a wide range of other configuration parameters also 
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have important impacts on access performance, including block size, network latency, 

degree of data redundancy, and so on. In this dissertation, we study the choice of 

erasure codes in more general situations and explore a range of configuration 

parameters using detailed simulation.  

 



Chapter 3. Thesis Statement 

This chapter outlines the research context, defines the research problem and 

presents the thesis statement. 

3.1. Context 

Emerging large-scale data-intensive applications require distributed storage 

systems with robust and high performance. These applications involve massive data 

collections and real-time accesses to data objects of size larger than gigabytes. 

Therefore, high storage performance is essential for these applications to access the 

large data objects; robust performance is important for real-time accesses and resource 

scheduling. Our research focuses on new data access mechanisms to deliver robust and 

high performance from a large collection of distributed disks. Although there are a 

range of other critical requirements for storage systems, such as reliability, security, 

integrity, manageability, and adaptability, they are not the foci of this dissertation. 

 

 

Figure 3-1. Distributed Applications and Shared Storage Systems. 
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Because a single disk has limited bandwidth, parallel access aggregating 

multiple disks is essential for high performance. However, in heterogeneous dynamic 

environments, doing this efficiently is an open research question. An efficient 

mechanism should be able to adaptively access the remote disks and tolerate the 

variation of individual disk performance. Such tolerance and adaptability are lacking 

in existing local parallel file systems, so applying the same parallel mechanisms in 

distributed storage systems will not achieve robust and high performance. 

Our approach is to integrate erasure codes and speculative access into 

distributed file systems to tolerate the performance variation. We can encode the 

original data using erasure codes to introduce symmetric redundancy in data blocks 

and then distribute and retrieve the coded blocks among a large number of distributed 

disks. To realize our idea efficiently, we need to explore the wide-range configuration 

space in data coding, data striping, and data retrieving, and to develop a design 

guideline for system implementation and configuration. 

3.2. Problem Definition 

The problem we are solving is how to achieve robust and high storage 

performance in distributed shared systems for large data accesses. Our workloads are 

derived from data-intensive scientific applications, and are often dominated by 

write-once and read-only accesses of hundreds of MB to tens of GB each. Update 

operations are rare in these applications. 

The main challenge is to effectively tolerate performance variation of the 

disks. In distributed shared storage systems, the disks may be shared among hundreds 
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of widely distributed applications and users. Each application may involve many 

collaborative users located nation-wide or even world-wide who share same set of data 

collections. Therefore, workloads on each disk or network channel are dynamic, 

incurring dynamic access performance to the disks. 

We assume that a distributed storage system includes abundant resources of 

disk space, network bandwidth, and CPU processing capability, so that we may trade 

these resources for robust and high performance. We believe in the near future it will 

be easy to aggregate thousands of disks in a large-scale scientific project by combining 

a few clusters of hundreds to thousands of nodes. A large number of disks provide 

abundant total storage capacity and total disk bandwidth. We further presume that both 

client-end networks and wide-area networks have high bandwidths. Single network 

interface card (NIC) can already provide up to 10 Gbps for clients; and higher network 

bandwidth can be achieved by clustering multiple NICs. In wide-area networks, 

DWDM technology enables each individual fiber to carry hundreds of 10 Gbps 

communication channels, providing terabits of bandwidth per fiber and dramatically 

more bandwidth per fiber bundle. Finally, the industry continues to increase per-chip 

CPU performance following Moore’s Law. Therefore, it is reasonable to trade some of 

these resources for robust and high performance in data accesses. 

While abundant resources are available in a distributed storage system, they 

are not free and should be used efficiently. Since the resources are shared among 

hundreds of widely distributed applications and users, each storage system may be 

used by multiple applications simultaneously. Abusive resource allocation will hurt 
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the access performance of other applications or users. Therefore, although we have 

abundant hardware resources, they are not infinite or free. 

3.3. Thesis Statement 

Our research studies the feasibility of delivering robust and high performance 

in distributed storage systems by exploiting erasure codes and speculative access. My 

thesis is as follows: 

By using erasure codes and speculative access, RobuSTore can efficiently 

aggregate large number of distributed storage devices to deliver robust and high 

storage performance in distributed high-speed network environments. Specifically, 

well-designed erasure codes can provide symmetric data redundancy with high 

encoding/decoding throughput. By exploiting this redundancy, speculative access can 

fully utilize the bandwidth of multiple heterogeneous disks, with tolerance to their 

performance variation. The combination of erasure codes and speculative access 

allows writing/reading data to and from a large number of distributed disks 

efficiently. 

Subsidiary theses required to substantiate this statement include: 

(1) Erasure codes can be designed to deliver high encoding and decoding 

throughput. 

(2) High-access bandwidth can be achieved in widely distributed storage 

systems. 

(3) High-access robustness can be achieved in distributed storage systems. 
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(4) Achieving the above benefits entails moderate overhead costs. 

To prove the thesis, we need first show the feasibility of the RobuSTore idea. 

We discussed the theoretical advantages of using erasure codes and speculative access, 

and then designed RobuSTore’s storage architecture to realize the idea of combining 

them together in storage systems. We further discussed the choices for RobuSTore 

components, giving a guideline for real RobuSTore implementation and configuration. 

Furthermore, we proved the soundness of using erasure codes for high-speed 

storage. We compared different erasure codes using theoretical analysis and real 

experiments. Based on these studies, we decided that LT codes are best fitted for our 

RobuSTore storage architecture. Further, we explored the coding parameters and 

decided the best configuration using both theoretical analysis and software simulation. 

We improved LT codes and delivered a highly efficient implementation which 

achieves 600 MBps decoding bandwidth on a 2.8 GHz ADM Opteron processor. 

Finally, we designed a range of simulation experiments to show the advantages 

and the costs of RobuSTore. Our detailed software simulation shows that the 

RobuSTore architecture can efficiently aggregate the performance of hundreds of 

distributed disks on large reads and writes. Comparing to simple striping and parallel 

access such as RAID-0, RobuSTore achieves up to 15 times bandwidth improvement 

and 5 times robustness improvement. RobuSTore uses about two to three times the 

storage space to achieve such improvements. On data accesses, it uses two to three 

times the I/O accesses for writes and about 1.5 times for reads. 

 

 



Chapter 4. RobuSTore Approach 

In this chapter, we present the RobuSTore idea of combining erasure codes and 

speculative access. We then explain why this approach is feasible and how it can 

improve access performance.  We first present the key RobuSTore idea in Section 

4.1. In Section 4.2, we present the design of the RobuSTore architecture followed by 

an explanation of the detailed access procedures in Section 4.3. 

4.1. Key RobuSTore Idea 

The key idea of RobuSTore is to combine erasure codes and speculative access 

to aggregate the dynamic heterogeneous disk performance in distributed environments 

efficiently, producing robust and high performance for large data accesses. RobuSTore 

uses erasure codes to add symmetric data redundancy, and stripes the encoded data 

blocks across a large number of distributed disks. With such layouts, clients can 

speculatively retrieve the data blocks and reconstruct the original data using the fast 

returned blocks. As a result, RobuSTore reduces performance dependence on the disks 

that are slow to respond. As a result, RobuSTore can efficiently aggregate large 

number of distributed storage devices to deliver robust and high access performance. 

At a high level, our approach is trading storage bandwidth, network bandwidth, 

and computing for low and robust access latency. In the scenarios of data-intensive 

scientific applications and, storage bandwidth and network bandwidth are relatively 

plentiful and low and robust access latency is more difficult and more important to 

achieve, as described in Chapter 1. 
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4.1.1 Using Erasure Codes for Symmetric Data Redundancy 

Erasure codes introduce symmetric data redundancy. An erasure code 

transforms data of K blocks into N (N>K) coded blocks. The coded blocks contain 

symmetric data information in such a way that the original data can be recovered from 

a flexible subset of those blocks. Optimal erasure codes such as Reed-Solomon Codes 

are perfectly symmetric and can use any K-coded blocks to reconstruct the original 

data. Near-optimal erasure codes allow the reconstruction using any (1+ε)K-coded 

blocks, which are still much more flexible than plain-text replication. 

The flexibility provided by symmetric redundancy allows adaptive read access 

to heterogeneous disks. We spread the coded blocks to a large number of distributed 

disks.  Since a read client can use any coded blocks to reconstruct the original data, it 

can read more blocks from a faster disk and less blocks from a slower disk. This is 

analogous to the usage of erasure codes for reliable communication; we use erasure 

codes to tolerate data loss in communication, while in storage systems we can think of 

the data blocks as lost blocks if they are on slow disks and cannot be retrieved in a 

short time. This redundancy reduces the dependence of the large-read request on the 

performance of individual disks. 

Furthermore, rateless erasure codes such as LT codes provide a flexible degree 

of redundancy, which allows adaptive write accesses to heterogeneous disks. Rateless 

codes can generate a practically infinite number of coded blocks; statistically, any 

subset of these blocks of a certain size will provide the same level of data redundancy. 
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Therefore, if a write client wants to write N coded blocks to the disks, it may encode 

the original data into N' (N'>N) coded blocks, and adaptively spread them to many 

disks until N of the N' blocks are successfully written to disks. 

To give a quantitative sense of how much flexibility erasure codes provide, we 

theoretically analyzed the number of blocks required for data reconstruction in both 

erasure-coded schemes and plain-text replicated schemes. Assume we have a K-block 

file and use four times its storage space. If using a plain-text replicated scheme, each 

block has four copies and at least one copy for each block should be retrieved to 

reconstruct all the data completely. The probability of successful reconstruction with 

M random replicated blocks is: 
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In contrast, if we encode the K blocks into 4K blocks using a typical LT code 

in which the average encoded-node degree is about five, we can reconstruct the 

original data from M random coded blocks with the following probability: 
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See the Appendix for the full analysis. In practice, about 3K blocks are needed 

in a replicated scheme versus about 1.5K blocks in an erasure-coded scheme (see 

Figure 4-1). 
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Figure 4-1. Cumulative Probability of Reassembly of Original Blocks. Assume there 

are N=1024 original blocks and 4096 coded or replicated blocks. 

 

4.1.2 Using Speculative Access to Tolerate Performance Variation 

Although erasure codes provide the access flexibility, we need a mechanism to 

utilize this flexibility to tolerate performance variation of the distributed disks. 

RobuSTore does this using speculative access. The basic idea of speculative access is 

to request more data blocks than needed from a large number of disks, to wait for the 

requests to be processed in parallel by the disks, and then to cancel the requests once 

enough blocks have been confirmed as completed. The speculative access for writes 

and reads are slightly different. To write a K-block data and use a factor of λ (λ>1) 

spaces, writing clients would first encode the data into N' blocks where N'>λK, 

exploiting the rateless feature of the erasure codes. They would then send requests to 

many disks and transfer coded blocks to them in parallel, then cancel the ongoing 

writing once N=λK blocks have been confirmed as written success. To read the data, 

reading clients would request all the blocks from the disks, then continue receiving 

 



  39 

them in parallel until enough blocks have been received. Benefiting from the decoding 

flexibility, clients can then reconstruct the original data using the sets of 

early-returning blocks. 

In distributed environments with high-speed networks, speculative access 

improves performance significantly with only minor overhead. The major advantage 

of speculative access is that it only sends requests once to each disk during each access, 

which minimizes the impact of long latency in distributed environments. Without 

predicting or monitoring the performance of each individual disk, clients can take 

advantage of symmetric redundancy from erasure codes and simply “read all then 

cancel” or “write all then cancel”. However, due to the long latency between the 

clients and the disks, some data bytes may already be on-the-fly at the time when the 

clients send out cancel signals, in either the disk-accessing or network–transferring 

phases. The actual disk and network accesses will be more than what is needed. 

Fortunately, we have abundant network and disk bandwidth, and the overhead only 

corresponds to one round-trip time. 

 

4.1.3 An Example 

By combining erasure codes and speculative access, RobuSTore can tolerate 

late-arriving blocks and reduce the dependence of a request on any individual disk, 

and hence achieve robust and high performance. Figure 4-2 provides an example 

depicting this advantage in read access. In the example, an eight-block of data is 

encoded into 16 blocks which are spread across four disks. We assume the data 
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reconstruction needs eight coded blocks, although the number could be slightly larger 

if we use near-optimal erasure codes. Read clients first send requests to all four disks 

for all the blocks. The disks then transfer the data blocks back to the clients at different 

speeds. Once the clients receive eight blocks, they cancel the rest of the accesses, 

reconstruct the original data, and complete the access with a high-average bandwidth. 

Furthermore, if any of these first eight blocks are lost or delayed due to any reason, the 

clients only need to receive one more block and complete the overall access with only 

slightly longer latency. 

 

 

 

Figure 4-2. Advantage of Using Erasure Codes and Speculative Access. The four disks 

have different performance; Assume eight original blocks are encoded into sixteen 

coded blocks. 
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4.2. RobuSTore Framework 

To realize the RobuSTore idea, we designed a RobuSTore framework which 

includes three key components: client, metadata server, and storage servers, as shown 

in Figure 4-3. 

 

 

Figure 4-3. RobuSTore System Framework. 

 

Clients perform the many distributed file system functions of accessing 

metadata, planning layout, encoding data, sending requests to storage servers, and 

decoding and assembling completed responses. First, when a client receives an 

application request, it queries from metadata server for information of data layout and 

related disks (disk address, performance, and load, etc). Next, based on this 

information and the quality of service specified by the application, the client will 

select a set of disks to do the access. For this purpose, the client also need to include 
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an access scheduler which selects amongst the candidate disks and blocks from which 

they access, and a Layout Planner which selects the devices’ degrees of redundancy. If 

the request is a write, the client then encodes the data and sends them to the disks; if it 

is a read request, the client reads coded data blocks from the disks and decodes the 

data. The encoding and decoding modules (ENC/DEC) are implemented on the client 

side, which has several advantages: this provides the maximum leverage for client 

accesses to benefit from the order-flexibility in the returning responses (sort of an 

end-to-end argument), decouples the encoding/decoding cleanly from the design of 

storage and metadata servers, and enables easier and broader experimentation and 

configuration.  

Metadata Servers maintain both data information and storage server 

information.  Data information includes data name, data size, data location, encoding 

algorithms, owner, access rights, file locks, and so forth. Storage server information 

includes storage capacity, expected performance, recent load, connectivity, 

availability, and so forth. Metadata servers get the data information from client: each 

time when a client writes or updates some data, it reports the latest data information to 

metadata servers. The storage server information may come from multiple sources. 

Some static information, such as disk capacity and peak performance, is known when 

the storage servers register to the metadata server and join the storage systems. 

Dynamic storage information may come from the client accesses and periodic queries 

to the storage servers. 
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The metadata server implementation could be centralized or distributed, 

depending on the system’s scale and the performance requirements. A central 

metadata server minimizes update and synchronization costs at some penalty in 

scalability. However, because metadata access is primarily needed on open/close, a 

well-designed metadata server can support a large-scale system. For example, in the 

Lustre parallel file system, a single metadata server can support a cluster with 

thousands of disks. On the other side, a distributed metadata server has the potential to 

support more disks and users with faster responses, while it also involves higher 

management costs for synchronization, load balancing, and so on. 

Storage Servers provide data storage at block level (erasure-coded blocks, 

presumed to be larger than disk blocks). Servers may be single disks or disk arrays, 

and each implements local admission and access control. Servers typically have 

variable performance due to heterogeneity in hardware, data layout, or load.   

Each server may have its own admission control mechanism. An admission 

controller controls access to the storage server in order to avoid disk overload and to 

guarantee the quality of services. Admission controllers are optional. They are useful 

when the storage system has high workloads and are required to guarantee the quality 

of services. 
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4.3. RobuSTore Access Procedures 

4.3.1 Basic Operation Interfaces 

Basic RobuSTore operation interfaces include: 

• open(filename, read/write,QoS_options); 

This function accesses the metadata server, opens the file, gets disk map 

information, and plans an access schedule based on the application QoS requirements. 

The function returns a file descriptor which includes information like data location, 

coding algorithm, coding parameters, and data offset, etc. An extended discussion is in 

Appendix B. 

● write(fdescriptor,data,length); 

This function encodes the data and spreads the coded blocks across the 

selected disks until enough blocks have been completely written. 

● read(fdescriptor,buffer,length); 

This function requests coded blocks from the selected disks, receives blocks, 

decodes the data until all the original data has been decoded successfully, and cancels 

the read requests after completion. 

● close(fdescriptor); 

This function registers the data structure and location with the metadata server 

if the data is written or modified and releases the file lock. 
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To show the relationship between the basic operations and the RobuSTore’s 

components, we will explain the detailed processes of data write, data read, and data 

modification in the subsections below. 

 

4.3.2 Write Access 

The left side of Figure 4-4 depicts the write processes. In step 1, clients first 

access the metadata server, open the file, and plan layouts based on disk map 

information and application QoS requirements. The clients then allocate the needed 

storage on the servers, encode the data appropriately using specified coding 

parameters to generate redundant coded blocks, and transfer the blocks to the selected 

servers in parallel to the encoding, shown as step 2 and step 3 in the figure. Once 

enough data blocks are committed to the servers, the clients register the data structure 

and location with the metadata server, release the file lock, and complete the write 

access.  
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Figure 4-4. Write and Read Processes in RobuSTore. (Write in dark circles, Read in 

white diamonds) 

 

4.3.3 Read Access 

The right side of Figure 4-4 depicts the read process. The numbers with white 

squares in the figure show the steps in sequence. Similar to the write access process, 

read accesses start from queries to the metadata server, from which clients obtain 

storage server information, data structure and location information, and any required 

locks. To read, the clients request all coded blocks from servers and decode the 

received blocks in parallel.  When enough blocks have been received, the decoding 

finishes and the original data are reconstructed. At the same time, outstanding requests 

to the storage servers are cancelled.  Finally, the close function notifies the metadata 

server, releasing read locks and bandwidth reservations on the storage servers. 
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4.3.4 Update Access 

Although update operations are rare in most data-intensive scientific 

applications and are not our focus in this dissertation, a neat mechanism is still needed 

to deal with these operations. In RobuSTore, if optimal erasure codes are used, then 

any minor modification may cause the change of almost all the coded blocks; 

however, if near-optimal erasure codes are used, the change to one original block only 

affects a limited number of coded blocks. For example, in our implementation of LT 

codes with 1024 original blocks and 4096 coded blocks, the average degree of original 

block is about 20. In order to change one original block, we need to update at most 20 

coded blocks, which is about 0.5% of the total encoded data. 

The complete update process is as follows. The clients first get data location 

information from the metadata server. They can then examine the coding graphs and 

figure out which coded blocks should be updated. Next, they regenerate those coded 

blocks, and spread them out to remote disks (not necessary for the disks that store the 

old coded blocks). Finally, the clients notify the metadata server about the updated 

blocks and notify the disks to delete the obsolete coded blocks. 

4.4. Summary 

In summary, we proposed the RobuSTore idea of combining erasure codes and 

speculative access in distributed storage environments, explained its potential for 

achieving robust and high performance by giving a high-level analysis, and showed its 

feasibility by presenting the design framework and access procedures. 

 



Chapter 5. Design of RobuSTore: Critical Choices 

There are many choices for the design, implementation and configuration of a 

RobuSTore system, including choices for erasure codes, speculative access and 

admission control. These choices are critical because they have major effects on the 

efficiency and performance of the RobuSTore systems. We discuss the choices in this 

chapter. Section 5.1 explains why these choices are critical. Section 5.2 discusses the 

erasure codes choices. Section 5.3 discusses the issues related to speculative access, 

including data layout preparation and request cancellation. Finally, Section 5.4 

explains the admission control. 

 

5.1. Introduction 

The RobuSTore system framework enables flexible choices of the design space 

for the RobuSTore components. Different choices have significant impact on the 

system performance, so it is important to make proper choices. 

The critical design choices for RobuSTore involve choices around erasure 

codes, speculative access, and admission control. Choices for erasure codes are critical 

because every RobuSTore access involves erasure encoding or decoding. The 

properties of erasure codes have a direct impact on access performance and the 

resource overhead (CPU, network, and disks). Choices for speculative access are also 

critical for RobuSTore performance. Since speculative access interact with erasure 

codes, their choices affect access latency and system loads. Furthermore, since 
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RobuSTore systems are shared by many users and applications, it is important to have 

proper admission control mechanism to provide efficient sharing and guarantee the 

quality of service. We discuss these major design issues below. 

 

5.2. Choices of Erasure Codes 

Since RobuSTore accesses are tightly related to erasure codes, it is essential to 

understand the erasure codes’ behavior, parameters, and performance, and choose 

erasure codes with the best algorithm and the best configuration for RobuSTore. In 

this section, we discuss the choices of erasure codes in several aspects. First, we 

explore the different erasure codes, analyze which codes are the best for RobuSTore, 

and explain why we choose LT Codes. We then examine the different LT Codes 

parameters and describe our improvement and implementation of LT Codes. 

 

5.2.1 Coding Algorithm Selection: LT Codes 

To deliver high and robust performance on thousands of hard drives, we need 

erasure codes with low reception overhead, low computation overhead, and long code 

words. Low reception overhead means high coding efficiency, i.e., only a small 

number of coded blocks are enough to reconstruct the original data. Low computation 

overhead allows high bandwidth data encoding and decoding so that we can use an 

ordinary computer with moderate-speed CPU as a RobuSTore client. A code with a 

long code word can generate a large number of coded blocks, which brings two 
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benefits to RobuSTore. First, it allows RobuSTore to stripe the encoded data blocks 

across many disks and to retrieve them from many disks in parallel. Furthermore, long 

code words allow splitting the original data into more finely grained blocks, which 

brings more data access flexibility. These three features cannot be optimized at the 

same time. It is therefore important to choose proper coding algorithms and proper 

coding parameters. 

As described in Chapter 2, there are many different erasure codes, including 

optimal erasure codes, poorly-optimized erasure codes, and near-optimal erasure codes. 

We analyze the properties of using each of them in RobuSTore as following. 

Optimal erasure codes achieve perfect coding efficiency, but they have a high 

CPU overhead when using long code words. A rate R optimal code transforms the 

original K-block data into N=K/R blocks in such a way that any K-coded blocks 

suffice to decode the original data. This optimal coding efficiency implies that the 

information about every original block is mingled into at least N-K coded blocks, 

since otherwise we can find K coded blocks that are not sufficient to reconstruct the 

original data. Hence, on encoding, every coded block should be generated by 

computing at least K(N – K)/N original blocks on average, and on decoding, the 

reconstruction of every original block will need to compute at least K(N – K)/N coded 

blocks on average. Considering N=K/R, the encoding time is at least: 
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and the decoding time is at least: 
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Both encoding time and decoding time is quadratic in K (and thus also 

quadratic in N). Hence, the encoding and decoding bandwidth is inversely 

proportional to K. For example, we implement an instance of Reed-Solomon codes 

and test its performance of encoding and decoding 16 MB data, which is shown in 

Table 5-1.  

 

Table 5-1. Coding Bandwidth of Reed-Solomon Codes. Tested on 2.4GHz Intel Xeon. 

K (# 

original blocks) 

N(# 

coded blocks 

Encode 

Bandwidth (MBps) 

Decode 

Bandwidth (MBps) 

32 64 13.7 15.9 

16 32 26.8 31.3 

8 16 53.3 60.8 

4 8 112.2 99.5 

 

At the other extreme, pure replication is the simplest form of erasure codes 

with poor efficiency. Replication has a low run-time overhead (a copy) and permits 

efficient random access to sub-blocks of an object. However, replication is highly 
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inefficient in environments with dynamic disk performance, since many storage 

replicas are required to tolerate disk performance variation. For example, if there are K 

original blocks that are replicated 1/R times (so the total block number is N=K/R), and 

we randomly read the N blocks, the expected number of blocks we need on average to 

have at least one copy for each of the K original blocks is: 

f(1) = 1 

f(2) = f(1) + K/(K – 1) 

f(3) = f(2) + K/(K – 2) 

… 

f(K) = f(K – 1) + K = K(1/K + 1/(K–1) + … + 1/2 + 1) ≈ KlnK 

With limited client-side network bandwidth and limited shared disk bandwidth, 

the cost of KlnK is significantly high. 

Near-optimal erasure codes make a good trade-off between reception overhead 

and computation overhead; they require only a few more than optimal coded blocks 

for reconstruction, but can usually support long code words with low CPU overhead. 

In near-optimal erasure codes, each original block is only associated with a small 

number of coded blocks, and vice versa. For example, LDPC codes use sparse 

bipartite coding graphs in which each coded block is the parity of a few original 

blocks. The computation cost for encoding or decoding each block is proportional to 

the node degrees of the corresponding coded blocks, which are usually proportional to 

lnK. 
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Among all the different LDPC codes, we selected the Luby Transform (LT) 

codes [48] for RobuSTore. While there are many different LDPC codes that approach 

the Shannon limit of channel capacity and have reasonable encoding/decoding 

complexity, such as Tornado codes, LT codes and Raptor codes, for our purposes LT 

codes [42, 48, 49, 57] have a number of advantages. First, they are rateless, which 

allows redundancy to be decoupled from other system-design issues, such as the 

number of storage servers used, and also allows adaptive writing. Second, LT codes 

use only one level of bipartite structure and block-XOR operations, so that they can be 

implemented with high coding throughputs. Third, their structure allows the coding 

process to be overlapped with data I/O, effectively eliminating the critical path time of 

coding. 

 

5.2.2 LT Codes Parameters 

Given the LT coding algorithm, its performance is affected by many coding 

parameters, including word length (K), code word length (N), coding graph density, 

and data redundancy (D=N/K-1). We analyze the parameters in theory below. 

First, large K and N are required for flexibility in speculative access. If there 

are a large number of blocks, we can spread them to many disks and read them from 

many disks in parallel, and hence aggregate the bandwidth of many disks to achieve 

high performance. Furthermore, with the large number of coded blocks, we can put 

multiple blocks on each disk, which enables the reading of a different number of 

blocks from each disk using speculative access. If the average remote disk bandwidth 
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is 20 MBps, which is typical in contemporary storage systems, we need to access 

about 64 disks to saturate a client network with a 10 Gbps (1.2 GBps) network. Since 

we use block-based access in RobuSTore, if the maximum performance variation of 

the disks is q, we should have at least q blocks in each disk to utilize the performance 

of both fast and slow disks. Therefore, in a storage system with tens or hundreds of 

times the performance difference between the disks, we need hundreds or thousands of 

coded blocks. 

On the other hand, it takes higher coding overhead to use larger K and N. To 

understand this, we analyzed the encoding and decoding cost of LT codes. First, each 

coded block in LT codes is the parity of multiple original blocks. Assuming the 

average degree of coded block is de, we need de–1 XOR operations to recover each 

block. Second, a successful decoding requires at least that all the original blocks be 

covered by the received coded blocks. Since the coding graph is randomly generated, 

each coded block can only cover de random original blocks. The minimum number of 

coded blocks required for reconstruction is: 

(1+K/(K-1)+K/(K-2)+…+K) / de = KlnK /de

To achieve good reception overhead, de should be close to lnK. This means 

that a large K should correspond with a denser coding graph with a large encoded 

node degree de.  

The data redundancy (D=N/R–1) is another important parameter for erasure 

codes. It decides the storage space overhead and the read flexibility. However, LT 

codes are rateless and the coding algorithm is independent to redundancy, so we delay 
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the discussion on data redundancy until Section 5.3.2 and give only the conclusion 

below: the data redundancy is at most the maximum performance variation of the 

disks; a reasonable choice is the ratio between the peak disk performance and the 

average disk performance. 

Considering these factors, we chose K=128~1024 and N=512~4096. In the 

next subsection, we further explore the code word length by implementing the LT 

codes and running them across different Ks and Ns. 

 

5.2.3 LT Codes Improvement 

LT codes are non-optimal codes with many good features. We have described 

the algorithms of LT codes in Chapter 2. They are simple, fast, and rateless. However, 

the original LT codes are optimized for communication; they do not fit perfectly in 

storage systems.  

The original LT algorithms have several drawbacks when used in storage. 

First, the coded blocks are completely independent, so the codes cannot guarantee 

decodability with any finite number of coded blocks; instead, they only provide a 

significantly high probability of success for decoding with a certain number of coded 

blocks. In communication, this is acceptable since the sender can keep sending new 

coded blocks until the receiver can reconstruct the original data. In storage, however, 

the writing and reading are asynchronous operations, so it is the writer’s responsibility 

to guarantee the decodability. Second, the coding graph has irregular coverage. The 

edges are randomly distributed among the original blocks, which makes some original 
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blocks have a low node degree and become a bottleneck for both performance and 

reliability. Third, the original decoding algorithm does XOR operations greedily 

whenever a new coded block is received. Many XOR operations are actually not 

needed. 

To use LT Codes in storage systems, we need the codes to have guaranteed 

decodability, robust reception overhead, and low CPU and memory cost. Therefore, 

we made the following improvement and optimization of the original algorithms: 

(1) We guaranteed the decodability by checking the coding graph. In our 

improved encoding algorithm, we first generated the bipartite graph without doing 

block XOR operations and checked the decodability of the coded blocks. If the 

original file could not be reconstructed, a new bipartite graph would be regenerated 

until we have guaranteed decodability. 

(2) We covered the original blocks uniformly. On encoding, instead of 

randomly selecting original blocks as neighbors of coded blocks, we chose original 

blocks in order to make all original blocks have same node degree, or, at most, 

different in one. We implemented this using the following pseudo-random selection 

technique. We first generated a random permutation of the original blocks, then used 

them one-by-one when generating the coded blocks; a new permutation was generated 

whenever all the original blocks in the last permutation were used. 

(3) We reduced CPU and memory cost by doing lazy XOR instead of greedy 

XOR. On decoding, we did memory XOR operations only when we could decode a 

block. This eliminated any operations to generate intermediate data that would not 
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help to decode the data blocks. In addition, this method also leveraged memory and 

cache locality at the system level to reduce memory hits. 

(4) We reduced memory cost by using instruction-level optimization. We 

optimized the memory XOR operations for efficient usage of registers and cache on 

the processor. More specifically, we used variables with great care so that the number 

of registers needed in each loop body would not exceed the total number of registers 

available in processor; we used a long operand to reduce the loop times; further, we 

used striping for XOR on large memory buffers so as to maximize cache usage. 

 

5.2.4 LT Codes Performance 

We implemented LT codes with the improved features as above, and tested the 

performance with different coding parameters. 

Figure 5-1 shows the reception overhead and its standard deviation for 

different numbers of data blocks (K) with different parameters C and δ. Reception 

overhead decides the disk and communication overhead; a small reception overhead 

implies less data to be retrieved from remote storage devices. Although different Ks 

correspond to different sweet spots of C and δ, it is not hard to find good parameters to 

achieve reception overhead in 0.3-0.5. For example, when K=1024, C=1 and δ=0.1, 

the reception overhead is about 0.5 and the corresponding standard deviation is about 

0.08 which is about 5% of the total received blocks. 
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Figure 5-1. Reception Overhead of LT Codes. Left plots show average reception 

overhead, i.e., the number of coded nodes necessary to decode all data nodes; right 

plots show the relative standard deviation. The plots from top to bottom corresponds 

to K=128, 512, 1024. 
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As for CPU overhead, we first examined the amount of memory in XOR 

operations. In LT codes, each memory XOR operation involves one edge in the 

bipartite graph. Figure 5-2 shows the average number of edges to be used on decoding 

and its standard deviation. These actually correspond to K multiplied by the average 

node degree of coded blocks. Given C and δ, the node degree follows a fixed 

distribution, so the average node degree is independent of K; we only show the plots 

for K=1024 here. 

 

 

Figure 5-2. Number of Edges Used on LT Codes Decoding. Left plot shows average 

number of edges used; right plot shows its relative standard deviation. K=1024. 

 

Comparing the plots in Figure 5-1 and Figure 5-2, we notice that C and δ have 

opposite effects on CPU overhead and communication overhead. Basically, small δ 

and large C cause less CPU overhead, but more communication overhead. For a 

specific system, we can choose the proper C and δ based on CPU speed and the 
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network speed of the client machines. In the following sections, we assume δ=0.1 and 

C=1 so that the reception overhead is 0.5. 

The following figure shows the actual decoding bandwidth on one 2.8GHz 

AMD Opteron Processor. The results show a decoding speed fast enough to saturate 

network speed on most client systems. For example, for C=1.0 and δ=0.1, the 

decoding bandwidth is 394 MBps, while the reception overhead is about 50%, which 

means that it can keep up with a network interface with 394*(1+0.5)*8 Mbps=4.7 

Gbps data receiving bandwidth. If the client is equipped with faster network interface 

card, we can choose larger C and smaller δ. For example, for C=2.0 and δ=0.01, the 

decoding bandwidth is 550 MBps and the reception overhead is about 136%, so that 

the decoder can saturate a 10 Gbps network interface card. 

 

 

Figure 5-3. Decoding Bandwidth and Reception Overhead of LT Codes. Tested with a 

LT codes implementation on one 2.8 GHz AMD Opteron processor. 
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5.3. Choices of Speculative Access 

During the speculative access, RobuSTore trades the abundant disk and 

network resources for better performance. However, it is important not to use the 

resources abusively. We discuss three issues related to proper resource utilization: disk 

selection, data redundancy, and request cancellation. 

5.3.1 Disk Selection 

On writing each new data, clients need to choose a certain number of disks to 

use. The number of disks to access decides the level of parallelism. When we stripe 

the data to multiple disks, we can write and read the disks in parallel to aggregate the 

performance of multiple disks. Therefore, the number of disks should be no less than 

the expected total access bandwidth divided by the average disk bandwidth. For 

example, if the average remote disk bandwidth is 20 MBps, which is typical in 

contemporary storage systems, we need to access about 64 disks to saturate a client 

network with 10 Gbps (1.2 GBps). 

Besides the number of disks, clients should also choose which disks to use. 

Different disks have different workload patterns, different disk bandwidths, different 

capacities, different network bandwidths, different geographical locations, and 

different failure models. Proper disk selection is important for improving both access 

performance and data reliability. 

Access performance can be improved by selecting distributed lightly-loaded 

disks. First, the disk performance is sensitive to the number of concurrent accesses due 

to its rotation and seeking feature. By selecting the lightly-loaded disks to access, the 
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client can reduce the access contention with other clients, and therefore get better 

performance and help the system to deliver a high overall system throughput. Another 

consideration is storage space. The clients should try to write data to those disks with 

larger free spaces; otherwise, when many disks are full the later-written clients would 

have fewer disks to choose and eventually get poorer performance due to intensive 

access contention. Finally, disk location is another factor that affects access 

performance. In a storage system with many distributed users, it is important to have 

each file striped across multiple distributed sites because this allows the accesses to 

flow through many different network paths, reducing network congestion. 

Data reliability can benefit from selecting distributed disks and balancing 

different disk failure models. Using distributed disks provides better support for 

disaster recovery. A disaster usually destroys servers only in a small region. If data are 

spread across multiple sites with erasure-coded redundancy, they can be easily 

reconstructed from data blocks on the available disks.  

Another consideration is a disk failure model. Different disks have different 

availability. If we choose all low-availability disks, we might be in danger of being 

unable to find enough disks to read later on. On the other hand, if we always choose 

high-availability disks, we may use up these disks and leave only low-availability 

disks for later accesses. Hence a mixed selection with both high-availability disks and 

low-availability disks is recommended. The disk failure models also have different 

patterns. For example, servers located in different time zones may have different 

maintenance times. It is better to select disks with mixed failure patterns. 
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5.3.2 Data Redundancy 

The required storage space is decided by original data size and the degree of 

data redundancy. In RobuSTore, data redundancy is the ratio between the number of 

redundant coded blocks and the number of original data blocks. We denote data 

redundancy as D, 

     D=(N – K)/K = 1/R – 1. 

Data redundancy affects both the writing performance and the reading flexibility, so it 

is important to choose a proper data redundancy. First, if more coded blocks are 

generated, this takes more network and disk bandwidth and also a longer time to write 

them into the storage system. Hence, to improve writing performance, we should use 

as few coded blocks as possible. On the other hand, more coded blocks provide higher 

flexibility in choosing which blocks to read, which allows RobuSTore to adapt to 

higher performance heterogeneity of the disks. Therefore, high data redundancy is 

good for read performance.  

 

Figure 5-4. Tolerate Dynamic Disk Performances. 
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A good choice of data redundancy should represent a proper tradeoff between 

storage usage and flexibility for access adaptation. The number of coded blocks should 

be barely enough to allow each disk to have enough blocks to send during a read 

access. For example, as depicted in Figure5-4(a), when we write data into many disks, 

a different number of blocks are written to different disks due to disk performance 

heterogeneity. Assume there are H disks (here H=8), and disk i has bandwidth Biw. 

The average writing bandwidth, then, is: 
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If the data redundancy is D, the total number of coded blocks is N=(D+1)K. 

The amount of data written to disk i is then: 
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When clients speculatively read the data blocks, the dynamic disk performance 

might be quite different from what it had been when writing the data, as depicted in 

Figure5-4(b). Assume disk i has bandwidth Bir, then the average reading bandwidth is:  
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Non-optimal erasure codes have positive reception overhead ε, meaning that 

they require (1+ε)K coded blocks to construct the K original blocks. If there are 

enough blocks on every disk to read, the amount of data read from disk i are: 

(1 )(1 ) ir
ir ir ir
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To guarantee every disk has enough blocks, the following should be satisfied: 
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When the number of disks is large, statistical theory tells that r wB B≅ . 

Therefore, the required data redundancy is: 

1
(1 ) max 1ir

i H
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Bir/Biw is the performance variation of each individual disk.  

The performance variation of hard drives may be up to factors in the tens of or 

even hundreds with the existence of different access contentions. This is a strict 

boundary of D; however, a very large D is not required in practice. First, it is rare for 

the disks to be that heavily loaded since we always select the most lightly loaded disk 

upon which to write new data, and can usually achieve reasonably high Biw. Second, if 

only a few disks have insufficient number of blocks to read, they will not have a 

significant impact on overall performance. 
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In a specific case, if we write same amount of data to each disk, i.e., Fw = N/H, 

then we can get the following using a similar analysis process: 

1
(1 ) max( / ) 1ir iri H

D Bε
≤ ≤

= + ⋅ −B . 

In Chapter 6, our experiments show that data redundancy of two to three is 

enough to provide the best performance. 

5.3.3 Request Cancellation 

Request cancellation is important in RobuSTore for efficient resource sharing. 

RobuSTore uses speculative access, which request more coded blocks than what are 

needed to reconstruct data. However, as the network and disk resources are shared 

among a large number of users and applications, resource abuse hurts the accesses of 

other users and applications and eventually hurts our own accesses. Therefore, a 

mechanism is required to cancel the uncompleted request once enough blocks have 

been written or read. 

Request cancellations can be implemented at the hard disk drive controller. 

Each modern hard drive has its own processor and buffer. The processor, usually 

called a controller, allows the CPU to talk to the hard disk. It coordinates the 

communication between bus and hard disk, maintains the disk request queue, and 

manages the disk cache. When a request comes from the bus, the controller first puts it 

into the request queue and waits until the disk is available for the next data request. All 

the unprocessed requests are in the disk request queue. We can therefore implement 

the request cancellation by removing the corresponding requests from the queue. This 

 



  67 

is feasible for SCSI disks since they provide syntax-rich interfaces. For example, the 

Advanced SCSI Programming Interface (ASPI) [58] provides a function 

SendASPI32Command that can send a SC_ABORT_SRB command to cancel a 

previously submitted request. In ATA disks, however, no similar interface is yet 

available. 

Another method is to implement request cancellations in the file system 

software. The file system can buffer all the requests and send them to the disk drive 

one by one so that all the unprocessed requests are in the file system software and can 

be cancelled when needed. This method does not require any support from the hard 

drive interface, and can thus be implemented in any file system. 

 

5.4. Choices of Admission Control 

In RobuSTore, the access to storage devices is granted by the admission 

controller. The purpose to use admission controller is in two folds: First, it can 

guarantee the quality of service to existing accesses. Further, it protects the storage 

systems from abusive sharing. Sharing same disk by multiple concurrent large 

accesses usually damages the disk throughput dramatically due to the rotating 

character of hard disks, so a proper admission controller is necessary to avoid 

exorbitant sharing and improve the total throughput of the server. Because the ultimate 

goal of RobuSTure is to provide robust performance for multi-user workloads in 

federated shared storage environments, the role of admission controllers is critical. 
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Admission controllers are associated with storage servers, reflecting the need 

to control resource access in a structure that is both scalable and is compatible with 

federated access in a distributed setting. Clients must negotiate on behalf of 

applications for access to storage servers, and the admission controllers act as resource 

managers for the storage servers. 

Admission controllers make decision based on estimated storage throughput, 

ongoing accesses, and size/latency of the new request. When workload of a storage 

device exceeds its capability, new access requests to the device will be refused.  

There are two classes of admission controlling mechanisms: capacity-based 

and priority-based. Capacity-based admission control (CAC) is to service requests 

based on arrival time. With CAC, new flows are indiscriminately admitted until 

capacity is exhausted (First Come First Admitted). New flows are not admitted until 

capacity is available. Priority-based admission control allows some requests to 

preempt others based on priority settings. However, adding traffic to a higher priority 

queue can affect the performance of lower-priority classes, so priority queued systems 

must use sophisticated admission control algorithms. 

In network communication area, there are several mature works on admission 

control on network bandwidth. For example, RFC 2751 [59] and RFC 2815 [60] 

describe admission control in a priority-queued system; RFC 2816 [61] discusses 

methods for supporting RSVP in LAN environments. 

However, admission control in storage systems is different from that in 

networks. In shared systems, disk bandwidth is less predictable than network 

 



  69 

bandwidth. Multiple simultaneous accesses to one disk usually get much less total 

performance than exclusive access to the disk due to the costly disk seeking and 

rotation in switching between the accesses. Furthermore, the mapping of the high level 

QoS goals to low level storage device actions is usually complex. Admission control 

in storage systems is still a hot research topic. 

In RobuSTore, we reserve the choice on admission control for future work. 

This is based on the following considerations. First, the experiments of admission 

control need good workload models for multiple competitive accesses. However, we 

do not have good enough workload model or traces, hence experiments on admission 

control is not very meaningful. Furthermore, different storage sites are likely to have 

different access control policies, which make it complex to study. 

 

5.5. Summary 

In this chapter, we have discussed several critical design issues in RobuSTore, 

including choices for erasure codes, speculative access, and access control. We show 

that LT codes are good candidates for coding; improved LT codes with parameters 

C=1 and δ=0.1 can achieve decoding bandwidths up to 500 MBps on a single Opteron 

2.8 GHz CPU, with about 0.5 reception overhead. In a typical implementation, a client 

should also choose proper speculative access schemes. The number of disks to access 

in parallel is based on the expected average remote disk bandwidth and the client’s 

process capability. The data redundancy should reflex the difference between the 

average disk bandwidth and the fastest disk bandwidth. Further, we show that request 
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cancellation can be implemented in either hard drive or filesystem software. Finally, 

we also discuss the choices for admission control. These discussions show the 

feasibility of a practical RobuSTore implementation in distributed environments. 

Another important issue for distributed storage system is access control. 

However, this is not the focus of our dissertation, so we only briefly discuss the issue 

in Appendix C. 
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Chapter 6. Performance Evaluation 

In this chapter, we study the advantages of RobuSTore over traditional parallel 

storage schemes in terms of tolerating performance variation from data layout, 

competitive workloads, and filesystem caching. We evaluate these storage systems 

using detailed software simulation, and simulate the systems across a wide range of 

configurations, including different numbers of storage devices, network properties and 

degrees of data redundancy. 

The chapter is organized as follows. Section 6.1 introduces the 

simulation-based performance evaluation method and its advantages. Section 6.2 gives 

the experimental design, including storage schemes, simulator design, workloads, 

metrics and experiment configurations. The experiment results are presented and 

analyzed in Section 6.3. 

6.1. Introduction 

We use detailed discrete-event simulation to evaluate the RobuSTore scheme 

quantitatively. Our theoretical analysis in previous chapters provides a qualitative 

view of the advantages of using erasure codes and speculative access in storage 

systems. A quantitative evaluation, however, requires detailed simulation, which 

captures behaviors of the components in a complex storage system and enables more 

accurate studies of the RobuSTore architecture. 

With detailed simulation, we are able to explore a wide range of configuration 

spaces of a storage system. Storage systems are complex and include many 

71 
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components; there are many choices of mechanisms, algorithms and other parameters 

for each component. The overall system performance may vary significantly under 

different configurations. With software simulation, we can evaluate the simulated 

system with various configurations and explore the configuration space systematically. 

The scenarios we are going to study include environments with performance variations 

from data layout, competitive workloads, and filesystem caching, and different 

configurations of disks, networks, and coding algorithms. Such study reveals the 

RobuSTore performance in different situations, thereby helping us to decide upon the 

optimal configurations for the RobuSTore scheme. 

As a basis for comparison, we model and simulate three traditional parallel 

storage schemes in addition to RobuSTore: RAID-0, RRAID-S, and RRAID-A, 

defined in Section 6.2.1. We evaluate each scheme’s performance for read, write, and 

read-after-write across a wide range of configurations. The results show that 

RobuSTore delivers a significant improvement on access bandwidth and robustness in 

most cases. 

6.2. Experimental Design 

In this section, we describe the storage schemes for comparison, simulation 

design, metrics, workloads, and experiment configurations in detail. 

6.2.1 Storage Schemes for Comparison 

We evaluate the RobuSTore scheme by comparing it against conventional 

parallel storage schemes. The conventional schemes are RAID-0, RRAID-S, and 
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RRAID-A, which are different from RobuSTore in terms of the data layout 

mechanism or access mechanism. 

RAID-0 uses data striping with zero redundancy and accesses all the striped 

data in parallel. In RAID-0, each data segment is split into many plain-text blocks 

(Figure 6-1a), which are then interleaved across multiple disks in the system (Figure 

6-1c). On data reading, since the data is not replicated, the client has to read all the 

blocks to get the complete data segment. To do this, the client sends one request to 

each disk for all the corresponding blocks on that disk and reads the blocks in parallel.  

RRAID-S uses replicated data striping and speculative access. As in RAID-0, 

the original data segment is first split into many plain-text blocks. However, in this 

case, multiple copies of the blocks are distributed over the disks, each replica starting 

one disk rotated over. Specifically, i-th block of replica r is stored on disk (i+r mod 

H). Figure 6-1d shows an example for an 8-block segment with two replicas. The data 

layout in RRAID-S is just slightly different from that in RAID-0+1, where data blocks 

are striped across a “disk set” and mirrored to multiple other disk sets. The data layout 

in RRAID-S is more flexible and allows arbitrary redundancy, so that we can study the 

performance with a wide range of data redundancy. On a read access, RRAID-S 

speculatively requests for all data blocks on each disk in parallel, depicted in Figure 

6-2a. The read access is complete when at least one copy of each block in the data 

segment arrives. 

In RRAID-A, the same data layout mechanism as RRAID-S is used, but the 

read access mechanism is different. Instead of sending a single request to each disk for 
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all the segment blocks, the client adaptively requests for required blocks according to 

the runtime disk performance, as shown in Figure 6-2b. Initially, the reader sends 

requests to all disks for the blocks in the first replica; in the example of Figure 6-2b, it 

requests block 0 and 4 from disk 0, block 1 and 5 from disk 1, etc. Once the reader has 

received all requested blocks from a disk, say disk A, the reader identifies the disk 

with the largest unreceived data blocks that A has, say disk B, then it divides B’s 

unreceived data into two halves and requests the second half from disk A. This scheme 

avoids reading redundant data, but it also risks large overheads in long network 

latency environments to send multiple-round adaptive requests. 

 

 

Figure 6-1. Data Layouts. 8 original blocks; 1x data redundancy in replicated and 

coded layouts. 

 

 

Figure 6-2. Access Mechanisms. Disk performance is varied. 
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RobuSTore, as we have discussed in previous chapters, uses erasure-coded 

redundancy (Figure 6-1e) and speculative access (Figure 6-2a). 

In summary, we studied four schemes, including RAID-0 with zero data 

redundancy and speculative access, RRAID-S with replicated redundancy and 

speculative access, RRAID-A with replicated redundancy and adaptive access, and 

RobuSTore with erasure-coded redundancy and speculative access. 

6.2.2 Simulator Design 

Our simulator consists of two major parts: virtual client and virtual server. The 

virtual server further consists of a virtual filer and one or more virtual disks, as shown 

in Figure 6-3. When a client needs some data for its application, it figures out the data 

location and sends requests to the corresponding file servers. The requests are first 

processed by the virtual filer. It checks if the data is in cache or not. If not, it passes 

the requests to corresponding virtual disks and gets responses after proper access delay. 

Finally, the client receives the data from the filers and completes the whole access by 

decoding the data. Each virtual client, virtual filer, or virtual disk is implemented as 

one individual process in our simulator.  

 



  76 

 

Figure 6-3. Simulator Architecture. 

 

Virtual Client 

The virtual client takes charge of metadata maintaining, access scheduling, 

decoding/encoding processing, the overhead estimation of metadata querying and 

storage server connection, and request cancellation. 

The access scheduler selects disks to access and sends requests to 

corresponding virtual disks. For each access, the scheduler randomly selects a certain 

number of disks and randomly permutes the disks into a random order. The order of 

the disks is not a concern in RobuSTore, since the blocks stored in disks are 

erasure-coded blocks which are used symmetrically during decoding. For storage 

schemes that use plain-text blocks, however, the order of the disks affects access 

performance. Once the access scheduler decides which disks to use, it sends data 

requests to the corresponding virtual disks. In schemes using speculative access, such 

as RobuSTore, the scheduler sends single requests for all the available data blocks, 
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while in schemes using adaptive accesses, such as RRAID-A, multi-round requests are 

sent in order to adapt to the disk performance variation. 

The virtual client is also responsible for maintaining the metadata. For 

simplicity, the simulator does not include a dedicated metadata server. Therefore, the 

virtual client should maintain the data location information, including which disks the 

data are stored in and which sectors on each disks are used. The information is used to 

accurately simulate the cache behavior and to simulate the read operations after 

writing the same data.  

Furthermore, the virtual client should model the overheads for accessing the 

metadata server and setting up connections with the disks. Each access to these 

services by the client is modeled as a constant latency of five milliseconds.  

Virtual Filer 

The virtual filer is one part of the virtual server. It models the network latency 

between client and server, and maintains the filesystem cache. Since network 

bandwidth is presumed to be plentiful [6] in RobuSTore, the network is modeled as a 

link with fixed round-trip latency. Every time the filer receives one data request from 

the client, it delays for a certain amount of time to simulate the network latency. This 

simple mechanism works well since network bandwidth is abundant and the variation 

in network performance is usually much smaller than that of disk performance. Note 

that the latency is applied per data request instead of per data access. For schemes like 

RRAID-A that use adaptive accesses, a data access may include multiple rounds of 

data requests, which thus involves the delay of multiple round-trip-times (RTTs). 
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After network delay estimation, the filer checks if the requested data are 

in-cache. If the data are in-cache, the filer directly sends the data to the client at a rate 

decided by the maximum network speed; if the data is not in cache or is only partly in 

cache, the filer requests the missing data blocks from the corresponding virtual disks. 

Virtual Disk 

The virtual disk is the other part of the virtual server. Each virtual disk is a 

block-level simulator that simulates the complex behavior of hard disk drives. The 

hard disk drives have complex behavior due to the disk caching and disk rotating and a 

block-level simulator is required to get detailed information on caching and disk 

rotation. There are several block-level disk simulators, including those from 

Ruemmler and Wilkes [62], Kotz [63], Nieuwejaar [64], and Ganger [65]. All these 

tools model disk behavior on head-switch time, track-switch time, SCSI-bus overhead, 

controller overhead, rotational latency, and disk cache. 

We built our disk simulator based on DiskSim. The DiskSim [65] from CMU 

is the most popular block-level disk simulator and is claimed as the most accurate one. 

It includes an internal synthetic workloads generator and hooks for inclusion in a 

larger scale system-level simulator. Parameters of DiskSim define bus, controller, 

cache, and disk (rotation rate, sector-level disk structure), which can be customized to 

model a wide range of commercial disks. It has been used extensively in the study of 

new filesystem and storage techniques [66-68]. Therefore, our disk simulator is 

implemented based on DiskSim and utilizes the DiskSim simulation engine to drive 

the event simulation in bus, disk controller, and disk rotation and seeking. Also, we 
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use the DiskSim synthetic workload generator to generate random access sequences 

inside disks. 

Besides the original functions provided by DiskSim, we also implement new 

functions to support multiple competitive accesses to a single hard disk, to cancel the 

pending requests, and to synchronize with other virtual disks and the virtual client. 

First, we implement a background workload generator, which generates requests in a 

specified rate and pattern. The background requests are injected into the same queue 

together with the foreground requests and processed by the DiskSim simulation 

engine. Secondly, since all the unprocessed requests are kept in queue, we can easily 

implement the request cancellation mechanism by removing the corresponding 

requests from the message queue. Finally, each virtual disk has a timer to help keep 

synchronization with other simulation processes. The timer maintains both real clock 

time and simulated clock time of the previous event. When a new event arrives, the 

timer checks how much time has passed in the real clock and the simulated clock. If 

the real clock is slower, the timer stops the simulation for a certain time before 

dismissing the new event and resuming the simulation. 

6.2.3 Metrics 

In our experiments, we measure RobuSTore and other conventional storage 

systems in three metrics. 

Variation of Access Latency: A critical RobuSTore goal is robust performance, 

i.e., minimum performance variation. We formalize this for access latency by 
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computing the standard deviation over a set of one hundred accesses. Naturally, 

smaller standard deviations correspond to higher degrees of robustness.  

Access Bandwidth: While robust performance is the major goal of RobuSTore, 

we must also maintain high access bandwidth for the requirement of accessing large 

datasets. The delivered bandwidth for a single read or write is the original data size 

divided by the access latency, including connection, disk, data transfer, and coding 

time. We interpret access bandwidth to be a measure of delivered performance 

corresponding to our goal of “high performance”. 

I/O Overhead: The benefits of aggressive access to redundant copies can yield 

performance benefits, but it also increases network and disk I/O costs. We measure 

this increased I/O cost using the ratio between the additional bytes sent over networks 

and the original data size: 

      Bytes sent over networks - Original data sizeI/O Overhead = 
Original data size

. 

Note that the bytes sent over networks may be more than the bytes read from disks if 

some bytes are read from the filesystem cache. 

We measure both read performance and write performance in these three 

metrics. 

6.2.4 Workloads 

Since our focus is on supporting the needs of applications with large workloads 

[1-3], we use synthetic workloads with sequences of large-size accesses. In these 

applications, each data object is from 100s of MB to 10s of GB, and with the potential 
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to increase to 100s of GB or larger in the future. We study access performance for 

single 128 MB, 256 MB, 512 MB, and 1 GB accesses. Data objects larger than 1 GB 

are presumed to be accessed by multiple 1 GB accesses. There are both read sequences 

and write sequences accesses and sequences with mixed read and write operations.  

Moreover, to simulate disks shared by multiple applications, we generate 

competitive background workloads for each disk. The background workload is a 

sequence of random accesses arriving in a certain interval. By varying the interval of 

the background workload, we can simulate different degrees of disk sharing. 

6.2.5 Simulation Configurations 

6.2.6 Simulation Parameters 

Simulation Hardware Environments 

All of our experiments involve a client and a subset of a wide-area storage 

system with 128 disks. The disks are attached to 16 filers. Each filer maintains a 2 GB 

filesystem cache shared by the eight disks attached to it. We model the cache as LRU 

(Least-Recently Used) based and four-way associative with a 4 KB cache line. We 

only simulate data caching in read accesses, and presume a write-through mechanism 

for write accesses. 

The networks between the client and the servers are presumed to have plentiful 

bandwidth [6] and are modeled as fixed round-trip latencies varying from 1 

millisecond to 100 milliseconds. This latency range covers the scenarios from LAN 

(less than 1 ms), campus network (less than 1 ms), and metropolitan area network 

(about 1 ms) to wide area network (up to 100s of milliseconds). Each storage server 
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access in RAID-0, RRAID-S, or RobuSTore involves one round-trip-time (RTT), 

while RRAID-A involves multiple RTTs. 

We model sector-level disk behaviors using the DiskSim-based simulator. 

DiskSim parameters define bus, controller, cache, and disk (rotation rate, sector-level 

disk structure), which can be customized to model a wide range of commercial disks. 

We configure the DiskSim parameters based on the calibration of a hard drive on a 

local dual-Xeon server. It is a 120 GB IBM Deskstar 7K400 hard drive, with 

ATA-100 interface and 7200 rpm rotation speed. We use one DiskSim process to 

simulate each hard disk drive.  

 

 

Figure 6-4. Experiment System Configuration. 

 

The data in each access has a random intra-disk layout. In DiskSim, the layout 

is modeled using two parameters: blocking factor and probability of sequential 

accesses. Blocking factor defines the average data size per disk access. Blocking 
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factor is the average number of sectors per request. Larger blocking factor implies 

larger data to be accessed with each time overhead of command processing and disk 

head positioning, thereby delivering high access bandwidth. The probability of 

sequential accesses specifies the probability that a generated request is sequential to 

the immediately previous request. A sequential request starts at the address 

immediately following the last address accessed by the previously generated request, 

so it avoids the disk head positioning overhead. For each disk, we randomly choose a 

blocking factor from 8, 16, …, 512, and 1024, and randomly choose 0 or 1 as the 

probability of sequential accesses. Such different disk configurations lead to different 

disk performance. The configuration and measured average bandwidth of each disk 

are shown in Table 6-1. The average of disk bandwidth is 14.9 MBps. The resulting 

100-fold performance (0.52 MBps to 53 MBps bandwidth) approximates a shared 

distributed storage environment with many sources of variation. 

 

Table 6-1. Average Disk Bandwidths with Various In-Disk Layout Configurations. 

(MB per second) 

        Blocking Factor 

Prob. Of Seq Access 

8 16 32 64 128 256 512 1024

0 0.52 0.76 1.3 2.5 4.7 8.3 14.3 21.4

1 3.6 6.9 9.3 12.7 16.8 29.8 53.0 53.0
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The background workloads are generated by a separate generator. They are 

sequences of midsize requests, with about 50 sectors on average per request. We used 

sequences with different intervals to model different levels of the competitive loads. 

Our simulation shows that when the interval is 6 ms, the background workloads can 

utilize about 93% of the disk time. In the experiment, we changed the interval from 6 

up to 200 milliseconds. Figure 6-5 shows the average disk utilization by the 

background workload with different intervals and the corresponding foreground access 

performance. When the background requests arrive about every 6 ms, the foreground 

access bandwidth is only 2.2 MBps. When the background requests arrive less 

frequently, the foreground bandwidth gets higher. The bandwidth corresponding to 

200 ms of background request interval is about 43 MBps. The average bandwidth, if 

the background request interval is uniformly distributed between 6 ms ~ 200 ms, is 35 

MBps. 

 

Figure 6-5. Performance Impacts from Background Workloads. 
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Erasure Coding: Coding and decoding performance is critical for RobuSTore. 

In each simulation, we first run the LT Codes algorithms to generate an LT coding 

graph (a bipartite graph connecting original blocks and coded blocks), then randomly 

select coded blocks and feed them to the LT decoding algorithm to find out the 

required number of blocks for complete decoding. The simulation of reading process 

succeeds once enough blocks are received. We use the following LT Codes parameters 

to generate the coding graph: C = 1.0 and δ = 0.5 (C and δ are the parameters for the 

distribution of node degrees in the LT coding graph: when C increases, there will be 

more low-degree nodes, and δ has the opposite impact. More details are available in 

[48]). Previous discussion on LT codes in Section 5.2 shows that the reception 

overhead is typically 0.5, i.e., 1.5 times the number of blocks need to be received for a 

successful decoding. Since the decoding process can be overlapped with data I/O, it 

only incurs extra latency for decoding the last block. Our experiments show that the 

decoding speed of 500 MBps is possible with typical processors, so we use that rate to 

compute decode times. For example, for blocks of 1 MB, we add a constant latency of 

2 ms. 

6.2.7 Exploring Combinations of Simulation Parameters 

The combination of all the parameters discussed above is a huge space. There 

are four storage schemes (RAID-0, RRAID-S, RRAID-A, and RobuSTore) to study. 

Each scheme may experience the performance variation from three different sources 

including in-disk data layout, competitive disk loads and filesystem caching. Each 

access can be configured differently, by using different degrees of data redundancy, 

 



  86 

accessing different numbers of disks, using different sizes of coding blocks, or 

choosing disks with different network latencies. Furthermore, we need to study the 

behaviors of both read accesses and write accesses. The complete set of all the 

possible combinations of the parameters is a huge set, thereby hard to explore 

exhaustively.  

We use a fixed configuration as a baseline, varying only one parameter in each 

experiment. By varying one parameter each time, we can explore all the parameters 

with a reasonably small set of configurations. Moreover, this method allows us to 

separate the performance impact of each parameter from other parameters and to study 

them one by one. The baseline is a typical SAN configuration: 64 disks, 1 ms network 

round-trip time (RTT), 1 MB block size, and 3x data redundancy, except for RAID-0 

which always has 1x data redundancy. 

We present the results for each of the above configurations against the 

performance variation due to the in-disk data layout; for the variation due to 

competitive workloads and filesystem caching, only the results for different data 

redundancy are presented since they are the most interesting ones. The configurations 

of the presented results are shown in Table 6-2. 

For each configuration we simulate 100 times of accesses on each of the four 

storage systems and present the average and the standard deviation; in each access, 

disks are randomly selected if the experiment uses less than 128 disks. 
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Table 6-2. The Configurations of the Presented Results. (R: read; W: write; RaW: read 

after write) 

         Source of Variation

Configuration 

Data Layout Competitive 

Workloads 

Filesystem 

Caching 

Number of Disks R   

Block Size R   

Network Latency R   

Data Redundancy R, W, RaW R, W, RaW R 

 

6.3. Experiment Results 

We present the experiment results in this section, organizing the results into 

three subsections according to different sources of performance variation.  In 6.3.1, 

we study the system behaviors against random in-disk data layouts. Section 6.3.2 

shows the results against random competitive workloads on each disk. Section 6.3.3 

shows the results against filesystem caching. 

6.3.1 Impact of Data Layout Variation 

In this section, we simulate the storage systems with performance variation 

from in-disk data layout. Since read is the dominant data operation in many 

data-intensive applications, we first study read performance for all different 

configurations. After that, we study the write performance to understand the benefit of 
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speculative writing in RobuSTore. Further, since speculative writing leads to 

unbalanced data striping among the disks, we also study read performance with 

unbalanced striping. 

Varying Number of Disks 

We simulate the four storage schemes discussed above with the baseline 

configuration and then vary the number of disks from 2 to 128. Figure 6-6 depicts the 

average bandwidths. First, it shows that RAID-0 exhibits the worst bandwidth, 

RRAID-S is the second worst, and the best performance is given by RobuSTore. This 

bandwidth gap grows as the number of disks is increased. RAID-0 suffers because it 

exploits no redundancy, and thus is subject to the slowest disk. RRAID-S does better 

because speculative access allows fast disk responses to mask the slow disk responses. 

However, the speculative access in RRAID-S wastes a lot of bandwidth on accessing 

replicated blocks; this is avoided in both RRAID-A and RobuSTore. RRAID-A 

accesses blocks selectively; and RobuSTore uses erasure-coded blocks. Both the 

RobuSTore and RRAID-A schemes better tolerate the slow disks, with performance 

increasing with the number of disks. RobuSTore is slightly worse than RRAID-A for 

small numbers of disks (<8) due to the 40% reception overhead in LT decoding, but 

outperforms RRAID-A for large numbers of disks due to the greater flexibility on 

utilizing all the stored blocks. RobuSTore achieves 15 times the bandwidth of RAID-0 

for 16–128 disks. The access bandwidth to 1 GB data from 64 disks is as follows: 31 

MBps in RAID-0, 117 MBps in RRAID-S, 228 MBps in RRAID-A, and 459 MBps in 

RobuSTore. 
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Second, although all four storage systems achieve higher bandwidth by 

accessing more disks, only RobuSTore achieves linear improvement. RAID-0, 

RRAID-S, and RRAID-A only achieve sub-linear improvement. The linear 

improvement in RobuSTore comes from the symmetric redundancy of the 

erasure-coded blocks, which allows the client to reconstruct the original data from any 

set of received blocks. 

 

 

Figure 6-6. Read Bandwidth vs. Number of Disks with Heterogeneous Layout 

 

When we vary the number of disks from 2 to 128, the standard deviation of 

latency changes, as depicted in Figure 6-7. It shows that RobuSTore has the lowest 

variation for systems with more than a few disks (>8). To distinguish the details, we 

show the results as a log-log plot in Figure 6-7(b). 

The traditional storage schemes have higher variation due to the lack of access 

flexibility. RAID-0 suffers because it exploits no redundancy, and the performance is 

thus subject to the slowest disk. RRAID-S explores the replicated data to hide the slow 

 



  90 

disks; however, it reads the blocks on the same disk in a fixed order, so its 

performance depends on 1) intra-disk block ordering: for example, if a replica of a 

block is stored as the last block on a fast disk, it will be read last from the disk and 

contributes less to hiding slow disks; and 2) inter-disk block mapping, i.e., which disk 

a block is stored on; if the replicas of the same block are all on slow disks, they cannot 

hide the slow disks. RRAID-S has the highest variation due to the combination of 

these factors. RRAID-A mitigates the dependency on intra-disk block ordering by 

accessing blocks selectively, but it is still dependent on inter-disk block mapping. For 

a small number of disks (<8), the replicated schemes RRAID-S and RRAID-A have 

comparable robustness to RobuSTore. As the data redundancy rate is fixed to 3x and 

few disks are used, the system is essentially performing whole-file replication and 

suffers a low level of inter-disk dependence. 

 

 

(a)                                (b) 

Figure 6-7. Variation of Read Latency vs. Number of Disks with Heterogeneous 

Layout. 

 



  91 

 

Accesses in RobuSTore have significantly less variation. RobuSTore uses 

erasure-coded blocks and has greater flexibility on using all the stored blocks. Its 

performance variation comes from the varying total bandwidth of all the disks and the 

varying reception overhead of LT Codes. It is not related to intra-disk ordering or 

inter-disk mapping at all. RobuSTore has the lowest performance variation for systems 

with more than a few disks (>8). The standard deviation of access latency on 64 disks 

for RAID-0, RRAID-S, RRAID-A and RobuSTore is 1.9, 7.3, 1.9, and 0.5 seconds 

respectively; and 0.63, 3.8, 1.1, and 0.13 seconds on 128 disks. RobuSTore improves 

robustness for up to 5x compared to RAID-0, and more than 15x compared to 

RRAID-S. This lower variation of RobuSTore demonstrates the benefits of 

erasure-coding and the resulting order-freedom. 

 

 

Figure 6-8. Reception Overhead vs. Number of Disks with Heterogeneous Layout. 
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The benefits of aggressive access to redundant copies can yield performance 

benefits, but it also increases network and disk I/O costs, as shown in Figure 6-8. 

Because RAID-0 has no speculative access, it incurs no additional costs, and has zero 

I/O overhead. RRAID-A costs just a little bit more than zero overhead, as it only 

generates additional accesses when they are clearly needed. RRAID-S uses a large 

number of speculative requests, thereby costs I/O overhead as high as 200%. 

RobuSTore has about 40% I/O overhead due to the requirement of extra blocks for 

decoding. Although RobuSTore also uses speculative access, its use of erasure codes 

avoids fetching duplicated blocks, showing perfect parallelism. 

Varying Block Granularity 

Block granularity affects the performance of RobuSTore and has no impact on 

other schemes. In RAID-0, RRAID-S and RRAID-A, data blocks are replicated in 

plain-text, so an access can use fractions of data blocks and ignore block boundaries. 

However, in RobuSTore, the coded blocks are not replicated and only whole blocks 

can be applied to block-XOR operations for decoding, so block granularity affects the 

RobuSTore performance. We vary block size from 0.5MB to 64MB in our 

experiments. 

Figure 6-9 depicts the read bandwidth of the storage schemes. RobuSTore 

bandwidth decreases as block size grows. This is due to two facts: (1) larger block size 

increases the “wasted” bytes from those uncompleted blocks; (2) larger block size 

reduces the effectiveness of pipelining by causing a larger decoding overhead to 

contribute to access latency. The exception case is that found with a block size of 0.5 
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MB. In this case, the number of blocks is 2048, much larger than other cases, leading 

to higher reception overhead in LT Codes. 

 

 

Figure 6-9. Read Bandwidth vs. Block Size, with Heterogeneous Layout. 

 

The STDEV of access latency in RobuSTore increases slightly as block size 

grows, as shown in Figure 6-10. This is because the larger block size decreases the 

rate of reading the blocks, so if any block is delayed, the client will potentially wait 

longer for the next arriving block, i.e., the access latency is more sensitive to block 

delay. Furthermore, there are fewer blocks with large block size, which causes higher 

variation in the reception overhead of LT Codes. 
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Figure 6-10. Variation of Read Latency vs. Block Size, with Random Layout 

 

The impact of block size on I/O overhead is depicted in Figure 6-11. In this 

case, the overhead for RobuSTore increases with block size, but does not reach the 

levels of RRAID-S. As block size increases, larger “uncompleted” blocks are 

in-the-fly at the moment when the request is completed, increasing the I/O overhead. 

 

 

Figure 6-11. Reception Overhead vs. Block Size, with Heterogeneous Layout. 
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Varying Network Latency 

Distributed storage systems usually have networks with a variety of latencies, 

thus a client can choose to stripe the data to disks with different latencies. To 

understand its performance impact, we vary network latency between client and 

storage servers from 1ms (machine room or Metro) to 100 ms (intercontinental). The 

resulting bandwidths to access 1 GB and 128 MB data segments are depicted in Figure 

6-12(a) and Figure 6-12(b) respectively. For storage schemes using speculative access, 

including RAID-0, RRAID-S, and RobuSTore, network latency has little impact on 

the access bandwidth. This is because they only involve single round-trip-time (RTT) 

during the access that is much less than the total access latency of 2~30 seconds. In 

contrast, RRAID-A is more sensitive to network latency since the adaptive access 

mechanism involves multiple RTTs. When accessing a 1 GB data segment, RRAID-A 

suffers 30% bandwidth decrease as network latency increases, changing from 228 

MBps to 161 MBps; for smaller requests of a 128 MB data segment, the bandwidth 

decrease is more significant, dropping 52% from 131 MBps to 63 MBps. 
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(a)                                (b) 

Figure 6-12. Read Bandwidth vs. Network Latency, with Heterogeneous Layout.  (a) 

1024 MB data access; (b) 128 MB data access. 

 

Our results in Figure 6-13 show that network latency has a negligible impact 

on performance robustness. In RAID-0, RRAID-S, and RobuSTore, their accesses 

only involve one-time read requests, so the impact of varying network latency is at 

most one RTT on total access latency. RRAID-A uses adaptive access strategy and 

involves multi-RTT on total access latency. Considering that the total access latency is 

2~30 seconds, the variation from the network is much less than that from disks in our 

model. 
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Figure 6-13. Variation of Read Latency vs. Network Latency, with Heterogeneous 

Layout. 

 

 

Figure 6-14. I/O Overhead vs. Network Latency, with Heterogeneous Layout. 

 

Similarly, increasing network latency has minimal impact on I/O overhead, as 

shown in Figure 6-14. Higher network latency only increases the amount of in-the-fly 

bytes at the moment when the access is completed, which is proportional to the 
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network latency. Since the variety of network latency is much less than the total access 

latency, the in-the-fly bytes are only a small fraction of the total I/O cost. 

Varying Degree of Data Redundancy  

Data redundancy is the direct overhead in storage spaces; however, redundancy 

can also be used to increase read performance. We vary data redundancy from 0 to 

900% (10 times the storage spaces used) to simulate its performance impact. Because 

the RAID-0 scheme always has zero redundancy, its performance is represented by the 

point of zero redundancy in RRAID-S or RRAID-A.   

The access bandwidth is depicted in Figure 6-15. Increasing data redundancy 

increases the bandwidths in all the storage schemes, but to different extents. For 

RobuSTore, the bandwidth increases rapidly and approaches the best performance 

when the redundancy is higher than 200%. The peak performance is achieved when 

the redundancy is higher than 500%, i.e., when six times storage space is used. 

Considering that the fastest disk delivers a bandwidth of four times the average, and 

the reception overhead of LT Codes is about 40%, this proves our previous analysis 

that RobuSTore achieved best performance when there are enough blocks to read on 

every disk during the entire access period. RRAID-S and RRAID-A benefit less in 

their access bandwidths from high redundancy. This is because their structured data 

replication cannot adapt to read more blocks from the faster disks as flexibly as in 

RobuSTore. 

 



  99 

 

Figure 6-15. Read Bandwidth vs. Data Redundancy, with Heterogeneous Layout. 

 

The impact of data redundancy on access robustness is depicted in Figure 6-16, 

which shows that RobuSTore achieves the lowest standard deviation of latency. In 

RRAID-S and RRAID-A, the variation comes from disk speed, intra-disk block 

ordering (in RRAID-S), and inter-disk block mapping. When they use higher data 

redundancy, their robustness will potentially suffer less from disk speed variation and 

inter-disk block mapping, while suffering more from intra-disk block ordering. 

RAID-0 only suffers variation from the slowest disk. Due to the combination of these 

factors, RRAID-S and RRAID-A with small redundancy have worse robustness than 

RAID-0, and gradually get better as redundancy increases. In RobuSTore, as long as 

the fast disks have enough data blocks, they can hide the slow disks effectively. It 

needs only 1x~2x data redundancy to obtain most of this robustness benefit. When 

data redundancy is more than 2x, the standard deviation of latency is only about 0.5 

seconds, or 25% of the average access latency. 
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Figure 6-16. Variation of Read Latency vs. Data Redundancy, with Heterogeneous 

Layout. 

 

As for I/O overhead, the data redundancy only affects RRAID-S. When data 

redundancy is increased, both RRAID-S and RobuSTore increase the requested data 

size in proportion. For RobuSTore, the access is completed as long as a certain 

number of coded blocks are received, so the final I/O overhead is mainly decided by 

the reception overhead of LT Codes. However, in RRAID-S, high data redundancy 

lets the client receive more duplicated data blocks, leading to high I/O overhead. The 

results are shown in Figure 6-17. 
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Figure 6-17. I/O Overhead vs. Data Redundancy, with Heterogeneous Layout. 

 

Next, we study the write performance with various data redundancy. In the 

schemes of RAID-0, RRAID-S, and RRAID-A, a write operation uniformly writes the 

same number of blocks to each disk, and behaves similar to a read in RAID-0, except 

that the involved data size is multiple times larger in RRAID-S and RRAID-A. 

RobuSTore uses speculative access so different numbers of blocks are written to each 

disk according to the disk performance. A write in RobuSTore is similar to a read with 

unlimited data redundancy so that there are enough blocks to write to every disk until 

the operation is complete. 

The experiment results of write accesses are depicted in Figure 6-18, Figure 

6-19 and Figure 6-20. Figure 6-18 shows the writing bandwidth. High data 

redundancy requires writing more bytes, thereby resulting in low writing bandwidth. 

In RAID-0, RRAID-S, and RRAID-A, the write bandwidth is very low because it is 

limited by the slowest disk. RobuSTore achieves much higher bandwidth since its 

speculative writing can efficiently utilize the capability of all the disks. When the data 
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redundancy is 300%, the write bandwidth in RobuSTore is about 186 MBps, while 

RRAID-S and RRAID-A only deliver bandwidth of 7.5 MBps. It is 30 MBps for 

RAID-0 (with zero redundancy). 

 

 

Figure 6-18. Write Bandwidth vs. Data Redundancy with Heterogeneous Layout. 

 

 

Figure 6-19. Variation of Write Latency vs. Data Redundancy with Heterogeneous 

Layout. 
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The standard deviation of write latency is more than 10 times better in 

RobuSTore than in RRAID-S and RRAID-A, as shown in Figure 6-19. For example, 

when the data redundancy is 300%, the standard deviation is 0.5 seconds for 

RobuSTore and 6.4 seconds for RRAID-S and RRAID-A. 

For write accesses, the I/O overhead is proportional to data redundancy 

because a write operation needs to write every byte of the redundant data. RobuSTore 

may incur slightly more overhead due to the usage of a speculative writing mechanism. 

The simulated results are shown in Figure 6-20. 

 

 

Figure 6-20. I/O Overhead vs. Data Redundancy with Heterogeneous Layout. 

 

Next, we study read accesses in RobuSTore with unbalanced data striping. In 

the beginning of the section we had already simulated read accesses with balanced 

data striping. However, in RobuSTore, speculative writing may cause unbalanced data 

striping across multiple disks. Fewer data blocks are written into a disk if the disk is 
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slow during the write accesses. Since the individual disk performance is dynamically 

changing in shared distributed environments, it is possible that the disk delivers higher 

performance in later read accesses. In RobuSTore, such disks are more quickly 

exhausted during the read accesses so that their bandwidth cannot be fully utilized. 

RAID-0, RRAID-S, and RRAID-A have no such issue since they always use balanced 

data striping. 

The simulated results are depicted in Figure 6-21, Figure 6-22 and Figure 6-23. 

For comparison, the figures also show the read results for RRAID-S and RRAID-A 

with balanced data striping. Figure 6-21 depicts the average read bandwidth. By 

comparing it to Figure 6-15, we see that the RobuSTore bandwidth with unbalanced 

striping is slightly worse than that with balanced striping. However, it is still higher 

than RAID-0, RRAID-S, and RRAID-A. The variation of RobuSTore access latency, 

as shown in Figure 6-22, is the least among the four storage schemes. The unbalanced 

striping has little impact on RobuSTore I/O overhead that is mainly decided by the LT 

Codes reception overhead, so Figure 6-23 is almost the same as Figure 6-17. 

In real systems, RobuSTore with unbalanced striping may be a little different, 

with better performance than what we get here. Our simulation experiments use the 

assumption that the performances of all the disks follow the same statistical pattern, 

and that each random change is independent of each other. Besides the dynamic 

performance, the disks in a real storage system usually also have heterogeneous 

performance. Due to the performance heterogeneity, a disk that is fast during a write 

operation tends to be fast during later read operations. In such cases, read operations 
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can benefit from unbalanced data striping and achieve better performance than with 

balanced data striping. 

 

 

Figure 6-21. Read Bandwidth vs. Data Redundancy with Heterogeneous Layout and 

Unbalanced Data Striping. 

 

 

Figure 6-22. Variation of Read Latency vs. Data Redundancy with Random Layout 

and Unbalanced Data Striping. 
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Figure 6-23. I/O Overhead vs. Data Redundancy with Heterogeneous Layout and 

Unbalanced Data Striping. 

 

6.3.2 Impact of Competitive Workloads Variation  

In this section, we study how well the systems can tolerate the performance 

variation from competitive workloads. In shared distributed environments, multiple 

applications may access the storage systems simultaneously. If the applications access 

the same disks, they will compete for the disk bandwidth and affect each other’s 

access latency. In our experiments, we model the competitive workloads as random 

arrival background requests.  

We first study a simple homogeneous scenario in which all the disks follow the 

same statistical pattern for the competitive workloads. Figure 6-24 and Figure 6-25 

depict the results of the read experiments. The performance of all storage systems 

increases when the background workloads arrive less frequently. In such environment, 

all the disks have same pattern. The major source of disk performance variation is that 

accesses to different disk zone achieve different performance. The performance 
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variation is as much as two. RobuSTore does not achieve as good a performance as the 

other three systems because of the 50% reception overhead required for LT decoding. 

However, the performance difference is much less than 50%. For example, RRAID-S 

has a peak bandwidth of about 1650 MBps, while RobuSTore has about 1360 MBps 

peak bandwidth, with 18% difference. 

 

Figure 6-24. Read Bandwidth vs. Competitive Workloads with Homogeneous Layout 

and Homogeneous Competitive Workloads. 

 

Figure 6-25. Variation of Read Latency vs. Competitive Workloads in Homogeneous 

Layout and Homogeneous Competitive Workloads. 
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Next we simulate the read accesses in heterogeneous environments with 

random competitive workloads. More specifically, every time we simulate a new 

access, we reset the competitive workload generator randomly for each disk. Figure 

6-26 depicts the results with various degrees of data redundancy. In RobuSTore, the 

read performance quickly increases with the data redundancy. The best performance is 

achieved with data redundancy greater than 140%. In Section 6.2.4, the performance 

results show that with different competitive workloads the fastest disk can deliver a 

peak performance of about 44 MBps while the average performance is about 33 MBps. 

Further, considering the 50% reception overhead, we again prove the claim that 

RobuSTore achieves the best performance when the data redundancy is at least the 

ratio between the fast disk’s bandwidth and the average disk bandwidth. 

 

 

Figure 6-26. Read Bandwidth vs. Data Redundancy with Heterogeneous Competitive 

Workloads. 
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Figure 6-27 depicts the standard deviation of latency in systems with random 

competitive workloads. When the data redundancy is greater than 140%, RobuSTore 

has much lower variation than RRAID-S and RRAID-A. Figure 6-28 shows the I/O 

overheads, which is similar to the previous experiments. RobuSTore has about 50% 

overhead; while RRAID-A has almost zero overhead and RRAID-S has up to 230% 

overhead. 

 

Figure 6-27. Variation of Read Latency vs. Data Redundancy with Heterogeneous 

Competitive Workloads. 

 

Figure 6-28. Reception Overhead vs. Data Redundancy with Heterogeneous 

Competitive Workloads. 
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The results for write accesses are depicted in Figure 6-29, Figure 6-30, and 

Figure 6-31. The write bandwidth decreases as the data redundancy increases. 

RobuSTore delivers much higher bandwidth than RAID-0, RRAID-S, and RRAID-A, 

and significantly less standard deviation of write latency. 

 

Figure 6-29. Write Bandwidth vs. Data Redundancy with Heterogeneous Competitive 

Workloads. 

 

 

Figure 6-30. Variation of Write Latency vs. Data Redundancy with Heterogeneous 

Competitive Workloads. 
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Figure 6-31. I/O Overhead vs. Data Redundancy with Heterogeneous Competitive 

Workloads. 

 

Next, we study read accesses in RobuSTore with unbalanced data striping. The 

results are shown in Figure 6-32, Figure 6-33, and Figure 6-34. Figure 6-32 depicts the 

average read bandwidth, which shows that RobuSTore with unbalanced striping 

delivers higher bandwidth than RAID-0, RRAID-S, and RRAID-A. The variation of 

RobuSTore access latency, as shown in Figure 6-33, is the least among the four 

storage schemes. The I/O overhead of RobuSTore, as shown in Figure 6-34, is about 

40~50%, the same as in RobuSTore with balanced striping. This is because the 

RobuSTore I/O overhead is mainly decided by the LT Codes reception overhead and 

is related to data striping. 
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Figure 6-32. Read Bandwidth vs. Data Redundancy with Heterogeneous Competitive 

Workloads and Unbalanced Data Striping. 

 

 

Figure 6-33. Variation of Read Latency vs. Data Redundancy with Heterogeneous 

Competitive Workloads and Unbalanced Data Striping. 
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Figure 6-34. I/O Overhead vs. Data Redundancy with Heterogeneous Competitive 

Workloads and Unbalanced Data Striping. 

 

6.3.3 Impact of Filesystem Caching Variation 

Another source of the performance variation is the filesystem caching. A read 

access gets higher bandwidth if the accesses data are entirely or partly in cache. In our 

simulation, we presume a write-through mechanism for write accesses, so write 

accesses are not related to filesystem cache. Therefore, we only studied the cache 

impact on read accesses. 

In the experiments, we run the baseline configuration with random competitive 

workloads, and simulate 2 GB filesystem cache on each storage server which is shared 

by all accesses to the eight disks in this server. We compare the results against those 

without filesystem caching. Figure 6-35 depicts the access bandwidth, which shows 

that using cache can improve the performance for all the four storage systems. Figure 

6-36 depicts the variation of access latency, which shows that using cache causes 

higher variation of access latency. Among all the four storage schemes, RobuSTore 
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still performs the best, delivering the highest access bandwidth and the lowest 

variation of access latency. 

 

Figure 6-35. Cache Impact on Access Bandwidth. 

 

Figure 6-36. Cache Impact on Variation of Access Latency. 

 

6.4. Summary 

We compared RobuSTore to RRAID-S, RRAID-A, and RAID-0 across a wide 

range of system configurations by using detailed software simulation. The simulation 
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results show that RobuSTore provides best performance while incurring only 

moderate I/O overheads of about 50% and storage space overheads of 1–2x. For 

example, to read 1 GB data from 64 disks with random data layout, RobuSTore 

achieved an average bandwidth of over 400 MBps, nearly 15x that achieved by a 

baseline RAID-0 scheme. At the same time, RobuSTore achieves standard deviation 

of access latency of only 0.5 seconds, less than 25% of the total access latency. 
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Chapter 7. Conclusions 

In this chapter, we summarize the research described in this dissertation. 

Section 7.1 summarizes the RobuSTore idea and highlights the key contributions of 

our research. Section 7.2 discusses the implications and impacts of our research. 

Section 7.3 discusses avenues for future work. 

7.1. Dissertation Summary 

Achieving high and robust performance in distributed storage systems is an 

important open research challenge. Existing and emerging large-scale data-intensive 

applications have high level requirements on storage service, including large capacity, 

distributed applications, high access bandwidth, and robust access latency. Traditional 

network filesystems or local parallel filesystems cannot satisfy these requirements. 

The performance variation of the individual disks is the major obstacle facing current 

systems. 

We propose a distributed storage architecture called RobuSTore to meet the 

storage requirements of these applications. RobuSTore combines erasure coding and 

speculative access mechanisms for high and robust storage performance. In 

RobuSTore, the erasure coding mechanism encodes the original data into fragment 

blocks with symmetric redundancy, allowing flexible data striping during write 

accesses and flexible data reconstruction during read accesses. The speculative access 

mechanism fully utilizes the available disk bandwidths to read/write redundant 

fragment blocks from/to heterogeneous distributed disks. RobuSTore exploits both 
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erasure codes and speculative access to improve performance robustness and absolute 

performance. This idea is a general one, and can enable fundamentally better behaved 

storage systems – with low standard deviations in access times. 

To realize the RobuSTore idea, we present a system framework. The system 

framework explains the major architecture and the functions required to make the 

RobuSTore idea workable. The framework design shows the feasibility of the 

RobuSTore idea. 

We then study a wide range of critical design choices for RobuSTore 

implementation and configuration. The choices include those for erasure codes, 

speculative access, and admission control. First, we compare different erasure codes 

by analyzing their usage in storage systems. Our analysis shows that near-optimal 

erasure codes such as LT codes fit RobuSTore the best in delivering high coding 

throughput and providing long codeword. Second, we analyze the choices of the 

erasure codes parameters, using LT codes as the example. The best erasure codes 

parameters reflect the tradeoff between computation overhead, storage space 

overhead, and read flexibility. Our analysis shows that the LT codes fit RobuSTore the 

best when (1) the number of original blocks is around K=128~1024, (2) the number of 

coded blocks is around N=1024~4096, and (3) the coded blocks have an average 

degree of five in the coding graph. Third, we explore the number of disks that a 

speculative access should use. Our analysis shows that the number of disks should be 

no less than the expected total access bandwidth divided by the average disk 

bandwidth. This is further studied using software simulation, which shows that the 
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average RobuSTore access bandwidth is proportional to the number of disks, thereby 

proves our analysis. Fourth, we study the choice of data redundancy in RobuSTore. 

We first analyze the write and read processes and conclude that RobuSTore should use 

data redundancy of the ratio between the peak disk performance and the average disk 

performance. This is proved in our quantitative study using detailed simulation, which 

shows that RobuSTore gains most of the performance benefits with 2-3x data 

redundancy. Fifth, we simulate the RobuSTore performance with a range of block 

sizes in coding. The results show that both too small blocks and too large blocks hurt 

the access performance. Specifically, 1 MB is the optimal block size in our simulated 

configurations. Sixth, our simulation experiments show that network latency between 

the client and the storage servers does not impact RobuSTore performance 

significantly. Our study on the critical design choices gives a guideline of RobuSTore 

implementation and configuration. 

Furthermore, our simulation experiments prove that RobuSTore can better 

tolerate disk performance variation than traditional parallel storage schemes and 

delivers much higher bandwidth and more robust latency. We compare the 

performance of RobuSTore with three traditional parallel storage schemes and see 

superior performance from RobuSTore. For example, for a 1GB read using 64 disks 

with random in-disk data layout, RobuSTore achieves average bandwidth of 

400MBps, nearly 15x that achieved by a RAID-0 system. The standard deviation of 

access latency is only 0.5 second, less than 25% of the access latency, and a 5-fold 

improvement from RAID-0. The improvements are achieved at moderate cost: about 
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40% increase in I/O operations and two to three times increase in storage capacity 

utilization.  

7.2. Implications and Impact 

Our research implies that RobuSTore is a sound scheme of distributed storage 

systems. First, the presented RobuSTore framework and the critical choices 

demonstrate the feasibility of a RobuSTore implementation. Furthermore, our 

experiments show that RobuSTore can effectively tolerate the performance variation 

which exists in distributed storage systems. Specifically, the experiment results prove 

that RobuSTore can potentially deliver access bandwidth that are proportional to the 

total bandwidth of all the accessed disks, and achieve robust access latency when 

using a reasonable large number of disks. 

A second implication is that RobuSTore is not the best choice in homogeneous 

storage environments. When there is no significant performance variation among the 

disks, our experiments show that the read performance of RobuSTore is slightly worse 

than that of the traditional parallel storage systems like RAID-0. This is because the 

homogeneous storage systems do not need the capability of erasure codes to tolerate 

performance variation, while they suffer from the extra reception overhead and 

decoding overhead from erasure codes with RobuSTore. 

Another implication is that abundant hardware resources are required for a 

RobuSTore system to be effective. Since RobuSTore exploits erasure codes and 

speculative access, it consumes extra CPU cycles for coding, extra network and disk 

bandwidth for transferring redundant data, and extra disk space to hold the redundant 
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data. In our experiments, it takes near 100% of the client CPU time to achieve around 

500 MBps decoding bandwidth, 50% I/O overhead for decoding, and 200%-300% 

redundant data to tolerate the performance variation. 

Our research has two major impacts. First, our research provides a foundation 

for the combined use of erasure codes and speculative access to tolerate performance 

variation. Although erasure codes have been widely used in communication and 

storage media for fault tolerance, little study was focusing on exploiting erasure codes 

for high and robustness performance. On another aspect, while there are a number of 

local parallel filesystem schemes, none of them fits for large-scale distributed 

environment. Our study solves the problem by combining erasure codes and 

speculative access. 

Second, our research provides a general RobuSTore framework and 

configuration guidelines. We present a flexible system framework, and explore the 

critical design choices using both theoretical analysis and software simulation. The 

study provides a guideline for the implementation and configuration of RobuSTore, 

paving the way for the large-scale use of the scheme in many applications. 

7.3. Future Work 

The research in this dissertation mainly focused on presenting the RobuSTore 

idea and demonstrating the advantage and feasibility of the idea. While we believe that 

we have made significant contributions in meeting the goals, more advances can be 

made to improve the RobuSTore performance, reduce the RobuSTore overhead, and 
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deploy the RobuSTore system in practice. We briefly discuss these future directions as 

follows. 

Erasure Codes with Higher Performance  

With rapidly increasing network bandwidth, we will need erasure codes 

algorithms that can deliver higher coding bandwidth to match the network bandwidth 

increase. The LT codes that we implemented achieve around 400 MBps decoding 

bandwidth on 2.8 GHz AMD Opteron Processor, and have about 50% reception 

overhead. This is equivalent to around 5 Gbps network utilization and is not enough to 

keep up with network with higher bandwidth. 

Several methods are possible to achieve higher coding bandwidth. First, we 

can use more efficient erasure codes. Although LT codes deliver fairly good 

performance, they are only optimized for communication. Storage systems have 

inherent features different from communication systems. Therefore, it is possible to 

design codes optimized for storage systems that outperform LT codes. A second 

method is to design parallel coding algorithms. We can use a cluster of workstations as 

a coding agent to do parallel coding with high bandwidth. Finally, dedicated coding 

hardware is another feasible method. Considering that the LT codes algorithms are 

relative simple, a hardware coder is not hard to implement. 

Evaluation for Multi-User Workloads  

Efficient multi-user sharing is one of the important goals for distributed storage 

systems. In our experiments, we model the competitive access using random 

background requests. This is a simplified model to approximate the shared accesses. 
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While such a simplified model is helpful in understanding the access performance of 

one client, a more accurate model of multi-user workloads can definitely help the 

study to optimize the multi-user performance and the throughput of the entire storage 

system. 

Admission Control 

Admission control is important for QoS guarantee and efficient resource 

sharing. In RobuSTore, we reserve the choice on admission control for future work. 

This is based on the following considerations. First, the experiments of admission 

control need good workload models for multiple competitive accesses. However, we 

do not have good enough workload model or traces, hence experiments on admission 

control is not very meaningful. Furthermore, different storage sites are likely to have 

different access control policies, which make it complex to study the admission 

control. In future study, we can first build good models for multiple competitive 

accesses and different admission control policies, and then we can study admission 

control in more details. 

Real System Implementation and Configuration 

A real system allows experiments with real applications and real testbeds, 

thereby improving the fidelity of the study. At the same time, real implementation and 

configuration also examine the system design in practical considerations, for example, 

the application interface, metadata management, security management across multiple 

administration domains, etc. Further research can explore these questions on a real 

RobuSTore system. 

 



Appendix A. Replication vs. Erasure-Coding 

We give a complete analysis of the replicated redundancy and erasure-coded 

redundancy. We assume both methods use 300% data redundancy (four times storage 

space). The object is to know how many blocks are required to reconstruct the original 

data using the two methods. 

General problem description: Assume we have K original blocks, and we 

translate them into 4K output blocks using either replication or erasure coding. Now 

randomly permute the 4K blocks. What is the probability that we can reassemble the 

original blocks using the first M output blocks?  

A1. Plain-text Replication 

The problem is equivalent to the following: 

Given: 4K balls with K different colors (four balls per color); randomly pick 

M balls from them 

Want: probability of at least one ball per color. 

Assume the number of M-ball sets to have at least one ball per color is FM(K). 

Then we have: 

FM(K) = (All sets) – (sets with less than N colors)  

1
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We will prove the following using induction: 
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First, since there are only 4 balls per color, we have 

FM(K) = 0, if K<M/4, 

which satisfies (A.1). 

Now we assume (A.1) is satisfied for any number less than K, then: 
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So (A.1) also fits for K. 

Therefore, the probability of picking M balls to include at least one ball per 

color is: 
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A2. Erasure-Coded Case 

With parameter of C=1.1 and δ=0.5, the average output-node degree in the LT 

coding graph is about 5. To simplify the analysis, we assume that all output nodes 

have degree 5 and their neighbors are independently randomly selected from the N 

original blocks. The number of blocks to reconstruct the original K blocks is about the 

number of blocks whose neighbors include all the K blocks. So the probability that M 

coded blocks are sufficient is the probability that 5M neighbors can cover all the K 

original blocks. Using similar induction as in the above section, we can prove that: 
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Appendix B. Open Operation of RobuSTore 

In RobuSTore, a data access is initiated by an application request to open a 

file. The application interface to open the file is: 

• FDescriptor open(Filename, AccessType, QoS_option); 

“Filename” is a string specifying the name of the accessed data. “AccessType” 

indicates if the data access is a read or a write. “QoS_option” specifies the required 

quality of service, which we will discuss below. The function returns a file descriptor 

which includes information like data location, coding algorithm, coding parameters, 

and data offset, etc. 

The QoS specification may consist of a traffic profile and performance 

requirements. The traffic profile declares the amount of storage capacity to be reserved, 

the time and duration of the reservation, and the distribution of data accesses, if known. 

The performance requirements can be expressed along one or more of the following 

(sometimes overlapping) dimensions:  

• data access latency (average, variation, or maximum),  

• data access jitter,  

• data availability/redundancy,  

• coverage area,  

• number of simultaneous accesses 

• bandwidth savings, and  
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• cost. 

There are a series of corresponding actions happening at the client, the 

metadata server and the storage servers. First, the client accesses the metadata server 

to get necessary information including data locations, data encoding algorithm and 

parameters, storage capacities of the servers, static and dynamic performance of the 

servers, etc. Necessary file locking is applied by the metadata server. Once the client 

gets the information, it plans an access schedule based on these information and the 

application QoS requirements. The access schedule includes selection of disks to 

access, coding algorithms (decided for write accesses), and data layout. The client then 

connects to the selected disks and requests for access admissions from the admission 

controllers of the disks. 

 



Appendix C. Access Control in RobuSTore 

Since RobuSTore aggregates distributed resources which are shared with many 

distributed users, it is important to have distributed security mechanisms to allow 

secure and safe remote accesses. Although security is not the focus of the dissertation, 

we briefly discuss possible access control mechanisms to use in RobuSTore. 

In a distributed multi-domain environment, centralized access control is not 

feasible. First, centralized mechanisms have limited scalability and can easily become 

performance bottlenecks when the storage system scales. Further, it is prohibitively 

hard to manage a centralized namespace when there are multiple administration 

domains. The administration domains can add new users and new files separately and 

assign access rights dynamically, so the central access controller has to authenticate 

each administrator. Finally, the trust model of centralized mechanism is not practical. 

Administrators usually do not want to build their own system based on the trust of a 

third party.  

Existing methods include ACL-based methods and capability-based methods. 

PKI-based methods use ACL mechanisms with PKI-based user authentication.  

Each user has both a public key and a private key, and also a certificate signed by a 

third party. The third party is often called the certificate authority, or CA. The 

certificate’s purpose is to prove a user’s identity, which includes the information of its 

identity name, its public key, and the CA’s name, all encrypted using the CA’s private 

key. If two users have certificates signed by same CA, they can authenticate each 

other; after communication is connected, user A can give user B its certificate, then 
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user B can use the CA’s public key to decrypt the certificate to get user A’s identity 

and public key. Once B has checked out A's certificate, B must make sure that the 

certificate is really from A by generating a random message and sending it to A. A 

then encrypts the message using its private key and sends it back to B. B decrypts the 

message using A's public key. If the decrypted message is the original random 

message, then B knows that A is who it says it is. Using the same method, A can 

authenticate B. After the mutual authentication, they can decide on another party’s 

access rights based on their ACLs. 

The credential chain method uses a capability mechanism. In this method, each 

user also has both a public key and a private key. When the owner of data wants to 

give access capability of the file to another user, it generates a credential for that user 

by encrypting the description of the access capability, the owner’s public key, and the 

user’s public key. When the client wants to access the data, it sends the credential to 

the owner. The credential already includes everything needed for the data owner to 

authenticate the client and to check the client’s access capability. 
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Figure C-1. Two-level credential chain 

 

A level-one credential for Alice could be like this: 

 

Authorizer: "<Administrator’s Public Key>" 

Licensees: "<Alice’s Public Key>" 

Conditions: (app_domain == "RobuSTore") && (HANDLE == "666240") -> 
"RWX"; 

Comment: "robustore_dir" 

signature: "<Signature by Administrator>" 
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Alice can use her credential to generate a level-two credential for Bob: 

 

 

The credential chain method is more flexible than GSI. It requires no 

third-party trust, and uses fewer communication rounds during authentication. 

Authorizer: "<Administrator’s Public Key>" 

Licensees: "<Alice’s Public Key>" 

Conditions: (app_domain == "RobuSTore") && (HANDLE == "666240") -> 
"RWX"; 

Comment: "robustore_dir" 

signature: "<Signature by Administrator>" 

Authorizer: “<Alice’s Public Key>" 

Licensees: "<Bob’ Public Key>" 

Conditions: (app_domain == "RobuSTore") && (HANDLE == "666240") && 

(localtime >= "20021106000001") && 

(localtime <= "20021106235959") -> "RWX"; 

Comment: "robustore_dir" 

signature: "<Signature by Alice>" 
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