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ABSTRACT 

This work deals with the indentation and erosion of brittle materials. 

After a review of the extensive literature on both static indentation and 

low velocity impacts with round particles, no completely satisfactory 

explanation was found for the apparent increase in the strength of brittle 

materials as the indenter radius is decreased. 

As a starting point, the mechanical behavior of brittle materials was 

studied and their various responses to loading were classified. The 

response can be elastic, elastic-plastic or completely plastic depending 

on the structure and bonding type of the material as well as the shape 

and size of the indenter. Plasticity occurs whenever sharp or very small 

indenters are used. In this case, it was found that the idealization of 

plastic deformation by an expanding cavity concept is a satisfactory one. 

A model using this approach showed that cracks refered to as median vent, 

radial and multiple cone cracks initiate and propagate along paths close 

to the principal stress trajectories in the uncracked solid. On the 

other hand, this model can give only the initiation locations of lateral 

cracks. A prediction of the crack trajectories in this case appears to 

require additional analysis. 
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A new model is developed for the elastic response regime. It was 

found that since the size of the surface flaws become comparable with the 

size of the stressed area, the critical stress· intensity, instead of the 

maximum tensile stress, should be used as the fracture criterion. By 

taking this approach, an explanation for the relation noted by Auerbach 

in 1890 that fracture load varies linearly with indenter radius was 

obtained. The development also suggests a possible method for measuring 

the fracture toughness of a surface. 

From erosion experiments it was found that analyses of single impacts 

on undamaged surfaces may not represent the steady state phase of 

erosion. However, they can provide some upper limit approximation of 

material removal. From all erosion analyses it is clear that fracture 

toughness should be a primary consideration when when selecting materials 

for their resistance to erosion. By comparison, hardness and elastic 

constants are less significant properties. 
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1. INTRODUCTION 

In many applications, the impact of small particles traveling in a 

fluid stream causes cuts, indentation, and removal of material from a 

surface. This process, known as the erosive wear of materials, occurs 

every day and its associated problems are too costly to ignore. There 

have been many efforts in the past and the present to understand this 

phenomenon and to classify materials for their resistance to erosion. 

The prevention of component failure due to erosion is an important 

technological problem. For example, damage to gas turbine compressor 

blades caused by the inhalation of dust in off-highway vehicles and 

helicopters can cause severe reduction of service life. There are also 

severe erosion problems in many industrial processes which involve 

liquids or gases carrying entrained solid particles. Many such problems 

have been experimented in petrochemical plants. Severe erosion 

is also anticipated in proposed coal conversion processes. This has 

caused a great deal of concern as coal gasification and liquefaction 

become more attractive with the diminishing of oil and natural gas 

supplies. 

Since many processes involving erosion occur at high temperatures 

where strength retention, creep resistance, and erosion resistance are 

important, ceramics, super alloys with protective coating, or alloys 

which get protected by their own oxides may have to be used to with

stand the severe operating conditions. The combined corrosive-erosive 

behavior of such protective coatings which would generally be 
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classified as brittle at room temperature is very complicated. However, 

an understanding of the behavior of bulk specimens of such materials 

should provide a better insight into their behavior as coatings. 

The vast majority of the literature on erosion deals with ductile 

metals since these are the traditional materials used in mechanical 

equipment. Only recently has detailed attention been given to the erosion 

of brittle solids. For such materials, the mechanisms of removal are not 

well understood and the different studies in the literature present con

flicting points of view. For this reason, and because of the potential 

importance of the erosion of brittle solids, the present work presents a 

detailed review and analysis of this topic. 

In processes where low-velocity impact is encountered, damage caused 

by a particle closely resembles a quasi-static indentation. Because of 

this, calculations for erosion are generally based upon the formulati~n 

for static indentation. This also removes the distinction that otherwise 

might exist between the words "indenter" and "particle" or "projectile." 

An approach will be presented which appears to resolve some of the 

contradictions in the literature on fracture under spherical indenters 

and hopefully sheds some light on the processes involved in the indenta~ 

tion and erosion of brittle materials. 

As a starting point, in Chapter 2 a general discussion is given of 

the brittle and ductile behavior of materials. An important aspect is 

the transition from brittle to ductile behavior that may occur when the 

size of the loaded region is very small. 
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In Chapter 3, the literature on indenter-surface interaction 

involving plastic deformation is collected and reviewed. With some 

extension, this information is used to explain test behavior. The 

situation in which indentations by spheres produce only elastic 

deformation prior to fracture is treated in Chapters 4 and 5. An 

interesting aspect of this fracture problem is that two completely 

different types of analysis, one probabilistic and one deterministic, 

have been used to explain the experimental results. In the present work, 

the limitations of both approaches are discussed and a new procedure is 

developed to explain the test results. 

The analyses that have been developed to date for erosion of brittle 

solids are based on crack patterns observed under single indentations. 

This work is reviewed in Chapter 6, and the present knowledge on this 

subject is summarized. An attempt is made to access the importance of 

the different variables in erosion. Finally, Chapter 7 presents some 

general conclusions and suggestions for further research. 
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2. THE BRITTLE AND DUCTILE BEHAVIOR OF MATERIALS 

Loading a material subjects it to two kinds 'of competing processes. 

One is permanent distortion due to plastic or viscous deformation, and 

the other is fracture from a preexisting or deformation induced flaw. 

Engineering materials are categorized as either ductile or brittle, 

based upon which one of these processes predominates. 

In an ideally brittle material, the strain up to final failure is 

purely elastic. By contrast, a ductile material experiences large 

plastic strains prior to fracture. Thus, most metals are thought of 

as ductile materials while, on the other hand, ceramic materials can 

usually be categorized as brittle. In more detail, materials in 

general can be classified as: 

1. Ductile at all temperatures. This group includes all face 

centered cubic (FCC) metals. 

2. Ductile at room temperature, brittle at low temperature. This 

group includes many metals of non-FCC crystal structure such as iron, 

titanium, zinc, and magnesium. 

3. Brittle at room temperature, ductile at elevated temperature. 

This group includes some metals such as beryllium, silicon~ many inter

metallic compounds~ some ionic crystals such as sodium chloride, and 

glasses. 

4. Brittle over a wide range of temperature. This group contains 

most carbides, nitrides, and oxides. 
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The behavior and strength of all materials is, of course, highly 

dependent on their type of bonding and microstructure. However, in 

the case of brittle materials an equally important aspect is the 

presence and density of inherent flaws. Indirect evidence for the 

presence of these flaws is provided by the large variability in 

strength of apparently similar specimens, the increase in average 

fracture stress as size is decreased, and the fact that strength values 

in bulk specimens are very much less than theoretical strength. As a 

resu~t, the strength of brittle materials has to be specified by a 

function that depends on the flaw density and size, as well as on the 

inherent properties of the material. 

Weibu11,1 as discussed later in Section 4.6, derived a mathematically 

convenient relation, with an implicit dependence on the above variables, to 

predict the failure probability of brittle materials. His expression for the 

cumulative density function was 

P(a) • 1- exp ~ (" -.:")m dv (la) 

"" 0 (lb) 

where au is the stress below which there is zero probability of failure, 

a
0 

is a scaling stress, v is the volume stressed in tension, and m is 

the parameter that characterizes the flaw distribution. These parameters 

can be deduced from experiment by testing a batch of similar specimens. 
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Equation (1) has been used successfully in a variety of applications 

involving the fracture of brittle materials. However, in all of these 

problems the number of flaws in the stressed volume v is very high. 

This would be the case in many conventional mechanical tests such as 

uniaxial tension or bending. However, reducing the size of the 

stressed volume by a large factor may cause two problems. First, the 

increase in the strength predicted from Eq. (1) may be so high that 

plastic flow may precede fracture. In this case, with some caution a 

nominally brittle material can be treated as if it were a ductile 

metal. Second, stress alone as used in Eq. (1) will not be a suf

ficient criterion for failure if the size of a typical flaw becomes 

comparable with the dimensions of the stressed volume. In such 

situations, the Weibull approach would not be realistic. 

In principle, if the flaw sizes were known, the Weibull approach 

would not be necessary and could be replaced by the deterministic pro

cedures of fracture mechanics. For problems such as indentation or 

erosion, the loaded region may be very small. For this reason it 

appears worthwhile to attempt to study such problems in a deterministic 

manner. In doing this it is realized that the flaw distribution may 

have to be based on certain assumptions and that the relation between 

fracture toughness, smooth bar strength, and flaw size is not well 

established for brittle materialsg With these cautions, it appears 

that these aspects must be studied: 
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1) Influence of microstructure on mechanical behavior. 

2) Flaw size and distribution. 

3) Stress magnitude and distribution. 

The first two are solely dependent on the target material~ while the 

third one will change drastically if any plasticity occurs during con

tact. The third factor will depend on the material properties and 

shape of both contacting surfaces. Once these factors are known, and 

the boundary between brittle and ductile behavior is specified, in 

principle~ a relation between all the controlling variables for pre~ 

diction of fracture and its location can be obtained. However, the 

extent of damage or crack propagation are not as easily determined. 

To obtain an approximate answer for studying crack propagation and 

material removal one needs to resort to semiempirical methods based 

upon the formation and propagation of the most important types of 

cracks. In Chapter 3 the effect of the variables leading to formation 

of different types of cracks will be examined. 

2.1. Microstructural Effect on Mechanical Behavior 

From the point of view of mechanical behavior, it is convenient to 

divide ceramic materials into three categories. Depending on their 

crystal structures, bond character, and the temperature, they may be 

completely brittle, semibrittle, or ductile (Table I). 
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Table 1. 

Category Room Temperature High Temperature 

Completely Brittle TiC, Si02, Al 2o3, 

Si, Ti , SiC 

Semi Brittle CaF2, MgO, LiF, NaCl Al 2o3, Ti02, MgO 

CsCl 

Ductile AgCl, AgBr CaF2, LiF, NaCl, CsCl 

In the completely brittle category are materials in which dis

locations cannot move, even at stresses approaching the theoretical 

strength. They are generally covalently bonded materials with complex 

structure at temperatures below approximately 0.5 Tm, where Tm is the 

absolute melting temperature. 

Semibrittle solids include both the ionically bonded materials, 

with simple crystal structures at temperatures below approximately 

0.5 Tm, and many covalent materials above that temperature. The dis

locations find it difficult to cross-slip and cannot jump from one slip 

surface to another very·easily. For structural reasons they are 

restricted to specific slip planes (plastic-anisotropy). 

Ductile behavior is demonstrated by many ionically bonded materials 

in which dislocations can move and manoeuver easily with considerable 

flexibility in the choice of slip planes. These microscopic factors 
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which control the flow stress and consequently hardness~ as will be 

shown, play an important role in determining the type of damage that 

will occur in indentation and erosion. The variation of hardness, 

which is the reflection of dislocation mobility, versus modulus of 

elasticity (E), which is directly related to interatomic forces, is 

shown in Fig. 2.1. In both covalently and metallically bonded mater~ 

ials, the hardness is proportional to E, but the proportionality con

stant differs by a factor of about 500. This figure clearly shows the 

importance of the nature of interatomic bonding on the mechanical 

behavior of materials. Thus, for the ductile category, in which dis

locations move more easily, the hardness is a small fraction of the 

elastic modulus (5 x 10-3 for the data shown). By contrast, the 

hardness of covalent crystals is a much higher fraction of the modulus 

(-10 percent). Most ceramics of interest lie somewhere in the spectrum 

between these specific categories of behavior. Where they lie again 

depends on their relative dislocation mobility, manoeuverability, and 

slip modes. 

In this section, materials have been examined from a microscopic 

point of view. Whether permanent deformation appears on a macroscopic 

scale depends as much on the material structure as on the state of 

stress in the body. In the next section, this topic is discussed with 

particular attention to the size and geometry of the indenter. 
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2.2. Plastic Deformation 

Impact of particles on brittle solids produces fragmentation of 

surface material around the impact site. The process of fragmentation, 

like the stress-strain curve of bri le materials, always appears to 

be completely brittle~ regardless of the category of the target mater

ial (as discussed in the beginning of Section 2.1) and the particle 

used. This sometimes misleading information is what one might obtain 

by sequential photography of impacts. These pictures give a good 

global impression of the failure process. However, no detailed in

formation about how propagation and interaction of cracks lead to 

fragmentation can be gained by this method. Crack formation and prop

agation are controlled by the magnitude and direction of the stresses 

due to impact. These two quantities can substantially change if the 

target responds plastically to impact loading. Therefore, it is very 

important to look for the existence of plasticity and the condition 

under which it occurs. 

The presence of plastic deformation in otherwise brittle materials 

leads to a rather large discrepancy between the expected and measured 

surface energy values. Shand2 and Roesler3 showed that the energy 

absorbed in fracture of glass is much higher than the true (thermo

dynamic) surface energy. Because of this, the Griffith4 energy 

approach to fracture prediction has been critized since no account was 

made for plastic deformation energy. The significance of this defor-

mation naturally depends on its extent, which in turn is determined by 

the specific category in which that material falls. 
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Direct observation of fracture in glass has been said to provide 

other evidence of plastic flow. Photoelastic observations5 show 

that large residual stresses exist at the root of a crack in glass. 

Originally it was be1ieved5' 6 that the wedging action by the debris 

in the crack was responsible for the residual stresses that remain at 

the crack tip upon unloading. However, in other work it has been 

claimed that the residual stresses are due to plastic, deformation.40 

Despite the extensive evidence for the occurrence of plastic 

deformation in nominally brittle solids, many investigators have been 

reluctant to accept this concept. On one hand, essentially ideal 

elastic behavior can occur. For example, Fig. 3.5 shows the top view 

of the cone-crack type of failure due to indentation of glass by a 3 mm 

spherical steel ball. In this case, stresses acting on surface flaws 

reach a critical value at a much lower. load than that required for the 

start of plastic deformation below the indenter. While this type of 

failure can be classified as completely elastic, indenting the same 

material by a Vickers hardness tester, Fig. 3.9 shows plastic defor

mation. This fact was known as early as 1926 when Gohlhoff and Thomas9 

used scratching to measure hardness by drawing a lightly loaded point 

across a glass surface • Their result was similar to scratching a 

ductile material. Since at that time glass was thought of as a 

brittle material, this interesting observation prompted many other 

studies. For example, in 1957 Joos 10 showed a 11 Scratch cur1 11 formed 

by the material ejected from plastic furrows due to scratching. In 

larger scale experiments by Bridgeman and Simon, 11 they prevented 
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premature failures by large hydrostatic pressures and observed as much 

as 25 percent plastic deformation in glass. 

Statements have been made that materials that are brittle may show 

viscous flow in indentation due to heating. But clearly the experi

ments by Bridgeman and Simon, 11 and the fact that static tests pro-

duce no significant heating, discount those arguments. However, 

during dynamic testing substantial heating may develop. This may 

occur during ductile erosion due to the large plastic strains that are 

produced in a very short time. 

Investigation of single-particle impact sites in metals by 

Hutchings et a1. 12 has shown the formation of a shear lip at the 

exit side of the crater produced by particle impact. They concluded 

that temperatures exceeding the melting point of the metal could be 

generated during formation of the shear lip. More recent experiments 

by Hockey and Wiederhorn13 on erosion of glass at 600°C and 15° im

pingement angle with 150 ~m SiC particles traveling at 54 m/s, clearly 

show evidence of melting at the exit portion of the shear zone. By 

means of an analysis of the adiabatic shear process similar to that 

presented by Recht14 and Yust et al., 15 they found that it is 

possible to attain temperatures that exceed the melting point of the 

surface under the erosion condition of their experiment. Also, the 

lower thermal conductivity of ceramics favors generation of higher 

local temperatures than metals. Their calculations based upon 

adiabatic heating, even though very approximate, nonetheless indicate 

the possibility of reaching temperatures of the order of the melting 

point. 
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Most of the studies of ductile behavior in nominally brittle solids 

have been carried out with glasses. However, many studies have con-

firmed that such behavior also occurs in ceramic materials. Etch-pit 

techniques have been used to study the dislocation slip bands asso-

ciated with impact damage or hardness impressions on 11 Soft 11 ceramics 

like MgO and LiF. 16 Dislocations in these materials were found to 

propagate a considerable distance from the impact site, while in 

harder materials like SiC and A1 2o3 they are located closer to the 

impact site. This close proximity, along with the lack of X-ray 

resolution and dissolution of dislocations by the etching process, 

creates difficulties when dealing with hard ceramics. These problems 

have been resolved by using TEM. 

Studies by Hockey18 give direct evidence of high densities of 

dislocations at both static indentations and impact sites. In both 

cases, high densities of dislocations, with qualitatively similar 

appearance, were found directly beneath the central region of contact 

and arrays of individual dislocations were found extending a short 

distance into the surrounding regions. Figure 2.2 shows an array of 

dislocations observed in alumina. However, these plastic impressions~ 

unlike those in ductile materials, contain a high volume of twin

induced microcracks. Lankford19 observed for A1 2o3 that on the 

impression walls there are a large number of deformation bands which 

appear to be twins, based on their resemblance to the twins he observed 

in compression and tension tests. These twins became visible in many 

grains above a threshold stress level, and with increasing stress level 
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i11 more twins are produced. Also, microcracking associated with 

twin~grain boundary intersections and twin~plane decohesion regins to 

appear. It is interesting to note that twinning in Al 2o3 during 

tensile tests (T = 23UC, €- 10-5/s) commences at around 130 MN m-2 

(18 ksi), while compressive loading under similar conditions requires 

a stress level of about 1400 MN m-2 (193 ksi) to induce twinning. 

This stress level is an order of magnitude lower than its hardness. 

This evidence indicates that plastic deformation, to a greater or 

lesser degree, always occurs during static indentation or impact load

ing of brittle materials, especially when hard angular particles or 

softer targets are used. 
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3. INDENTER-SURFACE INTERACTION 

An essential first step in any erosion study is a knowledge of the 

prospective crack formation and geometry. The formation and propaga

tion of cracks are controlled by the magnitude and direction of the 

principal stresses and the fracture toughness. If interaction is com

pletely elastic, as usually expected for brittle materials. all the 

cracks, because of similarities in stress distribution, will have the 

same general pattern and a single model would be adequate for analysis 

of single impacts. However, crushing and plasticity or a combination 

of both under various circumstances are observed to occur. This will 

drastically change the stress distribution and consequently the crack 

pattern. 

In the previous chapter it was pointed out that the response of 

brittle materials is as much dependent on their microstructure as on 

the indenter size and shape. Therefore, depending on the circum

stances, a material may exhibit a brittle state in one application and 

ductile in another. Generally, the responses that are observed to 

occur can be classified in three different groups. They are: 

1. Elastic response: sphere indenting a perfectly brittle 

material. 

2. (a) Elastic-plastic response caused by the geometry of the 

indenter: cone or pyramid indenting a brittle or semibrittle material. 

(b) Elastic-plastic response resulting from the relatively. low hardness 

of the surface: sphere indenting a semibrittle material. 
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3. Plastic response caused by the low hardness of the surface or 

size of the indenter: indentation of ductile ma'terials, or brittle 

materials with very small indenters. 

The above categories are separated by the extent (increasing from 

top to bottom) of plasticity. It should be noted that, as far as the 

material properties are concerned, hardness. plays the most significant 

role, and whether the mean contact pressure reaches this value before 

fracture occurs is determined by the size and shape of the indenter as 

well as the fracture toughness. 

3.1. Critical Angle of Attack as a Function of Material Deformation 

The difference between ductile and brittle behavior, as well as 

the appearances of ductility in nominally brittle materials, are 

illustrated by the results of erosion tests in Figs. 3.1 and 3.2. 

These figures immediately show the distinct difference that exists 

between these two types of wear processes. Materials behaving in a 

ductile manner show a maximum removal rate at shallow angles while 

maximum removal for brittle materials occurs around 90°. 

For both types of behavior, materials removal requires a certain 

stress or energy level for formation of new surfaces. This energy will 

be provided by the particle~ But very little of the icle energy 

goes into creating new surfaces. A portion of it may be consumed by 

plastically deforming the surface~ or may be preserved by rebounding 

from the surface. The normal component of velocity Vn is always 

capable of doing work. However, the effectiveness of the tangential 

component Vt will depend on the interference between the two 
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surfaces. It is convenient to define the interference or adhesion 

between the surfaces in terms of a coefficient of friction ~· The 

magnitude of ~ is equal to the ratio of the average tangential-to

normal force. For instance, if ~ is zero, tangential momentum will be 

preserved. For ~ > 0, the maximum tangential force that the surface 

may experience is the lesser of the force that Vt can produce and 

the normal force times ~· The friction coefficient, which depends on 

the amount of particle penetration and adhesion between the surfaces, 

is low for brittle materials due to their high hardness. But, it 

should be high for ductile materials or for a brittle material that 

behaves in ductile manner. So, while the tangential momentum of the 

particle may be totally consumed in eroding a ductile material, it may 

be preserved when impacting a brittle material. Therefore, brittle 

materials tend to erode more at high impingement angles. This is 

confirmed by the results of erosion of various surfaces with 127 ~m 

(120 mesh) SiC particles shown in Fig. 3.2. The peak of these curves 

is reached slightly off the normal position, a = 90°. This would be 

found only when penetration is increased by using angular particles 

like SiC. With spherical steel shot the curves consistently peak at a 

= 90° • 

The erosion of ductile materials appears to occur by at least two 

separate mechanisms. First, cutting at low angles of impingement, and 

second, failure due to a very complex shearing process at high angles. 

The cutting action at low angles has be~n analyzed. However, no 
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definite model has yet been developed for high-angle erosion, which is 

sometimes known as deformation wear. Nevertheless, a general agreement 

exists that removal is due to overstraining, and possibly fatigue of 

the surface material. 

Finnie's theory20 of erosive cutting of ductile materials under 

the action a stream of particles predicts low-angle erosion very 

well. The theory assumes that a hard angular particle cuts into the 

surface much like a sharp tool, and the maximum removal occurs in the 

range 15° <a< 25°. Very close correlation with experiment verifies 

the cutting action assumption. However, the contribution of cutting 

to material removal reduces at high angle~. while that due to 

"deformation wear" increases. Examination of the deformation-wear 

process in more detail reveals that single particles most likely cause 

no material remova1. 8 In this case, the net result is a gross 

deformation of the surface caused by a rather large displacement of 

material around and underneath the impact site. Accumulation of 

plasticity continues by repetitive impacts until the material is 

removed by a mechanism that is not yet understood. 

Removal may occur by a process involving low-cycle fatigue or by 

an extrusion and shearing mechanism. This process consumes a great 

deal of energy. Therefore, the resulting removal rate is much lower 

than that due to cutting. The increase in the contribution of defor

mation wear and the reduction in cutting iauses the removal rate to 

decrease at large angles. 
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It appears that if the resistance of a material to penetration 

(hardness) is increased, the angle amax for maximum erosion is in~ 

creased. In the limit, when very hard (brittle) surfaces are impacted 

by blunt particles, amax reaches 90 degrees. This point is illus

trated in Fig. 3.2, where various surfaces are eroded with 9 pm (1000 

mesh) and 127 pm (120 mesh) SiC particles at various impingement 

angles. Particles of 9 pm size erode the surface, especially the 

softer ones~ as if they were ductile, and indeed the mechanism of 

removal is the same. The values of angle corresponding to maximum 

removal rate, amax' for each particle size and surface hardness are 

tabulated in Table 2 and plotted in Fig. 3.3. 

Table 2. 

Material Hardness (GPa) am ax (9 pm) am ax (127 l!m) 

Al 0.5 15 16 

Tool Steel 6.0 22 52 

Glass 6.3 22 80 

MgO 9.2 48 80 

Al203 18.0 65 90 
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Also shown in Fig. 3.3 is a schematic representation of the general 

effect of particle size on amax for various hardness values. By 

examining Table 2 and Fig. 3.3, two conclusions about the effect of 

hardness on the angle of maximum removal rate can be reached: 

(a) increase of hardness increases the value of amax for any particle 

size, and (2) the transition from ductile to brittle behavior with 

changing hardness becomes sharper when larger particles are used. 

3.2. Crack Formation and Type 

It was pointed out in the previous sections that, depending on the 

target material and particle size and shape, there are three different 

types of response with some overlapping. They were classified as 

either elastic, elastic-plastic, or completely plastic responses. 

Elastic response is self-explanatory. However, definitions used 

for elastic-plastic or completely plastic response are different from 

those used for describing the uniaxial stress-strain curve of a mater

ial. Elastic-plastic response in the present context implies that 

material below the contact area, where compressive hydrostatic pres

sures and shear stresses are greatest, plastically deforms; but the 

actual brittle fracture starts from the elastic-plastic boundary and 

propagates into the elastic material. 

Plastic response is associated with completely ductile behavior, 

where no cracking in the elastically stressed region occurs, and the 

material removal may be caused by a combination of over-straining, 

cutting, or fatigue. Of source~ the significance of the contribution 
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of each of these removal mechanisms as discussed depends on the angle 

of attack~ a. 

In indentation or erosion of brittle materials, the first two cases 

are usually encountered. The type of cracking associated with these 

responses are discussed in the following sections. The third case 

which, except for ductile materials, occurs only for very small par~ 

ticles will be considered in the present work, since its treatment 

belongs with the study of ductile materials. 

3.3. Ring and Cone Cracks 

The nature of contact and the fracture that results due to impact 

or indentation of an elastic-brittle surface by an elastic sphere is 

named after Hertz, the famous scientist who first studied this problem. 

In the Hertzian fracture test, the surface of the material is depressed 

in a controlled way until it responds by fracturing, as opposed to 

plastically deforming as in the case of the hardness test. This test 

by virtue of its ease of application is by far the most extensively 

studied elastic contact configuration. 

The cracking associated with the Hertzian stress field, as shown 

in Figs. 3.4 and 3.5, initiates from a critical pre-existing surface 

flaw located at a radius typically 10-30 percent greater than that of 

the contact area. After encircling the contact area in the form of a 

shallow ring crack, it propagates downward to form a frustrum of a 

cone. But because of the diminishing stresses below the surface, 

propagation becomes stable with crack growth. Typically, stable 

propagation is observed when the size of the cone cc pecomes 
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Fig. 3.5. (a) Su appearance ring crac on glass, 
(b) A schematic view of the cracks in cross-section. 

median crack forms at a much higher load than that 
at which the ring cracks form. 
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comparable with or larger than the contact radius, a. For stable crack 

propagation~ the direction in which the crack extends under a general 

state of stress has been discussed extensively in the literature. The 

three most plausible explanations which can be shown to lead to virtually 

identical predictions are: 

1. The crack grows to maximize the energy release rate. 

2. The crack grows in a direction normal to the maximum hoop stress 

cr
99 

at its tip. 

3. The crack grows in such a way as to maintain pure mode I loading 

at its tip, 

These arguments are based upon isotropic materials and would have 

to be modified for anisotropic materials such as single crystals. For 

Hertzian loading~ the crack follows a path quite close to the trajectory 

normal to the maximum tensile stress in the uncracked solid. Since 

"exact" calculations of the crack path require time-consuming step-by-step 

calculations, it may be convenient to assume that the Hertzian crack 

follows the trajectory associated with the smalle principal stress 

a33 in the solid prior to cracking. Also~ as shown schematically in 

Fig, 3.5b, some other shallow cones will form outside the principal cone. 

These cones, which appear to also follow the o 33 trajectories, are seen 

as ring cracks on the surface, Fig. 3.5a. Increasing the indenter load 

propagates all cones further down, until one of the shallower cones 

suddenly propagates to the surface. The resulting surface failure is 

shown in Fig. 3.6. This type of failure has also been observed to occur 

during unloading. 21 
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From the Hertzian analysis, it is expected that the critical load 

Pc for initi ion of a cone would be proportional to the square of 

the indenter radius R if initial re occurs at a tical tensile 

stress. However~ experimentally it has been found that for smaller 

indenters the relation between Pc and R is close to linear~ while 

for larger indenters, load is approximately proportional to the radius 

squared. as shown in Fig. 3.7. The radius at which this transition 

occurs is ically between 1 em glass. This discrepancy between 

experiment and theory points out the fact that for prediction of frac~ 

ture the knowledge of ses in the elastic stress field is necessary 

but not sufficient. Clearly. the simple maximum tensile stress criterion 

is inadequate. This topic is further discussed in Chapter 4. 

For the limiting case of a true cone, c > 2a. the mechanics of 

fracture becomes independent of the events within the contact zone (i.e., 

surface condition and location of fracture), as seen in the simple 

equilibrium relation obtained by Roesler, 3 

{ 3 .1) 

where F(v) is a dimensionless constant involving only Poisson•s ratio. 
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preceding discussion relates to the classical cone cracks that 

are observed to form during elastic contact. A similar type of cone 

cracking may occur even when the surface has responded plastically to 

the loading. Multiple cone crack formation in glass due to indentation 

by the spherical tip of a Rockwell C hardness tester is shown in Fig. 

3.8a. The schematic representation of these cracks as also observed 

by Evans et al. in ZnS impacted by WC and glass projectiles is 

shown in Fig. 3.8b. These cracks~ unlike those forming during the 

elastic contact from a preexisting surface flaw, initiate most likely 

from deformation induced flaws. The formation and extension of these 

cracks does not appear to be as predictable as the elastic case. The 

stresses responsible for the formation of these cracks are discussed 

in Section 3.6. 

3.4. Median Vent and Radial acks 

The effect of increasing the indenter load beyond that at which 

the cone crack suddenly appears is to further extend the developed cone 

and, as the result of the increasing stress level. to induce and expand 

a zone of plastic deformation immediately below the contact area where 

shear and hydrostatic compression stresses are greatest. This behavior 

is more pronounced in materials with lower hardness or higher fracture 

toughness. From the bottom of the plastic zone where the stresses 

apparently become tensile, a system of penny~like (circular) cracks 

evolve once some threshold is reached in loading. 23 •24 These are 

known as median or median vent cracks. Because plastic deformation 

occurs more readily under a sharp indenter than a sphere. median 
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cracks are usually studied using sharp indenters. They form on 

symmetry planes containing the load axis and line up with the diagonals 

of the indentation produced by pyramid indenters. 

These cracks, as schematically shown in Figs. 3.9 and 3.10 for a 

sharp indenter, are circular and lie below the surface. With increase 

or removal of load, they extend without much downward propagation to 

reach the surface and eventually become semicircular. In this con

figuration they are usually referred to as radial cracks. Lawn and 

Marsha11 33 observed the sequence of formation of these cracks on 

glass with a Vickers hardness tester for loads in the range of 20-150 N 

(4.5-33 lb). Their observations reveal that at higher loads median 

cracks break through the surface prior to unloading, while at lower 

loads cracks do not reach the surface until unloading. 

Depending on the material properties, it is conceivable that median 

cracks may occur either before, during, or after propagation of a cone 

crack. Usually because of lower stresses at the locations where these 

median cracks form, surface cone cracks tend to form first. But if 

cone formation could be somehow prevented or delayed, an increase in 

load with consequently higher stresses may lead to the initiation and 

propagation of a median crack before or during cone formation. As will 

be shown, for a given particle radius and surface fracture toughness 

there should exi a specific range of surface flaw sizes that grow to 

form the cone crack. If these flaws are absent or are removed by 

polishing or etching the surfaces cone cracks would start from any 

other smaller or larger flaws at higher loads. This might be 
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sufficient to propagate a median crack from a favorably sized or 

orientad flaw underneath the contact area before a cone crack starts. 

Again, because of rapid diminishing tensile stresses below the sur

face, median cracks are more likely to form during overloading after 

formation of the cone. 

Photographs by Lawn and Wilshaw24 of indentations produced on an 

as received soda lime glass by a R = 0.5 mm ball~ show that even though 

cone cracks may form with loads as low as 10 N, median vent cracks do 

not form until loads exceed about 140 N. At these loads, the cone 

extension rate decreases while plasticity, crushing, and the median 

crack propagation rate increase. 

Since plasticity reduces the magnitude of the surface radial 

tensile stresses, the trend of cracking shifts from cone to median. 

These stresses are reduced the sooner the plastic zone forms and the 

larger its extent. For instance, in less brittle materials like hard 

metals, PMMA, or brittle ceramics at elevated temperatures the median 

crack system tends to begin operating before the cone has had a chance 

to develop at all. In these situations a combination of cone and 

radial cracks may form. 

No Hertzian cone (initiating from the surface) forms when pointed 

or sharp indenters are used. The largely triaxial compressive stresses 

inhibit fracture, while shear stresses plastically deform the area 

around the contact site. The impression made by indenters such as 

cones, pyramids, or wedges are geometrically similar. Thus, the 
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mean pressure is independent of the size of the indentation. Because 

of this the intensity of the stress field outside the plastically 

deformed area which is controlled by the contact pressure (hardness)~ 

remains independent of the impression size. However, the spatial 

extent of the stress field increases with the size of the indentation. 

The growth of the stress field with load P increases the chance of 

finding a flaw of more favorable size and orientation. It also in

creases the possibility of propagating larger flaws. So, at some 

critical load, P , a preexisting or deformation-induced crack will c 

experience such tension over a sufficient portion of its area that an 

instability in crack size occurs. Evans et a1. 22 obtained the 

following expression for Pc: 

where Kic and H are the surface fracture toughness and hardness, 

respectively, and the proportionality factor is to be determined 

(3.2) 

empirically for a given combination of indenter and surface. While 

Eq. (3.2) only indicates the role of hardness and fracture toughness 

in the median crack formation process, Pc due to its dependence on 

flaw sizes might have a statistical variation rather than being con

stant, However~ experimental studies by Weiderhorn et a1. 23 show a 

very small variation in strength degradation due to the median vent 

cracks produced by sharp indenters. This indicates that sharp in-

denters, through the deformation process within the plastic zone, 
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produce their own incipient flaws. This is consistent with 

Lankford's19 observation that pointed indenters create a large 

volume of micro-cracks in alumina by twinning. On the other hand, 

elastic interaction with blunt indenters necessitates a search for a 

suitable starting fracture nucleus on the target surface, and 

consequently a larger variation in fracture load. 

After initiation~ these median crack propagate to the surface in 

the form of radial cracks (Fig. 3.9). The radius, cr, these 

semicircular radial cracks increases with the size of the contact 

radius or diagonal, a, where a is related to the mean contact pressure, 

Pm' through the following relations, 

2 p = P/~a = H m (circular contact) (3.3) 

However, this mean load is subject to variation with the indenter apex 

angle and friction. The apex angle at which maximum mean pressure 

occurs depends on the test material, and may lie anywhere from 

60-150°. Usually, higher angles for maximum mean pressure are 

approached when more ductile materials are used. Conversely, hard 

materials favor a sharper indenter for maximum contact pressure. 27 , 59 

Friction amplifies the magnitude of contact pressure and its effect 

becomes more pronounced for more acute angles. 29 But since 

impressions for a given apex angle caused by cones or pyramids are 

geometrically similar for dimensional reasons~ it could be argued that 

the resulting cracks should also be geometrically similar. This means 
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that the size of radial cracks should be proportional to the contact 

radius. But due to the work hardening character of most materials, 

mean pressure increases when large loads are applied and consequently 

large deformation is caused. 29 It should be noted that this possible 

small increase in pm happens after the initial drop in the apparent 

hardness due to complete development of the plastic zone under the 

indenter. From Eq. (3.3) this means that a grows more slowly with 

load P. But, the magnitude of the residual stresses responsible for 

radial crack formation remains high~ after removal of the load because 

of the high yield strength of these materials. Therefore, the ratio 

of cr/a is expected to increase slowly with load or equivalently 

with a. Lawn and Fuller30 obtained the following empirical relation 

for the radius of a radial crack in terms of indentation load, 

c - (~p )2/3 
r Kic 

Substituting P from Eq. (3.3) into Eq. (3.4) gives 

(3.4) 

(3.5) 

This equation also indicates that the normalized size of the radial 

cracks increases with the size of impression in two geometrically 

similar indentations. 
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Evans and co-workers31 ' formulated two semi-empirical 

relations between the magnitude of radial cracks and the relevant 

target and projectile parameters. For cr/a > 2, they obtained the 

lowing approximate proportionality, 

(3.6) 

P in the above equation can be replaced by appropriate parameters32 

to represent the impact load in low-velocity impacts where damage 

morphology is very close to the quasistatic indentation, 

(3.7) 

where G is the target shear modulus and V and p are projectile velocity 

and density, respectively. 

For high-velocity impacts where dynamic effects become significant, 

they found, 22 

y is a parameter that has a weak dependency on both the acoustic 

impedance and the density of particle and target. Comparison of 

(3.8) 

Eqs. (3.7) and (3.8) indicates that the effect of velocity and fracture 

toughness become more pronounced in high-velocity impacts, due to the 

increase of dynamic effects. 
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clear that the surface is bent upward around the contact area. These 

cracks, unlike those forming on unloading as shown in Fig. 3.10, initiate 

and propagate from the sides 

bottom of it. 

the plastic zone rather than from the 

For low-velocity impacts, it is more appropriate to put the emphasis 

on analyzing the low-load indentation case. The sequence of all the 

cracking that occurs under this condition, as observed by Evans and 

Wilshaw, 32 is shown in Fig. 3.13. it is apparent that the driving 

force behind the formation and propagation of the lateral and radial 

cracks are the residual stresses caused by the mismatch between elastic 

and plastic regions. Analysis toward prediction of the size of these 

cracks requires detailed knowledge of the plastic zone and the stress 

distribution around it. This topic is discussed in the next section. 

Evans and Wilshaw32 from their semi-empirical approach found the 

following proportionality for the lateral crack size under quasi~static 

conditions, 

- f~P~)3/4 
cl I K 

\ Ic 

3.6. Elastic Plastic Analysis 

(3.9) 

The equations describing elastic behavior are exact and well~ 

established. Many analytical solutions have been obtained for simple 

configurations, but more complicated situations require numerical 
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Fig. 3.13. Schematic of crack formation and growth during loading. and 
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solutions. A somewhat similar situation exists when the plastic 

components of strain are large compared to the elastic components, but 

not so large that dimensional changes must be considered. Reasonably 

accurate constitutive equations are available. Closed form solutions 

exist for a few simple problems, but in most cases numerical solution 

is again required. In problems which require consideration of both 

elastic and plastic components of strain, only a few very simple pro

blems are amenable to a closed form solution. Because of the time

consuming and complicated nature of the computations, approximate 

solutions are often used. For the problem of interest in this work, 

the stress state under an indenter, it is important to consider both 

elastic and plastic components of strain. 

In this section some idealizations have been used to find the 

stresses responsible. for the formation and propagation of cracks when 

elastic and plastic deformation occurs. One of the goals is to deter

mine whether crack propagation coincides with prior principal stress 

trajectories. If it does, the effort for obtaining a relation between 

the applied load and crack propagation would be greatly reduced. 

As a first step toward modeling the plastic deformation in order 

to find the stresses in the elastic zone where cracking occurs~ it is 

necessary to check the shear stresses responsible for such deformation. 

The validity of a model can be assessed by its ability to predict the 

location of the different types of cracks. When the load is light, 

deformation beneath the indenter will be elastic and the Hertzian 

theory will pertain. Figure 3.14 shows the distribution of normal 
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stresses on the area of contact obtained by Hertz and the resulting 

lines of constant shear stress. Numbers designate the normalized 

values of the local shear stress T with respect to the mean contact 

pressure Pm' T!Pm· According to the Tresca yield condition, 

plastic flow occurs first at point A when T = SY/2, where SY is 

the uniaxial flow stress. Substituting the normalized value of shear 

stress at point A from Fig. 3.14 into the above yield condition gives, 

(3.10) 

So, first yielding occurs when Pm is 7 percent higher than the yield 

strength. As the load is increased, the plastic zone will expand in 

all directions from point A. Eventually, for a non strain hardening 

material the surface contact pressure becomes uniform, resembling 

indentation by a punch, when the entire contact area is plastic. How~ 

ever, due to strain hardening a uniform pressure distribution is never 

reached, since strains are largest in the center and diminish toward 

the edge of the contact area. Nontheless, the concept of uniform 

pressure is a convenient idealization which should not be far from 

reality. At this stage the problem is similar to a hardness test in 

which 

(3.11) 



51 

where C, the constraint factor, depends on the indenter apex angle and 

the surface elasticity. Experiment and analytfcal results show that C 

increases with apex angle. Hill, et a1., 36 with the assumption of 
. 

rigid-plastic behavior found that for a wedge with a semi-angle of 90°, 

i.e., when the wedge becomes a flat punch, the indenter pressure was 

about 2.6 times the pressure at zero angle. For a square flat punch, 

Shield and Ducker37 using limit analysis obtained a value of 2.855 

for the constant factor C, while Levin38 studying the flat circular 

punch reported a value of 3.0. A value of 3.0 is also found for the 

spherical indenter, 29 which shows the similarity in constraint pro-

vided by the surrounding elastic materials when using these different 

identers. 

Marsh40 showed that the "elasticity" of the surface, defined as 

the ratio of yield strength SY to modulus of elasticity E, can ·in-

fluence the constraint factor C. The value of C increases with decreasing 

SY/E until it reaches a limiting value of 3.0. For example, for glass, 

which has a high value of SY/E, C lies between 1.5-2.0. The result is 

similar to that obtained in indenting a more ductile material with a 

sharper indenter. 

Mulhearn's41 picture of deformation associated with the indentation 

made in hardness testing by a pyramid identer and the study of Kobayashi 

et a1. 42 suggest that the indentation process can be modelled by an 

expanding s~herical cavity. The expansion of the plastic zone produced 

by increasing the load from the elastic limit, Pe, toP= 40 Peas 
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calculated by Hardy55 is shown in Fig. 3.15. Despite significant 

changes in stress distribution that occur due to plastic flow, the 

boundaries of this expanding cavity match very close the constant shear 

stress contour lines of the elastic solution as shown in Fig. 3.14. From 

this type of observation Shaw et a1. 43 showed that, by knowing the con

straint factor C, the location of the elastic-plastic boundary can be 

easily approximated. Rewriting Eq. (3.11) as 

(3.12) 

This expression gives the contour line </pm close to the elastic

plastic boundary. For C ~ 3, when full plastic deformation has 

occurred, the elastic plastic boundary would be close to the constant 

shear stress line with the value of 0.17. Even though this method of 

estimating the boundary is far from rigorous, it appears to provide 

reasonably accurate predictions. 

The solution for the expansion of a spherical cavity by internal 

pressure is known, Hi11. 44 However, it cannot be applied to this 

problem where only a partial sphere exists. For this reason, in the 

present work, to obtain an approximate solution an axisymmetric finite 

element program was used to calculate the stresses outside the plastic 

zone. 

As shown in Fig. 3.16a, a uniform pressure is assumed to act on 

the elastic-plastic boundary. Since the boundary is not a complete 

sphere, the vertical component of the resultant force due to the 

boundary pressure is equal to the applied load, while the resistance 
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Fig. 3.15. Progressive yielding of the half space under loading 
by a sphere. z is the coordinate axis in the 
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radius prior to plastic deformation. 
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Fig. 3.16. Boundary conditions at the elastic plastic interface 
for (a) the spherical cavity expansion, (b) unloading 
after plastic deformation. 
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to the horizontal component is provided by the surrounding elastic 

material. The resulting principal stress trajectories and the magni

tude of the largest principal stress a11 are shown in Fig. 3.17 for 

an internal pressure of 250 Ksi (1.81 Gpa). From these figures it is 

apparent that the highest stress occurs at the bottom of the elastic

plastic boundary. This is the location at which median vent cracks 

initiate. They then propagate down along the a 22 trajectory, which 

contains the axis of symmetry, as shown in Fig. 3.10. 

Crack initiation will depend on both the stress and the size of 

the starting flaw. Because of this it is possible that a crack will 

also initiate from flaws, most likely deformation induced, at some 

other locations along the elastic-plastic boundary where the stresses 

are lower. These then would be the starting points for conical-type 

cracks that are observed to form in situations such as that shown in 

Fig. 3.8. Comparison of Figs. 3.8 and 3.17b indicates that these 

cracks, like the median vent, follow the prior principal stress 

trajectories very closely. 

If the load is now removed, elastically displaced material will 

try to move back to its original location. This would be possible if 

the contact had been completely elastic. However, in the elastic

plastic case this recovery is resisted by the plastically deformed 

material. In ductile materials the force exerted by the plastic zone 

will cause a second plastic flow to occur upon unloading. 43 On the 

other hand, brittle materials upon unloading respond by fracturing at 

high tensile stress locations before any reversed plasticity occurs. 
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(a) Magnitude of the maximum principal stress (tension) 
011 and (b) trajectories of cr11 and cr22 for ~pherical 
cavity under 250 ksi internal pressure. 
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As mentioned in the expanding cavity concept, the resulting force due 

to the vertical component of the stresses on the elastic-plastic 

boundary is equal to the external load. Removing the load results in 

unbalanced internal forces. Ideally, in order to compensate for this, 

all the vertical components of the stresses on the elastic-plastic 

boundary are removed. Horizontal stress components may change some

what in magnitude but do remain because the resulting force is inter

nally balanced. This idealized loading is shown in Fig. 3.16b and the 

resulting magnitude and trajectories of the principal stress a11 are 

plotted in Fig. 3.18. 

Comparison with the expanding spherical cavity problem (Fig. 3.17) 

shows that the direction of a11 below the plastic zone instead of 

being parallel is perpendicular to the surface. Also, its magnitude 

.reduces more slowly with depth. These a11 stresses are those 

responsible for lateral crack formation from the bottom of the elastic 

plastic boundary, as shown in Fig. 3.10. But since these cracks after 

propagation effectively separate the plastic zone from the material 

below it, the stress distribution changes drastically. Therefore, 

their propagation cannot be predicted from the prior stress trajec~ 

tories, and would have to be calculated in a stepwise manner, which is 

by no means an easy task. 



Fig, 3.18. 
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(a) Magnitude of the maximum principal stress 
(tension) a11 and (b) trajectories of a11 and a22 
upon unloading. 
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4. INDENTATION OF BRITTLE (ELASTIC) MATERIALS BY SPHERICAL 

INDENTERS--A REVIEW OF PASi WORK 

Hertz provided the solution for the localized stress field that 

results when spheres or cylinders contact one another or a flat sur

face and the material behavior is elastic. The solution for a sphere 

contacting a flat surface is useful in studying indentation or erosion 

due to relatively large blunt indenters. 

Since the elastic stress field around the indenter is well-defined 

up to the point of fracture, many important surface properties such as 

residual stress, flaw densities, and size, as well as fracture tough

ness, can be evaluated from fracture tests once a method has been 

developed. Strictly speaking, the Hertzian stress field, even though 

invalid after crack propagation, has been used to estimate the extent 

of cracking that results from the elastic contact of a sphere with a 

brittle surface. 45 This has provided a way of estimating the strength 

degradation of ceramics due to impact. 

When materials behave in a brittle manner, in either large-scale bend 

tests or small-scale indentation tests, their strength is determined by 

the ever-present flaws. These flaws may be characterized by a strength 

distribution function. Generally, the flaws are distributed throughout 

the volume of the material, but in glass they appear to be distributed 

only on the surface. However, in indentation tests, because the stresses 

decrease rapidly below the surface, fracture inevitably initiates from a 

surface flaw. Subsequent propagation of this fracture requires that the 

energy release rate at any stage be greater or equal to the critical 
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value rc· Alternatively and equivalently~ the stress intensity factor 

K1 must exceed or be equal to the plane strain fracture toughness Krc· 

The cone crack produced by a spherical indenter can be seen easily in 

materials that behave elastically, at least prior to fracture. But ever 

since cone formation was studied by Auerbach46 in 1891, the results 

have not agreed with the traditional concept that fracture in brittle 

solids should occur at a certain value the maximum tensile stress. 

The aspects of this problem which have led to an extensive and contra

dictory literature are: 

1. There is a "size effect" on strength such that the mean value of 

the maximum tensile stress in the material increases as indenter size 

decreases, as shown in Fig. 4.1. 

2. The location of fracture, on the average, is not at the location 

of the maximum stress, as indicated in Fig. 3.4. 

3. Both fracture load and fracture location, for a given indenter 

size, show a great deal of scatter. 

In this chapter these aspects which have fundamental importance are 

examined critically and inadequacies in the present literature are 

pointed out. Based on this study a new approach is taken to explain the 

experimental results. This will be presented in the next chapter. 
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Fig, 4,1, The variation of the mean value of orr' the stress at 
the rim of the contact area, at fracture with the radius 
of the indenter,50 
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When a spherical indenter or spherical particle is pressed against a 

plane (specimen)~ the 

radius the circle of contact a from the Hertzian theory can be related 
. 

to the applied load P and sphere diameter 2R through the following 

relation: 

2 2 
3 

(
,1 - 'I» 1 - 'I» ) p + s 

"=4-E~ E 
p s 

where EP and E
5 

are the Young 1 s moduli of the particle and 

surface, respectively, and vp and v
5 

are the corresponding values 

of Poisson's ratioe 

(4 

The distance of mutual approach of two bodies Z or penetration, in 

the case of a hard particle indenting a softer surface, from a simple 

geometric relation can be written as 

(4.3a) 

Eliminating a by using Eq. (4.1), a force-penetration relation will result, 

(4.3b) 
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Strictly speaking, Eqs. (4.1) and (4.3) are invalid after the initiation 

of fracture, but they can be used as an approximation for loads much higher 

than that at which the initial fracture occurred. 47 From the load-

penetration relation, Eq. (4.3), the strain energy of the system can be 

written as, 

u "" (4.4a) 

Equivalently, by substituting for Z from Eq. (4.3b), U can be written as, 

3 I. P 
( 

2 5)1/3 
U ""To -R-

(4.4b) 

The maximum contact load Pmax produced under impact conditions, 

following the approach described by Timoshenko, 48 can be written as 

(4.5) 

where p and V are the particle density and velocity, respectively. 

Within the contact circle the applied load is distributed as a hem-

isphere of compressive stress, varying from a maximum of Pmax at the 

center to zero at the periphery of the contact area, Fig. 3.14 

r < a (4.6) 
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Pc is the contact pressure at a radial distance r along the surface 

from the center of contact and 

where Pm is the mean contact pressure 

p "" m 

using Eq. (4.1) to eliminate a, gives Pm as a function of load 

( 4. 7) 

(4.8a) 

(4.8b) 

The stresses in the rest of the body arising from the contact loading 

were obtained by Huber, 49 who extended the Hertz analysis and expressed 

the stress in the general form, 

(4.9) 

where l is the location of the point of interest in the body. 

functions, as given in Appendix A, have very complex dependencies on 

the coordinates. The absolute value of all functions corresponding to 

principal stresses, cr1 > a2 > a3, have a stationary value with respect 
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to the z~axis along the surface at z = 0. The principal stresses on 

the surface (z = 0) where cracking always initiates, expressed in 

cylindrical coordinates, are56 

For r < a. 

"rr- -1.5 Pm[~- :~r + 

••• ~ -1.5 Pm[(- :~r2 -

(
' 211/2 

a = -1.5 p 1 - !_2 zz m a 

for r "' a. 

"' 0 

for r > a. 

1 - 2v s 

and 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 
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(4.17) 

= 0 (4.18) 

The value of these stresses, from the foregoing equations, normalized 

with respect to Pm' are plotted in Fig. 4.2 for vs = 0.25, which is a 

typical value for glass and Si 3N4• It is apparent that among all 

stresses crrr is the primary stress responsible for the initiation of 

fracture from a surface flaw and consequent ring-and-cone crack formation. 

The other two principal stresses (cr
99

, ), which are compressive, have 

no effect. From Eq. (4.16), crrr has a maximum at the edge of the contact 

area with a value of 

(4.19) 

This equation immediately suggests that materials with higher 

Poisson's ratio are less susceptible to impact damage at 90y impinge-

ment angle than those with lower vs, while rubbery-type materials 

with vs = 0.5 should have no tensile stress. So, from this simple 

expression one can expect higher erosion rate and lower critical load 

for fracture initiation when materials with lower vs are used. But 

since it is not possible to find two test materials that differ only 

in vs, exact verification of the importance of this material con

stant is not possible. This same problem exists with the other 

material properties. This inseparability and the complex interaction 

between the variables is what has made this problem very challenging. 
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Fig. 4.2. Surface stress distribution for quasi static elastic contact. 
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According to Eqs. (4.7) and (4.9), all other stresses are also 

directly proportional to Pm· Therefore, this quantity can be thought 

of as the driving force for any damage that might occur by impact, 

while damage morphology and extent is determined by the hardness and 

fracture toughness of the surface. The magnitude of Pm' as given by 

Eq. (4.8b), depends on the modulus of elasticity E and v of both 

surfaces. The normalized variation of Pm for a glass surface with 

respect to Pgg' the mean pressure when glass indents glass, as a 

function of indenter elasticity for similar size and equally loaded 

spheres is plotted in Fig. 4.3. This figure shows that the influence 

of the indenter elasticity on Pm' and consequently on all other 

stresses, reduces beyond the initial rapid rise. Also, significantly 

higher loads would be required to create the same stress level when 

indenters of lower modulus are used. For instance, from Eq. (4.8b), 

using a glass indenter on a glass surface requires three times as much 

load to achieve the same contact stresses as if a tungsten carbide 

indenter of the same size was used. However, Pm remains constant 

regardless of the indenter material, if the surface plastically deforms 

under loading. In this case, the contact load distribution can be 

represented by a uniform pressure on the resulting cup-shape im

pression. This situation was studied in Section 3.6. However, unless 

very small particles are used the surface will fracture prior to any 

other process. 
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Fig. 4.3. Effect of indenter elasticity {E/1 - v 2) on the mean contact 
pressure on glass. Same load is applied on all indenters 
and p is the mean pressure when a glass indenter is used. gg 
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Increase of crrr with load leads to cone formation once a critical 

load has been reached. The maximum stress corresponding to this load 

occurs at the rim 

cr 
rrmax 

1 - 2\1 
= 2n 

the contact area, r g a and is 

Since, by measuring Per the value of the stress can be easily 

calculated, the indentation test appears to give a convenient method 

for surface strength determination of brittle materials. But it has 

been observed consistently that crrr at the location of fracture may 

be as low as 25 percent of the maximum given by Eq. (4.20). So the 

(4.20) 

prediction of the location of fracture should be the first step toward 

determination of the surface strength. 

4.2. Comparison Between Experiment and Theory 

As was mentioned earlier, from crrr in Fig. 4.1 it is expected 

that according to the maximum-stress theory fracture will start the 

rim of the contact circle where the tensile stresses are the highest. 

This would be expected to happen when arr reaches a critical value. 

From linear elastic fracture mechanics, the stress af required to 

propagate a flaw of depth c is given by 

(4.21) 

where the constant of proportionality will depend upon the fracture 

properties of the material and the geometry of the cracked part. 
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In terms of the development of a cone crack in the Hertzian stress 

field, as discussed in Section 3e3, it is generally agreed that a cone 

crack forms from a favorable surface flaw and then propagates until it 

finally becomes arrested in the weakening stress field remote from the 

contact area. It is sometimes assumed that the flaw which initiates 

the cone crack is subjected to a stress state closely approximating 

uniaxial tension. By equating the fracture stress af to the maximum 

tensile stress arr Eqs. (4.20) and (4.21) lead to 
max 

p 
cr _ c-3/2 
~ (4.22) 

So, if fracture starts at the location of maximum stress, Eq. (4.22) 

gives the relation between the critical load for initiation, indenter 

radius, and flaw size. However, from direct observation of the for-

mation of Hertzian cone cracks, it has been well-documented that 

fracture generally occurs outside the contact circle where stresses 

are lower, Fig. 3.4. Depending on the indenter size and the material 

and surface condition of the test specimen, the ring crack that leads 

to the eventual cone forms in the range of r*/a = 1.0-2.0, where r* is 

the radius of the surface ring crack. The lower values of this range 

are approached when larger indenters are used. According to the 

maximum-stress theory, fracture should always occur at r*/a = 1.0. 

If fracture would occur at a critical value of the maximum tensile 

stress, the critical load as indicated by Eq. (4.22) would be proportional 

to the square of the indenter radius R. But experiments, Fig. 3.7, show 
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the mean value of Per is more nearly proportional toR when spheres with 

radii smaller than 1.0-3.5 em are used. That 1~ 

(4.23) 

where the proportionality constant A is named after Auerbach, 46 who was 

first to report this relation. Eliminating P from Eqs. (4.20) and (4. 

gives 

(4.24) 

This equation implies that the fracture strength of the test material 

is proportional to R-113 , instead of being a constant as one might 

have expected. 

The attempts that have been made to explain Auerbach's observations 

and the equally curious feature that the crack forms away from the 

location of maximum stress are discussed in the next sections. 

4.3. Energy Balance Approach 

This is a deterministic approach which has been used by Roesler57 

and Frank and Lawn51 in an attempt to explain the so-called Auerbach 

relation. Roesler states that crack propagation is a process involving 

a balance between the supply and demand of energy. Supply of energy 

comes from a portion (n) of the total stored elastic energy given by 

Eq. (4.4b), while demand arises from the need to supply surface energy 

as the crack propagates. It is assumed that the energy required for 

crack propagation can be written as 
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2 Us = ewa y (4.25) 

where e like n is a variable that does not depend on P or R. The surface 

energy y per unit area is measured in fracture tests. By equating Eqs. 

(4.4b) and (4.25) the following relation between P and R results: 

p = 1.5~ WGA R (4.26) 

The proportionality constant in Eq. (4.26) is the Auerbach constant A. 

Although this derivation appears to be reasonable, it has no sound 

physical basis. In fact, it is incorrect because basically the problem 

here is one involving initiation and not propagation. The condition 

for initiation, like Griffith's criterion, is satisfied when the change 

in the total energy of the system with crack size is stationary. This 

condition is not satisfied in Roesler's derivation. 

A second approach comes from Frank and Lawn51 who, by using the 

techniques of Irwin's fracture mechanics, studied the details of crack 

propagation from a surface flaw at the rim of the contact area. They 

found that surface flaws of length c < 0.0075a are subjected more or 

less to a uniform stress field, and consequently a favorable flaw will 

initially propagate unstably to a shallow depth. This process is 

assumed to go undetected. Then, with subsequent loading it propagates 

stably until it reaches a critical length of c = O.la, where once again 

unstable downward propagation is assumed to occur spontaneously to form 
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an observable fu11 cone which then grows stably with increasing load. 

The assumed sequence of events is schematically shown in Fig. 4.4. 

In the middle range, where cracks grow stably~ the following relation 

was obtained for the energy release 

4 p 
G = F (c/a ~ ~ , r*/a) [ (4 

F is a nondimensional function which just prior to spontaneous cone formation 

has a constant value because, this time, according to their assumptions, 

r*/a is equal to one and c/a = c*/a = 0.1. Therefore, since at the time of 

fracture G = Gic' which is a constant for a given material, P/R has to be a 

constant. Then the Auerbach constant would be, 

3 A=! xEy/F[O.l , ~ , 1.] (4.28) 

This equation for tungsten carbide indenting a glass surface with 

y = 4 Jm-2, AE = 0.73 and F = Sxlo-5 gives A= 8.8 x 104 N/m 

(485 lb/in.). This value is about twice that usually obtained from 

experiment. 58 The over estimation in the above derivation is due to 

the incorrect choice of the fracture location which is not predictable 

from the analysis. As shown later by Lawn and Wilshaw24 a more 

realistic choice of r*/a = 1.2 leads to a larger value of F. Then, 

from Eq. 4.28, A would have a lower·value. However, for this choice 

of r*/a there is no longer the mid stability range which is the essence 

of the Frank and Lawn derivation. 
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Fig. 4.4. The effect of applied load P on the length C of 
the Hertzian crack presented by Frank and Lawn.51 
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4.4. Effects of Friction 

In the Hertzian analysis the pressure between the two bodies is 

assumed to be normal to both surfaces at every point of contact. How~ 

ever, the resulting displacements on the surface have a tangential as 

well as a normal component. In the absence of friction the tangential 

displacement of the surfaces are proportional to their respective 

values of the quantity (1 ~ )/G, where G is the shear modulus. For 

dissimilar materials, the resulting relative displacement may, to some 

degree, be prevented by friction. Therefore, the true stresses are 

the summation of those produced by the normal pressure and those due 

to the frictional tangential tractions. The tangential tractions will 

act radially inward to the more compliant surface and outward on the 

more rigid surface. A study of this problem by Spense52 has shown 

that the influence of the shear traction on the normal pressure 

distribution is very small. 

Slip may be completely prevented in the center of contact where 

normal pressure is the greatest. But as the periphery of the contact 

area is approached the normal pressure approaches zero. Because of 

this, some slip near the edge of contact is inevitable. 52 A complete 

solution of this problem where both slipping and locking occurs would 

be very complicated. However, solutions have been obtained for two 

extreme situations where either "no sl1p"52- 54 or "complete slip"54 

are allowed. These solutions show that, for the case of no slip, 

stresses created by the frictional tangential component are directly 

proportional to Pm and the elastic mismatch parameter, 



(4.29) 

subscripts s and p refer to surface and particle, respectively. The 

complete slip case is more complicated, but in general the coefficient 

of friction ~ has about the same effect on the resulting stresses as K 

does on the no-slip situation. 

Superimposing the fricti nduced stresses on the Hertzian stress 

field will shift the crrr from the edge of the contact area to 
max 

greater radial distances as shown in Fig. 4.5a. Normalized values of 

these radial distances (r*/a) for both cases are shown in Fig. 4.5b. 

In the actual case, where both locking and slip may happen simultan-

eously, the resulting curve should lie somewhere between the extreme 

cases shown in Fig. 4.5b. According to these results, the possibility 

of fracture outside the contact area increases as the elastic mismatch 

or friction is increased between the two bodies. However, it appears 

that friction and elastic mismatch are not the only factors in pro

ducing fracture outside the contact circle. It has been shown that 

with glass spheres indenting glass plates, the average value of r*/a 

is about 1.2. 
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Fig. 4.5. (a) Schematic representation of the effect of the 
coefficient of friction ~' elastic mismatch parameter 
R, and surface toughness R0 on the surface radial stress 
cry.,r. (b) Location at which maximum crrr occurs. For 
camp l ete slip the parameter i nvo 1 ved is J.l while for no 
slip, the coefficient of fraction does not enter the 
analysis and R is the important parameter. 
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4.5. Surface Roughness 

Another explanation for the location of fr~cture comes from the 

direct use of Greenwood and Tripp 1 S computation62 of the effective 

pressure distribution between two elastic spheres as a function of 

surface roughness. Roughness is described by the density of asperi

ties, their mean-tip radius, and a Gaussian distribution of their 

heights. The solution shows that the pressure distribution, particu

larly near the edge of contact, is a strong function of the surface 

roughness. Using this pressure distribution and assuming no friction, 

Johnson et a1. 54 found that surface roughness reduces the magnitude 

of the maximum tensile stress on the surface and increases the radius 

at which it occurs. This is quite similar to results they had 

previously obtained for the effect of friction. 

Variation of the radial stress arr along the surface with the 

friction coefficient (~), elastic mismatch (K), and increasing surface 

roughness is shown schematically in Fig. 4.5a. To avoid involvement 

with the intricate analysis of surface roughness, which is not 

necessary for the present discussion, it is merely denoted by R
0

• 

The methods that have been presented so far provide some possible 

and partial explanation for the experimental observations. Except for 

Roesler's procedure, which deals with the energy balance~ all others 

use the magnitude of the principal tensile stress on the surface as 

the only condition for fracture. However, since fracture always 

initiates from randomly distributed flaws, it may be important to 

include this aspect in the analysis. This has been done in the 
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probabilistic approaches~ where the probability of fracture due to 

arr is weighted by the area or the volume of the stressed region. 

As a result, some improvement and other explanations have been 

obtained. 47 ~ 61 This topic is discussed in the following section. 

4.6. Probabilistic Approaches 

There is at least one aspect involved in the indentation of brittle 

materials that cannot be explained by the deterministic approaches such 

as those already discussed. This is the scatter in the fracture load 

which, as shown in Figs. 4 6 and 4.7~ has a definite dependency on the 

indenter radius. Also, as was pointed out in Section 4.4, the friction 

that arises due to elastic mismatch between the indenter and surface 

causes the location of fracture to move further away from the contact 

area. However, indentation of a surface with a similar type of mater~ 

ial still shows the location of fracture is outside the contact rim. 

These observations indicate that consideration may have to be given by 

flaw statistics. 

As a starting point, it is possible to relate the failure 

probability and the location at which it occurs to the number of flaws 

in a given volume. The larger this volume the higher the probability 

of finding a critical flaw. Based upon this, it could be argued that 

since large indenters are scanning over larger areas the probability 

of finding a critical flaw closer to the contact is higher than if 

smaller indenters were used. So that the location of fracture moves 

closer to the contact area by increasing the size of the indenters. 

It has been argued that with larger indenters the most critical flaw 



Fig. 4.6. 

81 

The fraction of tests at a constant load which produced 
ring cracks versus the fracture load Pc (Dynamic test).68 
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should be detected more consistently, and hence there should be less 

scatter in the results. 26 The fact that such .behavior is not 

observed in indentation tests has been used to question the validity 

of statistical approaches. However, as will be shown later, this 

argument is erroneous. tensile states of stress it is assumed in 

statistical theories that the flaws present in a part may be treated 

as links in a chain. When the weakest link breaks, the part fractures. 

On this basis, it may be shown that if the fracture probabilities F; 

of individual links are small, the fracture probability of a chain of 

N links may be written as 

Extending this approach to identify a volume element with a link, F; is 

replaced by d0(a) the probability of fracture for an elemental volume 

dv at stress level a. 

The probability Pr(cr) of fracture due to unstable growth of 

nonintersecting cracks can thus be related to the state of stress a by 

replacing the summation F; by an integration to obtain 

(4.30a) 

The quantity d¢(cr) is given by 

d~(o) • dv J: g(o) do (4.30a) 
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where g(cr) dcr is the number of flaws in unit volume that extend 

unstably when subjected to the stress range cr to a + da. Therefore, 

d0(cr) is the total number of flaws with strength in the range from 0 

to cr in volume dv. Replacing cr by crm' the maximum tensile stress 

experienced by a part, Eq. (4.30b) becomes 

(4.31) 

The probability of failure Pr(crm) can be determined experimentally 

by testing a batch of similar specimens. Therefore, by knowing the 

geometry and stress distribution from Eq. (4.31) the only unknown g(crm) 

can be found. 65 Based upon both surface and volume flaw distribution 

assumptions, Evans and Jones66 have calculated values of the strength 

distribution function g(crm) for some conventional fracture strength 

testing methods for ceramics. From their experimental results they found 

that in many ceramic materials failure is controlled by surface flaws at 

high strength levels, while volume flaws control fracture at lower 

strengthlevels. So that, strictly speaking, when predicting fracture 

probabilities the strength distribution should be obtained for the 

pertinent strength range. 

The distribution g(cr) obtained by this method can be used to obtain 

the fracture probability of components fabricated from the same material. 

However, the labor and computation involved in this method may cometimes 

be more than should be necessary for approximate solutions. Because of 
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this, the following less accurate but more mathematically convenient 

Weibull function is often used~ 

f cr ( cr - c\,~)m g(cr) dcr = 
00 

0 \ 

(4.32) 

where cru is the lower limit of strength and cr
0 

and m are the 

scaling and shape parameters, respectively. These parameters by using 

Eq. (4.31) can be deduced easily from fracture strength data. By 

putting a= arr from Eq. (4.16) into Eqs. (4.30) and (4.32)~ Qh· and 

Finnie61 derived equations for the mean (Pm) and standard deviation 

(Psd) of fracture load 

(4.33) 

(4.34) 

where aa = arr is the stress at the contact rim given by 
max 

Eq. (4.13). Also~ based upon similar derivations they obtained a 

relation for the location of fracture as a function of strength param

eters. The relations obtained by Oh and Finnie give the same trend as 



86 

observed experimentally the variation Pm' location of frac-

ture, and the scatter of fracture load Psd with t~e indenter radius 

R, and in most cases good correlations were obtained. 

The reason Oh and nnie used the three parameter Weibull 

distribution rather than the computationally simpler two parameter 

distribution (cru = 0) was that the two parameter distribution leads 

to67 the relation 

p - R 
2(m - 1) 
m + 2 (4.35) 

Thus it is unable to predict the transition from P - R to P - R2 as 

indenter size is increased. Typically m = 8 for a two parameter dis

tribution and hence P- R1•4 which at best expresses the overall trend 

of the data. For the three parameter distribution the value of m is 

lower and hence lower values the exponent are predicted for small 

indenters. For large indenters the strength levels approach the constant 

value cru and the three-parameter distribution predicts P- R2• 

As we have seen, two completely different approaches--one deterministic 

and one probabilistic--have been used to explain the size effect. It will 

be pointed out later in more detail that both approaches have limitations. 

For this reason; a new approach will be taken to the problem of ring 

cracking since this draws upon both probabilistic and deterministic 

considerations; in essence, it reconciles the two approaches in the 

literature. 
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5. INDENTATION OF BRITTLE MATERIALS: A NEW APPROACH 

As was discussed previously, almost all theories of Hertzian cracking 

use the magnitude of the surface stresses as a condition for crack initia~ 

ation. Frank and Lawn, 51 by taking the stress gradient near the surface 

into consideration, found that the flaws on nas received 11 surfaces are 

subjected to varying stresses but the mean value of these stresses are 

tensile. On this basis, they assumed that cracks initially propagate 

unstably downward to very shallow depths. Then, because of diminishing 

stres~ the subsequent propagation becomes stable. Their calculation for 

cone crack initiation is based upon the sequence of processes that occurs 

after this initial unstable growth. Since this propagation to shallow 

depths has never been observed experimentally, it is important to examine 

the criterion for propagation of a flaw more critically in order to 

evaluate both the Frank and Lawn assumptions and the validity of calcula~ 

tions based upon surface stresses. 

In the following calculations tangential surface stresses due to 

friction and roughness effects are neglected. While these factors 

strictly should be included they greatly complicate any analysis. 

Since the approach that will be taken here is quite different from these 

in the literature it appears best to emphasize the physical assumptions 

and main results without including the additional complicating factors of 

friction and roughness. At a later stage if the present, or some other 

approach to Hertzian cracking is accepted, the frictional and other 

correction factors could be included. 
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5.1. Criterion for Propagation of a Flaw 

Stresses appli on the surfaces of a crack or a flaw situated in 

an inhomogeneously stressed body can be taken to be approximately 

uniform if their variation over the crack length c is very small. 

Therefore, for an infinitestimal flaw it is reasonable to assume a 

uniform stress. Hence, if such a flaw is extended it should, at least 

initially, grow unstably. But depending on the stress gradient, there 

exists a critical aw size beyond which the uniform stress approximation 

is no longer valid. 

The regions loaded by spherical indenters are geometrically similar 

when the ratio of R/a is the same, where R is the indenter radius and 

as given by Eq. (4.1), is the contact radius. The magnitude of the 

stresses at any location are proportional to the mean contact pressure, 

Pm while the spatial dimension of the stress field is proportional to 

a, which can be taken as a characteristic length. Thus, a critical value 

of the dimensionless ratio c/a can be determined beyond which the uniform 

stress assumption is no longer valid. 

In order to express a fracture condition solely in terms of the 

surface stress and flaw size, it is required that the stress variation 

over that flaw be very small. Equivalently, the c/a ratio must be very 

small, otherwise the gradient has to be taken into account. The size of 

flaws on a typical as-received glass or ceramic varies from a few Angstroms 

to about 25 ~m or larger. 80 ,69 For the present analysis the inherent 

flaws are idealized as shallow 11 thumbnails 18 protruding into the surface. 

That is, semi, ellipses with a depth (semi minor axis) much less than the 
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major axis. For a steel ball (R = 1 mm) indenting glass, typical value of 

a at the time fracture is about 50 ~m. As it will be shown, for the 

largest crack that might be expected, with c ~ 25 pm, a considerable 

variation of stress will exist over the crack. Hence, the c/a ratio of 0.5 

for this case is too large for the assumption of uniform stress. The 

variation of cr 1 = arr' near the surface, as a function of both the 

radial distance from the periphery of the contact area and the depth below 

the surface is plotted in Fig. 5.1. The stress gradient with depth is very 

large so that even the smallest flaws responsible for fracture will be 

exposed to varying stress.* In view of this observation, the discrepancy 

that arises from the theories that use the surface stress as a condition 

for failure and neglect the stress gradient is not surprising. 

As the distance of the flaw from the contact area increases, the radial 

stresses decrease but remain tensile to a greater depth below the surface. 

To account for this variation we will follow the procedures of linear 

elastic fracture mechanics and load the faces with the varying stress dis= 

tribution. At this stage, for the c/a ratios we are concerned with, only 

normal stresses are seen by the crack face. 

*In fact, the faces of a flaw will see no normal stress in a tensile 
stress field. However, to calculate the stress intensity factor we apply 
the stresses that would exist on the plane of the crack in the uncracked 
solid to the faces of the crack. 
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Fig. 5.1. Variation of orr with depth z and radial 
distance r from the center of the contact 
area. 
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5.2. Effect of Stress Gradient 

It is well-known that the stress intensity factor K1 for a crack in a 

variable stress field may be determined from the preexisting stress field. 

The stress intensity factor K1 for an internal crack of length 2c in an 

infinite body subjected to the distribution of prior normal stresses cr 

across the prospective crack plane can be written as 

KI ""2(chr)1/2fccr(t;,}/(c2- l)l/2 dt; 
0 

or equivalently45 

K1 = l/(rrc) 112 /ccr(t,)((c + E,}/(c -E, )) 112 dt, 

-c 

(5.1a) 

(5.lb) 

where E. is the coordinate measured from the center of the crack and along 

the crack direction. The stress intensity factor K1 for an edge crack 

with length c in a semi-infinite solid is about 12 percent higher than 

that given by Eq. (5.1) due to the free surface. 

In the Hertzian stress field cr is the magnitude of the principal 

stress cr1, at the surface and at shallow depths below it, outside the 

contact area. At the time of fracture, for all practical purposes the 

cr1 trajectory is parallel to the surface, and depending on c/a and r/a 

remains as such along the length of a surface flaw. So flaws or cracks, 

as also observed experimentally, propagate initially downward before turning 

into a cone. Substituting crrr from Eq. A3 for cr in Eq. (5.1) yields 

(5.2) 
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where M is a constant related to the elastic constants for both 

surfaces. Due to the complexity of the integr~nd, obtaining a closed 

form solution for K1 is not possible. Because bf this, each case 

needs to be dealt with separately by using the procedure that follows. 

For the present cu1ations, the case of a spherical steel particle 

indenting a glass surface with a uniform flaw distribution will be 

considered. Then, from the results that will be obtained, the effect 

of using materials other than glass will be pointed out. 

Equation (5.2} shows that K1 as well as being a function of P 

and R also depends on the distance r of the surface flaw from the 

contact area and the flaw size c. For the time being it is assumed 

that the surface flaws have an arbitrary distribution and are of all 

sizes up to a limiting size c1• The stress intensity factor was 

evaluated by numerical integration of Eq. {5.1) for the typical case 

of R = 2.5 mm for different size flaws located at various distances 

from the contact area on the surface. It is convenient to present the 

results in terms of the nondimensional geometrical parameter Y defined 

in the following equation 

(5.3) 

where aa' as given by Eq. (4.19), is the radial stress at the rim of 

contact area. Y for flaws corresponding to several c/a values is 

plotted in Fig. 5.2. An interesting feature of this plot is that for 
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Fig, 5.2. The effect of the location of a surface flaw with 
several e/a ratios on the parameter y, 
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any normalized flaw size, Y increases with the distance from the 

contact area up to a criti distance r*/a wbich depends on c/a. 

Beyond r*/a, Y reduces with r/a and eventually goes to zero. It is 

also interesting to note that large flaws located near the contact 

area would have very small or even negative stress intensities and 

hence would not propagate. 

The existing flaws should have a negligible effect on the stress 

distribution in the Hertzian contact field since stresses are mostly 

compressive. Flaws located in the compressive region are of no 

interest. But those located in the region of tensile stress are not 

fully exposed to the stresses calculated from the Hertzian solution. 

These flaws get partially "shie1ded 81 by other flaws in their vicinity 

against stresses they would experience if the other flaws were absent. 

An exact calculation of the stress intensity factor for randomly dis

tributed cracks is very difficult if not impossible, since even their 

distribution is not known. However, solutions for simpler cases such 

as that shown in Fig. 5.3 can be used to obtain a rough estimate of 

how much K1 reduces due to the existence of other flaws. Examination 

of this figure reveals that it would not be unreasonable to drop the 

1.12 factor from Eq. (5.3) for better accuracy. 

5.3. Location of Fracture 

The peaks of the curves in Fig. 5.2 which represent the most 

probable location for fracture, r*/a, are plotted for the corresponding 

c/a values in Figs. 5.4 and 5.5. Results for c/a > 0.2 become un

certain because the exact modification of the stress field around those 
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Fig. 5.4. The location along the surface r*/a at which a flaw 
6f size c/a has the highest value of the parameter Y. 
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long cracks is not known. Therefore, these results are shown by a 

dashed line in Fig. 5.5. However, in most ind~ntation tests on un

damaged surfaces c/a prior to unstable fracture is between 0.01 and 

0.1, 51 and in this range the stress intensity values obtained from 

Eq. (5.1) by using the Hertzian stresses, can be used with confidence. 

As Figs. 5.4 and 5.5 show, r*/a varies almost linearly with c/a in 

the range 0 < c/a < 0.1. For larger values, its rate of change increases 

rapidly with c/a. This indicates that on surfaces containing mostly 

large flaws, or as smaller indenters are used fracture should start 

further away from the contact area, because of larger c/a ratios. 

Verification of this is provided by indentation experiment60 on 

as-received and polished float glasses with various indenter sizes as 

shown in Fig. 5.6. As-received surfaces would be expected to have more 

and larger flaws than polished surfaces, and hence should exhibit larger 

r*/a values for the same indenter radius. 

Figures 5.4 and 5.6 show the variation of r*/a with c/a. By invoking 

the Hertz solution, Eq. (4.1), and the Auerbach relation, Eq. (4.23), it 

may be shown that c/a is proportional to cR-213, However, one should 

not attempt to use this result to relate r* to R. As will be shown later 

the size c of the flaw which leads to fracture increases with the indenter 

radius R. Thus making the variation of c/a or equally r*/a is insensitive 

to R. In section 5.7 it will be shown that some statistical treatments 

based upon the availability of certain size flaws are necessary for the 

explanation of the variation of r*/a with R. 
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Effect of surface condition and indenter radius on the 
location of fracture r* on glass surface.60 
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5.4. Determination of Fracture Toughness by Indentation 

Equation (5.2) shows that the stress intensity factor K1 depends on 

the flaw size c and its radial distance from the contact area r, or 

equally on c/a and r/a~ as well as other factors. But as discussed in 

the previous section for the peaks of the curves in Fig. 5.2 there exists 

a definite relation between c/a and r/a ~ r*/a. Therefore, the variable 

r in Eq. (5.2) by writing r = r* as a function of c can be eliminated, and 

Kimax can be written as 

(5.6) 

Again, this equation cannot be written in a closed form and numerical 

methods are required for its solution. 

Kimax values from Eq. (5.6) versus P for R = 2.5 mm and various 

flaw sizes are plotted in Fig. 5.7, and the general trend is shown in 

Fig. 5.8. Those figures show that at low loads the K1 of a small 

flaw is higher than that of a larger one. This situation, however, 

reverses at higher loads, so that at each load level a different size 

flaw will have the highest stress intensity factor. For instance, on 

a surface with Kic as shown in Fig. 5.8 fracture will start from a 

flaw with size of c = rather than any other flaw size. 

If for each indenter size the minimum load for fracture, from 

Fig. 5.7, is plotted against the corresponding K1 value, a series of 

curves such as those shown in Fig. 5.9 will result. Each of these 

curves represents the envelope of a series of curves for a given value 
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Fig. 5.8. Schematic representation of the effect of the indenter 
load on the stress intensity factor for flaws of varying 
size. 
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Fig, 5.7. Variation of the stress intensity factor with load for 
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Fig. 5.9. Variation of the maximum stress intensity factor on a 
glass surface with load P exerted by indenters of 
varying size. 
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of R such as those in Fig. 5.8. By plotting these curves for each 

surface-indenter combination and indenter size; the fracture toughness 

of a surface can be estimated by measuring the load at which fracture 

starts. However, because we are plotting the minimum load assuming 

that the right size flaw always exists at the right location r = r*, 

and since on the real surface the existence of many flaws may reduce 

the stress intensity of the critical flaw, this procedure may 

overestimate the fracture toughness. 

Strain rate is another variable that may influence the strength or 

fracture toughness. This is demonstrated by the indentation tests on 

pyrex glass shown in Figs. 4.6 and 4.7. Comparison between these 

figures shows about a 2.5 times increase in strength, with five orders 

of magnitude increase in strain rate. From Fig. 4.7, which represents 

a low rate of loading, P.c for R = 2.4 mm at 50 percent probability 

is about 20 lb (90 N) which from Fig. 5.9 corresponds to Kic of 

690 lb/in. 12 (0.76 mn/m-312) or equivalently a surface energy 

4.3 Jtm2• This value is slightly greater than 4.0 J obtained 

by Roesler57 and Adler, 71 but is ill within the range of reported 

values. 

Because K1 changes rapidly with load, especially when smaller 

indenters are used, for better accuracy in obtaining Kic it is 

better to use as large an indenter as practicable. However, it will 

be shown later that the size of the indenter should be in the range 

where the predicted flaw sizes are present. Estimation of the flaw 
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size from which cracks initiate and its effect on the fracture load 

which eventually leads to an explanation of the Auerbach relation is 

discussed in the following section. 

5.5. Load-Crack Size Relation 

Plots such as those shown in Fig. 5.7 can be used to obtain an 

estimate of the flaw size from which fracture will start. For in-

stance, fracture most likely initiates from a 9 pm flaw when a glass 

surface with fracture toughness of 690 lb/in.-312 (0. MP -m112) a 
is indented with a R = 2.4 mm spherical indenter. This happens because 

any smaller or larger flaw would yield lower K
1 

values. However, a 

9 pm flaw might not exist or be favorably oriented at r = r* which 

is the distance from the contact area where the critical flaw must 

exist for a minimum fracture load. Because of this, higher loads 

would be required to·propagate a favorable crack located at any other 

distance than r* from the contact center. Also, lower loads might 

result in propagation of some other shaped flaws which yield higher 

K1 than the flaw shape assumed here. So, the number and availability 

of different size flaws play important roles in the scatter of the 

fracture load Pc. This topic is dealt with in Section 5.7. In this 

section, however, the variation of Pc with the surface flaw sizes, 

assuming that they do exist at r = r*, is examined. Therefore, the 

results are expected to provide an estimate of the mean value of Pc 

that would be obtained experimentally~ 
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To a first order of approximation when surface flaws are very small 

in comparison with the contact radius a, i.e.~ c/a << 0.01, stress 

gradient along the crack trajectory may be considered to be small. 

This would prompt an unstable growth of a flaw located at the location 

of highest stress, r*/a- 1.0, until a position of stability is once 

again attained remote from the contact surface. Integrating Eq. (5.1) 

for c/a << 0.01, r*/a = 1 and using a = orr from Eq. (4.19) 
max 

gives 51 

F(v) (5.7) 

where subscripts s and p refer to the surface and particle, respectively. 

Solving Eq. (5.7) for P gives 

(5.8) 

Since this relation is only valid for c/a << 0.01 it can be used only 

when the surface contains extremely small flaws or when very large 

indenters are used. Neither case is normally encountered in 

indentation or erosion testing. Unfortunately, no closed~form solu~ 

tion such as the above can be obtained for larger c/a ratios. 
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The relation between flaw size c and load P from numerically 

integrating Eq. (5.1) for the particular case of a R "" 2.5 mm steel 

ball indenting a glass surface with K1 ""690 lb~in.~3 1 2 (0.79 MP ~ m112) c a 

is shown in Fig. 5.10. By contrast to the Frank and Lawn assumption 

of r*/a "" 1, here the value of r*/a for a given c/a is obtained from 

Figs. 5.2 and 5.4. Because of the uncertainty in accuracy, results 

for c/a > 0.1 are shown as dashed lines. Again, the minimum load 

requires that the surface have a large number of 9 ~m flaws. Both load 

P and its rate of change dP/dc increase sharply if the fracture is to 

initiate from flaws less than 5~6 ~m. On the other hand, if the 

smallest flaw size is larger than 10 ~m, the increase of load for 

fracture would be very small up to c = 15~20 ~m. Beyond this range, P 

again increases with c because of diminishing stresses at the location 

of fracture. But since the surface always contains a variety of flaw 

sizes, fracture will start from the one requiring a minimum load. As 

indicated in Fig. 5.10, the minimum load corresponds to a c/a ratio of 

0.06. This value is insensitive to the elastic constants and 

corresponds to a r*/a ratio of 1.2; but c/a and consequently /a could 

vary from 0.04 to 0.1 and 1.1~1.3, respectively, with only 10 percent 

increase in the load. This increase might be necessary because of the 

nonexistence of the right flaw at the right location. This may explain 

why the radius of fracture is usually 10~30 percent larger than the 

contact radius. 



c 
(p.,m) 

20 

10 

I 
I 
I 
I 
I 
I 
I 

0,1 

108 

p (lb) 

XBLSOI0-6216 

Fig, 5,10. Load P required to initiate fracture from different_ 312 
size flaws on a glass surface with K1 = 690 lb-in. 
and R = 2.5 mm. c 



109 

For cja ~ 0.06 and by invoking the Hertz solution, Eq. (4.1)~ and 

the Auerbach relation, Eq. (4. ), the preferred crack size for a 

given indenter size is 

(5.9) 

The value of cp from the above equation, for a given R, gives the 

size of the flaw that has the highest stress intensity. If the 

largest indenter for which the Auerbach relation holds is RL, Eq. 

(5.9) can be used to obtain the size of the largest flaw cL on the 

surface. For instance, if RL is 1 in. (25 mm) and A ~ 200 lb in. 

(36360 Nm), Eq. (5.9) gives cL ~ 40 ~m. 

In Section 5.8 it will be shown that A is proportional to the 

surface energy y of the indented material. So, according to Eq. (5.9) 

the size of the flaw from which fractur~ initiates is larger on a 

surface with higher A, or equivalently with higher fracture toughness, 

or when larger and less rigid indenters are used. However, no con

clusions can be drawn on the effect of these variables on the size of 

the largest flaw on the surface. As was demonstrated above, cL for 

a given A and A, can be predicted from Eq. (5.9) only by knowning RL. 

Equation (5.9) by making use of the Auerbach relation can be 

written in terms of the fracture load P as 

(5.10) 
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So that by knowing A and measuring P the size of the starting flaw can 

be estimated. 

Equations (5.9) and (5.10) were derived by.generalizing the 

information from the particular c versus P curve shown in Fig. 5.10. 

However, they can also be obtained by plotting many such curves for 

various values of R and Krc· By doing so a relation between c and R 

for two values of Kic as shown in Fig. 5.11 was obtained. Very 

close agreement between the predictions of Eq. (5.9) and Fig. 5.11 

further verifies its validity. 

Another point that is evident from Fig. 5.10 is the absence of the 

intermediate range 0.01 < c/a < 0.1 of stability for crack propagation 

as was assumed to exist by Frank and Lawn 51 in order to explain the 

Auerbach relation, Fig. 4.4. Crack propagation for c/a > 0.06 is 

stable, but a slight increase in load leads to large crack extension. 

It will be shown in the next section that no range of stability is 

necessary to explain the Auerbach relation. Rather it is just a 

consequence of the effect of the Hertzian stress field produced by 

different indenter sizes on various surface flaws. 

5.6. Auerbach Phenomenon and Its Range of Applicability 

In the previous section a relation between R and c was obtained~ 

Fig. 5.11. This relation can be used to eliminate c from Eq. (5.6). 

Then for a given Kic a relation between the two variables, P and R, 

can be obtained. For two values of Kic the relations between P and 

R are plotted in Fig. 5.12, assuming that the necessary size flaws do 

exist on the surface. Linear relation between P and R, as indicated 
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Fig. 5.11. Crack size c from which fracture initiates versus 
indenter radius R. 
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Fig. 5.12. Minimum fracture load P for a indenter of radius R. 
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by Fig. 5.12, shows the trend of experimental results found by 

Auerbach and others. However, in Section 5.7 it will show that as R 

is increased the number of flaws with the requ'ired size decreases. 

Thus higher loads would be necessary for fracture. This leads to 

gradual deviation from linearity between P and R as R is increased. 

linear proportionality of P and R can also be shown by an indirect 

method. In order to do this, the stress intensity of the most severe 

flaw was calculated for various values of R. It is assumed that the 

surface contains flaw sizes in the range of 1-10 ~m and the load for 

each indenter was assumed to follow the Auerbach relation and was 

taken to be 200 lb-in. times greater than its radius in inches. The 

results are shown in Fig. 5.13. According to these results the 

Auerbach constant of 200 lb-in. (36,360 Nm) corresponds to a surface 

f f 1 . -3/2 racture toughness o about 690 b-1n. • 

For indenters larger or smaller than 0.5-5 mm the stress intensity 

factor K1 reduces and consequently higher loads than P - AR would 

become necessary. For any R larger than Rl, the largest R for which 

the Auerbach relation holds, there does not exist a large enough flaw 

for P to remain proportional to R. This causes the exponent of R, in 

the Auerbach relation, to increase slowly from close to 1 to values 

approaching 2, as R is increased beyond Rl. On the other hand, 1 ~m 

which is the size of the smallest flaw, on this surface is too large 

for a very small indenter to cause fracture. In order that these 

indenters propagate a flaw, the load P must be increased considerably 

to bring the c/a ratio as close as possible to 0.06, the most likely 
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Fig. 5.13. Stress intensity factor for the most severe flaw 
on a glass surface containing flaw sizes in the range 
of 1-10 ~m indented with various size indenters. 
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value at fracture. In doing so Pm might reach the hardness of the 

surface before K1 reaches Kic and then ductile behavior would be 

observed. early, from these discussions it ~s apparent that 

the range of applicability of the Auerbach relation should depend on 

the range of available flaw sizes. 

The large difference in the variation of K1 with P or R at the upper 

portion (large R) and lower portion (small R) of the Auerbach range, as 

shown in Fig. 5.13, may be better explained by the difference in the 

sensitivity of large and small indenters to the size of the available 

flaws. Figure 5.14 shows the variation of K1 with the size of the 

surface flaws for different indenter sizes. As can be seen, the peak of 

each curve becomes sharper as R is reduced. Thus, the peak regions corre

spond to a smaller range in c. For larger indenters a wider range of 

crack sizes give about the same K1 and, therefore, if the flaw size 

Cp that corresponds to the highest K1 does not exist, propagation from 

any other flaw close in size to cp would require a minimal increase in 

load P. Quite the opposite is true for the smaller indenters. 

Since, for any R larger than Rl all fractures start from the largest 

flaws on the surface, cl, the c/a ratio decreases with increasing R. 

According to Fig. 5.4, this reduction of c/a causes the location of frac

ture to move closer to the contact area. This is also what the experiment 

shows, Fig. 5.6. No accurate calculations for 0.1 < c/a < 2 are possible. 

But it is clear that small particles may incapable of propagating large 

flaws. Also, in this case because of higher c/a ratios fracture will 

start further away from the contact area (large r*/a), where the surface 

stresses are lower. 
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Fig. 5.14. The stress intensity factor as a function of flaw 
size. For smaller indenters the stress intensity 
factor is very sensitive to the size of the available 
flaws. 
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As was mentioned, the range of validity of Auerbach's law will depend 

on ~c, the difference between the size of the largest and smallest flaws 

present. This has been shown schematically in Fig. 5.15a. If the size 

of the smallest flaw cs is taken to be zero, then ~c would be equal to 

cL. Assuming that cL is known, from Eq. (5.9) the largest radius for 

which Auerbach's relation holds is 

(5.11) 

In Section 5.8 it will be shown that A is proportional to the 

surface energy y of the surface. Then Eq. (5.11) suggests that the 

range of Auerbach behavior should decrease with the square root of y 

or equivalently with Kic" Reduction of this range with Kic can be 

seen by comparing the two curves in Fig. 5.16, plotted for two surfaces 

with the same ~c = 10 ~m but having different fracture toughness. The 

general trend is schematically shown in Fig. 5.15b. 

5.7. Scatter in the Results 

It was shown that the size of the surface flaws, even though very 

small, become comparable to the dimensions of the highly inhomogeneously 

stressed area. Because of this the complete stress gradient over the 

flaw had to be taken into account. As a result, it was found that, 

contrary to the approach often taken in the literature, fracture does not 

necessarily initiate from the largest flaw. Rather, depending on the 

materials involved and the indenter size, there is a specific size of 

flaw cp from which fracture will start. In the calculations, one 
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Fig. 5.15. Schematic variation of the range of validity of the 
of the Auerbach law showing: a) The effect of the 
sizes of the smallest and largest flaws, b) the effect 
of fracture toughness for the same flaw distribution. 
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Fig. 5.16. The effect of the Auerbach constant A or equivalently 
fracture toughness on the range of validity of the 
Auerbach phenomenon. 
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assumption was that the favorable or critical size flaw always existed at 

the location r ~ r*~ where the potential for ~ts propagation was greatest. 

Using this condition, an expression for the location of fracture r* and 

critical fracture load Pc, which eventually leads to the explanation of 

the Auerbach relation, was obtained. 

If, as assumed, the right size flaw could always be found at the 

desired location, Pc and r* for a given indenter-surface system would 

be constants. However, as Figs. 4.7 and 5.6 show, there is a large 

scatter in Pc and r* is not always 20 percent larger than the contact 

radius a. An explanation for the scatter in Pc is not possible by 

deterministic approaches. Therefore, statistical methods have to be used 

to account for the fact that the number and location of flaws are 

randomly distributed on the surface. 

The general procedures presented in the literature using Eqs. (4.30) 

through (4.32) were discussed in Section 4.6. However, in order to 

apply these equations to any problem the fundamental assumption used 

in them must be met at all times. That is, the condition for failure 

at any subdomain must be specifiable solely in terms of the stress and 

volume elements in the body. This condition would be met if the number 

of flaws in each uniformly stressed sub volume dv is very high or 

equivalently their size is very small compared to the dimensions of 

dv. If so, a constant stress a at any given point can be held directly 

responsible for the propagation of flaws in that region. On the other 

hand, application of these equations is not justified if the size of 

flaws compared to the dimensions of dv are so large that the criterion 

for propagation cannot be specified by any given local stress. 
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We encounter this very rare situation in indentation testing 

where~ because of the very steep stress gradient and small stressed 

volume, stress alone does not provide an adequate description for 

failure. This situation necessitated the use of the critical stress-

intensity factor, rather than the maximum stress, for specification of 

a condition for fracture. Therefore, strictly speaking, at each sub

domain both stress and flaw size must be known. But if the flaw sizes 

were known, the use of statistical methods would not be necessary. 

Fortunately, in this problem, inclusion of all possible flaw sizes and 

their distribution in the analysis is not necessary. Because, as was 

discussed in Section 5.5 and shown in Fig. 5.14, fracture for a given 

indenter radius and surface fracture toughness initiate from only a 

specific flaw size, cp. Other flaws with size differing con

siderably from cp have a much lower stress intensity and should play 

no role in fracture. So, the scatter in Pc and the probability of 

fracture at any given location depends only on the availability or 

density of flaws with size equal to or close to cp. 

Equation (4.30b) gives the number of flaws N in volume v or, for 

the case of surface controlled fracture, in area S with strength 

between 0 and cr. Equation (4.32) for cru = 0 gives 

N can be obtained, for example, from a series of bend tests on similar 

specimens. Substituting the value K1c/Yc112 for cr, from Eq. (5.3) 

into Eq. (5.12) yields 
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Then the number of flaws n with the size between c and c + de is, 

m 

( Kic) [ 1 1 ] 
n = S Yao cm/2 - (c + dc)m/2 

Using Taylor series expansion on the above, and neglecting terms of 

higher-order, results in 

K m - - + 1 

(5.13) 

(5.14) 

( m ) 
n ~ s(-1£) c 2 de Ya

0 
(5.15) 

Substituting for c from Eq. (5.9) gives a relation between n and R 

R 

(m+2) 
- 3 

de (5.16) 

Here, de is the range of flaw sizes that for a given R would result in 

about the same stress intensity as the critical flaw. According to 

Figs. 5.14 and 5.17, the range of crack sizes de corresponding to 

5 percent variation in Kic increases almost linearly with the radius 

R So, Eq. (5.16) becomes 
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radius R give a stress intensity factor of about 
600 lb-in.-3/2, 
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(5.17) 

where B is the product of terms in Eq. (5.16) not involving R. Since 

m is a number that is usually greater than at least 3,47 Eq. (5.17) 

shows that the density of critical flaws for larger indenters is lower 

than that for the smaller ones. 

If we assume that the area involved is 

S = 2wadr (5.18a) 

Using Eqs. (4.1) and (4.23) to eliminate a results in 

(5.18b) 

Substituting S into Eqs. (5.17) gives 

(5.19) 

Then, for a constant radial distance along the surface dr, and m > 3, 

the number of critical flaws or the probability of finding one de-

creases as R is increased. Reduction in the probability of finding 

the right flaw reflects itself in a high scatter of Pc. Also the 

lack of large enough flaws, in the average, makes it necessary that 

higher loads than P = AR to be required for fracture as larger R are 

used. This means that the power or R in P = AR relation will gradually 
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become larger than one as indenters of larger radii are used. Finally, 

outside the Auerbach region where the probabil~ty of finding cp be

comes zero, the power of R becomes two. Also, due to higher mean loads 

the c/a ratio and consequently r*/a reduces. 

These predictions agree quite well with the experimental results, 

which further emphasizes the validity of the arguments used. 

5.8. Development of the Cone Crack 

So far, the focus of this study has been centered around initiation 

of ring cracks under quasistatic loading conditions by spherical in

denters in the elastic response regime. Most importantly, relations 

between the fracture load and surface variables for different size 

indenters were obtained. These relations can also be used for low 

velocity impact testing, where wave propagation effects can be 

neglected. In this section propagation subsequent to initiation of 

fracture from a surface flaw to form a full cone crack is examined, 

and a complete load-crack-size diagram is obtained. As a result, the 

value of the Auerbach constant A and consequently the critical velocity 

for initiation of fracture are calculated. 

General experimental observations regarding formation of cone 

cracks were discussed in Section 3.3. The direction along which the 

cone propagates needs to be known to calculate the extent of propaga

tion. If cracks propagate along or close to the prior principal stress 

trajectories (PST), the effort for calculating the stress intensity 

factor would be significantly reduced. Observation of cone cracks and 

calculations of PST from the Hertz equations show that the crack makes 



126 

a somewhat greater angle e with the Z axis than the angle of PST starting 

from the same location. In Table 3~ values of ~ obtained from PST, which 

depend only on the value of the surface Poissons ratio v, are compared 

with those obtained experimentally. 

As Table 3 shows, for 1 cases the observed values of e are somewhat 

above those expected from the PST unless very large values of Poisson's 

ratio are invoked. The reason for this deviation can be traced to the 

fact that during propagation only one side of the crack is stressed, while 

the other side is stress free. This lack of symmetry in loading will 

cause shear stresses to develop across the crack plane, and since maximum 

energy release rate is associated with mode I propagation rather than a 

mixture of mode I and Mode II, cracks will propagate in the direction of 

the new principal stress trajectory which appears to make larger angles 

with the Z axis. The maximum angle of deviation as given in Table 3 is 

about 10@. The relation between KI, KI!' and the angle s that the 

maximum hoop stress at the crack tip makes with the direction of the 

crack, namely72 

K /K _ 3coss - 1 
I II - s1ns (5.20) 

can be used to obtain an estimate of the magnitude of the shear 

stresses that exist. From Eq. (5.20) a deviation of 10° from propaga-

tion in the direction of the crack requires a shear stress of about 

8 percent of the normal stress. This magnitude of shear stress, how

ever, as shown by Erdogan and Sih, 72 even though it causes noticeable 
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Table 3. 

PST 
By Material (no friction) 

Roesler Steel Punch on glass 0.25 68.5 59.5 

Finnie and 

Vaidyanathan W. C. Punch on pyrex 0.22 72 57 

Finnie and Same as above but 

Vaidyanathan lubricated 0.22 68 57 

Finnie and 

Vaidyanathan Steel sphere on glass 0.25 68 60.2 

Wi1shaw Steel sphere on glass 0.25 71 60.2 
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change in the direction of propagation, does not effect very much the 

magnitude of the normal stress required for propagation of the crack. 

So, the condition for propagation can still be satisfied by considering 

only the prior normal stresses and ignoring the newly developed shear 

stresses. Such a method was first used by Frank and lawn51 to obtain 

the load crack length relation. But, as mentioned earlier, their deria-

tion suffers from the assumption that initiation occurs on the surface on 

the location of maximum stress. Other than for very small c/a values, 

this assumption is inaccurate and leads to inconsistent results. Evans45 

showed that for 1 < c/a < 3 the location of fracture has a significant 

effect on the c vs P curve. In view of this fact, the most likely value 

for r*/a, namely 1.2, will be used here. 

Figure 5.12 shows a P vs c relation plotted for a specific value of R 

and Krc· However, as shown in Fig. 5.18, it can be generalized by non

dimensionalizing c and c/a and P as P/RAK~. For c/a > 2 it has been 

found 3 both experimentally and analytically that the length of the cone 

crack increases with load as P213• For the range of 0.1 < c/a < 2 

since the crack drastically changes its direction calculations are more 

difficult. Therefore, the curve for this range is plotted by extrapola

tion. From this figure it is apparent that a flaw, depending on its 

location on this curve, can either propagate unstably or stably. 

Unstable growth occurs when at the time of fracture c/a is less than 

0.025. The region in which this unstable growth occurs is marked I in 

Fig. 5.18. After propagation, cracks finally become arrested due to 

diminishing stresses when they reach a depth equal to that shown in 
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region III, corresponding to the same P/RAKi value at which fracture 

started. Beyond this stable cracks grow slowly and stably with increasing 

load. However, the onset of fracture on an as-received surface occurs 

for c/a values between 0.03-0.10, which corresponds to the lower portion 

of region II. As shown in Fig. 5.18, depending on c/a, crack growth in 

region II is stable but a slight increase in load leads to extensive crack 

propagation. In this region a flaw with normali size of c/a = 0.06 

has the highest probability for propagation because it corresponds to the 

lowest load. So the minimum possible load for propagation of a flaw is 

(5.21) 

This equation shows that the critical load for fracture Per is 

proportional to the radius and the constant of proportionality, the 

Auerbach constant A, is 

(5.22) 

Equation (5.22) indicates that there exists a linear proportionality 

between A and the value of surface energy y. Eliminating P from 

Eqs. (4.5) and (5.22) gives the lower bound on the particle velocity 

for onset of damage 

2 5/6 

( )
1/2 (AKic) 

V = 450 L --cr pp R (5.23) 
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Equations (5.22) and (5. ) which show no dependency on c are valid 

for undamaged surfaces where the c/a ratio lies somewhere between 

0.03-0.10. However, as shown in Figs. 4.6 and 4.7, abrading the sur-

face results in a significant increase in A. There are two reasons 

for this observation. First, abrading effectively shifts the range 

of c/a to higher values on region II of Fig. 5.16. In this region 
2 P/RAKic' for a narrower range of c/a values, can still be con-

sidered a constant, but of larger magnitude. Second, the flaw geometry 

parameter Y, given by Eq. (5.3), is smaller for wedge-type scribing 

marks produced by abrading the surface than for flaws. Therefore, 

higher loads must be applied to compensate for loss of "sharpness" of 

the surface flaws. 
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60 ANALYSIS OF THE EROSION OF BRITTLE MATERIALS-

A HISTORICAL BACKGROUND 

Literature on this subject dates back to the 1800 1 s when attention 

was given to determining the force due to impact of two bodies and the 

critical velocity beyond which irreversible damage occurs. Until late 

in the 19th century impact studies considered mainly the motion of the 

centers of gravi of the bodies and very little attention was paid to 

what actually happens at the point of contact. In 1873~ Reyno1ds73 

studied the contact between two elastic bodies and came to the following 

conclusions: 

1. The intensity of the pressure between bodies on first impact is 

independent of the size of the bodies. 

2. A soft body may cause pressure sufficient to crush a hard body. 

These conclusions which were derived from the incompressible fluid laws 

and every approximate elastic stress analysis are crude and do not 

precisely represent the contact forces and stresses of two impacting 

elastic bodies. Later, in 1881, Hertz, 35 as discussed in Chapter 4, 

solved the contact problem of two spherical elastic bodieso However, 

extensive analytical modeling of the erosion process using these and 

other solutions was not attempted until the mid 1960 1 s. 47 After this 

period a great deal of elaborate theoretical and experimental work 

appeared in the literature which provided more insight into the problem 

as well as creating more questions. Prior to this time more emphasis was 

placed on experimental evaluation of the effect of variables, such as 

particle type, shape, velocity and radius as well as target material 
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properties on erosion. Early investigators recognized that all of these 

factors were of importance in wear. 

Haworth's (1949) 74 investigation on the resistance of iron and 

steel to the cutting and rubbing action of quartz and alumina abrasives 

showed that both the shape and the hardness of the abrasive particles 

were important. Angular particles were found to be more abrasive than 

rounded particles of the same material. Abrasiveness increased with 

hardness for particles with similar shapes. 

Stoker (1949) 75 who was concerned with erosion of fluid type 

catalytic cracking plants observed a pronounced dependency of erosion 

rate on particle velocity and impingment angle. He found that the erosion 

rate of a brittle gypsum plaster target varied as the cube of the velocity 

of the air which entrained the particles. The maximum erosion rate 

occurred at a 90° impingment angle for gypsum while for black iron eroded 

with silica particles the maximum was at 20°. 

Finnie (1956)~ 76 employing photographic techniques with a high speed 

light source, was the first to measure the velocity of eroding particles. 

He found that the weight loss of an annealed steel target was approxi

mately proportional to the square of the speed of the eroding particles. 

As a consequence of his studies, he developed a mathematical model to 

predict the erosion of ductile materials. 

From these and other studies that followed it was generally agreed 

that material removal rate W (grams removed per gram of eroding particle) 

varies with the particle radius R and velocity V as 

W = QRaVb (6.1) 
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where a, b, and Q are constants which depend on the material properties 

of both the particle and the surface and most importantly the type of 

contact response as discussed in Chapter 2. Values reported for these 

constants by different investigators vary0 But generally for brittle 

materials, a lies between 3 and 4.5 and b between 2 and 3.3. Various 

responses arisi from impact and quasi static indentation were 

discussed in Chapter 20 Those responses relevant to brittle materials, 

namely elastic and elastic-plastic, will be further discussed here. 

6.10 Elastic Response 

Complete elastic interaction may occur by low velocity impact of 

rel ively large blunt particles on brittle surfaces. It was shown by 

Sheldon and Finni that the particle radius has to be greater than 

a certain value so that plastic deformation does not precede fracture. 

Using the present notation it may be shown that this radius is A/A(~H}3 • 

Also, the particle velocity should be greater than Vc, given by 

Eq. (5.23), as derived in Chapter 5, for the initiation of fracture. 

In this case erosion damage initiates by ring crack formation like those 

shown in Fig. 3.5. 

Sheldon and Finnie (1965) 47 using the Weibull formulation estimated 

* the radius a to which fracture extends on the surface. Then, erosion was 

related to the cylindrical volume described by the radius a* and the maximum 

depth of particle penetration. For spherical indenters they found 

3m 
a ~ 2 m -

m b = 2.4 m _ 2 (6.2) 
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and for angular particles 

m a "" 3.6 m _ 2 
m b = 2.4 m _ 2 (6.3) 

where m is the flaw parameter of the Weibull fracture strength distri-

bution and is assumed to be constant for a given material. The general 

agreement between prediction and experiment is surprisingly satisfactory 

considering the various assumptions made in the analysis. 

Oh et al. (1972) 78 extended the approach suggested by Sheldon and 

Finnie and related the erosion to the damaged volume enclosed in the 

spherical cap of radius R* and depth S. 

w ~ s2R* ( 6. 4) 

where R* is considered to be the radius of a much larger indenter than 

the actual particle which on the average produces a ring crack at radius 

a*. For Eq. (6.4) S was assumed to be proportional to the depth of 

indentation. However, based upon observations of single indentation they 

suggested a better approximation for the depth of the cone crack was 

(6.5) 

Using Eq. (6.5) and their derivation for R*~ Eq. (6.4) can be expressed 

in the following form 
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(6.6) 

The predictions of radius and velocity exponents from Eq. (6.6) are close 

to those obtained by using S proportional to the depth of indentation and, 

except for glass, are again close to the experimental values reported by 

Sheldon and Finnie47 for a wide range of materials. Also, the effect 

of Kic on erosion indicated by this approximate relation is the same as 

that Evans and Wilshaw (next section) obtained for the elastic plastic 

response regime. 

Up to the late l960 1 S eroded surfaces were examined mostly with light 

microscopy. The development of the scanning electron microscope (SEM) 

provided a much better tool for further study of the erosion mechanisms 

which may vary substantially from one material to the other. Adler 

{1974) 71 using both light microscopy and SEM studied the events that 

occur during particle impact on glass and found that, as expected, the 

diameter of the ring cracks and the geometry of the conical fracture 

extending into the bulk material depends on particle size, velocity and 

surface material properties. Additional impacts in the vicinity of this 

region produced some subsurface damage as well as other cone cracks. It 

is only after a number of impacts have occurred that removal of material 

exterior to the conical frustrums take place. Both Adler and more 

recently Sargent et al. (1979) 68 developed similar models based on 

material removal by cone crack interaction. 
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Sargent et al. derived the following equations for particle size 

and velocity effects on erosion 

(6.4) 

where i + j g 3 and 

A is the Auerbach constant, and i and j exponents depend on the 

particle radius and velocity, but no specific values were given. 

Removal of the interstitial material between the cones leaves a 

dense distribution of solid frustrums protruding from the surface. 

The material contained in the frustrums formed by conical fracture is 

more resistant to erosive attack than the highly fractured interstitial 

material. Thus erosion rate slows down during this stage after high 

rate of removal of the interstitial material. Finally, in the steady 

state phase removal of highly fractured and irregular surface of bulk 

material takes place at a uniform rate. Thus, erosion rate is very 

slow during initial stages when cone cracks are forming, then increases 

sharply due to interestitial material removal when cones start to 

interact with one another. Removal of the cone frustrum slows down 

the erosion rate until the steady state stage is reached. 

To study this removal process experiments were carried out using 

pyrex glass impacted with 280 and 660 ~m steel shot at 40 m/sec. The 
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results are shown in Fig. 6.1. In other experiments~ surfaces already 

eroded with 280 pm particles at 40 and 60 msec.were again eroded with 

660 ~m particles at 40 m/sec to find the effect of surface condition on 

erosion and its mechanism. As shown in Fig. 6.2, contrary to previous 

results, the erosion rate is very slow and increases gradually until it 

reaches the steady state phase. These results indicate that cone crack 

formation may not play a significant role in materials removal when the 

surface is highly damaged. So~ these erosion models that are based upon 

cone interaction and interstitial material removal while describing 

initial behavior may not be realistic for the steady state phase of 

erosion of bulk brittle materials. On the other hand, the study of the 

erosion of NiO by Zambelli and Finnie (1978) 81 clearly shows the 

importance of cone crack formation and interaction to material removal. 

Unfortunately~ no information is available on the complicated mechanism 

of removal of highly fractured surface. 

6.2. Elastic-Plastic Response 

The possibility of plastic deformation in brittle materials which was 

clearly demonstrated after the development of SEM and TEM was discussed 

in Chapter 2. Based upon an extensive study of the details of damage 

under both static and dynamic conditions Evans and Wilshaw31 ~ 32 and 

Evans et a1. 22 formulated two semi-empirical relations for the upper 

bound on material removal per particle. These relations are obtained 
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from dimensional analysis, the approximate nature of the stress field, 

and fracture consideration of the indentation process. Also an approxi~ 

mate analysis of the impact dynamics and fracture mechanics was done for 

high velocity impacts where quasi ic approximations no longer suffice. 

The upper bound for material removal due to low or high velocity 

impact is assumed to be 

w - l h (6.5) 

where c1 is the length of lateral cracks located at an average depth h 

below the surface. For quasistatic conditions, c1 is given by Eq. (3.9) 

and h was found to be nearly proportional to the radius of contact a in 

Eq. (3.3). By substituting these values into Eq. (6.5) the following 

results 

(6.6) 

For impact velocities where the resulting force is less than 10 times 

the load at which fracture initiates, Eq. (3.2), a relation between 

impact load P and velocity was obtained 

p /r;V2 'V/5 
-2- = 4.6\(;J 
R G 

( 6. 7) 

where G is the shear modulus of the target material, and p is the 

density of the impacting particle. By Substituting P from Eq. (6.7) 

into Eq. (6.6), the weight loss for N impacts is predicted to be 
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(6.8) 

Due to high strain rates under impact condition dynamic values of Kic 

and H should be used in Eq. (6.8). 

For high impact velocities it was found that the dimensions of the 

lateral cracks are nearly proportional to the radial crack size given 

by Eq. (3.8) and the following relation was derived for their mean 

depth, 

(6.9) 

Then Eq. (6.5) becomes 

(6.10) 

Ruff and Weiderhorn (1979) 82 suggested the following relation for 

the depth of the lateral cracks 

h - (.:;..P ~,.;..3...;.v_2 i /3 (6.11) 

and by using c1 - Cr from Eq. (3.8) they obtained 

(6.11) 
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Even though hardness appears as a rather weak parameter in Eqs. (6.10) 

and (6.12) a contradiction about its effect exist. Gulden's data~ 79 

however, indicate that Eq. (6.10) provides a better representation of 

the effect of K1c and H on erosion. But the exponents of R and V 

from all above equations, considering their approximate nature, are 

very close to those found experimentally.47 The exponents of these 

variables in the erosion equations are summarized in Table 4. 

Radius exponents obtained by eroding MgO, A1 2o3, graphite, 

glass, and hardened steel with SiC particles lie between 3.7-4.1. 

while the velocity exponents are between 2.65-3.0.47 These values 

are reasonably close to the theoretical predictions and their variation, 

Table 4. The exponents of R and V for elastic response are calculated 
for m = 5 and 15. Higher values correspond to m = 5. 

Type of R v K H 
Response Ic 

Sheldon, Finnie47 elastic t~.46 4.0 } 
2. 77 

Oh, et a 1.78 elastic {4.33 3.47} 
3.3 2.65 

Modified, Oh, et al. elastic {4.9 3.87} 
3.9 3.04 .33 

Evans, Wi 1 shaw32 elastic-plastic 
(quasi static) 4.0 2.4 .5 -0.5 

Evans, et a 1.22,31 elastic plastic 
(dynamic) 3.67 3.16 -1.33 -0.25 

Wiederhorn, Ruff82 elastic-plastic 3.67 2.45 -1.33 0.11 
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considering the scatter of the experimental results, is not very large. 

So, in most cases, a reasonable expression for erosion can be obtained 

by using 4 and 3 for the radius and velocity exponents, respectively. 

The effect of elastic properties of materials predicted by the 

proposed equations is complicated. However, examination of these 

equations reveal that they have a second order effect compared to 

fracture toughness. Therefore, as far as material properties are 

concerned, the erosive resistance of a brittle material is primarily 

determined by its fracture toughness. 
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7. SUMMARY AND CONCLUSIONS 

An examination of the behavior of brittle materials reveals that 

their brittleness is only a state rather than.a property. When used 

as components of large structures they fail in a brittle manner, while 

ductile behavior may be observed when the size of the stressed area 

becomes small. The critical size at which this transition occurs is 

determined by two factors: hardness and the state of stress in the 

material. The first variable is a material property while the state 

of stress, on the other hand, is determined by external factors such 

as the shape of the indenter or particle. Plasticity occurs whenever 

sharp indenters are used. With blunt indenters there exists a transi

tion zone between elastic and plastic responses with changing hardness 

and its range increases with increasing indenter size. 

This transition in behavior has necessitated the development of 

elastic and elastic-plastic analyses when studying indentation or 

erosion. The Hertz solution has been used extensively for the elastic 

contact problem and it has been found consistently that its application, 

with a maximum tensile stress theory of failure, leads to incorrect 

prediction of both the fracture load and the fracture location. Because 

of the importance of the problem there have been many attempts, as 

discussed in Chapter 4, to resolve the differences that exist between the 

theoretical predictions and experimental results. Almost all treatments 

by various investigators have used the magnitude of the surface radial 

stress as a condition for fracture. In this study it was found that the 

application of the maximum stress theory for fracture to the indentation 
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problem can be erroneous due to the large variation of stresses over a 

typical surface flaw. Thus, the maximum stress· intensity failure 

criterion was used to low for the vari ion of the surface flaw sizes 

and the stress gradient that flaws are exposed to. 

It was found that for every flaw with size c there is a critical 

distance r* from the contact center where the stress intensity factor is 

highest. The distance r* increases with increasing c. However, fracture 

on a surface having various size flaws initiates from a flaw with the 

size of c ~ 0.06a at r* ~ 1.2a, where a is the radius of contact. This 

condition corresponds to the minimum load required for fracture which was 

shown to be proportional to the indenter radius. These results allow 

indentation testing to be used to measure surface properties such as 

fracture.toughness and flaw size. Also, the analysis could be used as a 

basis for predicting the resistance of materials to damage by low velocity 

particle impact and indentation in the elastic response regime. However, 

the rate of material removal after initiation of damage needs a separate 

analysis. 

Sequential photography shows that the material removal by particle 

impact is a very complicated process. Since not all the events that 

occur can be accounted for erosion analyses are usually based upon the 

most likely and significant types of cracking that occur during single 

particle impact on undamaged surfaces. Therefore, by relating the impact 

load to an assumed damaged volume produced by the extension of these 

cracks a qualitative prediction of material removal can be presented. 

However~ there is no solid evidence available to indicate that any of the 
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proposed models represent or remain valid during the steady state phase 

of erosion. In fact, from the indentation and erosion experiments that 

were done on both glass and alumina no signifi~ant resemblance between 

the eroded and indented surfaces was found. 

Erosion experiments reveal that the rate of material removal from an 

undamaged surface is much higher than that of a damaged one when the 

contact is elastic. However, to a lesser degree, quite the opposite 

results for the elasti lastic contact.84 This again emphasizes the 

significant difference that exist between these two types of response. 

Since the analysis for either case relates the materi removal to the 

maximum damaged volume caused by single impacts, usually an upper limit 

of material removal can be expected. From these analysis the general 

conclusion that can be drawn on the effect of material properties on the 

erosive resistivity of brittle materials is that the fracture toughness 

plays the most important role. Hardness for the elastic-plastic response 

and elastic properties for either response have a second order effect to 

that of fracture toughness. 
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APPENDIX A 

The stresses associated with a Hertzian loading situation (expressed 

in Cartesian Coordinates) along the plane x =.0 (plane containing z and r 

axis shown in Fig. 5.1). We note that cryy = crrr· 

{ 
(1~2v )i [1 -( z )3 + ...1. a = -1.5 Pm 2 ~r. _ r.r 

XX 3r V U vU 

[ 

a = 1. 5 Pm { ( 1-2 v ) a 2 [1 - ( z )3 J + ( ...1. \3 
YY 3r2 V'U vii J 

ri ivrr 
ayz = 1.5 Pm 2 2 2 -==--z 

u +a z a +u 

where 

(A-1) 

(A-2) 

(A-3) 

(A-4) 

The values of crrr near the surface where fracture starts from a 

flaw are equal to cryy· 



149 

REFERENCES 

1. Weibull, w .• "A Statistical Theory of the Strength of Materials," 

Ing. vetenskaps Akad. Handl., No. 151 (1939). 

2. Shandl, E. B., Glass Engineering Handbook, 2nd Edition, McGraw 

Hill, New York (1958). 

3. Roesler, F. C., "Brittle Fracture near Equilibrium," Proc. Phys. 

Soc. 869, 981 (1956). 

4. Griffith, A. A., 11 The Phenomena of Rupture and Flaw in Solids,~~ 

Phil. Trans. of the Royal.Society A221, 163 (1920). 

5. Da 11 a day, A. J., and Twyman. F., n Some Measurements of the Stress 

Produced at the Surface of Glass by Grinding with Loose 

Abrasives," Trans. Opt. Soc. 23, 170 {1921). 

6. Holland, A. J., and Turner, W. E. S., "The Effect of Transverse 

Scratches on the Strength of Sheet Glass, 11 J. Soc. Glass Tech. fl, 

383 (1937). 

7. Yust, C. S., Oak Ridge National lab., private communication. 

8. Mayville, R., "Erosion of Ductile Materials,~~ M. S. Thesis, 

University of California, Berkeley (1977). 

9. Goh1hoff, G., and Thomas, M., The Physical Properties of Glass, 

Z. Tech. Phys. z, 105 (1926). 

10. Joos, P., Uber die Mikroharte von Glasoberflachen, Z. Angew Phys. 

2_, 

556 (1957). 

11. Bridgeman, P. W., Simon, I., "Effect of very High Pressures on 

Glass,u J. Appl. Phys. ~. 405 (1953). 

12. Hutchings, I. M., 11 Strain Rate Effects in Microparticle Impact, 11 

J. Phys. 0: Appl. Phys. !Q, 179 (1977). 



150 

13. Hockey, B. J., and Wiederhorn~ S. M., 11 Erosion of Ceramic 

Materials,n Proc. 5th Intern. Conf. on Erosion by Solid and Liquid 

Impact (1979). 

14. Recht, R. F., 10 Catastr?phic Thermoplastic Shear,n J. Appl. Mech. 

86E, 189 (1964). 

15. Vust, C. S., and Crouse, R. S., 11 Melting at Particle Impact Sites 

during Erosion of Ceramics,~~ Wear.§.!., 193 (1978). 

16. Gilman, J. J., and Johnson, W. G., 10 Dislocations and the 

Mechanical Properties of Crystal,n Wiley, New York (1957). 

17. Stokes, R. J., Johnson, T. L., and Li, E. H., 11 Effect of Surface 

Condition on the Initation of Plastic Flow in Magnesium Oxide,n 

Trans. Met. Soc. AIME 215, 437 (1959). 

18. Hockey, B. J., "Plastic Deformation of Alumina Oxide by Indentation 

and Abrasion, 11 J. Am. Cer. Soc. 54, 223 (1971). 

19. Lankford, J., ~~compressive and Indentation Damage in Alumina,ua ONR 

Tech. Report (1977). 

20. Finnie, I., 10 The Mechanism of Erosion of Ductile Metals," Proc. of 

the 3rd U. S. Natl. Congress of Appl. Mech. 527 (1958). 

21. Capesius, M., 11 Crack Formation in Glass Under Spherical Indenters,~~ 

M. S. Project, University of California, Berkeley (1970). 

22. Evans, A. G., Gulden, M. E., and Rosenblatt, M., 11 lmpact Damage in 

Brittle Materials in the Elastic-Plastic Response Regime, 11 Proc. 

R. Soc. London A. 361, 343 (1978). 

23. Lawn, B. R. and Wiederhorn, S.M., 11 Strength Degradation of Glass 

Impacted with Sharp Particles,~~ J. Am. Cer. Soc. 62, 66 (1979). 



151 

24. lawn, B., and Wilshaw, R., 10 Review of Indentation Fracture: 

Principles and Applications, 18 J. of Mat. Sci. lQ., 1049 (1975). 

25. Hamilton, G. M., and Goodman, L. E., 18 The Stress Field Created by 

A Circular Sliding Contact, 11 J. Mat. Sci.~~ 371 (1966). 

26. langitan, F. B., and Lawn, B. R., 11 Hertzian Fracture Experiments 

on Abraded Glass Surfaces as Definite Evidence for an Energy 

Ba 1 ance Exp 1 a nation of Auerbach's law, li J. of App 1. Phys. 40, 4009 

(1969). 

27. Hirst, w .• and Howse, M. G., liThe Indentation of Materials by 

Wedges , 11 Proc. Roy. Soc. A311, 429 ( 1969). 

28. lawn, B. R., Wilshaw, T. R., and Hartley, N. E. w •• 11 A Computer 

Simulation of Hertzian Cone Crack Growth,li Int. J. Fract. Mech. 

10, 1 (1974). 

29. Tabor, o •• liThe Hardness of Metals." Claredon Press, Oxford (1951). 

30. Lawn, B. R. and Fuller, E. R •• 11 Equil ibrium Penny-Like Cracks in 

Indentation Fracture," J. Mat. Sci. 10, 2016 (1975). 

31. Evans, A. G., and Wilshaw, T. R., 11 0ynamic Solid Particle Damage 

in Brittle Materials,~~ J. Mat. Sci. 12, 97 (1977). 

32. Evans, A. G., and Wilshaw, T. R., 11Quasistatic Solid Particle 

Damage in Brittle Materials, 11 Acta Met. 24, 939 (1976). 

33. Lawn, B. R., Marshall, D. B., 11 Residual Stress Effects in Sharp 

Contact Cracking,~~ J. Mat. Sci. J:i, 2001 (1979). 

34. Gilman. J. J •• liStrength of Ceramic Crystals.~~ Mechanical Behavior 

of Crystalline Solids, National Bureau of Standards Monograph 59, 

(1963). 



152 

35. Hertz, H., "Uber die Beruhrung Fester Elasticher Korper," 1881; 

reprinted in "Gesammelte werke von Heinrich Hertz, 11 1,, 155, 

Leipzing (1895). 

36. Hill, R., Lee, E. H., and Tupper, S. J., 11 The Theory of Wedge 

Indentation of Ductile Materials,n Proc. Roy. Soc. A188, 273 

{1947). 

37. Shield, R. T., and Drucker, D. C., 11 The Application of Limit 

Analysis to Punch-Indentation Problems,u J. of Appl. Mech. 20, 483 

(1953). 

38. Levin, E., nlndentation Pressure of a Smooth Circular Punch,u 

Quarterly Appl. Mech. }1. 133 (1954). 

39. Smith, F. W., Emery, A. F., and Kobayashi, A. S., ustress 

Intensity Factors for Semi Circular Cracks, 11 J. Appl. Mech. 34, 

Ser. E, 953 (1967). 

40. Marsh, D. M., 11 P1astic Flow in Glass,n Proc. Roy. Soc. A 279, 420 

(1964). 

41. Mulhearn, T. 0., 11 The Deformation of Metals by Vickers Type 

Pyramidal Indenter,~~ J. Mech. Phys. Solids z, 85 (1959). 

42. Lee, C. H., Masaki, S., and Kobayashi, S., 11 Analysis of Ball 

Indentation,~~ Int. J. Mech. Sci. li• 417 (1972). 

43. Shaw, M. C., Hoshi, T., and Henry, 0., 11 Reverse Plastic Flow 

Associated with Plastic Indentation,~~ ASME Publication, Paper No. 

78-WA/PROD-19. 

44. Hill, R., 18 The Mathematical Theory of Plasticity," Oxford (1950). 



153 

45. Evans, A. G., "Strength Degradation by Projectile Impacts." J. Am. 

Cer. Soc. 56,405 (1973). 

46. Auerbach, F •• 11 Absolute Hartemessung," Ann. Phys. Chern. 43, 61 

(1891). 

47. Sheldon, G. l., and Finnie, I., "The Mechanism of Material Removal 

in the Erosive Cutting of Brittle Materials, 10 Trans. ASME 888, 393 

(1966). 

48. Timoshenko, S. P. and Goodier, J. N., 10 Theory of Elasticity," 

McGraw Hill (1951). 

49. Huber, M. T., 10 Theorie der Beruhrung Fester Elastischer Korper, 10 

Ann. Physik 11· 153 (1904). 

50. Tillett, J. P. A., 11 Fracture of Glass by Spherical Indenter," 

J. Mat. Sci. 869, 47 (1956). 

51. Frank, F. C. and lawn, B. R., 10 0n the Theory of Hertzian Fracture, 10 

Proc. Roy. Soc. London A299, 291 (1967). 

52. Spense, D. A., "Self Similar Solutions to Adhesive Contact Problems 

with Incremental Loading,n Proc. Roy. Soc. London A305, 55 (1968). 

53. Goodman, L. E., "Energy Dissipation in Contact Friction: Constant 

Normal and Cyclic Tangential Loading,~~ J. Appl. Mech. E84, 55 (1962). 

54. Johnson, K. L., 01Connor and, J. J., and Woodward, A. C., "The Effect 

of the Indenter Elasticity on the Hertzian Fracture of Brittle 

Materials, 18 Proc. R. Soc. London A334, 95 (1973). 

55. Hardy. c •• Baronet, C. N., and Tordian, G. v •• 18 The Elastic-Plastic 

Indentation of a Half-Space by a Rigid Sphere," Intern. J. for 

Num. Meth. in Engr. l• 451 (1971). 



154 

56. Dao, K * C., and Shockey, D. A., "Particle Impact Damage in Si N BD 3 4 

SRI Intern* Annual Report, Part III (1979). 

57. Roesler, F. C., "Indentation Hardness of Glass as an Energy Scali 

Law,~~ Proc. Phys. Soc. 69B, 55 (1956). 

58. Sargent, G. A., Mehrotra, P. K., and Conrad, H. I ''Multiparticle 

Erosion Pyrex Glass,~~ ASTM STP 664, 77 (1979). 

59. Johnson, K. L, 11 The Carrel ion of Indentation Experiments,~~ 

J. Mech. Phys. Solids 18, 115 (1970}. 

60. Hamilton, B. and Rawson, H., 11 The Determination of Flaw Distribution 

on Various Glass Surfaces from Hertz Fracture Experiments , 11 J. Mech. 

Phys. Solids 8, 127 (1970). 

61. Oh, H. L. and Finnie, I., 11 0n the Location of Fracture in Brittle 

Solids. I-Due to Static Loading, 11 Int. J. of Fract. Mech. !. 287 

(1970). 

62. Greenwood, J. A., and Tripp, J. H., 11 The Elastic Contact of Rough 

Surfaces," J. Appl. Mech., Trans. ASME E89, 153 {1967). 

63. Cartwright, D. J. and Rooke, D. P. "Compendium of Stress Intensity 

Factors," London (1976). H.M.S.O. 

64. Wiederhorn, S. M., and Lawn, B. R., ~~strength Degradation of Glass 

Resulting from Impact with Spheres,~~ J. Am. Cer. Soc. 60, 451 (1977). 

65. Mathews, J. R., McClintock, and Shack, W. J., "Statistical 

Determination of Surface Flaw Density in Brittle Materials,~~ J. 

Am. Cer. Sac. 59, 304 (1976). 



155 

66. Evans, A. G., and Jones, R. L., "Evaluation of a Fundamental 

Approach for the Statistical Analysis Fracture,~~ J. Am. Cer. 

Soc. &l• 156 (1978). 

67. Fisher, G. M. C., "The Auerbach Range in the Hertzian Fracture of 

G1ass, 11 J. Appl. Phys. 38, 1781 (1967). 

68. Sargent, G. A., Mehrotra, P. K., and Conrad, H., "A Model for 

Multiparticle Erosion of Brittle Solids by Spherical Particles,~~ 

Proc. 5th Intern. Conf. on Erosion by Solid and Liquid Impact, 

Cambridge, England (1979). 

69. Argon, A. S., 11 Surface Cracks on Glass," Proc. of the Roy. Soc. 

250A, 472 (1959). 

70. Chandhri, M. M., aand Walley, S. M., "Damage of Glass Surface by 

Impact of Small Glass and Steel Spheres,~~ Phil. Mag. A _R, 153 

(1978). 

71. Adler, W. F., "Analysis of Multiparticle Impacts on Brittle 

Materials,~~ Quart. Prog. Report 4. Air Force Material Lab, 

Project 7342 (1974). 

72. Erdogan, F., and Sih, G. C., "On the Crack Extension in Plates 

Under Plane loading and Transverse Shear," J. Basic Engr. Trans. 

ASME 888, 393 (1966). 

73. Reynolds, 0., "On the Action of a Blast of Sand in Cutting Hard 

Materials, 11 PhiL Mag. 46~ 337 (1873). 

74. Haworth, R. D., "The Abrasion Resistance of Metals," Trans. of ASM 

819 (1949). 



156 

75. Stocker. R. L •• "Erosion Due to Dust Particles in a Gas Stream," 

Indust. and Engr. Chern. 41, 1196 (1949). 

76. Finnie, I., "The Mechanism of Erosion of Ductile Materials" Proc. 

3rd U.S. Nat. Congress of Applied Mech •• 527 (1958). 

77. Sheldon, G. L., and Finnie, I., "On the Ductile Behavior of 

nominally Brittle Materials in Erosive Cutting.~~ Trans. ASME 888, 

387 (1966). 

78. Oh. H. L •• Oh, K. D. L., Vaidyanathan, S. and Finnie, I •• "On the 

Shaping of Britt Solids by Erosion and Ultrasonic Cutting," NBS 

Specl. Pub. 348 (1970). 

79. Gulden, M., "Study of Erosion Mechanisms of Engineering Ceramics," 

ONR Contract No. N00014-73-C-0401 (1979). 

80. Gordon, J. E., Marsh, D. M., and Parratt, M •• "On the strength and 

structure of Glass," Proc. Roy. Soc. of London 249A, 65 {1959). 

81. Zambelli. G •• and Finnie. I., "Particulate Erosion on NiO Scales," 

Proc. 5th Intern. Conf. on Erosion by Solid and Liquid Impact, 

Cambridge, England (1979). 

82. Ruff, A. W. and Wiederhorn, S. M., "Erosion by Solid Particle 

Impacts," Treatise on Materials Science and Technology 1§_, 

Material Erosion, New York: Academic press (1979). 

83. Gulden, M. E., 11 Solid Particle Erosion of High-Technology 

Ceramics,u ASTM STP 664, 101 (1979). 

84. Gulden, M. E •• "Effect of Number of Impacts on Erosion of 

Polycrystalline MgF2 in the Elastic-Plastic Response Regime," J. 

Am. Cer. Soc. 121 (1980). 




