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SUMMARY

Reduced rank models for the analysis of two-way contingency tables are introduced. Two
classes of reduced rank models are discerned, with well-known exponents canonical analysis and
latent class analysis. The relation between these two classes is discussed. Results on the subject
mentioned earlier in the literature are shown to be either redundant or inaccurate.
Some key words: Canonical analysis; Correspondence analysis; Latent class analysis; Reduced rank models.

1. INTRODUCTION

In recent years much attention has been given to models for two-way contingency tables that
can be formulated in terms of reduced rank of a matrix with probabilities. A well-known reduced
rank model is the independence model, where the rank is one. For rank higher than one distinct
classes of reduced rank models are possible. Each has the independence model as the special
case for rank one. A first class of such models is closely related to what is known under names
as canonical analysis or correspondence analysis. Recently much attention has been given to the
maximum likelihood estimation of versions of these models by Goodman (1985, 1986, 1987) and
Gilula & Haberman (1986, 1988). A second class of models that can be formulated in terms of
reduced rank is latent class analysis, LCA, for two-way tables. Latent class analysis was proposed
by Lazersfeld (1950a, b). See Clogg (1981) for a more recent review.

In this paper we relate these classes of models to each other. The relation has been discussed
earlier by Gilula (1979, 1983, 1984), Gilula & Haberman (1986), Goodman (1987), and van der
Heijden, Mooijaart & de Leeuw (1989). We summarize existing results in a simple way using new
proofs. Gilula (1979) provided conditions that had to hold for rank-2 correspondence analysis
to imply rank-2 latent class analysis. We show here that rank-2 correspondence analysis always
implies rank-2 latent class analysis. This implies that the theorem and the example given by Gilula
(1979) are incorrect.

2. GENERAL REDUCED RANK MODELS

The basic model studied in this paper assumes that a n n x m probability matrix II has rank p,
where p =£ min (n,m). We call this model Rp. The probability matrix II has all elements nonnegative,
while the sum of the ny is equal to one. We suppose, unless indicated otherwise, that II is full,
in the sense that its row sums irl+ and its column sums v+J are all positive. Thus no row or column
is equal to zero.

We compare this model with the canonical model Cp, in which at most p - 1 of the canonical
correlations between the row and the column variables of the table are nonzero. These canonical
correlations are the stationary values of the product moment correlation coefficient, seen as a
function of scores for rows and scores for columns.
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We also compare Rp with the model suggested by correspondence analysis, written as Ap, in
which

Another way of formulating Ap is by saying that II has a Fisher-decomposition of rank p - 1
(Lancaster, 1958).

THEOREM 1. We have that Cp, Ap and Rp are equivalent.

Proof. If p - 1 canonical correlations are nonzero, then II can be written in the form Ap, with
w, and dj equal to the marginals iri+ and TT+J, with A, equal to the canonical correlations, and
with xfa and yjs equal to the canonical scores (Lancaster, 1958). Thus Cp implies Ap. It is obvious,
moreover, that Ap implies Rp. We now prove that Rp implies Cp. Suppose rank (II) = p. By the
Lagrange theorem, for instance Guttman (1944), we know that 7ry - TTJ+TT+J has rank exactly equal
to p - 1 and is doubly centred. The canonical correlations are computed from the singular value
decomposition of the matrix of normalized residuals Z, given by

The matrix Z is of rank p - 1 , and thus has p - 1 nonzero canonical correlations. •

3. REDUCED RANK MODELS WITH NONNEGATIVITY CONSTRAINTS
Let us now look at the model R*, which assumes that rank (II) = p, and moreover that there

exists a full rank decomposition H = AB', with A^O and B^O. Clearly R* implies Rp, but in
general the reverse implication is not true, at least not obvious.

There are some interesting alternative ways to write R *. In the first place the latent class model
LCAP, mentioned by Good (1965), is such that FI is a mixture of p bivariate distributions with
independence. Thus

^ij - Z

with 7j+ = a+, = B+, = 1. Moreover all parameters are nonnegative. There is also the latent budget
model LBAP (van der Heijden et al., 1989), in which

with a,+ = 8+s = 1, and again all parameters are nonnegative.
THEOREM 2. We have that R*, LBAP and LCAP are equivalent.

Proof. Suppose II satisfies Rf. Thus U = AB', with A>0 and B?0 . Suppose 4> is a diagonal
matrix of order p, with the b+, on the diagonal. Let A = A<P and B = B(<t>~')'. Then clearly
II = AB'. Moreover b+J = 1 and ai+ = TT1+. If we define Bjs = bjs and au = a,Jai+, then we satisfy
LBAP. Let BM = bj, and ah = 0^/5+,, and -q, = d+1. These quantities satisfy LCAP. Thus R* implies
LBAP, and LBAp and LCAP imply each other. It is trivial that LCAP implies R*. •

4. EXISTENCE OF NONNEGATIVE DECOMPOSITIONS

As we said above, in general R* implies Rp, but the reverse implication is not necessarily true.
The relationship between these models was already mentioned by Good (1965, p. 64), and studied
by Gilula (1979, 1983, 1984).
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THEOREM 3. We have that R2 and i?f are equivalent.

Proof. We know that R* implies R2, so we merely have to prove the reverse. Because of R2
the columns of II are m vectors in a two-dimensional subspace of R". Because all columns are
nonnegative they are actually in a pointed cone in this plane. Two-dimensional cones are simplicial,
i.e. they have exactly two extreme rays. The bundle of rays corresponding with the columns of
II has two extremes, all other columns are positive linear combinations of these two columns.
But this means that R* is true, with A equal to these two extreme columns. •

This very simple geometric proof is due to Paul Bekker. It replaces a lengthy computational
proof we first had, and a complicated algebraic proof by Thomas (1974) we subsequently
discovered. Thomas (1974) also gave a necessary and sufficient condition for Rp to imply R*,
which reformulates the problem in terms of the existence of certain polyhedral convex cones. He
also provided the counterexample

0-125 0125 00 0-0
0125 00 0-125 0-0
0-0 0125 00 0125
00 0-0 0-125 0125

This matrix satisfies R3, but not R*.
It follows from our result that the Theorem and Corollary 1 of Gilula (1979) are not correct.

This result also shows that van der Heijden et al. (1989) are incorrect in stating that latent class
analysis and correspondence analysis are always equivalent, i.e. for any rank p.

The example Gilula (1979) gives is supposed to satisfy R2 and not R*. The probability
matrix is

"0165 0005 0030
0015 0-580 0105
0020 0065 0015

In this example the first two columns of II are the extreme columns, and thus columns TT{ , tr2
and TT3 satisfy the relationship 7T3=-^(7r, + TT2). Consequently

n=
0165
0-015
0-020

0005
0-580
0-065

|"l 0 01765. .."I
L0 1 0-1765.. J '

which counters Gilula's counterexample.
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