UCLA

Department of Statistics Papers

Title

Reduced Rank Models for Contingency Tables

Permalink

https://escholarship.org/uc/item/09c3x8fs

Authors

Jan de Leeuw
Peter van der Heijden
Publication Date
2011-10-24

Reduced rank models for contingency tables

By JAN DE LEEUW
Departments of Psychology and Mathematics, University of California, Los Angeles, California 90024-1563, U.S.A.
and PETER G. M. VAN DER HEIJDEN
Department of Empirical and Theoretical Sociology, University of Utrecht, 3508 TC Utrecht, The Netherlands

Summary

Reduced rank models for the analysis of two-way contingency tables are introduced. Two classes of reduced rank models are discerned, with well-known exponents canonical analysis and latent class analysis. The relation between these two classes is discussed. Results on the subject mentioned earlier in the literature are shown to be either redundant or inaccurate.

Some key words: Canonical analysis; Correspondence analysis; Latent class analysis; Reduced rank models.

1. Introduction

In recent years much attention has been given to models for two-way contingency tables that can be formulated in terms of reduced rank of a matrix with probabilities. A well-known reduced rank model is the independence model, where the rank is one. For rank higher than one distinct classes of reduced rank models are possible. Each has the independence model as the special case for rank one. A first class of such models is closely related to what is known under names as canonical analysis or correspondence analysis. Recently much attention has been given to the maximum likelihood estimation of versions of these models by Goodman $(1985,1986,1987)$ and Gilula \& Haberman (1986, 1988). A second class of models that can be formulated in terms of reduced rank is latent class analysis, LCA, for two-way tables. Latent class analysis was proposed by Lazersfeld (1950a, b). See Clogg (1981) for a more recent review.

In this paper we relate these classes of models to each other. The relation has been discussed earlier by Gilula (1979, 1983, 1984), Gilula \& Haberman (1986), Goodman (1987), and van der Heijden, Mooijaart \& de Leeuw (1989). We summarize existing results in a simple way using new proofs. Gilula (1979) provided conditions that had to hold for rank-2 correspondence analysis to imply rank- 2 latent class analysis. We show here that rank- 2 correspondence analysis always implies rank- 2 latent class analysis. This implies that the theorem and the example given by Gilula (1979) are incorrect.

2. General reduced rank models

The basic model studied in this paper assumes that an $n \times m$ probability matrix Π has rank ρ, where $\rho \leqslant \min (n, m)$. We call this model R_{ρ}. The probability matrix Π has all elements nonnegative, while the sum of the $\pi_{i j}$ is equal to one. We suppose, unless indicated otherwise, that Π is full, in the sense that its row sums π_{i+} and its column sums π_{+j} are all positive. Thus no row or column is equal to zero.

We compare this model with the canonical model C_{ρ}, in which at most $\rho-1$ of the canonical correlations between the row and the column variables of the table are nonzero. These canonical correlations are the stationary values of the product moment correlation coefficient, seen as a function of scores for rows and scores for columns.

We also compare R_{ρ} with the model suggested by correspondence analysis, written as A_{ρ}, in which

$$
\pi_{i j}=\omega_{i} \theta_{j}\left(1+\sum_{s=1}^{p-1} \lambda_{s} x_{i s} y_{j s}\right) .
$$

Another way of formulating A_{ρ} is by saying that Π has a Fisher-decomposition of rank $\rho-1$ (Lancaster, 1958).
Theorem 1. We have that C_{ρ}, A_{ρ} and R_{ρ} are equivalent.
Proof. If $\rho-1$ canonical correlations are nonzero, then Π can be written in the form A_{ρ}, with ω_{i} and θ_{j} equal to the marginals π_{i+} and π_{+j}, with λ_{s} equal to the canonical correlations, and with $x_{i s}$ and $y_{j s}$ equal to the canonical scores (Lancaster, 1958). Thus C_{ρ} implies A_{ρ}. It is obvious, moreover, that A_{ρ} implies R_{ρ}. We now prove that R_{ρ} implies C_{ρ}. Suppose rank $(\Pi)=\rho$. By the Lagrange theorem, for instance Guttman (1944), we know that $\pi_{i j}-\pi_{i+} \pi_{+j}$ has rank exactly equal to $\rho-1$ and is doubly centred. The canonical correlations are computed from the singular value decomposition of the matrix of normalized residuals Z, given by

$$
z_{i j}=\frac{\pi_{i j}-\pi_{i+} \pi_{+j}}{\sqrt{ }\left(\pi_{i+} \pi_{+j}\right)} .
$$

The matrix Z is of rank $\rho-1$, and thus has $\rho-1$ nonzero canonical correlations.

3. Reduced rank models with nonnegativity constraints

Let us now look at the model R_{ρ}^{*}, which assumes that rank $(\Pi)=\rho$, and moreover that there exists a full rank decomposition $\Pi=A B^{\prime}$, with $A \geqslant 0$ and $B \geqslant 0$. Clearly R_{ρ}^{*} implies R_{ρ}, but in general the reverse implication is not true, at least not obvious.

There are some interesting alternative ways to write R_{ρ}^{*}. In the first place the latent class model LCA $_{\rho}$, mentioned by Good (1965), is such that Π is a mixture of ρ bivariate distributions with independence. Thus

$$
\pi_{i j}=\sum_{s=1}^{\rho} \eta_{s} \alpha_{i s} \beta_{j s},
$$

with $\eta_{+}=\alpha_{+s}=\beta_{+s}=1$. Moreover all parameters are nonnegative. There is also the latent budget model lba ${ }_{\rho}$ (van der Heijden et al., 1989), in which

$$
\frac{\pi_{y}}{\pi_{i+}}=\sum_{s=1}^{p} \alpha_{i s} \beta_{j s},
$$

with $\alpha_{1+}=\beta_{+s}=1$, and again all parameters are nonnegative.
Theorem 2. We have that R_{ρ}^{*}, Lba $_{\rho}$ and LCA $_{\rho}$ are equivalent.
Proof. Suppose Π satisfies R_{ρ}^{*}. Thus $\Pi=A B^{\prime}$, with $A \geqslant 0$ and $B \geqslant 0$. Suppose Φ is a diagonal matrix of order ρ, with the $b_{+;}$, on the diagonal. Let $\tilde{A}=A \Phi$ and $\tilde{B}=B\left(\Phi^{-1}\right)^{\prime}$. Then clearly $\Pi=\tilde{A} \tilde{B}^{\prime}$. Moreover $\tilde{b}_{+s}=1$ and $\tilde{a}_{i+}=\pi_{i+}$. If we define $\beta_{j s}=\tilde{b}_{j s}$ and $\alpha_{i s}=\tilde{a}_{i s} / \tilde{a}_{i+}$, then we satisfy LBA $_{\rho}$. Let $\beta_{j s}=\tilde{b}_{j s}$ and $\alpha_{i s}=\tilde{a}_{i s} / \tilde{a}_{+s}$, and $\eta_{s}=\tilde{a}_{+s}$. These quantities satisfy LCA ${ }_{\rho}$. Thus R_{ρ}^{*} implies Lba $_{\rho}$, and Lba ${ }_{\rho}$ and LCA ${ }_{\rho}$ imply each other. It is trivial that LCA ${ }_{\rho}$ implies R_{ρ}^{*}.

4. Existence of nonnegative decompositions

As we said above, in general R_{ρ}^{*} implies R_{ρ}, but the reverse implication is not necessarily true. The relationship between these models was already mentioned by Good (1965, p. 64), and studied by Gilula ($1979,1983,1984$).

Theorem 3. We have that R_{2} and R_{2}^{*} are equivalent.

Proof. We know that R_{2}^{*} implies R_{2}, so we merely have to prove the reverse. Because of R_{2} the columns of Π are m vectors in a two-dimensional subspace of R^{n}. Because all columns are nonnegative they are actually in a pointed cone in this plane. Two-dimensional cones are simplicial, i.e. they have exactly two extreme rays. The bundle of rays corresponding with the columns of Π has two extremes, all other columns are positive linear combinations of these two columns. But this means that R_{2}^{*} is true, with A equal to these two extreme columns.
This very simple geometric proof is due to Paul Bekker. It replaces a lengthy computational proof we first had, and a complicated algebraic proof by Thomas (1974) we subsequently discovered. Thomas (1974) also gave a necessary and sufficient condition for R_{ρ} to imply R_{ρ}^{*}, which reformulates the problem in terms of the existence of certain polyhedral convex cones. He also provided the counterexample

$$
\left[\begin{array}{llll}
0.125 & 0.125 & 0.0 & 0.0 \\
0.125 & 0.0 & 0.125 & 0.0 \\
0.0 & 0.125 & 0.0 & 0.125 \\
0.0 & 0.0 & 0.125 & 0.125
\end{array}\right] .
$$

This matrix satisfies R_{3}, but not R_{3}^{*}.
It follows from our result that the Theorem and Corollary 1 of Gilula (1979) are not correct. This result also shows that van der Heijden et al. (1989) are incorrect in stating that latent class analysis and correspondence analysis are always equivalent, i.e. for any rank ρ.
The example Gilula (1979) gives is supposed to satisfy R_{2} and not R_{2}^{*}. The probability matrix is

$$
\left[\begin{array}{lll}
0.165 & 0.005 & 0.030 \\
0.015 & 0.580 & 0.105 \\
0.020 & 0.065 & 0.015
\end{array}\right] .
$$

In this example the first two columns of Π are the extreme columns, and thus columns π_{1}, π_{2} and π_{3} satisfy the relationship $\pi_{3}=\frac{3}{17}\left(\pi_{1}+\pi_{2}\right)$. Consequently

$$
\Pi=\left[\begin{array}{ll}
0.165 & 0.005 \\
0.015 & 0.580 \\
0.020 & 0.065
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0.1765 \ldots \\
0 & 1 & 0.1765 \ldots .
\end{array}\right]
$$

which counters Gilula's counterexample.

Acknowledgements

We are grateful to P. Bekker and J. F. B. M. Kraaijevanger for helpful comments.

References

Clogg, C. C. (1981). Latent structure models of mobility. Am. J. Sociol. 86, 836-68.
GILULA, Z. (1979). Singular value decomposition of probability matrices: probabilistic aspects of latent dichotomous variables. Biometrics 66, 339-44.
GILULA, Z. (1983). Latent conditional independence in two-way contingency tables: a diagnostic approach. Br. J. Math. \& Statist. Psychol. 36, 114-22.
GILULA, Z. (1984). On some similarities between canonical correlation models and latent class models for two-way contingency tables. Biometrika 71, 523-9.
Gilula, Z. \& Haberman, S. J. (1986). Canonical analysis of contingency tables by maximum likelihood. J. Am. Statist. Assoc 81, 780-8.

Gilula, Z. \& Haberman, S. J. (1988). The analysis of multivariate contingency tables by restricted canonical and restricted association models. J. Am. Statist. Assoc. 83, 760-71.
GOOD, I. J. (1965). The Estimation of Probabilities: An Essay on Modern Bayesian Methods. Cambridge, Mass: MIT Press.
GOODMAN, L. A. (1985). The analysis of cross-classified data having ordered and/or unordered categories: association models, correlation models and asymmetry models for contingency tables with or without missing entries. Ann. Statist. 13, 10-69.
GOODMAN, L. A. (1986). Some useful extensions to the usual correspondence analysis approach and the usual loglinear approach in the analysis of contingency tables (with comments). Int. Statist. Rev. 54, 243-309.
Goodman, L. A. (1987). New methods for analyzing the intrinsic character of qualitative variables using cross-classified data. Am. J. Sociol 93, 529-83.
GUTTMAN, L. (1944). General theory and methods for matrix factoring. Psychometrika 9, 1-16.
Lancaster, H. O. (1958). The structure of bivariate distributions. Ann. Math. Statist. 29, 719-36.
Lazersfeld, P. F. (1950a). The logical and mathematical foundations of latent structure analysis. In Measurement and Prediction, Ed. S. A. Stouffer et al., pp. 362-412. Princeton University Press.
Lazersfeld, P. F. (1950b). The interpretation and computation of some latent structures. In Measurement and Prediction, Ed. S. A. Stouffer et al., pp. 413-72. Princeton University Press.
Thomas, L. B. (1974). Solution problem 73-14, Rank factorization of nonnegative matrices, by A. Berman and R. J. Plemmons. SIAM Rev. 16, 393-4.
Van der Heijden, P. G. M., Mooijaart, A. \& de Leeuw, J. (1989). Latent budget analysis. In Statistical Modelling. Proceedings of GLIM 89 and the 4th International Workshop on Statistical Modelling, Ed. A. Decarli, B. J. Francis, R. Gilchrist and G. U. H. Seeber, Lecture Notes in Statistics 57, pp. 301-13. Berlin: Springer-Verlag.

