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ABSTRACT OF THE DISSERTATION

Democratic Community-based Search with XML Full-Text Queries

by

Emiran Curtmola

Doctor of Philosophy in Computer Science

University of California San Diego, 2009

Professor Alin Deutsch, Chair

As the web evolves, it is becoming easier to form online communities based

on shared interests, and to create and publish data on a wide variety of topics. With

this democratization of information creation, it is natural to query, in an ad-hoc and

expressive fashion, the global collection that is the union of all local data collec-

tions of others within the community. In order to publish and locate documents of

interest while fully delivering on the promise of free data exchange, any community-

supporting infrastructure needs to enforce the key requirement to preserve privacy

of the association of content providers with potential sensitive information. This

privacy-preserving publishing requirement prevents censorship, harassment, or dis-

crimination of users by third parties. It also precludes some obvious approaches that

reuse and build on existing centralized technologies including search engines and

hosted online communities.

This dissertation facilitates democratization of data publishing and efficient

search with powerful full-text queries over the community global collection by means

of a novel distributed framework that disseminate queries in online communities. We

address two challenging issues that arise in this context: the design of distributed

access methods to publishers and the evaluation of expressive queries (i.e., XML

full-text) locally at the publisher thereof.

First, given the virtual nature of the global data collection, we study the

problem of efficiently discovering publishers in the community that contain docu-

ments matching a user query. We call such peers relevant publishers. We propose a

xvi



novel distributed infrastructure in which data resides only with the publishers owning

it. The infrastructure disseminates user queries to publishers, who answer them at

their own discretion, under data-location anonymity constraints. That is the query

forwarding infrastructure prevents leaking information about which publishers are

capable of answering a certain query.

Second, once queries reach relevant publishers, we study how they efficiently

process the incoming queries over their local repositories. Given that the commonly

used data model for information exchange on the Web is semi-structured (e.g., XML),

we propose algorithms for the evaluation and optimization of expressive XML queries

that integrate structured and full-text search, including the W3C XQuery Full-Text

standard.
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Chapter 1

Introduction

1.1 Democratic Publishing with Expressive Search

The recent explosion of various types of information being generated from

so many different sources under a large variety of social interactions between users

has made search a hot topic for many research communities. We are witnessing a

revolutionary process of democratization of information creation on the web in the

sense that it is easier to create and publish data on a wide variety of topics; this is

evident from the proliferation of blogs (e.g., Blogger [2], WordPress [21], LiveJour-

nal [13]), wikis (e.g., Wikipedia [20]), user-generated content, social sites, etc. In a

way, publishing and querying for content in Web-based communities has become a

day-to-day convenience. Moreover, it is easier to have publishers organize in ad-hoc

communities based on shared interests, which we call communities of interest (rather

than of coincidence). This is true if we consider the popularity and rapid growth of

social networking sites like Facebook [4], Twitter [19], MySpace [14], LinkedIn [12],

and Friendster [5].

With the confluence of these trends comes the natural desire of users to freely

exchange data within the community - this includes making one’s own data accessible

to others within the community, and also be able to query, tag, and comment on the

rich global community collection that is the union of all local data collections of users

in the community. In principle, a publishing system contains two components. The

publishing component allows publishers to make their data accessible for querying

1
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within the community; while the querying component allows users to query the global

collection.

However, the data published in online communities is in principle distributed

among the participating users depending on where it was created or was shared, and

depending on who owns it. Another area which faces an analogous problem is that

of digital library management where high-function interoperability is a must in order

to facilitate access and search across remote online library catalogs. Moreover, this

data reside in various representations. Similarly, many applications of scientific and

collaborative nature, including projects like GEON [6] and BIRN [1], depend on data

sets that reside in different locations, that are managed with different systems, and

that are accessed via different query languages. For a long time, the ability of such

applications and of their users to exchange data and issue ad-hoc queries (i.e., queries

on the actual content of the collection) over communities of distributed collections of

data sources was hindered by the lack of a homogeneous data model at the sources.

The popularity of XML [111] as the de facto standard format for electronic data

exchange on the Web, has determined the majority of data sources to adopt and

export their data as XML regardless of how they actually store it. For instance,

all major commercial relational database management systems provide full support

to export an XML query interface now. Consequently, XML has emerged as the

natural candidate for the homogeneous data model, fuelling yet again the research in

the database integration area. In the rest of the thesis, we assume without any loss of

generality that individual users publish, store, and export collections of documents,

usually in XML format. By documents we understand any of the following: articles,

news, tables, blogs, tags, comments, tweets, or anything of rich textual content.

At the same time, XML is a natural way to represent on the Web what is

called semi-structured data. For years, databases and information retrieval have

evolved independently as two fields with different agendas: databases manage struc-

tured data or records, while information systems manage unstructured or text doc-

uments. However, the explosion of data in the recent years has laid down the way

for an increasing number of applications that require querying data based on both

the structure and the textual content of documents. As hinted above, most of the

enterprise content and data on the Web, including user generated content, digital
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libraries, and scientific databases, are neither strictly relational nor purely textual –

but semi-structured. In addition, whereas traditional Web search focused on simple

keyword search, nowadays more online applications require complex features posing

a critical need for expressive, relevant, and flexible search tools.

Therefore, in an effort to provide better retrieval performance (both in terms

of efficiency and effectiveness) on large collections, we face a new requirement: the

desirability to search the community data with powerful queries involving compos-

able full-text search predicates. We call these queries XML full-text queries. To meet

this requirement, a recent W3C effort extended XQuery, the recommended language

for querying XML based only on the document structure, to querying XML data on

both text and structure. This effort produced the XQuery Full-Text [114] standard,

also known as XQFT, which allows to issue complex and expressive queries that

go beyond simple keyword search by using full-text capabilities. These capabilities

include a rich set of predicates that are textual conditions expressed in terms of

keyword positions in the document, ranging from Boolean search to combining so-

phisticated proximity distance and keyword-order conditions on keywords, and on

semi-structured content in general. For instance, a legitimate full-text query on the

Wikipedia data might ask for

(‡) all documents that contain terms related to official ethnic groups
and minority languages that occur within a window of 10 words, with
ethnic appearing before minority [120, 114].

Moreover, recent events have shown that it is necessary to consider a new fea-

ture that is critical to nowadays publishing in online communities – that of allowing

the users to freely exchange data and therefore, of enabling freedom of speech online

without the fear of retribution. Nowadays, for many of us, the Internet is all about

free search for information. People have come to learn that their online blogs along

with the mainstream news websites can be easily censored, or worse, the true identity

behind their online nicknames can be revealed. This is frightening if we think that

this information can be used to censor or discriminate certain individuals pertaining

to various online activist groups or dissidents, including common online communities

whose scope is to merely raise awareness, to disagree, or simply to address sensitive

issues related to politics, race, religion, gender identity, ethnicity, acts of charity, etc.
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Therefore, in order to fully deliver on the promise of freely exchanging data, any

community-supporting infrastructure needs to enforce the key requirement to pre-

serve privacy of publishers’ association with personal intention and with potential

sensitive or controversial information. That is, there should be no easy way for any

third party to infer or to collude published data to reveal the identity of all publishers

containing documents on certain topics. Since this information can be further used to

deny users access to certain publishers and their content or to deny selected publish-

ers access online, the above requirement plays a paramount role in enabling freedom

of speech online and therefore, in protecting users from censorship, harassment, and

possible discrimination by third parties, be they of governmental, corporate, or other

nature (including advertising, marketing, and tracking companies).

This privacy-preserving publishing requirement precludes some obvious ap-

proaches that reuse and build on existing conventional centralized technologies, e.g.,

search engines, hosted online communities, etc. The centralized approach assumes

that the community data can be crawled, harvested, and collected at one single

site which is responsible for handling all user queries. At the same time, users pre-

sume these technologies to have the acceptable duty to protect their expectation of

anonymity or privacy, which is not necessarly true in the presence of network attacks,

subpoena, or other court orders. More, whereas this online content delivery and so-

cial networks phenomenon is growing, it has sparked debates on subjects including

net neutrality, content ownership and control, etc. While these are designed to han-

dle a large number of potential publishers and the dynamic nature of published data,

enabling a straightforward query access to the global data collection, the downside

is that publishers are disintermediated from consumers by the central site. That is

that publishers loose their autonomy as they need to relinquish their data. Moreover,

the central site has control over the visibility of publishers to user queries, and the

publishers lose control over who is accessing and who is interested in their content.

For instance, Facebook stores each and every photo uploaded, indefinitely, even if

the user removes it or deletes the entire account from the website; same with the

user profile information that may include real name, age, sex, friends list, etc. It

is scary to consider how much content control there is in the hands of proprietary

companies.
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In addition, centralized solutions may be unsatisfactory if we consider aspects

such as the crawling technology they use. The limitation relies in the quantity of

data these crawlers can harvest on the Web. A popular trend is to query online data

sources that are hidden behind query forms that we call the deep web. However, in

practice, a crawler engine can index only the surface web, which is the data visible

online, while it ignores entirely the deep web, which is of several orders of magni-

tude larger. More, these technologies suffer from insufficient data timeliness (i.e., the

freshness of query results depends on the crawling frequency) when timely informa-

tion dissemination to applications is a key feature. As well, centralized technologies

are prone to traffic bottlenecks and represent single points of failure; therefore, con-

gestion and server downtime could affect data availability among community users 1.

Relatedly, at the current rate of information creation and sharing online, centralized

systems will not be able to scale indefinitely and are easy to attack.

At the same time, the emergence of the GRID and Peer-to-peer (P2P) tech-

nologies, can make the network itself act as an enabler to expose the vast amount

of existing information which is virtual (i.e., not materialized at one location) and

overcome these limitations. Nowadays, the popularity and diversity of such applica-

tions for content sharing and distribution including web caching (e.g., Akamai), file

sharing (e.g., Gnutella, BitTorrent), multimedia sharing (e.g., Youtube), and VOIP

(e.g., Skype) indicate many benefits to fully distributed P2P systems. One particu-

lar advantage of these systems is that any two users can communicate without the

need of a centralized server site. This kind of communication makes it harder to

completely block and does not require a single server to stay in service for the du-

ration of a possible attack conflict over user or data privacy. Another advantage is

that these systems make up a platform that cannot be owned. As such, we employ

P2P technology as a viable alternative with lower cost for real-time community data

search and resource discovery. Given the need for a flexible network, and given the

need to accommodate new requirements for emerging applications, the Internet rep-

resents indeed an attractive infrastructure to support community-based democratic

(i.e., free data exchange) data publishing among the world-wide users.

1http://www.techcrunch.com/2009/08/06/serious-twitter-outage-ongoing/,
http://www.techcrunch.com/2009/09/01/gmail-now-really-down-can-i-get-my-email-back-please/

http://www.techcrunch.com/2009/08/06/serious-twitter-outage-ongoing/
http://www.techcrunch.com/2009/09/01/gmail-now-really-down-can-i-get-my-email-back-please/
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Consequently, due to the proliferation of online communities and social net-

working sites, the increasing number of applications in need for powerful search (e.g.,

beyond simple keyword search) and the need for democratic information exchange,

there is a growing demand for democratization of data publishing in online com-

munities. To this end, we study techniques to efficiently search expressively over

distributed XML data sources and locate documents of interest while guaranteeing

free speech online among the community users. We illustrate our problem state-

ment in Example 1.1.1 below. The main focus of this dissertation is to design and

implement a novel distributed framework, which empowers community users to join

democratic communities, to publish information, and to search ad-hoc the commu-

nity data using powerful XML full-text queries.

Figure 1.1: Example of a publishing system: Consumer P8 poses an XML-based
full-text query Q against the community data; the network identifies the relevant
publishers P1 and P2 that can potentially answer Q; publishers P1, P2 run locally an
evaluation engine for Q and return matching documents to P8.

EXAMPLE 1.1.1. To illustrate our novel distributed framework, we introduce a

running example. Figure 1.1 contains the high-level description of a democratic

publishing system for a virtual newspaper and blogging community. We consider

a network of eight peer nodes, P1 to P8, connected in a mesh topology. Each peer

publishes and stores a collection of XML documents (these are potentially virtual
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documents, physically stored in different formats). We call this to be an XML peer

network. The global community data is virtual in the sense that the entire data

published in the community is not actually materialized at any central site, but data

resides with the publishing node only. In fact, the local data stored at a peer can be

accessed via an XML text search interface by outside applications, i.e., a peer runs

a local evaluation engine capable of answering expressive full-text queries over its

XML store. These queries are posed against the community data using one of the

XML full-text languages. In particular, we use the W3C XQuery Full-Text standard

query language. The result of a user query is a set of matching documents which

can originate from one or multiple sources and which satisfy all the query conditions.

We call a peer that initiates queries over the community data to be a consumer or

querier. Similarly, we call a peer providing content in the community to be a content

provider or publisher. Each peer can be both a publisher and a consumer, and it

can answer queries over its own local XML store at its own discretion, on behalf of

queries initiated by other peers. For instance, in the figure, peer node P8 poses a

query to the community while the network identifies all relevant publisher nodes, P1

and P2, respectively, that can potentially store matching documents. When the query

reaches P1 or P2, then the publisher runs a query evaluation engine locally over its

local store and returns any matching documents to the querier. Since the publishing

system is decentralized, each node has only a local view of the global community

data, which is virtual. As such, it is hard to identify and pinpoint all publishers that

can answer to a certain user query without extensively colluding with or attacking

community members. Therefore, intuitively, this architecture is an enabler for online

freedom of speech and for democratically searching the community data. �

We argue that successful search in democratic online communities faces several

challenges that we outline in the next section.

1.2 Challenges

Given the virtual nature of the global data collection, it is challenging to

provide democratic online community-based search with expressive querying, on both

fronts: the design of the underlying back-end infrastructure which allows publishing
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in the community as well as data source discovery, and the search platform over

the document collection locally at the source. Given these goals, there are a few

interesting challenges we need to meet.

One of the main challenges in querying distributed data sources is that of

source discovery nature and scalability. In such a setting, data sources are peers

who join and leave the community autonomously and keep their data locally with-

out copying it to a central store. In general, there is a large number of decentralized

publishers and an even larger number of consumers. Enabling such a publishing in-

frastructure involves addressing the following two key questions for the users: “whom

to tell?”, and “whom to ask?.” First, publishers leaving or joining online communi-

ties would want to know whom to announce their presence and whom to tell about

the availability of their data among the host of potential consumers. Second, con-

sumers would want to know whom to ask for information and whom to send their

queries to among the myriad of publishers. In this setting, it is critical to have the

network locate the publishers that advertise content matching the user queries in a

data-location anonymous way.

At the same time, any publishing system faces the performance challenge of

making the data accessible and available for search in the community in an efficient

manner. Given the size of the peer network, a naive flooding-based evaluation strat-

egy that sends the query Q to all peers is impractical, resulting in the unnecessary

evaluation of Q at peers whose local data is irrelevant to Q. On the performance

front, the efficient querying of such distributed peers requires spreading the com-

putation across the network by exploiting its structure to avoid congestion at the

nodes.

Yet another challenge is of information discovery and processing nature, that

of providing expressive query access to searching over individual data sources as-

suming that each source comprises of an XML database store. We have witnessed

recently a lack of comprehensive solutions for search on semi-structured data. This

process has been pushing the databases (DB) and the information retrieval (IR) com-

munities toward a unified methodology. At one extreme, there is structured search

which is mostly relational (i.e., limited to attribute value search) or is just based

on XML trees. At the other extreme, there is IR-style fuzzy search on unstructured
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data. It is therefore necessary to address the problem of designing new expressive

ways to access semi-structured information by combining state-of-the-art DB XML

retrieval and IR techniques that will enable to query XML data both on text and

structure [63]. Thus, given the plethora of available publishers, where peers use non-

uniform descriptions, with variable structure and textual content, and given the need

to search over XML databases expressively, we employ XML queries with full-text

predicates.

Recently, we have assisted at an explosion of competing proposals for XML

full-text search languages, each with different expressive power, with different se-

mantics, and often with fuzzy scoring [41]. We focus on an important class of these

languages that we call the XQFT-class, after the most expressive of them, the W3C

XQuery Full-Text standard, including languages and search systems like NEXI [120],

XIRQL [75], JuruXML [46], XSearch [55], XRank [80], XKSearch [125], Schema-Free

XQuery [92], etc. While these proposals come with efficient query evaluation, they are

limited to only conjunctive keyword search (i.e. no predicates) over XML databases,

or to full-text predicates in isolation. In this context, we distinguish the XQuery

Full-Text (XQFT) to be a comprehensive extension of the XQuery language that ac-

counts for full-text predicates allowing complex search based on both the structure

and the textual part of documents.

Given that there is no comprehensive solution that combines state-of-the-art

keyword search with full-text predicates over XML databases, it is critical to address

their efficient evaluation on both tag structure and text contents, together with

effective relevance ranking. There is a need for a universal optimization framework,

in which to reason uniformly about the XQFT-class of languages and therefore, to

guarantee the universality of on optimization solution.

Finally, it is non-trivial to ensure true free information exchange in online

communities and, in particular, in nowadays publishing systems. In general, such

systems require a variety of mechanisms to achieve democratic exchange of informa-

tion that include ensuring user anonymity, encrypting communication channels, and

data-location anonymization techniques. Whereas the first two are well studied in

systems like Tor [68] and FreeNet [54], they are dependant on the encryption scheme

strength and weaknesses, and require dedicated trusted servers to encrypt and route
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the traffic through established anonymous tunnels. In practice, it is non-trivial to

maintain and to protect these servers dynamically. Therefore, our infrastructure is

necessary and it complements their resistance with another mechanism that preserves

privacy of users in publishing communities in the sense that it provides anonymity

for the association of users with certain information. We call this ability as data-

location anonymity or DLA and we talk more about it in Chapter 2. In essence,

our requirement insures that the network dissemination infrastructure does not leak

information about which are the publishers capable of answering a certain class of

queries. It is thus challenging to reason about data-location anonymity and how this

affects the system design in order to minimize information known at a peer node in

case of network breaches at nodes.

To summarize, the main challenges in democratic search in online communi-

ties with complex queries are: (1) locating relevant publishers that advertise data

matching with a specified query and returning the corresponding matching docu-

ments while (2) ensuring the privacy of publishers’ association with their advertised

information against third parties, and (3) local evaluation, at the publisher, of queries

over semi-structured data that combine structure and text search with complex and

composable full-text predicates.

1.3 Solution

In this section, we address the challenges mentioned above and we give an

overview of our methodology. In the following example, we illustrate a high-level

view of our distributed access method solution as shown in Figure 1.2.

At high-level, we propose a distributed infrastructure in which data resides

only with the publishers who own it. Our solution is based on allowing the publishers

of the community to publish, store, and keep complete control over their own data;

thus, enabling user autonomy in the community. Let us remind the community

setting from Example 1.1.1 which contains eight publishers. Users can pose ad-

hoc complex XML full-text queries (e.g., XQFT) into the network over the entire

contents of the community data. That is, the queries are virtually posed against

the local contents of all participating publishers of the community. For instance, in
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Figure 1.2: Distributed access methods: (i) query dissemination in the community
network and (ii) full query evaluation at source

Figure 1.2, consumer P8 poses query Q (as defined in ‡ page 3), this time expressed

in the XQFT language:

Q : doc()/(article | blog)[. ftcontains (“ethnic” and “minority” ordered) and

“official” window ≤ 10 words]/title

We adopt a query dissemination approach where the user queries are forwarded in the

network from consumers to publishers, who answer them with matching documents

at their own discretion. Therefore, query answering has two principal parts. In the

first step, the system routes query Q in the network and discovers only the data

sources of interest, based on a simplified form of the query QS (i.e., the conjunction

of query keywords from Q) and on a smart data index at the peer nodes. In our

example, routing of Q in the network reaches the relevant publishers P1 and P2 by

hopping through various community nodes. The second step handles how to query

the local data repository for all publishers reached during the query routing process.

These publishers decide based on their own access policy whether and how to release

the matching documents back to the consumers. In order to find matching documents

with Q, P1 and P2 evaluate the full query Q on their corresponding local document

collections using an XQFT query processor.
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We detail more on these two steps for answering queries in democratic com-

munities in the following two sections.

1.3.1 Query Routing in the Community

We describe now our design principles and solution for distributed access

methods to discover relevant publishers and thus, to enable efficient querying the

global community data. For more details, please see Chapter 2. When a user query

Q is posted in the community, our goal is to quickly identify which are the relevant

sources to access that contain documents matching with Q. To this end, we design

a novel distributed data index which assists the online community to discover data

sources. Our index directs user queries only to relevant sources so that only those

sites are accessed that can contribute to the query answer; therefore, minimizing

unnecessary generated network traffic and computation overhead at nodes. The

index can be maintained with little overhead as peers join or leave the network, or

as their local XML store changes.

In order to efficiently disseminate queries, the index is a tree-shaped logical

overlay over the peers in the network, which we call a query dissemination tree

(QDT). That is, user peers are logically organized as nodes in hierarchical tree

structures. A user query initiated by a peer is sent to the root of the dissemination

tree, whence it is propagated down the tree. For example, in Figure 1.2, query Q is

sent to root node at P8. The arrow links show the dissemination of Q and identify

the QDT used to route Q down the tree to the relevant publishers, P1 and P2,

respectively. At every node, Q is evaluated on the peer’s local store as explained in

Section 1.3.2, then the peer checks whether the query should be forwarded to the

peers who are its children in this QDT. For this purpose, each peer node in the tree

maintains a small summary of the data advertised in the collection of documents in

its subtrees. This summary serves to detect when no peer in the subtree can satisfy

the query, whose forwarding can be aborted, thus efficient pruning the entire subtree.

Moreover, to address the performance challenges, our index infrastructure is

organized as a union of overlay (i.e., logical) networks, called UQDT – a union of

QDT’s – as shown in Chapter 2. We show how to use the UQDT infrastructure
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to maximize the overall throughput by balancing the congestion of queries observed

at the peers given a workload of rich-expressive queries. While different queries

might hit the same set of nodes, our goal is to balance the generated community

search traffic (i.e., the number of messages) at nodes during query dissemination

while preserving both low index space usage at a node and minimum information

maintained at a node as required by the data-location anonymity requirement. This is

achieved through efficient query routing algorithms and optimization strategies over

UQDT. In particular, our techniques use a judicious combination of (i) overlaying

multiple logical trees over the same physical network, each with a distinct root,

and arranging for queries to be channeled in parallel through distinct trees, and (ii)

maintaining limited selectivity information about advertised keywords to inform the

query routing strategy.

Figure 1.3: The community data: publishers advertise terms about their local data
store, which is accessible via an XML-based full-text search interface

In addition, publishers may not want to reveal publicly the entire contents

of their local store. Therefore, to protect their contents, we consider a model where

publishers can specify what to expose by default as the community data. Publishers

can advertise descriptive keywords about documents they publish and store at their

own local repositories, as show in Figure 1.3. For instance, publisher P1 contains
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documents, stored in its data store, mentioning Beĳing, Tibet, stocks, poverty, and

money. As a result, our distributed index builds on these advertised keywords in

the community and builds upon them to maintain the node summaries. The query

forwarding infrastructure matches advertised keywords from the index with keywords

mentioned in the query (usually based on a conjunction of query keywords) in order

to discover relevant publishers that might contain documents of interest as shown

in Figure 1.2. Since the local stores are not publicly direct available, the advantage

is that these publishers can release their data to queriers only by giving their own

consent explicitly.

1.3.2 Query Evaluation at Publishers

The query semantics when an XML full-text query Q is posed in the commu-

nity, is to iterate through all the documents at the peer, test the full Q, and return

to the consumer only those matching documents with Q. The final result consists of

the union of the local results received from all individual relevant publishers in the

community.

As a consequence of query routing, when a query hits a node, Q is evaluated on

that peer’s local XML store as it is detailed in Chapters 3 and 4. This is true since

during query routing on UQDT, Q is partially tested on its keyword-conjunctive

conditions only, ignoring the rest of its complex composable full-text conditions that

are part of XQFT.

In order to efficiently process the expressive class of XQFT queries locally at

the source, we design, implement, and deploy an XQFT engine processor at each

source. In particular, we propose a reference platform processor for the XQuery

Full-Text standard specification. In Chapter 3, we introduce a general technique

for implementing the XQFT standard on top of an existing XQuery processor. We

identify performance challenges, possible solutions, and their interaction with exist-

ing XQuery implementations. For efficiency, the back-end text engine is build on top

of a local index store that contains posting lists for the documents at the publisher.

Inspired by this fruitful experience, we have leveraged our platform for ad-

dressing another challenging problem – that of efficiently evaluating the XQFT
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languages. Currently, various communities made several competing proposals for

XML full-text querying and scoring methods, which include the upcoming XQFT

standard proposal. So far, the diversity of these proposals ruled out a unified treat-

ment of their evaluation and optimization, imposing custom query processing for

each language. To address this limitation, we propose a novel logical framework for

query evaluation and optimization of such expressive languages in Chapter 4. One of

the main challenges is to capture and formalize their semantics. This requires navi-

gation on the XML tree structure while simultaneously processing complex full-text

predicates to match keywords against the associated text.

Still, such expressive languages do not come with a relational flavor. In-

deed, the XQFT’s semantics is specified in a functional language. As such, devising

an optimization framework in the spirit of the well-known techniques developed by

the database community is desired and challenging. Yet, in Chapter 4, we devel-

oped a logical formalization and a score-aware algebra of these languages. Our first

breakthrough was the ability to express the semantics of XML full-text languages

relationally. We provide an alternative, yet equivalent specification in terms of tuples

of matches of the query keywords into documents. Thus, in the spirit of relational

query processors [102], our physical query evaluation plans are based on a set of

algebraic operators that manipulate the matches of keywords in the text, as well as

the scores. This allows to express the intermediate results of XQFT expressions as

nested relations and suggests a relational algebraic approach to XML full-text query

plans. As a result, we develop an optimization framework that enables optimization

of algebraic plans in presence of well-behaved scoring functions by a rewriting engine

inspired by classical relational equivalence rewriters [101, 49, 50].

The main benefit of our approach is an improved evaluation of XML full-

text languages. This is achieved through (i) a concise and rigorous query semantics

specification by translation into our algebra, and (ii) a uniform treatment of their

optimization regardless of the language. In particular, the framework enables the

tried-and-true relational equivalence algebraic rewritings (i.e., join reordering, push-

ing selections, etc.) to speedup the query execution. By implementing an XQFT

query processor based on this logical framework, we showed that our approach out-

performs existing XQFT solutions. To conclude, our work on XQFT query evalua-
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tion tries to bridge the gap between the two communities – databases and information

retrieval – by combining techniques for navigation on the document structure and

traditional relational tuple-at-a-time manipulation with keyword search and full-text

predicate evaluation.

1.4 Thesis Contributions

This dissertation improves on the state-of-the-art in XML information re-

trieval and distributed information systems. We propose and demonstrate the bene-

fits of an integrated approach to build an efficient infrastructure that empowers infor-

mation publishers to join free (e.g., democratic) communities and query their global

data collection in an ad-hoc fashion using expressive queries over semi-structured

data (e.g., XML full-text queries). This work is a step forward to successfully bridg-

ing the gap between databases and information retrieval communities.

In particular, to support democratic search over distributed XML peers in

online communities with powerful expressive and composable queries, we make a

number of contributions including the following:

• We propose a privacy-preserving enabling infrastructure in which data resides

only with the publishers owning it. The infrastructure disseminates rich-

expressive queries to publishers, who answer them at their own discretion.

Moreover, the way in which publishers advertise their data, in order to receive

relevant queries, is designed to prevent any third party from pinpointing which

publisher advertises what data (without extensively colluding with or attacking

community members).

• Given the virtual nature of the global data, we address the challenging problem

of efficiently disseminating queries to publishers in the community that contain

data matching a specified query.

We propose a distributed index structure, UQDT, that is organized as a union

of query dissemination trees (QDT’s), and realized on an overlay network

infrastructure. Each QDT has data publishers as its leaf nodes, and overlay
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network nodes as its internal nodes; each QDT internal node maintains a

summary of the data advertised by publishers in its subtree.

• We present algorithms that use the UQDT for routing queries to publishers

efficiently, making effective use of the advertised data summaries maintained

by the QDT. While a single QDT suffices in principle to route queries, this

results in congestion at the upper levels of the QDT, severely limiting the

throughput of the overall index structure, and making it potentially vulnerable

to a Denial of Service attack. We show how UQDT can achieve load balancing

and throughput maximization for a rich-expressive and diverse query workload.

To show the effectiveness of our distributed access methods, we experimentally

evaluate UDT design trade-offs through extensive simulations. We demon-

strate that (i) one can statistically identify a near-optimum number of QDT’s

for any specified QDT topology, which maximizes throughput by preventing

any overlay network node from becoming a bottleneck, and (ii) maintaining

selectivity information about a limited number of popular advertised keywords

(2-3%) achives considerable gains over a random routing strategy, and is almost

as good as a fully informed routing strategy (i.e., 100% state).

• We present a general technique for implementing XQuery Full-Text specifi-

cation using an existing XQuery processor. We describe GalaTex [61, 62],

the first complete and conformance reference implementation of XQFT. In

Chapter 3, we identify performance challenges, possible solutions and their

interaction with existing XQuery implementations.

• Given the different XML full-text flavors of user queries, it is critical to enable

their efficient evaluation on the local XML repository once they reach a relevant

publisher.

To this end, we introduce a formalization of XML full-text queries in terms of

keyword pattern matches and present an algebraic foundation for such queries

based on an algebra called XFT. Our algebra constructs and manipulates pat-

tern matches as nested relations representing intermediate results of XQFT

expressions. Therefore, most existing full-text languages can be expressed in
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XFT, which enables a uniform treatment of their semantics specification, eval-

uation, and optimization problems. The XFT operators are freely composable,

enabling query rewriting based on algebraic equivalences in the spirit of the

relational algebra optimization. Finally, XFT can be seamlessly integrated

with algebras for structured XML search, thereby enabling the optimization of

queries which combine structured and full-text predicates.

• Finally, we demonstrate XTreeNet, an integrated approach to building a

publishing system that combines distributed access methods to XML peers

based on a simplified form of the query, followed by a full query evaluation (i.e.,

XQFT queries) at relevant publishers to return matching documents. We built

a real distributed query dissemination platform and show, in Chapter 5, it can

serve efficiently complex and expressive queries. This empowers information

publishers to join democratic communities and empowers users to query the

global data collection in an ad-hoc fashion.

1.5 Thesis Outline

The rest of the dissertation is organized as follows. Chapter 2 presents the effi-

cient design of our UQDT infrastructure and the implementation of such distributed

access methods to assist for query dissemination in online publishing systems. Chap-

ter 3 and Chapter 4 present how to evaluate complex XML full-text queries locally,

at the publisher. In particular, we describe in the first part a general way to build

an XQuery Full-Text processor on top of an XQuery engine. In the second part,

we show how to build a universal optimization solution and efficient algorithms for

evaluation and optimization of XML full-text queries. Then, Chapter 5 describes the

the XTreeNet system as a proof of concept for building a real-world distributed

infrastructure for democratic publishing systems that can serve efficiently complex

and expressive user queries. Finally, we conclude with a summary of the dissertation

and some open challenges as future work in Chapter 6.



Chapter 2

Routing Queries using Distributed

Access Methods

2.1 Motivation

During the last decade, the web has enabled unparalleled access to the vast

amount of electronic data that is continually being created. Moreover, search engine

technology has made it feasible to issue queries and locate web sites that contain

data of interest to a user.

As the web evolves, two significant new trends are emerging that advocate for

“democratization of information creation”. First, write access to the web is becoming

increasingly democratic as it is easier for a large number of users to create and publish

data on a wide variety of topics; this is evident from the proliferation of blogs (e.g.,

Blogger [2], WordPress [21]), wikis (e.g., Wikipedia [20]), user-generated videos and

photos, etc. Second, it is becoming easier to form web communities based on shared

interests; this is evident in the considerably popularity of social networking sites like

Facebook [4], Twitter [19], MySpace [14], and LinkedIn [12]. With the confluence

of these two trends comes the natural desire to freely exchange data within the

community – this includes making one’s own data collection accessible to others

within the community, and also be able to query, tag, and comment on the global

collection that is the union of all local data collections of users within the community.

Understandably, users also want to maintain complete control over the access

19
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to their own data. Recent events have shown that, in order to fully deliver on the

promise of freely exchanging data and freedom of speech online, any community-

supporting infrastructure needs to enforce the key requirement to preserve privacy

of the association of publishers with personal intention and with potential sensitive

or controversial information. That is, there should be no easy way for any third party

authority to infer or to collude published data to reveal the identity of all publishers

of documents on specific topics. Since this information can be further used to deny

users access to certain publishers and their content or to deny selected publishers

access online, the above requirement plays a paramount role in enabling freedom of

speech online and therefore, in protecting users from censorship, harassment, and

possible discrimination by third parties, be they of governmental, corporate or other

nature.

In general, an effective such publishing system requires a variety of enforce-

ment mechanisms to achieve democratic exchange of information, including user

anonymity, encrypted channels, and data-location anonymity techniques. Whereas

the first two mechanisms are well studied in censorship-resistant systems, they require

dedicated trusted servers to encrypt and route the traffic through established anony-

mous tunnels. In practice, it is non-trivial to maintain and to protect these servers

dynamically. We refer the reader to the related work section 2.8 for aspects related

to these first two issues. Therefore, our infrastructure complements their resistance

with another mechanism, called data-location anonymity (DLA), that preserves pri-

vacy of users in publishing communities in the sense that it provides anonymity of

the association of users with certain specific information. In this paper, we focus

on this third key aspect which is to prevent the query forwarding infrastructure

from leaking information about which publishers are capable of answering a given

query. Our proposal enforces that it is not easy for third parties to find out who

published what information (i.e., data item) in order to prevent censorship, harass-

ment, and discrimination of particular publishers and restrict access to information

for consumers.

This privacy-preserving publishing requirement precludes some obvious ap-

proaches that reuse and build on existing centralized technologies, e.g., search en-

gines, hosted online communities, etc. While these are designed to handle the large
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number of potential publishers and the dynamic nature of published data, enabling

a straightforward query access to the global data collection, the downside is that

publishers are disintermediated from consumers by the central site:

• The central site has control over the visibility of publishers to user queries, and

can effectively censor publishers by choosing to not index them.

• The central site has complete knowledge of all the information created by the

publishers (in case they relinquish a copy of their data, as is usual with current

search engines), or at least the topics advertised by the publishers. Even under

the unrealistic assumption that this central site is trusted by the publishers, it

is vulnerable to third-party censors [16, 15] and attackers.

For this reason, we advocate a decentralized approach in this thesis, where

there is no central authority, and the global data collection is virtual. More specifi-

cally, we make the following contributions.

• We propose a distributed privacy-preserving enabling infrastructure in which

data resides only with the publishers owning it. The infrastructure dissem-

inates user queries to publishers, who answer them at their own discretion,

under data-location anonymity constraints (i.e., prevent the query forwarding

infrastructure from leaking information about which publishers are capable of

answering a certain query). Moreover, the way in which publishers advertise

their data, in order to receive relevant queries, is designed to prevent any third

party from pinpointing which publisher advertises what data (without exten-

sively colluding with or attacking community members).

• Given the virtual nature of the global data collection, we address the challeng-

ing problem of efficiently locating and disseminating queries to publishers in

the community that contain data items matching a specified query.

We propose a distributed index structure, UQDT, that is organized as a union

of query dissemination trees (QDTs), and realized on an overlay (i.e., logical)

network infrastructure. Each QDT has data publishers as its leaf nodes, and

overlay network nodes as its internal nodes; each QDT internal node main-

tains a summary of the data advertised by publishers in its subtree. Unlike
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Distributed Hash Tables (DHTs), no QDT node has complete knowledge of all

the publishers that publish an advertised data item, thereby protecting pub-

lishers against information leakage even in case of attacks at network nodes or

of colluding with a third-party censor.

• We present algorithms that use the UQDT for routing queries to publishers

efficiently so that only those sources are accessed that can contribute to the

query answer. Our algorithms follow the parent-child links present in a QDT

and make effective use of the advertised data summaries maintained by the

QDT internal nodes. While a single QDT suffices in principle to route queries,

this results in congestion at the upper levels of the QDT, severely limiting the

throughput of the overall index structure, and making it potentially vulnerable

to a Denial of Service attack.

We build on well known techniques for scalable dissemination trees and for

“Russian Doll” search over sets [84]. We show how UQDT can achieve load

balancing and throughput maximization for a workload W by a judicious com-

bination of (i) Overlaying multiple QDTs over the network, each with a distinct

root, and arranging for queries in W to be channeled in parallel through dis-

tinct QDTs, and (ii) Maintaining limited selectivity information about data

items to help inform the routing strategy. To the best of our knowledge, there

are no works that combine multiple trees for load balancing and hierarchical

summaries for ad-hoc query routing in distributed systems.

• We experimentally evaluate UQDT design trade-offs through extensive simula-

tions, using a real Wikipedia collection comprising about 1.1 million documents

of total size 8.6GB. We demonstrate that UQDT can maximize throughput

by preventing any overlay network node from becoming a bottleneck.

To this end, we explore various QDT topologies (SCRIBE generated, as well

as balanced structures), number of QDTs, and routing strategies (based on

the selectivity information maintained), and show that (i) One can statically

identify a near-optimal number of QDTs for any specified QDT topology,

which maximizes throughput by preventing any overlay network node from

becoming a bottleneck, and (ii) Maintaining selectivity information about a
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limited number of popular data items (2 − 3%) achieves considerable gains

over a random routing strategy, and is almost as good as a “fully informed”

routing strategy.

Chapter Outline. The remainder of this chapter is organized as follows. We

start with an overview of our proposed framework and the space of design trade-offs

in Section 2.2. Section 2.4 describes our implementation choices. The experimental

setup is presented in Section 2.6 and the results are in Section 2.7. We discuss related

work in Section 2.8 and conclude in Section 2.9.

2.2 Overview of UQDT Framework

Data and Query Model. For the purpose of information discovery and

flexible querying, we abstract information as collections of data items, where each

data item is described by a set of content descriptors (CDs). CDs are an abstrac-

tion of keywords, terms, or other atomic information units [99]. For instance, in

information retrieval applications, data items are text documents, and the CDs are

the terms appearing in them. In relational databases, collections are tables, data

items tuples, and CDs are (attribute,value) pairs. Further examples are given in

Section 2.6. Given a data item D, we denote its set of CDs with cd(D).

We consider queries expressed as sets of CDs, and denote the set of CDs of

query Q with cd(Q). We say that data item D matches query Q if cd(Q) ⊆ cd(D).

Notice that the case of matching conjunctive keyword queries against text documents

(the most common Information Retrieval operation) corresponds to the particular

case in which CDs are keywords. Given a data collection D, the result of Q on

D, denoted Q(D), is the set of data items in D that match Q: Q(D) := {D ∈

D | D matches Q}.

Communities of Data Publishers and Consumers. We consider com-

munities of autonomous publishers, who join the community with their own locally

stored data collection and make it available for querying. In return, they can query

the global collection consisting of the union of all local collections.

We contrast two competing approaches to designing the infrastructure for

such communities. At one extreme lies the centralized approach, where all data
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from the publishers is collected at a single site (this is what all search engines and

hosted online communities do). The advantage of this approach is that querying

the global collection is straightforward. The downside however is that publishers

are disintermediated from consumers by the central site, and hence they lose control

over who accesses or is interested in their content. At the opposite extreme, there is

no central authority in charge of deciding where individual data items should reside

and to re-shuffle them accordingly. In this latter setting the global collection is

virtual, i.e. it is not materialized at any central location. Instead, data resides only

with the publishers owning it. The advantage is that publishers maintain complete

control over who accesses their content, and how the content is "advertised" to the

community. The challenge here is efficient query evaluation. Given our focus on

providing community-enabling infrastructure for autonomous publishers, we adopt

the decentralized approach.

The virtual nature of the global data collection raises the challenge of avoiding

the naive broadcast of queries to all publishers. We say that a publisher is relevant

to user query Q if one of its local data items matches Q. What is needed is a

distributed index structure that supports sending Q to all publishers relevant to it

while minimizing the number of irrelevant publishers reached by Q. In this thesis

we propose such an index so that only those sites are accessed that can contribute

to the query answer.

Our indexing solution targets a service-oriented logical network infrastructure,

in which we distinguish two types of nodes. There are data publisher nodes (the com-

munity members) that provide data services and connect to the network via direct

links to nodes at its edge. The data are indexed inside the network, which consists

of a set of inter-connected and reconfigurable router nodes. These are responsible for

routing queries to the relevant publishers.

While different queries might hit the same set of nodes, our goal is to bal-

ance the community search generated load at routers during query dissemination

while preserving both low space usage of index at a node and minimum information

maintained at a node as dictated by the data-location anonymity requirement
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2.2.1 Query Dissemination Trees

It is natural to organize peers and to index community data in a distributed

way such that the peers storing relevant data can be located by contacting as few

hosts in the network as possible. A popular way used in most distributed stream-

based processing, DNS resolution, and publish-subscribe systems is to use a hierar-

chical representation for its better performance and efficiency, simplicity of protocols

and low maintenance cost. Similarly, we propose the organization of the internal

nodes into a logical tree called a Query Dissemination Tree (QDT).

The internal QDT nodes are routers, the publishers are leaves. Regardless

of which querier initiates a query Q, Q is sent to the root of the QDT, whence it

propagates down the tree to the publishers. This is similar to network multicast-

ing [47] in the sense that the query dissemination starts at the root node and follows

down via relay nodes to the group members. However, our intention is that, when Q

reaches a node n with no publishers in its subtree that are relevant to Q, n prunes

its subtree from the search, i.e. it does not forward Q to its children. This pruning

saves the network traffic and processing at n’s descendants. Indeed, the tree shape

of the QDT index is an optimal way to connect the group publisher members to the

dissemination point. This ensures an efficient utilization of the network resources

as (i) the data packets do not traverse a link more than once and (ii) we can prune

irrelevant subtrees during query dissemination.

One immediate technical difficulty associated with this goal is how to instru-

ment the index to efficiently determine that none of n’s descendant publishers are

relevant to Q. Of course, it is infeasible to maintain at every node n the collection of

all data items in n’s subtree. This would be prohibitively wasteful in terms of space,

and it would defeat the purpose of preserving privacy of publishers: it would require

a publisher p to trust (the good intentions and security of) every router on the path

leading to p from the root. This is an unrealistic prerequisite.

We adopt a solution in which publishers share only limited information with

the routers. Publishers advertise the contents of their local store by declaring a set

of CDs appearing in their local collection. Note that not all existing CDs need to be

declared, especially if they pertain to private data items.

We present in two steps the way routers exploit this information.
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In a first cut, we assume that it is feasible to store at every node n the set cd(n)

of all CDs declared by publishers located in n’s subtree (we revisit this assumption

shortly). This assumption is supported by empirical evidence that, for real data sets,

the overlap of CDs across data items in a collection is considerable, and the union of

all CDs (with duplicate removal) is orders of magnitude smaller than the combined

size of the collection. For instance, in Section 2.6 we describe a collection of 1.1

million Wikipedia articles of combined size 8.6 GB that has only 3.2 million distinct

CDs.

Let us observe that the QDT is also (iii) an effective and efficient way to

maintain (i.e., build and update) these cd(n) aggregates at nodes where generic

information is aggregated at the top and more specific information at the bottom of

the hierarchy.

Note also that when only cd(n) is stored at a router n, n does not know

which CD appears in which publisher, nor which sets of CDs appear together in a

data item. This offers publishers an added degree of protection against compromised

routers or external attacks.

2.2.2 Query Routing in Single-QDT

In this setting, we consider the following simple query routing algorithm.

Every query Q posed by a querier p is initially sent to the root of the QDT (in a

message containing both Q and p’s address). When a router node n receives the

message, it forwards it in parallel to each of its children in QDT if and only if

cd(Q) ⊆ cd(n). When a publisher node is reached, it sends back to p the result of

Q against its local collection. Note that when cd(Q) 6⊆ cd(n) holds, it is guaranteed

that n’s publisher descendants are irrelevant to Q. Therefore, the first-cut routing

algorithm never prunes relevant publishers, thus ensuring that the final result of Q

over the global collection is computed in full. In contrast, when cd(Q) ⊆ cd(n) holds,

it is not necessarily the case that at least one publisher in n’s subtree is relevant to

Q. This is because the CDs in cd(Q) may not be co-located in the same data item, or

even at the same publisher. Therefore, the first-cut algorithm may forward queries

unnecessarily, generating non-minimal traffic and processing load. This is a result of
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the unavoidable trade-off between privacy and evaluation performance.

EXAMPLE 2.2.1. Throughout this chapter we use the following running example.

Consider a network of 25 nodes that integrates general news from 8 different newspa-

per web sites P1, ..., P8 (the remaining 17 nodes are routers). Figure 2.1a shows the

CDs declared by each publisher (they are simple keywords). Consider also a query

workload consisting of the four queries shown in Figure 2.1b. Without showing the

actual documents, assume that for every query Q there is at least one newspaper

web site that publishes a document matching Q.

Publisher p CDs declared by p, cd(p)
P1 Beĳing, Tibet, stocks, poverty, money
P2 Beĳing, yak tea, Hong Kong, poverty
P3 Beĳing, Tibet, yak tea, Hong Kong, money
P4 Beĳing, Olympics, yak tea, stocks, money
P5 Beĳing, Olympics, yak tea, stocks, money
P6 Olympics, Tibet, stocks, money
P7 Olympics, yak tea, stocks, money
P8 Olympics, yak tea, stocks, money

(a) Publishers’ declared CDs.

Query Q cd(Q)
Q1 Beĳing, Olympics
Q2 Tibet

Query Q cd(Q)
Q3 poverty
Q4 Hong Kong, money

(b) Query workload.

Figure 2.1: Running Example Setup

Assume for now that the routers and publishers are organized in the single-

QDT configuration QDT1, shown in Figure 2.3a. The router nodes are identified

by their pre-order traversal rank. For simplicity, we assume that it is feasible for

each node n to store all CDs declared by the publishers in its subtree, cd(n). The

corresponding CD sets are shown in Table 2.1.

For simplicity sake, let us consider in this example that every node can process

exactly one query per time unit. If all queries in the workload are issued simulta-

neously at time 0 and processed in the order Q1 to Q4, then Table 2.2 shows their

dissemination according to the first-cut routing algorithm. For example, regardless
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Table 2.1: CDs Stored at Routers in Single-QDT Case

Node n CD summary cd(n)
4 Beĳing, Tibet, stocks, poverty, money
6 Beĳing, yak tea, Hong Kong, poverty

3, 2 Beĳing, Tibet, stocks, poverty, money, yak tea, Hong Kong
10 Beĳing, Tibet, yak tea, Hong Kong, money

9, 8 Beĳing, Tibet, yak tea, Hong Kong, money, Olympics,
stocks

14 Beĳing, Olympics, yak tea, stocks, money
18, 17 Olympics, Tibet, stocks, money
21, 20 Olympics, yak tea, stocks, money
24, 23 Olympics, yak tea, stocks, money

16 Olympics, Tibet, stocks, money, yak tea
13 Beĳing, Olympics, Tibet, stocks, money, yak tea
1 Beĳing, Tibet, Olympics, yak tea, stocks, money, poverty,

Hong Kong

of the issuing node, query Q3 is disseminated in QDT1 starting from the root node

(node 1), which is congested and can only process Q3 at time unit 3. Because poverty

is contained in cd(1), Q3 is forwarded to all of node 1’s children, in this case to nodes

2, 8 and 13, where the dissemination continues recursively. Since poverty does not

appear in the CD sets of nodes 8 and 13, their subtrees are pruned (i.e. nodes 8 and

13 do not forward Q3 to their children). However, node 2’s CD set does match Q3

and the query is routed down to node 3 at time unit 5, then to nodes 4 and 6 at

time unit 6. Both these nodes have a match and Q3 reaches the publisher nodes P1

and P2 at time unit 7. Each of the two publishers runs Q3 on its local collection and

sends the result back to the issuing node. �

2.2.3 CD Set Summaries

We now revisit the assumption that all CDs in cd(n) are stored with every

router n. We address the case when cd(n) is larger than can be comfortably stored

at a router n with available memory of size M . To this end, we observe that we do

not necessarily need to keep the exact set cd(n). Instead, it suffices to store a node

summary thereof at node n. This is a data structure smmM that fits in memory of

size M and implements a boolean method contains such that for any set S of CDs,
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1 2 3 4 5 6 7 8

1 node 1 Q1 Q2 Q3 Q4

2 node 2 Q1 Q2 Q3 Q4

node 8 Q1 Q2 Q3 Q4

node 13 Q1 Q2 Q3 Q4

3 node 3 Q2 Q3

node 9 Q1 Q2 Q4

node 14 Q1 Q2

node 16 Q1 Q2

4 node 4 Q2 Q3

node 6 Q2 Q3

node 10 Q1 Q2 Q4

P4 Q1 Q2 Q4

P5 Q1

node 17 Q2

node 20 Q2

node 23 Q2

5 P1 Q2 Q3

P2 Q3

P3 Q2 Q4

NodeLvl.
Time Unit

P3 Q2 Q4

node 18 Q2

node 21

node 24

6 P6 Q2

P7

P8

Figure 2.2: Query Dissemination in Single-QDT Configuration

the call n.smmM .contains(S) approximates the actual test S ⊆ cd(n). We obtain

the final version of our routing algorithm by replacing in the above first cut every

containment test with a call to the summary’s contains method. To preserve in the

final version the desirable properties of the first-cut routing algorithm, we require

n.smmM to satisfy the following. If S 6⊆ cd(n) but n.smmM .contains(S) = true,

we say that n.smmM gives a false positive on S. n.smmM gives a false negative if

S ⊆ cd(n) yet n.smmM .contains(S) = false. Regardless of the memory size M , we

disallow false negatives, since these would lead to incomplete computation of the
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query result, pruning potentially relevant subtrees. In contrast, false positive do not

affect the correctness of query evaluation, but impact its efficiency, as they result in

unnecessary query forwarding. As seen above, unnecessary forwarding to publishers

that eventually turn out to be irrelevant is not entirely avoidable even when cd(n) is

stored exactly. Therefore, it is not crucial to guarantee the absence of false positives,

but it is desirable to minimize their frequency, which should ideally decrease as the

the available memory size M increases. We summarize the requirements on n.smmM

in the following list.

(a) n.smmM fits in memory of size M ;

(b) the call n.smmM .contains(S) is efficient, i.e. runs in time independent of the

size of cd(n) and only linear in that of S;

(c) for every memory size M , n.smmM gives no false negatives (i.e. for every S,

n.smmM .contains(S) = false only if S 6⊆ cd(n)); and

(d) if M1 < M2, then the frequency of false positives is lower for smmM2 than for

smmM1 (where the two data structures summarize the same set of CDs).

In Section 2.4, we present one concrete summary implementation based on

Counting Bloom Filters [39, 70] of ssize M , proving that it satisfies our require-

ments. The bloom filter representation is a good choice due to their well-known

properties including compactness and probabilistic set membership of CDs (i.e., no

false negatives and good control over false positives rate). However, any alternative

implementation qualifies.

2.2.4 Throughput Maximization

We have so far confined our discussion to the routing of a single query through

the network. We next extend our solution to handle query workloads (sets of queries).

We start by observing that the arrival of a query at node n triggers measurable

computation effort pertaining both to the processing of the query (lookup in the

summary and evaluation over local collection if present) and to its forwarding to n’s

children. This limits the number of queries passing through n per time unit and can
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lead to congestion. Since queries pruned at upper levels in the tree never reach the

lower levels, the fraction of any workloadW reaching node n is a subset (often strict)

of the fraction reaching its ancestors. In particular, the root becomes a bottleneck

since it is reached by all of W . In contrast, edge routers at the leaves are reached by

relatively small fractions of W and may not be heavily utilized.

EXAMPLE 2.2.2. Revisiting Figure 2.2, observe that the number of query mes-

sages reaching the nodes is significantly skewed among the tree levels, and ultimately

among the nodes, decreasing from the root to the leaves. Because all queries touch

the top 2 levels, their nodes receive 4 messages each, while nodes on the lower levels

receive 0, 1, 2 or 3 messages. Overall, it takes a total of 8 time units to disseminate

all queries, of which the root alone introduces a delay of 4 time units, while nodes

21 and 24 remain idle. �

We propose to alleviate congestion at the upper levels of the QDT by spread-

ing the load more uniformly across the nodes. Currently, there are two main solutions

to achieve this. One class of algorithms replicate data (or indices of it) redundantly

at the router nodes. Thus, each router can initiate to answer queries. Nevertheless,

this incurs increased updates cost as well additional space cost to store all replicas

which is inappropriate with our initial set of goals. In contrast, we propose to par-

tition the global data collection and interconnect the publishers for each partition

block in a different overlay. We show next how this technique alleviates congestion

while still preserving the space usage at routers.

Therefore, our solution consists in overlaying multiple QDTs over the net-

work, each with a distinct root, and arranging for various fractions of W to be

channeled in parallel through distinct QDTs. Since all QDTs are supported by the

same underlying logical network, a network node n participates in several QDTs,

receiving and forwarding queries via each of them. Balancing the load involves ar-

ranging for the distribution of levels associated with n to be (as close as possible to)

uniform across the set of all QDTs. For example, the fact that n receives a high

fraction of the queries flowing through QDT1 because it resides on an upper QDT1

level, is compensated by n being reached by only a small fraction of the queries

flowing through QDT2, where it resides on a lower level.
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The goal of splitting the query workload into fractions that flow through

distinct QDTs raises two fundamental technical obstacles we need to overcome.

The first pertains to controlling memory consumption at the router nodes. If

a node n participates in multiple QDTs, it must maintain separate summaries for

each of its subtrees. A key requirement is

(e) the total space used by the union of all summaries associated with n should

not exceed the space used by n’s summary in the single-QDT configuration.

We satisfy this requirement by arranging for each of n’s summaries to pertain

to disjoint CD sets. To this end, we partition the space of all possible CDs into a

number of k disjoint blocks P = {Bi}1≤i≤k. (We discuss shortly what considerations

go into picking the value of k, and we describe in Section 2.4 how the partitioning is

achieved in practice.) We call each Bi a CD block. We assign to each CD block its

own QDT, obtaining a family

UQDT = {QDTi}1≤i≤k

The second problem is the preservation of the query semantics. That is,

we need to ensure that, by being routed only through a single QDT, a query is

guaranteed not to miss any relevant publishers. We achieve this soundness property

by requiring each QDT to satisfy the following:

(††) QDTi contains as leaves all publishers whose local data collection has at least

one CD in common with Bi.

We defer to Section 2.4 the discussion on how the internal nodes of each QDTi

are organized.

2.2.5 Query Routing when Multiple QDTs

For every query Q, we pick the QDT to send it to as follows. The partition

P induces a partition PQ = {Qj}1≤j≤m on cd(Q), such that for each Qj ∈ PQ there

is Bi ∈ P with Qj = cd(Q) ∩ Bi. We call each such Qj a query block and we say
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that the CD block Bi corresponds to Qj . Note that by definition each query block

corresponds to precisely one CD block, which in turn corresponds by construction to

precisely one QDT. Given a query block Qj ∈ PQ, we can therefore refer to “the”

corresponding QDT, and denote it with QDT (Qj).

In general, Q has 1 ≤ m ≤ |cd(Q)| query blocks, with corresponding QDTs

qdt(Q1), . . . , qdt(Qm). For routing Q, we only pick one of these QDTs, say qdt(Qj).

Regardless of how this pick is taken, we send to the root of this QDT a message

containing three components: (Qj , Q, p), where p is the address of the initiating

querier. qdt(Qj) routes this message as described above in the single-QDT case,

with only three minor refinements:

• since every internal node n can participate in various QDTs, n stores one

summary smmMT per QDT T ;

• n usesQj for routing in qdt(Qj) (i.e. for lookup into the summary n.smmMqdt(Qj)
);

and

• leaf nodes use Q for evaluation against their local data collection.

We summarize our discussion so far in the pseudo-code of Algorithm 2.1 and

Algorithm 2.2 below.

Algorithm 2.1 eval(Q, p, P)
Require: query Q, address of its initiator p, partition P of CD space
Ensure: pick the proper QDT to route the Q on

1: find PQ = {Q1, . . . , Qm} induced by P;
2: pick j ∈ {1, . . . , m};
3: route(Qj , Q, p, root of qdt(Qj), qdt(Qj));

EXAMPLE 2.2.3. Example 2.2.2 shows how the congestion appears inevitably in

the upper levels of the dissemination tree. Here, we show how congestion can be

alleviated by using multiple QDT overlays over the same nodes.

We consider a configuration of 4 QDTs, each corresponding to a block in the

CD space partition P. P is shown in Table 2.2.
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Algorithm 2.2 route(Qj , Q, p, n, T )
Require: query block Qj , query Q, address of its initiator p, reference to node n,

reference to QDT T
Ensure: route query Q on QDT T starting from node n

1: if n is leaf then
2: run Q over n’s local collection;
3: send result (if non-empty) to p
4: return;
5: end if
6: if n.smmMT .contains(Qj) = false then
7: return;
8: end if
9: for each child c of n in T do in parallel do

10: route(Qj , Q, p, c, T );
11: end for

Table 2.2: Blocks of the 4-Partition

Block CDs
B1 Beĳing, Olympics
B2 Tibet, yak tea
B3 Hong Kong, stocks
B4 poverty, money

In general, internal nodes can be connected in any configuration at the net-

work overlay layer. Figure 2.3 depicts 4 possible QDTs, one per CD space partition

block.

Table 2.3 shows the CD summaries maintained at every router. Since a router

appears in multiple QDTs, it actually manages a set of summaries. For example,

node 3 has one summary corresponding to nodes P1 and P2 which are all its publisher

descendants in QDT1, a summary for all publishers in QDT2, one for P8 in QDT3, and

a fourth summary for P2 in QDT4. To simplify presentation of this small example, we

assume that each summary stores the exact set of CDs rather than its approximation.

Table 2.4 presents the routing diagram in the 4-partition over time, assuming

queries Q1 . . . Q4 are issued simultaneously at time 0.

Query Q1 is a conjunctive query both of whose CDs fall in the first partition

block B1. The only routing choice is hence the tree corresponding to B1, namely

QDT1 shown in Figure 2.3a. Since P’s blocks are disjoint, single-conjunct queries
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Table 2.3: CD Summaries in the 4-QDT Configuration

Node Tree Data summary
4, 6, 3, 2, 10 QDT1 Beĳing
9, 8, 14, 13, 1 Beĳing, Olympics
18, 17, 21, 20, 24, 23, 16 Olympics
20, 2, 21 QDT2 Tibet
23, 10, 8, 24, 13, 1 yak tea
4, 9, 18, 6, 14, 17, 16, 3 Tibet, yak tea
24, 18, 9, 8, 14, 13, 16, 3, QDT3 stocks
21, 17
1, 2 Hong Kong
20, 6, 23, 10, 4 Hong Kong, stocks
9, 1, 18, 2, 6, 14, 10, 16, QDT4 money
17, 4, 8, 21
3 poverty
13, 24, 23, 20 poverty, money

also have only one routing choice. For instance, Q2 and Q3 are routed using QDT2

in Figure 2.3b, respectively QDT4 in Figure 2.3d. Q3’s routing on QDT4 by CD

poverty is highlighted in Table 2.4. It starts from the root (node 20) at time unit

1. Since poverty is contained in the node’s summary, Q3 is forwarded to nodes 23,

18 and 21. Only node 23 has a summary match and it forwards Q3 further down to

node 24, which recursively routes the query to nodes 13 and 3 at time unit 4. Both

these nodes have a summary match, and publishers P1 and P2 receive Q3 at time

unit 5. However, because of processing contention at P1 (P1 is busy processing Q2 at

time unit 5), Q3 will be served by P1 at time unit 6 while P2 serves it upon receipt

at time unit 5. Both publishers contain matching documents and send them back to

the query issuer.

In contrast, query Q4 intersects CD blocks B3 and B4, which induce two query

blocks: PQ4
= {{Hong Kong}, {money}}. This offers two routing alternatives: either

by using CD Hong Kong on QDT3, or by using money on QDT4. In the diagram,

we assume that QDT3 was picked. When the subquery hits publishers P2 and P3 the

full query Q4 is tested on the local store (only P3 has a match for both CDs of Q4).

Comparing with Example 2.2.1, notice that the 4-QDT configuration out-

performs the single-QDT case: the former takes 6 time units to complete the dis-

semination, while the latter needs 8. The improved throughput is due to better load
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Figure 2.3: Query Distribution Trees for the 4-Partition

balance: contrast the behavior of routers 21 and 24, which remain completely idle in

Table 2.2 but shoulder part of the dissemination task in Table 2.4.

Finally, observe that the benefit of better node utilization outweighs the draw-

back of using query blocks for pruning, instead of the entire (and more selective) set

of query CDs. Indeed, the 4-QDT configuration wins despite its less aggressive

pruning which leads to slightly more messages (50, as opposed to 46 for one QDT).

�

It is easy to check that property (††) on Page 32 implies the soundness of our

query evaluation algorithm:
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1 2 3 4 5 6

node 1 Q1 Q2 Q4

node 2 Q1 Q4 Q2

node 8 Q1

node 13 Q1 Q3

node 3 Q2 Q3

node 9 Q2 Q1

node 14 Q2 Q1

node 16 Q2 Q1

node 4 Q4 Q2

node 6 Q4 Q2

node 10 Q4 Q2 Q1

P4 Q1 Q2 Q4

P5 Q1

node 17 Q4 Q2

node 20 Q3 Q4 Q2

node 23 Q3 Q4 Q2
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P3 Q2 Q4

Node
Time Unit

P3 Q2 Q4

node 18 Q3 Q2

node 21 Q3 Q2

node 24 Q3 Q2 Q4

P6 Q2

P7

P8

Figure 2.4: Query Dissemination in 4-QDT Configuration

Proposition 1. For every query Q, partition P, and every pick of j, Algorithm 2.1

correctly computes Q’s answer.

Obviously, for single-block queries there is no choice and the QDT is uniquely

determined. However, in the general (and more likely) case of multiple-block queries,

Proposition 1 uncovers an optimization opportunity: the judicious QDT choice (out

of several equally sound alternatives) towards throughput maximization. We there-

fore need to treat the spectrum of possible routing strategies as an optimization

dimension in its own right.
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2.3 The UQDT Design Space Layout

We remark that the number k of blocks in the partition P of the CD space

defines a spectrum of possible configurations of the same network, thus adding a

new dimension to the optimization space. One extreme of this spectrum is the case

k = 1, which we have discussed above as the single-QDT configuration. At the other

extreme, we have the case in which each block of P is a singleton CD. We refer to it

as the per-CD configuration. We argue next that neither of the extremes results in

optimal throughput, and that the value of k is an optimization dimension we need

to explore. Indeed, Example 2.2.1 and Example 2.2.3 show that the single-QDT

configuration is certainly not optimal, being outperformed by a 4-QDT configura-

tion for the given query load. At the same time, constructing too many QDTs is

counter-productive, since the increase in k decreases the size of the query blocks,

thus resulting in less selective lookups in each node’s summary. This translates into

less pruning, i.e. more query forwarding messages: the 4-QDT configuration in

Example 2.2.3 generates 50 messages, as opposed to the 46 of the single-QDT con-

figuration in Example 2.2.1. In conclusion, as k increases, we observe two opposite

effects: an increase in load balancing potential, but also in the overall load (number

of messages) in the network. An independent consideration that precludes extremely

high values of k is that the maintenance of any overlay network involves a small, but

non-zero control traffic overhead [47]. Maintaining too many QDTs would amplify

this overhead. Finally, we observe that the per-CD configuration suffers from an

additional problem: for every node n, any reasonable summary n.smmM would have

to contain at least one bit for the unique CD it summarizes, so the combined size

of all summaries of n would amount to a prohibitively expensive value, linear in the

number of all possible CDs.

In the next Section 2.4, we discuss the following issues not covered here, all

of which have significant impact on query throughput: How can a partition P of the

infinite space of all possible CDs be chosen and represented finitely (this includes

determining the value for k)? How can P be used to efficiently determine PQ? How

are the various QDTs corresponding to P organized for better throughput? How

are the CD summaries smmMT at every node implemented and maintained to satisfy
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requirements (a) through (e) above? How does the choice of QDT (the pick of j in

Algorithm 2.1 – eval) impact throughput?

2.4 Our Approach

In Section 2.2, we have provided an overview of our proposed solution for

query dissemination, identifying the dimensions of the space of possible implemen-

tations. As a proof of concept for the viability of the overall approach, we developed

an actual implementation, described in this section and evaluated experimentally in

Section 2.7.

We focus on the most flexible setting supported by our infrastructure, namely

the case in which the service-oriented overlay network to which publishers connect is

possibly owned by a separate entity distinct from the publishers. We therefore have

a set of router nodes connected by an overlay network, and a set of publisher nodes

who attach to this network to join the community.

2.4.1 QDT Topology

There are many possible topologies according to which we could organize the

router nodes into a QDT. We investigate two approaches.

First, we take the pragmatic approach of “piggy-backing” on top of a ma-

ture overlay tree-building approach to disseminate messages to groups of nodes (also

known as multicast groups). Since multicast overlay trees are constructed with a

different goal than QDTs, it is not immediately clear that they are optimal for

the purpose of query dissemination (though we show experimentally that we can

“convert” them, achieving very good performance). However, one advantage of del-

egating the QDT construction to such off-the-shelf technology is that it is equipped

to exploit information on the topology of the underlay network with minimal control

overhead. Moreover, it maintains overlays dynamically, adapting to the change in

underlay network conditions. One widely-used representative of this class of tools

is Scribe [47]. We use as our platform the open-source SCRIBE implementation

FreePastry version 2.0 beta 2 [17].
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In addition, we consider home-grown QDTs built for the express purpose

of balancing the forwarding effort among the routers. Since every router forwards a

query to each of its children, the forwarding effort is linear in the node’s fanout. This

suggests constructing (nearly) balanced QDTs, with as little variation as possible in

the node fanouts. We need to construct such trees ourselves, since Scribe does not

guarantee balanced trees.

2.4.2 CD Summary Implementation

Regardless of the QDT topology, a key issue is the implementation of the CD

summaries at every router node so as to satisfy the requirements (a) through (d) in

Section 2.2. We implement a summary smmM as a Counting Bloom Filter [70] of size

M . That is, a data structure consisting of a vector of M counters, thus satisfying

smmM requirement (a). The vector is accompanied by l hash functions {hi}1≤i≤l from

CDs to the set of integers corresponding to positions in the vector, {0, . . . ,M − 1}.

Every CD c corresponds via the hash functions to up to l indexes in V . We denote

the set of these indexes with ind({c}), defined as ind({c}) = {hi(c) | i ∈ {1, . . . , l} }.

Given a set S of CDs, we associate to S the set ind(S) :=
⋃
c∈S ind({c}). To insert

a CD c into smmM , we simply increment all counters located at the positions in

ind({c}). When looking up CD set S,

smmM .contains(S) = true iff
∧

i∈ind(S)

V [i] > 0.

This immediately implies that smmM cannot yield false negatives, since if the CDs

in S are previously inserted in the summary, all the relevant counters are non-zero,

and method contains must return true. Therefore, smmM satisfies requirement (c).

Notice that the lookup of CD set S requires hashing each member c ∈ S and

accessing the vector at the l positions given by the hash functions on c. Since l

is a constant, we obtain lookup time linear in |S|, thus satisfying requirement (b).

We mention an optimization that minimizes the overall lookup effort for the CDs

of a query block Qj . Given a QDT T , all router nodes n in T implement their

summary n.smmMT using the same l hash functions, and vectors of the same length
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M . Consequently, there is no need to re-hash all CDs in Qj at every node, as the

result will be the same. Instead, nodes forward to their children in T the set ind(Qj),

computed once and for all at the root of T .

Requirement (d) follows from a celebrated property of Bloom filters, namely

that if the l hash functions are independent, then the probability of false positives

decreases monotonically with increasing M [70]. There are well-known techniques

for constructing l independent hash functions for any l, for instance by linear combi-

nations of only two generating hash functions [89]. We adopt this solution here. The

generators can be picked from among several well-researched specimens. We use the

SHA1 [69] cryptographic algorithm (that hashes strings of arbitrary size into 160-bit

vectors) because it is very fast to compute and yields good distribution of the hashed

values.

EXAMPLE 2.4.1. As reported in Section 2.6, we will consider a global data col-

lection of 8.6GB, featuring 3.2 million distinct CDs. Fixing the false positive rate at

10−2, it follows from the formula in [70] that the optimum number of hash functions

is l = 7 when the size of the Bloom filter at every router (assuming a single-QDT

configuration and counters of size 1 bit) is M = 3.6 MB, which represents only

0.044% of the global collection size. For larger counter sizes, the false positive rate is

even lower. For k QDTs, the global memory consumption per node stays the same,

since the k Bloom filters at every node summarize disjoint sets of CDs. Each Bloom

filter has size 3.6/k MB, and the same error rate of 10−2. �

2.4.3 QDT Maintenance

When a publisher p joins the community, it declares a set cd(p) of CDs it is

willing to answer queries about. Recall from Section 2.2 that, to preserve soundness

of query evaluation, we must satisfy property (††) from page 32. To this end, we

determine (as described shortly) all the CD blocks with non-empty intersection with

cd(p), which in turn lets us identify all QDTs that p must join. The act of join-

ing a given QDT is taken care of by Scribe (or a traditional multicast join as with

IP-multicast), which identifies the router node that will become the new publisher’s

parent. Once the publisher is added to QDT T , the CD summaries of all its ances-
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tors in T are updated by inserting cd(p) into them. This insertion is implemented by

simply obtaining once and for all the set of indexes ind(cd(p)), which is then passed

bottom-up from p to T ’s root, so that every router on the way can increment its cor-

responding Bloom filter counters. When p leaves a QDT T , the index set ind(cd(p))

is also sent bottom up to p’s ancestors in T , each decrementing the corresponding

counters. The case when an existing publisher p changes its list cd(p) of declared

CDs leads to the propagation of similar counter increment and decrement operations.

2.4.4 Partitioning the CD Space

An important issue we need to address is how to represent the partition P

of the CD space finitely, and how to efficiently determine which block a given CD

belongs to. As described above, we need this test to quickly identify the QDTs a

new publisher must join. Moreover, the same test is required to compute the induced

partition PQ of a query Q, in order to identify the QDT candidates for routing

Q. We describe here our solution assuming that we have already established the

number k of blocks in P (we discuss below how we determine k with an eye on load

balancing). Given k, we implement P simply as a hash function hP from CDs to the

set {1, . . . , k}, where hP distributes CDs uniformly over its range. Then each block

Bi ∈ P consists of all CDs mapped by hP to i: Bi := {d | d is a CD , hP(d) = i}. Of

course, each CD block is potentially infinite so we never really materialize it. Indeed,

we don’t need to: all we need is to quickly determine, given a CD d, which CD block

it belongs to. This operation is implemented as a constant-time invocation of hP(d).

2.4.5 Load Balancing

The way we determine the number k of QDT trees, as well as their actual

construction, are motivated by the goal of spreading the load evenly across router

nodes. For the following discussion, we denote with Nr the number of router nodes in

the service provider’s overlay network, and with Np the number of publisher nodes.

Since in any QDT T , every router node is reached by a larger fraction of the query

flow through T than its descendants in T , we need to ensure that for every router

n, the distribution of QDT levels n resides at is close to being uniform. We adopt a
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solution which is certainly not the only possible one, nor necessarily optimal, but it

is easy to implement and (as proven experimentally in Section 2.7) it yields excellent

performance. We start by constructing (using SCRIBE) a single QDT T1 whose

internal nodes are the Nr routers and whose leaves are the Np publishers. SCRIBE

tends to build trees of low height, in which the root has a significant fanout that

dominates the fanouts of nodes in lower levels. The root and the children of the root

receive by far the highest fraction of queries flowing through the tree, and are hence

in most need of relief through load balancing.

Denoting with Nu the number of nodes on the top 2 upper levels in T1 (Nu =

1+ number of router children of the root), we construct

k = b
Nr
Nu
c

QDTs, {Ti}1≤i≤k. Each Ti is an isomorphic copy of T1, whose nodes are obtained

by keeping the same Np leaves and only re-shuffling the Nr internal nodes as follows.

To completely specify Ti, we need to specify how its Nr internal node positions are

populated with the actual Nr routers. This specification can be formalized as a

function ai from the set of Nr routers to the set {0, . . . , Nr − 1} of positions in T1.

We adopt the convention that the position of node n corresponds to n’s rank in the

breadth-first, left-to-right traversal of T1 (position 0 is the root). Let π(n) := (n−Nu)

mod Nr be the right-to-left cyclic permutation with step Nu on {0, . . . , Nr − 1}. If

a1 specifies the initial QDT T1, then for each 1 < i ≤ k, we populate Ti by cyclically

permuting with step Nu the nodes of T1 a total of i− 1 times: ai := πi−1 ◦ a1.

EXAMPLE 2.4.2. In Example 2.2.1, there are Nr = 17 routers, and the root of the

initial tree QDT1 has three children, yielding Nu = 4. We compute k = b17
4
c = 4 and

construct the 4 trees in Figure 2.3. Notice that the trees in Figure 2.3(b), (c), (d)

are obtained by cyclically permuting to the left by 4 steps the tree in Figure 2.3(a)

once, twice, respectively three times. �

It is easy to see that our method of determining the number of QDTs, as well

as our method of populating them, ensures the following fairness property:

(∗) All routers appear precisely once in the top 2 levels of
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any QDT.

Furthermore, the k level values associated to every router are distributed

almost uniformly over all possible level values in T1. For instance, in Figure 2.3,

router 1 appears on levels 1, 4, 4, 3.

Finally, note that building k + 1 QDTs actually degrades the load balance,

because the additional cyclic permutation causes a “wrap-around” that returns some

of the routers residing on the top two levels in T1 to the top two levels of Tk+1,

subjecting these routers to unfair load (since we use the floor function to determine k,

the wrap-around is not necessarily complete). In general it follows that, to maximize

balance, we want to use a number of QDTs that is a multiple of bNu
Nr
c. In Section 2.7,

we validate this rule experimentally, also showing that choosing multiples higher than

1 is unnecessary: they do not improve load balance, while leading to higher control

overhead.

2.4.6 Load Balancing with Query Workload

Let us note that query workloads are not always uniform, but in reality, they

tend to be skewed at times and very dynamic in general. For instance, it might

be that during the US 2008 presidential campaign keywords like “Obama” appear

at the top of the searches, or it maybe very well about Olympics in Beĳing, Tibet,

Michael Jackson, etc. Although the scope of this thesis is not to address the issue of

adaptation with the query workload, we address it briefly here.

We argue that the UQDT infrastructure can handle these situations with

success. To make our case, note that the number of possible CDs advertised in the

community is huge – tens of millions. On the other hand, the number of QDTs

is relatively small (e.g., tens) as it can be seen in Section 2.4.5. So, each QDT

is handling millions of CDs. Since the assignment of CDs to QDTs is done via a

random hashing, a popular query keyword in one QDT is likely to be balanced out

by a number of less popular query keywords in the same QDT. In order to have

one QDT overloaded, either a single query keyword would need to be a significant

fraction (e.g., 10%) of all queries, or the collection of most popular CDs all need to

map to the same QDT, which is unlikely in practice.
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2.4.7 Routing Strategies

We next discuss how a node n that initiates a query Q picks the QDT to

route Q on. First, n uses the hash function hP described above to compute PQ =

{Qj}1≤j≤m, which in turn determines the set of candidate QDTs {qdt(Qj)}1≤j≤m.

If m > 1, n picks one of these candidates. We consider several alternatives for

implementing this pick.

A simple solution is to choose 1 ≤ j ≤ m at random, in the hope that

randomness avoids sending too many queries down the same QDT and thus alleviates

congestion. We call this the random routing strategy.

DEFINITION 2.4.1. (Random Routing Strategy) In the random routing strat-

egy, a node n starts the dissemination of query Q in the network using qdt(Qj) where

j is randomly picked such that 1 ≤ j ≤ m. �

We also consider alternative strategies, all attempting to alleviate the effect

we discussed in Section 2.2: as the number of QDTs increases, the selectivity of

query blocks decreases (recall that, when routing Q through QDT qdt(Qj), only the

CDs in Qj are looked up in the summaries). This results in increased overall query

forwarding and processing in the network. To compensate for this effect, the routing

strategy should ideally use the most selective query block Qj for routing, as this

results in the most aggressive pruning of QDT (Qj)’s subtrees during Q’s dissemina-

tion. We call the strategy assuming each publisher’s access to this information the

fully-informed routing strategy.

DEFINITION 2.4.2. (Fully-Informed Routing Strategy) In the fully-informed

routing strategy, a node n starts the dissemination of query Q in the network using

qdt(Qj) where j corresponds to the most selective query block Qj among the PQ

blocks of Q accounting for all published CDs. �

Identifying the most selective block of a query is a non-trivial task, because it

requires determining the frequency of every CD in the global collection, and storing

these global statistics (or making them otherwise accessible) at every publisher node.

Assuming independence between the CDs, the publisher initiating Q computes the

selectivity of a query block Qj as the product of the individual frequencies of the CDs
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in Qj . Fully-informed routing is very expensive in terms of both space and traffic. In-

deed, for large global collections, the number of CDs can be considerable. Moreover,

space consumption is exacerbated by the fact that the frequency information must

be stored with every potential initiator of a query. An even more serious problem is

the traffic arising because the global collection is virtual: gathering and maintaining

the appropriate statistics requires constant communication between nodes.

We therefore investigate a less ambitious strategy: instead of identifying the

most selective query block for Q, its initiator p only tries to avoid using the least

selective ones. It suffices to this end to maintain and store at each publisher a short

list of the s least selective (most frequent) CDs in the global collection, with s a rela-

tively small value ensuring small storage space and maintenance traffic consumption.

Finding the overall top s most frequent CDs amounts to solving a distributed top-s

problem, in particular the classical problem of top-s heavy hitters estimation in data

streams [31, 95].

We implement a simple solution that exploits the already existing QDToverlays,

employing them in a dual role as multicast (data dissemination) trees. With every

CD they advertise, publishers declare its frequency in their local collection. Each

node n maintains a list n.L of length at most s entries, each containing a CD and

its frequency. For non-root routers, the list gives the s most popular CDs across all

their QDTsubtrees. For QDTroots and publishers, the list holds most popular s

CDs across the global collection. Whenever a node n updates its list, it propagates

the new list bottom-up along all QDTs n participates in. If n is a root, it propagates

its list to the other k − 1 roots. Whenever the root of a QDTT updates its list, it

disseminates it top-down to all publishers in T .

When node n issues a query Q, it picks the QDT corresponding to Q’s most

selective block according to the information in n.L. Note that some query blocks

may contain CDs not occurring in the n.L list. These are treated as selective CDs,

and blocks with the highest number of selective CDs are preferred. If multiple such

query blocks exist, n breaks the tie by computing the selectivity of the conjunction

of popular CDs in each block, using n.L. If this still leaves more than one candidate

query block, one is picked at random. We call this strategy partially-informed rout-

ing, and observe that it leads to a spectrum of strategies parameterized by the size
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of internal state reserved for the list of popular CDs. We use the term x-informed

routing in short for partially-informed routing based on the list of the most popular

x% of CDs.

DEFINITION 2.4.3. (x-Informed Routing Strategy) In the x-informed rout-

ing strategy, a node n starts the dissemination of query Q in the network using

qdt(Qj) where j corresponds to the most selective query block Qj among the PQ

blocks of Q accounting for only x% most popular of the published CDs. �

Notice that 100-informed routing becomes fully-informed, and 0-informed

routing degenerates to random routing. In Section 2.7, we show experimentally

that, by keeping track of even very short lists, we observe performance very close to

the fully-informed strategy, and much better than the random strategy.

EXAMPLE 2.4.3. We revisit Example 2.2.3, explaining why query Q4, which had

two routing alternatives, was sent to QDT3. To enable fully-informed or partially-

informed routing, publishers maintain frequencies of (some of) the CDs in the global

collection, which in our case include money (published by 7 publishers), stocks and

yak tea (published by 6 publishers). Notice that Hong Kong is declared by only

2 publishers and hence more selective than money, which is why it is preferred by

the fully-informed routing strategy. Since CD Hong Kong appears in block B3,

the corresponding tree QDT3 is used. The same outcome is achieved for partially-

informed routing, assuming for instance that publishers maintain only the 3 most

popular CDs: the list includes CD money, signaling to Q4’s initiator to avoid routing

by it. �

Finally, when no selectivity information is available, we fall back on heuris-

tic routing: simply direct Q to the QDT corresponding to one of Q’s maximum-

cardinality blocks, breaking ties with random picks. This strategy is based on the

heuristic that higher numbers of conjuncts tend to yield higher selectivity.

2.5 Trust Model for UQDT

We discuss next the ability of the UQDT infrastructure to enable freely

exchanging of information among the users of the community of interest.
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DEFINITION 2.5.1. (Data-location anonymity) We define data-location ano-

nymity, or DLA, as the ability to prevent leakage of information that allows for third

parties to associate published data with publishers in community-based networks,

for the scope of finding which publishers can answer to certain (possible sensitive)

queries.

More formally, DLA hides from third parties the exact association mapping

between publishers and their advertised CDs:

Publisher2CDs : publisher −→ CDs

In particular, we are interested in guaranteeing the following two DLA axioms:

• (A1) Make it hard to find all publishers for a certain CD cdx (or for a given set

of CDs), or to find

{p|p ∈ Publishers such that Publisher2CDs(p) = cdx}

• (A2) Make it hard to find all CDs for a certain publisher px (or for a given set

of publishers), or in short, to find

{cd|cd ∈ Publisher2CDs(px)}

�

For instance, Figure 2.1a on pages 27 shows the mapping of publishers to

their advertised CDs in that particular sample scenario. The intuition behind DLA

is to confer the users of the community the sense of protection (e.g., not being

vulnerable) to having their identity information associated with specific published

or queried data online. DLA resistance is challenging because knowledge about who

publishes or queries information, which is not desired by third parties, may lend itself

to compromise the users’ identity. We strongly believe that if sensitive community

data is tracked back to the person publishing it, that is evidence against them and it

can be subject to user censorship, harassment, or discrimination. By ensuring DLA,

our main concern is to make the advertised community data not traceable back with
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the real publishers.

Our UQDT solution is a DLA resistant query forwarding infrastructure in

the sense that it protects all publishers that are likely to answer a specific query. In

particular, we claim that

Claim 2.5.1. The UQDT precludes third parties from learning the exact publisher–

CD associations Publisher2CDs (see A1 and A2) without compromising a significant

fraction of the router nodes or without issuing a large number of queries, which both

might be infeasible or too costly to put in practice.

2.5.1 Assumptions

Next, we state a common and realistic set of assumptions under which we

consider the trust model for UQDT to be DLA resistant.

We expect that in an Internet-scale distributed setting, the number of routers

n in the overlay is relatively large. Moreover, it is natural that the overlay consists of

a diversified router infrastructure, i.e., the routers are administered by a multitude

of distinct third parties and administrative domains (e.g., ISPs) some of which can

not be trusted. Hence, no party controls more than a small fraction of the entire

infrastructure. This can be arranged in many ways. One extreme is a pure P2P

network where each router is also a publisher, owned by a distinct individual. This is

a realistic assumption. For instance, imagine that a distributed publishing and query

paradigm for Facebook [4] can connect millions of users worldwide. As a results of

this architecture, we do not consider attacks that collude information across different

administration domains.

We also assume that even though the QDT topology shape may be publicly

known, no node knows the position of other nodes in the QDTs. In other words,

each node has only local topology information, mainly its own position in the QDTs

it participates in and the directly linked nodes to itself.

We assume trusted publishers in the sense that they report valid data sum-

maries and evaluate correctly incoming XML full-text queries to release the proper

set of answers according to their preference policy.

We do not consider passive attacks or traffic analysis attacks that can listen on
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the network without compromising nodes. This is because simply passively listening

cannot leak the nodes organization as UQDT and the configuration of the multiple

QDT overlays required for an attacker to jump on the corresponding nodes and

monitor a query dissemination process.

We exclude weak access control in which users can easily forge new credentials

to join the community network (e.g., sybil attacks). Thus, we assume a strong access

policy for joining the community that prevents users without credentials to join.

For instance, users’ credentials are given only for those that paid their membership

subscription.

Whereas distributed denial-of-service attacks (DDOS) constitute a valid class

that by overloading a site or a QDT decreases the data availability, it is not the

main focus of this thesis. However, note that the effect of DOS attacks on QDT

overlays is mitigated by the fact that for different multi-CD queries, even if they share

a popular CD, they may be routed along different QDTs, thus spreading the load

evenly across the network. Plus, as long as this load remains below the network’s

capacity, DOS will not occur. Repeated same-CD queries would be routed along the

same path (e.g., same QDT), but are easy to spot and react to by blocking.

2.5.2 Analysis

We show next how the UQDT infrastructure enforces and meets our goal of

DLA resistant requirement.

Let us note that UQDT does not carry information at the level of documents

in the index, but at the level of the advertised data items, also known as CDs, de-

scribing the published documents. Hence, there is no disclosure of which publishers

control a certain document. Moreover, the actual document retrieval from the pub-

lishers can be complemented to be done anonymously and over encrypted channels

using techniques such as [67, 68] as discussed in related work Section2.8.

Also, let us note that axioms A1 and A2 lend themselves to two different

attacker models. Under our assumptions and design requirements, we consider next

the following viable attack models as follows:

• (A2) issue queries in the community: one can send queries in the community
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if it is a registered community member in order to infer information about a

particular QDT. For instance, to find all patients of a publisher hospital p, an

observer can probe p with queries of the form: “is cd a patient of p?”

• (A1) compromise nodes by external observers: on the other hand, if the first

option is not possible, one can compromise nodes and get control over their

own content. For instance, to find all health medical records for patient cd from

all publisher hospitals, or to find all patients suffering from sickness cd from all

hospitals, one can compromise nodes and get access to their data summaries

and internal data.

Of course, one can also combine the two above attack techniques. We analyze next

the strength of DLA resistance of UQDT against these attack types.

Issue Queries in the Community

In the context of axiom A2, a plausible attack scenario would be to have a

registered user of a virtual health services community for instance, that wants to

find out who are all the patients cd of a certain hospital p. Since, the user does

not know how to compromise nodes or doing that is illegal, impossible, or just too

expensive, the user can issue queries to probe p directly at a certain cost c per query.

Queries are of the following form “is cd a patient of hospital p?” for all possible cds.

Therefore, the overall cost of such an attack is C =
∑
all queries(c) to disclose A2.

We argue that the cost C of how many queries to send to find out the contents

of publisher p depends on the size of the application domain. In principle, the user

needs to try the following set of queries: all sets of c CDs (which are all desired CDs

to expose), all sets of c−1 CDs, . . . , all sets of 1 CD (which is each CD individually).

However, most of the times, this attack strategy is not even feasible since the space of

exploration and therefore, the number of required queries, is too large, thus making

it too expensive. For instance, another attack scenario would be for a spammer to

find out all email addresses of gmail.com using this method. Obviously, testing each

email address is too expensive and makes it infeasible in practice.
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Compromise Nodes

In order to cover all use cases, we study in details the following attack sce-

narios: on a random node (internal router node, edge router node, publisher node),

on set of nodes, and on all nodes of the community.

One key aspect is that of protecting the identity of the publishers of any given

CD. By only maintaining data summaries at every router, our design severely limits

the amount of identification information that can be gained by compromising (i.e.

colluding with, impersonating, hacking or subpoena-ing) any single router r.

First, no information is gained about publishers not located in r’s QDT

subtree(s).

Second, our proposed distributed index partitions the index space rather than

replicate it over the nodes as explained in Section 2.2.4. In general, this has the

advantage that compromising a random node can only leak its local data summary

together with its local topology information about the QDTs it participates in.

Unlike DHT systems in which a DHT node usually manages all the information about

each data item, no QDT node has complete knowledge of all the publishers that

advertise a data item or a CD, thereby preventing QDT nodes from disintermediating

publishers.

Note that when only cd(r) information is stored at a router r, r does not

know which CD appears in which publisher, nor which sets of CDs appear together

at a publisher in one of its subtrees. This offers publishers an added degree of

protection against compromised routers inspired by k-anonymity techniques. r’s

summary, cd(r), is insufficient to pinpoint, even for the publishers in its subtrees, who

advertises any given CD. Indeed, by ensuring that r’s subtree contains sufficiently

many publishers advertising sufficiently many distinct CDs as a protected group, we

enable each publisher to remain anonymous by “hiding in the crowd” comprised of

this group.

Third, under our assumptions, it is hard to impossible to get control over the

edge routers (i.e., the leaf routers in a QDT) in order to probe the publishers directly

for particular keywords or CDs based on the edge router’s data summary. The key

assumption is that each third party administrative domain controls a small fraction

of nodes; therefore, it may control only a small number of edge routers. Moreover,
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a single party does not have under its administration all routers of a given QDT.

Even then, the data resides with the publishers and it gets released to the consumer

only under the publishers’ own access control policy.

Note that an edge router e cannot identify individual publishers updates. We

do this by arranging publishers at edge routers participating in a particular QDTi

overlay to be protected in a k-anonymous group of other k − 1 publishers. We may

assume that edge routers do not keep record of advertised packets received directly

from their connected publishers. Even if they do, we propose that publishers P1, .., Pk

linked to e in QDTi do not send individual index updates to e. Instead, we find the

sum of the counts of the index of P1, .., Pk, which is then sent out to router e, making

e insensitive to which publisher in its k-group has published certain data. If e is

compromised after publisher p registers with it, p’s anonymity is preserved. Our

scheme protects even against the case when p registers with an already compromised

e. Indeed, as detailed in Section 2.4, the data summary implementation is hash-

based and does distinguish among two distinct CDs with the same hash code. The

publisher exploits this by only declaring the hash codes of its advertised CDs, instead

of their actual value. Thereby, by compromising edge routers, an attacker may find

out the association between set of CDs and its k-group of publishers, but not the

exact one-to-one association mapping between a publisher and its advertised CDs.

Forth, it is obvious to see that compromising a publisher node p reveals all its

private contents including advertised CDs cd(p) and local data store. At the other

extreme, the best case scenario for breaking the system and for getting access to the

publishers contents, is to compromise all nodes (e.g., by attacking the nodes) of a

pure P2P network, such as the virtual scenario of a distributed Facebook network.

However, this solution is infeasible in practice. Under our assumption of multi-

administration domains, even if a small number of entities become untrusted (e.g.,

by direct attacks, by traffic analysis attacks, or by the Government’s subpoena-ing

one or a small number of ISPs) our design severely limits the amount of information

gained about the network – not being able to collude information across different

administration domains (e.g., ISPs).

Fifth, in general, we are interested to find out what is the cost to disclose A2

if more than a node gets compromised and information from multiple compromised
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nodes gets colluded together. In this context, an external attacker with the ability

to compromise nodes, will take over node by node learning the actual connection of

nodes on the QDT of interest (i.e., the children and parent links) as well as the local

data summaries. The attacker moves on the parent-child links to explore the QDT.

The process finishes when all seen data summaries report no further positive tests

against the attacker’s query.

Now, let us assume that compromising a node (regardless of its type: pub-

lisher, router) takes a certain cost c. It requires to compromise N = fanout ∗

logfanout(n)/2 nodes on average in order to disclose only one publisher from A1,

where n is the total number of nodes in the community network. Thus the cost is

c ∗ N . It requires N = nr publishers ∗ logfanout(n) nodes to disclose A1 fully, i.e.,

all publishers for a given CD. Note that N depends on how popular the CD is, the

number of total nodes, the number of tree levels in the QDT overlay, and the fanout

at nodes. In conclusion, the cost to disclose A1 for a given CD is proportional to

O(logn). This result is a strong trust guarantee, depending on the application and its

domain. In any case, we believe this is a good result since for centralized publishing

systems and for DHT-based systems, it takes only one node to disclose A1.

2.6 Experimental Setup

2.6.1 The Initial Overlay Network

To analyze the effects of our implementation choices on query dissemination,

we built a simulator of a 10,000-node overlay network consisting of Np = 9, 400

publisher and Nr = 600 router nodes. The particular topology of this network is im-

material since in practice, every direct logical link between routers can be supported,

and since actual dissemination will depend on the QDT overlays. We therefore as-

sume a mesh topology allowing direct logical links for every pair of nodes.

2.6.2 A Real Data Set

To obtain true-to-life special-interest community, we simulate a distributed

community that shares a real data collection, namely a partial XML dump of Wi-
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kipedia, comprising about 1.1 million real Wikipedia documents which amount to a

total size on disk of 8.6 GB [65]. that these documents are each brought into the

community by one of the 9,400 publishers. Due to lack of information on which

publisher generated which Wikipedia document, we assign Wikipedia documents

to publishers based on a random uniform distribution. An interesting future work

direction is to study how query dissemination is impacted if publishers generate

clusters of semantically related documents.

2.6.3 CD Definition

Wikipedia, as well as other available XML sources such as CiteSeer, use struc-

tural schemata rather than ontological. This means that the majority of the tags

on the root-to-leaf XML paths are concerned with the document organization, pro-

viding no semantic meaning. This observation motivates us to consider CDs defined

as pairs (t, w), where w is a keyword and t gives the context in which w appears,

given by the last XML element tag on the path from the root to w. We include

this tag to support context-aware queries that go beyond standard keyword search.

Moreover, we focus only on the tags that carry meaning to users. We restrict the

last element tag to the following set: “link”, “b”, “title”, “subtitle” and “category”.

The combination of keywords and these contexts yields an interesting and complex

set of about 3.2 million distinct CDs accounting for 24% of the set of all distinct CDs

obtained by considering all possible tags1.

2.6.4 Query Workload

We force the dissemination process to work under two extreme query types.

We construct a family of 10 workloads {W Fc }1≤c≤10, each consisting of 5, 000 c-

conjunct queries drawn at random from the space of queries with no match against

the global collection. Similarly, we build the family of workloads {W Tc }1≤c≤10, each

1We can envision other CD definitions: including the entire path from the root to w to support
more expressive queries, or keeping only w in support of only standard keyword search. We have
tried all alternatives, obtaining analogous experimental results, which is why in the remainder of
this thesis we report only the (last tag/keyword) case. The point we wish to emphasize is that the
flexibility of CD definition is a key enabler for striking the right balance between expressivity of
supported queries and space overhead.
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comprising 5, 000 c-conjunct queries drawn at random from the space of queries

with at least one match in the global collection. We also generate the 50, 000-query

workloads W T =
⋃10
c=1W

T
c and W F =

⋃10
c=1W

F
c . The matching query workloads

increase the overall forwarding effort by forcing QDTs to send queries all the way

to (some) leaves.

2.6.5 Scribe QDTs

Recall from Section 2.4 that, even in multiple-QDT configurations, the QDTs

are isomorphic. We obtain a (unique up to isomorphism) QDTS topology using

Scribe [47]. We first convince ourselves of the faithfulness of the simulation, by

generating a family of 20 Scribe tree topologies for the same node set (by varying the

order in which the nodes join the network). We observe only non-essential variations

across the family, thus boosting our confidence that picking any tree in this family

is representative of Scribe’s behavior. The particular Scribe tree we pick has 9, 400

leaf nodes and 600 internal nodes, 5 levels, average fanout of 16.7, and a maximum

fanout of 101. The fanout features a very skewed distribution, decreasing from root

to leaves (this holds for all 20 Scribe trees we considered). The distribution of the

number of nodes per tree level is as follows: 1 node (the root) on the first level, 40

nodes on the second level (of which 3 are publishers), 1, 189 nodes on the third level,

6, 163 nodes on the fourth level and 2, 607 nodes on the fifth level. We determine the

number k of isomorphic copies as in Section 2.4. We have Nr = 600 routers in total;

among the 40 children of the root, 37 are routers. We obtain Nu = 1 + 37 = 38 and

hence k = bNr
Nu
c = b600

38
c = 15.

2.6.6 Fanout-balanced QDTs

For the sake of generality, we extend our simulation to QDT topologies not

created by Scribe. We consider a topology QDTB that uses the same router and

publisher nodes, but eliminates the skewed fanout distribution that is typical of

Scribe trees. This is beneficial since a node’s fanout influences its forwarding cost.

We first organize the 600 routers into a balanced skeleton tree with fanout 8, where

levels 1, 2, 3, 4, 5 have, respectively, 1, 8, 64, 512 and the remaining 15 nodes. Next, we
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connect the 9, 400 publishers to this skeleton tree, achieving for each node a fanout

of 16 or 17. There are 75 non-leaf routers in the skeleton tree, and each receives 8

publishers, for a total fanout of 16. Among the leaf routers in the skeleton tree, 400

receive 17 publishers and 125 receive 16 publishers. We determine the number k of

fanout-balanced QDTs in the usual manner: k = bNr
Nu
c = b600

9
c = 66.

2.6.7 Metrics

Our goal is to improve the query throughput of the multi-QDT overlay, de-

fined as the number of queries answered per time unit. Throughput is a manifesta-

tion of two more fundamental factors, namely the processing and forwarding effort

at every router. For a given workload, the cumulative processing cost at node n is

proportional to the number of query messages reaching n. The cumulative forward-

ing cost at n is proportional to the number of query messages it sends out to its

children. The exact proportionality constant depends on factors we do not attempt

to control, for instance such hardware properties as processor speed and network link

bandwidth. We therefore design our metrics to separate out these factors and isolate

the impact of our algorithmic solutions.

DEFINITION 2.6.1. (Processing Load) For a given workload W , we define the

processing load at node n, denoted PLoadW (n), as the number of query messages

reaching n across all QDTs it participates in. �

DEFINITION 2.6.2. (Forwarding Load) The forwarding load at n, FLoadW (n),

is the number of query messages leaving n along all QDTs it participates in. �

Notice that none of the two measures is derivable from the other, since

FLoadW (n) depends on n’s fanout distribution (over the QDTs it participates in)

and on the amount of pruning at n. For both load flavors, we define the peak load,

which is the maximum load over all nodes. Clearly, decreasing either or both kinds

of peak load results in increased throughput.

EXAMPLE 2.6.1. In Example 2.2.1, 46 messages are used to disseminate 4 queries

in 8 time units, while in Example 2.2.3, 50 messages disseminate the same query

workload in 6 time units. Defining throughput as the number of queries answered



58

per time unit, the 4-QDT case has the higher throughput. The reason we don’t

simply use throughput as a metric is that it requires assumptions on the relative

duration of processing and forwarding cost (in our running example, we take the

simplifying assumption that forwarding cost takes constant time, independent of

fanout).

In Table 2.2, the processing load for a node is the number of queries on its row.

For example, the processing load for node 13 is 4, which is also the peak processing

load. In Table 2.4, the peak processing load is 3, experienced for instance by nodes

2 and 10.

The forwarding load can be read by inspecting the transitions between columns

and keeping track of parent-child relationships in the various trees. In the single-

QDT case (Table 2.2), root node 1 has the highest peak forwarding load, 12 (it

forwards each of the 4 queries to its 3 children). In the 4-QDT configuration (Ta-

ble 2.4), the peak forwarding load is 6 messages, experienced by node 20 (1 message

for Q2, 3 for Q3 and 2 for Q4).

Notice that, compared to the single QDT, the 4-QDT configuration decreases

both processing and forwarding peak load, which leads to improved throughput re-

gardless of the concrete values of the per-query processing and forwarding cost. �

The above considerations suggest comparing configurations by their degree

of reduction of the peak processing and forwarding loads. Clearly, in any configura-

tion, one cannot hope to lower the peak load below the average load, where average

processing load is defined as

average PLoad =
∑
n∈routers PLoadW (n)

Nr

and average forwarding load as

average FLoad =
∑
n∈routers FLoadW (n)

Nr
.

Notice that throughput, defined as number of queries answered in the time unit, is

heavily proportional with the congestion effect, and in particular, with the peak load

observed in the network, or the most loaded node. Therefore, ideal load balance is
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achieved when the peak “drops” to the average load.

Note that our goal is not merely to achieve balance, as one can do so without

improving throughput by simply raising the average load. Indeed, as discussed in

Section 2.2, with increasing number k of QDTs both kinds of average load increase

(though only slightly, as shown experimentally). This is because routing by smaller

query blocks results in less pruning, which increases the overall number of messages.

The smallest average loads are therefore witnessed in the single-QDT configuration,

and they represent the ideal target for lowering the peak load. Since we are interested

in closing the gap between the peak load in a k-QDT configuration and the ideal

peak load, we report the ideal-to-actual load ratio metric as follows.

DEFINITION 2.6.3. (Ideal-to-actual load reduction ratio) In order to mea-

sure load balance-ness, we look at how close is the actual peak load in a k-QDT

configuration from the ideal load. We define the ideal-to-actual load ratio to be the

ratio between the peak load in the k-QDT and the average load in the single-QDT

configuration or:

ideal − to− actual load ratio =
peak load in the k −QDT configuration

average load in the single−QDT configuration

�

2.7 Simulation Results

In this section, we explore through extensive simulations the space of con-

figurations defined by the three dimensions given by the topology of QDTs, the

number of QDTs, and the routing strategies. Our experiments confirm empirically

that the configuration choices we advocate achieve near-optimal peak load reduction,

and therefore near-optimal throughput.

2.7.1 Warm-up: Single-QDT Configuration

In this experiment, we confirm that the number of messages reaching the

various levels in a single-QDT configuration is sufficiently skewed to justify our

load-balancing efforts, in particular that the routers on the first two levels of the
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tree bear the brunt of the load. For query workloads W F2 and W T2 , and the SCRIBE

topology QDTS, we report in Table 2.4 for every level the total and average number

of messages seen by its nodes. Notice that the average number of messages per node

decreases drastically below the upper two levels. Also notice that, unsurprisingly,

workload W T2 generates more overall messages, since its matching queries undergo

less pruning than those in W F2 .

Table 2.4: Messages per Level (k = 1, QDTS, fully-informed)

W F2 W T2QDT
# msg. Avg. # msg. # msg Avg. # msg.

level per level per node per level per node
1 5,000 5,000 5,000 5,000
2 200,000 5,000 200,000 5,000
3 173,066 146 636,507 535
4 28,509 5 513,464 83
5 4,869 2 193,575 74
Total 411,444 - 1,548,546 -

2.7.2 Effect of Number of QDTs

In this experiment, we validate our method for determining the number k of

QDTs (recall Section 2.4). For workloadW T and fully-informed routing, we increase

the number k of QDTS copies from 1 to 31. Figure 2.5 shows the average and the

peak load for both processing and forwarding.

Notice that with increasing k, the gap between the peak load and the average

load decreases considerable. The highest load imbalance occurs for k = 1 as shown

in the big gap between the peak and the average values for both the processing and

the forwarding load. As predicted by our analysis in Section 2.4, k = 15 is indeed the

“sweet spot” where the minimum gap is measured. Increasing k to 17 increases this

gap. This is because the two additional cyclic permutations cause a “wrap-around”

of the routers from the top two levels of QDTS1 to the top two levels of QDTS16

and QDTS17 and thus introduce load imbalance. Also note that there is no point

in looking at strict multiples of bNr
Nu
c beyond k = 15, as they cost more overlay

maintenance overhead without bringing the peak load any closer to the average load.
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Figure 2.5: Effect of Number of QDTs (W T , QDTS, fully-informed routing, Pro-
cessing and Forwarding load)

Finally, we observe that the negative effect of increasing overall number of

messages with increasing k does occur: the average processing load is indeed the

lowest for k = 1 since routing is done using all conjuncts, thus benefiting from

maximum routing selectivity. However, the increase is very slow when compared to

the decrease in peak load: the average processing load is 7, 774 for k = 1, 8, 990

for k = 15 and 9, 039 for k = 31, while the average forwarding load is 20, 639 for

k = 1, 29, 554 for k = 15, and 29, 998 for k = 31. The negative effect of average load

increase is outweighed by that of peak load reduction, as shown by the closing gap

between peak and average loads.

We observe this behavior more accurately in terms of the ideal-to-actual peak

load ratio, which for increasing k approaches the ideal value 1; therefore, closing the

gap between the actual load and the ideal one. This can be seen in Figure 2.6, which

reports the ratio between ideal and actual peak load ratio for both processing and

forwarding loads. For example, the ideal-to-actual peak load ratio for processing

load for the same values of k as in Figure 2.6 are, respectively: 6.43, 1.85, 1.49, 1.21,

1.44 and 1.20.
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Figure 2.6: Effect of Number of QDTs (W T , QDTS, fully-informed routing, ideal-
to-actual peak load ratio)

Figures 2.5 and 2.6 show the same trend for the forwarding load, with the

only difference that, while the gap of peak and average loads decreases with growing

k ≤ 15 and saturates once k exceeds 15, we remain far from the ideal reduction (for

which the ideal-to-actual load ratio is 1). This is explained by the forwarding load’s

correlation with the node fanouts and the fact that SCRIBE builds trees with highly

skewed fanout distribution.

2.7.3 Effect of Static Load Indicators

We introduce two load indicators to capture statically the balance degree

of a k-QDT configuration and confirm experimentally a good correlation with the

dynamic query dissemination performance.

DEFINITION 2.7.1. (Average tree level) The average tree level for a node

n, ATL(n), is the average over all the levels of the k-QDT configuration node n

participates in. �
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Figure 2.7: Distribution of internal nodes for ATL and AGF with the number of
QDTs k (QDTS)

Intuitively, the ATL distribution reflects the processing load distribution ob-

served over all nodes at run time.

DEFINITION 2.7.2. (Average global fanout) Similarly, we define the average

global fanout for node n, AGF (n), as the average over all fanouts that n has when

it participates in a k-QDT. �
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Intuitively, the distribution of AGF values predicts the forwarding load dis-

tribution observed at run time. Figure 2.7 depicts the histograms for ATL and AGF

as a variation of the number of QDTSs from 1 to 31. This confirms that we get the

best load balance with our techniques when ATL and AGF are fairly balanced. For

example, when k = 15 the majority of the internal nodes are on the 3rd or 4th level in

the UQDT on the average (Figure 2.7a), while the node fanout is distributed almost

evenly into two intervals [8, 16) and [16, 32) on the average (Figure 2.7b).

Additionally, we can correlate the dynamic load behavior from Figure 2.5 with

the spread of the static load indicators: the higher the ATL and the AGF spread,

the higher the gap between the peak and the average loads (or, equivalently the

ideal-to-actual peak load ratio) for the same k. Indeed, if k = 1, ATL presents the

highest spread of values, showing an unbalanced distribution of nodes on tree levels.

At the same time, Figure 2.5 shows the biggest gap between the peak and the average

processing load. Just as the load gap decreases with the increase of k up to k = 15,

the ATL distribution concentrates in the range of [3, 4), which is nearly balanced.

Similarly, we notice that an unbalanced distribution of node fanouts corresponding

to k = 1 (which corresponds to a high AGF spread), correlates directly with the

highest gap between the peak and the average forwarding load as in Figure 2.5. The

gap closes in with k as the AGF spread becomes more balanced. However, notice

that for k = 15 the fanouts are still not completely balanced. This explains why the

ideal-to-actual peak load ratio doesn’t quite reach 1. Our last experimental result

in this section shows that balancing the fanouts is a key factor in bringing the peak

forwarding load close to the average value.

2.7.4 Effect of Routing Strategy

We next compare the performance of the different routing optimizations as

defined in Section 2.4 based on the query selectivity information. The idea is to use

the routing state at a node to prune out routing choices, thus ruling out the low

selective query blocks if possible. Among the query blocks that are left, we pick the

most selective one based on a set of heuristics such as the number of conjuncts in

the query block.
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For the partially-informed strategy, we consider the case when publishers

maintain the top s popular CDs for the following thresholds s = 43k, 74k and 124k,

corresponding respectively to 1.37%, 2.33% and 3.89% of the total number of CDs

in the global collection. We compare the strategies for workload W T and QDTS,

reporting the ideal-to-actual peak load ratio in Figure 2.8, and the actual load behav-

ior in Figure 2.9 and 2.10. We report the routing selectivity benefit as a qualitative

measure of the peak load for partially-informed routings as distance from the peak

load for the ideal routing strategy (i.e., fully informed).

First, we note that random routing performs worst, closely followed by heuris-

tic routing. Both strategies are significantly outperformed by the (partially- or fully-

)informed ones for every k > 1 (with the exception of k = 1 when all routing

strategies coincide).

The family of informed routing strategies follows a common trend: with in-

creasing k ≤ 15, the gap between ideal and actual load shrinks drastically, reaches

the sweet spot at k = 15 and essentially saturates for k > 15 (with a slight increase

at k = 17 for processing load, due to the already discussed load imbalance introduced

by the wrap-around).

Interestingly, random and heuristic routing behave slightly differently: at

k = 5, they get closer to the ideal load than at k = 15. This behavior is caused

by the following effect. The more QDTs, the more numerous the query blocks,

which decreases the chance of a random pick hitting the most selective block. With

increasing k, this effect starts generating non-minimal traffic, eventually canceling

the load balancing effect. This explains why the random strategy degrades with

increasing k. The reason the degradation saturates is that the number of query blocks

cannot increase indefinitely (it must saturate once all blocks become singletons).

Heuristic routing suffers from essentially the same problem: the more blocks we split

a query into, the smaller the variation in block cardinality. Recall that, for same-

cardinality query blocks, heuristic routing degenerates to random. In contrast, for

the informed routing family, the experiments show that this effect remains subtle,

being canceled out by the judicious choice of selective query blocks.

Finally, we observe that we can get very close to the benefits of fully-informed

routing with negligible space overhead, by maintaining the frequency for even a small
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Figure 2.8: Effect of Routing Strategy (W T , QDTS, ideal-to-actual peak load ratio)

fraction (e.g., 3.89%) of all CDs. We observe that the routing benefit varies linearly

with the amount of maintained routing state. The more state is maintained, the

higher the benefit of routing eliminating the redundant traffic; therefore, it improves

the load balance. As a result, if we are given the amount of routing state, we can

derive what is the amount of the routing benefit. For example, with only 3.89%

state, we obtain 83% of the benefit according to Figure 2.8. These results strongly
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Figure 2.9: Effect of Routing Strategy (W T , QDTS, Processing load)

recommend partially-informed routing over the other strategies.

2.7.5 Effect of QDT Topology

We repeated all above experiments using the fanout-balanced QDT topology

QDTB, observing the same trends as for the SCRIBE topology QDTS. We do not
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Figure 2.10: Effect of Routing Strategy (W T , QDTS, Forwarding load)

report the detailed results for lack of space. Instead, we summarize in Table 2.5

the comparison between the SCRIBE-generated and the fanout-balanced topology,

relative to the peak load reduction. For query workload W T and the fully-informed

routing strategy, we show both the ideal and the actual value of the peak load ratio

factor for the appropriate number of QDTs (15 for QDTS and 66 for QDTB).

Notice that both topologies come within reach of the ideal load reduction
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Table 2.5: Effect of QDT Topology (W T , fully-informed)

ideal-to-actual peak SCRIBE fanout-balanced
load ratio (QDTS) k = 15 (QDTB) k = 66
processing 1.21 1.18
forwarding 9.3 2.3

(when the ideal-to-actual load ratio is 1) for processing load. However, for forwarding

load the SCRIBE topology misses the ideal by an order of magnitude, whereas the

fanout-balanced topology only by a factor of 2.3. The main reason not even the

QDTB topology reaches the ideal forwarding load reduction is the inherent imbalance

between the number of routers and publishers: the perfect configuration consists of

a perfectly balanced tree whose internal nodes are routers and whose leaves are

publishers. We did not simulate such a configuration because in practice we have no

control over the numbers of routers and publishers.

Our experiments confirm that fanout-balanced topologies result in improved

forwarding load reduction over SCRIBE topologies without sacrificing processing load

reduction. As mentioned above, the benefit of using SCRIBE is of logistic nature, as

it comes off-the-shelf with the overlay maintenance functionality. An advantage of

our solution is its generality, in the sense that it assumes no control over the shape

of the QDT, focusing on extracting the performance inherent in the topology.

2.7.6 Effect of Number of Conjuncts

It is a well-known fact that the more query conjunctions, the higher is the

routing selectivity. To validate this conjecture on the UQDT infrastructure we

increase the number c of conjuncts from 1 to 10 for W Tc query workload. Figure 2.11

shows the behavior of the average load for one QDTS and fully-informed routing.

We observe a slow decrease in the processing load, while the forwarding load registers

a quick decrease.

We present next the effect of number of conjuncts over the routing benefit

using the various routing strategies introduced in Section 2.4. In addition to the

previous conjecture, more conjunctions induce a larger number of query blocks. For
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Figure 2.11: Effect of Number of Conjunctions (QDTS, k=1, fully-informed routing)

partially informed strategies, if none of these blocks fall in the set of popular main-

tained CDs at a node, then it means there are more query blocks to pick during

query routing. Thus, the likelihood to randomly pick a high selective query block to

route decreases, and therefore we expect the load to increase.

We vary both the routing strategy and the number of conjuncts c forW Tc query

workloads and k=15 QDTS. Figure 2.12a shows the peak processing load behavior.

We notice a slow increase in the gap between the peak load for fully informed routing

and the peak for the other considered routing strategies. We measure the gap increase

by reporting the routing benefit variation with the number of conjuncts for each of

the partially informed routing strategies. Table 2.12b shows that the gap increase

determines a decrease of up to 10− 20% of the routing benefit.

2.7.7 Latency Behavior

We consider a basic latency abstraction to be the number of hops that it takes

to route a query workload from the root of the QDT to the publishers. Currently,

we ignore queuing delays during query routing.

We observe that the latency varies very little with the number of QDTs. It
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Figure 2.12: Effect of Number of Conjunctions (QDTS, k=15)

is strongly influenced by the dissemination’s tree topology being puled toward the

the tree levels with the most populated leaves. Since in a QDTS most of the leaves

carrying data are on level four, the average latency varies a little between 3.5 and

3.88.

The small latency variation can be interpreted as a result of loosing the ac-

curacy of routing selectivity: the more QDTs, the higher the likelihood of touching

false positive nodes at deeper levels than the true positive answers.
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2.8 Related Work

We identify three research directions related to our work. To provide high

throughput and scalable search over distributed content there have been proposed

mediation based, replication based and partitioning based solutions. We analyze each

of them in terms of efficiency, query power expressivity and resistance to censorship.

Mediation approach. In the mediator approach the data residing with

different publishers in the network is collected and accessed via a single site, also

called the mediator. This architecture is the standard for most of the current search

engines and online hosted communities. Often, a mediator requires a highly parallel

backend in order to scale and to remove congestion. Yet, the presence of only one

central point of access to data is vulnerable to attacks and moreover, it compromises

the preservation of a censorship resistant environment. In addition, a mediator

approach restricts the business model of the publishers as they are disintermediated

from the consumers.

To leverage the already existing computational power of the network, recently

there has been a large body of work that focuses on finding only the peers with rel-

evant data to a user’s query. These methods construct data summaries at nodes

and use them as routing indices [60] to disseminate the query in the network toward

the relevant publishers. Hybrid approaches such as [57, 90] compromise the decen-

tralization premise by utilizing super-peer nodes to coordinate the storage and data

retrieval. We look next at complete decentralized architectures.

Replication based approaches. One way to increase data availability and

to balance the load, and therefore to improve the system throughput is to replicate

all or parts of the data (or indices of it) redundantly at the router nodes [94, 77].

Disseminating queries to publishers in such a scenario is simple since each such router

has global information. Nevertheless, maintaining multiple redundant routers incurs

increased cost in store space and in updates to the index. Moreover, information

can be exposed easier to an attacker since all the routers require now protection as

opposed to protecting only one site as in the mediator approach.

Partitioning based approaches. As a result, a better way to leverage the

distributed computational power is based on data partitioning. The baseline for this
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approach is to partition the data items such that a partition block is managed by

different peers. The impact on query processing is that conjunctive queries span

over multiple blocks, therefore resolving them means less processing selectivity. The

advantage of the approach is twofold. First, there is no index update overhead and no

extra space requirement compared to the mediator solution. Second, the publishers

and the consumers do not need to know the details of the partitioning scheme to

send data or queries. The network takes care of identifying the relevant matching

data to the queries. Our approach is partition based.

DHT based. A partition-based solution to building routing indices that

is popular among structured P2P networks is to leverage distributed hash tables

(DHTs). A DHT provides a distributed logical abstraction of object identifier lookups

(e.g. mostly filename lookups) over the physical underlay. However, this approach

focuses more on handling atomic queries [77, 104, 40, 127, 22, 38] and less on the

efficiency of complex queries processing [82, 119]. Our UQDT solution is optimized

for Boolean (XPath) queries. Another body of work builds hierarchies of overlays

based on DHTs. To improve locality, the hierarchies are created based on the docu-

ment content similarities [129] or on the nodes proximity in the network to minimize

latency [126, 97, 30, 78].

However, DHTs are inappropriate for the problem we study, since DHT nodes

maintain complete knowledge of all the publishers that advertise specific data items.

An attacker can gain global information for data items by simply compromising

a single DHT node. In contrast, no UQDT node maintains complete knowledge

about any data item. In addition, UQDT nodes only maintain summaries which

are masked union of data items present in their subtrees, without knowing exactly

which data item is contained in which publisher. A leaf QDT router node only has

information about a small set of publishers that connect to it. An attacker needs to

compromise a significantly large number of UQDT nodes before gaining any global

information.

Other routing strategies. [88, 59] is a class of structured P2P indices

that is not DHT-based. Their focus is on the design of efficient tree topologies for

distributed dissemination.

Koloniari and Pitoura [91] consider the problem of routing path queries over
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schema-less XML documents in a P2P system. They propose the use of one hierar-

chical overlay network that clusters nodes with similar XML documents where nodes

contain filters that summarize repositories of a set of its neighbors to facilitate path

query routing. This approach is similar to the single-QDT configuration, with the

attendant limitations, and our technique for maximizing throughput has the poten-

tial to be useful for this problem as well. At the opposite spectrum, [71] builds a

QDT for each published data item which can sometimes be impractical due to the

large number of CDs.

P2P publish/subscribe. A complementary problem is that of distributed

publish/subscribe, wherein query subscriptions from users are maintained in a dis-

tributed index structure, and data items are disseminated to subscribers as soon as

they are published. Topic-based approaches use a set of pre-defined static topics

to form the rendezvous points between subscribers and publishers, and some form

of multicast is often used for efficiency purposes, such as IP multicast [37], generic

application-level multicast [43], and multicast on top of DHTs [47]. Although con-

structed for a different goal than QDTs, we show how off-the-self SCRIBE trees [47]

for data dissemination can be used for QDTs as well.

Content-based publish/subscribe approaches match the entire published con-

tent against (possibly aggregated) subscriptions. A good example of this approach is

ONYX, a system for XML content dissemination [66], wherein a dissemination tree

is rooted at each publisher. Each router maintains for each interface an aggregate

subscription (XML query) that summarizes all the subscriptions downstream along

that interface. A published data item starts from the root (the publisher), and gets

forwarded to all downstream interfaces whose corresponding aggregate subscriptions

match the data item. Chand and Felber [48] take a similar approach. SemCast [100]

aggregates subscriptions in a centralized manner using a cost-based model, and doc-

uments are routed through the network based on the subscription aggregates.

Censorship resistant. Most of the existing censorship-resistant systems like

Eternity [29], Free Haven [67], Publius [124], Tangler [123] are based on anonymiz-

ing the communication, and therefore anonymizing the end-to-end communicating

entities (Tor [68], Freenet [54], Freedom [42], Tarzan [74], MorphMix [103]). This is

usually done by using proxy based services (e.g., Anonymizer.com, JAP [10]), based
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on DHTs which comes with their disadvantages, or based on trusted servers to en-

crypt and route the traffic through established anonymous tunnels over the other

nodes. Instead, our work is necessary and it complements the censorship resistant

work with the DLA mechanism. Our DLA preserves privacy of users in publishing

communities in the sense that it provides anonymity for the association of users with

certain information.

2.9 Conclusions

The dawn of the age of online communities poses the challenge of empowering

information publishers to join democratic communities and query their global data

collection in an ad-hoc fashion. We present an infrastructure that meets this chal-

lenge by allowing data to reside with its owners and by supporting queries against the

global data collection, with no need for any central authority that disintermediates

publishers from consumers. These queries are evaluated by dissemination to relevant

publishers under censorship resistant constraints, using a distributed index structure.

Since the dissemination indices are subject to potential attacks and censorship, our

solution precludes third parties from learning the exact publisher/CD associations

without compromising a significant fraction of the router nodes.

Technically, our approach is dual to the conventional work on data dissemi-

nation, and its viability depends on the feasibility of efficient query dissemination.

Our contributions towards proving feasibility range from identifying the design space

(with its trade-off dimensions, relevant metrics and notion of optimality), to intro-

ducing solutions that achieve near-optimality with only low overhead.

Partially-informed routing emerges as the best-value strategy, with low space

overhead to yield the same benefits as fully-informed routing, and to significantly

outperform random and heuristic routing. The solution exploits crucially the dual

role of QDTs, deploying them as both query and statistics dissemination trees. While

we show that fanout-balanced topologies are closest to optimal, an advantage of our

solution is its generality, in the sense that it focuses on extracting the performance

inherent in any given topology. This enables the seamless porting of our techniques

on top of off-the-shelf overlay maintenance tools developed by networking research.
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In future work, we contemplate extensions of our solution in two stages. The

first is to incorporate ranking functions and exploit the UQDT overlay for top-K

query processing. The second stage targets the support of expressive queries that

allow complex filtering conditions on the CD matches. These conditions pertain to

both the keywords and the context they appear in (a representative of this class of

queries is W3C’s XQuery Full-Text extension [114]). This line of work will exploit

our framework’s generality with respect to the definition of CDs.
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Chapter 3

Evaluation of XML Full-Text

Queries at Publishers

3.1 Need for Rich Text Search on Semi-structured

Data

The ability to search both the structure and text content of XML documents

is gaining importance with the increase of large XML repositories such as the United

States Library of Congress (LOC) documents [11], medical data in XML such as

HL7 [7], and the IEEE INEX [9] (TREC [18]-like effort but for XML) data col-

lection [9]. Querying XML repositories rich in text content requires sophisticated

full-text search features ranging from matching individual keywords to combining

matches with Boolean operators, proximity distance (including keyword-distance, -

window, and -order) and number-of-times-to-repeat conditions, stemming, and stop

words.

XML querying is a well-studied topic, with several powerful database-style

query languages such as XPath 2.0 [112] and XQuery 1.0 [113] set to become W3C

standards. The XQuery expression given below is a typical query on the US Library

of Congress repository that selects congressional bills with actions that relate to

“non-immigrant status”, such as bills that amend the Immigration and Nationality

Act. The query returns the descriptions of such bills that have been introduced since

2002:

77
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for $b in //bill

where fn:contains($b//action, "non-immigrant status")

and $b//action-year >= 2002

return

<bill> {$b/description} </bill>

The query applies the XQuery substring-matching function fn:contains [115]

to the text nodes contained in action elements. As discussed in [24], sub-string

functions in XQuery cannot express more complex full-text queries, such as restrict-

ing the order and distance between words. These limitations are due to the XQuery

data model, which does not represent positions of words in input documents. Word

positions are necessary to compute distance and to evaluate order predicates. There-

fore, even if custom XQuery functions were defined for each full-text search primitive,

they would not be fully composable without extending the data model.

XQuery Full-Text [114] is an extension of XQuery that supports fully com-

posable full-text search primitives defined on a data model of words and positions.

The language is inspired by TeXQuery [24], a proposal to the W3C Full-Text Task

Force. XQuery Full-Text provides powerful full-text search primitives such as simple

word search, Boolean queries, word distance as well as stemming, regular expres-

sions and stop words. XQuery Full-Text also supports scoring and top-k ranking of

query results. We refer to the XQuery Full-Text search primitives as FTSelections.

All FTSelections are defined on a data model, called AllMatches, which represents

words and their positions in documents. Because the semantics of each FTSelection

is defined in terms of operators on the AllMatches data model, the FTSelections are

fully composable.

The key problems when implementing XQuery Full-Text are : (i) choosing

a representation for the AllMatches data model; (ii) implementing the semantics

of each full-text primitive on AllMatches; and (iii) processing input documents to

provide the word positions used in AllMatches. In GalaTex,1 our strategy is to

employ XML and XQuery directly to solve these problems. First, we implement the

AllMatches data model in XML itself [114]. Second, we implement each full-text

primitive as a native XQuery function that takes one or more AllMatches values
1http://www.galaxquery.org/galatex

http://www.galaxquery.org/galatex
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and produces an AllMatches value. Last, we pre-process each input document to

produce auxiliary XML documents that map each word to their positions in the input

documents; these auxiliary documents are accessed by the semantic functions. This

implementation strategy is both general and expedient. By using XML and XQuery

themselves to implement XQuery Full-Text, we were able to rapidly prototype a

complete implementation of the language. In addition, our technique can be used

with any XQuery implementation.2 In particular, we describe in this chapter an

implementation on top of Galax, a complete XQuery implementation.

XQuery Full-Text supports scoring and ranking of query results and permits

any ranking method that satisfies the XQuery Full-Text scoring requirements [114,

116]. In GalaTex, we adapt the probabilistic relational algebra [76, 105] to All-

Matches by extending each full-text primitive with the ability to manipulate scores.

Our implementation satisfies the XQuery Full-Text scoring requirements.

When implementing GalaTex, we have focused more on completeness and

conformance than on efficiency. By focusing on completeness, GalaTex can serve as

a reference implementation of XQuery Full-Text and as a platform for experimenting

with new research ideas for scoring XML data, optimizing XML queries on both

structure and content, and evaluating top-k queries. Ultimately, we want GalaTex

to be both complete and efficient. One of GalaTex’s performance bottlenecks is

the size of the AllMatches values generated by each FTSelection. We discuss several

ways of optimizing the evaluation of FTSelections, including logical rewritings of the

full-text query and the optimization of XML queries on both structure and content.

In particular, this chapter makes the following contributions:

• We present a general technique for implementing XQuery Full-Text using an

existing XQuery implementation.

• We describe GalaTex, the first complete implementation of XQuery Full-

Text, a W3C specification that extends XPath 2.0 and XQuery 1.0 with full-

text search predicates. GalaTexis an all-XQuery implementation (i.e., imple-

mented almost entirely in XQuery itself) initially focused on completeness and

conformance. In addition to a command-line interface, GalaTex includes a

2See http://www.w3.org/XML/Query for a list of XQuery implementations.

http://www.w3.org/XML/Query
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browser interface that permits users to execute both the XQuery Full-Text use

cases [117] and their own queries.

• We adapt the scoring method for the probabilistic relational algebra [76, 105] to

AllMatches and show that this adaptation satisfies XQuery Full-Text’s scoring

requirements.

• We identify some performance challenges, possible solutions, and their interac-

tions with existing XQuery implementations.

We begin with an overview of XQuery Full-Text in Section 3.2. Section 3.3

describes general implementation techniques and their realization in GalaTex. Ad-

vanced evaluation strategies are considered in Section 3.4. We conclude and present

the related work in Section 3.5.

3.2 Preliminaries: XQuery Full-Text Language

We introduce XQuery Full-Text (XQFT) search and scoring through exam-

ples and highlight some key features of the language. We refer the reader to the

language specification [114] and the language use cases [117] for more details on the

language.

3.2.1 Full-Text Search

XQuery Full-Text extends XQuery with a full-text search expression (FTCon-

tainsExpr) and with a scoring function (ft:score()). The FTContainsExpr takes an

evaluation context (i.e., a sequence of XML nodes) and a full-text search (FTSelec-

tion) condition and returns a Boolean value that is true if and only if some node in

the evaluation context satisfies the condition. Because FTContainsExpr is a first-

class XQuery expression, full-text search is seamlessly integrated into XQuery and

XPath. In particular, since FTContainsExpr returns a value in the XQuery data

model (i.e., a Boolean value), it can occur wherever a Boolean value is permitted

in other XQuery expressions. The following expression illustrates the interaction of

full-text search with an XPath expression.
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//book[.//section ftcontains "usability" && "testing"]/title

The expression returns the titles of books with at least one section that con-

tains the search tokens usability and testing. The FTContainsExpr is used as a

predicate that returns a Boolean value. Its evaluation context is an XQuery expres-

sion, i.e., .//section within //book, and its FTSelection is “usability” && “testing”.

This query also illustrates how XQuery Full-Text uses existing XQuery constructs

such as path expressions to specify the evaluation context and the returned nodes

(/title).

An FTSelection may be used to express matching individual words (FT-

Word), Boolean connectives between keywords (FTAnd, FTOr and FTNegation),

order predicates (FTOrdered), proximity distance between words (FTDistance and

FTWindow), scoping within sentences and paragraphs (FTScope) and the ability to

specify the number of occurrences of words (FTTimes). The query below illustrates

how these primitives can be combined. It returns true if some book in the evalua-

tion context (//book) contains the tokens usability and testing in the same sentence

within a window of five words.

//book ftcontains "usability" && "testing" same sentence window 5

XQuery Full-Text can also embed XQuery expressions. The expression below

returns true if some article in the evaluation context contains an occurrence of a

title of one of Paul Auster’s books. The XQuery expression //book[./author = "Paul

Auster"]/title specifies the search tokens, and the keyword any specifies that at least

one of the titles can occur in the articles.

//article ftcontains (//book[./author = "Paul Auster"]/title) any

In addition to FTSelections, XQuery Full-Text has a rich set of matching

modifiers called, FTMatchOptions, such as stemming, stop-words, regular expres-

sions, case sensitivity, diacritics, special characters, synonyms, languages, and ignor-

ing specified XML subtrees [26]. FTMatchOptions operate at the level of individual

words and can be seamlessly composed with any FTSelection to modify how the

full-text search is performed. The expression below returns true if some book in the
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evaluation context contains any tokens derived from usability and testing after ap-

plying stemming. For example, a book that contains user and tests would satisfy the

full-text search condition because usability and user share the stem use, and testing

and tests share the stem test.

//book ftcontains "usability" && "testing" with stemming

The last example below is similar to the one above, but requires that search

tokens occur within a window of five words, ignoring stop-words when computing

this window.

//book ftcontains "usability" && "testing"

with stemming window 5 without stopwords

3.2.2 Full-Text Scoring

The previous expressions all yield Boolean values, but often users require

the results of full-text search to be scored and ranked by the quality of the match.

In XQuery Full-Text, scoring is achieved using the second-order function ft:score(),

which returns one score for each node in the set of input XML nodes. This function

is second order because it accepts an FTSelection expression, not a value, as an

argument – it is also the only second-order function in XQuery.

The score of a node captures its relevance to an FTSelection. For example,

the expression below returns a sequence of scores for each book in the evaluation

context.

let $scores := ft:score(//book,

"usability" weight 0.8 && "testing" weight 0.2)

Note that user-specified weights can be applied to compute score. In this

example, usability is given a weight of 0.8 and testing, a weight of 0.2. The exact

means by which ft:score uses these weights is implementation-defined.

The ft:score() function provides the framework for supporting different scoring

mechanisms, but does not dictate the exact scoring mechanism itself. This flexibility

is necessary, because vendors are unlikely to agree on the same scoring technique. In
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fact, scoring for XML is an active area of research (e.g., see [56, 75, 80, 83, 98, 118]),

and many vendors view scoring techniques as product differentiators. However, there

are two properties that every scoring mechanism must satisfy [116]: (i) the score of a

node in the evaluation context must be 0 if and only if the node does not satisfy the

full-text condition specified in FTSelectionWithWeights. Otherwise, its score must

be in the interval (0,1]; (ii) for the nodes in the evaluation context, a higher score

value implies a higher degree of relevance to FTSelectionWithWeights.

The ft:score() function returns a sequence of floating-point numbers, which

may occur wherever a number is permitted in other XQuery expressions. This enables

the expression of powerful queries such as the one below, which computes the top-10

results for the previous query.

for $result at $rank in

(for $node in //book

let $score := ft:score($node,

"usability" weight 0.8 && "testing" weight 0.2)

order by $score descending

return <result score="{$score}">{$node} </result>)

where $rank <= 10

return {$result}

The inner FLWOR expression returns the results in descending order by score,

and the outer FLWOR expression only returns the top ten of these results.

Our last example illustrates how FTContainsExpr and ft:score() can be com-

bined to search based on one condition and score based on another one. The ex-

pression below selects books that contain usability and analysis, and these books are

scored based on usability and testing.

for $book in //book[. ftcontains "usability" && "analysis"]

let $score := ft:score($book, "usability" weight 0.8 &&

"testing" weight 0.2)

return <result score="{$score}"> {$book} </result>
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3.3 XQuery Full-Text Implementation

Numerous strategies exist for implementing XQuery Full-Text – as many

strategies as there are for implementing XQuery itself! Possible strategies include

extending an existing XQuery engine with native support for the XQuery Full-Text

data model and operators; extending an existing full-text search engine to serve as an

XQuery Full-Text co-processor; or translating XQuery and XQuery Full-Text into an-

other query language, such as SQL. XQuery Full-Text relies on the AllMatches data

model that captures words and their positions. Regardless of the implementation

strategy chosen, the key implementation problems are representing the AllMatches

data model, implementing the semantics for each FTSelection, and making the word

positions used in the input documents accessible to the AllMatches data model.

Because new languages benefit from the rapid development of experimental

implementations, our strategy was to employ XML and XQuery directly to imple-

ment XQuery Full-Text. We first describe key implementation techniques and then

their realization in GalaTex.

3.3.1 General Implementation Techniques

Preprocess Documents & Queries

In the XQuery data model, the text node is the smallest unit representing

document content, but in the XQuery Full-Text data model, the smallest unit is a

word and its position within a document or phrase. We define an XML value, called

TokenInfo, to represent a word and its position in an input document or in a search

phrase. Two preprocessing steps yield TokenInfo values: the text in input documents

is tokenized off-line, and the search phrases in a full-text query are tokenized at query

evaluation time.

A TokenInfo value contains a word and a unique identifier that captures the

relative position of the word in a document or in a phrase. When tokenizing document

text, a TokenInfo may also contain the XML node, sentence, and paragraph that

directly contain the word. The DTD for a TokenInfo value is below.

<!ELEMENT TokenInfo (Token, Identifier, Node?, Sentence?, Para?)>
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As an example, Figure 3.1 contains a tokenized document in which each word

in the text has a corresponding TokenInfo identifier, which contains the global po-

sition of the word in the document. This information could be augmented with the

appropriate node, sentence and paragraph identifiers.

We define abstract functions for pre-processing search phrases and documents.

Tokenization of a search phrase is performed by the getSearchTokenInfo() function,

which takes a search string and returns a sequence of TokenInfos. We explain in

Section 3.3.1 how the match-options argument is used during tokenization.

getSearchTokenInfo($searchPhrase as xs:string,

$matchOptions as FTMatchOptions) as TokenInfo*

The following abstract functions access tokens and their positions in docu-

ments. The getTokenInfo() function takes an evaluation context of zero or more

element nodes and a search word specified as a TokenInfo value and returns all the

positions of the word in the given evaluation context. The getPositions() function

is similar, but restricts the evaluation context to one element node. getTokenInfo()

and getPositions() can both be defined in terms of the containsPos() function, which

returns true if the given evaluation context contains the given word. The wordDis-

tance() function returns the distance between two words given any match options

that might affect the FTWindow or FTDistance primitives.

getTokenInfo($evalContext as element()*,

$searchToken as TokenInfo ) as TokenInfo*

getPositions($node as element(),

$searchToken as xs:string ) as TokenInfo*

containsPos($node as element()*,

$searchToken as TokenInfo ) as xs:boolean

wordDistance($token1 as TokenInfo,

$token2 as TokenInfo,

$mo as FTMatchOptions ) as xs:integer
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<book(1)>
  <author(2)>Millicent(3) Marigold(4)</author>
  <content(5)>
    <p(6)> The(7) usability(8) of(9) software(10) measures(11) how(12) well(13) the(14)
             software(15) provides(16) support(17) for(18) quickly(19) achieving(20)
             specified(21) goals(22).
    </p>
    <p(23)> The(24) users(25) must(26) be(27) and(28) feel(29) well-served(30).
             Software(31) usability(32) is(33) a(34) good(35) measure(36) of(37) that(38).
    </p>
  </content>
  <title(39)>Conquering(40) the(41) systems(42)</title>
</book>

Figure 3.1: XML document fragment with positions

The AllMatches Data Model

An AllMatches value specifies all possible position solutions to a full-text

search query and can be viewed as a propositional logic formula in disjunctive normal

form (DNF) [24]. We represent instances of the AllMatches data model using XML

values that conform to the following DTD:

<!ELEMENT AllMatches (Match)*>

<!ELEMENT Match (StringInclude|StringExclude)*>

<!ELEMENT StringInclude TokenInfo>

<!ELEMENT StringExclude TokenInfo>

Each Match in an AllMatches corresponds to one of the disjuncts in the

DNF formula. Each StringInclude in a Match corresponds to the proposition that

the evaluation context node must contain a word position, and each StringExclude

specifies that the evaluation context node should not contain a word position.

The FTSelections

Each FTSelection function takes one or more AllMatches values and returns

one AllMatches. For example, consider the sample document in Figure 3.1 annotated

with word positions and the following full-text query, which returns those books that

contain paragraphs containing words similar to usability and software case sensitive

within ten words of each other:
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//book[.//p ftcontains ("usability" with stemming) &&

("software" case sensitive) with distance at most 10 words]/title

Each full-text query has an associated query evaluation plan of FTSelections.

Figure 3.2 contains the plan for the above query. We distinguish between two stages

in the evaluation plan. The bottom two levels of the plan construct AllMatches

values using the position functions described in Section 3.3.1. Once we have the first

AllMatches, all the other primitives manipulate AllMatches only.

FTWordsSelectionAny
Token: usability
MatchOption: stemming

FTWordsSelectionAny
Token: software
MatchOption: case insensitive

Word Positions (TokenInfo)

FTAnd

FTDistanceAtMost
(at most 10 words)

Build
AMs

Manipulate
AMs

AM AM

AM

AM

FTContains
Evaluation

Context

Filtered
Evaluation

Context

getPositions() getPositions()

Figure 3.2: Full-Text XQuery evaluation plan

AllMatches

Match

StringInclude
Token: usability

Pos
8

StringInclude
Token: software

Pos
10

��Match

StringInclude
Token: usability
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32

StringInclude
Token: software

Pos
10

��Match

StringInclude
Token: users

Pos
25

StringInclude
Token: software

Pos
10

Match

StringInclude
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Pos
8

StringInclude
Token: software

Pos
15

��Match

StringInclude
Token: usability

Pos
32

StringInclude
Token: software

Pos
15

Match

StringInclude
Token: users

Pos
25

StringInclude
Token: software

Pos
15

Figure 3.3: AllMatches for "usability" with stemming && "software" case sensitive

A variety of primitives build AllMatches depending on the query search cri-

teria: a single word (FTSingleSearchToken), any word or all words from the set

of given phrases (FTWordsSelectionAnyWord, FTWordsSelectionAllWord), and any

or all phrases (FTWordsSelectionPhrase, FTWordsSelectionAny, FTWordsSelection-

All).

In Figure 3.2, the two AllMatches representing the tokens usability and soft-

ware become the inputs to the FTAnd primitive. The resulting AllMatches is given
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in Figure 3.3. It contains six possible Matches. These AllMatches are further filtered

by the FTDistance primitive. The final AllMatches contains only the first, fourth,

and sixth Matches (see Figure 3.3). Once those matches are generated, they are

passed to FTContains(), the top-most node in Figure 3.2, in order to filter the XML

nodes in the evaluation context.

The Match Options

Match options are modifiers that apply to each of the search words. If a

match option is not specified explicitly in the query, then its default value is used.

The default match options are: case insensitive, without special characters, without

regular expressions, without stemming, without stop words, element content is not

ignored, English-language selected, without thesaurus, and diacritics insensitive [114].

When a match option is specified explicitly in the query, it overrides the default for

the phrases to which it applies. The XML representation of match options is:

<!ELEMENT FTMatchOptions (FTMatchOption)*>

<!ELEMENT FTMatchOption (FTCaseOption | FTDiacriticsOption |

FTSpecialCharOption | FTThesaurusOption|FTStemOption |

FTRegexOption | FTLanguageOption | FTStopWordOption

| FTIgnoreOption)>

The abstract function applyMatchOption() applies all match options from

FTMatchOptions to a list of search tokens and returns the token information for all

the modified search words.

applyMatchOption($mo as FTMatchOptions,

$searchToken as xs:string* ) as TokenInfo*

3.3.2 GalaTex Implementation

We describe how these general techniques are realized in our GalaTex ar-

chitecture depicted in Figure 3.4. A demonstration of GalaTex and of the XQuery

Full-text use cases are available at: http://www.galaxquery.org/galatex/. GalaTex

is implemented on top of the GalaxXQuery engine [72],3 a complete XQuery im-
3http://www.galaxquery.org
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plementation that supports functions and modules.

GalaTex Engine

<xml>
   <doc>
Text Text
   </doc>
</xml>

Preprocessing
& inverted lists

generation

Full-Text functions
(FTWordsSelection,
FTWindow, FTTimes

etc.)

GalaTex Parser

Galax
XQuery
engine

   <doc>
  Text Text
Text Text
   </doc>

.xml

.xml

evaluation
inverted lists

getPositio
ns()

containsPos()

wordDistance()

Full-Text
query

Equivalent
XQuery
query

Figure 3.4: Architecture of GalaTex

In the upper left of Figure 3.4, GalaTex preprocesses input documents,

and for each distinct word, produces one document containing all the positions of

that word, represented by TokenInfo values. These documents essentially contain

inverted lists, which map words to their positions. These inverted-list documents are

the inputs to getPositions() and related functions.

In the lower left of Figure 3.4, GalaTex translates XQuery Full-Text queries

into equivalent XQuery queries by mapping each FTSelection into a call to the cor-

responding XQuery function. The XQuery functions themselves (upper right of Fig-

ure 3.4) are implemented in an XQuery library module, where each function imple-

ments one FTSelection primitive.

These functions use the getPositions and related functions to access token

positions in the inverted-list documents and generate an AllMatches value. These

AllMatches are then composed by the full-text functions and the final AllMatches is

used to filter the specified context nodes of the input query.
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On the right of Figure 3.4, Galaxtakes the input documents, the translated

query, and the library module of XQuery functions, evaluates the translated query,

and yields the result as an XML document. The final result contains the relevant

XML document fragment in which the search words are highlighted.

The GalaTex library module uses XQuery’s optional schema import and

validation features, which are supported by Galax. These features are not required

by our implementation, but are useful because they guarantee that all AllMatches

and FTMatchOptions values are valid instances of the corresponding types.

Document Preprocessing

(c) AllMatches for "usability" with stemming

AllMatches

Match

StringInclude
Token: usability

Pos
1.3.1.1.4

Match

StringInclude
Token: users

Pos
1.3.2.1.20

Match

StringInclude
Token: usability

Pos
1.3.2.1.27

(b) Inverted lists

Token:
"software"

Dewey positions

1.3.1.1.6
1.3.1.1.11

Token:
"usability"

Dewey positions

1.3.1.1.4
1.3.2.1.27

Token:
"users"

Dewey positions

1.3.2.1.20

<book(1)>
  <author(1.2)>Millicent(1.2.1.1) Marigold(1.2.1.2)</author>
  <content(1.3)>
    <p(1.3.1)> The(1.3.1.1.3) usability(1.3.1.1.4) of(1.3.1.1.5) software(1.3.1.1.6)
             measures(1.3.1.1.7) how(1.3.1.1.8) well(1.3.1.1.9) the(1.3.1.1.10)
             software(1.3.1.1.11) provides(1.3.1.1.12) support(1.3.1.1.13)
             for(1.3.1.1.14) quickly(1.3.1.1.15) achieving(1.3.1.1.16)
             specified(1.3.1.1.17) goals(1.3.1.1.18).
    </p>
    <p(1.3.2)> The(1.3.2.1.19) users(1.3.2.1.20) must(1.3.2.1.21) be(1.3.2.1.22)
             and(1.3.2.1.23) feel(1.3.2.1.24) well-served(1.3.2.1.25).
             Software(1.3.2.1.26) usability(1.3.2.1.27) is(1.3.2.1.28) a(1.3.2.1.29)
             good(1.3.2.1.30) measure(1.3.2.1.31) of(1.3.2.1.32) that(1.3.2.1.33).
    </p>
  </content>
  <title(1.4)>Conquering(1.4.1.34) the(1.4.1.35) systems(1.4.1.36)</title>
</book>

(a) XML document fragment with Dewey positions

Figure 3.5: Dewey positions and AllMatches example

The document pre-processing step is done off-line and the result is a set of

documents that contain TokenInfo values. Our tokenizer assumes that words are de-

limited by punctuation and whitespace symbols as in English. We chose to implement

the TokenInfo identifier using Dewey numbering [110]. The Dewey number encodes

the depth-first node path from the document root to each node. For each word, the

identifier contains the Dewey number of the node containing the word appended with

the word’s absolute position in the document. For example, in Figure 3.5(a), the first

occurrence of usability has identifier 1.3.1.1.4, indicating it is contained in the node

with identifier 1.3.1.1 and it is the fourth word in the entire document. For each

distinct word identified during tokenization, we create one inverted-list document

that contains all of the word’s TokenInfo values. Figure 3.5(b) contains the inverted

lists for software, usability, and users.

We chose to represent the inverted lists in XML format. The benefit is that
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all the abstract functions that manipulate positions described in Section 3.3.1 are

expressed as XQuery functions operating over XML values. For example, the XQuery

implementation of getTokenInfo() is given below.

declare function

fts:getTokenInfo( $evalCtx as element()*,

$searchToken as fts:TokenInfo)

as fts:TokenInfo*

{

for $node in $evalCtx,

$pos in fts:getPositions($node, $searchToken/@word)

return

<fts:TokenInfo word="{$searchToken/@word}"

prefixPos="{fn:string($pos/@prefixPos)}"

absPos="{fn:string($pos/@absPos)}"/>

}

For each node $node in the evaluation context, and for each occurrence of the

search word in that node, a TokenInfo value is returned. The getPositions function

accesses the inverted list for $searchToken and returns only those positions that are

included in $node. Testing whether a word position is contained XML node is done

in containsPos() operator, which compares the integer components of Dewey values

hierarchically (e.g., 1.10.1 > 1.9.2). Although the Dewey representation for positions

is a character string (i.e. "1.3.1.43") comparing two Dewey positions is not just a

simple string comparison. The comparison function, CompareHierarchicalStringsBy-

Value(), has to take into account the decimal representation of each component of

the Dewey encoding.

Query Parsing & Translation

As shown in Figure 3.4, the GalaTex parser translates a full-text query

into an equivalent XQuery query. This design was chosen to improve portability,

to avoid direct impact on the GalaxXQuery engine, and to speed implementation.
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This design also allowed us to implement and test subsets of the XQuery Full-Text

specification quite easily while treating the XQuery engine itself as a black box.

Currently, the parser replaces each full-text expression in the original query

with the appropriate composition of FTSelection function calls. Match options are

propagated to the relevant FTWordsSelection calls. For example, consider the fol-

lowing full-text query:

//book[.//p ftcontains ("usability" with stemming) &&

("software" case sensitive) without stemming with

distance at most 10 words ordered]/title

The GalaTex parser produces the following XQuery query:

//book[

( let $ec_1 := (.//p ) return

fts:FTContains( $ec_1,

fts:FTOrdered(

fts:FTWordDistance(-1, 10,

fts:FTAnd(

fts:FTWordsSelectionAny( $ec_1, "usability",

fts:MO_FTStemOption("with stemming",

<fts:FTMatchOptions/>), "1"),

fts:FTWordsSelectionAny( $ec_1, "software",

fts:MO_FTStemOption("without stemming",

fts:MO_FTCaseOption("case sensitive",

<fts:FTMatchOptions/>)), "2"))))))

]/title

In the translated query, each search string has been replaced with a call to the

FTWordsSelectionAny function. In addition to the search string, each of these calls

also passes the evaluation context (i.e., //book//p), the applicable match options,

and the position of the search string in the original query. Although it is used in

multiple calls, the evaluation context is bound to a variable and is only evaluated

once. Note also that the match option without stemming has been propagated into
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each FTWordsSelectionAny call (except for usability with the explicit with stemming

override).

The operators ’&&’, ’distance’ and ’ordered’ have been replaced with calls to

the full-text functions FTAnd, FTWordDistance and FTOrdered, respectively. The

FTOrdered function uses the position information for each search string in the query

to ensure that words are considered in the order in which they appear in the query.

To do this translation, the parser requires and uses very little knowledge of

the XQuery language. In fact, only three tokens were added to our grammar to

handle the XQuery language and its overlap with the XQuery Full-Text grammar.

These additional tokens:

1. identify the start of XQuery expressions and sub-expressions in order to extract

the evaluation context for a full-text expression,

2. identify the return to XQuery from a full-text expression, and

3. disambiguate between parenthesized XQuery expressions and parenthesized

full-text expressions in order to identify XQuery expressions embedded within

a full-text expression.

Since XQuery code can contain full-text expressions which, in turn, can con-

tain XQuery expressions, arbitrary nesting of the languages is possible and is sup-

ported by the parser. In the following example, the result of the embedded XQuery

expression is used as a search string.

//book[.//p ftcontains

(//book[./author ftcontains "Marigold"]/title)

with stemming window at most 15]/title

The translated XQuery for the above expression is:

//book[

( let $ec_1 := ( .//p ) return

fts:FTContains( $ec_1,

fts:FTWindow(-1, 15,
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fts:FTWordsSelectionAny( $ec_1,

(//book[

( let $ec_2 := ( ./author ) return

fts:FTContains( $ec_2,

fts:FTWordsSelectionAny( $ec_2,

"Marigold",

<fts:FTMatchOptions/>, "1")))

] /title),

fts:MO_FTStemOption( "with stemming",

<fts:FTMatchOptions/>), "2"))))

]/title

As expected, all of the XQuery-specific code is passed unchanged to the

XQuery engine, and each full-text expression has been replaced with an FTCon-

tains function call (even in the case where one full-text expression is nested inside

another). Note that each embedded XQuery expression in the original query must

be enclosed in parentheses.

Query Evaluation

Manipulating the Positions We chose to represent the inverted lists in XML

format. The benefit is that the operators that manipulate positions are expressed

as XQuery functions operating over XML values. For example, the expression for

getTokenInfo() is given below.

declare function

fts:getTokenInfo( $evalCtx as element()*,

$searchToken as fts:TokenInfo)

as fts:TokenInfo*

{

for $node in $evalCtx

let $positions:= fts:getPositions($node, $searchToken/@word)

where not(empty($positions))

return
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for $pos in $positions

return

<fts:TokenInfo word="{$searchToken/@word}"

prefixPos="{fn:string($pos/@prefixPos)}"

absPos="{fn:string($pos/@absPos)}"/>

}

Intuitively, it returns for each node $node in the evaluation context all the oc-

currences of the search word $searchToken by the means of getPositions() function.

The latter function checks in the file corresponding to the inverted list of the given

searched word and returns only those positions that are included in the given node.

Testing whether a position is inside an XML node is done in containsPos() operator

by simply testing the Dewey positions. Although the Dewey representation for posi-

tions is a character string (i.e. "1.3.1.43") comparing two Dewey positions is not just

a simple string comparison. The comparison function, CompareHierarchicalStrings-

ByValue(), has to take into account the decimal representation of each component

of the Dewey encoding (i.e. ”1.10” > ”1.9”). This is the XQuery expression for

getPositions():

declare function

fts:getPositions( $node as element(), $searchToken as xs:string )

as element(token)*

{

if (glx:file-exists(fn:concat($searchToken,".xml")))

then

for $entry in

fn:doc(fn:concat($searchToken,".xml"))/invlist

/entry[fts:containsPos( $node,

<fts:TokenInfo word="{$searchToken}"

prefixPos="{@prefixPos}" absPos="{@absPos}"/>)]

return

<token>

{



96

attribute absPos { $entry/@absPos },

attribute prefixPos { $entry/@prefixPos },

attribute name { $searchToken }

}

</token>

else ()

}

As seen above, the position extraction is done on a per node basis. We

would like to improve it by plugging in the getTokenInfo() operator a sort-merge

implementation of the two input lists: the nodes in the evaluation context and the

nodes in the inverted lists. The inverted lists should be organized as a list of XML

node ids each having associated a list of positions. This way the node id will not be

repeated for each word position as in Figure 3.5. For example, the inverted lists of

a given word should contain the most specific XML nodes that contain it together

with a list of positions where that word occurs in this node. The inverted lists are

ordered by node id.

This can be done by keeping the same implementation and replacing the func-

tions that manipulate positions with external functions. This is necessary because

the sort-merge algorithm requires an imperative implementation whereas XQuery is

a declarative language. Thus one step in the evolution of the implementation would

be to implement these functions natively in an imperative language. Moreover this is

possible because XQuery supports external functions. This approach works also for

XQuery Full-Text implementations that are using native indices other than inverted

lists.

FTSelections A library module of XQuery functions implements the semantics

of the FTSelection primitives. We return to a simplified version of the query in

Section 3.3.1 to illustrate how these functions work.

//book[.//p ftcontains ("usability" with stemming) &&

("software" case sensitive) with distance at most 10 words]/title

The equivalent XQuery expression generated by the parser is:
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//book[

( let $ec_1:= ( .//p ) return

fts:FTContains( $ec_1,

fts:FTWordDistance(-1, 10,

fts:FTAnd(

fts:FTWordsSelectionAny( $ec_1, "usability",

fts:MO_FTStemOption( "with stemming",

<fts:FTMatchOptions/>), "1"),

fts:FTWordsSelectionAny( $ec_1, "software",

fts:MO_FTCaseOption( "case sensitive",

<fts:FTMatchOptions/>), "2")))))

]/title

This translation corresponds to the query plan in Figure 3.2. We describe

this plan “bottom up”, beginning with the inner-most function calls to fts:FTWords-

SelectionAny and ending with the outer-most call to fts:FTContains. Note that this

code is valid, executable XQuery code and not merely a pseudo-code description of

a query plan.

The first function, fts:FTWordsSelectionAny, constructs the initial AllMatches.

It calls the FTSingleSearchToken() function whose definition in XQuery expression

is below.

declare function

fts:FTSingleSearchToken(

$evalCtx as element()*,

$searchToken as fts:TokenInfo,

$matchOptions as fts:FTMatchOptions,

$queryPos as xs:string ) as fts:AllMatches

{

<fts:AllMatches>

{

for $position in fts:getTokenInfo($evalCtx, $searchToken)

return
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<fts:Match>

<fts:StringInclude

queryString="{$searchToken/@word}"

queryPos="{$queryPos}">{ $position }

</fts:StringInclude>

</fts:Match>

}

</fts:AllMatches>

}

The above function obtains the positions of the search token and constructs

one AllMatches that contains one Match per position. This function uses getTo-

kenInfo() described in Section 3.3.2. We defer discussion of match options to Sec-

tion 3.3.2. The last argument to FTSingleSearchToken() is ($queryPos), which is a

variable that contains the relative position of the search word in the full-text query.

It is used in conjunction with FTOrder. Figure 3.5(c) shows the AllMatches for

usability with stemming.

The AllMatches values constructed for usability and software are inputs to the

FTAnd function, which computes the Cartesian product of their Matches as follows:

declare function

fts:FTAnd( $allMatches1 as fts:AllMatches,

$allMatches2 as fts:AllMatches)

as fts:AllMatches

{

<fts:AllMatches>

{

for $match1 in $allMatches1/fts:Match,

$match2 in $allMatches2/fts:Match

return

<fts:Match>

{ $match1/*, $match2/* }

</fts:Match>
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}

</fts:AllMatches>

}

This function computes all possible pairs of Matches for usability and software

and returns an AllMatches value. This value is input to FTDistance, which selects

those matches that satisfy the distance condition as follows:

declare function

fts:FTWordDistanceAtMost(

$n as xs:integer,

$allMatches as fts:AllMatches,

$matchOptions as fts:FTMatchOptions)

as fts:AllMatches

{

<fts:AllMatches>

{

for $match in $allMatches/fts:Match

if fn:empty($match/fts:StringInclude) then

$match

else

let $sorted:= for $si in $match/fts:StringInclude

order by $si/fts:TokenInfo/@absPos

ascending return $si

where every $idx in (1 to fn:count($sorted) - 1)

satisfies fts:wordDistance(

$sorted[$idx]/fts:TokenInfo,

$sorted[$idx+1]/fts:TokenInfo,

$matchOptions) <= $n

return

<fts:Match>

{ $match/fts:StringInclude }

{
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let $sortedStrMatch:=

for $si in $match

order by $si/*/fts:TokenInfo/@absPos

ascending return $si

for $stringExcl in

$sortedStrMatch/fts:StringExclude

where some $stringIncl in

$sortedStrMatch/fts:StringInclude

satisfies fts:wordDistance(

$stringIncl/fts:TokenInfo,

$stringExcl/fts:TokenInfo,

$matchOptions) <= $n

return $stringExcl

}

</fts:Match>

}

</fts:AllMatches>

}

Intuitively, the matches that satisfy FTDistance are those for which each pair

of adjacent positions satisfy the distance condition. For each of these matches, the

included positions and only the excluded positions that fall in the specified distance

range are returned.

Finally, FTContains filters the evaluation context and returns only those

nodes that contain at least one match that satisfies all the inclusion and exclusion

constraints.

declare function

fts:FTContains( $evalCtx as element()*,

$allMatches as fts:AllMatches)

as xs:boolean {

some $node in $evalCtx

satisfies



101

(some $match in $allMatches/fts:Match

satisfies fts:satisfiesMatch($node, $match))

};

declare function

fts:satisfiesMatch( $node as element(),

$match as fts:Match )

as xs:boolean {

( every $stringInclude in $match/fts:StringInclude

satisfies fts:containsPos($node,

$stringInclude/fts:TokenInfo))

and

( every $stringExclude in $match/fts:StringExclude

satisfies not(fts:containsPos($node,

$stringExclude/fts:TokenInfo)))

};

Match Options In GalaTex, match options are translated by the parser into a

set of match option functions implemented in XQuery. A match option has the effect

of expanding one search word to a set of words that becomes the new set of search

words for the current full-text query. This expansion occurs in FTSingleSearchTo-

ken(), described in Section 3.3.2, which applies applyMatchOption() before calling

getTokenInfo() for the current search word. The function returns the positions of

all words that result from applying match options to the current search word. This

interface is quite flexible and it allows plugging in any match option implementation.

To implement match options we used the XQuery Functions and Operators

defined in [115], in particular, fn:matches, fn:replace, fn:lower-case, fn:upper-

case. Hence, any XQuery implementation that supports them can be used with

GalaTex.

For example, to find the expansion set of a search word when the case match

option is set to case insensitive, we compare for equality the search word with each

distinct word from the input document. The list of distinct words is generated in
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the preprocessing step. Both words are filtered by fn:lower-case function as in:

let $sToken:= $searchTokens/@word

for $docToken in fn:doc("list_distinct_words.xml")/

ListDistinctWords/invlist/@word

return

if (fn:lower-case($docToken)=fn:lower-case($sToken))

then $docToken

else ()

The same technique works when the regular expression match option is active.

For the special character option we replace the special characters with the following

regular expression ".?" and apply the above regular expression technique.

The stemming operation is language specific. GalaTex uses Galaxbuilt-

in stemmer implementation, which is Porter’s English stemmer [96]. The stemmer

reduces the English words to their word stems. For example, the word connections

would be reduced to its stem connect.

Stop words are reflected in the implementation of FTWindow and FTDis-

tance primitives. More precisely, these primitives skip stop words when specified.

The remaining match options deal with language specifics and character encoding

problems. Their implementation is still underway.

3.3.3 Full-Text Scoring

In this section, we describe our implementation of a scoring technique in Ga-

laTex. Recall that the specification of XQuery Full-Text [114] does not mandate a

specific scoring method. Rather, it defines some requirements on score values based

on the relevance of query answers to a full-text expression (see Section 3.2.2).

The probabilistic relational algebra is a well-established scoring method in

Information Retrieval (IR) [105, 76]. This algebra operates on tuples with a score

attribute. The score of a tuple represents the probability that a tuple contains a

word. A score formula is associated with each algebraic operator which transforms

its input tuples scores into output tuples scores. Since each FTSelection in our

language can be viewed as an algebra operator as illustrated in the query plan in
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Figure 3.2, we propose a natural adaptation of the probabilistic scoring method to

AllMatches and show that it preserves the scoring requirements given in Section 3.2.

We first add a score field to the position structure described in Section 3.3.1

to capture the score of individual positions. This corresponds to adding a score to

each entry in the inverted list. Conceptually, the score of an entry represents the

probability that the entry contains a given word. Hence, the score value should be

a float between 0 and 1. This value can be computed using techniques such as tf

(term frequency) and idf (inverse document frequency) [108].

In order to compute the score of query answers, we associate a score formula

with each FTSelection. Each formula guarantees that answers will have a score value

between 0 and 1. The composition of multiple formulas in a query plan still preserves

that property.

• FTWord builds an AllMatches where each match is assigned the score of the

corresponding entry in the input inverted list.

• FTAnd(AM1, AM2): Given a match m1 in AM1 with score s1, a match m2 in

AM2 with score s2 and an output match m3 that contains m1 and m2, the score

s3 of m3 is: s3 = s1 × s2. This formula is similar to the one used for Boolean

AND the probabilistic relational algebra and preserves the fact that the score

of tuples has to be a value between 0 and 1.

• FTOr(AM1, AM2): Given a match m1 in AM1 with score s1, a match m2 in AM2

with score s2 and an output match m3 that contains m1 and m2, the score s3

of m3 is: s3 = 1− (1− s1)× (1− s2). If m3 contains only m1 or m2, its score

will be equal to that of m1 or m2.

• FTDistance and FTWindow accept an AllMatches AM as input and return an

AllMatches. Given a match m in AM with score s, if m satisfies the FTSelection

then its score s′ is: s′ = s × f where f is a function associated with the

FTSelection and evaluates to a value between 0 and 1. For example, the

function associated with FTDistance(AM, dist) is: distance(m, dist) is f =

1− s/dist.
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Given a query plan, the final AllMatches carries the scores of each match.

In order to score a query answer (i.e., an XML node in the evaluation context), we

compose the scores of those matches that are contained in that XML node. The

composition formula is similar to the one used for FTOr. One could use other

composition formulas such as max.

Note that we do not have specific scoring formulas associated with FTNega-

tion, FTOrder, FTScope and FTTimes. In our framework, these operators do not

modify the scores of their input tuples. One could devise scoring formulas for each

one of them (e.g., FTTimes could rely on the number of occurrences of a word for

scoring). One interesting direction is approximate matching. For example, if two

matches do not satisfy a distance, they might be returned with a lower score.

3.4 Evaluation Strategies

Our strategy to implement the XQuery Full-Text language using XML and

XQuery is general and expedient, but not very efficient. In this section, we explore

improvements to the current query evaluation strategies. We divide this section into

improvements on full-text search and improvements on full-text scoring.

3.4.1 Full-Text Search

Given a query evaluation plan, an obvious optimization would be to push

any of the primitives (FTOrdered, FTDistance, FTWindow, FTScope, FTTimes) as

far down in the evaluation tree based on their selectivity. This is akin to pushing

selections in the relational algebra. Figure 3.6(a) shows pushing FTOrdered. Another

rewriting is short-circuiting the evaluation of FTOr by translating into an XQuery

"or" (see Figure 3.6(b)). If one of the resulting branches evaluates to true, there is

no need to evaluate the other one.

Nodes in an evaluation context might be structurally related, i.e., some might

be descendants of others. One could organize nodes in the evaluation context in a

way that guarantees that the smallest number of context nodes are checked against

AllMatches. A node could be marked as an answer if it contains another node that
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FTOrdered

FTAnd

FTContains

FTOrdered

FTWindow

FTDistance

FTAnd

FTContains

(a) FTOrder rewriting

FTWordsSelection

Token: usability

FTWordsSelection

Token: software

FTOr

FTDistance

FTContains

FTAnd

FTWordsSelection

Token: machine

FTWordsSelection

Token: usability

FTWordsSelection

Token: software

FTAnd

FTDistance

FTContains

FTWordsSelection

Token: machine

FTContains

OR

(b) FTOr rewriting

Figure 3.6: Logical rewritings

has already been marked as an answer. This would avoid checking that node against

AllMatches.

Materializing AllMatches at each step of a query evaluation tree is one of the

main performance bottlenecks when evaluating queries. Pipelining, a well-studied

query evaluation method in databases, would reduce the size of materialized interme-

diate AllMatches. This strategy is used in Quark,4 which implements the TeXQuery

language [24]. All our full-text primitives, except FTTimes, are non-blocking (i.e.,

they permit full pipelining of matches in AllMatches). FTTimes is partially blocking

since it needs to materialize a certain number of matches. Given n search keywords

(searchToken_1, ..., searchToken_N ), the pipeline query evaluation algorithm is as

follows:
4http://www.cs.cornell.edu/database/Quark
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$EC <- XQuery/XPath

for $pos1 in getNextPosition_SortMerge(unmarked($EC), $searchToken_1)

...

for $posN in getNextPosition_SortMerge(unmarked($EC), $searchToken_N)

{

result <- applyPrimitives($pos1,..., $posN)

//check ancestor-descendant relationship

//by computing the least common ancestor (LCA):

if !empty(result) lca=LCA($pos1,..., $posN)

if !empty(lca) markNodes($EC, lca)

//stop condition:

if succeeded in marking new nodes then break OR

if allNodesMarked($EC) then break

}

output Boolean result or the marked nodes in $EC

We could apply the same pipelining idea to nodes in the evaluation context

(i.e., to produce one node at a time). This requires pipelining the execution of the

XQuery engine which might not always be possible depending on the engine that

is being used. In the last case, not all matches would need to be materialized for

a given context node. Figure 3.7 illustrates pipelining both nodes in the evaluation

context and AllMatches for the query given below.

book[.//p ftcontains "usability" && "software"

with distance at most 10 words]

A more ambitious strategy is fully integrating the XQuery Full Text data

model and operators into an XQuery engine. Our strategy to implement each FT-

Selection as an XQuery function permitted rapid prototyping, but unfortunately,

semantic functions do not scale, nor do they permit the flexibility required to do

query optimization techniques across multiple FTSelections. Evolving GalaTex

into a scalable implementation is not simple. Taking the step to a fully optimized

evaluation strategy requires having fine-grained algebra operators that can be manip-

ulated and composed with an XQuery algebra in order to optimize the integration
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FTWordsSelectionAny
     Token: usability

FTWordsSelectionAny
     Token: software

instantiate the next pair of positions
(inverted lists)

FTAnd

FTDistanceAtMost
(at most 10 words)

empty?
yesno

get next node in the EC

Figure 3.7: Pipelining Algorithm

on queries on structure and text. This requires integrating the AllMatches data

model with scoring information into the XQuery data model. In particular, one can

see that in order to achieve early pruning for top-k queries, we need to be able to

push scoring information into an XQuery algebra. How this is achieved is an open

question. However, we believe that adapting the probabilistic relational algebra for

scoring as explained in Section 3.3.3 is a first step towards this integration. This

would also enable scoring on both structure and content as in [28].

3.4.2 Full-Text Scoring

In Section 3.3.3, we showed that in the current GalaTex implementation,

in order to score an answer (i.e., a node in the evaluation context), we produce

an AllMatches that carries a score for each one of the matches that it contains.

This means that we need to materialize all the matches in the AllMatches produced

by a full-text evaluation plan. In the previous section, we discussed a pipelining

approach to reduce the need to materialize all intermediate results. This conflicts

with the need to materialize AllMatches to compute final answer scores. In order to

implement scoring and still benefit from pipelining, we could estimate upper-bounds

on the scores of those matches that have not been materialized and on the number
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Table 3.1: Classification of existing IR engines for XML

IR engines XML
query
engine

Search primitives Weighting
on query
terms

Similarity
operator

Scoring

XQuery Full-
Text [114]
(GalaTex)

XQuery phrase matching, Boolean
connectives, order speci-
fier, proximity distance,
no. occurrences, match
options (stemming, regular
expressions, stop words, case
sensitive)

yes implicit probabilistic
model or
vector
space
model

XIRQL [75]
(HyREX)

XQL phrase matching, Boolean
connectives, $sounds_like$

operator

yes (query
terms and
document
terms)

textual and
context

probabilistic
model

Flexible XML
Search [118]
(XXL)

XML-QL phrase matching, limited
Boolean connectives, LIKE

operator

no textual and
context (sim-
ilarity join)

probabilistic
model

ELIXIR [51] XML-QL phrase matching, limited
Boolean connectives

no textual (simi-
larity join)

vector
space
model

JuruXML [46] Juru phrase matching, limited
Boolean connectives (nega-
tion)

no implicit, tex-
tual and con-
text

vector
space
model

of matches that a node might have in order to compute its scores without having to

materialize all its matches.

3.5 Related Work and Conclusion

In database and IR research, several languages have been proposed for process-

ing XML data on structure and text. The main focus was put on extending existing

XML query languages with full-text search. However, unlike XQuery Full-Text, pre-

vious solutions explore only a few full-text search primitives at a time (e.g., Boolean

keyword retrieval [73, 128], keyword similarity [51, 118], proximity distance [45], rele-

vance ranking [44, 46, 51, 75, 83, 118]). Further, previous techniques did not provide

a seamless integration with XQuery which permits querying both structure and text.

More importantly, these approaches did not develop a fully composable model for

full-text search the way AllMatches does for example.

Various ranking models have been proposed for XML in the IR literature,

including the vector space model [107] and probabilistic models [105, 45]. These

models provide a systematic way to compute the relevance of a document to a query.

Recently, some of these models have been adapted to incorporate document structure
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into account when ranking query answers. This has been the main focus of the

proposals submitted to INEX [9]. In particular, XIRQL [75] and XXL [118] extend

the probabilistic model while JuruXML [46] and ELIXIR [51] extend the vector space

model.

Table 3.1 classifies existing XML full-text search proposals according to avail-

able search primitives and scoring techniques. Many IR engines for XML extend

existing XML query engines as in the second column. We can see in this table that

GalaTex fills a gap in the space of expressiveness of query languages for XML.

Some of these languages incorporate explicit or implicit textual and context (ele-

ment names) similarity operators used in the ranking mechanism. Most of them

have decided to include limited XPath navigation in the input query and allow SQL-

like queries (ELIXIR, XXL, XIRQL). Other languages have considered a more simple

and intuitive query syntax by either specifying the query as an XML fragment (Ju-

ruXML) or in a Google-like style through a list of pairs: element name and keyword

(XSearch). There are different approaches on the granularity of query output. XXL

and ELIXIR are able to return document fragments. On the contrary, XIRQL and

JuruXML focus more on relevance-oriented search and let the engine decide what

nodes to return.

In this chapter, we discussed the implementation of the XQuery Full-Text lan-

guage [114], an extension of XQuery language [113] that provides fully composable

full-text search primitives. The TeXQuery language [24] is the main precursor of

XQuery Full-Text [114]. We presented GalaTex the first conformance implemen-

tation of XQuery Full-Text that is able to query XML documents both on structure

and text content. GalaTex uses XML and XQuery to implement XQuery Full

text, which permits implementation on top of any existing XQuery engine. One in-

teresting direction is to explore the use of an existing IR engine to implement some

FTSelection and benefit from IR scoring techniques for relevance ranking.
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Chapter 4

Optimization of XML Full-Text

Query Evaluation at Publishers

4.1 Need for Efficient Full-Text Evaluation of XML

Queries using Element Nesting

There has been a flurry of recent efforts in designing languages for XML search

and evaluating full-text primitives efficiently due to the increasing number of XML

documents available for search. Such languages range from simple Boolean search

such as [55, 80, 92] to sophisticated full-text primitives combined with XQuery and

XPath [75, 118, 120, 114]. However, there is very little work on the efficient evaluation

of such queries. Most query evaluation algorithms focused on the simple Boolean

case and very little attention has been geared towards the evaluation of a richer

class of queries with full-text predicates such as keyword proximity and order. This

chapter focuses on the efficient evaluation of such predicates and their composition

which involve complex proximity and order predicates on keywords. Our solution

is based on exploiting element nesting to avoid redundant computation of full-text

predicates on XML documents and a more efficient management of term matches by

using a lazy match materialization.

More precisely, our approach relies on a unified treatment of the optimization

of a large class of XML query languages with full-text predicates. The approach

is based on translating them to an algebra which supports rewriting optimizations,

111
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score computation and efficient evaluation, by combining relational set-at-a-time pro-

cessing techniques with XML-specific exploitation of the nested document structure.

Complex full-text predicates are needed to meet the expressivity demands of

increasingly sophisticated XML search applications such as digital libraries [11], and

more recently, the Initiative for the Evaluation of XML retrieval methods (INEX) [9],

a TREC [18]-like effort for XML. The challenges to a unified treatment of XML full-

text search are posed by the variety of expressive powers and semantics. Queries

range from simple keyword search to a complex combination of full-text predicates

and operate on the textual content of leaf elements in the XML document tree,

returning elements satisfying the predicates. Figure 4.1 shows a fragment of an

XML document extracted from the Library of Congress collection [11]. A typical

query would look for

all elements containing the terms Jefferson and education within a
window of 10 words, with Jefferson ordered before education [120, 114].

Existing languages may return the most specific [80, 92] or all elements satisfy-

ing full-text predicates, possibly filtered by a user-specified structured query [75, 118,

120, 114]. For a given answer full-text predicates are checked against occurrences

of query terms (also called matches) that belong to that answer. Predicates are

usually interpreted in one of two ways. Under binding semantics, the same match

within an answer must satisfy all query predicates. Under existential semantics,

query predicates may be satisfied by different term matches within an answer.

Full-text predicates pose a challenge to efficient evaluation. Due to element

nesting in XML documents, evaluating predicates on each element independently

may result in redundant work, as matches nested within an element must be con-

sidered again when evaluating the predicates on its ancestors. The challenge is to

compute the smallest necessary number of elements and matches and use element

nesting to infer qualifying answers. This problem may seem simple at first since

such solutions have been proposed in the past for conjunctive keyword queries (no

predicates) by computing least common ancestors (LCAs) [80, 92, 109, 125]. How-

ever, due to the interplay between expressive full-text predicates which necessitate to

keep track of matches, and flexible query semantics, a direct application of existing

solutions would not suffice.
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on education and workforce
sponsored by Joe Jefferson

introduced the following bill

and was referred to the committee
The bill was reintroduced later

House of Representatives
Current chamber on workforce
and services. Committees on
education are headed by Jefferson

congress−info

bill

committee−name

legis−body

HR 2739

legis

Jefferson
and services ...

legis−session

action

action−desc

Congress on 
education and workforce,
comments to appropriate
services.

nbr sponsors

Others include Jefferson.
Mrs Miller and Mrs Jones.
Mr Column and co−sponsors

Joe Jefferson
on May 2, 2004

109th

legis−desc

(a) Example XML Document

Congress on
  1                2
education and workforce
  3                4         5
comments to appropriate
  6                 7     8
services
  9

109th
  10

Mr Column and co−sponsors
11   12            13      14
Mrs Miller and Mrs Jones
15      16         17     18     19
Others include Jefferson
20            21           22

congress−info

bill

nbr sponsors

. . . 

(b) Example Term Positions

Figure 4.1: XML Document for Example 4.1.1

EXAMPLE 4.1.1. Consider the query given above on the document on Figure 4.1.

Under binding semantics of the predicates, the query returns the empty answer, since

whenever a match forJefferson precedes education, they are too far apart.

A reasonable relaxation of the query involves the more flexible existential se-

mantics, which yields the nodes shown in solid circles in Figure 4.1(a). Each node is
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selected because it contains one match of the query terms which satisfies the order

predicate and another one which satisfies the distance. Prior work [80, 92, 109, 125]

focuses on queries which specify only conjunctions of terms, for which the most spe-

cific answers are sought. These are the LCAs of the elements in which individual

query terms occur. In our example, the set of LCAs is congress-info, action,

action-desc, committee-name, legis-session and legis-desc. The natural ex-

tension to predicate support corresponds to computing with each LCA only the

matches which are not nested within a descendant LCA, as this compressed rep-

resentation suffices to infer all matches. In our example, this means that we only

keep matches contained in action which are not in action-desc. If we now apply

the distance predicate to the LCA set, we obtain action-desc, committee-name,

legis-session and legis-desc since none of congress-info or action contains a

valid pair of matches. The order predicate will then result in legis-session. How-

ever, if we apply the order predicate first, we obtain action and legis-session and

then action only after applying distance.

Both results are incomplete: action is missing in the first result and legi-

s-session in the second. This is due to the fact that matches are only kept within

their most specific element and may be filtered by the predicates. �

One could envision two query evaluation strategies which compensate for the

problem illustrated by Example 4.1.1. First, one could keep with each LCA all query

term matches in its subtree, even those nested within descendant LCAs. This would

lead to redundant computation and defeat the purpose of working with LCAs in the

first place. An alternative fix would simply apply all full-text predicates simultane-

ously to each node. However, we would like to devise query evaluation algorithms

that work regardless of the order in which predicates are applied, guaranteeing full

compositionality of the predicates and with conditions requiring the match of term

conjunctions, disjunctions and negations. We therefore face the challenge of inte-

grating efficient LCA computation with efficient match manipulation (violated by

the first fix), while guaranteeing such properties as commutativity, reordering and

free compositionality for the full-text predicates (violated by the second fix).

The ability to evaluate full-text predicates in an order-independent manner

is an important requirement to enable logical query optimization. We discuss a few
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query rewritings that need to be preserved by our proposed evaluation algorithms.

So far, we have argued that devising a structure-aware algorithm improves

the performance of full-text queries by reducing the amount of work needed to select

qualifying XML elements. Our experiments lead us to the conclusion that match

management has a high impact on the performance of full-text predicates. Informally,

a match is defined as a tuple consisting of positions where the query keywords occur

in an XML element. The number of such occurrences increases with the number of

query terms and the size of the textual content at the document leaves. It is thus

natural to think of devising evaluation strategies which minimize the time needed

to materialize intermediate matches in the same spirit as relational optimizations.

Furthermore, given the existential nature of full-text predicates, finding one witness

match which satisfies the predicate suffices to output its containing element as an

answer. We will thus see how a lazy match materialization helps improve query

performance.

Finally, ranking in our context must account for different query semantics

and guarantee the highest scores for the most relevant answers. Existing relevance

ranking methods discussed in the related work, do not take query predicates into

account. We propose to account for full-text predicates when scoring query answers

and show that element scores can be computed incrementally from their descendant

elements without compromising query performance. Moreover, our scoring method

guarantees that answer scores are preserved among equivalent queries. This is not

always true when other scoring methods are applied.

In summary, this chapter makes the following contributions:

• We introduce a formalization of XML full-text queries in terms of keyword

pattern matches and we present an algebra called XFT which constructs and

manipulates pattern matches using conjunction, disjunction and difference op-

erators, as well as selection with complex full-text predicates.

XFT permits flexible query semantics by supporting binding and existential

interpretations of full-text predicates. Thus, most existing full-text languages

can be expressed in XFT, which enables a uniform treatment of their evalua-
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tion and optimization problems.1 The XFT operators are freely composable,

enabling query rewriting based on algebraic equivalences in the spirit of rela-

tional algebra optimization. Finally, XFT can be seamlessly integrated with

algebras for structured XML search such as [23, 122], thereby enabling the

optimization of queries which combine structured and full-text predicates [44,

55, 75, 118, 120, 114, 128].

• To show the feasibility of efficient evaluation of XFT expressions, we devise

an algorithm called SCU (for Smallest Containing Unit), which minimizes

the number of elements and matches it needs to compute at each operator in

order to evaluate all query answers. Our algorithm combines relational query

evaluation techniques with the stack-based exploitation of element nesting.

While stack algorithms have been widely employed for LCA computation [36,

80, 92, 125], they do not straightforwardly apply to our setting; they violate our

compositionality requirement by consuming input sorted according to the pre-

order traversal of the document and producing postorder-sorted output. The

SCU algorithm takes a novel approach which transforms postorder-sorted input

into postorder-sorted output. This is made possible by the off-line generation

of inverted lists. Besides ensuring compositionality, this facilitates predicate

evaluation since the outcome of the test on the ancestor LCAs depends on the

descendant LCAs, which must hence be tested first.

• We discuss match management, another issue with significant impact on the

performance of full-text predicates and devise a lazy materialization strategy

inspired from relational optimizations to improve query response time.

• XFT operators enable the definition of scoring methods that account for the

satisfaction of query predicates and can thus incorporate flexible query seman-

tics (binding and existential). We show how element scores can be computed

incrementally from their descendants, without compromising the complexity of

evaluating the XFT operators.

1Translation into XFT also yields semantics specifications which are significantly more concise
than the standard-provided ones (see Section 4.2.4.)
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• We conduct extensive experiments to study the trade-offs implied by the use of

element nesting to evaluate full-text predicates and the performance benefits of

a more efficient match management. Our experiments show performance results

of the SCU algorithm. Moreover, they confirm that accounting for element

nesting to evaluate complex full-text predicates improves query response time

by several orders of magnitude when compared to a naive evaluation of the

algebra. Our performance results also compare favorably to GalaTex [61],

the reference implementation of XQuery Full-Text [114].

The chapter is organized as follows. Section 4.2 presents the XFT algebra,

its formal semantics, some algebraic equivalences, and the translation of XQFT [114]

and NEXI [120] into XFT. It also shows how XFT can incorporate answer scoring.

Section 4.3 describes the XFT evaluation algorithms. The performance evaluation

of our algorithms is reported in Section 4.4. We present related work in Section 4.5

and conclude in Section 4.6.

4.2 The XFT Algebra

Formalization of full-text languages. We start from the observation that

typical XML full-text languages (we shall call their family the XQFT class after

the most expressive among them, namely XQuery Full-Text [114]) have a common

characteristic: their semantics can be formalized in terms of the individual matches

of keyword patterns in the input document, possibly filtering them using predicates.

Patterns and Matches. In XQFT-class languages, an expression’s principal

role is to specify patterns which are tuples of terms to be simultaneously matched

against the XML document. A singleton term (k) is a pattern whose matches are

the positions at which the term appears in the document. A term position uniquely

identifies a term match and preserves order and proximity information between terms

in the document. For instance, the term education in Figure 4.1(b) for instance

appears at positions 3 and 45 and 67 further in the document. The matches of a

pattern (k1, k2, . . . , kn) are tuples (m1, m2, . . . , mn) where each mi is a match of term

ki. Since some full-text languages allow negation (see XQFT in Section 4.2.4), an

expression may in general specify an inclusion-exclusion pattern pair such that each
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pair p has two attributes: p.I and p.E, each holding one pattern. Intuitively, such

expressions specify nodes with matches of the inclusion pattern p.I but no matches

of the exclusion pattern p.E. Due to the presence of disjunction, queries may return

sets of inclusion-exclusion pattern pairs. For example, the XQFT expression

(Jefferson && education || committee) && ¬Thomas

specifies the pattern pairs

I E

(Jefferson, education) (Thomas)

(committee) (Thomas)

The matching table. For any XQFT-class language, we define the semantics

of a query Q to be a nested table [[Q]](N,P,M) (called a matching table), where N

is an XML element node, P is a pattern, and M is a set of matches. [[Q]] collects

the matches of all patterns specified by Q as follows: For each inclusion-exclusion

pattern pair p of Q and each XML element N such that N contains no matches of

p.E, the set M of matches of p.I contained in N is non-empty, and N satisfies the

predicates appearing in the query, [[Q]] contains a tuple t where t.N = N , t.P = p.I,

and t.M =M .

EXAMPLE 4.2.1. The matching table for a simple query asking for all elements

containing the term education on the document in Figure 4.1(a) is

N(ode) P (attern) M(atches)

bill (education) {(3), (45), (67)}

congress-info (education) {(3)}

action (education) {(45)}

action-desc (education) {(45)}

committee-name (education) {(45)}

legis-session (education) {(67)}

legis-desc (education) {(67)}

�
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XFT algebra. We designed the XFT algebra to construct matching tables

for queries in all XQFT-class languages, thus enabling a uniform treatment of their

evaluation and optimization problems. XFT facilitates rewriting optimizations and

lends itself to efficient evaluation using algorithms that combine relational query

evaluation techniques with the exploitation of document structure to process XML

queries with complex full-text predicates. Section 4.2.1 defines the XFT data model

and operators which are inspired from relational algebra. In Section 4.2.2, we show

relational-style algebraic rewritings which can benefit optimizations. Section 4.2.4

shows translations into XFT for the XQFT [114] and the NEXI [120] languages.

Section 4.2.3 explains how XFT permits scoring of query answers under flexible

query semantics.

4.2.1 XFT Operators

The XFT operators manipulate matching tables, composing them into new

tables or filtering their tuples according to predicates. This is in the same spirit as

the XQFT data model described in [114]. The formal semantics of XFT is shown

in Figure 4.2 and detailed next. The selection operators in XFT are defined for the

binding and the existential predicate semantics. Ri denote matching tables.

• get(k) returns a table containing one tuple t for each node n with a non-empty

set of matches (denoted matches(n, k)) of term k against the subtree rooted

at n. In Figure 4.2, N denotes the set containing a unique identifier for each

node in the input document collection. The result of evaluating get(services)

on the document on Figure 4.1 is a table containing one entry for each of

congress-info, bill, legis-body, legis, legis-session and legis-desc.

• R1 or R2 returns a table which collects for each node n and pattern p, the

union of the corresponding matches found in R1 and in R2.

• The conjunction operator R1andR2 creates a new table for the nodes with

matches given by both R1 and R2. For each such node n, if Ri states that the

matches of pattern pi under n are the set mi, we may infer that n actually

contains matches of pattern p1 ◦ p2. The operator ◦ concatenates two patterns,
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eliminating duplicate terms. For instance, (k1, k2)◦(k3, k2, k4) = (k1, k2, k3, k4).

The empty pattern () is the identity element: p ◦ () = () ◦ p = p. All elements

contain a match of (). It is easy to see that the matches of p1 ◦ p2 are given by

the natural join of m1 ./ m2.

Since the expressions delivering the operands of and may contain or, the join

of the corresponding matching tables can in principle construct several distinct

tuples agreeing on the N and P attributes. In this case, group coalesces all

matches by union-ing them together.

• R1minusR2 returns the tuples in R1 pertaining to nodes without matches in

R2.

Summarizing, operators get, and, or and minus find for each inclusion-exclu-

sion pattern pair p specified by the expression, the nodes n with no matches of p.E

and the actual matches of p.I under n.

The remaining operators, also referred to as full-text predicates, test various

conditions on the matches (possibly filtering them in the process). For each full-text

predicate P , we provide two operators P b and P ∃, to support binding, respectively

existential semantics. In Figure 4.2, K denotes a pattern k1, . . . , kl, and ΠK(M) the

projection of the set of matches M on the components corresponding to the terms

in K. If the matches in M do not correspond to a pattern which includes the terms

in K, ΠK(M) = ∅.

• timesθn(k1, . . . , kl) applied to an input table R, selects the tuples whose match

count for patterns containing the terms k1, . . . , kl, satisfies the θ-comparison to

the integer n.

• ordered∃(k1, . . . , kl) applied to table R returns the tuples containing some

match in which the position of term ki appears in the document order before

that of the term ki+1 for all i in the input term list k1, . . . , kl. The other flavor

of this operator, orderedb(k1, . . . , kl), drops from each tuple t the matches in

t.M which violate the above ordering condition. If all matches are dropped, so

is t.
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• window∃θn(k1, . . . , kl) applied to an input table R, returns the tuples t ∈ R

containing some match which fulfills the window condition, i.e. in which all

positions of terms k1, . . . , kl, lie within a maximum distance which satisfies the

θ-comparison with integer n.

windowbθn(k1, . . . , kl) drops all non-conforming matches first (dropping also t if

no matches are left).

• dist∃θn(k1, . . . , kl) applied to an input table R, returns the tuples t ∈ R contain-

ing some match which conforms to the condition that the positions of terms

which are adjacent in the pattern (k1, . . . , kl), are at distance satisfying the

θ-comparison with integer n.

distbθn(k1, . . . , kl) drops all non-conforming matches first (and also t if no matches

are left).

EXAMPLE 4.2.2. The query in Example 4.1.1 is expressible in XFT as (we ab-

breviate the terms for readability):

σordered∃(Jeff,edu)(σwindow∃
≤10

(Jeff,edu)(get(Jeff) and get(edu)))

Here we used ordered∃ and window∃ to denote the existential semantics where an

answer must contain at least one match of Jefferson and education that satisfies

window and one possibly different match that satisfies order. 2 �

We now formalize the connection between the results of XFT algebra expres-

sions and the matches of patterns against the input XML trees. Like all XQFT-class

queries, each XFT expression E specifies a set of inclusion-exclusion pattern pairs de-

noted with ppairs(E) and defined formally in Figure 4.3. The XFT operators omitted

from the figure do not affect the set of pattern pairs. The inclusion-exclusion pattern

pair of the expression in Example 4.2.2 is (I = (Jefferson, education), E = ()) –

the query contains no negation and therefore specifies no exclusion pattern.

2To relax the query further and return answers containing only one term, we could replace and

by an outer join.
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Operator Definition
get(k) {t | n ∈ N ,M = matches(n, k),M 6= ∅, t.N = n, t.P = (k),

t.M =M}
R1orR2 group(R1 ∪ R2)
R1andR2 group({t | t1 ∈ R1, t2 ∈ R2, t.N = t1.N = t2.N,

t.P = t1.P ◦ t2.P, t.M = t1.M ./ t2.M})
R1 minusR2 {t | t ∈ R1, t.N 6∈ ΠN(R2)}
σtimesθn(K)(R) {t | t ∈ R, (

∑
{|ΠK(t1.M)| | t1 ∈ R, t1.N = t.N}) θ n}

σordered∃(K)(R) {t | t ∈ R, ∃(m1, m2, . . . , ml) ∈ ΠK(t.M), m1 < m2 < . . .ml}

σorderedb(K)(R) {t | t1 ∈ R, t.N = t1.N, t.P = t1.P,

M = {m | m = (m1, m2, . . . , ml) ∈ ΠK(t1.M),
m1 < m2 < . . .ml},M 6= ∅, t.M =M}

σwindow∃
θn

(K)(R) {t | t ∈ R, ∃(m1, m2, . . . , ml) ∈ ΠK(t.M),

(max1≤i,j≤ldistance(mi, mj)) θn }
σwindowb

θn
(K)(R) {t | t1 ∈ R, t.N = t1.N, t.P = t1.P,

M = {m | m = (m1, m2, . . . , ml) ∈ ΠK(t.M),
(max1≤i,j≤ldistance(mi, mj))θn},M 6= ∅, t.M =M}

σdist∃θn(K)(R) {t | t ∈ R, (m1, m2, . . . , ml) ∈ ΠK(t.M),
∧

1≤i<l distance(mi, mi+1) θ n}
σdistbθn(K)(R) {t | t1 ∈ R, t.N = t1.N, t.P = t1.P,

M = {m | m = (m1, m2, . . . , ml) ∈ ΠK(t.M),∧
1≤i<l distance(mi, mi+1) θ n},M 6= ∅, t.M =M}

group(R) {t | t1 ∈ R, t.N = t1.N, t.P = t1.P,
t.M =

⋃
{t2.M | t2 ∈ R, t2.N = t1.N, t2.P = t1.P}, t.M 6= ∅}

θ ∈ {=, <,≤, >,≥}

Figure 4.2: The XFT Algebra

THEOREM 4.2.1. Let E be an XFT algebra expression consisting only of get,

and, or and minus operators. Then the result of E on any collection of XML docu-

ments is a matching table R such that t ∈ R if and only if there is some pattern pair

pp ∈ ppairs(E) where

(i) t.P = pp.I,

(ii) t.M holds all matches of pp.I under t.N , and

(iii) there are no matches of pp.E under t.N . �
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ppairs(get(k)) = {p | p.I = (k), p.E = ()}

ppairs(E1andE2) = {p | p1 ∈ ppairs(E1),

p2 ∈ ppairs(E2),

p.I = p1.I ◦ p2.I,

p.E = p1.E ◦ p2.E}

ppairs(E1orE2) = ppairs(E1) ∪ ppairs(E2)

ppairs(¬E) =
⋃
{{p1, p2} | p ∈ ppairs(E),

p1.E = p.I, p1.I = (),

p2.E = (), p2.I = p.E()}

(p ◦ () = () ◦ p = p)

Figure 4.3: Inclusion-Exclusion pairs of patterns in XFT expressions

4.2.2 XFT Rewriting Optimization

The main benefit of using an algebra is to be able to apply logical rewritings

to queries while preserving the set of query answers. The design of XFT is highly

influenced by the relational algebra in order to enable typical rewritings such as

pushing selections and join reordering. While a full-fledged rewriting-based optimizer

is subject of future work, our experiments already confirm the expected performance

benefit of rewriting-based optimization (Section 4.4).

The formal semantics of XFT implies a plethora of algebraic equivalences.

We only list a few here that we implemented as a proof of concept. Let us consider

again the query in Example 4.2.2. We have seen that its expression in the algebra is

(we abbreviate the terms for readability):

σordered∃(Jeff,edu)(σwindow∃≤10
(Jeff,edu)(get(Jeff) and get(edu)))

This expression is equivalent to

σordered∃(Jeff,edu) ∧ window∃
≤10

(Jeff,edu)(get(Jeff) and get(edu))
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and to

σwindow∃
≤10

(Jeff,edu)(σordered∃(Jeff,edu)(get(Jeff) and get(edu)))

Now consider adding to this query the condition that the term services

appear after education in the text. This query could be written as

σordered∃(Jeff, edu)(σordered∃(edu,services)(σwindow∃≤10
(Jeff,edu)(

get(Jeff) and get(edu) and get(services)))),

which is equivalent after pushing selections into the and operator, to

σordered∃(Jeff, edu)(σwindow∃≤10
(Jeff,edu)(get(Jeff) and get(edu))

and (σordered∃(edu,services)(get(edu) and get(services))))

Finding LCAs of query terms is a typical implementation of the and operator

which has been widely used in previous work [80, 92, 109, 125]. However, as we

have shown in Example 4.1.1, simply computing LCAs and applying selection pred-

icates does not always return the set of correct answers due to violating the above

equivalences.

Section 4.3 shows our solution to combining the best of two worlds in al-

gorithms that preserve query rewritings and enable the implementation of the and

operator using LCAs.

4.2.3 Scoring

The goal of scoring in the context of XFT is twofold: (i) allow to manipu-

late scored answers in a query plan while preserving the query semantics and, (ii)

define answer scores in a way that guarantees that the score of an element node

can be computed efficiently. We describe a scoring method that conforms to these

requirements.

We assume that scores are stored along with tuples in the initial matching

tables and define term weights as follows:

Term Weights. We adapt the standard tf*idf function [79, 55] to individual
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nodes and compute the weight of a term k for a given leaf node n. This function

is defined as: (i) idf, or inverse document frequency, that quantifies the relative

importance of an individual term in the collection of documents; and (ii) tf, or

term frequency, that quantifies the relative importance of a term in an individual

document. In the vector space model [32], query terms are assumed to be independent

of each other, and the tf*idf contribution of each term is added to compute the final

score of the answer document. Intuitively, since XML queries return elements as

opposed to whole documents, the weight of a term in elements of different types

(tag) may be different. We denote itf, the idf of elements of the same type.

The term frequency tf(n,k) is defined as (occ(k, n) denotes the number of

distinct occurrences of term k in leaf node n):

tf(n, k) =
occ(k, n)

max{occ(k′, n) | k′ ∈ words(n)}

Let T be the set of all nodes that share the same tag as node n, then, itf(n,k)

is defined as:

itf(n, k) = log(1 +
| T |

| {n ∈ T | k ∈ words(n)} |
)

Intuitively, bill elements have a different relevance to a given term than

committee-info elements. The fewer there are elements of the same type, the

higher their itf for a term.

We note that the tf of a node for a term can be inferred from its descendant

nodes while itf needs to be pre-computed and stored with the node. The get operator

in our algebra could be used to retrieve term weights. Next, we define an element

score.

Answer Scores. We define the weight of a term k in an answer s as

tf(s, k) ∗ itf(s, k)
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Given a pattern containing a set of keywords K, the score of an answer is defined as:

score(s) =
∑

k∈K

(tf(s, k)× itf(s, k))

Given this definition, it is easy to see that and can compute the score of

each output tuple using the above formula while or and minus would only need to

preserve input scores. Binding predicates may choose to modify scores in a way that

is different from existential ones thereby enforcing query semantics when computing

scores. Consequently, the use of an algebra permits to better control intermediate

answer scores and decide whether or not individual query operators have an impact

on scores.

Similarly to vector-based scoring, our method assumes independence between

term weights within an element node. Thus, a key advantage of our scoring method

is the ability to compute the score of a node in an incremental fashion from its

descendant nodes without affecting the algorithms complexity. More sophisticated

scoring is possible (though with higher evaluation complexity) if the independence

assumption is relaxed, as in probabilistic IR models [76]. In this chapter, we focus

on independent scoring functions.

4.2.4 Application to XQFT and NEXI

XQFT. XQuery Full-Text (XQFT), an upcoming W3C standard [114], is an

extension of XPath and XQuery to allow with full-text predicates. Wherever XQuery

allows a predicate, XQFT allows the expression ftcontains(E) with E a text search

expression. For example,

/books/book[review ftcontains

((“thumbs”&&“up” ||“must”&&“read”) distance ≤ 1

||(“best-seller” times ≥ 2))]/author

returns all authors of books whose very enthusiastic review contains either the term

pair (“thumbs”,“up”) in close proximity or similarly the pair (“must”,”read”) , or

mentions the term “best-seller” at least twice.
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E → “k′′

| E1&&E2

| E1||E2

| E timesθn

| E ordered

| E windowθn

| E distanceθn

| (E)

| ¬E

θ → = | < | ≤ | > | ≥

k → any term

Figure 4.4: Syntax of W3C’s Standard XQFT

[[k]] = get(k)

[[E1&&E2]] = [[E1]] and [[E2]]

[[E1||E2]] = [[E1]] or[[E2]]

[[E times θn]] = timesθn([[E]])

[[E ordered]] = orderedb([[E]])

[[E windowθ n]] = windowbθn([[E]])

[[E distance θn]] = distbθn([[E]])

[[(E)]] = [[E]]

[[¬E]] = {t | n ∈ N , t.N = n, t.P = (), t.M = {()}}

minus [[E]]

Figure 4.5: Specification of XQFT Semantics in XFT

The syntax of the XQFT expressions that may appear in the scope of the

ftcontains term is given in Figure 4.4. The XQFT primitives not shown in the

figure do not affect the patterns as they do not mention any terms. We define the

binding semantics of XQFT in Figure 4.5.

NEXI. Similarly to XQFT, we show how our algebra captures the semantics

of NEXI [120], the language that is being used within INEX [9] to express XML

search queries. The core expression in NEXI is the about expression which permits
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conjunction of query terms. For example,

/books/book[about(review, “thumbs” “up” “must” “read” “best-seller”)]/author

returns book authors whose review is about one of the terms. NEXI also allows the

specification of weights which is not yet supported in XFT. The syntax of NEXI

is very simple: E → “k′′|E1 E2. We express its semantics through translation into

XFT: [[“k′′]] = get(k), [[E1E2]] = [[E1]] or [[E2]].

4.3 XFT Evaluation Algorithms

Algorithms to compute LCAs of query terms have shown very good perfor-

mance for the evaluation of conjunctive keyword queries [80, 92, 109, 125]. We have

seen in Section 4.1 that their applicability to the evaluation of full-text predicates is

not straightforward. This section presents novel algorithms that implement operators

in the algebra proposed in Section 4.2. Section 4.3.1 describes AllNodes a straight-

forward implementation of our algebra. More efficient algorithms that use element

nesting, are presented in Section 4.3.2. We finish with a brief note on incremental

scoring in SCU.

4.3.1 The AllNodes Algorithm

A key design goal of the XFT algebra was amenability to efficient, set-at-a-

time pattern match construction and filtering by leveraging tried-and-true relational

techniques. Indeed, notice in Figure 4.2 that R1andR2 joins R1 and R2 on N ,

aggregating the M attributes of joining tuples via natural join; R1orR2 corresponds

to taking the union of R1 and R2, grouping it by the N and P attributes, and

aggregating the M attributes by union-ing them; both flavors of ordered,window

and distance are simple selections over theM attribute of each tuple, and times can

be evaluated by grouping on N followed by aggregation using the count function,

with a having clause for the θ-comparison.

We have implemented this evaluation strategy as a proof of concept in the

AllNodes algorithm detailed next.
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Node and Word Identifiers. We choose to represent node and term match

identifiers using the well-established Dewey encoding which enables efficient compu-

tation of the LCA of two nodes (or term matches) as the longest common prefix

of their ids [80, 92, 109, 125]. For example, the id of the first match of the term

services encountered in the document in Figure 4.1(b) is 1.1.1.9 where 1 is the id

of the root node bill, 1.1 is the id of node congress-info and 1.1.1 is the id of the

text node containing the term. Also, testing whether node a is an ancestor of node

d reduces to finding a’s id as a prefix of d’s id.

The get operator. The get operator is implemented using a lookup in a

standard inverted list index [32] IL which associates with each term k the list of its

matches, given by their Dewey ids. The list of matches is stored in top-down, right-

child-first traversal order. get(k) needs to return all nodes containing the match of

k, but the inverted lists only store the immediately containing node, i.e., leaf nodes in

the XML document. While this requires some processing when reading the inverted

lists, the alternative of storing all ancestor nodes of a term match is known to lead to

tremendous space overhead and is commonly avoided [80]. The processing required

to restore all ancestors of a term match is minimal: we obtain their ids as the strict

prefixes of the id of the match. The implementation of get must

1. perform a single pass over the input inverted lists.

2. collect for each node all term matches under it before outputting the node;

3. avoid duplicate output of node ids.

We satisfy all these desiderata using Algorithm 4.1 below.
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Algorithm 4.1 get(k) in AllNodes Implementation
Require: inverted list IL stores matches of k in top-down, rightmost-child-first

traversal order
Ensure: outputs matching table sorted in descending lexicographic order on N

1: initialize stack
2: push(t), where t.N = the root, t.P = (k), t.M = ∅
3: (m,n) = get_next_match(IL, k) . m is the match of k, n its immediately

containing node
4: while (stack not empty) do
5: t=top(stack)
6: if n is a descendant-or-self of t.N then
7: add m to all tuples in stack
8: for (each proper descendant d of t.N which is an ancestor-or-self of n) do
9: push(td), where td.N = d, td.P = (k), td.M = {m} . push higher

nodes first!
10: end for

11: (n,m) = get_next_match(IL, k)
12: else

13: output t and pop the stack
14: end if

15: end while

The algorithm produces the output sorted by the descending lexicographic

order of the Dewey ids of the N attribute. Thus, the task of subsequent operators

is to preserve this order to enable merge-style algorithms, as detailed below.

The and operator. The and implementation performs a merge of the two

(already sorted) inputs. Whenever tuples t1 and t2 have the same value for their N

attribute, the set of matches of the resulting tuple t is computed by taking the natural

join of t1.M with t2.M . This is in keeping with Theorem 4.2.1, since all matches

of the combined pattern under t.N are indeed found this way. The results of the

joins can be large, degenerating in most cases (when the patterns in t1 and t2 do not

overlap) to Cartesian products. These are notoriously expensive to compute, both

in terms of time and space. This computation can be performed lazily, sometimes

avoided entirely, and in most cases preceded by a reduction of the operand sizes.

The idea is to record the two operands of the natural join (worst-case Cartesian

product) in t.M without further computation. To this end, t1.M, t2.M, t.M hold

lists of sets of matches, with the understanding that a list represents the multi-way

join of all its sets, in the order they are listed. We describe below how these matches
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are materialized when evaluating full-text predicates.

The or operator. or essentially unions its operands R1 and R2, grouping

the result by the N and P attributes and union-ing together the matches in each

group. The union is computed by simply merging the operands, which are already

sorted on N , breaking ties by sorting on P . The merge ensures that the output

is ordered on N,P as well. The patterns are compared using lexicographic order

induced by the alphabetic order of the individual terms. The grouping involves no

additional overhead, as the operands are already sorted on the grouping attributes

so each group is listed contiguously in the merge of R1 and R2.

The times operator. times needs to group its operand table on N , counting

the matches in each group. This requires a linear scan, since the table is already

sorted on N .

The Other Operators. All other operators are order-preserving, as they at

most drop tuples from the table. They require one linear scan of the input table.

Avoiding Cartesian product. Recall that the and operator does not ma-

terialize matches, instead simply computing the list of t.M as the append of the

list t2.M and the list t1.M . As long as the result of this and operator is consumed

by other and operators, matches won’t need to be materialized and the lists keep

growing. Materialization is delayed until required by a predicate, at which point the

Cartesian product is pruned by pushing selections into it, using equivalences in the

spirit of those illustrated in Section 4.2.2.

Pipelining. All our operator implementations can be pipelined (the group

operator used to implement and and or is not fully blocking, as its input is sorted).

4.3.2 The SCU Algorithm

The definition of matching tables was primarily introduced with the purpose

of providing a clean formal semantics of XML full-text search which captures various

query language semantics, in particular XQFT (as shown in Section 4.2.4). Matching

tables also enable relational-style evaluation of full-text queries, as demonstrated in

Section 4.3.1.

However, matching tables are not necessarily the ideal data structure to ma-
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nipulate during evaluation. Indeed, by definition of the matching table, whenever

a table R contains a tuple t, R also contains a tuple ta for each ancestor a of t.N ,

and t.M is included in ta.M . t.M is therefore redundantly stored in R, forcing the

AllNodes algorithm (especially the full-text predicates) to repeatedly visit its con-

tents. The redundancy increases with element nesting, i.e., the depth of node td in

the document.

In this section, we introduce an alternative evaluation algorithm that oper-

ates on tables which eliminate precisely the redundant storage of the descendant’s

matches in the ancestor. These tables, called SCU tables (for Smallest Containing

Unit), lead to smaller intermediate results and therefore to potentially better over-

all performance. Our experiments (Section 4.4) show that this potential is indeed

reached.

DEFINITION 4.3.1. (SCU tables) SCU tables have the same schema as match-

ing tables, but satisfy:

1. for every pair of tuples ta, td such that ta.N is an ancestor of td.N and ta.P =

td.P , the descendant’s matches are not repeated in the ancestor’s: ta.M ∩

td.M = ∅. We call ta.M the direct matches of node ta.N and td.M inherited

matches of node ta.N .

2. there is no tuple ta such that ta.M = ∅ and such that

|{td | td.P = ta.P, td is descendant of ta}| = 1

�

An immediate implication on SCU tables is that in any tuple t, t.N is the

LCA of all matches in t.M .

EXAMPLE 4.3.1. Recall the matching table of the term education in Exam-

ple 4.2.1. Its corresponding SCU table is given below, this time revealing the Dewey

ids of the nodes and positions:
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N P M

1.1 (education) {(1.1.1.3)}

1.2.2.2 (education) {(1.2.2.2.1.45)}

1.3.2 (education) {(1.3.2.1.67)}

�

SCU tables contain the same information as matching tables, but in a com-

pressed way. Any matching table can be reduced into an SCU table: for each

tuple ta, remove from ta.M the set td.M whenever td.N is a descendant of ta.N and

ta.P = td.P , and drop ta altogether if ta.M becomes empty and if there is precisely

one tuple td with td.P = ta.P and where td.N is a descendant of ta.N . We call this

operation reduce. Its inverse is called expand and it turns an SCU table into a

matching table in the obvious way.

The SCU algorithm takes an XFT expression E and a list of SCU tables

S1, . . . , Sn and returns an SCU table SCUE(S1, . . . , Sn). The SCU algorithm is

semantically equivalent to the XFT algebra, in the sense that for any matching

tables R1, . . . , Rn and any XFT expression E,

E(R1, . . . , Rn)

= (†)

expand(SCUE(reduce(R1), . . . , reduce(Rn))).

SCU tables are possible due to the XML tree structure since they rely on ele-

ment nesting information stored in Dewey ids to expand into matching tables. SCU

tables lead to a significant simplification in the implementation of the get operator,

which now needs to output for each term match only the immediately containing

node but none of the ancestors. The implementation of the orderedb, distb,windowb

operators is not affected, as all they do is filter matches, dropping the ones who vio-

late the filtering condition regardless of whether they are stored redundantly. There

is no change of semantics if these full-text predicates work on SCU tables instead of

matching tables. However, the runtime performance is improved as fewer tuples are

inspected, and shorter lists of matches per tuple are scanned.

The conciseness of SCU tables comes at a price though: it poses new problems
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to the evaluation of the other full-text predicates, as well as the and operator, in the

sense that directly applying their AllNodes implementation to SCU tables breaks

requirement (†), as detailed below.

and can no longer be computed as an equĳoin on the N attribute, as illus-

trated by the following example.

EXAMPLE 4.3.2. Consider the XFT expression

get(Column) and get(introduced)

For the document in Figure 4.1(a), there is only one match of the term

Column and of introduced. The immediately containing nodes are sponsors, re-

spectively action-desc. Let RColumn and Rintroduced be the SCU tables returned by

get(Column) and get(introduced) according to the SCU implementation. These

contain one tuple each, tColumn ∈ RColumn with tColumn.N = sponsors, and similarly

for tintroduced ∈ Rintroduced. The LCA bill of sponsors and action-desc contains

a match of pattern (Column, introduced), but the equi-join of tColumn with tintroduced

is empty, failing to produce the corresponding tuple. The expand operation cannot

remedy the problem, as the expansion of an empty table remains empty. In contrast,

by Theorem 4.2.1, since (Column, introduced) has a match under bill, and should

output such a tuple as is indeed the case in the AllNodes implementation. �

The ordered∃,dist∃, window∃ and times operators are affected as well if op-

erating on SCU tables. The semantics of full-text predicates depends on all matches

appearing under a node, which is why in the matching table, each tuple t is self-

contained for the purposes of predicate evaluation: all matches under node t.N are

collected in t.M . The full-text predicates can therefore be evaluated locally on each

tuple, akin to predicates in relational selections. In contrast, an SCU table keeps

the matches relevant to the evaluation of a full-text predicate on node ta.N dis-

tributed across several tuples corresponding to descendants of ta.N . In this case,

full-text search predicates are turned into global aggregation operations working on

the entire table. This is illustrated in Example 4.1.1. We summarize it here.
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EXAMPLE 4.3.3. Recall that the query in Example 4.1.1 is

σordered∃(Jeff,edu)(σwindow∃
≤10

(Jeff,edu)(get(Jeff)and get(edu)))

Node action is returned since it contains one match for each of the query

terms satisfying ordered∃ and one satisfying window∃. However, since the match

satisfying ordered∃ (resp., window∃) violates window∃ (resp., ordered∃), each match

would be filtered prematurely regardless of the order of predicate application. �

We compensate for these problems by adapting the implementation of the

affected operators as follows.

The and operator. The previous example shows that the equi-join does not

work on SCU tables, and that two tuples t1 ∈ R1, t2 ∈ R2, despite not agreeing

on their N attribute, carry matches relevant to the LCA of t1.N and t2.N . This

suggests an immediate fix: when “joining” tuples t1 and t2, output the tuple t with

t.N = LCA(t1.N, t2.N), t.P = t1.P ◦ t2.P, t.M = t1.M ./ t2.M .

This approach poses significant efficiency challenges. Since any two nodes

from the same document have an LCA (the document root in the worst case), the

tempting but naive implementation involves a Cartesian product. A more efficient

alternative would be to adopt one of the state-of-the-art stack-based algorithms de-

veloped in prior work to evaluate conjunctive keyword searches in XML documents

by computing the LCAs of the matches, without keeping track of the matches them-

selves [125], or without evaluating any full-text predicates on them [36, 80].

Preorder versus Postorder Incompatibility. The immediate adaptation

of existing stack-based algorithms to our needs is precluded by the fact that existing

algorithms assume the input sorted in preorder, but produce their result in postorder.

This is not a problem in prior works, which focus only on computing LCAs of a

conjunctive patterns without post-processing the result. In our setting this mismatch

precludes operator compositionality.

Compositional Stack-Based Algorithms. We propose a stack-based so-

lution yielding an efficient single-pass algorithm which computes S1 and S2, where

S1, S2 are SCU tables sorted in postorder traversal order. The result is also sorted

in postorder, thus facilitating the seamless composition of and operators with each
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other (and, as we shall see below, with all other operators) without any interven-

ing sorting step. This is important for evaluation performance, and essential for

enabling pipelined implementation. Though stack-based processing is not a new

idea, the solution for consuming input in postorder is novel and guarantees efficient

compositionality of our algebra operators.

Algorithm 4.2 (on page 138) uses a stack containing descendant LCAs and

their matches for consideration by ancestor LCAs.

The stack holds tuples of schema

(L,Dir1,Dir2)

and the algorithm maintains the invariant that, according to the input consumed so

far,

• L is an LCA of at least one pair of matches from S1 × S2;

• Dir i is a set of matches (called the direct matches) from Si, each contained in

L but occurring in no LCA which is a proper descendant of L;

• The LCAs in the L attribute of the stack entries reside on the same root-to-

leaf path, with the deepest LCA at the top of the stack. This is achieved by

pushing a newly computed LCA only if it is a descendant of the stack top’s

LCA, top().L.

The stack is maintained while two cursors are advanced in a single pass over

the input SCU tables S1 and S2, reading tuples s1, s2 respectively.

If the new LCA l computed at line 20 is greater in postorder than top().L (line

22 in Algorithm 4.2), the postorder sorting of the inputs guarantees that no further

descendant LCAs of top().L can be encountered and we can pop and output the

latter (lines 26–27). Additionally, if the newly computed LCA l is not an ancestor of

top().L, there is a new LCA l′ induced by top().L and l (computed at line 24), and l′

must be pushed (line 41) on the stack before l (line 44), to maintain the descendant-

last invariant for stack LCAs. Notice that l′ has no direct matches, since they are

all nested within l and top().L.
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If the new input contributes to the same LCA as top().L (line 30), this input

is recorded in the top stack tuple (lines 30–36), since we need to accumulate all direct

matches contributing to the LCAs.

Finally, the new input can generate an LCA l which is a descendant of top().L.

At this point (line 36), we know that the input matches are not direct matches for

top().L, and they must be removed from the top().Dir i lists (lines 37–40). Moreover,

l is pushed on the stack since now we expect the remaining input to contribute to

its descendant LCAs (line 44).

When a stack tuple o is output, we generate SCU table tuples t from it. This

involves setting t.N = o.L and computing the matches corresponding to the pairs in

the Cartesian product o.Dir1 × o.Dir2 (not shown in the pseudocode).

The node operations performed by Algorithm 4.2 are all very well supported

by Dewey ids. Indeed, checking that l is larger than top().L in postorder (line 22)

reduces to checking that the Dewey id of l is either lexicographically larger than or

a strict prefix of the Dewey id of top().L. Similarly for the tests in line 14. The

ancestor test in line 26 reduces to testing that the Dewey id of l′ is a strict prefix of

top().L’s id. The LCA computations are implemented as simply finding the longest

common prefix of the operands.
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Algorithm 4.2 SCU Implementation of and Operator - Part 1
Require: S1, S2 are SCU tables sorted in postorder on N
Ensure: outputs SCU table corresponding to reduce(expand(S1) and expand(S2))

sorted in postorder on N attribute
1: initialize stack
2: open cursors on S1 and on S2

3: s1 ← get_next(S1), s2 ← get_next(S2)
4: l ← LCA(s1.N, s2.N)
5: push(L = l,Dir1 = {s1},Dir2 = {s2})
6: while (at least one cursor can advance) do
7: if (EOF(S2)) then
8: s1 ← get_next(S1);
9: else if (EOF(S1)) then

10: s2 ← get_next(S2)
11: else
12: s′1 ← look_ahead(S1); l1 ← LCA(s′1.N, s2.N)
13: s′2 ← look_ahead(S2); l2 ← LCA(s1.N, s

′
2.N)

14: if ((l1 <post l2 or l1 = l2 and s1.N ≤post s2.N) then
15: s1 ← get_next(S1)
16: else
17: s2 ← get_next(S2)
18: end if
19: end if
20: l ← LCA(s1.N, s2.N)
21: l′ ← l
22: if (l >post top().L) then
23: if (l is not ancestor of top().L) then
24: l′ ← LCA(l, top().L)
25: end if
26: while (l′ is ancestor of top().L) do
27: o← pop(); output o
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Algorithm 4.3 SCU Implementation of and Operator - Part 2
28: end while
29: end if
30: if (l′ = top().L) then
31: if (S1 cursor was last to advance) then
32: top().Dir1 ← top().Dir1 ∪ {s1}
33: else
34: top().Dir2 ← top().Dir2 ∪ {s2}
35: end if
36: else
37: if (non-empty stack) then
38: top().Dir1 ← top().Dir1 \ {s1}
39: top().Dir2 ← top().Dir2 \ {s2}
40: end if
41: if (l′ 6= l) then
42: push(L = l′,Dir1 = ∅,Dir2 = ∅)
43: end if
44: push(L = l,Dir1 = {s1},Dir2 = {s2})
45: end if
46: end while
47: while (non-empty stack) do
48: o← pop(); output o
49: end while

Evaluation of Full-text Predicates. Since each SCU tuple contains only

the direct matches under its nodes, but the predicates depend also on indirect

matches, their evaluation needs to fulfill the following requirements:

• detect that a descendant already satisfied the predicate and hence the ancestor’s

matches needn’t be tested

• if a descendant tuple td does not satisfy the predicate, before dropping td its

direct matches must be propagated to the tuple ta of its immediate ancestor.

The matches are needed, as they might satisfy predicate operators higher up

in the plan.

These requirements suggest a natural evaluation strategy, which exploits and pre-

serves the postorder sorting of the inputs, leading to full compositionality of all

operators. The strategy calls for considering descendants first, using a stack to prop-

agate matches to ancestors, as detailed in Algorithm 4.4 (on page 141). The stack
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tuples have schema (T,D) where T is an SCU tuple and D a boolean flag. The

algorithm maintains the invariant that D is set to true iff the predicate is satisfied

by T.N or any of its descendants consumed so far from the input. When a new tuple

s is read, if s.N is an ancestor of the node at the stack top top().T.N , we cannot

expect further input to contribute any descendants of top().T.N , and it is safe to pop

(line 16). If the popped D flag is set to true, we record that s satisfies the predicate

(line 11) through its indirect matches, so the predicate need not be checked on the

direct matches of s (line 18). Otherwise, we drop the descendant (but not before

propagating its matches to s (line 14)) and we check the predicate on s (line 19). If s

satisfies the predicate either through direct or indirect matches, it is output. Either

way, s is pushed on the stack (line 24) together with the verdict on the predicate’s

satisfaction, for subsequent consumption by ancestors of s.N .
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Algorithm 4.4 SCU Implementation of Full-Text Predicates
Require: S is an SCU table sorted in postorder on N the predicate P ∈
{ordered∃,window∃, dist∃} applies to individual SCU tuples

Ensure: outputs SCU table corresponding to reduce(σP (expand(S))) sorted in
postorder on N

1: initialize stack; open cursor on S
2: s← get_next(S); satisfies← P (s)
3: if (satisfies = true) then
4: output s
5: end if
6: push(s, satisfies)
7: while (not EOF(S)) do
8: s← get_next(S); satisfies← false
9: while (s.N is ancestor of top().T.N) do

10: if (top().D = true) then
11: satisfies = true
12: else
13: s.M ← s.M ∪ top().T.M . propagate matches to ancestor
14: end if
15: pop()
16: end while
17: if (satisfies = false) then . only check predicate if descendants violate
18: satisfies← P (s)
19: end if
20: if (satisfies = true) then
21: output s
22: end if
23: push(T = s,D = satisfies)
24: end while

EXAMPLE 4.3.4. The query plan on Figure 4.6 illustrates the input and output

SCU tables of Example 4.1.1. For instance, node legis-session (Dewey 1.3) is

selected due to the propagation of its Jefferson match 1.3.2.1.72 by the ordered∃

predicate. The final set of answers is action, legis-session and bill. �

Algorithms Complexity. For each tuple consumed from the input, Algo-

rithm 4.2 performs constant-time stack manipulation operations, computes an LCA

(which depends on the length of the common prefix of the Dewey ids), and later, upon

popping the tuple, it generates matches. When applied to inputs |S1| and |S2 and

producing output |S|, the running time contains: a linear component in the size of the

inputs |S1|+ |S2|; a linear component in the size of the output |S|; denoting with D
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orderedE

get (Jefferson) get (education)

windowE

  1.1.1            1.1.1.3
  1.2.2.2        1.2.2.2.1.45
  1.3.2          1.3.2.1.67

1.1.3         1.1.3.1.22
1.2.2.2     1.2.2.2.1.51
1.2            1.2.1.28
1.3.1.2     1.3.1.2.1.54
1.3.2        1.3.2.1.72

1.1          Jefferson    education
               1.1.3.1.22  1.1.1.3

1.2.2.2    1.2.2.2.1.51  1.2.2.2.1.45

1.2          1.2.1.28       1.2.2.2.1.45

1.3.2       1.3.2.1.72    1.3.2.1.67

1.3          1.3.2.1.54    1.3.2.1.67

1.3        1.3.2.1.54  1.3.2.1.67
             1.3.2.1.72  1.3.2.1.67

1.2       Jefferson      education
            1.2.1.2.8      1.2.2.2.1.45
            1.2.2.2.1.51 1.2.2.2.1.45

1          1.1.3.1.22  1.1.1.3

1.3        1.3.2.1.54  1.3.2.1.67
             1.3.2.1.72  1.3.2.1.67

1.2       Jefferson      education
            1.2.1.2.8      1.2.2.2.1.45
            1.2.2.2.1.51 1.2.2.2.1.45

1          1.1.3.1.22  1.1.1.3

Figure 4.6: SCU Execution for Query in Example 4.1.1

the maximum nesting depth of a discovered LCA, it performs for each LCA at most

D operations of scanning the Dewey id. The total number of LCAs is upper-bounded

by the smallest size among |S1| and |S2|: O(|S1| + |S2| + |S| +D ×min(|S1|, |S2|).

Algorithm 4.4 runs in time worst-case linear in the size of the input, |S|, if the pred-

icate is not satisfied and all matches end up being inspected and propagated up the

XML hierarchy.

Scoring. It is easy to see that the use of a stack in Algorithm 4.4 provides

direct access to the descendants of a node, found at the top of the stack when the node

gets pushed. This is compatible with the incremental computation of the score of a

node from its descendant nodes. The node’s score can be easily updated/recomputed
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as long as the scoring function depends on descendants only.

4.3.3 Match Management in SCU Operators

We now discuss the management of matches in the evaluation of the SCU

and operator and the full-text predicates. For the sake of presentation simplicity,

these subtle tasks were not detailed in the pseudocode of Algorithms 4.2 and 4.4.

Eager match materialization. A direct implementation of the match man-

agement in the operators according to the specification of their semantics in Sec-

tion 4.2.1 would manipulate matches as follows. SCU tables would indeed represent

for each tuple t in the table the set of matches t.M associated to node t.N as a set

of tuples, one tuple per match. Upon consuming two SCU tuples ta and tb from its

inputs, the and operator would, after some stack manipulations, finally output a new

tuple o whose node o.N is the LCA of ta.N and tb.N , and whose set of matches con-

tain the Cartesian product of ta.M and tb.M (making sure that only direct matches

are stored). The straightforwardness of this implementation strategy comes at a

price, namely an explosion in the number of matches in o.M . In general, the subplan

corresponding to a conjunctive query of k keywords, each occurring an average of

c times in the document, would in the worst case yield nodes with O(ck) matches.

We call this strategy the eager match materialization strategy, since it materializes

matches within the and operators, before these matches are even needed by the

predicates.

Lazy match materialization. In our implementation, we adopted the lazy

match materialization alternative, based on two key observations. First is a clas-

sic insight from relational query evaluation: avoiding the large intermediate results

yielded by Cartesian products by turning sequences of products followed by selec-

tions into joins. Second, we observe that predicates need not test all matches of a

given node: finding one witness match which satisfies the predicate suffices to output

the node.

Consequently, we picked a representation of SCU tables which minimizes the

match manipulation overhead in and operators, storing just enough information to

enable materialization later, during predicate evaluation. At that time, we interleave
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the process of match materialization with that of predicate testing, aggressively

pruning match materialization steps. More specifically, in any tuple t of the SCU

table we represent the matches of a pattern (k1, . . . , kn) only implicitly, by storing

n lists: to each keyword ki, we associate the list Li of its matches. The matches of

the entire pattern correspond to the Cartesian product of these lists, which however

we do not compute in the and operator. Instead, match manipulation in the and

operator reduces to simple list concatenations.

At predicate evaluation time, we conceptually need to compute the Cartesian

product of the lists, then filter the obtained matches through the predicate, dropping

the SCU table entry if no matches qualify. In practice, we iterate over the lists using

n nested loops, each nested loop attempting to extend the partial match given by

the current iteration of its outer loops. If we detect that a partial match already

violates the predicate such that no extension to a full match can satisfy it, the

inner loop searching for match extensions is skipped. This procedure corresponds to

an n-way nested-loop join of the position lists, pushing the selection predicate into

the join. This effectively prunes the materialization work for all extensions of the

violating partial match. Testing that a partial match violates a predicate p involves

exploiting p’s specific semantics and is done on a predicate-by-predicate basis. For

example, if p = window < 5, it suffices to find two positions in the partial match at

distance higher than 5 to know that no extension of the partial match can satisfy

p. Notice that the same cannot be done for p = window ≥ 5, but the latter is

less frequently used than the former version, as typical queries tend to care about

keywords occurring in close proximity. Similarly, if p = ordered, it suffices to find

two adjacent positions which are out of order in the partial match to prune any of

its extensions to full matches. Similar reasoning allows us to extract pruning criteria

for the remaining predicates.

The representation of matches using individual keyword position lists also

speeds up match propagation. Recall from Section 4.3.2 that when all of a node’s

matches violate a predicate, the node’s entry is dropped from the SCU table and its

matches are propagated to the lowest ancestor’s entry. In the chosen representation,

propagation becomes trivial: migrating the matches of a pattern p to an ancestor who

also has matches of pattern p consists in simply concatenating the lists corresponding
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to the same keywords.

Note that for queries involving no predicates, the match materialization never

happens. For queries with predicates, no materialization occurs in the predicate-

free subplans. This is why in the experiments (Section 4.4), we isolate the LCA

computation and stack management tasks from the match materialization task by

running experiments with both predicate-free and selection queries.

4.3.4 Correctness of SCU Algorithm

We sketch the key ingredients behind the proof of correctness of the SCU

algorithm, which states that the evaluation algorithm returns the result specified

by the formal XFTalgebra semantics as given in Section 4.2. This statement is

formalized in equation (†) in terms of the two operators reduce and expand, defined

in Section 4.3.2.

We call a matching table T reduced if T = reduce(T ).

Given an XFT operator o, we denote with oSCU its implementation according

to the SCU algorithm. It is easy to see that statement (†) follows straightforwardly

by induction on the structure of the XFT expression from the following statements:

Let o be an arbitrary XFT operator except for get. o may be unary or binary,

its arity is clear from the context in the statements below. Let T, T1, T2 be arbitrary

reduced matching tables sorted on attribute N in postorder (notice that this makes

them SCU tables by definition). Then

o(expand(T )) = expand(oSCU(T )) (4.1)

o(expand(T1, T2)) = expand(oSCU(T1, T2)) (4.2)

and

oSCU(T ) is a reduced table sorted on N in postorder (4.3)

oSCU(T1, T2) is a reduced table sorted on N in postorder (4.4)
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and (for the base case of the induction)

get(k) = expand(getSCU(k)) (4.5)

We briefly sketch the steps and intuition behind the proofs of these statements.

(4.5) follows immediately from the way inverted index lists are stored, namely

listing only the nodes directly containing the keywords.

(4.4) is most interesting for the case o = and. In this case, lines 20–49 in

Algorithm 4.2 are responsible for maintaining the invariant detailed on page 136,

which essentially states that all LCAs on the stack reside on the same root–leaf path

in the tree, with the deepest LCA at the top of the stack. This results in a postorder

output of the nodes. It also facilitates the direct match management for the LCA

at the top of the stack whenever a new LCA is found which is its descendant. This

in turn allows the removal of any LCAs without direct matches during the output

operation, thus ensuring that the resulting table is reduced. Details on how the in-

variant is maintained by the various steps of the algorithm are given on page 136.

(4.3) pertains to Algorithm 4.4 for predicate evaluation. Because of the same

invariant that the stack contains at every step a list of nodes residing on the same

root-leaf path, with the deepest node on top, the order in which nodes are output

is postorder. Moreover, nodes with no direct matches satisfying the predicate are

popped and dropped, while their matches are propagated by simply migrating them

to the new stack top which corresponds to the lowest ancestor of the popped node.

This ensures that the output table is reduced.

(4.1) also refers to predicate operators, and requires us to prove the claim

that Algorithm 4.4

(i) misses no node with direct matches which satisfy the predicate, and

(ii) for these nodes misses none of their direct matches, whether they satisfy the

predicate or not.
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Once this claim is proven, the expansion of the resulting table must yield (by

definition of the expand operator) all nodes having some match which satisfies the

predicate.

The claim follows from the fact that predicate evaluation does not compute

any new nodes, it only drops them from the table. Dropping happens only if all

direct matches violate the predicate (yielding (i)), but even then the matches are

propagated to the lowest ancestor due to the stack invariant (yielding (ii)).

(4.2) for the case o = and has the most interesting proof. Here we need

to show that the SCU Algorithm 4.2 for and misses no LCAs with direct matches

obtainable from the two input tables S1 and S2. If all pairs of in the Cartesian

product S1×S2 were inspected, the claim would follow immediately, but at the cost

of quadratic running time. However, the two tables are scanned linearly by advancing

cursors s1 and s2. The cursor management is given in lines 6–19 in Algorithm 4.2.

Whenever cursor s1 is advanced to the lookahead s′1, the pairs involving s1 and the

remaining tuples in S2 are pruned from consideration. We need to show that any

LCA yielded by such a pruned pair would also be yielded by the pairs involving s′1.

We say that s′1 subsumes s1 in that case. Showing that s′1 subsumes s1 whenever the

cursor advances from latter to former (and symmetrically for s′2 and s2) involves a

detailed case analysis on where s1, s′1, s2, s
′
2 may lie in the tree with respect to each

other. Many cases are eliminated due to the fact that both S1 and S2 are ordered in

postorder.

4.4 Experiments

We first perform a series of experiments that demonstrate the superiority of

the SCU over the AllNodes algorithm (Section 4.4.2).

In Section 4.4.3, we carry out a more in-depth evaluation of the SCU algo-

rithm, isolating the overheads due to various tasks such as the stack management,

the propagation of matches to ancestor nodes, and the materialization of matches

during predicate evaluation. We also demonstrate the benefit of using relational-style

query rewritings such as pushing predicates into the joins.
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Finally, we compare the SCU algorithm with GalaTex [61] a conformance

implementation of XQuery Full-Text [114], and the TeXQuery Quark implementa-

tion 3 (Section 4.4.4).

4.4.1 Experimental Setup

Each experiment involves generating the appropriate data sets, building the

corresponding indices and evaluating full-text queries over the data using various

query evaluation algorithms.

The data sets.

Naturally, we investigated the scalability of our algorithms with increasing

document size. Moreover, since the focus of the SCU algorithm is on exploiting

the nested document structure to avoid redundant computation, we also studied

its behavior when increasing document depth. To control the size and depth while

using realistic data, we started from a large real dataset, namely the DBLP XML

document [3], and varied the size by incrementally appending snapshots of the DBLP

data. We used the November 2005 snapshot of the DBLP bibliography which lists

over 700,000 articles totaling 300MB.

To isolate the effect of document size we generated a family of synthetic

documents of increasing size while keeping the depth constant. Each document

was generated from a chain of 10 elements nested within each other (9 single-child

internal elements and one leaf element) by embedding n sibling copies of the real

DBLP snapshot into the chain’s leaf element, where n is an integer parameter. A

nesting depth of 10 is representative of a large class of documents. In order to

further understand the behavior of our algorithm, we also investigated the effect of

significantly higher document depth, as described below.

We isolated the effect of document depth by generating a family of documents

of increasing depth yet with constant text content. To this end, we started from a

chain of depth m (with m a parameter ranging up to 70) elements with no text

content, inserting one copy of the DBLP snapshot into the chain’s leaf element.

3http://www.cs.cornell.edu/database/quark
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We also ran experiments on the Wikipedia XML Corpus [65] by considering

different snapshots of the articles in the first 550MB. The English Wikipedia has a

mean document depth of about 6.72. While DBLP is relatively flat and has regular

structure, Wikipedia consists of irregularly structured elements describing a web-

based encyclopedia.

The queries.

To study the behavior of both algorithms with increasing query complexity,

we varied the number of keywords and full-text predicates per query. The queries

used in the experiments are listed below.

Table 4.1: XML full-text queries used in experiments

Q Query description
Q1 get(Alin) and get(Fernandez) and get(Alon) and get(Levy) and

get(Mary)
Q2 σwindow∃<5

(Alin,Fernandez,Alon,Levy,Mary)Q1

Q3 σwindow∃>1
(Alin,Fernandez,Alon,Levy,Mary)Q1

Q4 σdist∃>5
(Alin,Fernandez,Alon,Levy,Mary)Q1

Q5 get(Alin) and get(Fernandez) and get(Alon) and get(Levy) and

get(Mary)
and get(Deutsch) and get(Daniela) and get(Florescu) and get(Dan)
and get(Suciu) and get(Language)

Q6 σwindow∃<5
(Alin,Fernandez,Alon,Levy,Mary)(get(Mary) and

σwindow∃<5
(Alin,Fernandez,Alon,Levy)(get(Levy) and

σwindow∃<5
(Alin,Fernandez,Alon)(get(Alon) and

σwindow∃<5
(Alin,Fernandez)(get(Fernandez) and get(Alin)))))

The query term frequencies for one DBLP snapshot are shown in the table

below. With multiplicity of the number of snapshots the frequencies also multiply.

For example for a 10-copies snapshot of DBLP we have 10 times the frequencies

specified in the table for each keyword.

The measurements.

Conforming to common practice [85], we report only the query execution

times, which do not include the times to access the inverted lists since they depend
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Table 4.2: Query term frequencies for DBLP snapshot

Term DBLP snapshot (300MB)
Alin 64
Alon 651
Dan 2404
Daniela 595
Deutsch 144
Fernandez 246
Florescu 63
Language 9008
Levy 502
Mary 1757
Suciu 124

solely on the underlying database/storage engine backend (Berkeley DB in our case).

All times are reported in milliseconds. Each value reported in our graphs is an average

collected from 20 runs of the experiments.

The platform.

The algorithms were implemented in Java and the parsing of XML document

collection was performed using the SAX API of the Xerces2 Java Parser 4. The in-

verted lists were backed up by Berkeley DB 4.4.16 5. The experiments were conducted

on a Centrino 2GHz laptop with 1GB of RAM running Windows XP Professional.

4.4.2 Comparison of AllNodes and SCU

Scalability with Document Nesting Depth

We study the effects of document nesting on both algorithms. The experiment

confirms the following expectation: Since the SCU algorithm uses a stack-based ap-

proach to exploit the document structure during query evaluation, we expect it to

scale well with increasing document depth. In contrast, the AllNodes algorithm

replicates at each node the computation of matches already found in its descen-

dant nodes. This redundant computation is expected to increase with the document

4http://xerces.apache.org/xerces2-j/
5http://www.sleepycat.com
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nesting depth.

To isolate the effect of nesting depth, we used the family of XML documents of

increasing depth and constant text content described in Section 4.4.1. For example,

in Figure 4.7 the data point 70 corresponds to an XML document consisting of a

chain of 70 single-child elements nested within each other, where the element at

nesting depth 70 is the entire DBLP document. Its ancestors contain no immediate

text.

Figure 4.7: Running query Q1 on variable-depth chain ending in DBLP snapshot

Figure 4.7 shows the result of running AllNodes and SCU on query Q1.

Notice that even for shallow documents the SCU algorithm outperforms the

AllNodes algorithm and the gap between the two increases with the document

nesting depth. The dominant reason is that AllNodes handles larger intermediate

results than SCU since matches contained in a node are computed again at each one

of its ancestors.

We observe that the SCU algorithm is almost insensitive to the variation

of the nesting depth. Even though the set of elements in the query answer grows

with the document depth, SCU handles the exact same intermediate result tables

on all inputs. This is because the tables are reduced and do not list any of the

chain (the ancestor nodes of the DBLP snapshot), as these have no direct matches.
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The small variation in SCU performance is a side effect of our particular choice

of representing the node identifiers using Dewey notation: deeper documents yield

longer Dewey node identifiers, which require longer manipulation time (for such

operations as testing id equality or finding LCAs).

Scalability with Document Size

This experiment shows that the SCU algorithm wins even when we increase

the document size without increasing the nesting depth.

Figure 4.8 depicts the results of evaluating query Q1 according to the AllN-

odes and SCU algorithms on a family of documents of increasing size (ranging from

300MB to 3GB) yet of constant depth, generated as described in Section 4.4.1. For

example, data point 7 in Figure 4.8 corresponds to an XML document of size 2.1GB

consisting of a chain of nested nodes of depth 10, in which the node at depth 10

contains 7 children, each a copy of the 300MB DBLP snapshot.

Figure 4.8: Running Q1 on chain of depth 10 with multiple DBLP snapshots as leaves

Notice that the running times for both algorithms grow linearly with the

document size. This may appear counter-intuitive, given that for a conjunctive

query of k keywords, the number of matches over n copies of DBLP should increase
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by a factor of nk when compared to the number of matches over only one copy. For

Q1, k = 5, which is far from linear.

Recall however from Section 4.3.3 that both algorithms represent matches

implicitly, by keeping for each keyword the list of its matches and delaying the

computation of the Cartesian product of these lists until needed for the evaluation of

a predicate. At that point, the Cartesian product can be pruned using the predicate,

thus effectively turning into a join. In this experiment, the query Q1 contains no

predicates. Therefore, increasing the number of DBLP copies results in a merely

linear increase in the length of each keyword’s position lists. The overhead of actually

materializing matches in the presence of predicates is measured in Section 4.4.3.

Scalability with Query Complexity

Since a conjunctive query with k terms translates into a k-way join, the fol-

lowing experiments evaluate the performance of both algorithms for increasing k.

To this end, we use a family of queries obtained from the prefixes of query Q5,

with the shortest query containing the first two terms and the longest query Q5 itself,

containing 11 terms, a large number chosen to stress the implementation. Because

of the crucial impact of the document nesting depth, we measure the running time

of these queries in two extreme cases: for the original 300MB DBLP snapshot, and

for the version nested within a chain of depth 70.

Shallow documents. Figure 4.9 reports the running times for this family of

queries on the original 300MB DBLP document, which we call the “shallow” DBLP

version.

The absence of nesting in the flat DBLP document favors the AllNodes

algorithm, whose running time is close to that of the SCU algorithm. Nevertheless,

SCU outperforms AllNodes even in this case.

The sudden jump in the execution time when the query is extended from 10

to 11 terms is due to the low selectivity of term nr. 11 (“Language”), which leads to

an explosion of matches of the extended pattern.
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Figure 4.9: Running prefixes of query Q5 on the shallow DBLP document

Deep documents. Figure 4.10 reports the running times for the same prefix

queries of Q5 on an extremely nested XML document, namely the 70-level depth

chain 300MB DBLP.

Figure 4.10: Running prefixes of Q5 on DBLP snapshot nested in chain of depth 70
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As predicted, SCU outperforms AllNodes and the performance gap be-

tween the two increases more dramatically because SCU is less sensitive to document

depth.

Real data set: Wikipedia XML.

To validate our findings against real data, we ran query Q7 under both im-

plementations against Wikipedia [65] snapshots of increasing size (we concatenated

the many small documents in the Wikipedia collection into two documents, of sizes

250MB and 500MB).

Q Query description

Q7 get(carrier) and get(small) and get(same) and get(iron) and get(water)

The frequencies of the terms used in Q7 are listed below.

Term 250MB 550MB

carrier 495 1016

small 5771 12283

same 8809 18225

iron 781 1483

water 3845 8934

This experiment proves that SCU algorithm performs better than AllNodes

on real data sets as well.

Figures 4.11 and 4.12 confirm the same trends we have observed in the pre-

vious experiments, namely a linear increase of running time with the document size

for both SCU and AllNodes.

The time difference between runs of different Wikipedia snapshots is explained

by the increase in the query term frequencies between the 250MB and the 550MB

document.
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Figure 4.11: Running Q7 on Wikipedia snapshots of increasing size

Figure 4.12: Running prefixes of Q7 on Wikipedia snapshots

4.4.3 In-Depth Evaluation of SCU

In this section, we investigate the effect of query predicates on evaluation

time. This issue is highly significant, since matches are materialized only as needed,
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namely in selection operators. This strategy delays the computation of the Cartesian

product of keyword position lists until a predicate is available, which can then be

used to prune matches, effectively turning the Cartesian product into a much cheaper

join computation. Our experiments show that this pruning is quite effective.

Effect of Document Size

We again use the family of documents of constant depth and increasing size,

by varying the document size by nesting into a chain of depth 10 between 1 and 10

copies of the DBLP document (300MB to 3GB).

Figure 4.13: Effect of predicate selectivity and document size on match management

Figure 4.13 reports the time to execute the selection predicate only for SCU

on the following queries: Q2, Q3, Q4. These queries all share the same conjunctive

subquery Q1, and are distinguished only by the selection predicate. The predicates

are chosen to cover the following spectrum of selectivities:

• Q3’s predicate is satisfied by all matches produced by subquery Q1. This special

case is unlikely to occur in practice and is only used as a yardstick giving a

lower bound on the evaluation time, since it minimizes the match management

work. Indeed, according to the algorithm for selection evaluation, no matches
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need be propagated from descendants to ancestors in the SCU table. Moreover,

since the first match for each node already satisfies the predicate, there is no

need to materialize and test further matches for that node. What is really

measured in this case is the stack maintenance overhead.

• Q2’s predicate is violated by all matches returned by Q1. This is a worst-

case scenario which maximizes match management effort. In this scenario, all

matches must be propagated to ancestors, and every node requires an exhaus-

tive (and ultimately unsuccessful) search through all its matches. The only

reason this search does not result in full materialization of all matches is the

aggressive pruning of partial matches as soon as they violate the predicate, sav-

ing the work of generating all extensions to full matches for the pruned partial

ones. Notice the quasi-linear evolution of the running time with the increase in

document size. With a naive implementation without partial match pruning,

the running time would have evolved as a polynomial of degree 5 in the number

of DBLP snapshots.

• The predicate in Q4 corresponds to a more typical case: it filters some of

the input nodes but not all of them. Notice that in this typical scenario, the

running time is quite close to the best case scenario.

Effect of Nesting Depth

This experiment covers the same three representative cases for predicate se-

lectivity as the one in Section 4.4.3. This time, we investigate the effect of nesting

depth on the match processing effort. We employ the same queries Q2, Q3, Q4 to this

end.

We use the family of documents obtained by nesting a single copy of the

DBLP snapshot (300MB) into progressively deeper chains (ranging from depth 1 to

70).

As already explained for the experiment in Section 4.4.2, the processing time

does not vary significantly with the document depth, since additional nesting levels

do not affect the matches returned by common subquery Q1, all of which appear

solely in the DBLP snapshot. The additional levels do give rise to additional nodes
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Figure 4.14: Effect of predicate selectivity and nesting depth on match management

in the query answer coming from the chain on top of the DBLP snapshot, but these

nodes are not listed in the SCU intermediate result tables since they contain no direct

matches.

The running time difference between the 3 queries is due to the selectivity of

their predicates: the always true predicate (Q3) generates the least work, the always

false predicate (Q2) causes the most, and the sometimes true predicate (Q4) reflects

a typical workload.

Exploiting Query Rewritings Opportunities.

This experiments validates one of the main intuitions which drove the design

of the XFTalgebra. We targeted a set of operators inspired from relational algebra,

such that the beneficial impact of relational query rewritings (e.g. pushing selections

into joins) carries over in the full-text algebraic setting.

Figure 4.15 shows the result of running AllNodes and SCU algorithms

on two equivalent queries, Q2 and its optimized counterpart, Q6 where selection

predicates are pushed into the and operator. The experiment was run on DBLP

documents of varying sizes where the number of snapshots are varied from 1 to
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10. It is not surprising to see that performing a relational-like rewriting improves

performance for both algorithms.

Figure 4.15: Benefit of using relational-like rewritings

4.4.4 Comparison to Existing XML Full-Text Engines

We compared SCU with GalaTexand Quark (Figure 4.16). Due to the

limitations of these two systems, we ran simple conjunctive queries (1 to 4 terms)

on a 150KB XMark document6. GalaTexand Quark have similar performances

which are worse than AllNodes and SCU. The performance difference increases

with queries containing more terms.

4.5 Related Work

Several full-text algebras and query evaluation algorithms have been proposed

in the past [23, 58, 76, 86, 106, 122]. The best-known algebras are text region

algebras which were proposed to model structured full-text search [53, 58, 87, 106].

A text region is a sequence of consecutive words in a document and is often used

6http://monetdb.cwi.nl/xml/
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Figure 4.16: AllNodes, SCU, GalaTex and Quark

to represent a structural part such as section and chapter. However, this algebra

has limited expressive power [58]. The TIX and TOSS algebras [23, 86] focus on

evaluating conjunctive queries and phrase search while the algebra in [122] is used

to express NEXI queries [120] and is thus less expressive than XFT.

There has been extensive research in information retrieval on the efficient

evaluation of full-text queries [32], including structured full-text queries [45] and

of XML queries such as XQuery/IR [44], XSEarch [55], XIRQL [75], XXL [118]

and Niagara [128]. However, these works develop algorithms for specific full-text

predicates in isolation.

The idea of computing the most specific elements for conjunctive queries has

been actively explored using LCAs [80, 92, 109, 125]. We show in Section 4.3 that

extending this idea to support the efficient evaluation of queries with complex full-

text predicates needs to account for individual term matches in XML elements and,

sometimes propagate matches along the XML hierarchy. Moreover, we show that

a blind application of state of the art stack-based algorithms [80, 92, 125] results

in higher complexities. This is due to the fact that pre-order is a natural choice for

XPath evaluation, since any other ordering would require materializing the document

in main memory, or a two pass algorithm. However, for full-text, inverted lists are
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generated off-line and could be in postorder, which ends up being the natural order

expected and automatically preserved by all our algorithms.

Relevance ranking methods for XML are based on extending the well-estab-

lished vector and probabilistic methods [32] to incorporate structure by propagat-

ing answer scores along the XML tree [75], considering overlapping elements [52],

applying length normalization to paths [46] or computing tag or path-based term

weights [27, 55, 79]. None of them accounts for query predicates to score answers

and is thus not applicable to distinguish between the binding and the existential

semantics.

4.6 Summary

We presented efficient evaluation algorithms that account for element nesting

in XML document structure to evaluate queries with complex full-text predicates.

Our algorithms are based on the XFT algebra which subsumes the XQFT-class of

full-text languages, enabling a uniform treatment of their optimization and efficient

evaluation problems. The novelty of our algorithms lies in their ability to combine

relational query evaluation techniques with the stack-based exploitation of element

nesting when evaluating full-text predicates. Moreover, they are based on a lazy

materialization of term matches which greatly improves query response times. We

ran an extensive set of experiments which validate our algorithms. We are currently

exploring more efficient match management which involves caching of shared matches

in order to further improve the performance of full-text predicates. We believe that

the knowledge of the semantics of full-text predicates can be used to devise optimiza-

tion techniques which are more suited to full-text search. In particular, the order in

which individual term matches are explored can have a great impact on proximity

operators. This observation directly relates to the problem of devising join algo-

rithms in the relational literature. We believe this work bridges the gap between

relational-style optimizations and IR-like predicates and constitutes a good start to

the application of well-established relational join techniques to IR query evaluation.
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Chapter 5

Demonstration of XTreeNet

5.1 Introduction

In this Chapter, we describe XTreeNet, a distributed query dissemination

engine which facilitates democratization of publishing and efficient data search among

members of online communities with powerful full-text queries.

XTreeNet serves as a proof of concept by proposing a novel distributed

infrastructure in which data resides only with the publishers owning it, which al-

lows full control over their own content. Expressive user queries are disseminated to

publishers. Given the virtual nature of the global data collection, our infrastructure

efficiently discovers the publishers that contain matching documents with a speci-

fied query, processes the complex full-text query at the publisher, and returns all

matching documents to consumer.

While different queries might hit the same set of nodes, our goal is to bal-

ance the community search generated load (e.g., number of messages) at nodes dur-

ing query dissemination while preserving both low space usage of index at a node

and minimum information maintained at a node as dictated by the data-location

anonymity requirement. Thus, XTreeNet’s architecture is based on a novel dis-

tributed data index UQDT, organized as a union of overlay (i.e., logical) networks.

We show how to use the UQDT infrastructure to achieve overall load balance and

maximize the throughput given a workload of rich-expressive queries (i.e., XQuery

Full-Text queries) through efficient query routing algorithms and optimization strate-

164
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gies over UQDT. To this end, we leverage the techniques explored in Chapter 2 to

disseminate queries efficiently in the community network using the UQDToverlay.

We also employ techniques from Chapters 3 and 4 to allow for expressively querying

the global community data at the data source.

Moreover, XTreeNet allows users to adjust and tune the system parameters

(i.e., the number of overlays, the overlay topology, the query routing strategy) to

get insight into the UQDT design trade-offs and into the query evaluation process.

Although one of the drivers for our architectural design concerns privacy preservation

and data-location anonymity, this is not the main focus of the demo.

Because of the increasing number of online communities and social network

sites, the need for powerful search expressivity (beyond simple keyword search) and

the need for democratic information exchange by protecting the dissemination infras-

tructure against censorship, we believe a demonstration of our UQDT infrastructure

design, trade-offs, and proposed techniques are of general interest.

The VLDB demo is available at the following location 1. A preliminary version

of the demo 2 is running with limited functionality. This is running a simulator on

a single machine that disseminates conjunctive queries, each composed of set of

keywords, and returns the set of matching documents.

We exemplify next the UQDT index infrastructure, the distributed query

dissemination techniques, and the query evaluation. Then, we present our network

system organization that supports efficient construction of multi-overlays (i.e., logical

networks). Finally, we detail our XTreeNet demonstration scenarios.

5.2 Processing Full-Text Queries via Distributed

Access Methods

Given a user query Q, XTreeNet identifies the relevant data sources that

contain matching documents and returns them to the querier. In a first step, the

system identifies only the sources of interest and contacts them based on a simplified

form of the query QS (i.e., the set of keywords in the query). Then, the sources

1http://db.ucsd.edu/xtreenet
2http://snack.ucsd.edu:8180/xtreenetgui

http://db.ucsd.edu/xtreenet
http://snack.ucsd.edu:8180/xtreenetgui
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decide based on their own access policy (i.e., the querier’s identity or the history of

who accessed what) whether to release the matching documents to the queriers by

running the full query Q on their corresponding local document collection. We detail

these features next.

5.2.1 Efficient Data Source Discovery

Our indexing solution targets a service-oriented logical network infrastructure,

in which we distinguish two types of nodes. There are data publisher nodes (the com-

munity members) that provide data services and connect to the network via direct

links to nodes at its edge. The data are indexed inside the network, which consists

of a set of inter-connected and reconfigurable router nodes. These are responsible for

routing queries to the relevant publishers.

XTreeNet is based on on a novel distributed data index design, called

UQDT, that is organized as a union of query dissemination trees (QDT’s) real-

ized as an overlay (i.e., logical) network. QDT’s purpose is to focus the query

forwarding with high probability towards only a subset of all publisher nodes that

contain matching documents. Regardless of which querier initiates a query Q, Q is

sent to the QDT’s root, and it propagates down the tree to the publishers.

For the purpose of information discovery and flexible querying, documents

and queries are represented as collections of content descriptors, called CDs. A

CD is an abstraction of a hierarchical data item. In our case, CDs are keywords

in a path context. When the context is empty this corresponds to simple full-text

keyword search. The CD collection that describes the user query and the documents

are automatically extracted.

We adopt a data partitioning approach in which we partition the global CD

collection into multiple partition blocks. Each block is associated with a QDT

which takes care of forwarding the data that falls in this partition block. We build

smart hierarchical summaries at each node of a QDT to facilitate early pruning by

disseminating Q only to the relevant publishers. Each node summary consists of

the union of all advertised CDs by publishers in its subtrees for the corresponding

QDT. We implement node summaries as counting bloom filters for their well known
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properties: compactness and quick probabilistic set membership of CDs.

We employ the following query routing algorithm. Note that the data parti-

tioning scheme determines also a partitioning among the CDs of a query. Therefore

the query can be disseminated on all or either of the QDT’s that map to the query

partitioning blocks. We show in Chapter 2 that it suffices to send the query to the

root of only one QDT while still preserving the query semantics. When a router

node receives the query message, it forwards it in parallel to each of its children

in QDT if and only if the CD set of the query is contained in the node summary.

When a publisher node is reached, the full query (not just the CDs extracted from

the query) is evaluated on the local database. Any matching documents are sent

back to the querier. The advantage of this approach is that the query dissemination

is very selective since pruning decision at each node is done on a conjunctive basis

(conjunction of CDs).

The number of QDT’s to setup in the network and the QDT to send queries

are optimization problems for throughput maximization that we solved in Chapter 2.

The intuition behind our decision for the number of QDT’s is that since the load

in one QDT decreases from the root to leaves for any query workload, we try to

balance the load of each router node by assigning them to different levels across

the different QDT’s. One solution which behaves well in practice is to cyclically

permute the nodes on tree levels across all QDT’s such that all routers appear

precisely once in the top levels of any QDT. Picking the QDT to disseminate the

query is based on query selectivity estimation techniques. In particular, we avoid

routing based on query blocks that contain popular CDs. In Chapter 2 we show that

keeping track of a very small number of advertised popular CDs (2-3%), which we

call partially informed strategies, XTreeNet achieves almost as good performance

as if we had the selectivity information for all the data collection, called the fully

informed routing strategy. Note that the latter approach is infeasible in a complete

decentralized setting as ours.
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5.2.2 Query Evaluation at Source

Without loss of generality, we employ XML data sources. Users publish and

query XML repositories. A CD is then the abstraction of a keyword in an XPath

context. To be able to express powerful queries over such data we adopt the XQuery

Full-Text [114] (XQFT) standard specification which permits composable full-text

search primitives such as simple keyword search, Boolean queries, and keyword-

distance predicates over XML data. In order to process such expressive class of

queries we deploy an XQFT engine processor at each source. In particular, we lever-

age GalaTex described in Chapter 3 as a processor together with the optimization

framework developed in Chapter 4.

The query semantics calls for iteration on all documents in the local reposito-

ries at identified relevant sources and for returning only those documents matching

with the full XQFT query back to the querier. For efficiency, the backend XQFT en-

gine is build on top of a local index store, which contains posting lists corresponding

to documents in the local store at each publisher.

5.2.3 Example

We demonstrate in this section an example of distributed query processing

using our infrastructure, the UQDT. First, let us assume a publishing community

whose infrastructure connects eight publishers P1 to P8, each producing news articles

and blogging-aware. Each publisher maintains a local store accessible through an

XML interface. To describe their local store and to make their data available for

search, the publishers advertise descriptive CDs.

Second, let us remind the query used in the example (‡) from page 3 that

asks for:

all documents that contain terms related to official ethnic groups and
minority languages that occur within a window of 10 words, with ethnic

appearing before minority [120, 114].

One way to express this query using the XQuery Full-Text language is as
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follows:

Q : doc()/(blog)[. ftcontains (“ethnic” and “minority” ordered) and

“official” window ≤ 10 words]

Then, the corresponding CDs for Q are the following XPath expressions:

cd(Q) = { cd1 = doc/blog/“ethnic′′, cd2 = doc/blog/“minority′′,

cd3 = doc/blog/“official′′}

Let us assume now a data partitioning scheme P over all the published CDs in

our community that groups them in at least two distinct partition blocks as follows:

B1 = {doc/blog/“ethnic′′, doc/blog/“official′′, ..},

B2 = {doc/blog/“minority′′, ..}, etc.

The partitioning scheme used, P, induces a partitioning PQ over the query

CDs, cd(Q), as shown below: Q1 = {doc/blog/“ethnic′′, doc/blog/“official′′} and

Q2 = {doc/blog/“minority′′}.

Given this partitioning scheme, it automatically implies that the peers in

the community network organize themselves into dissemination trees or QDT’s – as

many as there are partitioning CD blocks, at least two. Let us assume that CD block

B1 corresponds to QDT1, and B2 corresponds to QDT2, respectively. Consequently,

qdt(Q1) = QDT1 and qdt(Q2) = QDT2, where each query block Qi is associated

with a different logical QDT overlay.

Let us also assume that the routing strategy chooses to route the query

based on the most selective of the query blocks. To compute the query selectiv-

ity for query blocks, we compute the product of individual CD selectivities for

the CDs contained in that corresponding block. In this case, if we note with

s(cd) as the selectivity of term “cd”, then the selectivity of query block Q1 is

s(Q1) = s(doc/blog/“ethnic′′) ∗ s(doc/blog/“official′′). Consider, in this example,

that Q1 is more selective than Q2. Therefore, the full query Q is sent for dissem-

ination on the QDT1 overlay – corresponding to block Q1. The QDT1’s internal

organization as well as the dissemination on QDT1 based on Q1’s contents is shown

in Figure 5.1. We recall that dissemination on the QDT is realized based on checking

bloom filter membership on a simplified form Q, which we call QS, instead of using
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the full Q. In this example, we have that QS = Q1.

Figure 5.1: Routing Q using Q1 on QDT1. Full query Q is evaluated at the candidate
relevant publishers P2 and P3, respectively.

Each node in the tree contains a summary, implemented as a bloom filter,

with all CDs advertised under its subtrees. We considered that CDs in cd(Q1) are

only advertised by publishers P2 and P3 and therefore, they appear in the summaries

for the nodes: 4, 6, 10, 20, 23, 1, and 2. Figure 5.1 shows the dissemination path

of Q1 down to the relevant publishers. At each step, QDT1 is checking bloom fil-

ter membership between the CDs in Q1 with the CDs at each touched node n, or

cd(Q1) ⊆ cd(n), by using the node summary to the validate the membership test

n.smmMQDT1
.contains(cd(Q1)).

Note that P2 and P3 is a superset of the publishers that can actually return

matching documents, acting as a candidate set for the relevant publishers. When the

query Q1 reaches a candidate publisher, that node (in this case leaf nodes P2 and P3)

runs the full XQFT query Q (i.e., all structural and full-text conditions besides the

conjunctive CD check realized with the bloom filters during the query dissemination

process) locally using GalaTex. Any matching documents to Q are returned back

to the querier. This ensures that the XQFT query semantics is preserved, while our

methodology is sound and complete. That is our system discovers and returns all

documents published in the community matching to complex XML full-text queries

according to publisher’s advertised specification with no false positives.
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5.3 Demonstration Scenario

We propose to demonstrate interactively all the functionality of XTreeNet.

The purpose of this demo is a proof-of-concept to show the new architectural design

in action as well as the flexibility and efficiency of distributed query processing; in

particular, the efficiency in identifying relevant sources and XQFT query processing

at the source.

To obtain a true-to-life community, we consider a distributed community that

shares a real data collection, namely an XML dump of Wikipedia, comprising about

1.1 million real Wikipedia documents which amount to 8.6 GB [65].

To facilitate the peers interconnectivity in the community we use a 3rd party

set of logical routers. We can imagine the alternative solution as well, in which each

peer publishes data, queries and forwards queries.

We describe next the underlying network infrastructure and the overlay net-

work support. We then present the demonstrated features.

5.3.1 Network Infrastructure

The XTreeNet distributed engine relies on an overlay network to manage

the distributed index across the XTreeNet participants. The index consists of

multiple, custom designed QDT’s, where each node contains a counting bloom fil-

ter. Each filter continuously updates the index by processing the stream of updates

from its child nodes. Because a bloom filter is an in-network aggregate, it may be

computed efficiently across these trees. However, XTreeNet’s wide-area deploy-

ment requires the maintenance of the bloom filters to be scalable, network-aware

and failure resilient. To achieve these operating criteria, the peer-2-peer overlay can

employ any off-the-shelf DHT-based technology as backend for overlay functionality

(i.e., basic data storage and lookups) and fault tolerance. In practice, XTreeNet

uses Mortar [93], an in-house stream processing engine, which is a platform for in-

strumenting distributed end-hosts with stream operators that facilitates in-network

efficient aggregations (e.g., Bloom filter operations) at peer nodes.

Mortar provides a number of features that are important for XTreeNet.

First, it supports user-defined in-network aggregates, allowing XTreeNet to create
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hierarchical index summaries by simply extending Mortar with custom stream oper-

ators that implement the spectral bloom filter. Each operator indexes local content

and propagates index changes to its parent. Mortar also arranges the nodes in the

tree in a network-aware fashion, ensuring that the majority of participants are within

a low-latency horizon of the root. Further, unlike DHT-based in-network aggregation

systems, Mortar allows applications to control the design of additional trees. This is

critical, as XTreeNet balances the query load by controlling the shape of the set

of trees implementing the index. Other features provide fast and reliable operator

management (installation/removal) and accurate stream processing in the presence

of node failures and unsynchronized clocks.

We evaluate XTreeNet by deploying 1,000 to 10,000 XTreeNet peers over

an emulated network using the ModelNet [121] emulator. Modelnet is a large-scale

evaluation environment that combines the realism of an Internet testbed with the

ability to execute experiments in a reproducible fashion. In Modelnet, unmodified

applications run over unmodified operating systems and network stacks, while the

emulator subjects the application’s traffic to the bandwidth, delay and loss con-

straints of the emulated network topology. In our setting, 34 physical machines,

running Linux 2.6.9 and connected on a Gigabit network, emulate an Internet-like

topology built with the Inet [8] topology generator.

5.3.2 Running Scenario

The XTreeNet query interface at a peer is very simple, yet it hides a pow-

erful and efficient architectural design. The web browser interface accepts keyword

search queries in the XQuery Full-Text style allowing for a multitude range of queries

supporting from simple keyword queries, keywords in a context (XPath) to complex

queries with predicates on the keyword positions (e.g., proximity distance predicates).

In addition to the query input, the interface allows a user to tune the various

system parameters: setting the number of QDT’s in the UQDT structure, the QDT

to route a query on, or the routing state amount maintained at each node to guide

the routing process.

The result of executing a query is a page containing links to the matching
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documents together with a detailed section containing statistical and routing infor-

mation decisions. Such information includes the suggested routing QDT, both the

processing and the forwarding loads generated in the system as the number of total

exchanged messages and a break down on execution times for the various stages of

query processing. We enumerate in the following various demo scenarios of interest.

Query Routing and Processing in XTreeNet. First, we show the in-

teractive functionality to search the global community data collection by executing

different ad-hoc XQFT queries. We demonstrate the use of UQDT as a distributed

index infrastructure that provides support for complex querying via multiple index

lookups during query forwarding and then running an XQFT processor at the pub-

lisher.

After a peer issues a query, we present a visualization of the internal routing

flow of the query into the network. First, the system decomposes the query into

query blocks based on the UQDT partitioning scheme over the keywords. By using

these query blocks, we show how the system smartly decides the corresponding QDT

overlay where the query is actually routed on. We show next the routing path of

the query on that QDT by specifying the nodes and the links touched. At the

end of routing, the reaching leaves are the candidate publishers. Let us notice that

this is a super set of relevant publishers since they have been selected based on the

conjunctive part of the query.

Finally, the full query is tested at these publishers by running an XQFT

processor to check and retrieve the actual matching documents. The querier has the

option of interactively changing the set of matching documents, simply by varying

the keyword conditions in the query (e.g., adding or removing keywords and keyword

predicates).

Democratization of Publishing. The ability for an individual publisher

to dynamically control the access to the content she owns, including the ability to

make visible what information she wants to, on a selective basis to different users, is

a highly desirable aspect in a democratic network.

A key aspect of such an information access infrastructure, that is a key to

the democratization of the Internet, is to make all requests for information (queries)

available to all the publishers who may have relevant information and allowing them
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to determine their response to the query.

We show how publishers can maintain control over their own data. Depending

on what they decide to advertise, independent on the actual local published content,

different queries may reach them. In this demo we do not enforce a particular

publisher policy to access their data even though one can think of sophisticated

ways of doing it. We consider, for now, that publishers answer all received queries

correctly.

Moreover, we do not consider for the scope of this chapter the system’s ro-

bustness to failures, as the main focus is to show how to leverage the new UQDT

index structure for efficient distributed query processing and privacy in P2P pub-

lishing. We defer this as future work. However, preliminary analysis shows that this

is feasible based on the Mortar infrastructure (as described in Section 5.3.1).

Our DLA-preserving UQDT infrastructure prevents leaking any information

about which publishers are capable of answering a given query. In the case of com-

promised nodes, we allow to zoom into individual routers and introspect the actual

information that is being kept as part of the UQDT index. We show that getting

hands on the local bloom filter and the overlay connections at a router does not

reveal much information.

Interactive Tuning. As we mentioned previously, we let the user interact

with the main parameters of the system in order to get a feeling of the various

trade-offs.

For instance, the querier can choose to disseminate queries over specific QDT

overlays. When a peer issues a query, the system suggests what would be the best

query routing strategy based on techniques described in Section 5.2.1. However, the

querier can send the query to any of the existing QDT overlays for the following

reasons: she may have domain or external knowledge on the selectivity of the overall

published data items, or may want to analyze generated traffic on different QDT

dissemination, or just has a preference for a particular set of nodes.

In the case that the querier decides not to send the query to the suggested

QDT, we run the query on both variants (on the suggested QDT as well as on the

querier-chosen QDT) and even though the number of answers is the same, we show

a comparison of the amount of generated traffic.
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Similarly, the querier may change the amount of routing state. This can lead

to changes in the suggested QDT among the available QDT overlays. Intuitively,

the more state is maintained at a node, the more precise the suggested QDT is

relative to the best routing (e.g., when all the selectivity state of published data

items is known).

Balancing the load. In this scenario, we show that XTreeNet can be

used to balance the overall traffic. The load is near-optimum uniformly distributed

among the peers.

We run a query workload based on a uniform distribution of queries with

the number of conjuncts varying from 1 to 10. We stress the load such that each

conjunctive query has a match in the global data collection. We let the user dynami-

cally setup the UQDT configuration by picking the number of QDT’s. For choosing

the overlay topology we employ off-the-shelf tools developed by network research for

multicasting (e.g., generated by SCRIBE [47]).

During the query workload execution, we collect statistical information. At

the end, we report processing and forwarding load histograms between different num-

ber of QDT’s. We show that for 15-QDT’s the load is well balanced in the system

and therefore, the overall throughput is maximized. We define the throughput as the

number of queries answered per unit of time. At the same time, in the 1-QDTcase

this shows the high congestion in the system.

5.4 Discussion: System Architecture

The advantage of our 2-part solution is in-line with the current Database

technology to de-couple the different layers of representation and execution. For

instance, the beauty of XTreeNet is the ability to dissociate the backend network

from the frontend system.

First, we provide a distributed backend infrastructure that plays the role of

an index to speed up access to data, which is similar to what we see in traditional

Database systems. To this end, we propose the UQDT data structure that consists of

a distributed data index. The index stores and provides quick lookup functionality

for terms, which are generically called CDs, and their cojunctions at the lowest
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level of granularity of a data collection. In the context of semi-structured document

collections, a CD is represented as a keyword in a structural context (i.e., XPath

path context).

Second, the frontend consists of an XQFT query processor, which resides

locally at each data source. The XQFT query processor execution relies on it own

local index for more specialized fast access, being dependant on the frontend query

language. In our case, we employed and support XQuery Full-Text (XQFT) queries.

Therefore, the frontend’s execution is independent from backend’s functionality. The

advantage of this modular, yet integrated, approach is the ability of the lower level

to support different query language abstractions (e.g., SQL, XQuery, XQFT, etc.)

with little or no modifications.

Moreover, whereas the current search engine technology or the existing hosted

online community are still a viable solution for Internet search, they are not entirely

suited for democratic community-based publishing due to their increasing require-

ments, mainly performance, user privacy-related issues, and true ability to freely

exchange data without the fear of discrimination and user censorship. Yet, our

XTreeNet platform does not target to replace the mainstream technologies en-

tirely. On the contrary, we believe our system can complement the functionality of

centralized publishing and search platforms at times where controversial or sensitive

publishing situation calls for it; or where the user feels the need for more privacy in

the sense of anonymity without worrying about their identity being associated with

the published content.

We envision a practical hybrid platform where both type of systems can co-

exist. A centralized solution would benefit by the general-purpose, mainstream ex-

isting search applications where privacy risk to participating users does not represent

a potential harm to anyone. We propose a complementary approach to search, in

the form of a decentralized search platform, UQDT, that encourages users and en-

ables true online free flow of information as well as full user autonomy while keeping

control over their own published data. Therefore, we militate for this model as a

much better way to provide freedom of speech online among autonomous members;

thereby, protecting users from censorship, harassment, and possible discrimination

by third parties.
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5.5 Conclusion

In this chapter we presented XTreeNet, an efficient infrastructure that em-

powers information publishers to join censorship-resistant communities and query

their global data collection in an ad-hoc fashion using expressive queries.
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Chapter 6

Conclusion and Future Work

6.1 Concluding Remarks

This thesis advances the state-of-the-art in understanding how to bridge the

gap between XML Information Systems and Databases at the intersection with Dis-

tributed Information Systems. In this thesis, we provide an integrated solution to

democratic community-based publishing and searching the community data using

flexible, composable, and expressive full-text queries.

As new XML applications continue to emerge on the Web, there is a need for a

higher degree of sophistication and flexibility in the way data is produced, managed,

and queried. Such examples range from digital libraries to enterprise level content

management, scientific applications, and search in online communities. Given this

rapid growth in user application needs in online communities to freely exchange

information and to search ad-hoc for content, as well as the increasing awareness for

user privacy while participating in the publishing process, we address critical issues

relevant to nowadays online publishing systems.

Mainly, we propose a novel efficient publishing infrastructure platform that

empowers publishers to join democratic online communities and empowers users to

query the global data collection in an ad-hoc fashion using expressive queries over

semi-structured data. To this end, we addressed and solved problems related to

how publishers join the community infrastructure and make their data accessible

for search, how to freely exchange data among community users, how publishers

178
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can answer complex queries locally efficiently with consistent scores. At the same

time, we also answer consumer related problems such as how to ask semi-structured

data expressively and whom to direct user queries in order to find the publishers,

and thereof matching documents, of interest based on ad-hoc user-specified full-text

conditions.

Our solution consists in designing and implementing a decentralized system,

called XTreeNet, which grants community users to keep control over their own

data and which supports queries against the global data collection, with no need for

a central authority that disintermediates publishers from consumers. In particular,

the focus of the dissertation consists in the following two aspects.

First, we leverage our distributed UQDT index infrastructure as a platform to

disseminate queries in the community from consumers to relevant publishers. Since

the dissemination indices are subject to potential external interceptions and attacks,

our approach precludes third parties from learning the exact associations between

publishers and advertised CD data without compromising a significant portion of the

community network. Our contributions range from identifying the design space with

its trade-off dimensions, relevant metrics and notion of optimality, to introducing

solutions that achieve near-optimality with only low overhead.

Our UQDT index is based on judiciously designed load balanced dissemina-

tion overlay trees and on carefully chosen query routing strategies that use query se-

lectivity estimation techniques. We showed that partially-informed routing is promis-

ing as a best routing strategy with low overhead cost yielding similar results as the

ideal, fully-informed routing strategy. The solution exploits crucially the dual role of

QDT’s as both query dissemination and as statistics tree overlays. While we showed

that fanout-balanced tree overlays are closest to optimal, an advantage of our solution

is its generality, in the sense that it focuses on extracting the performance inherent

in any given topology.

Second, while UQDT index supports CD-level (i.e., keywords or keywords in

context) index lookups only, we empower XTreeNet to support complex filtering

conditions on the CD matches that go beyond simple keyword search to be applied at

the publisher site. One representative query language of this class of queries is W3C’s

XQuery Full-Text (XQFT) standard specification. This provides functionality for
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composable predicates such as Boolean keyword search and different flavor keyword-

based distance conditions (i.e., distance, window, order) as well as the number of

times to repeat a condition. XQFT provides support for full integration of structured

search with the full-text conditions over semi-structured data, or XML.

Our contribution lies in designing and implementation of a universal query

optimization framework for the XQFT-class of languages that is deployed as part

of an XQFT evaluation engine at publishers to resolve full-text queries over semi-

structured data collections efficiently. To this end, we presented efficient evaluation

algorithms that account for element nesting in XML document structure.

In particular, our optimization framework is based on an algebraic formalism

of full-text languages in terms of patterns of keywords and a relational way to manip-

ulate the matches of these patterns in the document collection. The advantage of our

approach is that it enables a relational-style evaluation as well as the true-and-tried

relational-style optimizations for well-behaved scoring functions. As such, our algo-

rithms are based on the XFT algebra which subsumes the XQFT-class of full-text

languages, enabling a uniform treatment of their evaluation and optimization prob-

lems. The novelty of our algorithms lies in their ability to combine relational query

evaluation techniques with stack-based exploitation of element nesting when evaluat-

ing full-text predicates. We believe this work bridges the gap between relational-style

optimizations and information retrieval (IR) like predicates and constitutes a good

start to the application of well-established relational optimization techniques to IR

query evaluation.

Ultimately, to show the viability of our approach, we have built XTreeNet, a

real distributed search infrastructure that seamlessly integrates the two components:

query routing and query evaluation.

6.2 Future Work

This dissertation takes an important step forward towards understanding de-

sign principles and performance issues by bridging the gap, in a principled manner,

between information retrieval and database information systems with a focus on

distributed information systems.
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One of the key challenges that we pointed out in this thesis is the lack of solu-

tions for the integration of structured and unstructured search over semi-structured

data collections. We believe our solution is a significant step in this direction as we

explored XQFT processing techniques at the publisher nodes. This includes a generic

evaluation and optimization framework for serving complex XML queries with com-

posable full-text predicates. Similarly, we have also investigated a generic approach

of implementing XQFT on top of an XQuery engine via user defined scoring func-

tions. In order to expose more and to share functionality across the two languages,

it would be valuable to open up the black-box XQFT user defined functions to the

XQuery implementation. This will permit for better coupling the corresponding lan-

guages at the algebraic level. Therefore, we would like to better understand the

full integration (i.e., tighter than via user defined functions) of XQFT processing

with the various XQuery evaluation engines in order to explore new opportunities

for cross-language optimization.

Another big challenge we discussed in this thesis is the users concern for

privacy in online communities in order to fully deliver on free speech and free infor-

mation exchange without the worry of being the target of censorship, discrimination,

or harassment. We have shown in XTreeNet a complementary way to achieve such

guarantees. We believe it is challenging to combine our solution with existing meth-

ods including encrypted communication channels and anonymizer servers to provide

an end-to-end privacy resistance against third parties.

Another promising research direction is to incorporate ranking functions and

distributed scoring to exploit the UQDT overlay for top-k query processing (i.e.,

retrieving only the k top ranked results for a given query). The very nature of

decentralized control in P2P makes it difficult to employ directly today’s search

engines ranking methods, where extensive global analysis and personalized methods

are used. On the good side, P2P IR systems lend themselves to ranking various

other methods based on reputation, access frequencies, peer authority, etc. This

implies that it would also be interesting to devise a generic full-text evaluation and

optimization platform that could accommodate not just one way to score query

answers, but various such existing application-specific relevance ranking functions.

Consequently, the growth, the sophistication and complexity, and the hetero-
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geneity of available data call for more advanced techniques to manage information,

and especially to search and query data. In general, we argue that a tighter integra-

tion of databases and distributed information retrieval systems would provide better

performance, effectiveness, and functionality by combining the best of the worlds.

For instance, the techniques developed in this thesis are geared more towards

querying homogeneous semi-structured data sources using structured query language

paradigms with composable and complex querying primitives over distributed on-

line communities. This applies to data collections of known and similar schemata.

However, real-life data consists of combining data from various data sources with

different schemata. Understanding the role of heterogeneity in managing multi- non-

integrated individual data sources on the Web, is key to providing uniform search over

various types of data (e.g., structured, semi-structured, and unstructured). Thus, it

is interesting to explore novel and alternative search paradigms to provide not just

flexible and expressive search, but also semantic search support as well as guide the

user formulate complex data analytics queries that can handle data heterogeneity.

We believe that key here is to establish formal grounds and formal methods for such

querying to enable progress and development of theory and practical paradigms and

their optimization solutions. To this end, we have made the first steps in this di-

rection as in works like [33, 34, 35], where we adopt a “pay-as-you-go” approach,

as promoted by “dataspaces” [81], to assist searching, exploring, discovering, and

analysing complex non-integrated heterogeneous data sources.
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