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Abstract

Kinematics Algorithms for Tensegrity Structures

by

Steven Burt

Tensegrity-based Structures hold promise for the field of lightweight, compliant robots.

However, most prior efforts to model and plan the shape of these structures have fo-

cused on special cases or on static structures. This work attempts to generalize a

dynamic-relaxation form-finding method into a form that provides solutions to prob-

lems analogous to Forward and Inverse Kinematics problems in serial-chain robots.

Details of the implementation of these algorithms into a model tensegrity robot are also

presented, as well as suggestions for experimental validation of results.
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1 Introduction

Tensegrities are a family of load-bearing, pin-jointed, space frame structures character-

ized by a large number of members that bear tensile loading and a limited number of

(typically discontinuous) members that bear compressive loads. In contrast to classic

space-frames, they are often over-defined and statically indeterminate, and gain rigidity

through pre-stress [15]. Originally developed by the artist Kenneth Snelson, the term

tensegrity was coined by Buckminster Fuller as a portmanteau of “tensile integrity”.

The traditional tensegrity configuration uses discontinuous compressive mem-

bers; at each point of connection there will be a single compressive member and mul-

tiple tensile members. In this case, connection points can be considered to be pin- or

ball-jointed and no moments can be imparted to the members; this results in members

which are loaded purely axially. This allows the members to be slender, and the re-

sulting tensegrity structures can be visually striking. These unique visual properties led

to their use in sculpture and architecture, and both Snelson and Fuller created several

large installations that were either pure tensegrities or else used tensile members to a

greater extent than had been found in traditional architecture [9], [20].

: Photo: Snelson

Figure 1: Sleeping Dragon by Kenneth Snelson (1982)
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However, for several reasons they have found little use in large structures or ar-

chitecture. First, it is difficult to achieve high structural stiffness with tensegrity struc-

tures. To push the ends of tensile members into place, it is necessary for the compressive

members reach the full dimension of the structure. Thus, any structure will either have

compressive members that have a large length, or be comprised of multiple smaller

units. However, if the compressive members are made long, they may be subject to

buckling or other deformation that reduces the rigidity of the structure. Similarly, if the

structure is composed of many smaller units, it’s rigidity will be reduced through the

accrual of deflections between sections.

The rigidity of tensegrity structures is also a function of prestress and high levels

of pre-stress may be needed to obtain a satisfactory rigidity. However, as pre-stress is

increased, the capacity of the structure to respond to external load is decreased, and at

the extreme case it may become impossible for a structure to achieve a particular goal

for rigidity and load capacity.

Static structures also fail to make full use of the compelling feature of tensegrity:

the pure axial loading of all members in response to any external load. In the case of

a large static structure, the external loads will likely be primarily static or limited to a

small range of load cases (for example in the case a building where self-weight provides

most of the load and external variable forces such as wind would be comparatively

small). Thus the load paths within the structure would be fixed and the structure can be

optimized to carry these loads. Since many common building materials have a much

greater compressive strength than tensile strength, static structures are often designed

to carry the bulk of the load through a compressive path rather than tensile paths.

In conjunction with the challenges in design and construction, tensegrity struc-

tures have not proven attractive for the vast majority of architectural or structural pur-

poses in comparison to more traditional designs; exceptions are typically cases where
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: Photo: Arup

Figure 2: Kurilpa Bridge, Brisbane, Australia

the lightweight appearance of the tensegrity structure produces a design with unique or

interesting aesthetic properties.

Despite their lack of widespread application, over the past 60 years tensegri-

ties and related structures (such as suspended cable-networks) continue to have been

studied, first within the structural engineering community and more recently within

the robotics community. The robotics interest has proceeded in concert with more

widespread interest in soft-bodied and other biologically-inspired robotics.

Tension networks are apparent in biological organisms at multiple scales. In-

gber [10] first proposed the tensegrity model of animal cells, in which microtubules

carry compressive loads and filaments carry tensile loads; cellular motion is produced

by molecular processes that alter the lengths of these filaments. At the larger scale,

researchers [24] have proposed tensegrity models for the vertebrate musculoskeletal

system. Although this is complicated by features such as bursae, even if the structure is

not a pure tensegrity it is clear that many of the loads experienced by the bodies of ver-

tebrates are borne through tensile structures such as muscles, ligaments, and tendons.

In contrast to architectural structures, robotic systems often must respond to a

variety of external loadings while maintaining light weight. In robotic design, stiffness

is often a desired trait, but the goal is really controllability. Lately, roboticists have

become interested in adding compliance to robots as both a means to protect them (and
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their surroundings) from damage; these efforts are important as robots move into less

controlled workspaces. In rigid arms, this may come in the form of joint compliance,

where the structures connecting the joints remain stiff while compliance is built into the

actuators; this typically requires torque-limiting controllers and efficient, back-drivable

gear trains.

Alternatively, we can seek to build compliance into the structure itself. Tenseg-

rity structures with infinitesimal modes make good candidates for this approach; as the

structure deforms the load paths are naturally routed towards less-loaded elements in

the structure. In prestressed tensegrities, it is even possible to build structures with non-

linear elasticities as particular tensile elements become slack. This allows for structures

that can do things such as collapse in the case of an impact, and then return to their prior

state, undamaged, once the external force is removed.

In order to develop robotic systems that utilize tensegrity, techniques for mod-

eling and motion planning are needed. As will be shown, solutions for these problems

are non-obvious and non-trivial. However, much of the prior work in this field has

been done by the structural engineering community, and the terminology and problems

solved may not directly apply to the problems faced by roboticists. This work seeks

to concretely define the problems faced by roboticists using terminology and concepts

prevalent in classical robotics, thus presenting a framework to which techniques de-

scribed in the structural engineering literature can be adapted and made accessible to

the robotics community. In particular, this work examines tensegrity structures that are

well-represented by the classical tensegrity model of a network of struts and tendons,

and which achieve motion by changing tendon (and/or strut) lengths. In other words,

these robots have a joint space consisting of tendon/strut lengths, and a configuration

space represented by the locations of the nodes connecting the members. Thus we see

the need for algorithms for forward kinematics which determine the position of the
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robot based on its member lengths, and the need for inverse kinematics algorithms that

determine member lengths based on a desired goal position.

2 Related Work

In the beginning, tensegrities were designed through geometric intuition and develop-

ment of small physical models. More rigorous analysis of tensegrity structures began

in the mid-1970s with work of Calladine [4] and Pellegrino [17]. These works dealt

with tensegrities as static structures.

Several problems are associated with the static analysis of structures: determin-

ing whether a particular structure is in equilibrium, finding the equilibrium position

of a given structure, identifying finite and infinitesimal modes of motion in the struc-

ture; determining a structures stiffness, and determining whether a particular structure

is a minimal stable structure (i.e. whether members can be removed while retaining

stability).

Tensegrity structures can be described as as weighted connected graphs where

vertices (representing nodes) are connected by multiple edges (representing the mem-

bers). These graphs are realized in 2- or 3-dimensions by attaching coordinates to the

nodes such that the edge weights represent the member lengths. Members may be

struts, capable of withstanding compressive loads, or tendons, capable of withstanding

tensile loads.

Form-finding problems thus involve finding stable equilibrium states (i.e nodal

positions, member lengths, internal forces, and connectivity) given some desired traits

or knowledge about the structure. Typically, node positions or member lengths are

given, and the form-finding algorithm seeks to find an internal stress state at equilibrium

that provides self-stress and attendant stabilization of infinitesimal modes.
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Much of the literature has focused on regular or symmetric tensegrity struc-

tures, structures where member lengths are of equal length and/or nodes occupy the

vertices of regular polyhedra. This reduces the complexity of the form-finding problem.

Many works also make assumptions such as there being no external forces. Motro [16]

presents many canonical tensegrities as well as repeating structures built from multiple

smaller segments.

Obviously, the form-finding problem is closely related to forward kinematics,

and certain form-finding algorithms can be applied to the forward kinematics prob-

lem. Section 5 will further expand on the application of form-finding problems to our

forward kinematics problem.

Tibert and Pellegrino [26] present a comparison of form-finding algorithms for

tensegrities. They classify form-finding methods as either static or kinematic, depend-

ing on whether node locations and member lengths are altered during the running of

the algorithm. Juan and Tur [11] extend this work, describing 3 kinematic algorithms,

6 static algorithms, and 4 other algorithms. Kinematic algorithms are suited to a condi-

tion where node locations are initially unknown, whereas static algorithms fix the node

locations and find an internal force state that puts the structure in static equilibrium with

self-stress.

The kinematic methods described in Juan and Tur consist of an analytic ap-

proach, presented in Connolly and Terrell [5], which makes use of symmetry to reduce

the complexity of the problem, non-linear optimization approaches presented by Pelle-

grino [17], and a dynamic relaxation approach described by Zhang, Maurin and Motro

[28]. Dynamic relaxation solves for equilibrium states by adjusting node positions in

accordance with forces exerted on the nodes, and ends when the sum of forces at each

node reaches zero.

A number of static methods are described; however in general these are not ap-
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plicable to movable structures because they require that all node locations to be known

a priori. One static method, generally referred to as the Force Density Method and

described by Linkwitz [13], has been modified by Estrada, et al [7] to iterate while

adjusting node positions. This allows solutions to be found when the node positions are

initially unknown. However, it does not allow for specification of member lengths.

A final kinematic method, not described in Juan and Tur, has been presented

in several works by So and Ye [21, 23, 22]. This formulates the problem as a semi-

definite programming problem to find node locations only when member lengths are

known. However, it does not consider internal or external forces and relies on rank

conditions (as presented by Pellegrino) to assure stability.

When considering tensegrity structure dynamics and control, most literature fo-

cuses on specific structures and present algorithms suited to those particular structures.

Sultan, Corless, and Skelton [25] present a tensegrity flight simulator, and derive con-

trol laws surrounding a fixed central point through analytical derivation. Mohr and

Arsenault [14] present kinematic analysis of the octahedral tensegrity, again through

analytical derivation.

Probably one of the first efforts to build a tensegrity structure and compare its

actual physical characteristics with those predicted by a model is presented by Fest, et al

[8]. A large tensegrity structure was designed and modeled using dynamic relaxation.

Characteristics such as equilibrium node positions and the amount of deformation in

response to loading were predicted from the model. A large structure (approximately

4.0 meters in diameter) was built and extensively instrumented. This effort showed

good agreement between the model predictions and what was observed in the physical

structure.

Section 5.2 further compares many of the forward kinematics algorithm, and ul-

timately focuses on dynamic relaxation as a suitable algorithm. For inverse kinematics,
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none of the control algorithms reviewed are general-purpose, and new algorithm will

be presented.

3 Work Presented

This work is composed of several parts: first, a set of parameters that can be used

to describe a tensegrity structure is presented. These parameters are used to unam-

biguously define the configuration and state of a tensegrity structure; much in the way

DH-Parameters [6] could be used to define the configuration and state of a jointed limb.

These will be called “TR-Parameters” (Tensegrity Robot Parameters). These param-

eters are used as inputs for the form-finding algorithm presented in Section 5. This

algorithm, entitled Tensegrity Forward Kinematics (TFK), is used as a forward kine-

matics algorithm for tensegrity structures. Several examples of structures are given to

Photo:Author

Figure 3: TenseBot
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show the algorithm’s viability for use in a variety of systems.

Section 6 presents a scheme for inverse kinematics, entitled Tensegrity Inverse

Kinematics (TIK), to place a given tensegrity structure in a desired position. This

method uses inverse Jacobians.

These kinematic solvers were implemented on the “TenseBOT”, a small tenseg-

rity structure with adjustable tendon lengths, shown in 3. Section 7 describes this im-

plementation.

4 Tensegrity Robot Parameters

Earlier works on tensegrity have tended to describe structures verbally or qualitatively,

typically by referring to the solid prism with the same number of vertices, or through

description of the overall structure [18]. These are sufficient to give a general indi-

cation of the shape of a tensegrity or for discussion of simple, regular tensegrities in

the abstract sense. However, as we move to non-regular tensegrities, more complex

shapes, or even seek to compare regular tensegrity shapes with different connectivities,

a clearer and more exact descriptor is needed. This should provide a minimal set of

parameters that would be needed to unambiguously define a structure. This goal is

accomplished through the introduction of “TR-Parameters”, which is a specific quanti-

tative description of the structure. TR-Parameters encapsulate a set of basic parameters

that describe the structural configuration of a tensegrity robot in a generic manner that

would be suitable as the input to a forward-kinematics (form-finding) algorithm, much

like DH-Parameters are sufficient to define a serial-chain robot’s position.

9



4.1 TR Parameters

TR-Parameters include both constant parameters that are specific to the system and

variable parameters that may be externally controlled. In a typical application, the con-

nectivity of the system, member elasticities and masses, and the type of each member

(i.e. whether it can support compressive load) are constant parameters, and the control-

lable or variable parameters are the lengths of the internal members.

The connectivity of the robot expresses which nodes are linked together and

enumerates the members linking them. These members may be rods (capable of car-

rying both tensile and compressive loads) or tendons (capable of carrying tensile loads

only). Each member has an elasticity value, representing its deflection in the loaded

direction as a function of load. Members are connected at nodes, which are assumed

to be infinitesimal and ball-jointed, such that no torques are transmitted through nodes.

Each member is also given a mass which is used to apply weight due to gravity in the

TFK algorithm; the TFK algorithm also allows for other external forces to be supplied.

This is necessary because the structures have some elasticity and these external forces

may result in deformation to the structure.

The final set of parameters is the lengths of the members. In a typical robot

application some subset of these will be fixed, and some subset will be controlled. For

the forward kinematics problem these will all be known; the inverse kinematics problem

seeks to solve for the member lengths of the adjustable members. Notation for each of

the TR-Parameters is shown in Table 1.

The connectivity or adjacency matrix, C appears quite often in the literature

[19]. It is a rectangular matrix of dimension m× n, where each row corresponds to

a member and contains a -1 in a column corresponding to the node at one end of a

member, and a 1 in the column corresponding to the node at the end of the other mem-
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Table 1: TR Parameters

Symbol Dim Description
n scalar number of nodes (locations where members intersect)
m scalar number of members (could be a string, bar, or spring)
C m×n Configuration matrix. Each row corresponds to a single member,

mi j and the ith column and jth column are -1 and 1. The rest of
the entries are zero.

d m×1 Vector containing the (undeformed) lengths of each member.
t m×1 Vector representing the type of each member, (i.e. 1 if it can sup-

port a compressive load, 0 otherwise)
k m×1 Vector containing the elasticities of each member.
m m×1 Vector of member masses.

ber. Although it is not a minimal representation, it has the advantage of being a useful

form for matrix operations on the node and member matrices (N and M). For example,

M = NCT .

4.2 TR Parameters examples

To illustrate the definition of the TR-Parameters, three structures are demonstrated: A

simple prism with three bars (the regular minimal tensegrity prism in R3), a four-bar

prism, and the TenseBot as shown in Figure 3.

4.2.1 Three Bar Prism

The three bar prism structure is show in Figure 4. In this case, there are 3 fixed points

arranged in an equilateral triangle comprising the base, three rod elements which lead

from the base triangle to the upper triangle, and 9 tensile elements. Thus C ∈ R9×6.

This is the simplest stable tensegrity in R3. The TR-Parameters for this structure are

shown in Table 2.

This structure has been studied extensively in the literature, and Tibert and Pel-

11



Figure 4: Minimal regular tensegrity prism

Table 2: 3-Prism TR-Parameters

C =



1 −1 0 0 0 0
0 1 −1 0 0 0
−1 0 1 0 0 0
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
1 0 0 0 0 −1
0 1 0 −1 0 0
0 0 1 0 −1 0
0 0 0 1 −1 0
0 0 0 0 1 −1
0 0 0 −1 0 1


d0 =



1
1
1

1.468
1.468
1.468

1
1
1
1
1
1


t =



0
0
0
1
1
1
0
0
0
0
0
0


k =



1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000


m =



0
0
0
0
0
0
0
0
0
0
0
0



legrino’s survey shows that according to multiple sources, an 1.468 strut-to-tendon

length ratio produces an equilibrium structure with equal tendon lengths.

4.2.2 Four Bar Prism

The four-sided prism structure is show in Figure 5. In this case, there are 4 fixed nodes,

and 4 nodes at the top. There are a total of 16 members. The TR Parameters for this

structure are shown in table 3. Unlike triangular prisms, prisms with square faces may

have inelastic compliance (that is deformation that occurs without a deformation to the

internal members). As will be seen in section 5.4.2, the TFK algorithm will be able to
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find a solution with these TR-Parameters as input.

Figure 5: 4-prism

Table 3: 4-Prism TR-Parameters

C =



1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 1 −1 0 0 0 0
−1 0 0 1 0 0 0 0
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1
1 0 0 0 0 −1 0 0
0 1 0 0 0 0 −1 0
0 0 1 0 0 0 0 −1
0 0 0 1 −1 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 1 −1
0 0 0 0 −1 0 0 1



d0 =



1
1
1
1

1.5
1.5
1.5
1.5
1
1
1
1
1
1
1
1



t =



0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0



k =



1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1



m =



0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0



4.2.3 TenseBot

TenseBot, shown in Figure 6, is a more complicated structure with 12 nodes and a total

of 30 members. TenseBot is based on the concept of a tensegrity flight simulator pre-

sented by Sultan [25] and for which control theory was explored in [12]. The Sultan

model is not kinematically determinate and has finite modes; this means that it is not

13



Figure 6: TenseBot

fully rigid. To rectify this, some additional members are added, making the structure

analogous to the tensegrity icosohedron, with 4 tendons and one strut connected at each

node. The base and top triangles, which are tendons in the tensegrity icosohedron, are

struts in this model, however they generally would carry tensile as opposed to compres-

sive loads. Thus the base and top are each rigid triangles, and there are 6 intermediate

saddle nodes. There are 6 bar members which can freely pivot and rotate, 12 string

tendon members (which have a high elastic modulus), and 6 spring tendon members.

The TR-Parameters for TenseBot are shown in Table 4.
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Table 4: TenseBot TR-Parameters

C =



1 −1 0 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0 0 −1 0 1
1 0 0 −1 0 0 0 0 0 0 0 0
0 1 0 0 −1 0 0 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 −1 0 0
0 0 0 0 0 0 0 1 0 0 −1 0
0 0 0 0 0 0 0 0 1 0 0 −1
0 0 0 1 0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0 1 0 0 0
0 0 0 0 0 1 0 −1 0 0 0 0
0 0 0 0 −1 0 0 1 0 0 0 0
0 0 0 0 1 0 −1 0 0 0 0 0
0 0 0 −1 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 −1 0 0 0
0 1 0 0 0 0 −1 0 0 0 0 0
0 0 1 0 0 0 0 −1 0 0 0 0
0 0 0 −1 0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 0 0 0 0 1
1 0 0 0 0 −1 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0 0 0 0
0 0 1 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 −1 0 0 0 1 0
0 0 0 0 0 0 0 −1 0 0 0 1



d0 =



5.65
5.65
5.65
5.65
5.65
5.65
12.00
12.00
12.00
12.00
12.00
12.00
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
8.50
4.00
4.00
4.00
4.00
4.00
4.00



t =



1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0



k =



1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1.50
1.50
1.50
1.50
1.50
1.50



m =



0
0
0

3.5
3.5
3.5
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1



5 Forward Kinematics via Dynamic Relaxation

This section presents an algorithm for determining the robot equilibrium state (i.e. po-

sitions of all of the nodes and internal forces) using dynamic relaxation, given its TR-

parameters and an approximate (non-equilibrium) initial position.

5.1 Problem formulation

The goal of the algorithm is to take the current configuration of the structure (TR-

Parameters and current member lengths) and to calculate the equilibrium location of

the nodes. While the algorithm will find the location of all the nodes, we specifically

identify a subset as the “output nodes” NO since in most applications we are primarily

concerned with positioning specific parts of the structure, such as an “end-effector”. In

describing TFK we will use the notion from the TR-Parameters (Table 1) and the TFK

Notation in Table 5.
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Table 5: TFK Notation

Symbol Dim Description
N 3×n Matrix representing the locations of the nodes.

N = [NB|NI|NO]
NB (Fixed) base node(s),
NO Output node(s)
NI Internal nodes.
FE 3×n External forces on each node (not including gravity)
M 3×m Matrix representing the orientation and length of each member. If

member k leads from node i to node j, Mk = Ni−N j where Mk is
the kth column of M, and Ni,N j are the ith and jth columns of N.

µ 3×m The orientation of each member expressed as a unit vector. Each
column of µ can be obtained by normalizing the corresponding
column of M: µk = ∥Mk∥.

f m×1 Vector containing the axial force of each member.
R 3×n Matrix representing the net force on each node.

The general formulation is: Given the TR-Parameters and given the locations

of NB (the base/fixed nodes), and assuming that NB has enough dimensionality to con-

strain the “base” of the structure, find NI,NO and f such that R = f (N, f) = 0 (i.e.

the structure is at equilibrium with no residual forces at the nodes). In practice, it is

sufficient to choose a threshold close to zero which R may not exceed.

5.2 Solutions Explored

Because the node positions and internal forces are initially unknown and the relation-

ships between them are nonlinear, it is difficult to write a closed form solution. Since

we desire an algorithm that can be applied without particular assumptions or placing

requirements on the structure (such as symmetry or regularity), the approaches tried fo-

cused on numerical as opposed to analytical or algebraic solutions. In addition, because

the node positions are unknown and the member lengths are constrained, the algorithm
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Table 6: Comparison of Solution Methods

Kinematic

Generic
to all Structures

Considers Forces

Constra
ins Member Lengths

Allows Elastic
Members

Notes

Graph Realization Yes Yes No Yes No

Nonlinear Optimization Yes Yes Yes Yes Yes Nonconvex and large number of
free variables.

Analytical methods Yes No Yes Yes Yes Number of variables must be
reduced via analysis specific to
structure

Force-Density Method No Yes Yes Yes Yes

Iterative Force-Density Method Yes Yes Yes No Yes Member lengths may not be
constrained, and large
deviations are possible

Dynamic Relaxation (Zhang et
al)

Yes Yes Yes Optional Yes*

Simplified Dynamic Relaxation Yes Yes Yes Yes Yes* As proposed below (section 5.3)

* – All members elastic

must generally be of a kinematic type as opposed to a static type as described by Tib-

ert and Pellegrino and allow specification of member lengths. This means that the the

numeric (Force-Density) approach of Estrada et al is not suited to this problem.

Table 6 provides an overview of several solution methods that were considered.

A successful algorithm will be of kinematic type, consider forces, constrain member

lengths, and should allow elastic members. This allows suggests that we consider Graph

Realization, Nonlinear Optimization, and Dynamic Relaxation methods, which will be

discussed in the following sections. Analytical methods (i.e. finding a closed-form so-

lution through algebraic simplification) were not considered because the simplification

process relies on specific knowledge of the structure, and the iterative Force-Density

methods were not considered because they do not allow member lengths to be speci-

fied.
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5.2.1 Unyielding Tensegrities and Graph Realization

Setting aside consideration of forces and elasticity, the form-finding problem can also

be restated as a problem known as the Graph Realization Problem, Distance Realiza-

tion Problem, or Sensor Localization Problem: given a weighted graph G = (V,E,w),

can this graph be realized in three dimensions by finding node positions such that the

distances between nodes equal the (known) edge weights? This graph thus represents

an unyeilding tensegrity. With an incomplete, connected graph, this problem is known

to be NP-hard, and viable heuristics exist only for specific subcases.

Biswas and Ye [1] [2], working with sensor networks, propose a relaxation of

the problem into a semi-definite programming formulation, and So [23] [22] suggests

its use for structures such as tensegrity frameworks. However, this approach fails as

the edge-to-vertex ratio decreases, and it is not suitable for many practical tensegrity

structures. So suggests that this relaxation produces a result only when there is a single

realization, and that if there are multiple realizations the semi-definite problem becomes

non-convex. This means that the solver is much more likely to fail with less-connected

graphs, because these graphs are more likely to have multiple valid solutions since

there are fewer constraints. For example, there may be internal mirrorings that would

not exist if an additional member is added.

5.2.2 Nonlinear Optimization

When generalized as much as possible, the problem is a nonlinear optimization where

the parameters are the node locations and the objective is to minimize R, constrained

by the known lengths of the stiff members and the force-to-length relationship of the

elastic members (springs). However, this most general problem is not well conditioned

to be solved with standard nonlinear solvers. First, the solution space is of very high
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dimension: for the TenseBot, there are 9 free nodes (with 3 spatial dimensions each)

and 30 members that carry force, leading to a 57-dimensional solution space; the objec-

tive R has 36 dimensions. Even satisfying the constraints on member length requires

satisfying the Graph Realization Problem.

One approach to deal with the constraints and reduce the number of dimensions

in the problem is to represent each of the members as an elastic member, either with

very high stiffness or a low stiffness representative of the actual stiffness of that mem-

ber. Then the force in that member is entirely a function of the distance between the

two nodes. In the case of the highly stiff members, because of the high reaction forces

generated by deformation it will be difficult for the system to come into equilibrium

unless the distance betweens the ends of these members is close to their undeformed

length. Thus, it is no longer necessary to constrain the solver externally; the constraints

will be satisfied by the solution.

To use nonlinear solvers such as Newton’s method, BGFS, Gradient Descent,

or Levenberg–Marquardt, R must be reduced to a single dimension. With the goal of

finding R = 0, the obvious way to do this is by taking the norm of the norm of the

column vectors of R; the norm of a column vector is the magnitude of the force on that

node, the norm of norms is good representation of the overall residual forces and can

only equal zero if all the components are zero.

However, this approach is not typically successful. When compressed to a sin-

gle dimension, the objective function is generally not convex, and may have many local

minima. Further, there will likely be more than one point where R = 0. For example,

in the case of a structure sitting on a table (represented in the model as a case where

the bottom-most nodes are fixed), one could imagine a stable configuration where the

structure has fallen through the table and reaches an equilibrium.

In addition, these methods typically use a gradient and look for a solution on
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the direction of the gradient (either by moving a small amount as in gradient descent,

or by using the gradient to linearize and solve as in NLLS, or a weighted combination

of both (LM). However in this case, the local gradient often does not point towards an

overall solution, leading the solver to iterate chaotically or enter repeated oscillations

without converging to a solution.

5.3 TFK Algorithm (Simplified Dynamic Relaxation)

Algorithm 1 TFK Algorithm
1: function TFK(T RParams,Ninit ,FE)
2: N← Ninit
3: repeat
4: FG← FindGravity(N,m)
5: Fext ← FE +FG
6: M← N∗CT

7: d←
√

diag(M∗MT )
8: for i = 1→ m do
9: fi← ki ∗ (d0,i−di)

10: if ti ̸= 1 & fi < 0 then
11: fi← 0
12: end if
13: end for
14: µ ←M∗diag(1/d)
15: F← µ ∗diag(f)
16: R← F∗C+FE
17: v← (1− ε)∗v+ ε ∗R
18: N← δ ∗v
19: until max(R)< T hreshold
20: return N
21: end function

Rather than searching for a solution directly, an alternative approach based on

physical simulation can be used. Generally, this strategy is referred to as dynamic

relaxation; forces are modeled and nodes are moved until these forces reach an equilib-

rium. In contrast to other approaches, this method can typically yield solutions given
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adequate initial conditions. Because it achieves the goal of determining robot position

given it’s parameters, we call this algorithm the TFK Algorithm (Tensegrity Forward

Kinematics).

Similar to the nonlinear optimizations, this algorithm assumes that all members

contain elasticity and have a (known) undeformed length. Forces are computed in each

member and summed at each node and these forces produce accelerations on the nodes.

The algorithm (Algorithm 1, below) iterates by adjusting the node locations until the

sum of forces on each node reaches zero. This is a state of static equilibrium.

It takes as input the TR-Parameters, an initial guess at the node location (Ninit),

and the external forces (FE). The algorithm then iterates: gravitational and external

forces at each node are calculated, the member matrix M is populated using the current

node positions, and the lengths of each member (d) are computed from M. Next, forces

in each member are computed by multiplying their elastic constant by the amount of

deflection. Forces in tensile members that are shorter than their rest length are set

to zero, representing them entering a slack state. Compressive members however are

allowed to carry both tensile and compressive loads.

Once the orientation of each member and the forces in them are known, these

forces can be applied to the nodes along with external forces, producing the matrix of

residual forces R. This represents the net force on each of the nodes in the structure.

These forces produce accelerations at the nodes, changing the (virtual) nodal velocities

and thus the nodal positions. The algorithm iterates until nodes move to an equilibrium

configuration (i.e. where R = 0 or R < T hreshold).

A simple single-bar example is presented in Figure 7. The structure is a bar of

length 1, symmetrically connected to two tendons. Figure 7a shows an initial condition

and the resultant force vector. In 7b, the bar has swung past the equilibrium point and

the resultant now pulls it the other way. In 7c it has reached equilibrium. Several more
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examples will be shown in Section 5.4.

(a) Initial guess (b) After several iterations (c) Equilibrium state

Figure 7: Single-bar, 2-D TFK example

In lines 16 and 17 of the algorithm, we introduce two tuning parameters, δ and

ε , that can be adjusted to produce good convergence behavior. These parameters could

be set to represent the member masses and a damping factor, which would result in a

physically realistic convergence process. However, this is not necessary if we are only

interested in finding an equilibrium solution, since at equilibrium v = 0 and R = 0, and

thus δ and ε will not affect N. Since δ and ε are free, to reduce the algorithm run-time

we can tune them for a specific structure by using an optimization technique, such as a

simplex search (see Table 7).

An advantage of the TFK algorithm is that is can also be used to calculate de-

formations caused by external forces. Since N and thus R include both nodes internal

to the structure and nodes at the base and output, external loads can be easily included

in line 5.

Dynamic relaxation has been explored by Zhang et al [28]. Their method tracks

the kinetic energy of the system (initially zero) and looks for situations where kinetic

energy decreases from one step to another, and then backtracking to the peak kinetic

energy and resetting all velocities to zero. This is because states with maximal ki-

netic energy would have minimal stored energy and thus be near points of equilibrium.
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However, we found the backtracking to be computationally intensive and complex; it

was not needed to reach stability provided that sufficient damping was provided to the

system elsewhere.

Table 7: Optimization of δ ,ε parameters

Unoptimized Optimized
δ ε Iter δ ε Iter

3-Prism 0.01 0.05 644 0.0234 0.3193 91
TenseBot 0.01 0.05 3241 0 .0114 0.0428 925

5.4 TFK Examples

We applied the TFK algorithm to the structures described earlier in Section 4.2. Below

we show both the starting configurations and the resulting equilibrium configuration

that is calculated.

5.4.1 Three Bar Prism

(a) Initial guess (b) Solved (equilibrium) state

Figure 8: 3-Prism TFK
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An initial N is generated:

N =


−0.5774 0.2887 0.2887 0.5774 −0.2887 −0.2887

0 0.5000 −0.5000 −0.0000 −0.5000 0.5000

0 0 0 1.0000 1.0000 1.0000


This can be seen by inspection to consist of two equilateral triangles, one on the ground

plane, and one at a plane in z = 1 and rotated 180 degrees. Note that this initial guess

does not satisfy d0, nor does it need to. Thus, it is easy to select an initial N.

This converges (with max(R)< 10−5) to the following node positions:

N =


−0.5774 0.2887 0.2887 0.4981 −0.0038 −0.5019

0 0.5000 −0.5000 0.2920 −0.5774 0.2854

0 0 0 0.9555 0.9555 0.9555


In this state the member lengths each match the desired member lengths (i.e

tendons of length 1, bars of length 1.468.)

5.4.2 Four Bar Prism

The four bar prism solution is shown in figure 9.

5.4.3 TenseBot Platform

The TenseBot platform is considerably more complex than the regular tensile structure

as it has 12 nodes and 30 members; it incorporates both rigid bars, inelastic tendons,

and elastic springs. In practice it will also have members with unequal lengths as the

tendons are adjustable. Given an adequate initial condition and tuning parameters, this

algorithm presented is able to solve the structure in under 1,000 iterations, which takes
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(a) Initial guess (b) Solved (equilibrium) state

Figure 9: 4-Prism TFK

under 2 seconds on a modern (2 GHz dual core i5) laptop. See Figure 10.

(a) Initial guess (b) Solved (equilibrium) state

Figure 10: TenseBot TFK

5.5 Convergence and Stability

Because this is an iterative algorithm, it needs a suitable initial guess. The initial con-

ditions (Ninit) do not need to represent an equilibrium state, but does need to be close

enough to a desirable equilibrium state such that the algorithm converges to this solu-

tion. Generally, suitable initial states can be determined via inspection and knowledge

of the structure. For example, Figure 9 shows the initial conditions of a four bar prism

where the bars are oriented vertically, which is easy to generate. The member lengths
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of the initial guess do not need to be the same length as the member lengths supplied

in the TR-Parameters. The only other requirements of the initial guess is that no two

nodes have the same location, and that the nodes are not all coplanar.

Figure 11: TenseBot: Sensitivity to choice of initial conditions

Figure 11 shows the effect of attempting to solve the TenseBot structure with

initial conditions randomly altered. To evaluate the stability of the algorithm with re-

spect to variation in the initial parameters, 50 different initial conditions (shown as

green ticks) were chosen by adding random values to a known-good starting location.

In 48 of the cases the algorithm converged to the same final equilibrium position. Two

cases showed convergence to other locations of either extreme asymmetry or else a

degeneration to a location under the base plane. It is should be generally possible to

detect these cases and modify the initial conditions to achieve a better solution. In

general, once a usable initial condition is found, it can be reliably used for all TFK

queries for that structure and thus only needs to be done once during initial set up of

the TR-Parameters for the structure.
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6 Inverse Kinematics via Jacobians

In rigid chain robotics, the concept of inverse kinematics typically applies to the se-

lection of joint-space parameters based on a desired end-effector position. Thus, the

analogous problem for the tensegrity robot is choosing a subset of configuration pa-

rameters (such as tendon lengths) to position the robot based on a particular desired set

of control parameters. As the output of the TFK algorithm is the node positions and

it may not be convenient to specify node positions directly (as they may be unintuitive

and geometric constraints may exist), these control parameters will be the output of a

function that takes the node positions as an input. This function is structure/task spe-

cific and serves to define the state of the end effector based on the node positions of the

tensegrity in convenient parameters; it may also contain additional parameters which

we would like to control.

For example, in the TenseBot the upper platform consists of three rigidly con-

nected nodes. It is most convenient to consider this plate as single body with 6 de-

grees of freedom (position and orientation in 3 dimensions); and writing the relation-

ship between the position of the nodes in the plate and these parameters is straightfor-

ward. In the TIK algorithm presented below (see Algorithm 2), this function is named

Out putPos and the resulting parameters P.

The TIK algorithm thus takes a given goal position (expressed in P) and finds

a solution for d that results in the desired P. The algorithm presented uses the method

of inverse Jacobians to move through the configuration space until the desired P is

reached. The Jacobian in this case is the Jacobian reflecting the change in P due to

changes in d. That is, J = J (Out putPos(T FK(d))). The inverse of this Jacobian

times the position error vector creates a vector that represents the change in d needed

to reduce this error were the system linear. The algorithm takes a small step in this
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Algorithm 2 TIK Algorithm
1: function TIK(Pdes,T RParams,Ninit)
2: N← T FK(T RParams,d,Ninit
3: d← dinit
4: P← Out putPos(N)
5: repeat
6: e← Pdes−P
7: J← Jacobian(d)
8: ∆d← J−1 ∗ e
9: ∆d← ε ∗ (∆d)

10: d← d+∆d
11: N← T FK(T RParams,d,N)
12: P← Out putPos(N)
13: until ∥Pdes−P∥< T hreshold
14: end function

direction, and then recomputes the position and Jacobian in order to choose the next

step.

In the TIK Algorithm, steps 1 to 3 initialize the variables. Step 5 calculates the

current error in position. Step 6 computes a Jacobian at the current position, and step

7 computes a step based on the Jacobian inverse. Step 8 normalizes ∆d to a reasonable

step size, and the remaining steps update d and recompute the position and Jacobian.

The process is repeated until the error in P drops under an error threshold.

An effective optimizations is to use Broyden’s method [3] to approximate the

Jacobian. This is valuable because numerically computing each column of the Jacobian

requires a run of TFK, and normally the Jacobian must be calculated on each iteration.

These Jacobian computations account for most of the runtime of the unmodified algo-

rithm. For this optimization, we compute J directly (in step 7) on the first iteration but

estimate J using the approximation J+ = J+ ∆P−J∆d
∆dT ∆d ∆d on subsequent iterations.

An example of TIK being used to control the bar angle on the one-bar model is

shown in Figure 12. In this case, the upper node is movable, and the bar easily computed

from the node coordinates. Thus P = θ and Out putPos(N) = tan−1(y/x) where y and
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x are elements of N. In the figure, the bar starts are θ = 90◦ and is commanded to

θ = 45◦. This is achieved by adjusting the lengths of the two tendon elements.

(a) Starting position (b) θ = 45◦

Figure 12: TIK used on single-bar system

Because each step is generated through the TFK algorithm, it always represents

a stable equilibrium state for the structure. Therefore, if the TIK algorithm is used to

plan a trajectory for the robot, it assures that the intermediate points in that trajectory

will also be stable.

6.1 TIK on TenseBot

We have also applied the TIK algorithm to the TenseBot model described in sec-

tion 5.4.3. The “output” parameters are P = (x,y,z,ϕ ,θ ,ψ), the position and 3-2-

1 Euler angle representation of the output flange. Starting from a case where all

tendons are given a length of 8.5 inches, the TFK algorithm puts the flange at P =

(0,0,7.5324,0,0,−0.0029) (units in inches and radians). Some examples of move-

ments from this initial position are shown in Figure 13.
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(a) Starting position (b) Moved up (+z) 3 units

(c) Moved forward(+x) 3 units (d) Rotated 45◦ around z-axis (+ψ)

Figure 13: Inverse Kinematics for TenseBot

7 Implementation

The motion control algorithm has been implemented on a small tensegrity structure,

named “TenseBot” at NASA-Ames Research Center. TenseBOT implements the ana-

logue of a 6-DOF Stewart platform. It was originally designed and built by a senior

project team at the University of Idaho. The structure is a 6-strut tensegrity, with a

triangular base and upper platform. Three struts are connected to the base, and three

struts are connected to the upper platform. There are 12 adjustable tendons: six saddle

tendons which connect upper and lower struts, and six draw tendons which connect

struts to the opposite platform. There are are also six passive members, and 6 virtual

members comprising the base and upper platforms. In total there are 30 members, and
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12 nodes where members intersect.

7.1 Hardware Design

The physical and hardware design was developed by the UIdaho team. The struts are

aluminum tubes, and the tendons are hi-modulus Spectra line. The tendon lines run

through the struts to spools attached to servo motors mounted to the base and top plat-

form. In this arrangement, tendons’ lengths are controlled directly by the servo motors.

The servo motors are Dynamixel AX-12A serially controlled servo motors.

They accept commands via a serial bus, and are connected in a chain. The AX-12s

can accept both position commands (over a limited range of travel), or operate in a

free-run mode where they are given speed commands. To facilitate a larger range of

tendon motion, the free-run mode is used, and external 10-turn potentiometers are used

to measure position.

A Parallax propeller board is used to control the servo motors. This board reads

potentiometer position using 12-bit ADCs, and generates servo controller speed com-

mands using a PI control scheme to move to desired potentiometer values. Power sup-

ply for the servo motors as well as supply voltage for the potentiometers is located on

the board.

The goal potentiometer values are obtained from control software running on a

host computer. The Propeller is connected to the host via USB. The control software

implements the kinematics solvers described in the prior sections. The computer also

reads back actual potentiometer values and motor velocities from the Propeller.

The control software is implemented as a MATLAB GUIDE GUI program,

which handles communication, user input, and calls the kinematics solvers. The hard-

ware and physical design of the robot were unchanged from what was delivered by
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the UIdaho team. Both the control software and the embedded Propeller code were

rewritten.

7.2 Embedded system

The Propeller is an 8-core micro-controller that can run spin code, a device specific

language, as well as native assembly code. Unlike typical micro-controllers with a

single processor core that use interrupts to ensure timely response to external events,

the Propeller does not have interrupts but instead uses multiple cores that run in parallel.

Thus particular cores are given their own tasks, and can communicate with each other

via shared memory. Third party drivers to handle communication with the AX-12 as

well as the ADCs and USB port are available, simplifying implementation. These

drivers typically each use their own core while the main control loop runs on the first

core.

The controller uses a separate PI control for each tendon. The current position

is read from the potentiometer and the control input is computed based on the current

error and the sum of errors. Because the AX-12 does not have a true torque command

mode, the control input is given as a speed command; when the AX12 is under load the

speed commanded is roughly proportional to the torque actually produced. Since the

speed will be limited under low loads, it is not necessary to add the D (derivative) term

to the control scheme.

The control inputs are sent to the AX-12s via a call to the AX-12 driver. Po-

tentiometer readings are read from the ADC by a call to the ADC driver. The current

position, desired position and speed are each stored in arrays.

Communications between the host computer and the propeller are via a simple,

fixed-length message protocol. There are two message types, and communications are
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Figure 14: Communications between Host and Propeller
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always initiated by the computer. In one message type, the computer asks the propeller

for the current state of the robot; in this case the propeller’s communications code reads

the state arrays and sends them to the host. In the other message type, the computer

sends a new position to the controller. In either case each of the arrays are serialized

and sent as unsigned 16-bit integers.

This communications scheme preserves backwards compatibility with earlier

versions of the controller software. The communications driver runs on its own core,

so communications are carried out asynchronously with the control loop and the com-

munications code cannot block the control loop code (except during the brief period of

time needed to write to memory).

7.3 High-Level Control

The host computer code is a MATLAB GUI application (using the GUIDE interface).

It communicates with the Propeller using the communications described earlier. The

control computer uses the forward and inverse kinematics schemes described in sections

5 and 6.

The main program structure is presented in Figure 15. At initialization, the

drivers are started and the goal positions are set to the current position as read from the

potentiometer. After initialization, the main control loop is started.

The forward kinematics solver is implemented in the function fkin, which takes

the robot TR-Parameters and an initial guess at node positions at input, and returns an

equilibrium position with the given member lengths. This solver is generalized and

takes all system-specific parameters from the configuration parameter structure.

The inverse kinematics solver is implemented in the function ikin; this solver

uses a generalized Jacobian inverse to attempt to select member lengths which produce
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Figure 15: Program Structure

a desired set of output parameters. Again, this is a generalized solver; the configuration

parameter structure specifies the system specific parameters, including a function that

produces and specifies which of the members should be actuated. This calls the forward

kinematics solver fkin. This implementation calculates the Jacobian numerically by

finite differences for the initial position, and uses Broyden’s method to approximate the

Jacobian.

The GUI program initializes the configuration structures with robot-specific

settings, handles communication with the Propeller via USB, and calls the solvers as

needed. It uses the forward kinematics solver to determine the current robot position

based on telemetry from the robot (i.e. tendon lengths), and the inverse kinematics

solver to determine tendon lengths based on a goal position specified by user input.

The communications code receives data from the Propeller (position, desired

position and commanded velocity), and sends data to the Propeller (new desired posi-

35



tion). The communications protocol is a flag-passing protocol of minimal complexity.

Messages are of fixed length and format. The protocol is presented in Figure 14. All

communications are initiated by the host. A timer calls the “receive data” call at a pre-

defined rate; this gets the current status of the robot. Data sends occur in response to

user activation of the “send tendon lengths” command.

7.4 Calibration

For the kinematics model to accurately represent the physical system, it is important

that the physical values used by the model be accurately represented. These represen-

tations are the basis for the calibration of the system.

First, lengths of fixed elements (such as the struts and length of the base) must

be accurately measured. The model also includes these elements elasticity, but as long

as these elements have a high stiffness it does not have to be accurately measured. For

spring elements, their zero-force length and spring constant must be measured. Because

the spring may pull its own coils into contact with each other, there may be a nonlin-

earity at the minimum spring length. Thus, the spring constant should be measured by

taking multiple readings in the region of linear, elastic deformation of the spring.

For the tendons, the goal is to develop a relationship between the string length

and potentiometer reading. Because the strings are wound onto a spool and the string

cross section is small in relation to the spool diameter, this relationship will be close

to linear. Thus for calibration for the tendons it suffices to measure a slope and an

intercept. Although two points would be sufficient, measuring multiple points and

applying a least squares fit to a linear function will reduce error.

36



7.5 Open issues

Generally, the robot is not yet a fully reliable system. This is due partly to design

problems with the system as a whole and partly to unresolved debugging issues. Many

of the issues relating to the robot design are described in Section 8. There are also some

bugs that interfere with reliable operation of the system. First, there is an intermittent

behavior where a motor will begin running and not stop at the desired position. It is

still unclear whether this is due to a communications issue between the motor and the

Propeller, or a failure within the control loop.

Because of the motor runaways (which can lead to the spools becoming un-

wound) we have not yet been able to perform a suitable calibration to be able to proceed

to further physical testing of the system and the control algorithms. Further steps in the

development and testing of the system will be addressed in Section 8.3.

8 Future Work

There are many opportunities for future work and research, both in the area of the

kinematics algorithms and the TenseBot. The kinematic algorithms are rather rudi-

mentary, and there are several improvements that could improve their reliability and

performance. In addition, there are many aspects of the TenseBot design that could be

changed to improve its performance.

8.1 TenseBot Improvements

During the implementation of the control algorithms on the TenseBot, several areas of

potential improvement became obvious. These relate to both the mechanical design and

motor and sensor selection and could result in improved performance and reliability, as
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well as making it possible to investigate alternative control schemes (such as internal

force-based control).

A major issue with the current implementation is the selection of motors. The

servo motors currently used have internal controllers and take commands via a serial

bus. This makes interfacing with them from the micro-controller easy. However the ser-

vos have several limitations that make them inappropriate for this project. Ideally, these

servos would be used in a position control mode; they have an internal potentiometer

and controller well-suited to position control. This is the designed use for these servos.

However, the internal potentiometer has a limited range of 300 degrees, and the servo

may only be positioned within that range using the position control mode. This range

of travel would only allow for approximately 1” of tendon adjustment. To achieve a

longer range of travel in this case, the only option is to increase the spool diameter

which would cause packaging difficulties (and reduce the amount of force that could be

applied to the tendon by the motor).

The servos do however have a free-run mode. In this mode, rather than taking

position commands, the servos take speed and direction commands. This mode is gen-

erally intended for use in driving wheels on a mobile robot or other situations where

the servo would be lightly loaded and exact speed control might not be necessary. This

free run mode is what is presently used in the robot, and external 10-turn potentiome-

ters are used to measure the tendon spool positions. The position control loop is thus

implemented in software on the Propeller and is subject to the latencies in the ADC, the

Propeller itself, and the communication over the serial bus. This limits the performance

of the controller, and also makes the position control subject to bugs in the Propeller

code. For example, if the Propeller hangs up while an axis is moving, there is nothing

to ultimately stop its motion without user intervention.

The servos also do not offer very good performance, especially in free-run
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mode. They are quite slow, especially when pulling against load. Even while unloaded,

the gear train has a significant amount of back-torque and backlash that introduces non-

linearity. There is also a considerable amount of holding torque while the motor is

unenergized (which is not necessarily a bad thing). In addition, all power for the servos

currently runs through the Propeller board and its power supply; this is a 9V, 6A power

supply that feeds a 5V regulator. Each AX-12A can pull up to 900mA, meaning that it

is possible for the power supply to become overloaded if many axes are being driven

simultaneously.

Some potential solutions to the problem would be to implement a bi-level con-

trol scheme where the position mode is used where possible, and the free-run mode

is used to move the motor through the internal potentiometer deadband (or position

it within the deadband) when necessary. It may also be possible to open up the servos

and replace the internal potentiometers with a connection to the external potentiometers

(although this may lead to problems of insufficient resolution).

A more extensive solution, and one that would be better suited to some of the

future goals of the project, would be to replace the current servo motors with a small DC

motor and gear head. These would need to have suitable motor control boards, ideally

ones that use a current controller to give linear torque control for the motors. This

could be used for simple position control in concert with the current inverse kinematics

algorithm; other affiliated researchers are investigating other control schemes that rely

on tendon force control and a DC motor under torque/current control would be ideal

for this, as the motor torque would be well correlated to string tension.

A second issue is that each of the axes need to have potentiometers to measure

the spool position, and there is a large amount of wiring needed to connect to the po-

tentiometers to the ADC and power supply back on the controller board. In addition,

the potentiometer mounting has been an ongoing issue; the original team used tape to
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mount the potentiometer bodies which often failed or moved. These potentiometers

are designed to be panel mounted but there is not enough room on the base to fit the

potentiometers in a panel. Smaller 10-turn potentiometers are not available. Glue has

been used to fix them in place, however, the glued connection also tends to come loose.

The solution here would probably be to build a new, larger baseplate and use a more

robust panel-mounting for the potentiometers.

An additional improvement to the mechanical design would be relocating some

or all of the motors to the lower base. This should be possible because all of the tendons

either connect directly to the lower base, or have at least one end that connects to a strut

that connects to the lower base. The advantage to this would be that the upper, movable

platform would have reduced mass.

8.2 Algorithm Improvements

The current forward kinematics algorithm uses dynamic relaxation, iteratively simulat-

ing a physical model of the robot as it moves towards an equilibrium position. There

are several issues with this approach. First, it can take a large number of iterations to

find an equilibrium point; this is because the size of the steps needs to be kept small

to reduce integration error, and the damping factor needs to be kept high to reduce

overshoot. This leads to slow convergance. Zhang, Maurin, and Motro [28] propose

tracking the kinetic energy of the system and looking for increases in kinetic energy,

and then backtracking until a minimum is found and resetting the velocities to zero at

this point. This approach may serve to reduce the number of iterations needed to reach

a solution but it also significantly increases the computational complexity, especially

in the backtracking phase (which requires a line-search for a minimum). However, it

would allow for a reduction in the damping factor and an increase in the step-size factor.
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Currently, no collision checking is performed during the solution process, al-

lowing members to pass through one another. Implementing some form of collision

checking would prevent situations such as where the model falls down through the floor.

However, it would add considerable complexity to the process. For example when two

bars collide, the motion of the nodes involved must be constrained somehow. This is

complicated because there will likely be multiple non-fixed nodes. A realistic model

would need to simulate contact forces and apply sufficient contact force to make sure

that the nodes do not intersect. Alternatively, hard constraints could be imposed, but it

would be important to ensure that this does not add energy to the system or prevent the

relaxation from proceeding towards an equilibrium entirely.

There are also other algorithmic approaches to the form-finding problem some

of which may ultimately be better suited to the needs of our problem. In particular, the

Force-Density Method appears to have a great deal of potential because it linearizes

some aspects of the force/node position relationship, allowing linear solvers to be used.

The Force-Density algorithms proposed so far do not guarantee member lengths [26]

[11] [27], but it is possible that this approach may be structured a different way that

would provide better control over the member lengths in the final solution. This ap-

proach may also prove viable for inverse kinematics, wherein the solver is used to

iterate toward a goal position and the tendon lengths needed are thus found (rather than

find the position associated with given tendon lengths). Tran and Lee [27] report very

low numbers of iterations (often ten to twelve) needed to achieve a solution, which

indicates that other algorithms using this approach might be developed with similar

performance.

The TIK algorithm is also a very simple, generic approach. As long as a forward

kinematics algorithm is available, it is possible to consider many approaches to inverse

kinematics taken from classical robotics and path planning. Methods such as genetic

41



algorithms or machine learning algorithms might be possible; the high dimensionality

of the problem gives a large null-space of alternative solutions to consider. Caching

of known solutions and selecting a nearby known solution as a start point is another

method that may reduce the amount of iterations needed.

8.3 Physical Testing

A primary goal of implementing the control algorithms on the TenseBot is to perform

physical tests that could validate the algorithms. So far, the reliability and calibration

issues have prevented this testing from occurring. For the forward kinematics algo-

rithm, validation testing would consist of measuring the position of the robot nodes

while the robot is in a variety of configurations, and comparing those positions to what

is predicted by the TFK algorithm. Inverse kinematics algorithms can be tested by

comparing the desired versus achieved positions.

The key issue preventing further testing of the system is the reliability issue.

This stems largely from the architecture, where the position-control loop is closed on

the microcontroller. Therefor, additional troubleshooting is needed to make this system

reliable. Once the system is stable and the servos can move to commanded positions

with high reliability, the next step would be to do an accurate calibration.

Calibration consists of measuring static member lengths, measuring the spring

constant and undeformed length of the springs, and then finding the correlation between

potentiometer position and tendon length for each of the tendons. The spring constant

measurement can be done by attaching a variety of weights and measuring the spring

deflection. To get an accurate measurement this should probably be done in a sliding

vertical fixture.

To perform the potentiometer calibration, the pot values and tendon lengths
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should be measured with a caliper at multiple positions. The SixBarTest firmware can

be used for this. The accuracy needed can be inferred from the Jacobian.

To test the accuracy of the algorithms, we must measure the position of the

upper platform relative to the lower platform. This is difficult due to the large number of

degrees of freedom present in the system. One method to measure the position would be

to build a rigid framework that mounts to the base of the robot and extends upward and

around the robot and rigidly locates three base points. Length measurements can then

be made from points on the upper framework to triangulate points on the robot surface.

With three points on the robot surface, the platforms position and orientation can be

measured. Making measurements at a number of locations could serve to characterize

the accuracy of the algorithms.

9 Conclusions

The use of tensegrity is an exciting concept for the field of robotics, especially in the

context of mobile and biomimetic robots. However, adoption and use is limited by the

tools and techniques needed to analyze and control them, as well as methods to de-

scribe their design and state. This research has sought to simplify and clarify a set of

parameters suitable for describing tensegrity states, and some some algorithms suited

for computation of static robot states. In addition to basic positional control of tenseg-

rity robots, these algorithms have several potential uses in the modeling and design of

robots that use more advanced control methods. For example these algorithms could be

used to calculate particular positions and internal forces in the extents of a robot that

uses rhythmic motion excited by Central Pattern Generators. In addition, the concepts

presented in this work provide a framework to develop new algorithms. Because the

TR-Parameters provide a means to precisely communicate the conceptual design of a
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tensegrity structure, algorithms using these parameters can be easily exchanged and

compared. The TR-Parameters also allow for easy, unambiguous communication of

tensegrity structure parameters.
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