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Comparing serial reproduction and serial prediction of random walk
Jiaqi Huang (huangajq@iu.edu)1, Jerome Busemeyer (jbusemey@indiana.edu)1

1 Department of Cognitive Science, Indiana University, 1001 E. 10th Street, Bloomington, IN 47405 USA

Abstract

Current studies of the serial reproduction paradigm focused
on stimuli that were statistically independent of each other.
We explored serial reproductions of random walk series
and examined whether Bayesian models previously built
for independent stimulus could be adapted to autocorrelated
stimulus. We found that Bayesian models captured most
of the empirical results qualitatively, but could be further
improved by incorporating recency effects. Besides, given that
the optimal strategy of iterative prediction of random walk
was to reproduce the current stimuli, we also compared serial
prediction of random walk to serial reproduction. We found
that serially reproduced and predicted series both decorrelate
as a function of chain position and that the means of the series
increase in both tasks, which matched qualitative predictions
of the Bayesian models.

Keywords random walk; memory; Bayesian cognition;
serial reproduction;

Introduction
Serial reproduction is an experimental paradigm where a set
of stimuli is recursively reproduced by participants in a chain:
the first person in the chain reproduces the original stim-
uli, and the reproduced stimuli will then be recursively re-
produced by the next person in the chain until the end of
the chain (Bartlett, 1932). Serial reproduction represents an
information path of social networks (Zhang & Busemeyer,
2021), and thus reveals how memory biases may affect in-
formation propagation (Lyons & Kashima, 2003; Kashima,
2000; Lee, Gelfand, & Kashima, 2014). Many computa-
tional frameworks had been proposed for serial reproduction
(Huang, Zhang, Busemeyer, & Breithaupt, 2022; Hemmer &
Steyvers, 2009), and among them the most influential was the
Bayesian model developed by Xu and Griffiths (2010). The
Bayesian model was supported by numerous empirical stud-
ies (Xu & Griffiths, 2010; Langlois, Jacoby, Suchow, & Grif-
fiths, 2021; Jacoby & McDermott, 2017), and had been also
recently applied to explain deep learning models (Yamakoshi,
Hawkins, & Griffiths, 2022).

However, empirical studies that support the Bayesian
model had only explored serial reproductions where stimuli
were independent of each other. It raises the question of
whether the Bayesian model can be applied to serial repro-
ductions of stimuli that contain systematic autocorrelations.
In this work, we attempted to answer this question by ap-
plying the Bayesian model to serial reproductions of random

walk series. Random walk series were chosen over other au-
tocorrelated stimuli because (1) random walk is a real-world
process that we encounter on a daily basis (eg. weather, stock
markets) (2) random walks were widely applied to explain
both cognitive processes (Busemeyer & Townsend, 1993;
Usher & McClelland, 2004) and neural processes (Ashby &
Waldron, 2000; Gold & Shadlen, 2007). Another important
reason for exploring random walk series is that the optimal
strategy for predicting the next stimuli in a random walk se-
ries is to simply reproduce the current stimuli. That said, if
humans used the optimal strategy for making predictions, the
outcomes of serial reproductions and serial predictions of ran-
dom walk series would have been similar. In fact, there was
good evidence that humans’ predictions of random walk se-
ries deviate from this optimal strategy (Spicer, Zhu, Chater, &
Sanborn, 2022; Zhu, Spicer, Sanborn, & Chater, 2021), but
none of them so far focused on the serial effects of random
walk predictions.

In this work, we empirically compared serial reproductions
and serial predictions of random walk series and examined
whether the empirical results matched the qualitative predic-
tions of the Bayesian models. Besides, we proposed an ex-
tension of the Bayesian model in Xu and Griffiths (2010) to
account for potential recency effects induced by the autocor-
relations of the random walks.

Bayesian Model of Serial Reproduction
In Xu and Griffiths (2010), serial reproduction can be viewed
as a sequence of memory reconstructions in a chain. At
chain position n, the model assumed that participant An’s
previous experience established a prior of the true state of
the world η(n), with η(n) ∼ N(µ(n),σ(n)2), and that the
noisy observation followed x(n)|η(n)∼ N(η(n),σ2

x). The re-
constructed true state given the noisy observation η(n)|x(n)
then followed the Gaussian distribution N(λ(n)x(n) +
(1 − λ(n))µ(n),λ(n)σ2

x), where λ(n) = 1/(1 + σ2
x/σ(n)2)

(Gelman, Carlin, Stern, & Rubin, 1995). Since the repro-
duced stimulus x(n) only depended on the stimuli in the previ-
ous chain position x(n−1), serial reproduction was a Markov
chain with transition probability

p(x(n+1)|x(n)) =
∫

p(x(n+1)|η(n))p(η(n)|x(n))dη(n),

(1)
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where x(n+1)|η(n)∼ N(η(n),σ2
x). Using the above results,

we could write the model as a first-order autoregressive pro-
cess:

x(n+1) = (1−λ(n))µ(n)+λ(n)x(n)+ ε(n+1) (2)

where ε(n+ 1) ∼ N(0,(1+λ(n))σ2
x). In the case when par-

ticipants had the same prior in the same chain as in Xu and
Griffiths (2012), µ(n) = µ0 and λ(n) = λ were constants, and
the autoregressive model converged into N(µ0,σ

2
x +σ2

0) in the
limits.

Since stimuli were assumed to be independent of each
other in the same chain position in Xu and Griffiths (2012),
we can rewrite Equation 2 as:

x(n+1, t) = (1−λ(n))µ(n)+λ(n)x(n, t)+ ε(n+1), (3)

where t denotes the trial number. Equation 3 thus highlights
the fact that λ(n),µ(n),ε(n+1) were the same across all trials
in the same chain position n.

Extending the Bayesian Model
When reproducing random walk series, there could be po-
tential recency influences of the stimuli in the previous trial
on reproducing the current stimuli, induced by the trial-by-
trial autocorrelations. Thus, the original Bayesian model in
Equation 3, which assumed that stimuli were independent,
may need modifications. One way to account for potential
recency effects is to extend the Bayesian model by incorpo-
rating a trial-by-trial autoregressive term:

x(n+1, t) = (1−λ(n))µ(n)+ ε(n+1)
λ(n)(β(n)x(n, t))+(1−β(n))x(n, t −1)), (4)

where 0 ≤ β(n) < 1 for any n, and x(n, t − 1) = 0 for t = 0.
β(n) represents an recency coefficient that is constant in trial
number t but varies across chain position n. To reduce
complexity, only one recency term is included. The term
x(n, t − 1) represents the t − 1th stimuli generated by the nth
participants, which is also the t − 1th stimuli for the n+ 1th
participants in a serial reproduction paradigm.

Experiment 1: Serial Reproduction
In the first experiment, we explored serial reproductions of
random walk series. We examined whether empirical results
supported qualitative predictions of the Bayesian model in Xu
and Griffiths (2010), and whether incorporating the recency
term improved the Bayesian model.

Method
Participants 90 Participants from the United States were
recruited through Prolific. Participants were divided into 5
chains, with 18 participants per chain.
Stimuli Stimuli were pictures of missiles with the same
width but in varying heights. The starting series of the heights
of the missiles for the first participant was generated from a
random walk process with drift rate 0 and standard deviation

40. The heights of the missiles were confined to the range
of [100, 500] pixel length, and the random walks reflected
at the boundaries. The starting heights of the random walk
starting series were chosen at random for each of the 5 chains.
Stimuli for the subsequent participants were the responses of
the previous participant in the chain.
Procedure Participants first went through a set of instruc-
tions, before they entered the main phase of the experiment
with 200 trials in total. For each trial, participants were shown
two screens. In the first screen, they were shown the stimulus
whose height would be remembered and reproduced. After
they examined the to-be-reproduced missile, they clicked on
the “continue” button to enter the second screen where they
were shown a second missile whose height was adjustable.
The starting height of this adjustable missile was fixed across
all 200 trials and across all participants within a chain, but dif-
fered between chains. The 5 starting heights for the 5 chains
were correspondingly 200 for the first chain, 250 for the sec-
ond, 350 for the third, 300 for the fourth, and 400 fifth, in
pixel length. Participants then adjusted the height of this sec-
ond missile using their keyboard, until the height of the sec-
ond missile matched that of the to-be-reproduced missile they
remembered. They confirmed their responses by clicking on
the “continue” button again on the second screen to enter the
next trial. Participants were told in the instruction that they
would be awarded bonus for reproducing stimuli as accurate
as possible. We paid bonus based on their total sum of square
errors across all trials. Participants were initially unaware of
the serial dependency of the stimulus, but they could gradu-
ally learn this serial dependency as the experiment goes.

Model Fitting
Two versions of the original Bayesian model (OB) in Equa-
tion 3 and the extended Bayesian model (EB) in Equation 4
were fitted:

1. σ(n),µ(n),σx were constant for any chain position n for
both models, and β(n) was also constant in n for EB. σ(n)
and σ(x) were confined to the range [0,200], and µ(n) to
the range [100,500]. For EB, β(n) was also constant and
confined to the range [0,1].

2. σx was constant in chain position n for both models, but
σ(n) and µ(n) which defined the prior were sampled from
a mixture of two possible values σ1,σ2 and µ1,µ2 corre-
spondingly. That said, σ(n) had probability of ω to equal
σ1 and 1−ω to equal σ2, and similarly for µ(n). σ1 was
confined to the range [0,100], σ2 to the range [100,200], σx
to the range [0,200], µ1 to the range [100,300], and µ2 to
the range [300,500]. For EB, the extra parameter β(n) was
also assumed to be sampled from a Bernoulli mixture of
two values β1,β2 confined to the range [0,0.5] and [0.5,1]
correspondingly.

Conceptually, the first versions of the models assumed that all
participants in the same chain had the same prior mean and
standard deviation, the same observation noise, and the same
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Figure 1: Serial development of the series means for three example chains. The three plots in the upper panel show the result
of the serially reproduced series, and the lower panel show that of the serially predicted series. Empirical observations are
displayed in blue, the predictions of the best version of the original Bayesian model are displayed in red, and the predictions
of the best version of the extended Bayesian model are displayed in yellow. The title indicates the chain number for the three
example chains.

recency effect. The second version assumed that prior means,
standard deviations, and recency effects were changing as a
function of chain position n, but could only change in two
different ways. The reason for adopting the second version is
that participants in our experiment are not trained to have a
common prior as in Xu and Griffiths (2010). We, therefore,
assumed that participants may have different priors that could
affect their reproduced stimulus. To minimize complexity,
we make the simplest assumption that participants’ priors can
only change in two ways, and we encourage future research
to explore more complex hierarchical Bayesian models.

We fitted one set of parameters for each of the five chains
by minimizing G2 errors and compared all four versions of
the two models using the Bayesian Information Criterion
(BIC). For the first version, the mean BIC over the five chains
of EB is 35453 < 35495 against that of the OB. For the sec-
ond version, the mean BIC of EB is 34729 < 34878 against
that of the OB. For all of the five chains and for both OB and
EB, the second versions of the models were preferred. Fur-
thermore, for all five chains, EB is the better model compared
to the same version of OB. Thus, according to the fitting re-
sult, EB is the better model overall.

Next, we examined the parameters of the fitted models.
Since the second versions of the models involve mixtures of
participants’ priors, which makes the parameters harder to in-
terpret, we focused on examining parameters of the first ver-
sions. Conceptually, in OB, the parameter µ(n) represents
the prior mean, and 1− λ(n) represents the relative impor-
tance of the prior in reproducing the stimuli. For EB, µ(n)
and 1 − λ(n) are interpreted in the same way, and there is
an additional weight λ(n)(1−β(n)) that represents the rela-
tive importance of the recency term according to Equation 3.
The mean µ(n) over the five chains for first version of OB is
409.19± 64.17, where 64.17 is the standard deviation, and
that for EB is 423.92± 62.57. The mean 1−λ(n) for OB is
0.070±0.026, and that for EB is 0.057±0.023. Since the rel-

ative weights should sum to 1, the result implies that the influ-
ence of the prior is presented, but is relatively small compared
to the influence of the true stimulus. For EB, the relative im-
portance of the recency term λ(n)(1−β(n)) is 0.063±0.013,
which is also relatively small compared to the influence of the
true stimulus, but are slightly bigger than the influence of the
prior, showing that the improvement of the fitting induced by
the recency term is robust.

Result and Discussion
Mean and Standard Deviation We first examined empir-
ically whether there was any significant change in the mean
and the standard deviation of the reproduced series as a func-
tion of the chain position n. We fitted a mixed effect regres-
sion model to the means: µ ∼ 1+ n+ k+(1+ n|k), where µ
denotes the means, n denotes the chain position, and k denotes
the chain number of the 5 chains. The same model was ap-
plied to standard deviations. The fixed effect of chain position
on the mean was 4.579 with p value 0.03 < 0.05, and that on
the standard deviation was -1.064 with p value 0.06 > 0.05.
The significant increase in the means could be a result of con-
verging toward the participants’ prior mean, as predicted by
the Bayesian model. Such a claim is supported by the fitted
first versions of both models, where the mu(n) parameters are
all near the ceilings above the mean of the starting random
walk series around 350 for all of the 5 chains.

We next explored whether the Bayesian models predicted
the empirical development of means and standard deviations.
To compute the predictions, we ran 100 simulations of both
Bayesian models using their better versions and best-fitted pa-
rameters for each chain. In each simulation, we computed the
means and standard deviations of reproduced series for each
chain position. We then averaged the means and standard de-
viations from all simulations for each chain position and took
these averaged values as the models’ predictions. The results
are displayed in Figure 1 and Figure 2. Both models captured
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Figure 2: Serial development of the series standard deviations for three example chains. The three plots in the upper panel show
the result of serially reproduced series, and the lower panel show that of serially predicted series. The yellow and orange lines
are the models’ predictions.

the significant increase in the means as a function of chain
position but did not capture the changes in standard deviation
well.
Autocorrelation of reproduced series An important qualita-
tive prediction of the original Bayesian model in Xu and Grif-
fiths (2010) was that the random walk series will decorrelate
as chain position n grew. In particular, when participants in
the same chain had a common prior, the distribution for all tri-
als would converge into a Gaussian distribution with the mean
being the mean of the common prior (Xu & Griffiths, 2010).
However, even if not all participants had the same prior, the
series would still decorrelate: consider the most general solu-
tion to the difference equation in Equation 3

x(n, t) = (
n

∏
p=0

λ(n))x(0, t)+
n

∑
q=1

(
q

∏
l=1

λl)εq

+
n−1

∑
j=0

{(
j

∏
k=0

(λ(n− k))φ(k)) · (1−λ(n− j−1)) ·µ(n− j−1)},

(5)

where φ(k) = 0 for k = 0, and φ(k) = 1 for any other k. Since,
λn < 1 for all chain position n by definition, the product term
indexed by p in the solution would decrease monotonically,
while the sum term indexed by j would increase monotoni-
cally, as 0< λn < 1 and µn > 0 for all chain positions n. Given
that the only term that contained autocorrelation was x(0, t),
whose influence became very small as the product term van-
ished, and that the white noise term indexed by q and the sum
term indexed by j combined into a Gaussian distribution in-
dependent of trial index t, the model predicted that the start-
ing random walk series x(0, t) decorrelated into a white noise
distribution independent of trial number t in the limits. Simi-
larly, for EB in Equation 4, it was also expected that the series
would decorrelate as chain position n grew, but because of the
additional recency term, the decorrelation can be slower, and
the autocorrelation may not completely vanish in the limit.

Empirically, we found evidence supporting this qualitative
prediction of the Bayesian models: for all 5 chains, we found

that the autocorrelation for the first and subsequent lags de-
creased as a function of chain position. A mixed effect re-
gression analysis similar to that for means and standard de-
viations suggested that the fixed effect of chain position n on
the first lag of the autocorrelation function of the reproduced
series was -0.018, with p value 0.006 < 0.05, showing that
the decorrelation was statistically significant.

Figure 3 displays the autocorrelation for the first lag against
chain position. As for means and standard deviations, the au-
tocorrelation predictions for each chain position were com-
puted as the averaged result over 100 simulations. Comparing
models’ predictions with the empirical autocorrelation, the
models’ predictions seem to decay much faster as a function
of chain position. With the additional recency term, EB per-
formed slightly better than OB, but still failed to slow down to
the same rate as the decay of empirical autocorrelation. A po-
tential solution to this problem would be to incorporate more
recency terms, and we encourage future works to explore this
possibility.
Correlation between reproduced series As the serially
reproduced series decorrelate, the Bayesian model in Xu and
Griffiths (2010), however, predicted that the correlation be-
tween the reproduced series in chain position n and the target
series in the previous chain position n−1 would not systemat-
ically change as a function of chain position. This is because
the theoretical correlation between the reproduced series in n
and n−1 was λn, which was not expected to change system-
atically as a function n because: (1) participants reproducing
the series were randomly assigned to their chain positions n;
(2) participants were unaware of the exact chain position n
they were in. In the simplest version of the model in Xu and
Griffiths (2010), it was even assumed that λn were constant
throughout the chain. The same qualitative prediction was
true for EB, as β(n), the recency coefficient, was also not ex-
pected to be a systematic function of chain position n for the
same reason as described for λ(n).

Empirically, the qualitative prediction of the Bayesian
models about correlations between reproduced series of ad-
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Figure 3: Serial development of the first lag of the autocorrelation function for three example chains. The three plots in the
upper panel show the result of serially reproduced series, and the lower panel show that of serially predicted series. The yellow
and orange lines are the models’ predictions.

jacent chain positions was confirmed by a mixed effect re-
gression analysis, where the fixed effect of chain position n
was -0.001 with p value 0.33 > 0.05. Visually, the result
was also evident in the upper panel of Figure 4. The models’
predictions, computed from 100 simulations as for previous
statistics, also did not show systematically change as a func-
tion of chain position.

Experiment 2: Serial Prediction

The primary purpose of the second experiment was to exam-
ine whether the Bayesian model of serial reproduction could
be extended to serial predictions of random walk series, given
that the optimal strategy for iterative predictions of random
walk series was to reproduce the current stimuli.

Method

Participants 90 Participants from the United States were
recruited through Prolific. Participants were divided into 5
chains, with 18 participants per chain.
Stimuli The same 5 random walk starting series in experi-
ment 1 was used as the starting series for experiment 2. For
subsequent participants, stimuli were the predictions from the
previous participants.
Procedure Same as in experiment 1, participants were
shown two screens for each trial. They were shown, in the
first screen the current stimuli, and in the second screen the
missile with adjustable height to express their prediction for
height of the next stimuli. As in Experiment 1, participants
used their keyboard to adjust their responses, and clicked on
the “continue” button to confirm their responses. The start-
ing heights of the adjustable missiles were the same as those
specified in experiment 1, and were fixed for each trial in each
chain. The same as in experiment 1, the experiment was in-
centivized and participants’ rewards were based on their sum
of square errors of predictions.

Model Fitting
The same four versions of the models in experiment 1 were
fitted to the serial prediction data in experiment 2. There were
other models, such as the MCMC model (Spicer et al., 2022)
that may explain human’s prediction of random walk bet-
ter stepwise, but our interest was in the serial effects rather
than the accuracy of prediction, and thus we did not imple-
ment and extend such models. We encourage future work
to explore serial extensions of the random walk prediction
models. The same as in experiment 1, the better versions of
both models were the second versions, with EB performing
slightly better than OB in terms of BIC for all five chains.
The mean BIC of the second version of EB is 38321 < 38564
against that of the second version of OB. Regarding the pa-
rameters of the first version of the models, the mean µ(n) for
OB is 352.99 ± 67.40, and that for EB is 357.70 ± 69.62.
The mean 1− λ(n) for OB is 0.29± 0.12, and that for EB
is 0.23±0.088. Compared to that for serially reproduced se-
ries, the relative importance of the prior increases in estimat-
ing serially predicted series. Finally, the mean λ(n)(1−β(n))
for EB is 0.12± 0.030, which implies that the recency term
is also relatively more important for estimating serially pre-
dicted series than for estimating reproduced series. Concep-
tually, the increase in relative importance in priors and re-
cency terms makes sense since participants are no longer in-
structed to reproduce the series intentionally and thus may
adapt to the optimal strategy of predicting the series much
slower than that in Experiment 1.

Result and Discussion
Mean and Standard Deviation We ran two mixed effect
regressions models as previously to test whether the mean and
the standard deviation of the serial prediction series had sig-
nificant fixed effect related to chain position. The fixed ef-
fect of chain position on the mean was 5.206 with po value
0.016 < 0.05, and on the standard deviation was -2.378 with
p value 0.012 < 0.05. Comparing to the result of experiment
1, the fixed effect of chain position on the mean remained sig-
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Figure 4: Serial development of the correlations between the adjacent series for three example chains. The three plots in the
upper panel show the result of the serially reproduced series, and the lower panel show that of the serially predicted series. The
yellow and orange lines are the models’ predictions.

nificant and acquired a larger magnitude. Such an increase in
magnitude could be explained by an increase in λn. Given
the significant decrease in standard deviation, the increase in
λn could only be made possible by a systematic decrease in
observation noise σx by their definitions in Equation 3. In
all four versions of the the two Bayesian models, σx was
constant, and thus it was expected that all current models
failed to simultaneously explain the empirical development
of mean and standard deviation found. However, even if we
allowed σx to change, it was not expected that participants’
observation noise would systematically decrease as a function
of chain position, as participants were assigned randomly to
their chain positions. The present result provided reasonable
evidence that the existing Bayesian models for serial repro-
duction need modifications to account for serial predictions
of random walks.
Autocorrelation of predicted series As in experiment 1,
we first ran mixed effect regression analysis on the empirical
first-lag autocorrelation. The result suggested that the fixed
effect of chain position was -0.024 with p value 0.065 > 0.05,
which implied that there was no evidence for a systematic
decrease in the first-lag autocorrelation. However, this result
did not reject the fact that the predicted series decorrelated:
when the autocorrelation reached zero very fast, it remained
close to zero for the rest of the chain position, and thus may
not had a fixed effect of chain position. As confimed in Figure
3, it was clear that the predicted series did decorrelate as a
function of chain position and indeed in a much faster rate
than reproduced series decorrelated in experiment 1. This
observation is consistent with the model fitting results, as the
relative importance of the prior 1−λ(n) is much bigger for
predicted series than that for reproduced series, which causes
the series to decorrelate faster. The decorrelation was again
captured by both models as illustrated by the predictions of
the models in the lower panel of Figure 3 computed from 100
simulations. Similar to that in experiment 1, the predictions
of the models seem to still decay faster than the empirical
autocorrelations, with EB performing slightly better.

Correlation between predicted series mixed effect re-
gression analysis showed that the fixed effect of chain po-
sition on correlation between the previous predicted series
and the current predicted series was 0.012 with p value 0.96
> 0.05. The result provided evidence for another qualitative
similarity between serial reproduction and serial prediction of
the random walk series explainable by the Bayesian frame-
works. According to the lower panel of Figure. 4, the pre-
dictions of both models again capture this empirical finding
qualitatively.

General Discussion
We explored serial prediction and serial reproduction of ran-
dom walk series, and confirmed several important qualita-
tive predictions of the Bayesian model by Xu and Griffiths
(2010) from empicial result, even if stimuli were not indepen-
dent of each other but were instead autocorrelated. Besides,
model fitting to the empirical data show that the Bayesian
model could be further improved by incorporating recency
influences of reproducing the stimuli in the previous trial on
reproducing the stimuli in the current trial. Comparison of se-
rial prediction and serial reproduction experiments show that
several serial effects such as decorrelation of the random walk
series were consistently presented for both tasks.

Despite that we found serial effects that were the same
across serial prediction and serial reproduction of random
walk series, it was not yet clear whether participants indeed
use the optimal strategy for iterative prediction of random
walk series. Thus, future works can explored whether there
were certain biases in predicting random walk series that de-
viate from the optimal strategy, and may intensify in a se-
rial reproduction paradigm, inspired by our work. Besides,
the proposed extended Bayesian model in Equation 4 has
not yet been derived from a Bayesian probability perspective.
We believe that the exact derivation involves Kalman Filters
(Welch, Bishop, et al., 1995), and we left this derivation for
future research.
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