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ABSTRACT OF THE DISSERTATION

A Path Integral Approach to Data Assimilation in Stochastic
Nonlinear Systems

by

John C. Quinn

Doctor of Philosophy in Physics

University of California, San Diego, 2010

Professor Henry D. I. Abarbanel, Chair
Professor Clifford Surko, Co-Chair

In this dissertation the problem of data assimilation in stochastic nonlinear sys-

tems is formulated using path integrals. Each path represents a time evolution of the

model states, and the time independent model parameters. In the path integral, every

possible path is integrated over with each path weighted by P (X|Y) ∝ exp[−A0(X,Y)],

where A0(X,Y) is the action, which quantifies how likely it is that the given path X

was actually realized in the experiment which produced the observed time series Y.

The goal of data assimilation is to combine information from a measurement time

series with a dynamical model to make statistical estimates or predictions of model states

and parameters. Both the measurements and the dynamical model may be noisy, and

this fact is incorporated by using a probabilistic formulation for P (X|Y), the posterior

path distribution conditioned on the observed time series.

With an expression for P (X|Y) it is possible to express expectation values, con-

ditioned upon the the observations, of any function of the path as a path integral over

all possible paths. The path integrals can then be numerically approximated using a

Markov chain Monte Carlo method such as the Metropolis method. This method is

xi



discussed and applied to two example systems: the Colpitts oscillator circuit, and the

Lorenz 96 toy atmosphere model.

By studying the characteristics of the action as a function of the path, properties

of the data assimilation problem can be deduced. For instance, if the surface in path

space defined by the action is rough with many local minima with similar values of

action, then the data assimilation problem is not well-defined. If more observations are

made which rule out regions of path space that were previously likely, then the surface

may become smoother with a single minimum. By examining the shape of the action,

the question of how many measurements are needed to fully reconstruct the model state

can be answered. It is also important to examine the shape of the action in the vicinity

of the global minimum to find the level of uncertainty in state and parameter estimates.

These ideas are illustrated with the Lorenz 96 system as an example.

xii



Chapter 1

Introduction

1.1 Goal of Data Assimilation

A common strategy in many areas of science is to combine theoretical models

with experimental observations in order to learn something about a dynamical system.

The dynamical model may be created based on ideas about what the underlying mecha-

nisms are, or simply to reproduce observed phenomena. In either case there are usually

parameters in the model that are not known from first principles. In addition, the mod-

els often have dynamical state variables that cannot directly be measured, but which

are useful to estimate as a function of time, either to learn how the unobservable states

evolved or to predict how an observable will evolve. Data assimilation is the process of

combining experimental observations with models to produce statistical estimates of the

model states and parameters that cannot be directly measured.

When dealing with real systems there is always some degree of noise or uncer-

tainty. The function that relates the true state to the observation is typically not de-

terministic, and the time evolution of the state is not perfectly described by the model.

Data assimilation methods account for these facts by formulating the dynamics and the

measurement process in a probabilistic way, and by generating probabilistic state and

parameter estimates.

There are many established approaches to this problem [26, 16, 57, 12, 59, 45,

31, 40, 35, 48, 28, 13], some which are discussed in Chapter 5. This dissertation develops

an approach to the problem of data assimilation based on a formulation in terms of path

integrals [4, 55, 6, 3]. The paths in question represent every possible time evolution of

1
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the model state. Each path is assigned a probability based on how consistent it is with

the model and with the data. The path integrals then are integrals over every possible

path, each one weighted by its probability. This formulation is developed in Chapter 2.

Even after the problem is formulated, there still remains the challenge of actually

evaluating the path integrals. Chapter 3 illustrates how the Metropolis [41] path integral

Monte Carlo (PIMC) method can be used for this purpose. In Chapter 4 the structure

of the conditional probability distribution in path space is examined for some specific

examples, and the role of observations is illuminated. The question of the number of

observations needed to reconstruct the state is also addressed.

1.2 Example Systems

Two particular dynamical systems are used throughout this dissertation to demon-

strate application of the PIMC data assimilation method. One of them is the Colpitts

oscillator circuit [30] and one is the toy atmosphere model of Lorenz [36, 37].

1.2.1 Colpitts Oscillator

The Colpitts oscillator is the simple circuit shown in Fig. 1.1, which consists of

two resistors, two capacitors, an inductor, and a bipolar junction transistor (BJT). It

is a damped resonant circuit with the transistor providing an occasional driving force

via nonlinear switching action. The state of the circuit can be fully described by three

dynamical variables: VCE(t) the voltage at the collector relative to the emitter, VE(t)

voltage at the emitter relative to ground, and IL(t) the current through the inductor.

The state can be thought of as a point in a three-dimensional phase space, and the

dynamics is represented as a trajectory in phase space.

This version of the circuit has one adjustable parameter, R, which is controlled

with a potentiometer. When R is large the system is at a fixed point: there is no

motion in phase space. As R decreases the system begins oscillating periodically. As R

decreases further the system undergoes a series of period doubling bifurcations, and then

the oscillations become chaotic. This is illustrated in the bifurcation diagram in Fig. 1.2

as a function of the resistance R. This is a plot of VCE(tn) where tn are the times when

VE = −0.6 V and dVE
dt > 0.

The Colpitts oscillator is often used for practical purposes in the periodic regime,

but here we are mainly interested in the chaotic behavior to use the circuit as a chal-
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Figure 1.1: Schematic of the Colpitts oscillator circuit.

lenging test system to apply data assimilation methods to. The chaotic dynamics makes

the data assimilation problem challenging, because the model output is highly sensitive

to the parameter settings and initial conditions. The circuit is a good test system for

several reasons: it can be easily built, all state variables can be measured, it can be

accurately modeled, and it can behave chaotically.

The circuit dynamics can be described by three coupled first-order differential

equations which can be found by a straightforward application of Kirchoff’s laws. They

are:

C1
dVCE
dt

= IL(t)− IC(VE)

C2
dVE
dt

= IL(t)− VE(t)− VEE
REE

+ IB(VE)

L
dIL
dt

= VCC − VE(t)− VCE(t)−RIL(t), (1.1)

where IC(VE) and IB(VE) are the currents into the collector and base of the transistor

respectively. To describe the transistor behavior we use a simplified version of the Ebers-

Moll model [15, 39] for the transistor:
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Figure 1.2: Bifurcation diagram for the Colpitts oscillator model as a function of the
control parameter R. Period doubling bifurcations and windows of chaos are visible.

IC(VE) = (1 mA) exp

(
−VE − V0

Vth

)
IB(VE) =

IC(VE)

βF
. (1.2)

These equations specify the transistor currents as a function of VE , and in terms

of two transistor properties: the forward current gain βF , and a voltage offset V0. The

other parameter is the thermal voltage Vth = kT/e.

Our goal is to estimate the parameters R, V0, L, C2, β, and Vth, as well as the

unobserved state variables VCE(t) and IL(t) from a time series recording of VE(t). An

example of VE(t) time series data recorded at a sampling rate of ∆t = 0.01 ms from

the circuit is shown in Fig. 1.3. The other two state variables, VCE(t) and IL(t), were

also recorded but only to compare to the state estimation results at the end of the data

assimilation procedure. In this example the circuit parameters may be directly measured

by taking the circuit apart and measuring the individual circuit elements, but there are

many systems where it is difficult or impossible to directly measure all the parameters.

In Chapter 3 we will see the results of using the PIMC data assimilation method using

data recorded from an actual Colpitts oscillator circuit.
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Figure 1.3: Voltage time series VE(t) recorded from a Colpitts circuit operating in the
chaotic regime.

1.2.2 Lorenz 96

The model of Lorenz [36, 37] is the set of coupled differential equations

dwl(t)

dt
= wl−1(t) [wl+1(t)− wl−2(t)]− wl(t) + f0, (1.3)

with the state variables labeled by l = 0, 1, . . . , D − 1. The state variables are arranged

on a ring, so wD = w0 , w−1 = wD−1, and w−2 = wD−2. The state variables represent

some unspecified scalar quantity at a location on the ring labeled by l. This model

was created as a toy version of an atmospheric model. The quadratic terms represent

advection of the quantity around the ring, and conserve (w2
0 + . . . + w2

D−1). The linear

term, −wl(t), represents damping, and the constant term, +f0, represents an external

driving force.

This model was originally invented by Lorenz as an example system that could be

used to address the question of how many measurements are required to be able to fully

reconstruct the state of the system. The index l can be thought of as labeling longitudes

around the globe. The observations will come from weather stations positioned sparsely

at various longitudes. With this picture in mind, the question becomes: how many

weather stations are needed and where should they be positioned in order to be able
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to sufficiently estimate all the state variables of the model? Another way of asking the

question is: given a model and a set of observations over time from different locations,

how accurately can we estimate the current state of the atmosphere, and thus predict

the future states?

In Chapter 3 we will see how the Monte Carlo evaluation of the data assimilation

path integral can be applied to the Lorenz 96 system using simulated data taken within

an observation window, 0 ≤ t ≤ tM . In this ‘twin experiment’ we get to decide how

many and which state variables to measure. We also can pick a data sampling rate and

a distribution of simulated noise of some amplitude. From the artificial measurements

we can estimate the state variables and the associated uncertainties at each time step,

as well as project the state distribution at t = tM forward in time to make predictions.

In Chapter 4 we again study the Lorenz 96 model, this time looking more closely

at the structure of the action function (as formulated in Chapter 2) associated with this

problem. We will see that when not enough measurements are available the surface of the

action is rough with many local minima with similar values of action, but as the number

of measurements are increased the surface becomes smooth with only one minimum.



Chapter 2

Probabilistic Formulation

Real physical systems are never perfectly described by models, and real measure-

ments are never without noise. This suggests formulating the problem of data assimila-

tion in terms of probability which is done in [58, 48, 11, 22, 5] and by many others. The

goal is to find a probability distribution for all the states of the model as a function of

time from noisy measurements of some property of the system over time.

The inputs into this formulation will be a model of the system and a time series

of observations, together with uncertainties associated with these two ingredients. The

model will be in the form of Markov transition probabilities, which describe how the

model state evolves in time. The transition probabilities may come from a discrete

time map or a system of ordinary differential equations that are then discretized. In

this chapter, we will show how these ingredients are combined to form a probability

distribution that is a function of the time history of the model state conditioned on the

observations.

The first ingredient is the model. To make a model, we first represent the state

of the system at each time step n ∈ {0, 1, . . . ,M} as a D-dimensional vector xn. We

assume the dynamical model is Markov, and so we can represent the time evolution using

a transition probability P (xn+1|xn) which depends only on xn and not any previous

states. This tells us the probability of transitioning from state xn at time step n to

state xn+1 at time step n + 1. This may be a deterministic transition in which case

P (xn+1|xn) will be a delta function, or a stochastic transition in which case P (xn+1|xn)

will be something more spread out than a delta function. The D dimensions of the

model may include any time-independent parameters, by promoting the parameters to

7
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state variables with time evolution given by ṗ = 0.

The second ingredient is a time series of measurements. At each time step labeled

by n ∈ {1, 2, . . . ,M} the measurement is an L-dimensional vector yn which is a known

function of the D-dimensional state vector xn. Typically in practice L < D, so there

are ‘hidden states’. To simplify notation without loss of generality, we can assume that

the measurement function is simply yn,l = xn,l+noise for l ∈ {1, 2, . . . , L}. The noise

term will be discussed in more detail later. The first subscript is the time index and

the second subscript is the vector component index. In general the measurements may

be complicated functions of the state vector xn, but we may transform the model into

a coordinate system where the measurements are simply projections along the first L

coordinate axes of the state space. The time series of measurements is represented by

Y = y1:M = {y1,y2, . . . ,yM}.
We then consider the discrete time evolution of the model state by defining a

path variable X = x0:M = {x0,x1, . . . ,xM}. This describes a trajectory through the the

D-dimensional state space. This formulation considers the entire path simultaneously,

assuming all the observations have already been collected. In signal processing language

this method would be called a ‘smoother’, as opposed to a ‘filter’ which only uses obser-

vations from the past. It is also sometimes useful to think of X as identifying a single

point in path space which has dimension D × (M + 1).

The ‘true path’ is defined as the sequence of states that describes what the

actual evolution of the system was. We call the true path W = {w0,w1, . . . ,wM},
where each wn is a D-dimensional vector. The observation time series Y is produced

from the true path by making noisy measurements of only some of the states. From this

limited information we wish to find P (X|Y), a probability distribution as a function of

X conditioned on the specific data Y. The true path W which when measured produced

Y can be thought of as a specific realization of the random path variable X drawn from

the distribution P (X|Y).

Since the process is stochastic, we cannot say what W was with certainty given

Y. The best we can do is to find the distribution P (X|Y) from which W was drawn.

This will allow us to find an estimate for W and an associated uncertainty.
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2.1 Bayesian Formulation of the Conditional Probability

Distribution

We would like to find P (X|Y), the probability distribution of paths conditioned

on the time series data. It should turn out that this probability is high for paths that

are consistent with both the observations and with model, and low for paths that are

inconsistent with the observations or inconsistent with the model. We now show how

this comes out of an application of Bayesian probability.

As a first step we calculate P (xn|y1:n) in terms of P (xn|y1:n−1), so that we can

see how the newest measurement yn modifies the the probability of xn. This is the

where the observations enter into the formulation. We use the definition of conditional

probability P (A|B) = P (A,B)/P (B) and the fact that P (y1:n) = P (yn,y1:n−1) to write

P (xn|y1:n) =
P (xn,yn,y1:n−1)

P (yn,y1:n−1)

=
P (xn,yn|y1:n−1)

P (yn|y1:n−1)

=
P (yn|xn,y1:n−1)

P (yn|y1:n−1)
P (xn|y1:n−1). (2.1)

The identity P (A,B|C) = P (A|C)P (B|A,C) was used on the last step.

The other piece that is needed comes from the dynamics prescribed by the model.

The model gives us a way to advance the state in time: it lets us calculate P (xn|y1:n−1)

from P (xn−1|y1:n−1). This is done by using the Markov transition probabilities specified

by the model to advance the state forward one time step. When the identity,

P (xn|y1:n−1) =

∫
dxn−1P (xn,xn−1|y1:n−1)

=

∫
dxn−1P (xn|xn−1,y1:n−1)P (xn−1|y1:n−1),

is combined with the assumption that the model is Markov, meaning that the state at the

next time step depends only on the current state, which implies P (xn|xn−1,y1:n−1) =

P (xn|xn−1), we get the Chapman-Kolmogorov equation [44]

P (xn|y1:n−1) =

∫
dxn−1P (xn|xn−1)P (xn−1|y1:n−1). (2.2)

This gives us a way to calculate P (xn|y1:n−1) from P (xn−1|y1:n−1) by using the model

to predict one time step forward, and can be combined with Eq. (2.1) to yield

P (xn|y1:n) =
P (yn|xn,y1:n−1)

P (yn|y1:n−1)

∫
dxn−1P (xn|xn−1)P (xn−1|y1:n−1). (2.3)
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This equation gives a way to compute P (xn|y1:n) given P (xn−1|y1:n−1) by incorporating

the model prediction and the information from the most recent measurement. This is the

key equation that is used by all recursive Bayesian estimation methods. It is the starting

point for particle filter methods [7] which use this equation to perform the forecast step to

advance the probability distribution, as approximated by a weighted particle distribution,

and the analysis step to incorporate measurements. Particle filtering methods, which are

discussed in more detail in Chapter 5, process the measurements and update the model

state sequentially. Here we take a different approach and consider the entire model

evolution and the whole time series of observations simultaneously.

To write P (xM |y1:M ) in a non-recursive way we first look at the first time step

by plugging n = 1 into Eq. (2.3) to get

P (x1|y1:1) =
P (y1|x1)

P (y1)

∫
dx0P (x1|x0)P (x0),

and we note that y1:0 means there are no measurements to condition the probabilities

by. We then apply Eq. (2.3) iteratively M − 1 additional times to get

P (xM |y1:M ) =

∫ M∏
n=1

dxn−1
P (yn|xn,y1:n−1)

P (yn|y1:n−1)
P (xn|xn−1)P (x0).

This is the marginal distribution of the state at the last time point, xM . We can use the

definition of a marginal distribution

P (xM |y1:M ) =

∫
dx0 . . . dxM−1P (x0:M |y1:M ),

to express the conditional probability distribution as a function of the entire path x0:M

as

P (x0:M |y1:M ) =
M∏
n=1

[
P (yn|xn,y1:n−1)

P (yn|y1:n−1)

]
P (xn|xn−1)P (x0). (2.4)

To calculate the marginal distribution at a particular time step 0 ≤ n ≤M we integrate

over the state variables at all the other time steps

P (xn|y1:M ) =

∫
dx0 . . . dxn−1dxn+1 . . . dxMP (x0:M |y1:M ).

Note that this formulation for P (xn|y1:M ) includes the information gained from the

whole time series of measurements y1:M and not just the the past measurements y1:n

which is the case in filtering methods.
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2.1.1 Information Theory Interpretation

The conditional mutual information of xn and yn given y1:n−1 is defined as [19]

MI(xn,yn|y1:n−1) = log

[
P (xn,yn|y1:n−1)

P (xn|y1:n−1)P (yn|y1:n−1)

]
, (2.5)

and is a measure of the amount of information that is learned about the state xn by

observing yn, given all the previous observations y1:n−1. By using the concept of condi-

tional mutual information, we will explicitly see what the role of the measurements is in

the formulation of P (xn|y1:M ).

Note that this is a different definition from what is usually called the conditional

mutual information:
∑

x,y,z P (x, y, z) log( P (x,y|z)
P (x|z)P (y|z)) which is the conditional mutual

information averaged of over all possible states [10].

We can use the definitions of conditional probability and conditional mutual

information, Eq. (2.5), to rewrite the term in square brackets in Eq. (2.4) as [3]

P (yn|xn,y1:n−1)

P (yn|y1:n−1)
=

P (xn,yn|y1:n−1)

P (xn|y1:n−1)P (yn|y1:n−1)

= exp [MI(xn,yn|y1:n−1)] .

We can now rewrite Eq. (2.4) using the concept of conditional mutual information

P (x0:M |y1:M ) =
M∏
n=1

exp [MI(xn,yn|y1:n−1)]P (xn|xn−1)P (x0). (2.6)

With the conditional path distribution written in this way, we see explicitly how the

measurements provide information to modify P (x0:M |y1:M ).

It is useful to do some manipulations to illuminate the role of mutual information.

From the definition of mutual information and from the fact that P (y1:n) = P (yn,y1:n−1)

we get

MI(xn,y1:n) = log

[
P (xn,y1:n)

P (xn)P (y1:n)

]
= log

[
P (xn,yn,y1:n−1)

P (xn)P (yn,y1:n−1)

]
.

Again from the definition of mutual information we have

MI(xn,y1:n−1) = log

[
P (xn,y1:n−1)

P (xn)P (y1:n−1)

]
.
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The previous two equations can be combined to find

MI(xn,y1:n)−MI(xn,y1:n−1) = log

[
P (xn,yn|y1:n−1)

P (xn|y1:n−1)P (yn|y1:n−1)

]
= MI(xn,yn|y1:n−1), (2.7)

by using the definition of conditional probability. This tells us that MI(xn,yn|y1:n−1)

can be interpreted as the change in mutual information due to making one additional

observation yn.

We can also use the concept of relative entropy also known as the Kullback-

Leibler divergence. The relative entropy between two distributions P and Q is defined

as [10]

DKL(P ||Q) =

∫
dxP (x) log

P (x)

Q(x)
.

It is a theorem that DKL(P ||Q) ≥ 0 with equality only when P = Q. We can calculate

the relative entropy as a way of comparing the distributions P (xn|y1:n) and P (xn|y1:n−1)

using Eq. (2.1). We get

DKL(P (xn|y1:n)||P (xn|y1:n−1)) =

∫
dxnP (xn|y1:n)MI(xn,yn|y1:n−1).

We see that if yn and xn are independent (P (xn,yn) = P (xn)P (yn)), then the mutual

information term is zero, and the relative entropy between P (xn|y1:n) and P (xn|y1:n−1)

is zero. This means that the two distributions are the same– clearly nothing is learned

from the measurement yn if it is independent of xn. If the previous equation is averaged

over all possible measurement histories y1:n, by multiplying by P (y1:n) and integrating

over y1:n, we get ∫
dxndy1:nP (xn,y1:n)MI(xn,yn|y1:n−1),

which is the average conditional mutual information.

2.1.2 Uncorrelated Measurement Errors

If we assume that the measurement errors are uncorrelated in time, then we

can say that measurement at time n only depends on the state at time n and not on

the previous measurement history, so P (yn|xn,y1:n−1) = P (yn|xn). With this we can

rewrite the term in square brackets in Eq. (2.4) as

exp [MI(xn,yn|y1:n−1)] =
P (yn|xn,y1:n−1)

P (yn|y1:n−1)
∝ P (yn|xn). (2.8)
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We drop the normalization factor in the denominator, because it is not a function of the

path, and we do not need to keep track of normalization constants, as we will see later.

It is not necessary to make this assumption, but it is a convenient simplification. This

will not be a good assumption if the autocorrelation time of the measurement noise is

larger than the data sampling rate.

The term P (yn|xn)dyn is the probability of a measurement being in the range yn

to yn + dyn given that the state is xn. The particular form of this probability depends

on the noise inherent in the measurement process which we will discuss later. We can

now express the conditional probability Eq. (2.4) as

P (X|Y) ∝
M∏
n=1

P (yn|xn)P (xn|xn−1)P (x0). (2.9)

The distribution of initial states P (x0) is propagated forward by the dynamical transition

probabilities P (xn|xn−1) and also modified by the measurement terms P (yn|xn). A

schematic representation of this equation is given in Fig. 2.1. We will examine each of

these terms in more detail in later sections of this chapter.

xn-1 xn xn+1

yn-1 yn yn+1

Figure 2.1: Schematic description of the formula for P (X|Y), with the assumption of
Markov dynamics and the assumption that measurements only depend on the current
state. Each black arrow represents a transition probability P (xn|xn−1) and each blue
arrow represents measurement probability P (yn|xn). The conditional path probability
distribution P (X|Y) is a product of all these terms and P (x0).

2.1.3 The Action

We can then use Eq. (2.6) to write down the conditional probability as a function

of the entire path X = x0:M conditioned on the entire time series of observations Y =

y1:M as

P (X|Y) ∝ exp[−A0(X,Y)], (2.10)
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by defining the action as

A0(X,Y) =−
M∑
n=1

MI(xn,yn|y1:n−1)

−
M∑
n=1

logP (xn|xn−1)

− logP (x0). (2.11)

We are free to drop additive constants to A0(X,Y), because we defined exp[−A0(X,Y)]

to be proportional to P (X|Y) but not necessarily equal. We will now think of the action

as a function of the path X given a fixed time series of observations Y, and so we will

refer to it as A0(X).

2.2 Conditional Expectation Values as Path Integrals

Now that we have P (X|Y), we can calculate conditional expectation values of

any function of the path χ(X) by using the definition of expectation value,

〈χ(X)〉 =

∫
dX χ(X)P (X|Y)

=

∫
dX χ(X) exp[−A0(X)]∫
dX exp[−A0(X)]

, (2.12)

where
∫
dX means integrate over all paths. This equation says to find the expected

value of χ(X) we must average over all possible paths with each path weighted by a

factor exp[−A0(X)]. This is very difficult to do in a direct fashion since the dimension

of X is typically very high, and so the volume that needs to be integrated over is very

large. We will see in Chapter 3 that there are better ways of doing this integral which

take advantage of the fact that exp[−A0(X)] is typically essentially zero everywhere

except in localized regions of path space. The idea is to use a large number of sample

paths generated by a Markov chain Monte Carlo (MCMC) method, which will be more

concentrated in regions of higher probability, to approximate the distribution P (X|Y).

We can then use the sample paths to approximate properties of P (X|Y) such as moments

of the path components.

Equation (2.12) together with definition of the action Eq. (2.11) allow us, at

least in principle, to calculate the expectation values of any arbitrary function of the

path χ(X), conditioned by the entire sequence of measurements Y. Why is this a useful

thing to do?
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One of our goals is to find a value µn,l to serve as the ‘best’ estimate of the

state xn,l. In this probabilistic setting, xn,l is thought of as a random variable that is

drawn from the marginal distribution P (xn,l|Y), which is P (X|Y) integrated over all

states except xn,l. If we consider the squared error between the estimate and the state,

d2
n,l = (µn,l − xn,l)2, and calculate its expectation we find

〈
d2
n,l

〉
= (µn,l − 〈xn,l〉)2.

We see that if our criterion is to minimize the expectation value of the error, then our

best estimate will be µn,l = 〈xn,l〉, the minimum variance estimate [34, 58]. This is

the motivation for calculating the first moment of each component of the path. This

can be accomplished by choosing χ(X) = xn,l in Eq.(2.12), for n = 0, 1, . . . ,M and

l = 1, 2, . . . , D.

We would also like to know how accurate the state estimate µn,l is. This can be

quantified by calculating the the expectation value of (xn,l − µn,l)2,

〈
(xn,l − µn,l)2

〉
=
〈
x2
n,l

〉
− 〈xn,l〉2 .

This tells us that we should also compute the second moment of each component in the

path by choosing χ(X) = x2
n,l. We define the RMS variation about the mean as

σn,l =
√
〈(xn,l − 〈xn,l〉)2〉,

and use it to quantify the accuracy of the state estimate. We will also see in Chapter 3

that higher moments of the components of the path can be useful to compute.

2.3 Approximations to the Action

We now discus each term in the action Eq. (2.11) in more detail, and show

approximations that can be made to get the action in a simple and useful form.

2.3.1 Distribution of Initial Conditions

The distribution P (x0) represents the distribution of initial states, and parame-

ters since we are counting parameters as time-independent states. We are free to choose

this distribution in any reasonable way. It should be based on knowledge of the system

being studied, which may allow us to constrain the initial states and parameters to be
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within certain ranges. This information could be found from previous experiments, or

from theoretical reasoning. The simplest, although uninformative, choice that we will

make is to assume a uniform distribution, so P (x0) is a constant and can be neglected.

We are free to ignore any constant added to A0(X), because they become multipliers to

exp[−A0(X)] which appear in the numerator and denominator in Eq. (2.12). Another

possibility is to use the output of a previous data assimilation which ended at time t = 0

as the P (x0).

2.3.2 Transition Probabilities 1

The Markov transition probability P (xn+1|xn) represents the probability of tran-

sitioning from state xn at time step n to state xn+1 at time step n+ 1. This is exactly

what a Markov model of the system will tell us. The model may come in many different

forms, but here we will focus on how to find P (xn+1|xn) from a model in the form of a

system of first order ordinary differential equations

dx(t)

dt
= F(x(t)) + η(t), (2.13)

where η(t) is a noise term. We discretize this equation in time using the implicit rule

xn+1 − xn
∆t

=
F(xn+1) + F(xn)

2
+ η(

tn + tn+1

2
).

This method is an average of forward (explicit) and backward (implicit) Euler integration

rules, and it is accurate to order ∆t2. It was shown in [52, 27] that this way of discretizing

leads to the correct form of the path integral in the limit of continuous time. This

discretization scheme is known as the second order Adams-Moulton or the trapezoidal

rule, and is an implicit method. We can write this as

gl(xn,xn+1) = ∆t ηl(
tn + tn+1

2
),

where we defined

gl(xn,xn+1) = xn+1,l − xn,l −
∆t

2
[Fl(xn+1) + Fl(xn)] . (2.14)

In the case of a deterministic model the transition probabilities are

P (xn+1|xn) = δD(g(xn,xn+1)). (2.15)
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This says that if the state xn is known, then the state xn+1 is also known with certainty.

We can modify this to allow stochastic dynamics by broadening the delta function. There

are several ways to do this, but here we use a Gaussian distribution,

δD(g(xn,xn+1)→

√
Rf

(2π)D
exp

[
−
Rf
2

g(xn,xn+1)2

]
, (2.16)

where Rf = σ−2
f , and σf is a parameter that sets the width of the distribution, and thus

the dynamical noise level. As σf → 0 we get back the delta function, and deterministic

dynamics. Putting it all together, the transition probability is

P (xn+1|xn) =

√
Rf

(2π)D

D∏
l=1

exp

[
−
Rf
2
gl(xn,xn+1)2

]
(2.17)

2.3.3 Transition Probabilities 2

We now arrive at this same result for transition probabilities, P (xn|xn−1), in a

different way which clarifies the meaning of Rf , and makes the approximations more

apparent. The type of model we consider here is expressed as a system of stochastic

differential equations with additive noise terms. We further assume that the noise is

Gaussian and uncorrelated in time and among the different components of the state.

Consider a one dimensional model of the form

dx

dt
= V (x(t)) + η(t), (2.18)

where η(t) is a Gaussian noise term with 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = 2Γδ(t− t′). If we

have an ensemble of particles with some initial distribution f(x, t = 0), and each one

is evolved in time by the Langévin equation Eq. (2.18), then the time evolution of the

distribution will be given by the Fokker-Plank equation [29]

∂f(x, t)

∂t
= − ∂

∂x
(V (x)f(x, t)) + Γ

∂2f(x, t)

∂x2
. (2.19)

We would like to find the transition probability P (xn+1|xn) which says how the distri-

bution evolves from time tn to time tn+1 = tn + ∆t. To approximate this transition

probability in a time symmetric fashion, we divided the time step into two equal pieces.

The intermediate time is called th = tn + τ where τ = ∆t/2. We divide the transition

into a forward part from (xn, tn) to (xh, th) and a backwards part from (xn+1, tn+1) to

(xh, th), and integrate over all possible intermediate positions xh. We are finding the ap-

proximate propagator for particle to go from (xn, tn) to (xn+1, tn+1) when the particle’s

motion is prescribed by Eq. (2.18).
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First the forward transition is

f+(xh, t = th) =

∫
dx′Pτ (xh|x′)f(x′, t = tn)

= Pτ (xh|xn).

The second equality is true if we set the initial distribution to be f(x′, t = tn) = δ(x′−xn).

If we make the approximation that V (x) ≈ V (xn), we can write down the solution to

Eq. (2.19) for the appropriate delta function initial condition:

Pτ (xh|xn) =

√
1

4πΓτ
exp

[
−(xh − xn − τV (xn))2

4Γτ

]
.

And similarly for the backwards transition with the final condition f(x′, t =

tn+1) = δ(x′ − xn+1)

f−(xh, t = th) =

∫
dx′P−τ (xh|x′)f(x′, t = tn+1)

= P−τ (xh|xn+1).

With the approximation that V (x) ≈ V (xn+1) the solution for the backwards transition

is

P−τ (xh|xn+1) =

√
1

4πΓτ
exp

[
−(xh − xn+1 + τV (xn+1))2

4Γτ

]
Then integrate the product of forwards and backwards transitions over xh

P (xn+1|xn) =

∫
dxhPτ (xh|xn)P−τ (xh|xn+1)

=

√
1

8πΓτ
exp

[
−(xn+1 − xn − τV (xn)− τV (xn+1))2

8Γτ

]
. (2.20)

The expression on the right comes from expanding the terms in the exponentials, com-

pleting the square for xh, doing the Gaussian integral over xh, and then factoring the

result. In D dimensions this generalizes to the same formula as before for the transition

probabilities, Eq. (2.17), if we set Rf = 1/(2Γ∆t) and remember that τ = ∆t/2.

The crucial approximation that V (x) ≈ V (xn) is valid when τ is small enough

so that V (x) does not change much over the region of significant probability in one time

step. The approximation is valid when

dV (xn)

dx

(
τV (xn) +

√
4Γτ

)
� V (xn).
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2.3.4 Mutual Information

We again make the assumption that measurement errors are uncorrelated in

time, so the mutual information term simplifies as shown in Eq. (2.8). We can then

make assumptions about the form of the measurement noise. Here we assume

P (yn|xn) = Pnoise(|yn,1 − xn,1|, |yn,2 − xn,2|, . . . , |yn,L − xn,L|).

We further assume that the noise has a multivariate Gaussian distribution

P (yn|xn) ∝ exp

−1

2

L∑
l,l′=1

(yn,l − xn,l)(Rm)ll′(yn,l′ − xn,l′)

 ,
where Rm is the inverse of the covariance matrix, a symmetric positive-definite L × L
matrix which characterizes the the measurement noise distribution. If the measurements

of each component of xn are independent, Rm is a diagonal matrix. For illustration

purposes we assume that this is the case, and further assume that each measurement has

the same noise magnitude, so Rm = IRm, where Rm is a scalar. With these assumptions

the total mutual information (neglecting additive constants) becomes

M∑
n=1

MI(xn,yn) = −Rm
2

M∑
n=1

L∑
l=1

(yn,l − xn,l)2. (2.21)

This has a straightforward interpretation as a least squares cost function comparing the

model output to the data. The closer to zero this term is, the more consistent the path

X is with the measurements Y.

2.4 Illustrative Examples

It is instructive to pause at this point and work out two simple examples that

can be solved analytically.

2.4.1 Repeated Measurements of Constant

Suppose we take repeated measurements of some quantity that we believe is

constant in time. To connect to the formalism presented so far, we model this as a

dynamical system with one state variable x(t) having the trivial differential equation

dx
dt = 0. If we assume the model is deterministic, so that x(t) is exactly constant, then
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the transition probabilities are simply

P (xn+1|xn) = δ(xn+1 − xn).

For illustration we assume that two uncorrelated measurements are taken at two different

times, one of x1 and one of x2, called y1 and y2 respectively. From Eq. (2.9) integrated

over x0 we get

P (x1, x2|y1, y2) ∝
∫
dx0P (y2|x2)P (y1|x1)P (x2|x1)P (x1|x0)P (x0). (2.22)

We can use this to find an estimate of the true state x and an uncertainty in that

estimate. To do this we calculate

〈x1〉 = 〈x2〉 =
1

Z

∫
dx1dx2x2P (x1, x2|y1, y2),〈

x2
1

〉
=
〈
x2

2

〉
=

1

Z

∫
dx1dx2x

2
2P (x1, x2|y1, y2),

where Z is the normalization factor. We also assume the measurements have Gaussian

noise distributions given by

P (yn|xn) ∝ exp

[
−Rn

2
(xn − yn)2

]
,

where we allow the uncertainties σn = R
−1/2
n to be different for each measurement.

For simplicity we also assume that P (x0) is uniform and so it can be pulled out of the

integrals and canceled from the numerator and denominator of the expectation values.

Plugging in the transition probability and the measurement terms into Eq. (2.22),

we do all but one of the integrals and eliminate the delta functions. Then complete the

square and do the Gaussian integrals. The result can be generalized to many measure-

ments and get the familiar results

〈x〉 =

∑
nRnyn∑
nRn

σ2 =
〈
x2
〉
− 〈x〉2 =

1∑
nRn

.

The expected value of x is a weighted average of the measurements with more weight

given to the measurements that have less uncertainty. The uncertainty σ decreases as

more measurements are made like 1/
√
N , where N is the number of measurements of

the same quantity.
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2.4.2 Brownian Motion

Consider the motion of a particle whose position is given by

dx

dt
= η(t), (2.23)

where η(t) is a Gaussian white noise term with 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = 2Γδ(t− t′).
We assume that no measurements are available, but that we exactly know the initial

position is at x0 = 0. This means that the initial distribution is P (x0) = δ(x0). We can

find the transition probability from Eqs. (2.20) by plugging in V (x) = 0:

P (xn+1|xn) =

√
1

4πΓ∆t
exp

[
−(xn+1 − xn)2

4Γ∆t

]
.

We then use the path distribution from Eq. (2.9), but in this case there are no measure-

ment terms

P (x0:n) ∝
n∏
j=1

P (xj |xj−1)P (x0).

If we integrate over all state variables except the last one xn, we get the probability

distribution of the particle’s position at time n

P (xn) ∝
∫
dx0 . . . dxn−1P (x0) exp

[
−(x1 − x0)2

4Γ∆t

]
. . . exp

[
−(xn − xn−1)2

4Γ∆t

]
.

We can do the integrals starting with x0 to eliminate the delta function. Then complete

the square to get the term involving x1 in the form of

exp

[
−

(x1 − 1
2x2)2

2Γ∆t

]
exp

[
− x2

2

8Γ∆t

]
,

and then do the Gaussian integral over x1. Repeat this for each integral up to xn−1. We

are then left with

P (xn) ∝ exp

[
− x2

n

4Γn∆t

]
.

If we identify n = t/∆t we get the usual solution of the simple diffusion equation ∂P (x,t)
∂t =

Γ∂2P (x,t)
∂x2

, with P (x, 0) = δ(x), an expanding Gaussian

P (x, t) =

√
1

4πΓt
exp

[
− x2

4Γt

]
.

As t → 0 we get back the initial delta function distribution. This equation gives the

density of an ensemble of particles all initially at x = 0 and diffusing according to

Eq. (2.23).
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This example shows how the Markov transition probability P (xn|xn−1) evolves

the distribution forward in time. In this simple case P (xn) simply becomes wider and it

remains centered at zero, because the RHS of the differential equation averages to zero.

Without any measurements, our knowledge of the position of the particle decreases in

time.

We could also imagine doing an experiment where we take occasional noisy mea-

surements of the position of the particle, still assuming the motion of the particle is

modeled by Eq. (2.23). Then the probability distribution for the particle’s position at

time n, P (xn|y1:n), would include a term for each measurement P (yn|xn) in addition to

the transition probability terms shown above. The measurement terms would modify

P (xn|y1:n) so that it no longer uniformly expands in time, but instead is guided by what

we learn from the measurements. Each measurement provides information about the

particle’s position, and so it has the ability to narrow the distribution P (xn|y1:n), letting

us make a more accurate estimate of the position of the particle 〈xn〉.

2.5 Summary

We have seen how the conditional probability distribution in path space can

be expressed in terms of the action using P (X|Y) ∝ exp[−A0(X)]. This allows us to

calculate conditional expectation values of any function of the path with the path integral

in Eq. (2.12). With all the simplifying assumptions made in the previous section, the

action (neglecting additive constants) becomes

A0(X) =
Rm
2

M∑
n=1

L∑
l=1

(xn,l − yn,l)2

+
Rf
2

M∑
n=1

D∑
l=1

gl(xn−1,xn)2,

where gl(xn−1,xn) is defined in Eq. (2.14), and represents the amount of deviation from

the trajectory predicted by the deterministic model, F(x). The first sum becomes large

for paths that are inconsistent with the data. The second sum becomes large for paths

that are inconsistent with the deterministic model. The smallest value the action can

take on is zero, and that can only happen if there is no noise in the measurements, and

the deterministic model is exactly describes the system evolution. We have assumed that

there are observations available at every time step for notational convenience, but any

observations that are missing can simply be excluded from the first sum.
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In this simplest case, we have two constants Rm and Rf which set the importance

of the measurements and the importance of the model, respectively. In a real experiment

there will be some estimate of the uncertainty in the measurements σm, and so Rm can

be set using Rm = σ−2
m . The other term, Rf , characterizes the noise or uncertainty in the

model, and is harder to set a priori, since we may not know how accurately the model

describes the dynamics. We will see what the effect of this setting is in later chapters,

and show how it can be varied to test the accuracy of the model.



Chapter 3

Monte Carlo Evaluation of Path

Integrals

3.1 Introduction to Monte Carlo Sampling

We saw in Chapter 2 that the process of doing data assimilation can be reduced

to doing path integrals of the form

〈χ(X)〉 =

∫
dX χ(X)P (X|Y)

=

∫
dX χ(X) exp[−A0(X)]∫
dX exp[−A0(X)]

, (3.1)

where A0(X) is the action, and χ(X) is some arbitrary function of the path. The

action is a positive function of the path X which depends on the entire time series of

measurements, Y, as well as a model of the dynamical system, and is defined in the

previous chapter. The integral is over every possible path, each which represents a

possible time evolution of the D-dimensional state variable, consistent with the model

or not. Each possible path is weighted by the factor exp[−A0(X)] which represents how

likely the path is, which depends on how close the path is to the data and how close the

path is to what is predicted by the model. Since time is discretized into M steps, and

the state vector has dimension D, the dimension of the integral is N = (M + 1) × D
which is typically large.

One approach to approximating the integral is to divide path space into cells. To

do this, we would have to pick a finite region of path space where the contribution to

the integral is non-negligible, say of size xL in each of the N directions, and pick a grid

24
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resolution ∆x. We could then evaluate the integrand at each of these grid points and

sum the results. The trouble with this naive approach is that the number of grid points

would be (xL/∆x)N which is a huge number since N is large. This would be impractical.

It is also wasteful, because in the cases of interest where the model and measurements

provide useful information, most of the huge number of possible paths are extremely

unlikely. In a well-defined data assimilation problem there should be a relatively small

region of path space that has non-negligible contribution to the integral, and these are

the paths we are interested in.

The goal of this chapter is to discuss and demonstrate ways of actually numeri-

cally evaluating the path integrals. The key idea is that instead of trying to uniformly

sample all possible paths, we sample the paths based on their importance. The most

important paths are the ones where the weight factor exp[−A0(X)] comes out largest,

which is where A0(X) is smallest.

If we could generate a series of paths {X(1), . . . ,X(J)} that are distributed in path

space according to P (X|Y) ∝ exp[−A0(X)], then we can use those paths to approximate

the distribution with

P (X|Y) ≈ 1

J

J∑
j=1

δ(X−X(j)).

We can then calculate expectation values of any function of the path with

〈χ(X)〉 =

∫
dX χ(X)P (X|Y)

≈ 1

J

J∑
j=1

χ(X(j)). (3.2)

This approach has the benefit that we do not need to sample all of the path space, but

only the regions of path space that have a significant contribution to the path integral.

Another benefit is that we do not need to explicitly calculate the normalization factor

in the denominator of the conditional expectation value Eq. (3.1). The paths generated

by this process can be thought of as representing many possible time evolutions of the

system state that could have produced the observed data when measured. The paths

that are more likely to have produced the observed data will be generated more times

than the paths which are less likely to have produced the observed data.

Now all that is left to do is to find a way to generate a series of paths that

are distributed according to exp[−A0(X)]. There are several path integral Monte Carlo

methods, such as Metropolis or Hybrid Monte Carlo, that do exactly this [38, 42, 4, 55, 6].
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3.2 Path Integral Monte Carlo Methods

3.2.1 Metropolis Monte Carlo

One of the simplest and oldest approaches is the Metropolis Monte Carlo method

[41]. This method works by generating a sequence of paths {X(1), . . . ,X(J)} that we

will call Monte Carlo paths by a random walk through path space. The method is an

example of a Markov chain Monte Carlo method, because the the paths are generated in

sequence and the next path is generated only from the current path in a stochastic way.

The random walk is biased in a particular way as described below so that the sequence

of paths that are generated come out distributed according to exp[−A0(X)].

The method works by generating a new path X(n+1) from the current path X(n)

with a two step procedure. First a candidate path X′ is selected by adding an unbiased

random displacement to the current path X = X(n). The displacement may be to only

one component or all the components, and the random number may be drawn from any

type of distribution, as long as it is unbiased: X→ X′ is as likely to occur as X′ → X.

Next the candidate path is either accepted (X(n+1) = X′) or rejected (X(n+1) =

X). The probability for acceptance is

Paccept(X
′,X) = min(1, exp[−∆A0(X′,X)]), (3.3)

where ∆A0(X′,X) = A0(X′)−A0(X) is the change in action which would be caused by

changing X to X′. This says that if a proposed change will lower the action it should

be accepted, and if the proposed change increases the action it should only be accepted

with probability exp[−∆A0(X′,X)]. Note that only the change in action is required, so

the full action never needs to be computed. This means we do not need to keep track

of additive constants to the action, and can save a lot of computation time by only

computing the terms in the action that will be changed by the update.

Now we will see why this Metropolis path update rule will generate paths dis-

tributed in the appropriate way. If we start with an ensemble of paths with density

ρs(X) ∝ exp[−A0(X)] and update all the paths according to the Metropolis rule the

density of the ensemble will be invariant. This is because the detailed balance condition

ρs(X)P (X→ X′) = ρs(X
′)P (X′ → X)

is satisfied for the stationary density ρs(X) ∝ exp[−A0(X)]. The Metropolis method
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defines the transition probability to be

P (X→ X′) = Pcan(|X′ −X|) min(1, exp[−∆A0(X′,X)]),

where Pcan(|X′ −X|) is the candidate selection probability, and the second term is the

acceptance probability as defined in Eq. (3.3). It is straightforward to show that the

stationary distribution ρs(X) ∝ exp[−A0(X)] with the Metropolis update rule satisfies

the detailed balance condition.

It can also be shown that any initial distribution of paths that are updated

according to the Metropolis rule will approach the stationary distribution [41].

We can then use the sequence of paths generated by the Metropolis procedure

to approximate the distribution P (X|Y) and from this calculate conditional expectation

values of any function of the path as shown in Eq. (3.2).

3.2.2 Error Estimates

It is important to be able to estimate how accurately the Monte Carlo calculation

approximates the true value of the path integral. We would like to estimate the error

in the MC estimate of some quantity zj = χ(X(j)) defined by some function of the path

χ(X). The MC estimate is the average over paths

z̄ =
1

J

J∑
j=1

zj .

The variance of this quantity is

σ2
z =

1

J

J∑
j=1

(zj − z̄)2.

The error in the estimate of 〈z〉 is

∆z = z̄ − 〈z〉 ≈ σz

√
Jac
J
.

The J−1/2 dependence comes from the fact that the estimate is based on the sum over

many random steps. The Jac factor enters because the paths generated by the MC

procedure are not independent, and so the effective number of independent steps is less

than J . Jac can be estimated by calculating the number of path updates needed for the

autocorrelation function to decay to 1/e. This is a rough approximation of the number
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of updates that must be done to a given path to produce a new path that is independent

[14].

The autocorrelation function,

fac(n) =
1

σ2
z(J − n)

J−n∑
j=1

(zj − z̄)(zj+n − z̄), (3.4)

is normalized so that fac(0) = 1, and should decay to zero when n becomes large enough.

When this happens, enough path updates have been done to wipe out correlations. The

autocorrelation function goes roughly as e−n/Jac . We will compute this function for a

specific example in a later section, as a way of estimating Jac. Another method of error

estimation is discussed in Appendix A.

3.3 Monte Carlo Predictions

It is possible to extend the path to include times beyond the end of the observation

window, 0 ≤ t ≤ tm, where measurements are not available. The action is formulated

in the same way as before, but the unavailable measurements are simply excluded from

the mutual information term in the same way that was done for unobserved variables.

The path integral can then be done in the same way as before to calculate moments of

the path, but now part of the path can be interpreted as a predication.

However, this makes the MC evaluation very difficult if the model is chaotic and

if the prediction window is long compared to 1/λmax, where λmax is the largest Lyapunov

exponent of the model. Even if the likely states (including parameters as state variables)

at t = tm are confined to a small region of state space, the chaotic nature of the model,

without the guiding influence of measurements, will cause the small likely region to

spread out and eventually cover the entire attractor. This means very many paths will

need to be generated to adequately sample the likely regions of path space. The problem

may be even worse when the likely regions of state space form islands of high probability

separated by regions of low probability.

A way to deal with this problem is to not include future times in the path,

but to generate the predications by directly integrating the model equations forward in

time. This can be done by integrating each path that is generated in the MC process

forward into the prediction window. This is essentially what is done in the prediction

step of particle filter methods [7] (the other step in particle filter methods is the update



29

step which is how the measurements are incorporated). The integration is done using the

states (and parameters) at t = tm as initial conditions (and parameters). The integration

can be done without noise, or with noise added to the integration. In this way we get a

large number of trajectories in the prediction window which we can calculate statistics

of, typically the mean and standard deviation as a function of time, to make predictions.

The trajectories will typically start out well-confined at t = tm and spread out as time

progresses because of chaos and because of the noise in the dynamics (if explicitly added

to the integration). At a certain point the mean predictions will not be very useful, but

that will be apparent: since we calculate an ensemble of paths instead of just one path

we can see the spread in paths.

3.4 Monte Carlo Implementation

Now we discuss the details of the particular path integral Monte Carlo imple-

mentation used to do the calculations shown in this chapter. This section contains an

overview of the process, more details about the Monte Carlo Data Assimilation code are

presented in Appendix A.

We include Np unknown parameters in the path by treating them as state vari-

ables with the differential equation ṗ = 0. We treat the parameters as exactly constant

in time, so we do not add noise terms to the differential equation for the parameters.

This means that each parameter can be represented as a single component of the path.

Another possibility is to relax the assumption that the parameters are exactly constant

in time, and to treat them in exactly the same way as the state variables. This increases

the dimension of the problem, but may be a very useful thing to do in some cases.

The path X is represented by a one-dimensional array x[N] with size N = (M +

1)D + Np. The array is indexed as follows: the state xn,l, where n ∈ {0, 1, . . . ,M}, l ∈
{0, 1, . . . , D−1}, has index i = nD+l, and the parameter pl, where l ∈ {0, 1, . . . , Np−1},
has index i = (N−Np)+l. This indexing system is relevant only because the components

of the path are updated the sequence x[0],...,x[N-1].

We use the Metropolis Monte Carlo algorithm in a form similar to what is shown

in Fig. 3.1. The proposed changes to the path are made one component at a time in order.

The proposed changes are drawn from uniform distribution in the interval (−δi, δi). The

psuedo-random numbers are generated using the double precision SIMD oriented Fast

Mersenne Twister (dSFMT) code by M. Saito and M. Matsumoto [56]. The size of the
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random walk step δi is allowed to be different for each component of the path. The

δi’s are set automatically using a procedure described in Appendix A, with the goal of

getting 50% of the proposals accepted per path component. The goal in setting the δi’s is

to have the path space be sufficiently explored with a minimal number of path updates.

If a δ is set too large the acceptance rate will be very low, and if it is set too small the

path will not change very much per update. In either case the path space will not be

explored efficiently.

After each component of the path has had one opportunity to be updated, the

new path is used to add onto the running sum for the first through fourth moments

of each component of the path. It some cases it may be useful to give some or all of

the components of the path multiple opportunities to update before using the path to

calculate moments, but that is not done here. The full path is usually not stored, since

the information we are interested is contained in the moments. At the end of the process

of generating paths, the moments are then used to compute mean, standard deviation,

skewness, and kurtosis of every component of the path.

Another important detail is that the initial Ninit number of paths are disre-

garded during the initialization phase. This is done so that the initial guess of a path

does not contaminate the statistics, which should be independent of the initial guess.

It takes many updates for the influence of the initial guess path to be wiped out. The

number of paths to disregard, Ninit, and the total number of paths, NIt, must be de-

termined by running the code and looking at how some quantity of interest zj = χ(X(j))

changes as the paths are updated. Ideally zj should come to an equilibrium value before

Ninit number of updates and then continue to fluctuate around the equilibrium.

We assume that measurement noise is Gaussian and uncorrelated in time and

among the different components of the state. We also make the same assumptions about

noise in the dynamics, and so the action takes the form

A0(X) =
1

2

M∑
n=0

D−1∑
l=0

Rm
n,l (xn,l − yn,l)

2

+
β

2

M−1∑
n=0

D−1∑
l=0

Rf
l

[
xn+1,l − xn,l −

∆t

2
(Fl(xn+1,p) + Fl(xn,p))

]2

. (3.5)

We take the initial distributions P (x(0)) and P (p) to be uniform, and so they are

additive constants to the action that can be neglected. The deterministic part of the

model differential equation is dx
dt = F(x,p) which is assumed to be known. The constants
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Set x[] to initial guess path

Set mean[] to 0

for it = 0 to NIt -1 {

for i = 0 to N-1 {

xp = x[i] + delta[i]*Uniform(-1,1)

dA = Change in action caused by replacing x[i] with xp

Paccept = min(1, exp(-dA))

if( Uniform(0,1) < Paccept )

x[i] = xp

}

if( it >= Ninit ){

for i = 0 to N-1

mean[i] = mean[i] + x[i]/(NIt-Ninit-1)

}

}

Figure 3.1: Pseudo-code for Metropolis Monte Carlo
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Rf ,Rm are the confidence in the model and the measurements respectively, and may

be different at different points in the (l, n) grid. The measurements are yl(n) where

l ∈ {0, 1, . . . , D−1} are known constants read in from data files. Note that now the sum

over measurements is over all D components, but this is just for convenience and not a

real change. Since measurements are not typically available at every point in the (l, n)

grid, the Rm
l(n)’s associated with missing measurements are set to zero. The parameters

are pl where l = 0, 1, . . . , Np − 1, and they are considered part of the path X.

The parameter β in Eq. (3.5) is used to do a type of simulated annealing. It

may be set to start out at β = β0 < 1 and gradually increased up to β = 1 during the

initialization phase. The idea behind this is that it may be beneficial to have the action

initially be dominated by the nice smooth Gaussian terms and gradually increase the

influence of the possibly complicated and nonlinear model. This turns out to be very

important, particularly in the low dynamical noise setting, and is explored in more detail

in Chapter 4 where we examine the shape of A0(X).

One additional practical detail is that we may wish to put bounds on the state

variables and parameters, instead of allowing them to range from −∞ to ∞. A simple

way to accomplish this is to reject any proposed moves that would take a state or

parameter out of bounds. This is equivalent to saying that the action becomes infinite

if any of the components of the path go out of bounds, which means that such a path

has zero probability and should not be sampled. Often the bounds can be set based on

what makes sense in the model, or from other previous measurements.

3.5 Application to Example Systems

We now show how the path integral Monte Carlo (PIMC) method just described

can be applied to three different problems. The first example is an ensemble of damped

harmonic oscillators with stochastic forcing. In this example measurements are only

provided at t = 0, so this is not really an example of data assimilation, but it is a simple

test case with a known solution. It is an example of how a stochastic differential equation

with a given initial distribution can be solved using PIMC. The next example uses

simulated data generated with the Lorenz 96 model, and demonstrates state estimation

and prediction. The last example uses real data recorded from the Colpitts oscillator

circuit. The point of this example is to show that the method can be used when the

model is not known exactly, which is the case in any real system, and when there are
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several unknown parameters.

3.5.1 Damped Harmonic Oscillator with Noisy Forcing

We now consider the problem of a particle of mass m confined to one dimension

by a linear restoring force and immersed in a viscous fluid at temperature T . The particle

feels a viscous drag when it moves through the fluid, and also experiences random forces

from the thermal motion of the fluid. This problem was originally solved analytically in

[9], and also discussed in [33]. Here we study it as a demonstration of the path integral

Monte Carlo technique, and compare the results to the exact answer.

The dynamics of the particle can be modeled as a damped harmonic oscillator

with random forcing. The random variables, X(t) for position, and V (t) for velocity will

evolve according to the stochastic difference equations (for small ∆t)

∆X = V (t)∆t, (3.6)

∆V = −ω2X(t)∆t− γV (t)∆t+
√

2Γ∆tN t+∆t
t (0, 1) (3.7)

where ∆V = V (t + ∆t) − V (t), ∆X = X(t + ∆t) − X(t), and N t+∆t
t (0, 1) represents

an independent sample drawn at each time step from a Gaussian distribution with zero

mean and unit variance. The fluctuation strength Γ and the damping coefficient γ are

related to the temperature by the fluctuation-dissipation relation, Γ/γ = kT/m. As in

Brownian motion, the random step has size has to be proportional to ∆t1/2, to get self-

consistancy when the time step is divided in half and two normal distributions are added,

since according to the normal sum theorem the variances of the two normal distributions

add together [33].

We now consider an ensemble of particles that initially at t = 0 have a Gaussian

distribution of position and velocity. Since this system is linear, the distributions of

position and velocity will remain Gaussian at all times, so we only need to keep track

of the 1st and 2nd moments: 〈X(t)〉 , 〈V (t)〉 ,
〈
X(t)2

〉
,
〈
V (t)2

〉
, 〈X(t)V (t)〉. We can find

a system of five ordinary differential equations for the moments by manipulating the

equations of motion and averaging over the ensemble.

The evolution of the means 〈X〉 and 〈V 〉 come from averaging the equations of

motion, and are the same as the motion of a single damped harmonic oscillator without
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random forcing:

∆ 〈X〉 = 〈V 〉∆t

∆ 〈V 〉 = −ω2 〈X〉∆t− γ 〈V 〉∆t.

Now we work on the equation for
〈
V 2
〉
. Because of the presence of the term

proportional to ∆t1/2, some of the ordinary rules of calculus do not apply. We use the

fact that

∆(V 2) = (∆V )2 − 2V 2(t) + 2V (t)V (t+ ∆t)

= (∆V )2 − 2V 2(t) + 2V (t) [V (t) + ∆V ]

= (∆V )2 + 2V (t)∆V. (3.8)

In ordinary calculus ∆V is proportional to ∆t and so (∆V )2 is neglected in the limit of

∆t → 0, but here ∆V has a term proportional to ∆t1/2 and so it can not be dropped

completely. From Eq. (3.7) we have

(∆V )2 = 2Γ∆tN t+∆t
t (0, 1)2 +O(∆t3/2).

We can then do an ensemble average of Eq. (3.8) and use Eq. (3.7) to get

∆
〈
V 2
〉

=
〈
(∆V )2

〉
+ 2 〈V (t)∆V 〉

= 2Γ∆t− 2ω2 〈XV 〉∆t− 2γ
〈
V 2
〉

∆t.

We do a similar thing for
〈
X2
〉

and for 〈XV 〉, again dropping terms of order ∆t3/2 and

higher in anticipation of taking the limit ∆t→ 0.

Next we take the limit ∆t→ 0 in all five equations, to get a closed system of five

coupled ordinary differential equations:

d 〈X〉
dt

= 〈V 〉

d 〈V 〉
dt

= −ω2 〈X〉 − γ 〈V 〉

d
〈
X2
〉

dt
= 2 〈XV 〉

d
〈
V 2
〉

dt
= −2ω2 〈XV 〉 − 2γ

〈
V 2
〉

+ 2Γ

d 〈XV 〉
dt

= −ω2
〈
X2
〉
− γ 〈XV 〉+

〈
V 2
〉
.
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This system can be solved exactly as shown in [9], but since our goal is just to compare

to the Monte Carlo calculation we simply numerically integrate to find a solution for a

particular choice of initial conditions and parameters.

As a specific example we choose parameters ω = 1, γ = 0.3,Γ = 0.0015. This im-

plies that kT/m = Γ/γ = 0.005. We also choose initial conditions: 〈X(0)〉 = 1, 〈V (0)〉 =

0,
〈
X(0)2

〉
= 1/Rm + 1,

〈
V (0)2

〉
= 1/Rm, 〈X(0)V (0)〉 = 0, where Rm = 100. The sys-

tem can then be integrated numerically to get the exact results shown in Fig. 3.2 with

solid lines representing the mean 〈X(t)〉, and mean plus or minus the standard deviation

σX(t) =
√
〈X(t)2〉 − 〈X(t)〉2, and similarly for the velocity.

We also solve the same problem using the Monte Carlo path integration method

described previously in this chapter. We specify the initial distribution by providing one

measurement of velocity at t = 0, y0,1 = 0, and one measurement of position at t = 0,

y0,2 = 1. Both measurements have an uncertainty of R
−1/2
m = 0.1. Equivalently, we

can provide no measurement terms but include two Gaussian prior terms for the initial

condition distributions with the appropriate mean and variance instead. The parameters

ω and γ are included as known constants, and not integrated over.

We set the dynamical noise level in the velocity equation by setting Rf =

1/(2Γ∆t). Here we choose ∆t = 0.2, and so Rf,1 = 1667 in the velocity equation. The

position equation has no noise in it, so in principle we would like Rf,2 →∞, but that is

not possible since the assumption that the transition probabilities are stochastic is built

into the method. However, we can approximate the deterministic equation by setting

the noise level to be low or Rf large, so we set it to a large number: Rf,2 = 100Rf,1. The

results of the Monte Carlo calculation using 19.2 million path updates (and discarding

the first 1.2 million path updates) are shown in Fig. 3.2, and match up closely with the

exact results. Making Rf,2 larger seems to make the problem more difficult because the

autocorrelation time of the Monte Carlo process increases, and so more paths need to be

generated to get good results. Another possibility is to not include the position variables

at each time step in the path, but to instead only include the initial condition. The

position at each time step would then be calculated by integrating the velocity.

3.5.2 Lorenz 96

We use the Lorenz 96 model to do ‘twin experiments’ using the path integral

Monte Carlo method of data assimilation. This means simulated data was generated from
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the D-dimensional Lorenz 96 model equations given in Chapter 1, with measurement

noise added. For the examples shown in this chapter D = 5, but the method has been

successfully tested with many other D values up to D = 100.

More specifically, the model equations with D = 5 and some choice of initial

conditions, and with the forcing constant set to f0 = 8.17 were numerically integrated

using 4th order Runge-Kutta to generate the ‘true path’ or actual trajectory w(t). The

choice of f0 = 8.17 puts the dynamics in the chaotic regime, with a largest Lyapanov

exponent of λmax = 0.53. Here we use the exact deterministic model, and do not

add any noise to the dynamics, but we explore the issue of noise in the dynamics in

the next chapter. From w(t) simulated measurements are generated by adding white

Gaussian noise: yn,l = wl(n∆t) + σNn,l(0, 1), where Nn,l(0, 1) is a number drawn from a

Gaussian distribution with zero mean and unit variance, and σ = 0.35 is the level of the

measurement noise. Actually the measurements are only generated for some values of

(n, l), and here we choose n∆t = 0.0, 0.1, 0.2, . . . , 4.0, and l = 0, 1, so a total of 82 data

points are used. In the examples the time step was set to be ∆t = 0.025, 0.05, or 0.1.

We have observations of w0(t) and w1(t) available in the observation window

0 ≤ t ≤ 4 with a time interval of 0.1 between each point. The other three variables

w2(t), w3(t), w4(t) are unobserved. Also the forcing constant f0 is treated as an unknown

parameter, represented by a single component of the path. The goal is to approximate

the posterior distribution of states P (X|Y) using Metropolis Monte Carlo to generate a

series of paths, from which we can calculate moments of every component of the path.

The path X includes the state vector, including observed and unobserved components,

at every time point, as well as the forcing parameter. The reason for calculating the

moments is to turn the the posterior distribution into something that can be used to

make predictions. We use the first moment 〈xn,l〉 as an estimate of what the true state

was likely to be, or will likely be at future times, and use the second moment to calculate

the standard deviation to use as an uncertainty estimate.

We also calculate the third and fourth moments of the components of the path.

Since the model is nonlinear, there is no reason to expect the distributions to be Gaussian–

even if it is Gaussian at t = 0 it will be distorted as it is evolved forward by the model.

These moments can be used to compute skewness〈
(xn,l − 〈xn,l〉)3

〉
〈(xn,l − 〈xn,l〉)2〉3/2

,
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and (excess) kurtosis 〈
(xn,l − 〈xn,l〉)4

〉
〈(xn,l − 〈xn,l〉)2〉2

− 3

which both vanish for Gaussian distributions. Computing these quantities allows us

to test the common assumption that the marginal state distributions P (xn,l|Y) are

Gaussian. The issue of non-Gaussian distributions in data assimilation is discussed in

[50], and they give a way of quantifying the deviation of a distribution from Gaussian.

They do this by computing the relative entropy between the distribution in question and

a Gaussian distribution with the same mean and variance, which can be approximated

as s2/12 + k2/48 for small absolute value of skewness, s, and kurtosis, k.

Using this simulated data set of 82 data points with observations of only two of

the variables, and the Lorenz 96 model, we can calculate the action as given in Eq. (3.5).

For the first example we set Rm = 8 for all the (n, l) points that have measurements

associated with them, and as always Rm = 0 for all the (n, l) points that do not have

measurements associated with them. We make this choice because in this case we know

the level of the measurement noise was σ = 0.35, so we set Rm = 8 ≈ σ−2, but in

a real experiment the measurement noise level would have to be estimated based on

considerations of the measurement process. The method does not appear to be very

sensitive to this setting, or even the form of the noise distribution. In this case the

actual noise distribution and the assumed form of the noise distribution which goes into

the action are both Gaussian white noise.

We also have to make a choice for the Rf term, which characterizes the amount

of noise in the dynamics. In this case there is really no noise in the dynamics (aside

from small numerical errors in the integration), because we generated the simulated

data directly from the model. In the next chapter there are some examples of simulated

noise added into the dynamics for this same system. In a real experiment the noise term

can be used to represent certain types of random model error or stochastic forces. The

assumption that the noise is Gaussian and uncorrelated in time and among the different

components of the state are built into this form of the action. Recall that the physical

quantity that represents the amount of noise is Γ = 1/(2Rf∆t).

For a first example we set ∆t = 0.05 and Rf = 327.5. Now we have everything

needed to be able to evaluate the action Eq. (3.5) for a particular choice of path X,

which means we can perform the Metropolis Monte Carlo procedure to generate a series

of paths, and from the paths calculate mean, standard deviation, skewness, and kurtosis
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of each component of the path.

The specific settings used in the Monte Carlo process were: a block size of 1000

path updates, the first 200 blocks were discarded and the next 1920 blocks were used to

calculate the statistics. The block refers to a sequence of path updates that are grouped

together to reduce the storage requirements. Simulated annealing was used by starting

with β = β0 = 10−4 which increased by multiplying by a constant factor after each path

update, over the first 100 blocks generated during the initialization phase. Note that

these paths are disregarded when calculating statistics.

The MC calculation was done on the interval 0 ≤ t ≤ 4. To make a prediction

beyond t = 4 the final state (and parameter) value of each path was integrated forward

up to t = 6 using fourth-order Runge-Kutta (RK4) with a time step of 0.0125 which

means in this case that the analysis time step ∆t was divided into four integration steps.

No noise was added to the integration in this case, so effectively Rf →∞ after t = 4.

The results of the MC calculation with Rf = 327.5 and the RK4 prediction are

shown in Fig. 3.3 for one observed variable, xn,0, and in Fig. 3.3 for on unobserved

variable, xn,3. The results of the parameter estimate were f0 = 8.15± 0.16, very close to

the true value of 8.17, with a skewness of 0.07 and kurtosis of 0.08, consistent with the

distribution being almost Gaussian. We also see that both the skewness and kurtosis are

close to zero in the observation window, but that the marginal distributions P (xn,l|Y)

become less Gaussian for times after the end of the observation window (t > 4). The

figures show that the data points have a strong influence in guiding P (xn,l|Y): the

marginal distributions have narrow peaks centered near the true value, and they are

approximately Gaussian. Once the data points are no longer available at times past

the end of the observation window, the marginal distributions spread out and become

non-Gaussian. This is expected, because without any measurements for guidance, the

chaotic dynamics will spread out and distort a distribution that was well-confined at

t = 4.

Next the same example calculation was done but this time with higher weight,

or more confidence, given to the model, so this time Rf = 655. The results are shown

for one of the observed variables in Fig. 3.5, and are very similar to the previous results

with Rf = 327.5. Increasing the Rf setting by a factor of two has caused the state

uncertainty in the observation window to decrease by about a factor of about 1.2. Also

the skewness and kurtosis in the observation window are slightly further from zero, now
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Table 3.1: Autocorrelation numbers Jac calculated from the results in Fig. 3.8 (a = 327.5,
and b = 0.025), and compared to the scaling Jac ∝ ∆t−1 for constant Γ in the last two
columns. As a function of Γ and ∆ the scaling appears to be roughly Jac ∝ Γ−1/2∆t−1.

Rf ∆t Γ = (2∆tRf )−1 Jac Jac/7.5 b∆t−1

4a b (8ab)−1 7.5 1.00 1
2a 2b (8ab)−1 3.6 0.48 1/2
a 4b (8ab)−1 1.8 0.24 1/4

4a 2b (16ab)−1 6.2 0.83
a b (2ab)−1 3.6 0.48
a 2b (4ab)−1 2.2 0.29

that the influence of the nonlinear model relative to the influence of the data has been

increased.

The histogram representation of marginal distribution P (f0|Y) is shown in Fig.

3.6, which was generated by binning the values of f0 for all 1920×1000 of the MC sample

paths, for the two examples just discussed. We can see that these distributions are

approximately Gaussian, and that the standard deviation decreases when Rf increases.

It is also important to examine how the paths generated by the MC process

change iteration to iteration. We focus on the component of the path that represents f0.

To cut down on the amount of storage required, we group the path updates into blocks of

1000, and calculate the first through fourth moments of each component of the path for

each block. Figure 3.7 shows how the blocked averages of f0 change for two different Rf

settings. The initialization phase is not shown, but if it was we would see the parameter

drifting from the starting guess to near the true value. Those initial paths should not

be used in the statistics calculations. We also can see that the blocked averages do not

appear independent: there are some short-range correlations, and this is more apparent

for the larger Rf case.

To quantify the amount that the blocked averages of f0 are correlated we calculate

the autocorrelation using Eq. (3.4). The results of the autocorrelation calculation for

several different values of Rf and ∆t are shown in Fig. 3.8 and summarized in Table 3.1.

We find that if Γ = (2∆tRf )−1 is a constant then the scaling for autocorrelation number

is Jac ∝ ∆t−1, thus if ∆t is cut in half twice as many MC path updates need to be done

to get to the same level of accuracy. We also see that if Rf is increased with ∆t fixed

Jac also increases.
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3.5.3 Colpitts Oscillator

This section is about applying the PIMC method to real data recorded from the

Colpitts oscillator circuit which was introduced in Chapter 1. All three state variables,

VCE(t), VE(t), and IL(t) were recorded from the circuit with a sampling rate of 0.01 ms

when the circuit was undergoing chaotic oscillations. This is shown by the solid black

line in Fig. 3.9 which is only used as a comparison with the state estimates produced by

the PIMC method.

The data used in the PIMC method is represented by blue dots in Fig. 3.9. This

comes from the VE(t) recording, but only every 10th point was used, so ∆t = 0.1 ms.

There are 101 data points and they are at times t = 0.0, 0.1, . . . , 10.0 ms. From these

101 data points we estimate the three state variables (one observed and two unobserved)

at times t = 0.0, 0.1, . . . , 10.0 ms, as well as the six parameters C2, L,R, V0, Vth, and βF .

We also integrate each MC path forward past the end of the observation window

to make state predications. We see that the projected paths start out well-confined

but then spread out. This is because the model is chaotic, so slight changes in initial

conditions (at t = 10 ms) and parameters lead to large changes in the trajectory at later

times.

We show the estimated parameters in Table 3.2 and compare them to the mea-

sured values. The estimates all come out pretty close to the measured values with the

exception of βF . This issue is addressed further in [54] using different methods.

The specifics of the settings used in this calculation are: Rf0 = 2500, Rf1 =

10000, Rf2 = 16, Rm0 = 0, Rm1 = 2500, Rm2 = 0. The l = 0, 1, 2 subscript refers to the three

state varaibles: VCE , VE , IL in that order. The block size was 1000 path updates. The

first 300 blocks were disregarded, and the next 480 blocks were used. Also a simulated

annealing procedure was used during the first 20 blocks, with β0 = 0.01. The prediction

was done using RK4 with a step size of 0.05.

This example is useful because it demonstrates that the PIMC data assimilation

method can work when applied to real data. The model is only approximate: it assumes

that the inductor, capacitors, and resistors behave in the ideal linear way, and more

importantly that that the transistor is adequately described by the simplified version of

the Ebers-Moll equations. The real transistor is not exactly described by the Ebers-Moll

model, particularly when the current going into the collector is large. The problem is

also made more difficult by the fact that the dynamics are chaotic. It is essential that
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the measurements are used for guidance.

Table 3.2: Colpitts Circuit parameter estimates compared to the directly measured
values.

Name Mean St. Dev. Measured Units

C2 6.9 0.5 7.23 µF

L 12.0 0.5 11.74 mH

R 39 2 39.3 Ω

V0 0.65 0.01 0.63 V

Vth 25 3 27 mV

βF 77 2 180

3.6 Summary

Path integral Monte Carlo was used to calculate conditional expectation val-

ues of the form shown in Eq. (3.1). Each path is weighted by the factor P (X|Y) ∝
exp[−A0(X)]. The key idea is to approximate the path integral by sampling paths more

from the regions that are more important. This is done by generating MC paths that

are distributed according to exp[−A0(X)] with the Metropolis algorithm.

In particular, we calculated moments of each component of the path which de-

scribes the possible state evolutions. This information was then used to make state

and parameter estimates with associated uncertainties. Also predictions were made by

propagating the distribution at time t = tm forward using the model dynamics.

In the next chapter we take a closer look at the function A0(X) and see how

its shape depends on the number of measurements and how the terms in the action are

weighted. We also investigate the issues of model error and dynamical noise.
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Figure 3.2: Comparision of the exact answer to the MC result for the stochastic damped
harmonic oscillator.
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Figure 3.3: Results of the MC calculation for Lorenz 96 D = 5 with Rf = 327.5 for
one observed variable, xn,0, showing the mean plus or minus one standard deviation and
compared to the true path (top), and the skewness and kurtosis of P (xn,0|Y) (bottom).
Observations was only provided for 0 ≤ t ≤ 4 of xn,0 and xn,1.
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Figure 3.4: Same as the previous figure, but now showing one of the unobserved variables,
xn,3. The computed quantities come from the marginal distribution P (xn,3|Y).
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Figure 3.5: Results of the MC calculation for Lorenz 96 D = 5 with Rf = 655 for one
observed variable, xn,0, showing the mean plus or minus one standard deviation and
compared to the true path (top), and the skewness and kurtosis of P (xn,0|Y) (bottom).
Observations was only provided for 0 ≤ t ≤ 4 of xn,0 and xn,1.
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Figure 3.6: Histogram representation of the marginal distribution P (f0|Y) for Rf =
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Figure 3.7: The forcing parameter f0 averaged over blocks of size 1000 path updates is
shown for 1920 blocks. Also shown is the average of f0 over all 1000 × 1920 MC paths
(red line) and the average plus or minus the standard deviation (blue lines). The top
panel is for Rf = 327.5 and the bottom panel is for Rf = 655, both with ∆t = 0.05. The
true value used to generate the data was f0 = 8.17. The number of blocks that need
to be generated for the autocorrelation to decay to 1/e is roughly twice as much for the
bottom as the top.
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Chapter 4

Exploring the Shape of the Action

We saw in Chapter 2 how to formulate the conditional probability in path space

as P (X|Y) ∝ exp[−A0(X))], where A0(X) is called the action and is a function of the

path X. The action also depends on the time series of observations Y which we think of

as known constants. Recall that the path X may represent any time history of the state

of the model, as well as time-independent parameters. We now would like to examine

the structure of the function A0(X), in particular we would like to know if the surface

of A0(X) is smooth with few minima or rough with many minima. We will see that it is

useful to find the local minima of A0(X) as well as calculate the curvature in the vicinity

of these minima as a way of characterizing the function A0(X), which depends on the

particular choice of model as well as the observations.

Recall that the action has the form

A0(X,Y) = RmEm(X,Y) + βRfEf (X), (4.1)

where Em(X,Y) is the measurement error term and Ef (X) is the model error term,

which both evaluate to positive numbers for any path X. The measurement error term

becomes large for paths inconsistent with the measurements, and the model error term

becomes large for paths inconsistent with the model. The β is a control parameter used

to adjust the relative weight of the two terms.

It is instructive to consider the simple limit of when β = 0. In this limit we

have no knowledge of the system dynamics at all, so we cannot say anything about the

unobserved variables, or make any predictions. We do have some information from the

noisy measurements, but this only tells us about the state variables that were measured

50
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at the times they were measured. We need to introduce a model to be able to use the

measurement data to learn something about the unobserved states and parameters. As

β increases the model resolution increases, or the dynamical noise level decreases, and

we get some predictive ability.

It is also useful to think about the role of making additional measurements. When

there are few measurements available the most probable regions of path space may be

spread out over path space. Making additional measurements can greatly reduce the

likelihood of a particular path that was previously improbable, if the new measurement

is far away from that particular path. The additional measurement yn can be thought

of providing information which is used to update the distribution from P (X|y1:n−1) to

P (X|y1:n).

We will see that if there are enough observations available then the most probable

region of path space will be confined to a localized region in the vicinity of the global

minimum of the action, and outside of this region of path space the action becomes much

larger. If this is not the case and A0(X) has comparable value in many different regions

of path space, then evaluating the path integrals becomes impractical or impossible.

Even if the path integrals could be evaluated the answer would likely not provide much

predictive power: the mean path would be an average over very many dissimilar paths

spread out over path space, and so would not be very useful in estimating what the state

was or predicting what the state will be in the future.

We will also see that to find the global minimum, even when sufficient measure-

ments are available, some care must be taken in the way the minimization procedure is

done. This is because for chaotic differential equations the trajectory is very sensitive

to initial conditions and parameter values. The key idea to deal with this problem is to

gradually turn up the influence of the model during the minimization process, or equiva-

lent gradually reduce the model noise level. We also saw that this was necessary during

the initial phase of the MC procedure for the same reason.

4.1 Motivation for Minimization

It is useful to think of a path X as a single point in path space. We can then

consider an ensemble of points, with each one representing a path, that are initially

distributed according to some density P (X, s = 0). We then have each member of the
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ensemble evolve in a fictitious time s according to the Langévin equation

∂X(s)

∂s
= −∇A0(X(s)) +

√
2αη(s), (4.2)

where η(s) is a vector of Gaussian white noise with zero mean and variance unity. There

are no correlations in ‘time’ or among the different components: 〈ηl(s)ηl′(s′)〉 = δl,l′δ(s−
s′). The distribution of points will evolve according to the Fokker-Planck equation

∂P (X, s)

∂s
= ∇ · (P (X, s)∇A0(X) + α∇P (X, s)) . (4.3)

As s → ∞ the distribution P (X, s) will approach the stationary distribution Ps(X) ∝
exp[−A0(X)

α ]. When α = 1 this distribution is proportional to the conditional probability

P (X|Y) as formulated in Chapter 2, and this is the weighting term in the path integrals

for conditional expectation values.

This gives us an intuitive way to think about how to sample paths from the

distribution P (X|Y), at least in principle. Start with an arbitrary initial path X(s = 0)

and evolve the path according to Eq. (4.2). After enough ‘time’ has past the trajectory

of X(s) will visit all of the most probable regions of the very high-dimensional path

space with the ‘time’ spent in each volume of path space proportional to P (X|Y) ∝
exp[−A0(X)] integrated over that volume. The first term of Eq. (4.2) says to move the

path down the gradient of the action toward a local minima, and the second term says

to randomly perturb the path with Gaussian noise. The picture of what happens in the

ideal case with only one minimum is as follows: a path starting anywhere in path space

will move toward the global minimum, and the noise will cause the path to fluctuate

around that minimium. The size of the fluctuations depend on α and on the curvature

of A0(X) in the vicinity of the minimium. By tracking how this path evolves in s we get

a representation of P (X|Y).

The limit where α becomes small corresponds to the case where the noise in the

model as well as the noise in the measurements becomes small. This is the limit where

Rf and Rm both become large, but the ratio Rm/Rf is fixed. We see that as α becomes

small the fluctuations around the minimum become smaller. In the limit of α → 0 the

only place in path space that has any contribution in the path integral is the global

minimum path.

We can also think about the limit when the model becomes deterministic, that is

Rf →∞, but Rm is still finite. As Rf becomes large paths that deviate from a solution

to the model equations are heavily penalized. As Rf → ∞ the only paths that can
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contribute to the path integral are paths that are exact solutions to the model equations.

In this limit the number of degrees of freedom is greatly reduced from (M + 1)D + Np

down to D + Np, where D is the dimension of the state vector, M is the number of

time steps, and Np is the number of parameters. This is because in the deterministic

limit once the D initial conditions and Np parameters are specified, the trajectory is

completely determined. The global minimum path is the path which exactly satisfies the

model equations while minimizing the deviation from the measured data points. This

path can be used as an estimate of the true state.

There is a balance between two pieces of the action. On one hand we have

information about some of the state variables from noisy measurements. On the other

hand we have information about what paths are likely based on our knowledge of the

underlying dynamics as encoded in the model. The control parameter β is used to

change the relative weight of these two contributions. When β is small the model is very

noisy and does not have much predictive power. As β is increased the model noise is

reduced, and the model will have more of an influence on P (X|Y). When β → ∞ the

model becomes deterministic, and can in principle exactly predict the true path given

the initial conditions and parameters, so then the problem is to find the optimal set of

initial conditions and parameters to match the data. This can be very difficult to do,

because if the model is chaotic the trajectories will be very sensitive to changes in initial

conditions and parameters.

In the path integral formulation of quantum mechanics, the probability amplitude

is expressed as exp[iS/h̄] integrated over all paths with fixed end points, where S is the

action of classical mechanics [20]. When S is large compared to h̄ the path integral is

dominated by the stationary path where δS = 0. This is the only allowed path according

to the principle of least action of classical mechanics. However, in quantum mechanics

other paths must be considered and included in the path integral. Finding the path which

minimizes A0(X) instead of considering the whole distribution P (X|Y) ∝ exp[−A0(X)]

is analogous to the classical limit of quantum mechanics. It is also analogous to the mean

field theory approximation of statistical mechanics which comes from doing a saddle point

approximation of the path integral for the partition function. The path which minimizes

A0(X) is also known as the maximum likelihood path.
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4.2 Minimization of Action

We would like to examine the function A0(X) to see if it has a rough surface

with many minima, or a smooth surface with only a few well-defined minima. This is

important to know, because methods of approximating the path integral, saddle point

or PIMC, will only be effective when the the most likely paths are well-confined in path

space.

As a specific example, we use the Lorenz 96 model with D = 5 to generate a

true path w(t) that is exactly described by the model without any noise. From w(t) we

then generate simulated measurements by adding Gaussian noise: yl(n) = wl(n∆t) +

Nl,n(0, σ), where Nl,n(0, σ2) is a number drawn from a Gaussian distribution with zero

mean and variance σ2. Here we choose ∆t = 0.025, n = 0, 4, 8, . . . , 160, and σ = 0.5.

For now we choose to only generate observations for l = 0, 2, so two states are observed

and three are unobserved. We will revisit this later with other choices.

In the action we set Rm = 4 and Rf = 0.01, but also include a control parameter

β that multiplies Rf . We choose Rm = σ−2 = 4 since here we know the strength of

the measurement noise exactly, but this is not critical. We choose our data assimilation

window to be 0 ≤ t ≤ 4, and use M = 160 time steps. The number of components in

our path is (M + 1)D +Np = 161× 5 + 1 = 806, and so we are doing a minimization in

a 806-dimensional space.

We use the Fleecther-Reeves conjugate gradient method [51, 21] to do an uncon-

strained minimization of A0(X). To use this method we need to numerically evaluate

the function A0(X) and the gradient ∂A0(X)
∂X for any value of X. We also need to provide

an initial guess path X(0). Here the initial guess is made by choosing each of the 5

state variables to be a constant in time with a value drawn from a uniform distribu-

tion −1 < xl(0) < 1 , and the forcing parameter is drawn from a uniform distribution

6 < f < 10. Clearly this guess path will not be consistent with the model and will not

be close to the measurements, so the action will start out large.

To get an idea of the the number of minima of A0(X) we do the minimization

procedure 100 times for different initial guesses of the path, and plot the action of the

paths found after each of each minimization procedure. This is shown in Fig. 4.1 for

β = 1. We find four distinct minimum paths which do not differ very much in action. In

Fig. 4.2 one observed state and one unobserved state is plotted for two of the minimum

paths that were found. The top two graphs shows the global minimum path (A0 ≈ 0.036)
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and the bottom two graphs show the next highest local minimum (A0 ≈ 0.062). We see

that in both cases the measurements are over-fit, meaning that the path follows the

measurements more closely than it should considering that the measurements are noisy,

and they are about the same. However, the unobserved components of the four paths

are different.

Next we follow each of these minima up to larger β. This is done by starting

with one of the four minima found with β = 1, increasing β by a factor of two and doing

the minimization again. Keep increasing β and minimize again starting at the optimal

point found in the previous step. In this way we can gradually get to the limit where β

is large and the dynamics is essentially deterministic. This is shown in Fig. 4.3 for the

sequence of β = 20, 21, . . . , 229. It is also shown in Fig. 4.4 for just the global minimum,

with the measurement part of the action and the full action displayed separately. In this

way we are following these four minima up to larger β, but not necessarily finding new

minima that may appear. We see that the minima separate in action as β increases.

This means for large β only the global minimum is relevant because the next largest

minimum found has action about 10 times larger. Also since we know in this case that

the model is perfect and we know the measurement noise level, we can find the expected

action for the true path which is A0 = NdataRm/2σ
2 = 82×4/2 = 41. The solid gray line

in the figure is plotted at this value. We also compute the RMS error by comparing the

minimum path to the true path. We see that as β gets large only one solution approaches

the true path, and the RMS error of the other solutions increases. The two lowest action

paths found at β = 1 when followed up to β = 224 are displayed in Fig. 4.5. We see that

the global minimum path approaches the true path, but the second local minimum goes

further away from the true path as β increases. This is consistent with the fact that

the action of the second local minimum grows much more than the action for the global

minimum as β is increased.

4.2.1 Getting to the Low Noise Limit

We now will see why it is necessary to start with β small and gradually increase.

In Fig. 4.6 we show what happens if we start with β = 224. We do not find the global

minimum at A0 ≈ 41 (marked with a gray line) that we did find using the process

of increasing β gradually. This minimum is still there, it is just very difficult to find,

because of the chaotic nature of the model which now has a large influence since β is
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Figure 4.1: Minimization A0(X) starting from 100 different initial paths, with β = 1.
We find four distinct minima that are not very well-seperated.

large. The global minimum is hard to find because the volume of path space which

‘drain’ to the global minimum is a small fraction volume of the entire path space that

we are considering.

By starting with small β the model will initially have very little impact, and so

any model will be able to fit the data. As β is increased we are forcing the path to follow

the model more precisely, and at a certain point that means the fit to the data points

will get worse if the data is inconsistent with the model. Starting with small β is also a

form of ‘regularization’, in the sense that unstabilizing chaotic effects in the model will

be suppressed initially. In other words, the dynamics term in the action starts out as

a very ‘loose’ constraint on the paths, and so the path will not be forced to follow the

model exactly, it will instead stay close to the data. If the constraint was ‘rigid’ the path

would have to be exactly consistent with the model, and the trajectory would be very

sensitive to initial conditions and parameters, which means it would be very hard to find

the correct path. So we start out with the constraints loose and gradually tighten them

by increasing β. In this case we have a perfect model, so there is no limit in principle

to how large β should be made (of course there are still errors because errors that come

from the discretization used in the action), but for data from any real system the model

will not be perfect, and so β does not need to go to infinity even in principle.
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Figure 4.2: One observed and one unobserved component of the global minimum path
found with β = 1. The top two graphs represent the global minimum path, and the
bottom two graphs represent the second smallest minimum path. The parameter values
are: f = 8.54 (top) and f = 9.86 (bottom).

4.2.2 Effect of Observations

We now continue with the same example of Lorenz 96 D = 5 to examine the

effect of observations. We choose to observe either L = 1, 2, or 3 of the 5 state variables.

Also we now double the length of our time series to T = 8 and so now M = 340 and

the dimension of path space is (M + 1)D +Np = 341× 5 + 1 = 1706. We increased the

length of the time series so that the chaotic effects would be more apparent. We do the

same kind of test as before by doing the minimization for 100 different initial paths. The

results are shown in Fig. 4.7 for the case with β = 212.

For L = 1 observation we measure y0, but expect to find similar results for any

choice of one variable because of the symmetry of the model. We see that 14 out of the

100 initial paths end up at the global minimum. We also see that there are many other
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Figure 4.3: Minimization of the action following the four minima found at β = 1 up to
β = 229. The four minima start out with action not much different, but the separation
grows dramatically as β increases. The gray line indicates the expected level of the
action assuming a perfect model and a measurement noise level of σ = 0.5.

minima that are close in action to the global minimum and cannot be neglected. The

lowest minimum is at A0 ≈ 22.0 and the second lowest minimum is at A0 ≈ 29.9, which

means global minimum path is about exp(29.9/22.0) ≈ 3.9 times as likely as the second

minimum. This means that to evaluate the path integral we would need to sample paths

from many different regions of path space, instead of just in the vicinity of the global

minimum. This would be hard or impossible to do, and the result for the mean path

would probably not be very predictive since the likely paths are not localized in path

space. Note that it is still possible to do a state and parameter estimation if we are only

interested in the maximum likelihood path (global minimum path), which is very close

to the true path in this case, and it gets even closer (the RMS error decreases to around

0.2) as β is increased.

We then add observations of an additional variable. For Lorenz 96 D = 5 there

are only two distinct possibilities: either measure two variables with adjacent indices (yl

and yl+1), or measure two variables with a skip of one (yl and yl+2). Recall that the

state variables are arranged on a ring, so l = 4 is adjacent to l = 0. We see these two

possibilities in Fig. 4.7 for observing y0, y1 or observing y0, y2 (the results of the other

possible ways of choosing two variables are similar). In both cases the ratio between the

the 2nd lowest minima and the lowest minima is about 2, so now the global minimum

is roughly 10 times more likely than the next minimum. This is an increase from the

L = 1 case. If β was increased this ratio would become larger and we could ignore all
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paths except those in the vicinity of the global minimum. We also see that measurement

adjacent variables seems to work better, meaning it is easier to find the global minimum:

86 of the 100 paths end up at the global minimum versus 31 out of 100 for the other

L = 2 configuration.

If we add observations of one more variable, so now L = 3, the shape of the

action becomes very simple. Now all 100 initial paths go to the same global minimum.

This means we only need to consider paths in the vicinity of the global minimum. There

are two ways of choosing three variables to observe, either y0, y1, y2 (shown) or y0, y2, y3

(not shown) and both give similar results.

We can also compare all the paths we found by minimization to the true path

by calculating the RMS error averaged over all observed and unobserved variables. The

true path does not include the measurement noise. Of course in a real experimental

application the true path is not known, but here it is useful to look at as a diagnostic.



60

-4

-2

0

2

4

6

8

10

x 0
(O

bs
er

ve
d)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time

.
.
.
.
.
.........

....
.......

.....
...
..
.
..
.......................................

....
...
...
....
................

....
..........................

...........
......
..
.
.
.
.
.

True Path
Observation

. Min. Path, =2
24

-4

-2

0

2

4

6

8

10

x 0
(O

bs
er

ve
d)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time

....................
..........

..
..
..
..
...
....................................

..
..
..
...
...................

....
....
..........................

......
......
....
..
..
..

True Path
Observation

. Min. Path, =2
24

-5

0

5

10

x 1
(U

no
bs

er
ve

d)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time

.......
..
..
...
........

.......
....
.............

.
............

.....
.....
.....
.......

.....
...
...
...
...
.............................

...
...
.....
............

.....
......

True Path
. Min. Path, =2

24

-5

0

5

10

x 1
(U

no
bs

er
ve

d)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time

..................................................................
.....
..........

....
...
...
...
.....
............................

...
...
....
...............

.....
....

True Path
. Min. Path, =2

24

Figure 4.5: The same situation as in Fig. 4.2 but with β = 224. This shows how the
global minimum path approaches the true path when β becomes large, but the non-
global minimum path goes further away from the true path. The parameter values are:
f = 8.20 (top) and f = 7.37 (bottom).

We should expect the global minimum paths in each case to be close to the true path

when β is large, since we know the model is exact in this case. The bottom graph of

Fig. 4.7 shows that all 14 + 31 + 86 + 100 = 231 of the paths that ended up at the global

minimum, for any of the choice of observations, all do about equally as well in matching

the true path with an RMS error of about 0.3. This means if we were only interested in

the maximum likelihood path any of the measurement choices would work equally well.

The difference is that the global minimum is easier to find for L = 3 than for L = 2, and

easier for L = 2 than for L = 1. In this case the most likely path is essentially the the

true path, and that becomes even more true at larger β.
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Figure 4.6: Minimization of A0(X) starting from 100 different initial paths, with β = 224.
The global minimum at A0 ≈ 41 (gray line) previously found by gradually increasing β
is not located. This shows that it is important to the minimization in several steps.

4.2.3 Effect of Model Error

We examine the effect of error in the model equations. We only consider a

particular type of error that can be represented as a Gaussian white noise forcing term

added onto the model equations. We do this by allowing the forcing parameter to

fluctuate in time. We choose a new set of values for the forcing parameters at each

integration time step labeled by n and of size ∆tint according to

fl(n) = f0 +

√
2Γ

∆tint
Nln(0, 1),

where l = 0, 1, . . . , D − 1, and f0 = 8.17 is the mean forcing parameter. We examine

three different noise levels Γ = 0.0625, 0.125, 0.25, and compare to the deterministic case

where Γ = 0. The relation between Rf in the action and the noise level Γ in the model

differential equations is

Rf∆t =
1

2Γ
,

where ∆t is the discretization time step used in the action. We generate simulated noisy

measurements of y0(n) and y2(n) with noise level σm = 0.5 in the same way as before.

We then do the same type of calculation as before where the action is minimized

for β = 20, 21, . . . , 229 in order. We only look at the maximum likelihood solution found
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at β = 1 and follow it up to larger β. The action found in this procedure is shown in

Fig. 4.8, and the RMS error is shown in Fig. 4.9. We see that when noise is added to the

model the optimal RMS error occurs approximately where βRf = 1
2Γ . As β is increased

beyond this point the fit gets worse because the paths are forced to satisfy the model

equation too precisely, and this does not work since the true path was not generated

with the exact model.
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4.3 Quadratic Approximation Near Minimum

We are interested in the shape of the action surface A0(X). More specifically, we

would like to find the global minimum and ask what shape the action has in its vicinity.

The shape tells us the uncertainty of state estimates along different directions in path

space: if the curvature is very flat in a particular direction then there is large uncertainty

associated with that direction. The curvature in every direction is non-negative, since by

assumption we are considering a minimum. For convenience we refer to the components

of the path X as xi for i = 0, 1, . . . , N − 1. The components of the path represent the

states at every time step and the parameters.

Approximate the action near a minimum located at X0 as

A0(X) ≈ A0(X0) +
1

2
∆XT ·H ·∆X,

where the Hessian H is N×N real symmetric matrix with components [H]ij = ∂2A0(X0)
∂xi∂xj

,

and ∆X = X −X0 is the deviation from the minimum. We then diagonalize H using

H = PT · D · P. The matrix P is made up of the set of orthogonal eigenvectors Ψi,

and D is a diagonal matrix with eigenvalues λi as entries. The eigenvalues represent the

curvature along the set of special orthogonal directions (principle axes) in path space

defined by the eigenvectors. We can check that all λi > 0 to see that we are in fact dealing

with a minimum. If there is some continuous transformation in path space which leaves

the action invariant then there will be a zero eigenvalue, and then the minimum is not

well-defined.

The quadratic term in the action becomes

∆XT ·H ·∆X = (P ·∆X)T ·D · (P ·∆X)

=
N−1∑
i=0

λi(∆X ·Ψi)
2.

The first moment of the projection of ∆X onto the the nth eigenvector is

〈∆X ·Ψn〉 =
1

Z

∫
dX(∆X ·Ψn)

N−1∏
i=0

exp[−λi
2

(∆X ·Ψi)
2] = 0,

where Z is for normalization, and the second moments are

〈(∆X ·Ψn)(∆X ·Ψm)〉 =

1

Z

∫
dX(∆X ·Ψn)(∆X ·Ψm)

N−1∏
i=0

exp[−λi
2

(∆X ·Ψi)
2] =

δnm
λn

.
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Now we would like to find the the moments of the projection of ∆X along the

original coordinate system with basis vectors {x̂n}, because that coordinate system has

its axes aligned with the model space. For an arbitrary vector v

v · x̂n =
∑
i

(v ·Ψi)(Ψi · x̂n).

We can use this fact to get

〈∆X · x̂n〉 =
∑
i

〈∆X ·Ψi〉 (Ψi · x̂n) = 0, (4.4)

〈
(∆X · x̂n)2

〉
=

〈∑
i

(∆X ·Ψi)(Ψi · x̂n)
∑
j

(∆X ·Ψj)(Ψj · x̂n)

〉

=
∑
i

(Ψi · x̂n)2

λi
. (4.5)

We can use these results to calculate the RMS variation

σn =

√√√√N−1∑
i=0

(Ψi · x̂n)2

λi
(4.6)

This means we can compute an estimate of the RMS variation for each component of

the path by numerically calculating the matrix H at a particular minimum, and then

finding its eigenvalues and eigenvectors. We also may find out about symmetries in the

model by computing the eigenvalue spectrum and looking for a zero eigenvalue. Small

eigenvalues may also indicate that the minimum is not very well-defined.

4.3.1 Eigenvalues and Eigenvectors of the Hessian

Next we examine the curvature of the action in the vicinity of the global minimum

X0(β) for the same example of Lorenz 96 D = 5 that we have already found in the

previous section. To do this we calculate the Hessian matrix H(X0(β)) by approximating

the second derivatives using a centered finite difference of the analytic first derivatives.

The eigenvalues and eigenvectors of H(X0(β)) are then found using the GNU

Scientific Library (GSL) routines for finding eigenvalues and eigenvectors of real sym-

metric matrices. The routines use symmetric bidiagonalization and QR reduction [24].

The eigenvalues are sorted so that λ0 ≤ λ1 ≤ . . . λN−1.

In Fig. 4.10 we see the eigenvalue spectra for several values of β. We see that

for small β there is a group of 82 eigenvalues with value of approximately 4. This is
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because we have provided 82 measurements and set Rm = 4. In the limit of β = 0 the

only terms in the action have the form Rm
2 (y − z)2, so this makes sense. The associated

eigenvectors are aligned with the measurement directions. We see that as the model

influence is turned up the spectrum becomes continuous, and the the 82 components of

the path which have measurements are no longer isolated. The measurement directions

now get mixed in with all the other eigenvectors.
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Figure 4.10: Sorted eigenvalue spectra for various values of β. For β < 28 there is a
distinct group of 82 eigenvalues with value λ = Rm = 4 that correspond to the 82 data
points provided. Once β > 28, they get mixed in with the other eigenvalues.

In Fig. 4.11 we track the smallest and largest eigenvalues, λ0 and λN−1. The most

significant thing seen here is that as β gets large λ0 becomes constant. This means that

at least one direction in path space space will continue to have uncertainty associated

with it even as we get to the β →∞ limit of no noise in the model.

An even more interesting effect is shown in Fig. 4.12. Here we focus on the 11

lowest eigenvalues. The associated eigenvectors represent the most uncertain directions

in path space. We see that as β becomes large six special eigenvectors Ψ0, . . . ,Ψ5 are
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The minimum levels off at around 0.1, indicating that there are at least some uncertain
directions even as the dynamical noise becomes low. The maximum continues to grow
proportional to β at large β.

singled out. As β increases further the gap between λ5 and λ6 continues to grow, while

λ0, . . . , λ5 converge to values between λ0 ≈ 0.13 and λ5 ≈ 0.75. This means that in

the limit of no error in the model, only these six uncertain directions remain (some of

them shown in Fig. 4.13). In this case since D = 5 and Np = 1 six quantities are all

the information that is needed to completely specify the trajectory in the deterministic

limit.

4.4 Comparison of Mean and Maximum Likelihood Paths

We have discussed two ways of estimating the true path: the maximum likelihood

path and the mean path. We try them both out on the same problem of Lorenz 96

D = 5 with Rf = 0.01 × 212 = 40.96 and Rm = 4 with x0 and x2 measured. We

find the maximum likelihood path by minimizing A0(X). We also find the mean path
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Figure 4.12: The eleven smallest eigenvalues of the Hessian of A0(X). These are im-
portant because they indicate the most uncertain directions. For large β six eigenvalues
separate from the rest by a significant amount and converge to the values shown. The
corresponding eigenvectors represent six special directions, Ψ0, . . . ,Ψ5, which remain
uncertain as β becomes large. This is because in the deterministic limit six numbers
(five initial conditions and one parameter) completely specific the trajectory.

for the same problem using the PIMC method, as described in the previous chapter, to

approximate 〈X〉. The two resulting paths are displayed in Fig. 4.14 and are compared to

the true path. We see that the maximum likelihood path and the mean path are almost

the same, consistent with P (xn,l|Y) being Gaussian, as was suggested in Chapter 3.

We saw in the previous chapter how to use PIMC to calculate the RMS variation

around the mean path to use as an estimate of uncertainty. Now we calculate the RMS

variation by calculating the Hessian of the action evaluated at the minimum path and

finding its eigenvalues and eigenvectors as described in the previous section. Then the

RMS variation is found using Eq. (4.6). The results of using these two different methods

are shown in Fig. 4.15 for two different values of β. We see that the two methods agree

very closely for β = 212 and less so for β = 220. This indicates that the quadratic
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approximation of A0(X) gets worse as β gets larger, meaning the contribution from

higher order terms in ∆X become greater. This is expected, because as β increases the

influence of the nonlinear terms in the model compared to the quadratic measurement

terms increases.

We also compare the mean path and the maximum likelihood path (minimum

path) using the data from the real Colpitts oscillator circuit. The mean path was found

in the previous chapter using PIMC. The maximum likelihood path was found by min-

imizing the same action function which was used in the PIMC method. The results for

one of the unobserved state variables, VCE(t), are shown in Fig. 4.16, and once again

both paths match closely. Also shown is the actual recorded time series, which was not

actually used as data, but only for comparison with the state estimates.

It is also useful to consider the dynamics term in the action separately from the

full action, which includes the measurement error term also. The dynamics term is a

sum of model violation gn at each time step. Recall that the model violation is defined
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as

gn,l = xn,l − xn+1,l −
∆t

2
[Fl(xn) + Fl(xn+1)] ,

and it says how much the model is violated at each time step n = 0, 1, . . . ,M − 1 by

a particular path. In Fig. 4.17 we plot g2
n,E evaluated at the minimum path as found

by minimizing A0(X) for the Colpitts oscillator problem. The subscript E refers to the

VE state variable. The top graph is from the real data which is not exactly described

by the model, and the bottom graph was from data simulated using the exact model.

If we only looked at the top graph we may have come to the conclusion that the real

circuit behavior deviates from the model the most when VE(t) is at its extreme minimum

values. This is when the currents going into the base and the collector of the transistor

are at a maximum, and it seems reasonable that the simplified Ebers-Moll transistor

model would be inaccurate here. However, the bottom graph shows very similar model

violation also with spikes at the minima of VE(t). The model violation in the simulated

case comes only from numerical errors: the simulated data was generated using RK4

with a time step of 0.01 so it is a very accurate solution to the differential equations,
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but the model violation term in the action uses a less accurate integration method (2nd

order Adams-Moulton) and has a larger time step of ∆t = 0.1. So we should expect

model violation to be largest when the RHS of the differential equations is largest, and

this happens when VE(t) is small.

The model violation term can also be thought of as a model correction term:

the correction may be needed because of inaccuracy in the implicit integration rule,

inaccuracies in the model, or to provide small stabilizing corrections when the model is

chaotic. In the case where the inaccuracy is in the model, the model violation may tell

us where the model is inadequate, and it may be useful in comparing several candidate

models.

4.5 Summary

We saw that it is useful to locate minima of A0(X), especially the global mini-

mum, and to examine the curvature of A0(X) at the minima. The shape of the surface
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of A0(X) tells us when the state estimation problem can be done and give useful results.

If the action has many local minima, or very flat valleys, then it will be impossible to

find a region of likely paths that is localized in path space, which is the goal of state

estimation. Making additional observations can make the shape of the action nicer, with

a single well-defined minimum. When that happens then the region of likely paths is

confined to the vicinity of the global minimum.

We also saw that the global minimum may be difficult to find in chaotic models.

Even if it is in a deep valley of the action, which means it is it the only relevant region

in path space, it may be very narrow. This problem can be solved by gradually turning

up the influence of the dynamics term in the action. This way the action is initially

dominated by the smooth measurement terms. The hope is that a search in path space

will get to the correct region near the global minimum, and then be trapped there

as the valley becomes deeper and more narrow as β increases. This applies to doing

minimizations of A0(X) as discussed in this chapter and to doing PIMC calculations as

discussed in the previous chapter.



74

-1.0

-0.5

0.0

0.5

1.0

V
E
(t

)
[V

ol
ts

]

0.0e0

1.0e-4

2.0e-4

3.0e-4

4.0e-4

5.0e-4

6.0e-4

7.0e-4

8.0e-4

9.0e-4

M
od

el
V

io
la

tio
n,

g E
2 (n

)

0 1 2 3 4 5 6 7 8 9 10

Time [ms]

Recorded Path
Model Violation

-1.0

-0.5

0.0

0.5

1.0

1.5

V
E
(t

)
[V

ol
ts

]

0.0e0

2.0e-5

4.0e-5

6.0e-5

8.0e-5

1.0e-4

1.2e-4

1.4e-4

1.6e-4

1.8e-4

2.0e-4

M
od

el
V

io
la

tio
n,

g E
2 (n

)

0 1 2 3 4 5 6 7 8 9 10

Time [ms]

True Path (simulated)
Model Violation
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n,E , for the Colpitts circuit (top) and
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Chapter 5

Alternative Methods

In this chapter we review some other methods of data assimilation and compare

them to the PIMC method.

5.1 Particle Filters

The starting point for particle filters [32, 7, 13], which are sequential Monte Carlo

methods, is the same as the first few steps shown in Chapter 2. The steps are repeated

here as a review and to make all the assumptions clear. We use the Chapman-Kolomogrov

equation and the assumption that the model is Markov to write

P (xn|y1:n−1) =

∫
dxn−1P (xn|xn−1)P (xn−1|y1:n−1). (5.1)

This says how to use the model to evolve the state forward one time step. We also use

Bayes rule in the form of Eq. (2.1) to write

P (xn|y1:n) ∝ P (yn|xn,y1:n−1)P (xn|y1:n−1), (5.2)

which tells us how to incorporate the new piece of measurement information yn.

The idea of particle filtering is to approximate the filtered distribution at each

time step, P (xn|y1:n), using an ensemble of N discrete ‘particles’ with positions xin and

associated weights win, where i = 1, 2, . . . , N is the particle label. If we have a set of

particle positions and associated weights to approximate the state distribution at time

n− 1, then we can write

P (xn−1|y1:n−1) =
N∑
i=1

win−1δ(xn−1 − xin−1).

75
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Now the goal is to evolve the particle’s positions and weights using the model via Eq. (5.1)

and to incorporate the new measurement yn via Eq. (5.2) to get an approximation

of P (xn|y1:n). To do this, first we apply Eq. (5.1) to the particle representation of

P (xn−1|y1:n−1) to get

P (xn|y1:n−1) =
N∑
i=1

win−1P (xn|xin−1).

We then apply Eq. (5.2) to get

P (xn|y1:n) ∝ P (yn|xn,y1:n−1)
N∑
i=1

win−1P (xn|xin−1). (5.3)

We would like to represent P (xn|y1:n) with particles xin and associated weights win in the

same as we we did at time step n− 1, so we need a procedure for updating the particle

positions and weights. To do this we use the idea of importance sampling.

Importance sampling [38] says that if we want to approximate a distribution P (x)

we can do this by drawing N samples {xi} from another distribution Q(x), called the

importance density, which is easier to sample from. Then we can approximate P (x) as

P (x) ≈
N∑
i=1

wiδ(x− xi),

where the weight is

wi ∝ P (xi)

Q(xi)
. (5.4)

The weights must then be normalized so that
∑

iw
i = 1. Note that this means we do

not need to sample from P (x), we just need to evaluate P (xi) and Q(xi) for each sample

xi drawn from Q(x).

Going back to the formulation of particle filtering, the distribution we want to

approximate is P (xn|y1:n). To do this, we need to choose an importance density to draw

particles xin from. A simple and intuitive choice, but certainly not the only choice, is

to draw xin from P (xn|xin−1). Then by plugging Eq.(5.3) into the numerator of Eq.(5.4)

and this choice of importance density into the denominator of Eq.(5.4) we get

win ∝
P (yn|xin,y1:n−1)

∑N
j=1w

j
n−1P (xin|x

j
n−1)

P (xin|xin−1)
.

Since particles do not change labels P (xin|x
j
n−1) ∝ δij , and so the sum over particles goes

away. Also because of the good choice of importance density the denominator cancels
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one of terms in the numerator, and we are left with

win ∝ win−1P (yn|xin,y1:n−1). (5.5)

So now we have a simple and intuitive procedure for evolving the particles and weights:

update each particle’s position by drawing xin from P (xn|xin−1) and then update each

particle’s weight with Eq. (5.5). One additional step is needed to normalize the weights.

In practice drawing xin from P (xn|xin−1) typically means that the particle posi-

tions are evolved using the dynamical model, and then the positions are perturbed by

noise drawn from a random number generator. Also it is typically assumed that the

measurements only depend on the current state and so P (yn|xn,y1:n−1) = P (yn|xn),

which is simply the measurement noise distribution. A common assumption is that the

noise is Gaussian, and so

P (yn|xn) ∝ exp

[
−1

2
(yn − xn)T ·Rm · (yn − xn)

]
,

where Rm is the inverse of the measurement noise correlation matrix.

A common problem with particle filtering is that very few of the particles end

up with most of the weight while most of the particles have negligible weight. This issue

can be at least partially solved by using resampling algorithms [32, 7]. There many ways

to do this, but the basic idea is to occasionally throw away particles with small weight,

duplicate particles with large weight, and then recalculate all the weights.

One remaining issue is how to start the whole process at time step n = 0. A

prior distribution P (x0) must be chosen to draw the initial particle positions xi0 from.

A typical choice is that the P (x0) is uniform over some range of state values and zero

outside of this range. This means that the filtered distributions P (xn|y1:n) will typically

start out spread out and become more localized at later times due to the guidance of

the measurements. The large initial spread could be problematic when there are many

unobserved states and parameters with very uncertain values. Then the state space

that needs to be sampled at early times, n = 0 in particular, may be very large and

require very many particles to adequately cover. This problem may be partially solved

by starting at some later time n > 0 and working backward to n = 0. Then use the

resulting particle ensemble at n = 0 as the starting point to move forward to the end of

the observation window.

In contrast, the path integral Monte Carlo (PIMC) approach naturally includes

all of the measurements over the whole observation window. So the states already ‘know
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where they are going’ in addition to knowing where they have been. This is particularly

useful at early times. Also the assumption of a uniform P (x0) is handled very easily: it

simply means the logP (x0) term can be dropped from the equation for A0(X) because it

is a constant. In PIMC the paths X(i) distributed according to P (X|Y) ∝ exp[−A0(X)]

which are generated with Metropolis MC (or other methods) play a very similar role as

the particles in the particle filtering approach. In PIMC the MC paths X(i) are used to

approximate the distribution P (X|Y) as

P (X|Y) ≈ 1

N

N∑
i=1

δ(X−X(i)).

These MC sample paths can then be used to calculate things of interest, such as the mean

path and RMS variation around the mean. This is very similar to particle filtering, except

the central objects are the MC sample paths X(i) which represent the the entire time

evolution of the state distribution, instead of the particles xin which represent the state

distribution at a given time step.

5.2 Various Kalman Filters

The Ensemble Kalman Filter (EnKF) is another data assimilation technique

similar to the particle filtering method just discussed [16]. It is also a sequential Monte

Carlo method, and it can be formulated within the same Bayesian probability framework.

The difference is that in EnKF it is assumed that the filtered distribution P (xn|y1:n) is

Gaussian, and this allows the computations to be made more efficient since only the mean

and covariance need to be tracked. If the filtered distribution is not actually Gaussian,

it will be effectively treated as Gaussian with the same mean and variance as the actual

distribution. This can lead to bad estimates in the cases where P (xn|y1:n) is far from

Gaussian, as shown in [18] with the example of a bimodal distribution.

When the dynamics is nonlinear it should be expected that P (xn|y1:n) will be

non-Gaussian, even if P (x0) is Gaussian. However, we saw in the Lorenz 96 example

from Chapter 3 that the measurements tend to keep the filtered state distributions close

to Gaussian. The strength of this effect will depend on many things such as the time

between measurements, the degree of nonlinearity in the model, and the measurement

noise amplitude and distribution. A similar regularizing effect of the measurements

was noted in [18]. This suggests that EnKF may be successful in many cases even with
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highly nonlinear models, if there are enough measurements available to confine and guide

the filtered distributions. As we saw in Chapter 3, the assumption that P (xn|y1:n) is

Gaussian can be checked using PIMC methods to calculate moments beyond the second

moment.

The original Kalman filter [28] was derived with the assumptions that the dy-

namical model is linear, and that the measurement and dynamical noise is Gaussian and

uncorrelated. Also the prior distribution P (x0) must be Gaussian and the measurement

function must be linear. If these serious assumptions are satisfied then the Kalman filter

provides the optimal state estimate very efficiently, but this is rarely the case in real

problems.

The Extended Kalman filter (EKF) is the application of the original Kalman

filter to the case where the model is nonlinear. This is done by using a linearized version

of the model equations in the same framework as the original Kalman filter. This can

be problematic because the linearization may cause instabilities which are not physical

[17].

5.3 Methods for Deterministic Dynamics

There are several state and parameter estimation methods for the case where the

model is deterministic. This can be thought of as the limit where Rf →∞ in the action.

This means that the only paths that are considered are solutions to the deterministic

model equations. Then the goal is to find one particular solution to the model equations

which minimizes the error between the model output and the data. This solution serves

as the maximum likelihood estimate of the state, and the parameters used to generate

the solution serve as the maximum likelihood estimate of the parameters.

5.3.1 Optimization over Initial Conditions and Parameters

One of the most obvious ways to attempt to do this is to formulate the problem

as a minimization problem over the space of initial conditions and parameters. In this

approach the thing to be minimized is the squared error between the data and the model

output:

C(x0,p) =
1

N

N∑
n=1

[x1(n∆t; x0,p)− y1(n∆t)]2 ,
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where x1(t; x0,p) is one component of the result of integrating the model with initial

conditions x0 and parameters p, and y1(t) is a scalar measurement time series. We

assume for simplicity that the measurement is simply a projection of the state vector onto

the x̂1 direction, but this could easily be generalized to a L-dimensional measurement

vector that is some function of the D-dimensional state vector. The goal is to minimize

the cost C(x0,p) by finding an optimal x0 and p which produces a model output that

is as close to the data as possible. If the model is exact then the minimum of the cost

should be roughly σ2
m, the variance of the measurement noise.

There are several derivative-free optimization algorithms could be used for this

purpose, such as Nelder-Mead or Brent’s method [51, 8], all which require many evalu-

ations of the cost for many different values of {x0,p}, but no evaluation of derivatives.

Each evaluation of the cost requires an integration to produce the model output, so it

may be computationally intensive, but there is a more serious problem with this approach

if the model is chaotic.

The output of a chaotic model is very sensitive to the initial conditions and

parameters. This means that if even just one of the parameters or initial conditions is

slightly wrong the data and model trajectories will diverge and the cost function will

be large. Thus the cost will only be small in a very small region of the {x0,p} space

around the true value and it will be very hard for any minimization algorithm to locate.

The problem gets even worse as Tλmax becomes larger, where T = N∆t is the length of

the time series and λmax is the largest Lyapunov exponent. Another related reason why

the global minimum may be hard to locate is because the surface of the cost function

may form a very rough surface with many local minima. An example of this is shown in

Fig. 5.1 which was calculated using the the Colpitts oscillator model and VE(t) data from

the actual circuit. This plot shows the cost only as a function of one the parameters, R,

with all the other parameters and initial conditions set at optimal values. We see that

when the time series is 10 ms or longer local minima appear, making the search difficult.

One obvious solution to this problem is to use a time series that is short compared

to 1/λmax, however this may not always be adequate. A better solution is to use the

idea of synchronization of chaos, which was first reported by Pecora and Carrol [46].

The idea of synchronization, which was first discovered in pendulum clocks by Huygens

in the 17th century, is that if some form of coupling is introduced between two similar

systems then the systems may become synchronized [49]. In modern language this means
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Figure 5.1: The cost C(x0,p) for the Colpitts oscillator as a function of just one pa-
rameter R, shown for different lengths of time series. As the time series gets longer the
minimum gets harder to find.

that the phase space trajectories of the two system converge. To apply this idea to our

problem we think of the data as a driver system which is unidirectionally coupled to a

response system– the dynamical model. In practice this can be done by changing the

model differential equations to

dx1

dt
= F1(x(t),p) + u(y1(t)− x1(t))

dx⊥
dt

= F⊥(x(t),p)

where x⊥ refers to all of the components of the state vector except x1, u is a positive

coupling constant, y1(t) is the data time series, and x1(t) is the one component of the

model output which is measured. When u = 0 this reduces to the original model which

represents the true dynamics. When u > 0 the coupling term pushes the model toward

the data. If the coupling constant is large enough and the model and data (actual)

parameters are close enough, then the two systems will synchronize. This means that

x(t) ≈ y(t), and in particular x1(t) ≈ y1(t), so the cost will be small. The effect of adding

this coupling term is shown in Fig. 5.2, again for the Colpitts problem. Increasing the

coupling constant eliminates the local minima, making the global minimum easier to

find. However, it also flattens the cost function near the global minimum, making the
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global minimum less well-defined. This is because if the coupling is large enough then

x1(t) will be forced to follow y1(t) regardless of what p and x0 are.

This suggests that the minimization be done in several steps. Start with u large

enough to eliminate local minima and do the minimization. Then to refine the parameter

estimate, reduce u and do the minimization again starting from the same {x0,p} point,

which should be close to the true optimal point.

Another approach is include the coupling constant in the optimization process

and to modify the cost function by adding a penalty for u being large, such as η2u2. The

control parameter η sets the relative weight of the penalty for not matching the data and

the penalty for having u > 0. There is a penalty for having u > 0 because unless u = 0

the differential equations do not represent the true dynamics: the coupling to the data

was artificially introduced. Note that if the data and the model is exact then having a

u > 0 does not change the model output once the optimal {x0,p} is found, but it does

have a stabilizing effect.
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Figure 5.2: The cost C(x0,p) for the Colpitts oscillator as a function of just one param-
eter R, shown for different coupling constants u = 0, 5, or 10 ms−1.

A way to quantify the stabilizing effect of the coupling term is to calculate the

conditional Lyapunov exponents (CLE) of the model system when driven by the data

system [47, 2]. The largest CLE in particular is useful to know, because it gives the
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approximate average rate at which the model and data trajectories converge (λmax < 0)

or diverge (λmax > 0). The distance between the data and model trajectories is roughly

|x(t)− y(t)| ≈ |x(0)− y(0)|eλmaxt.

When u = 0 there is no coupling between the model and data systems and so λmax is just

the Lyapunov exponent of the model, which is positive for chaotic models. As u increases

λmax decreases, and once u becomes large enough λmax becomes negative which means

the data and model trajectories will converge. This is shown for the Colpitts example in

Fig. 5.3.
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Figure 5.3: Largest CLE as a function of coupling strength for the Colpitts system. The
coupling was made to each of the three state variables, one at a time.

5.3.2 Constrained Optimization

Another approach used in [12, 1, 54] is to move into the higher dimensional space

{x(0),x(∆t), . . . ,x(N∆t),p}. So now the space being searched over is the space of state

variables at every time step and the parameters. The model is introduced in the form of

constraints, which come from discretizing the model differential equations, relating time-

neighboring state vectors. The constraints effectively reduce the dimension of the search
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down to the number of parameters plus number of initial conditions. The constrained

optimization can be done using the SNOPT software package [23] which is based on

a sparse sequential quadratic programming algorithm. Another variation used in this

approach is to allow the coupling strength to vary in time, so now it is treated as an

optimal control parameter u(t) that is free to be adjusted by the optimizer. These extra

degrees of freedom effectively loosen the constraints and increase the dimension of the

search space. Once again the the coupling strength should go to zero at the end of the

process.

One benefit of this approach is that the coupling strength u(t) does not need

to really go to exactly zero at all times at the end of the process. This allows for some

deviation from the model, and this flexibility may be very useful for dealing with real data

for which the model is not exactly known. In fact, something about model deficiencies,

or about where integration errors are largest, may be learned by seeing where u(t) ends

up largest. The u(t) terms plays a very similar role to the model violation term g(t)

discussed in Chapter 4. One difference is that typically u(t) is forced to be positive

because of its interpretation as a stabilizing term, but it may be useful to allow it to

be negative as well: when the data is noisy the optimal correction to the state may not

always be toward the data.

5.4 Summary

We reviewed several data assimilation methods besides PIMC. Of the alternative

methods discussed here, particle filtering is the least restrictive. It is based on the same

formulation as the PIMC method. The main difference is that particle filtering uses

particles with associated weights to represent P (xn|y1:n), while PIMC uses paths, all

with equal weight, to represent P (x0:M |y1:M ). The advantage of the PIMC approach

is that all the data y1:M is used at each time point, and not just data from the past.

Another advantage is the natural way which PIMC handles uninformative priors, which

may be problematic for particle filters in problems with many unobserved states and

parameters.



Chapter 6

Conclusion

The problem of data assimilation was formulated using path integrals, and then

the path integrals were numerically approximated using a Markov chain Monte Carlo

method to draw sample paths from P (X|Y) ∝ exp[−A0(X)]. Each of the many sample

paths can be thought of as a particular realization of the model evolution in a virtual

experiment, where each virtual experiment produces the same observed time series Y.

Path integral Monte Carlo is very similar to particle filtering, but it has the

advantage of considering the entire data time series at once, instead of just the measure-

ment at the current time point. Also broad initial condition distributions are very easily

handled, in contrast to in particle filters, which must use a particle distribution at t = 0

to approximate P (x0). If the initial distribution is broad, then very many particles may

be necessary to sufficiently cover the important regions of x0 space.

The information theory interpretation of the measurement term in the path inte-

gral shows explicitly how the measurements provide information, which is used to guide

the model states. It is essential that measurement data is used for guidance, otherwise

chaos, noisy dynamics, and errors in the model, will quickly cause the model output to

diverge from the data.

There is a benefit working in path space, as opposed to the space of initial

conditions and parameters. The dimension of the space is much higher, but the effect

of perturbing one component of the path is usually small, so the path can be gradually

changed without changing the action very much. Working in path space comes about

naturally when noise is introduced into the dynamics, increasing the degrees of freedom.

Even if the actual dynamical noise level is zero, meaning the model is deterministic and
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known exactly, noise can still be introduced as a way form of ‘regularization’ by saying

the dynamics is more noisy than it actually is. The assumed noise level can then be

gradually reduced during the minimization process or the Monte Carlo process, using a

form of simulated annealing.

The shape of the action as a function of X tells us a lot about a data assimila-

tion problem using a particular model, with a particular choice of measurements. One

important question is: can the neighborhood of path space containing the true path be

located? This can be tested by doing many minimizations of the action starting from

many different locations in path space. If after minimizing, all the paths end up at

the same location in path space, it is a good indication that the true path is near this

location, and that the PIMC data assimilation method will be successful.

If instead the minimized paths end up scattered in different regions of path space,

but with similar action, then more measurements may be required to help localize the

likely regions of path space. If the minimized paths end up scattered in path space, but

with one minimum that has a much lower action than all the others, then probably only

the region around the lowest minimum needs to be considered, and PIMC will still be

successful as long as the region of small action is visited.

Even if we can find the region of path space surrounding the true path, it is

important to know the shape of the action in its vicinity. If there are some directions that

are very flat, then the minimum is not very well-defined. To make it more well-defined

we may have to make more measurements, or simplify the model. This information can

be learned by looking at the RMS variation output of the PIMC process, when a path

in the vicinity of the the minimum is used as a initial path.

A useful test to do using simulated data is to start out the PIMC process with an

initial path equal to the true path. Since the data was simulated, the true path is already

known, unlike in a real experiment. Then by examining the RMS variation around the

minimum path, the uncertainty levels can be estimated. This will depend on the model,

on which variables are measured, how frequently, and for how long, as well as the noise

levels. On problems with an external drive signal, the results may also depend on the

choice of drive signal. By doing this kind of test one can compare different measurement

choices and find out which one will be most useful in reducing uncertainty.



Appendix A

User’s Guide to Carl

A.1 Background

Carl is a program that does Monte Carlo data assimilation. Its purpose is to

estimate unobserved states and parameters of a system, together with the associated

uncertainties. The inputs into this method are a time series of measurements of state

variables with uncertainties, and a model of the system in the form of a system ordinary

differential equations. Model error and stochastic effects are represented by a Gaussian

white noise term of a particular strength added onto each differential equation. These

inputs are combined to form the action A0(Y) which is a function of the path Y [3, 53].

The path represents the discrete time history of all the state variables as well as any

time-independent parameters p. The probability density in path space conditioned on

the time series of measurements Z is P (Y|Z) ∝ exp[−A0(Y)]. This is used to compute

moments of the components of the path

< yl(n)p >=

∫
dY([Y]l,n)p exp[−A0(Y)]∫

dY exp[−A0(Y)]
(A.1)

where the time index is n = 0, 1, . . . ,M , and the state variable index is l = 0, 1, . . . ,K−1,

and dY means integrate over all paths. The notation ([Y]l,n)a means select the compo-

nent yl(n) from the path Y and raise it to the power a. This integral is approximated by

generating a sequence of paths {Y(1),Y(2), . . . ,Y(Npath)} that are distributed according

to ∝ exp[−A0(Y)]. This takes care of the exponential weighting factor in the integral
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and turns it into a sum

< yl(n)p >≈ 1

Npath

Npath∑
i=1

([Y(i)]l,n)p. (A.2)

There exist several algorithms for generating the sequence of paths with the correct

distribution. Carl uses the Metropolis Monte Carlo method to do this [41, 42].

With assumptions of uncorrelated Gaussian noise in measurements and in the

dynamics the action takes the form

A0(Y) =
1

2

M∑
n=0

K−1∑
l=0

Rm
l(n) (yl(n)− zl(n))2

+
β

2

M−1∑
n=0

K−1∑
l=0

Rf
l

[
yl(n+ 1)− yl(n)− ∆t

2
(Fl(y(n+ 1),p) + Fl(y(n),p))

]2

+
1

2

K−1∑
l=0

Ry0
l (yl(0)− yc

l)
2

+
1

2

Np−1∑
l=0

Rp
l (pl − pc

l)
2 . (A.3)

We also make the assumption that the prior distributions P (y(0)) and P (p) are Gaussian,

which is where the last two terms come from. The deterministic part of the model

differential equation is dy
dt = F(y,p) which is entered into the model.h file. The constants

Rf ,Rm,Ry0 ,Rp, yc, pc may all be specified in the file specs.txt, and the measurements

zl(n) are read in from separate files named z.l.dat, where l ∈ {0, 1, . . . ,K − 1}. Since

measurements are not typically available at every point in the (l, n) grid, the Rm
l(n)’s

associated with missing measurements are set to zero. The parameters are pl where

l = 0, 1, . . . , Np − 1, and they are considered part of the path Y.

A.2 Overview of the process

Carl is complied by running make in the directory where the source code and

the problem-specfic model.h files are located. A subdirectory should be created for each

problem which contains all the data input files z.l.dat, any external drive files, and

the settings file specs.txt. All of Carl ’s output will be saved into this same problem

subdirectory. See the sections below for details on the input and output files.

To run the program type, for example, ‘./carl ./Lor96K5’. The command line

argument is the path of the problem subdirectory, in this case it is the path where the
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Lorenz 96 example files are located. The program will then read the file specs.txt from

the problem subdirectory which tells it which other data files to read, and all the settings

for the calculation.

The path is stored in an array y[N] with size N = (M + 1)K + Np. The array

is indexed as follows: the state yl(n), where n ∈ {0, 1, . . . ,M}, l ∈ {0, 1, . . . ,K − 1},
has index i = nK + l, and the parameter pl, where l ∈ {0, 1, . . . , Np − 1}, has index

i = (N −Np) + l.

The path is initialized to the guess values given for each state and parameter in

the specs.txt file. Each state will be initially set to be constant in time. Alternatively,

the entire initial path may be loaded from a file. This is useful for starting a new run

at same location in the N -dimensional path-space that a previous run finished at, or for

starting at the true path as a test, in twin experiments.

Then the Metropolis Monte Carlo process begins, which will generate a sequence

of paths that are distributed according to ∝ exp[−A0(Y)]. The pseudo-code in Fig. 3.1

shows the Metropolis Monte Carlo algorithm, in this example it is only used to calculate

the mean of each component of the path, but Carl actually computes the first four

moments of each component of the path. Each iteration through the outer loop is

called a “sweep” and corresponds to one path in the sum of Eq. (A.2). There are NIt

total sweeps, but the first Ninit of them are discarded during the initialization phase.

It is necessary to discard the initial sweeps, because the path may start out far from

equilibrium.

In the actual program, the sweeps are grouped into “blocks” of Bsize number of

sweeps, mainly to decrease the amount of data that needs to be stored. The total number

of blocks generated is Nblock, and the total number of sweeps is NIt = Nblock*Bsize

+ Ninit. Nblock should be a multiple of 24 for the re-blocking error calculation to work

properly (see below).

Statistics are averaged over each block, and are stored in a 2-dimensional array

block[4*N][Nblock]. The first index identifies the particular quantity that is being

averaged, and the second index identifies the block. If i is the index of the particu-

lar component of the path in question, then i + (p − 1) ∗ N is the index of the pth

moment of that component. This is the indexing system that is used in the #define

PRINT BLOCK statement to select particular moments of particular components to write

to the blocks.dat file. It is important to view the blocked averaged to see if the path
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has equilibrated, and to get an idea of the number of sweeps needed to eliminate corre-

lations. The ability to calculate errors in the MC evaluation by re-blocking the blocks is

built into Carl. The idea is that if the blocks are large enough, adjacent blocks should

not be correlated.

The random walk step size delta[i] may be different for each component of the

path. Carl automatically updates each delta[i] during the initialization phase after

each block is completed, to aim for a target acceptance rate of 50% for each component

of the path. The rule used is

∆i ← ∆i (1 + α(faccept − 0.5)) , (A.4)

where faccept is the acceptance rate over the block that has just finished, and α = 0.3. The

idea is to decrease ∆i if the acceptance rate is < 50% and increase ∆i is the acceptance

rate is > 50%. The purpose of this is to make the step sizes large enough to sufficiently

explore the the important regions of path-space (in a finite number of sweeps), but not

so large that most of the proposed steps are rejected. It is important to have different

∆i for each component of the path, because the size of the likely regions in path-space

may be very different along different directions in path-space. For the MC procedure to

be valid, ∆i should stop changing before the initialization phase is complete.

After NIt number of paths are generated the MC process is complete. Then Carl

averages the blocked averages to get one value the first four moments of each component

of the path. From these 4N values, the mean, standard deviation, skewness, and kurtosis

are calculated for each component of the path, and these are written to the output files

mc.dat, mc3.dat, mc4.dat (see the section on output files for details). Diagnostics may

be calculated by comparing to the true path in the file x.dat if available.

At this point, error calculations may be done by combining the blocks into larger

blocks [42]. Consider a particular quantity of interest x = yl(n)a, or x = pal . This

quantity takes on a series of P values, {x0, x1, . . . , xP−1}, one for each path generated.

The paths are grouped into B blocks of size S = P/B. Here we assume S, P,B are all

integers. The blocked averages of x are

x̄j =
1

S

jS+S−1∑
n=jS

xn, (A.5)

where j = 0, 1, . . . , B − 1 identifies the block. The average over all blocks is

x̄ =
1

B

B−1∑
j=0

x̄j . (A.6)
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The variance of the blocked quantities is

var[x̄] =
1

B(B − 1)

B−1∑
j=0

(x̄j − x̄)2. (A.7)

This is useful to calculate, because
√
var[x̄] is the RMS error in the MC calculation

of the quantity x, but only if the block averages are uncorrelated. Since the Metropolis

Monte Carlo method is based on a random walk, it may take many sweeps to eliminate

correlations in xi. The idea is that once the block size S becomes large enough, the

correlations are averaged out, and so the correlation among the blocked averages x̄j is

eliminated. This suggests plotting
√
var[x̄] as a function of S. For small S the error will

be underestimated, but when S becomes large enough
√
var[x̄] should level off at the

true error level. Carl calculates
√
var[x̄] for S = r*Bsize, where r = 1, 2, 3, 4, for the

specific x’s that are selected using the #define PRINT BLOCK statement. This is why

Nblock should be a multiple of 24.

A.3 Details of the Inputs

A.3.1 Model file

A file named model.h has to be located in the main Carl directory. It contains

the model equations in the function double g(int l, int n, double *y , double

*u, double *z, double *p, double inj). This function should return the value of

Fl(y(n),p). The current values of the states at the current time step can accessed with

y[0], y[1],...,y[K-1]. The current values of the parameters can be accessed with

p[0], p[1], . . . , p[NP-1]. See Fig. A.1 for an example.

For normal usage the z[] and u[] are not needed, but they are available to the

user anyway inside the g(...) function. The measurements at the current time step

can be accessed using z[0],z[1],...,z[K-1], but beware that the missing measure-

ments should not be used, since they will artificially have a value of zero. The value

of RmMask[n*K+l] will be 1 if the point (l, n) has a measurement associated with it,

and 0 otherwise. If controls are activated, then the current value of controls at the

current time step can be accessed with u[0],u[1],...,u[K-1]. The controls that do

not have measurements associated with them will be set to zero, and so the term +

fabs(u[l])*(z[l] - y[l]) will have no effect unless a measurement is present.
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If an external drive file has been loaded (see the next section), then the value of

the drive signal at the correct time step will be passed in the inj argument of g(...).

If no drive file is loaded inj = 0.

The header file also contains the number of equations K, the number of time

steps M, and the number of parameters NP. If this file is changed the code needs to be

recompiled by using make. Figure A.1 shows an example set up for the Lorenz 96 model.

Also there are some optional define statements that activate certain features

when present. The line #define COUP GEN activates the automatic calculation of the

coupling matrix when included. This is useful for speeding up problems with many state

variables that are sparsely coupled (such as Lorenz 96 with large K since each variable is

only coupled to three neighbors). This causes a speed up because it reduces the number

of terms in the action that need to be computed to calculate changes in the action. If it

is not included the coupling will be assumed to be all-to-all (but still local in the time

direction).

The statement #define PRINT BLOCK can be included followed a list of any num-

ber of indices (see Fig. A.1). This will select particular moments of particular components

of the path to be output to the file blocks.dat. This will also cause the re-blocking

error calculation for these same quantities to be output to the file error.dat.

Diagnostics can be turned on by including the statement #define TSCORE. This

will read the true path from the file x.dat, and compute the t-scores, Tl(n) = (〈yl(n)〉−
xl(n))/σl(n), of each component of the path. The t-scores are put into 30 bins of ranging

from T = −3 to T = 3, and written to the file t-hist.dat.

A.3.2 Problem specification file

The file named specs.txt must be located in the the problem subdirectory.

Each line is a command which is comprised of a one or two lowercase letter key (which

needs to start in the first column of the line) followed by a number of entries which are

integers, floats, or strings, all tab or space delimited. The order of the commands does

not matter, except dt should come first, and they do not need to all be present. Table

A.3.2 shows all the possible commands and all the possible options for each. Commands

numbers 6 through 13 all activate certain functionality which is turned off by default.

The entries shown in parenthesis can be left out and will be set to default values, for

instance if Ry0
l or Rp

l is left off they will be set to zero, which means the the prior terms
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// Example model.h file

// Number of variables

#define K 5

// Number of time steps

#define M 100

// Number of parameters

#define NP 1

// Total number of dimensions

#define N ((M+1)*K + NP)

//Selects the 1st and 2nd moment of the parameter for output

#define PRINT_BLOCKS {N-1, N-1+N}

#define COUP_GEN

int RmMask[N];

double coup;

//////////////////////////////////////////////////////////////////////

// Put the Differential Equations (dy_l/dt = ) here

// Variables are y[0], ..., y[K-1], Parameters are p[0],...,p[NP-1]

// z[l] and u[l] are the measurement and control terms at the current

// time step n. u’s without associated z’s are set to zero

// inj is the drive signal at the current time step

//////////////////////////////////////////////////////////////////////

double g(int l, int n, double *y, double *u

, double *z, double *p, double inj){

// Lorenz 96

return y[(l+K-1)%K] * (y[(l+1)%K] - y[(l+K-2)%K]) - y[l] + p[0];

}

Figure A.1: Example model.h file for Lorenz 96



94

in Eq. (A.3) will have no effect (or in other words, the distribution is uniform from −∞
to ∞).

Table A.1: List of options that can be entered in specs.txt.

Description Key

1. Time step dt ∆t
2. MC Sweeps mc Ninit Bsize Nblock

3. Measurement z l Rm
l (Ndata) (t0)

4. State variable y l Rf
l guess (yc

l) (Ry0
l)

5. Parameter p l - guess (pc
l) (Rp

l)
(6) State Bound yb l yl,min yl,max
(7) Param. Bound pb l pl,min pl,max
(8) RK4 Prediction rk Nrk (rkSub)

(9) Sim. Annealing sa Ncool β0

(10) External Drive in Fname (t0)
(11) Constant coup. co coup

(12) Controls u NuIt Ru

(13) Load Guess lg Fname

(14) Display Param. np l

1. Time step: ∆t . This should come first in the specs.txt file.

2. MC Sweeps: Ninit is the number of initialization sweeps which are discarded.

Bsize is the number of sweeps per block, and Nblock is the number of blocks

generated and should be a multiple of 24 for the error calculation to work correctly.

Statistics are recorded for each block, and then combined at the end of the process.

Total number of sweeps is NInit + Bsize * Nblock.

3. Measurement: Each time this is called the file z.l.dat is loaded from the problem

subdirectory, where l ∈ {0, 1, . . . ,K − 1}. Only the points which are aligned with

the time grid are used. In other words, only the data points where n = (t− t0)/∆t

is (approximately) an integer and 0 ≤ n ≤ M . It will stop reading when n > M ,

the file runs out, or Ndata points are read, which ever comes first. Missing data

points are allowed, as well as extra data points in between time steps (they will

just be ignored). Also a file called z.l.in is created which has only the data points

which are actually used, for plotting purposes.

4. State variable: This may be called one time for each state variable with l ∈
{0, 1, . . . ,K − 1}, or can be called once with l = −1 to set all the variables with
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the same settings. Rf
l, y

c
l,R

y0
l are defined in Eq. (A.3). Guess is used to set the

initial constant value of the state variable. When setting Rf
l keep in mind that

Rf
l∆t is actually the meaningful parameter.

5. Parameter: This may be called one time for each parameter with l ∈ {0, 1, . . . , Np−
1}, or by using l = −1 can be called once to set all the parameters with the same

settings. pc
l,R

p
l are defined in Eq. (A.3), and can be used to provided some

information about the parameters. Guess is used to set the initial value of the

parameter.

6. State Bound: Sets a sharp bound on state variables yl,min < yl(n) < yl,max. This

may be called for individual state variables with l ∈ {0, 1, . . . ,K − 1}, or can be

called with l = −1 to set all the state variables with the same settings. The bounds

must enclose the initial guess value.

7. Parameter Bound: Sets a sharp bound on parameters pl,min < pl < pl,max. This

may be called for individual parameters with l ∈ {0, 1, . . . , Np−1}, or can be called

with l = −1 to set all the parameters with the same settings. The bounds must

enclose the initial guess value. It is sometimes useful to set pl,min = pl,max to fix a

parameter to a known value.

8. Runge-Kutta Prediction: Including this key activates RK4 prediction using a num-

ber of time steps Nrk which means the MC window size is decreased by Nrk number

of steps. Setting rkSub allows the time steps in RK4 integration to be divided for

better accuracy, for example rkSub = 2 means do 2 time steps of size ∆t/2 in the

RK4 integration.

9. Simulated Annealing: Including this key activates simulated annealing for the first

Ncool number of sweeps. β in Eq. (A.3) is initially set to β0 < 1 and is multiplied

by the factor β
−1/Ncool
0 after each sweep, until β = 1. This should only happen in

the initialization phase, so Ncool should be less than Ninit.

10. External drive: Including this key loads a file with the name given by Fname located

in the project subdirectory, starting at time t0. This works in the same way as

loading data files, by ignoring points not coincident with the time steps. The

drive signal at the current time step is passed to the function g(...) as the last

argument called inj. This will be a linear interpolation of the drive signal when
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g(...) is called at subdivided time steps which happens in the RK4 prediction

window only.

11. Constant coupling: This sets coup to the value specified during the initialization

phase, and can be accessed in model.h. After the initialization phase is complete

coup is set to zero, so this will not interfere with the path distribution. The in-

tended usage is to add a coupling term to the model with + coup*RmMask[n*K+l]

*(z[l] - y[l]). The term RmMask[n*K+l] is 1 at (l, n) points that have mea-

surements and 0 at (l, n) points that do not have measurements.

12. Controls: Set NuIt to the number of sweeps where controls terms are allowed to

change. Set NuIt < Ninit to avoid interfering with the path distribution. When

this is set an additional term Ru
2

∑
n,l ul(n)2 is added to the action. There is a

control term associated with every point on the (l, n) grid, but the controls are

fixed at zero for the points which do not have measurements associated with them.

The intended usage is to add + fabs(u[l])*(z[l]-y[l]) onto the equations in

the g(...) function where desired. When sweep number NuIt is reached the

current value of the controls will be output to u.dat and the R-test to R.dat, and

then the controls will be set to zero, and the MC process will continue.

13. Load Guess: This loads an initial guess for the path from the file with name Fname.

The file should have N lines with a single value for y[i] on each line, in the usual

order. This has to come after all the y and p commands to override the guesses.

14. Display Parameter: This will cause pl to be displayed to the screen. Default is

l = 0.

An example specs.txt is shown in Fig. A.2 for the Lorenz 96 example. Not all

entries are present, just the ones that are being used. Refer to the table for the meanings.

It is important that the first column be a lowercase letter, and that each entry separated

by tabs or spaces, but it insensitive to the number of tabs or spaces and the order of the

lines.

A.3.3 Measurement and External Drive files

The measurement data files are name z.l.dat where l ∈ {0, 1, . . . ,K − 1}, and

are located in the problem subdirectory. The format is the time values in the first column
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# specs.txt Lorenz 96 example

# Set time step

dt 0.05

# Set all state variables to have Rf=100, guess = 1.0

y -1 100.0 1.0

# Set for p[0]: guess = 10.0, pc = 8.0, Rp = 0.25

p 0 10.0 8.0 0.25

# Set bounds on p[0] between 0.0 and 30.0

pb 0 0.0 30.0

# Load z.0.dat and set Rm[0] = 8.0

# Load z.2.dat and set Rm[2] = 8.0

z 0 8.0

z 2 8.0

# Ninit Bsize Nblock

mc 20000 1000 120

# Ncool Beta0

sa 10000 0.1

# Nrk rkSub

rk 10 2

Figure A.2: Example specs.txt file for Lorenz 96 example
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and measurement values in the second column. Also external drive signals can be loaded

from any file in the problem subdirectory with the same two-column format. See items

3 and 10 in the above list for more details.

A.4 Details of the Outputs

All the output files are written the problem subdirectory which is specified as a

command line argument when Carl is run. In addition, there is output to the screen as

the program is running.

Output to the screen: The first part of the output is to verify that all the

settings are being used as expected. It may quickly scroll of the screen, but it should be

checked when setting up a new problem, especially for warnings or errors. Then during

the initialization phase the columns in order are: NIt, β, p[l], number of accepted

changes for p[l] over the previous block, and then the action for the current path. The

parameter to be displayed may be selected with the np command. After the initialization

phase is complete, the output is: 1st column is block number, 2nd column is p[l], 3rd

column is number of accepted changes for p[l] over the previous block, and 4th column

is the action for the current path.

Mean and Standard Deviation in mc.dat: The means 〈yl(n)〉 and the stan-

dard deviations σl(n) =
√
〈(yl(n)− 〈yl(n)〉)2〉 are written to the file mc.dat. The format

is: the 1st column is time, 2nd column is 〈y0(n)〉, 3rd column is σ0(n), 4th column is

〈y1(n)〉, 5th column is σ1(n), and so on for all the state variables in order.

Skewness in mc3.dat and Kurtosis in mc4.dat: The skewness is written to

the file mc3.dat and the kurtosis to the file mc4.dat. The 1st column in both files is

time, and the nth column is the skewness or kurtosis associated with the state variable

with the index l = n− 2.

Parameters in param.dat: The mean, standard deviation, skewness, and kur-

tosis for each parameter is written to a file called param.dat.

Blocked averages in blocks.dat: The blocked averages are written to the file

blocks.dat. The first column is the block index, and there is one additional column for

each entry in #define PRINT BLOCKS.

Error Calculation in error.dat: The file error.dat will have four lines. The

first column is the block size which will be Bsize, 2*Bsize, 3*Bsize, 4*Bsize. The

second column is the number of blocks, which will be Nblock, Nblock/2, Nblock/3,
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Nblock/4. Then there will be one additional column, with entries
√
var[x̄], for each

quantity selected with the #define PRINT BLOCKS statement. Each entry in this state-

ment refers to a particular moment of a particular component of the path.

T-score Diagnostic in t-hist.dat: If the statement #define TSCORE is in-

cluded in model.h, and if the true path is available in the file x.dat, then a t-score

histogram is written to the file t-hist.dat. The first column is the t-score value at

the center of the bin and the second column is the number of t-scores that fall into the

associated bin.

Other outputs: A problem-specific gnuplot script file is created called mc.plot.

This can be used to automatically generate plots of every state variable, showing the

measurements that were used from z.l.in, the true path from x.dat (if available), and

the MC results for mean and standard deviation of all the state variables at every time

step.

The last path generated is output to a file called y.dat. The format is one value

of y[i] per line, in order.

The file model.h is copied into the problem subdirectory and called model.bac

for purposes of record keeping. That way all the problem-specfic files will be together

the proper problem subdirectory for archiving.



Appendix B

Parallel Implementation of PIMC

Data Assimilation

This appendix is about a parallel version of the path integral Monte Carlo data

assimilation method which was implemented using CUDA, the Compute Unified Device

Architecture. Doing this allows hundreds of threads of execution to be run in parallel

on a graphics processing unit (GPU). The PIMC approach is well-suited to parallel

execution, because the computational tasks can be divided up in a way such that the

order of execution does not matter, and little coordination is required among threads.

The basic flow of the program is described here. First the measurement data,

Y = {y0,y1, . . . ,yM}, is loaded from files and the current path is set to an initial guess

path X = {x0,x1, . . . ,xM}. Then M + 1 threads are launched, one for each time point,

n = 0, 1, . . . ,M . Each thread is assigned to a particular time n and it calculates the RHS

of the model differential equations for the current path, F(xn), and stores the results

in global device memory on the GPU. These numbers will later be used to calculate

changes in action, and they will be updated every time part of the path changes. The

idea behind this is to avoid unnecessary re-evaluations of F, which may be expensive.

Then the main path update loop starts. Each time through the loop the following

events happen. First (M + 1)/2 threads (assume M is odd here for convenience) are

launched, and each thread is assigned to an even n.

Each of these thread does the following tasks. First it adds a K-dimensional

random perturbation ∆xn to the current state vector xn by generating K random num-

bers, x′n = xn + ∆xn. Then it calculates the RHS of the model differential equations

100
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at time n using the perturbed state, F(x′n), and stores the result. The change in action

which would occur if xn was changed to x′n is then computed. This is done using the

pre-computed F(xn) and F(x′n) values, and also depends on yn, xn, xn−1, xn+1, and

x′n. Then the change is either accepted or rejected using the usual Metropolis rule. Note

that this is a slightly different approach than discussed in Chapter 3 and Appendix A,

because there each component was accepted or rejected separately. This approach re-

quires fewer function evaluations, but also may require a smaller random walk step size

to get a good acceptance rate, so it is a trade off. If the change is accepted then x′n → xn

and F(x′n)→ F(xn).

Once all the threads operating on even n complete, then the same thing happens

with all the odd n: another (M + 1)/2 threads are launched and each one is assigned

to an odd n. The reason for doing it in two steps is to uncouple the state vectors: to

calculate the change in action due to perturbing xn, we need to know xn−1 and xn+1,

but none of the other state vectors. This way each even n, and then each odd n can be

updated independently, in any order.

Next each of the parameters pl is updated one at a time in sequence, l =

0, 1, . . . , Np−1. To each parameter a random perturbation is added. Changing a parame-

ter value changes every model violation term, gn, and so these all need to be recalculated.

The measurement terms in the action do not change though, since the states are not

perturbed during this part of the process. Recall the model violation term is

gn = xn+1 − xn −
∆t

2
(F(xn+1,p) + F(xn,p)),

and the dynamics term of the action is

A0,f =
Rf
2

M−1∑
n=0

g2
n.

To calculate the new g2
n’s, M + 1 threads are launched, and each one assigned to

one n. Once again the pre-computed F(xn)’s are used, and new F(xn)’s are computed.

Once this is completed, one thread per block sums up all the g2
n’s which are stored in

shared memory. A block is a collection of threads which can interact by sharing memory

and synchronizing with each other. The number of threads per block is limited by the

hardware, and was 512 for this particular GPU. If the number of time steps used is larger

than this number, the computations must be split over multiple non-interacting blocks

which is what was done here.
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Once the partial per block sums of ∆A0 are completed, then a single thread

is launched which sums the partial sums to find a total ∆A0. This is then used in

the Metropolis rule to make a decision about weather or not to accept the parameter

change. If the change is accepted, then the path is updated, and the F(xn)’s are updated.

Actually there are always two copies of the F’s, and a variable to select which is the

current F and which is the F′. This way excessive memory transfers are avoided (which

are slow on the GPU). If the parameter change is accepted then the F selector just has

to be flipped.

This whole process is repeated for each parameter, one at a time.

Then N = (M + 1)K + Np threads are launched (usually split among multiple

blocks, since typically N > 512, the maximum number of threads per block) to add

to the running sums for the moments of each of the N components of the path. Each

thread does the sums for one of the N components. Actually this step does not need to

be done after each path update, only occasionally, since the path does not change very

much after a single path update. Also it is not done during the initialization phase when

the statistics are not recorded.

The random number generation is done in parallel using the “Hybrid Tausworthe”

algorithm described in [43]. Each thread is given its own initial seed, and so each thread

will generate a different pseudo-random sequence. The random seeds are read from the

linux random device /dev/urandom when the program starts.

Some sample calculations were done as performance benchmarks. The code was

run in parallel on an NVIDIA GeForce GT 320 GPU and also in series on an AMD

Athlon II CPU for comparison. The same code was executed in both cases, but to run

on the CPU using a single core instead of launching many threads, everything was run

in sequence as a single thread.

The first test was the Lorenz 96 model with K = 5 state variables and Np = 1

parameters, with M = 640 time steps. To do 32,000 path updates, it took 11 seconds to

run in parallel on the GPU and 88 seconds to run in series on the CPU, so there was a

factor of 8 speed increase. However the Lorenz 96 model is probably too computationally

simple to be a good test: all that is involved in computing F is a few multiplications and

additions.

The second test was with a much more complicated model. The Hodgkin-Huxley

[25] spiking neuron model was used with K = 4 state variables and Np = 22 parameters
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was used. The number of time steps was M = 999. This model function is significantly

more complicated, because it involves the evaluation of six exponential functions per

time step. This is more likely to keep each GPU core busy doing calculations, instead

of being idle. Also since M was set larger, we should except a greater increase in speed

up when running in parallel. To do 20,000 path updates, it took 50 minutes to run in

series on the CPU, and 51 seconds to run in parallel on the GPU. The speed increase

was about a factor of 60.
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