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1Institute for Global Nutrition, University of California, Davis, CA, USA; 2Department of Nutrition, University of California, Davis, CA,
USA; 3Hubert Department of Global Health, Rollings School of Public Health, Emory University, Atlanta, GA, USA; and 4National Cancer
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ABSTRACT
Background: The National Cancer Institute (NCI) method has been used widely by researchers to make inferences

about usual dietary intake distributions of foods and nutrients based on a limited number of 24-h dietary recalls (24-HRs).

Although the NCI method does not provide individual estimates of usual intake, it can be used to address many research

questions, including modeling effects of nutrition interventions on population distributions of usual intake. Software for

implementing the NCI method, and corresponding code examples, is publicly available in the form of SAS macros but

little formal guidance exists for conducting advanced analyses.

Objectives: We aim to present advanced techniques for working with NCI macros to conduct both basic and advanced

dietary analyses and modeling.

Method: We first present the 3 basic building blocks of analyses using the NCI method: 1) data set preparation, 2)

application of the MIXTRAN macro to estimate parameters of the usual intake distribution, including effects of covariates,

after transformation of 24-HRs to approximate normality, and 3) application of the DISTRIB macro to estimate the

distribution of usual nutrient intake. Then, we illustrate how researchers can employ these building blocks to answer

questions beyond typical descriptive analyses.

Results: Researchers can adapt the building blocks to: 1) account for factors such as demographic changes or nutrition

interventions such as food fortification, 2) estimate the prevalence of dietary inadequacy via the full probability method,

3) incorporate nutrient intake from sources not always captured by 24-HRs, such as dietary supplements and human

milk, and 4) carry out multiple subgroup analyses. This article describes the theoretical basis and operational guidance

for these techniques.

Conclusion: With this article as a detailed resource, researchers can leverage the basic NCI building blocks to

investigate a wide range of questions about usual dietary intake distribution. J Nutr 2022;152:2615–2625.

Keywords: modeling, fortification, supplements, dietary intake, 24-h recalls

Introduction

Assessment of dietary intake is fundamental to evaluating
a population’s risk of nutrition-linked health outcomes and
developing effective intervention strategies. Because dietary
recommendations are intended to be met over time and
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diet-health hypotheses are typically based on dietary intakes
over the long term (1), researchers, nutrition program planners
and analysts, and policymakers often consider inference about
the distribution of usual, or long-term average, daily intake
of nutrients or foods. For example, the proportion of the
population with usual intake above or below certain thresholds
provides insight into the prevalence of inadequate or excessive
dietary intake.

Dietary assessment tools such as FFQs directly query long-
term intake behavior, whereas other tools query intake over
shorter time periods. For example, the 24-h dietary recall
(24-HR) is a popular assessment instrument that queries
intake over the past day. Other short-term assessment methods
include multi-day food records or diaries. All self-report
dietary assessment tools measure their nominal target (long- or
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short-term intake) with some degree of random and systematic
measurement error, but the temporal mismatch between short-
term assessments and usual intake distribution introduces
additional within-person random variation (from day-to-day
variation in dietary intake of an individual around that person’s
usual intake); intake on a particular day, even if exactly
measured, cannot represent usual intake, which is by definition
the average of many such exact measurements.

Dietary surveys routinely employ short-term assessments
(most often 24-HRs) to assess diet, but the considerable
effort and resources involved in conducting frequent visits
to households generally limits data collection to only a few
assessments per person. In such surveys, the within-person
variation in 24-HRs is typically considerable, which implies that
averaging only a few measurements per person will not yield
an acceptable approximation to a longer-term average. Within-
person variation in 24-HRs causes the population distribution
of a single measurement per person to be wider than the
distribution of the average of 2 measurements per person,
which in turn is wider than the average of many measurements
per person. Consequently, researchers (2–6) have developed
statistical methods to estimate the distribution of usual intake
in cases where only a few replicates of short-term assessments
are available; these methods analytically account for within-
person variation, rather than relying on simple averaging.
These methods are widely employed, though they only account
for within-person variation, and do not address systematic
measurement error in the assessments.

The approach (6) used by researchers at the National
Cancer Institute (NCI) is implemented via macros written in
the SAS programming language, and can be applied to 24-HR
assessments of foods and nutrients. In this article, we focus on
the NCI method instead of other methods because the NCI
method: 1) can assess and account for the effects of multiple
covariates on usual nutrient intake, 2) can handle complex
survey designs, and 3) can be modified to accommodate many
types of analyses. The NCI method applies equally well to
other short-term data collection modalities such as diet records.
For simplicity, we use “24-HRs” as a synecdoche throughout
the article for short-term dietary assessments (24-HRs, food
records, and food diaries).

The NCI macros allow for basic descriptive analyses of
usual intake distributions and prevalence of inadequate or
excessive intake, which are often considered sufficient for
surveillance of food and nutrient intake at the population
or subpopulation level. Although users of the NCI method
are strongly encouraged to review the Measurement Error
Webinar Series (7) to understand the underlying theory, and
to exhaustively study more in-depth material and annotated
examples on the NCI macro download webpages (8), users
proficient in SAS can successfully apply the macros to generate
results without a detailed understanding of what is happening
within the macro or the default mechanisms in place for linking
the macros.

Some researchers, analysts, and policymakers are interested
in questions that require more complex analyses than the
rudimentary examples provided on the NCI macro download
webpages. For example, for nutrients that violate the assump-
tions for use of the estimated average requirement (EAR) cut-
point method (e.g. iron), how can the full probability method
be applied to estimate the prevalence of inadequate nutrient
intake (9)? How can estimated nutrient intake from human milk
(typically not assessed via 24-HR) be included in estimates of
usual intake distributions? Researchers may also be interested

in modeling the potential effect of hypothetical scenarios, such
as initiating national micronutrient fortification or supplement
distribution programs. These questions can be answered by
modifying NCI-provided example code. Research groups such
as Hamner and colleagues (10–13), Bailey and colleagues (14,
15), and the Micronutrient Intervention Modelling Project
(MINIMOD) (16–20), have performed advanced analyses using
the NCI method and national survey data from the USA
and other countries. However, these advanced analyses require
substantial time and technical expertise to develop, and no
standard, detailed guidance is available for researchers who may
wish to use these techniques.

The objectives of this article are to: 1) thoroughly explain the
basic ideas of the NCI dietary analysis method and familiarize
users with the NCI SAS macros (i.e. the basic building blocks
of the NCI method) and 2) equip readers with the skills to
modify these building blocks to conduct advanced analyses.
We begin this article by providing a detailed description of
the NCI macros. Then, we illustrate how users can work
with these building blocks to answer questions beyond the
standard analyses performed by the NCI examples. This article
is intended for users who: 1) have a basic knowledge of
measurement error theory as it pertains to dietary assessment,
2) are proficient with the SAS programming language, and
3) are interested in learning the nuts and bolts of the NCI
method and modifying the code themselves to conduct new
analyses. We expect this guidance to be helpful for beginners
who are learning the NCI method for estimating usual intake
distributions as well as for advanced users who aim to conduct
complex analysis and modeling. We focus on the basic “amount-
only” NCI method, which estimates the distribution of usual
intake for a dietary component consumed by nearly everyone
nearly every day (“nearly daily”), although these techniques can
be adapted in analyses using the NCI method for episodically
consumed foods, including bivariate/multivariate modeling.
Some of the advanced functionality described in this article,
such as modeling the potential effect of hypothetical nutrition
programs, has been built into an open-source SAS macro,
the “Simulating Intake of Micronutrients for Policy Learning
and Engagement (SIMPLE) macro” (21). Therefore, this article
also serves as a theoretical guidebook for SIMPLE macro
users.

Typical use of the NCI method to
estimate usual intake distributions

The NCI method for analyzing short-term dietary assessments
to describe characteristics of usual intake distributions for
nearly daily consumed nutrients has been illustrated in previous
publications and through a webinar series on measurement
error in dietary assessment (6, 7). The foundation of the
method is a mixed effects model that represents transformed
24-HR measurements for a person as the sum of: 1) a
group mean in the normal scale, 2) a normally distributed
between-person deviate (reflecting variation of usual dietary
intake among individuals) that explains how normal-scale
usual intake for the person differs from the group mean, and
3) normally distributed within-person deviates that explain
how particular transformed assessments for a person differ
from their normal-scale usual intake. Additional terms can
be included to adjust for sampling characteristics such as
sequence of recall, day of week, or season of assessment.
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FIGURE 1 Steps of the NCI “amount-only” method.

Under the model assumptions (22), the distribution of usual
intake can be derived analytically from estimates of the group
mean, the between- and within-person variance components,
and the transformation parameter. However, the NCI method
uses a Monte Carlo approach to characterize the estimated
usual intake distribution, using a random number generator
to simulate usual intakes for a sample of “pseudo-persons”
that are representative of the population, then taking the
sample percentiles from the simulated data set as estimates
of the theoretical percentiles. The advantage of the Monte
Carlo approach is that it allows a general method to estimate
percentiles of usual intake distribution when the group mean
is a function of covariates, rather than a single parameter. In
this case, because the population distribution of usual intake
additionally depends on the distribution of the covariates, the
Monte Carlo approach simulates samples of pseudo-persons
for all covariate patterns in the population according to
an appropriate covariate distribution, then combines them
all to represent the total population. The estimated usual
intake distribution reflects only between-person variation in
usual intake, rather than a combination of between- and
within-person variation in 24-HRs, and thus is narrower
than the distribution of observed 24-HRs. Thus, the NCI
method can be colloquially said to “shrink” the distribution

of observed intake to obtain the distribution of usual
intake.

The NCI amount-only method for estimating usual intake
distributions is implemented via 2 SAS macros: MIXTRAN
(version 2.21) and DISTRIB (version 2.2), which are available
to download from the NCI website (8). A third macro, called
INDIVINT, is also available for download from the website,
but it is of use only when usual dietary intake (modeled
from 24-HRs, and therefore subject to measurement error) is
to be used as a predictor of a health outcome (assumed to
be ascertained without error) using the regression calibration
method to correct regression parameter estimates for the effects
of measurement error in 24-HR-based dietary predictors (23).
Despite its name, the INDIVINT macro does not produce
output that represents true usual intake for specific persons, and
therefore, users should not use the INDIVINT macro to estimate
usual intake distributions.

Because the advanced use of the NCI method is based
on modifying the inputs and outputs for the MIXTRAN
and DISTRIB macros, we first describe each of the steps
involved in applying the NCI amount-only method, from data
set preparation to results output. We summarize these steps
and the function, inputs, and outputs for each SAS macro in
Figure 1. We also describe the input and output data sets
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and their key variables in Table 1. This section is intended
to help readers thoroughly understand the foundation of the
NCI method and prepare them for more advanced analysis by
modifying the core NCI method.

Step 1: Collect and prepare 24-HR data

To use the NCI amount-only method, the 24-HR data must be
collected and organized following certain requirements. First,
multiple days (2 at minimum) of reported intake must be
available in at least a representative subset of the population,
sampled persons must be identified via unique identification
numbers, and repeated recalls must be identified by a day
variable. The data must be organized in the “long” data set
format, which means that each row represents 1 dietary record
instead of 1 study participant.

Second, the number of individuals with repeat measurements
and the number of repeats available influences the SEs of
estimates derived from the method, and in general, more persons
with 2 measurements is preferable to a smaller number of
persons with >2 measurements. In the typical case, SEs are
influenced primarily by the number of degrees of freedom (d.f.)
associated with the within-person variance component, which
is equal to the number of repeated (i.e. not the first per person)
observations. A reasonable number (say 50) of d.f. can be
achieved by, e.g. having 50 participants with 2 24-HRs or
10 participants with 6 24-HRs. The higher likelihood of
achieving a representative subsample with more participants
partly justifies the use of 2 measurements per participant.
Furthermore, if the dietary variable is episodically consumed,
the d.f. are based on the nonzero measurements only, so
to contribute to the within-person variance component, a
participant must have multiple positive 24-HR observations.
Alternatively, because the d.f. for the between-person variance
component is equal to the number of participants, data sets
with very few participants may be problematic—25 participants
with 3 24-HRs each would satisfy a 50 d.f. requirement for
the within-person variance component but not for the between-
person component.

Optionally, the data can contain a survey weight variable,
covariates that may influence usual dietary intake, or a weekend
variable indicating whether each 24-HR was collected on a
weekend or a weekday. In the NCI method code, covariates
must be either binary or continuous; categorical variables
that contain >2 levels need to be recoded into multiple
binary variables, leaving out 1 dummy variable as a reference.
Although not the focus of this article, an adaptation of the NCI
MIXTRAN macro for analysis of single-day data is available
(24) and can be used to implement the methods described here.

Step 2: Apply the NCI MIXTRAN macro to 24-HRs

MIXTRAN transforms the target food or nutrient values
from 24-HRs to approximate normality, estimates regression
parameters for the effects of individual covariates on usual
intake, and outputs parameter estimates and linear predictor
values to be used as inputs for the DISTRIB macro. The
linear predictor values are computed by simply multiplying the
regression parameters by the associated covariate values for
each observation, then summing the products and adding the
result to the intercept term. The theory of the MIXTRAN macro
has been described in previous publications (6, 23, 25).

After a successful run of the MIXTRAN macro, 4 data
sets with names starting with “_pred,” “_param,” “_parmsf2,”
and “_etas” are created (in this article, the names of data
sets and variables output from the NCI macros are italicized

and in quotation marks, for which we use lower cases for
data set names and upper cases for variable names) (Table 1).
The “_pred” and “_param” data sets are the most important
and are later used as the input data sets for the DISTRIB
macro. The “_pred” data set contains linear predictors for each
sampled person. By default, the “_pred” data set contains the
linear predictor for the first observation for each person in the
input data set. Researchers should keep this default behavior
in mind when model covariates can vary at the observation
level (i.e. each 24-HR), rather than only at the individual level.
For example, if the first recall is considered the most accurate
(e.g. because it is interviewer-assisted rather than by phone as
in the NHANES), and therefore recall sequence is included
as a model covariate, this behavior results in an estimated
distribution with the first recall day as the reference level. If
the default behavior is not appropriate, additional steps may
be required to produce a suitable “_pred” data set, such as
sorting the input data set in reverse sequence order, or by
altering predictions to reflect a specific covariate pattern for the
observation-level covariates. For example, if participants were
asked whether each day is a “typical” consumption day, and
the associated response variable was included as a covariate,
usual intakes based on typical days could be generated by
making a “_pred” data set that evaluates the linear predictor
for each participant as if the typical day question was answered
in the affirmative, even if the participant reported that all
observed days were atypical. If a covariate for weekend is
included, the “_pred” data set contains 2 linear predictors per
person, 1 with and 1 without adding the regression parameter
corresponding to the weekend covariate. The “_param” data
set contains the Box-Cox transformation parameter (with
zero representing the natural log transformation as a limiting
case), estimated regression coefficients for covariates that may
influence dietary intake, and the estimates of within- and
between-person variance components. Note that the user has
flexibility in the choice of which covariates to include, and
to some extent the functional form of the relation between a
covariate and mean normal-scale usual intake. For example,
the user may want to model the covariate as a continuous
variable or to use dummy variables if a categorized version of
the covariate is more meaningful. An in-depth discussion of pros
and cons of various methods that can be used to determine
the covariates and their functional form in the final model is
outside the scope of this article, but the remaining steps of the
procedure assume that: 1) the outputs from MIXTRAN reflect
an appropriate model and 2) the metrics of primary interest (e.g.
fraction of the population with inadequate or excessive usual
intake) are associated with the “downstream” distribution of
usual intake, rather than the “upstream” MIXTRAN model.

Step 3: Apply the NCI DISTRIB macro to output data
sets from the MIXTRAN macro

The DISTRIB macro uses the parameters stored in the “_param”
and “_pred” data sets to simulate usual intakes according to
the fitted MIXTRAN model for a sample of pseudo-persons
that is representative of the target population. Characteristics
(e.g. mean and percentiles) of the usual intake distribution
are estimated from the sample of pseudo-persons. A successful
run of the DISTRIB macro generates 2 data sets: 1) the
“_descript” data set containing estimates of the mean and
percentiles of usual nutrient intake, and of the proportion of
the population with intake below cutoffs used for applying the
EAR cut-point method (26) (which estimates the prevalence
of inadequate intake as the proportion of individuals with
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TABLE 1 Input and output data sets and the associated key variables for the MIXTRAN and DISTRIB macros1

Data set Description Key variables

Input data set for the MIXTRAN macro
24-HR A data set containing variables representing nutrient intakes

from a sample of 24-HRs where at least a subgroup of
persons in the sample provide multiple 24-HRs. This data
set must be organized in the “long” format, in which each
row is a record of a dietary recall instead of a study
participant. It is also an additional input dataset for the
DISTRIB macro.

Required variables:

• Unique identification number for each study participant.
• Observed nutrient intake(s).
• Repeat variable: values indicate the sequence of dietary

recalls for a participant: 1 means it is the 1st, 2 means the
2nd, etc.

Optional variables:

• Covariates.
• Weekend variable: a binary variable indicating that a dietary

recall was collected either on a weekend (1) or weekday (0).
• Survey weight.

Output data sets from the MIXTRAN macro applied to 1 of the nutrient intake variables in the 24-HR data set
1)_pred A prediction data set containing linear predictors for each

participant. It is also an input dataset for the DISTRIB
macro.

• Unique identification number for each study participant.
• Survey weight variable (if applicable).
• If the users do not specify the weekend variable to account for a weekend

effect:
◦ X2B2: predicted nutrient intake for each participant.

• If the users specify the weekend variable to account for a weekend effect:
◦ X2B2_0: predicted nutrient intake on a weekday for each

participant.
◦ X2B2_1: predicted nutrient intake on a weekend for each

participant.

2)_param A 1-row parameter data set containing the value of Box-Cox
transformation parameter, coefficients of covariates that
influence dietary intake, and estimates of within- and
between-person variances. It is also an input dataset for the
DISTRIB macro.

• A01_INTERCEPT: estimated intercept from the regression of transformed
24-HR intake on covariates.

• Variables with names beginning with A02, A03, A04, …, etc.: estimated
coefficients from the regression of transformed 24-HR intake on covariates.

• MIN_AMT: the minimum positive intake value observed in the 24-HR
intakes.

• A_LAMBDA: Box-Cox transformation parameter.
• A_VAR_U2: between-person variance.
• A_VAR_E: within-person variance.

3)_parmsf2 A “long-format” version of the “_param” data set containing
the key parameters.

• PARAMETERS: the name of the parameter, such as a coefficient from the
regression of transformed 24-HR intake on covariates or the Box-Cox
transformation parameter.

• ESTIMATE: the estimated values of the parameter.

4) etas A 1-row data set containing the regression equation of
transformed 24-HR intake on covariates.

• ETA_2: textual specification of the left-hand side of the regression equation,
including repeat variable and between-person error terms.

• SHORTETA2: a shortened textual specification of the left-hand side of the
regression equation, excluding repeat variable and between-person error
terms.

Output data sets from the DISTRIB macro
1)_mcsim A simulated data set containing “true” dietary intake of

“pseudo-persons.”
• Unique identification number for “pseudo-persons” that represent the study

population.
• NUMSIMS: the number of “pseudo-persons” per real person (by default, the

value of “numsims” is 100).
• MCSIM_WT: survey weight of the _mcsim data set.

◦ If the users specify a survey weight variable in 24-HR recalls for
the MIXTRAN macro, mcsim_wt is equal to the value of the
survey weight variable divided by the “NUMSIMS” value.

◦ If the users do not specify a survey weight variable in 24-HR recalls
for the MIXTRAN macro, mcsim_wt is equal to the reciprocal
of the of “NUMSIMS” value.

• MC_T: “true” dietary intake of the “pseudo-persons.”

(Continued)
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TABLE 1 (Continued)

Data set Description Key variables

2)_descript A summary data set containing estimates calculated from the
“_mcsim” data set, e.g. percentiles and mean of the usual
nutrient intake distribution, the proportion of population
with usual intake below cutoffs (e.g. prevalence of
inadequacy estimated by the EAR cut-point method).

• MEAN_MC_T: mean of the usual intake distribution.
• TPERCENTILE0-TPERCENTILE100: minimum, the 1st, 2nd, …, 99th,

percentiles, and the maximum of the usual intake distribution.
• CUTPROB1- CUTPROBN: proportion of the usual intake distribution below

the corresponding cut-point.
• NUMSUBJECTS: the number of study participants
• Subgroup variable (if available).

1The same analysis also applies to other short-term dietary intake data, such as a food record. EAR, estimated average requirement; 24-HR, 24-h dietary recall.

intake below each individual’s age- and sex-specific EAR for
a given nutrient), and 2) the “_mcsim” data set containing
the simulated usual intakes per pseudo-person. By default,
100 pseudo-persons are generated for each sampled person
in the “_pred” data set, but users can override the default
– increasing the number makes the estimated percentiles and
fractions below cutoffs more stable, but at the expense of
computing time and data storage requirements. The choice of
100 has historically been used for large national-level data sets,
with several thousand participants, so that the “_mcsim” data
set has several hundred thousand observations. Users may wish
to alter the number of pseudo-persons to maintain a comparable
“_mcsim” data set size – using 1000 instead of 100 if the
data set contains only hundreds of participants. Users should
note that in the DISTRIB macro, they should either leave the
“call_type” macro parameter blank (the default), or specify
either “call_type = FULL” or “call_type = MC” to ensure that
the “_mcsim” data set is generated. If a weekend variable is
in the MIXTRAN model, usual intake for a pseudo-person in
the “_mcsim” data set is a weighted average of usual weekend
intake and usual weekday intake using the default (3/4) or a
user-specified weekend to weekday ratio.

Step 4: Calculate estimates based on output data sets
from the DISTRIB macro

From the “_descript” data set, researchers can directly obtain
parameters such as the estimated mean and selected percentiles
of the usual nutrient intake distribution, and prevalence of
inadequate or excessive intake. For implementation of advanced
methods, it is important to note that researchers can calculate
these (and other) estimates from the “_mcsim” data set.
Researchers can estimate the population mean and percentiles
of usual intake distribution by calculating the weighted (by
variable “MCSIM_WT”) mean and percentiles of the variable
“MC_T”. Using the EAR cut-point method (26), researchers can
construct a binary variable (e.g. “INADEQUACY”) that equals
1 if “MC_T” is less than the EAR cut-off point, and equals zero
otherwise. The estimated prevalence of inadequate intake is the
survey weighted mean of the binary variable “INADEQUACY.”
Similarly, a binary variable (e.g. “EXCESS”) that equals 1
if “MC_T” is greater than the tolerable upper intake level
(UL) can be used to estimate the prevalence of excessive
intake.

Advanced use of the NCI method

Researchers can use the existing NCI building blocks to
answer questions not included in the standard “_descript”
output. These advanced analyses include, but are not limited

to, simulating the effects of nutrition programs such as for-
tification and supplementation, forecasting changes in dietary
intake associated with changes in population characteristics,
incorporating reported nutrient intake from human milk
or dietary supplements to obtain estimates of intake from
sources other than foods and drinks reported on 24-HRs,
or estimating nutrient inadequacy using the full probability
method (9). In this section, we discuss how to modify the
NCI building blocks described above using various options
in the analysis, as illustrated in Figure 1. The data set names
and variable names referred to in this section are described in
Table 1.

Option 1: Adjust 24-HR intakes to changes to the
nutrient content of foods consumed

Some intervention programs operate by altering nutrient
profiles of selected foods (such as staple foods or condiments)
via fortification (adding extra nutrients from an external source)
or biofortification (altering the nutrient profile of a staple
crop via genetic engineering or selective breeding). Under the
assumption that food consumption patterns do not change after
implementing the program, researchers can model the effects of
fortification by adjusting nutrient intakes from 24-HR reports
that reflect hypothesized changes in nutrient profiles. The intake
for the 24-HR for person i on day j must first be adjusted using
the equation:

nutrient intake after simulated fortificationi j

= nutrient intake without fortificationi j

+ amount of fortified food consumedi j

× fortification level (1)

The amount of fortified food consumed is measured in
grams, and the fortification level is expressed on a per-gram
basis.

Then, researchers need to apply the MIXTRAN and
DISTRIB macros to the modified 24-HRs to estimate the
distribution of usual intake with a fortification program in
place. The result can be compared to the distribution obtained
from the unmodified data (although formal statistical testing
of differences between the 2 estimates should recognize that
because the nutrient profiles for only a subset of foods are
altered, the 2 distributions are not estimated independently).
This example assumes that the unfortified food (e.g. wheat flour)
is completely replaced by the fortified one. However, researchers
can also model scenarios where only a proportion of the
unfortified food is replaced by the fortified version. For example,
researchers could model a scenario where only certain brands
of foods are fortified, if information on the brand or other
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characteristics of the food is available, or where food sold only
in some geographic regions is fortified. Because fortification
and biofortification both alter the nutrient profiles of selected
foods (often with the assumption that consumption patterns
are unaltered), the method for fortification simulations can be
applied to biofortification as well. Using the same approach,
researchers can also estimate the effect of hypothesized changes
in food consumption, such as replacing whole fat milk with
nonfat milk. This approach of modifying the 24-HRs and then
applying the MIXTRAN and DISTRIB macros is sometimes
referred to as the “add-then-shrink” approach because the
additional nutrient intake is added to the 24-HRs before the
NCI method is applied (27) to obtain an estimated distribution
more narrow (or “shrunken”) than the sample distribution of
24-HR measurements. Because fortification involves changes
to the nutrient content of foods which are captured by a 24-
HR, it is appropriate to modify 24-HR observations to reflect
a hypothetical fortification scenario before applying the NCI
method (27). More complicated hypothesized changes can be
modeled by altering the nutrient profiles for some, rather than
all, 24-HRs, if only some fraction of the population will be
affected by changes in the nutrient profiles.

Option 2: Modify the output data sets from the
MIXTRAN macro

The implicit assumption in Step 2 of the NCI method is that
the sample data set is representative of the target population.
However, some analyses consider hypothetical, or counter-
factual, scenarios where the target population is different
from the sampled population. For example, in comparing
nutrient intakes between the USA and Canada, Kirkpatrick
and colleagues conducted sensitivity analyses to estimate
nutrient adequacy in a hypothetical USA where food and
nutrition assistance programs (e.g. USDA’s Special Supplemental
Nutrition Program for Women, Infants, and Children [WIC]
or Supplemental Nutrition Assistance Program [SNAP]) do not
exist (28). Estimates for an unobserved scenario can be obtained
after modification of the linear predictor output (“_pred” data
set) from MIXTRAN. In the analyses by Kirkpatrick et al.
(28), an indicator for participation in assistance programs
was included as a covariate in the MIXTRAN macro, and
the corresponding parameter estimate was subtracted from
the linear predictors of individuals who were enrolled on the
program. After modifying the “_pred” data set in such a way,
the rest of the analysis proceeded as usual and the desired
counterfactual estimates were produced. The same could be
done for continuous characteristics. For example, individual
linear predictors for each person could be recalculated while
holding income at a fixed value.

Option 3: Modify the output data sets from the
DISTRIB macro

Researchers can also modify the “_mcsim” data set generated
by the DISTRIB macro to conduct a diverse range of advanced
analyses. We describe the following 4 scenarios that modify the
“_mcsim” data set.

Option 3.1: Apply the full probability method.

Use of the EAR cut-point method to estimate prevalence of
nutrient adequacy requires several assumptions, including: 1)
the distribution of requirements is approximately symmetrical,
2) between-person variability in usual intake is greater than
the variability in the requirements distribution, 3) prevalence
is neither very low nor very high, and 4) usual intake is

independent of requirements (26). Under these assumptions,
the prevalence of nutrient inadequacy (the proportion of
the population with usual intake less than requirements) is
estimated as the proportion of the population with usual intake
below the EAR (26), which can be estimated as previously
described. Because empirical information on the distribution
of requirements is unknown for many nutrients, researchers
typically assume that the distribution of requirements is normal,
and the EAR cut-off point method is applied to most nutrients.

When the distribution of nutrient requirements is known
to be skewed (as in the case of iron), the “full probability
method” can be used (9) in conjunction with the “_mcsim” data
set. The full probability approach requires creating a variable
(e.g. “INADEQUACY”) that is the assigned probability of
inadequate iron intake for each usual intake in the “_mcsim”
data set according to a reference table appropriate to age,
sex, and oral contraceptive use (only applicable to women
of childbearing age) (29). For example, if analyzing women
of childbearing age, the usual intake value of 7.0 mg/d for
a woman aged between 19 and 50 y and not using oral
contraceptives is assigned a probability of inadequacy of 0.65
based on the Institute of Medicine (IOM) reference (29).
It is important to note that the default level of fractional
iron absorption assumed in the IOM tables is 18%. Users
are advised to adjust the iron requirement distribution based
on the expected level of iron absorption in their study
population. Then, after assigning the probability of inadequacy
to each observation in the “_mcsim” data set, the estimated
prevalence of inadequate iron intake can be calculated as the
survey weighted (using variable “MCSIM_WT”) mean of the
“INADEQUACY” variable. Additional details (e.g. choice of
reference table for probability of adequacy or modifications
to assumed fractional iron absorption) for applying the full
probability method to assess adequacy of iron intake using
the NCI method have been described previously (Supplemental
Methods 1 of the SIMPLE macro [21]).

Option 3.2: Incorporate intake from dietary supplements

and human milk into estimates of total nutrient intake.

The NCI method is intended to adjust for within-person
variation in intakes measured by short-term assessments.
However, some contributors to intake may be assessed through
other modalities. Examples include nutrients from dietary
supplements that may be queried through questionnaires with
a medium- or long-term recall period (e.g. 30 d), or human
milk consumption, which may be assessed via the isotope
dilution method that typically represents a period of 2 wk or
more (30). Although medium- or long-term assessments are
subject to within-person variation that could be accounted
for by collecting replicates, in practice researchers tend to
assume that such assessments capture a sufficiently long-term
average that the incremental benefit of fully adjusting for the
effects of within-person variation is not worth the required
effort and expense. Thus, estimating the distribution of long-
term intake from multiple sources (potentially with different
sources of measurement error) may best be served by combining
quantities representing usual intake distribution from 24-HR-
based sources with quantities from other sources. This approach
allows independent adjustments, if possible, for measurement
error in multiple sources of intake. In contrast to the “add-then-
shrink” approach of Option 1 where 24-HR measurements are
adjusted to reflect additions to intake, some researchers (15, 27)
suggest estimating distributions of usual total intake from food
and dietary supplements using a “shrink-then-add” approach
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where 24-HRs are first used to produce an estimated usual
food-based intake distribution that is then further augmented
with the estimated distribution of usual dietary intakes from
dietary supplements. Garriguet (27) demonstrated that the
“shrink-then-add” approach was better, compared to the “add-
then-shrink” approach, at reflecting evidence that supplement
users may have different food consumption patterns than
nonusers, e.g. because they take supplements to make up for
shortfalls in their food-based intakes, or (if particularly health
conscious) they take supplements in addition to having a diet
that provides sufficient nutrient levels on its own.

Other characteristics of dietary supplement intake argue
for the use of “shrink-then-add” even when supplement
intake is queried via 24-HRs. First, each dietary supplement
formulation provides a fixed dosage of a nutrient (generally
some fraction or multiple of the RDA that may be much larger
than would be provided from typically consumed amounts
of food sources). Distributions of reported amounts of intake
from supplements often have multiple “spikes” that reflect
common dosages across formulations. Adding supplement
intake (regardless of measurement modality) to 24-HR nutrient
intakes from food sources yields spiky distributions that cannot
be easily transformed to normality, because the supplement-
provided amounts overwhelm the smaller contributions from
food sources. Second, some dietary supplements are consumed
episodically, either by design (e.g. a high-dose of vitamin D once
a week) or by personal habit (e.g. sometimes forgetting to take
a daily multivitamin, or taking vitamin C or calcium-containing
antacids only when feeling ill). Total 24-HR intakes (obtained
by adding together 24-HR-based intakes from supplements
and food sources) for infrequent supplement users have larger
within-person variance than either frequent or never-users of
supplements because the first group can have a mix of large
(from supplements) and small (from food) intakes, compared
with consistently large or consistently small intakes for the other
groups. This feature violates one of the main assumptions of the
NCI method (22), namely that there is a common within-person
variance component that applies to the population represented
by the input data. For these reasons, the “shrink-then-add”
approach is considered most appropriate for estimating total
intake distributions including nutrients from both food sources
and supplements.

The shrink-then-add approach can be implemented in a
4-step process. The first step is to run the MIXTRAN and
DISTRIB macro on nutrient intake solely from food and
obtain the “_mcsim” data set. The second step is to merge the
“_mcsim” data set with the data set containing nutrient intake
from dietary supplements by the unique identification numbers.
The third step is to generate a new variable representing total
nutrient intake by adding the simulated usual intake from food
(“MC_T” variable) to the nutrient intake from other sources
(e.g. dietary supplements). Finally, researchers can analyze this
new variable following the guidance for Step 4 of the typical use
of the NCI method (described above) to obtain estimates of the
mean and percentiles of usual total intake distribution, as well
as estimates of the prevalence of inadequate or excessive usual
total intake.

Option 3.3: Simulate population change by

poststratification weight.

Researchers can also simulate changes in population charac-
teristics, such as urbanization, by modifying the survey weight
(“MC_WT” variable) in the “_mcsim” data set. Following the
principle of poststratification (31), researchers can (preferably

with the aid of a survey statistician) create a new profile of
a hypothetical population and estimate characteristics of the
usual nutrient intake distribution following the guidance for
Step 4. For example, if the original sample population included
30% urban residents, the survey weights could be adjusted to
model a hypothetical population with 50% urban residents.
Variables used to define the poststratification cells (urbanization
in the example) must be included in the MIXTRAN model as
covariates.

Option 3.4: Combine results from stratified analyses.

Even when population-level estimates are of interest, there are
situations where the NCI method is best applied separately to
subgroups of a population. For example, older people can have
completely different diet profiles compared with young children,
and covariates that influence dietary intake can be different as
well. Thus, for a study population with a wide age range, (e.g.
from the age of 0 to 99 y), the full sample might be split into
groups: young children (under the age of 5 y), preteens (aged
5–12 y), teenagers (aged 13–18 y), and adults (aged 19+ y); the
MIXTRAN and DISTRIB macros can then be run separately on
these different subgroups to generate different sets of result data
sets (i.e. “_mcsim” and “_descript” data sets for young children,
preteens, teenagers, and adults, respectively). Researchers can
append multiple “_mcsim” data sets to obtain a combined data
set that allows calculation estimates for the entire population,
or for combinations of subgroups that were analyzed separately.
This approach complements the ability to perform subgroup
analysis via inclusion of covariates. Using the example splits
given above, separate distribution estimates can be obtained for
the populations of young children <2 y and 3–4 y via inclusion
of an appropriate binary or categorical variable for subgroup
and the use of the “subgroup” option of the DISTRIB macro
applied only to the “young children”portion of the split sample.
However, overall results for individuals aged 3–14 y (an age
range that spans 2 portions of the split sample) would require a
combined “_mcsim” results data set.

In summary, to carry out these advanced analyses, re-
searchers need to modify either the input data set for the NCI
macros or output data set(s) from the macros that comprise
the NCI method (Figure 1). Researchers can also model
the combined effects of different interventions by modifying
multiple options on the NCI method pathway. For example,
researchers can simulate the combined effect of micronutrient
fortification and supplementation programs by using Options 1
and 3.2. Note that the preceding material focuses on obtaining
the estimates from advanced analyses; obtaining SEs essential
to inference for estimates from MIXTRAN and DISTRIB is
not straightforward. For some complex survey designs, SEs
can be calculated using the Balanced Repeated Replication
(BRR) method (21); for other survey designs or for simple
randomized samples, a bootstrap approach can be used. Both
methods entail running the MIXTRAN/DISTRIB combination
many times on modified input data, saving the desired output
each time, and then estimating SEs from the replicated output
using code such as that provided by the NCI BRR_PVALUE_CI
macro (8). A substantial amount of SAS programming is
required to automate this approach for application to a variety
of nutrients and/or data sets, with careful attention paid to
properly combining output from the MIXTRAN and DISTRIB
macros.

Advanced application and modification of the NCI macros
requires intermediate to advanced statistics and programming
skills. The open-source SIMPLE macro and its variants provide
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a user-friendly structure that streamlines basic and some
advanced analyses. In particular, they allow: 1) typical use of
the NCI method, 2) adjustment of 24-HR intakes to reflect
changes to the nutrient content of foods consumed (Option
1), 3) application of the full probability method (Option 3.1),
and 4) incorporation of intake from dietary supplements and
human milk into estimates of total nutrient intake (Option
3.2), while simplifying the calculation of SEs using the BRR
or bootstrap methods (21). However, some modifications need
individual customization of the NCI macros based on specific
research questions, such as modifying the data sets output
from the MIXTRAN macro (Option 2), so they have not been
incorporated into the SIMPLE macros.

Discussion

The collection and appropriate analysis of high-quality dietary
intake data are necessary to characterize nutrition problems and
inform solutions. Advanced methods of analysis and modeling
applied to 24-HR data allow researchers to answer a wide
range of questions about the distributions of usual intake;
however, the complexity of the methods presents a barrier to full
utilization. Among the various methods available to estimate
distributions of usual intake from 24-HR data, a feature of
the NCI method is its flexibility; however, users must be very
familiar with the method to take advantage of this feature
to conduct advanced analyses. In this article’s “deep dive”
into the NCI macros, we aimed to make the standard NCI
macros as well as advanced analyses and modeling methods
more accessible. Understanding and manipulating the basic
building blocks of the NCI method can empower researchers
to investigate a wider range of research questions. Although
the techniques presented in this article have been applied by
researchers to address specific research or policy questions (10–
13, 15–20, 32), manuscripts rarely have space or scope to
include the theory or practical details necessary for a new
analyst to replicate the technique. This article serves as a
reference for individuals who are familiar with dietary analysis
theory and wish to apply the NCI macros to their own data
as well as for experienced users to conduct advanced analyses.
In addition, users of the SIMPLE macro (21), which relies on
some of the techniques described here, may consult this article
for more in-depth understanding of the tool and the results it
generates.

Although the methods described here permit a wide range
of analyses, some limitations must be noted. We focus on the
nearly daily (amount-only) version of the NCI models, which is
the most used. Although we do not specifically cover the analysis
of foods or nutrients that are consumed episodically, a similar
approach may be employed with the corresponding NCI macros
for analyzing episodically consumed food (25). We also do not
cover estimation of the joint distribution of usual intake for
several nutrients or foods (33), for which other published NCI
macros are used.

It is also important to note that the applications of the NCI
method presented here only estimate the distribution of usual
intake of 1 nutrient; it does not attempt to estimate the usual
intake of each person in the sample. Direct estimation of usual
intake for a person is not practical; it has long been established
that, depending on the nutrient, large, very large, or tremendous
numbers of 24-HRs are required for the average thereof to be
reliably close to the true long-term average for a person (34).
Statistical modeling cannot overcome this challenge. Instead,

the NCI method uses the limited data available to estimate
characteristics of a group, not of a single individual. Even the
unfortunately named INDIVINT macro mentioned earlier does
not estimate individual usual intakes (23); instead, it estimates
the average usual intake for all possible individuals that would
have provided the same 24-HR values that a particular sampled
person provided (again, estimating a characteristic of a group,
not of an individual). Most importantly, the NCI method relies
on the assumption that 24-HRs are unbiased measures of intake.
For the few nutrients for which an (at least approximately)
unbiased biomarker exists, this assumption about 24-HRs has
been shown not to hold (35, 36). Thus, any application of the
NCI method will hopefully provide an improved analysis but
should be interpreted with due care.

This article provides the theoretical foundation to model
the potential impacts of nutrition intervention programs, such
as food fortification or supplementation programs, for which
it is important to assess the likely impacts of such programs
on population dietary adequacy or excess. When applied and
interpreted properly, these results can be used in many ways.
For example, Smith and colleagues analyzed the USA National
Health and Nutrition Examination Surveys to determine an
optimal fortification level of ready-to-eat cereal to provide
key nutrients that can minimize prevalence of nutrient inad-
equacy and excessive intake among all populations (37). The
MINIMOD research group analyzed the Cameroon National
Micronutrient Survey (38) to assess the cost-effectiveness of
various combinations of vitamin A fortification and supple-
mentation programs at national and subnational levels (18)
and to examine the potential contribution to dietary adequacy
of fortifying commercially available biscuits (19). Similarly,
analysis of the Ethiopian National Food Consumption Survey
(39) suggested that fortifying imported edible oils in Ethiopia is
a cost-effective way to achieve dietary vitamin A adequacy and
save lives of children aged under 3 y (20). In all, this information
is useful to justify, plan, and manage successful micronutrient
interventions.

In conclusion, substantial efforts and investments are
required for collection of dietary intake data, so there is
incentive to maximize the use of this information. Where
research questions may be addressed by conducting advanced
data analyses, this path may be more efficient compared with
additional primary data collection. Although the NCI method is
very powerful and flexible, the many capabilities of the method
are not fully apparent without understanding the details of the
method and its implementation. With these methods in hand,
users can work with the building blocks of the NCI method to
conduct a range of analyses, from accounting for human milk
and supplement intake to predictive modeling of the impact
of micronutrient fortification or supplementation programs.
This article can be used together with the SIMPLE macro to
better understand the modeling, or experienced users can do the
coding themselves (21). Increasing the range of analyses that can
be conducted will help facilitate the availability of dietary intake
results and model predictions to inform nutrition research and
policy.
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