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SUMMARY

Many natural clays have an undisturbed shear strength in excess of the remoulded strength. Destructuration
modeling provides a means to account for such sensitivity in a constitutive model. This paper extends
the SANICLAY model to include destructuration. Two distinct types of destructuration are considered:
isotropic and frictional. The former is a concept already presented in relation to other models and in
essence constitutes a mechanism of isotropic softening of the yield surface with destructuration. The latter
refers to the reduction of the critical stress ratio reflecting the effect of destructuration on the friction
angle, and is believed to be a novel proposition. Both the types depend on a measure of destructuration
rate expressed in terms of combined plastic volumetric and deviatoric strain rates. The SANICLAY model
itself is generalized from its previous form by additional dependence of the yield surface on the third
isotropic stress invariant. Such a generalization allows to obtain as particular cases simplified model
versions of lower complexity including one with a single surface and associative flow rule, by simply
setting accordingly parameters of the generalized version. A detailed calibration procedure of the relatively
few model constants is presented, and the performance of three versions of the model, in descending order
of complexity, is validated by comparison of simulations to various data for oedometric consolidation
followed by triaxial undrained compression and extension tests on two structured clays. Copyright q
2009 John Wiley & Sons, Ltd.
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1010 M. TAIEBAT, Y. F. DAFALIAS AND R. PEEK

1. INTRODUCTION

Advanced geotechnical design on soft clays has often been based on using isotropic and unstructured
elastoplastic soil models, such as the modified cam clay (MCC) model (Burland [1]). Natural soft
clays, however, almost always have a significant degree of anisotropy and in several cases a natural
structure formed during deposition and subsequent one-dimensional (oedometric) consolidation,
and the development of chemical bonds between particles due to various reasons. While bonding due
to cementation can be responsible for sensitivity in some cases, the physico-chemical effects can be
the cause in other cases. For example, a flocculated structure forms in the marine environment. When
the salt is leached away, an imbalance in physico-chemical forces ensues, leading to sensitivity.
Neglecting the effect of anisotropy, structure and their evolution from soil behavior may lead to
incorrect predictions of soil response under loading (see, e.g. Zdravkovic et al. [2] and Leroueil
et al. [3]).

Anisotropy can be accounted for by rotational hardening, which implies a rotation of the yield
and plastic potential surfaces. Rotationally hardening models for clays appear to have been first
proposed by Sekiguchi and Ohta [4], who are also referenced by Hashiguchi [5]. However, the
number of applications since then is too numerous to be listed here. Dafalias [6] proposed what
can be thought to be the simplest possible energetic extension of the Modified Cam Clay (MMC)
model from isotropic to anisotropic response, introducing in the rate of plastic work expression
a contribution coupling the volumetric and deviatoric plastic strain rates. The resulting plastic
potential surface in the triaxial p−q space, which for associative plasticity serves also as a yield
surface, is a rotated and distorted ellipse. The amount of rotation and distortion portrays the
extent of anisotropy, and is controlled by an evolving variable �, which is scalar-valued in triaxial
and tensor-valued in multiaxial stress space. Employing the plastic potential surface proposed by
Dafalias [6], a number of models were developed subsequently by Dafalias [7], Korhonen and
Lojander [8], Thevanayagam and Chameau [9], Newson and Davies [10], Wheeler et al. [11],
and Wheeler et al. [12]. These models differed mainly in the rotational hardening law for �, and
adopted the associative flow rule except from the work of Newson and Davies [10], who introduced
a yield surface based on the experimental observations. More recently Dafalias et al. [13–15]
proposed the SANICLAY model based on their earlier works in which a non-associated flow rule
allows the simulation of softening response under undrained compression following oedometric
consolidation.

Much of the emphasis in constitutive modeling has been on reconstituted soils, rather than soils
in their natural state. This has the advantage that it is much easier to repeatably produce samples,
and thus the models can more readily be tested for different loading paths. However, in engineering
applications one typically encounters natural soils, which often behave quite differently. Natural
structure of in-situ soils, which is the main focus of this study, renders their behavior different from
that of the reconstituted material. A key difference is that many natural clays have an undisturbed
shear strength in excess of the remoulded strength. Terzaghi [16] has defined the sensitivity of
clay as the ratio of their undisturbed and remoulded strength. The sensitivity varies from about
1 for heavily over-consolidated clays to values of over 100 for the so-called extra-sensitive or
quick clays [17]. In fact most clays, except those which have been heavily over-consolidated, lose
a proportion of their strength when remoulded. Clays that have been heavily over-consolidated
during their geological history, such as London Clay, are insensitive (sensitivity=1). There seem
to be few examples of clays of low sensitivity (sensitivity=1–2), but sensitivities of 2–4 are
very common among normally consolidated clays, and sensitivities of 4 to 8 are quite frequently
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DESTRUCTURATION THEORY 1011

encountered. Extra-sensitive clays (sensitivity>8) are met very commonly in parts of Scandinavia
and Canada [17]. Burland [18] attributed the structure of natural soils to two constituents: 1. the
fabric, consisting of the spatial arrangement of soil particles and inter-particle contacts, which is
the underlying reason for macroscopic anisotropy; 2. the bonding between particles, which can be
progressively destroyed during plastic straining. The term destructuration is now often limited to
the progressive damage to bonding during plastic straining [19], and this is the sense in which it
is used here.

Such a loss of strength due to the destructuration process may be critical for design. Destruc-
turation manifests itself as a sudden post-yield increase in compressibility, or a post-peak decrease
in strength under shearing. This is particularly true in soft clays such as Leda clay (Mitchell [20]),
Bothkennar clay [21], and Pisa clay [22]. Some stiff clays have also been considered structured in
the literature (e.g. Pietrafitta clay [23]; Vallericca clay [23, 24]; Pappadai clay [25]). The presence
of bonding allows the natural soil to exist at a higher void ratio than would otherwise be possible
[18, 26], and damage of this bonding during plastic straining leads to additional compression as
some of the bonding effect is lost. Damage to the bonding can be caused by both plastic volumetric
and plastic shear strains, both of which involve slippage at inter-particle contacts and consequent
breakage of bonds. A typical example of the effects induced by initial structure is the extreme
sensitivity of Scandinavian quick clays [27]. Some aspects of the response of structured clays are
presented in Figure 1. In particular, Figure 1(a) presents the results of K0 consolidation tests on
structured (intact) and reconstituted samples of Bothkennar clay in e− p space. Figure 1(b) shows
the associated softening in the p−q space for undrained triaxial compression and extension tests
on Bothkennar clay [21].

A common way of introducing destructuration of initial structure into the elastoplastic consti-
tutive modeling is to assume that the size of the yield surface depends on the amount of damage
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Figure 1. Behavior of structured (intact) and reconstituted samples Bothkennar clay: (a) Oedometer tests,
(b) undrained triaxial compression and extension tests (data after [21]).
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(for instance through a progressive decay of a cohesive component of strength [28], or that both the
size and the location of the yield locus depend on the amount of damage [29]. Along these lines
there have been important developments in formulating appropriate constitutive models (e.g. Nova
[30], Gens and Nova [29], Lagioia and Nova [31], Rouainia and Muir Wood [32], Kavvadas and
Amorosi [33], Cotecchia and Chandler [25], Gajo and Wood [34], Amorosi and Kavvadas [35],
Callisto et al. [36], Liu and Carter [37], Callisto and Rampello [38], and Baudet and Stallbrass
[39]). The various models differ in the precise form of destructuration law applied and in the form
of the underlying reference model used for the un-bonded (intrinsic) material. Anisotropy is not
a part of several models while for some others is due to structure and as soon as destructuration
is complete, anisotropy disappears. This does not fit with the experimental observations on soft
clays, which show that the anisotropy of reconstituted samples subjected to an anisotropic stress
history can be as great as the anisotropy of corresponding natural (bonded) samples [19].

In most works, the modeling of destructuration is in essence an isotropic softening mechanism
by which the size of the yield surface decreases as a result of destructuration, the rate of which is
expressed by means of a combined volumetric and deviatoric plastic strain rate measure. Such an
isotropic softening co-exists with isotropic hardening due to consolidation in a two-way competing
process. This aspect of isotropic destructuration will be adopted in the present work. It will
then be supplemented by what it appears to be a novel constitutive ingredient, called frictional
destructuration, which addresses the reduction of the critical state stress ratio as a reflection of
reduction of friction angle due to destructuration. The constitutive formulation of the isotropic
and frictional destructuration is presented in Section 2 in a generic way that can be associated
with a general class of constitutive models in both triaxial and multiaxial space. Subsequently,
the proposed destructuration mechanism is introduced specifically in a generalized form of the
SANICLAY model which, compared with the earlier version [6], includes the dependence of the
yield surface on the third stress invariant and is presented in Section 3. An advantage of such a
generalization is that it allows the user to obtain several simplified versions of the general model
by appropriately choosing various parameters of the formulation. This is shown in Section 3.4,
where two special cases of the model formulation can be thus obtained, including one with a
single surface and associated flow rule. A step-by-step calibration process for the model constants
is presented in Section 4. The performance of the proposed formulation is validated against the
results of a number of laboratory experiments on remoulded and intact samples of Bothkennar
clay.

Although destructuration can lead to softening, and softening can lead to localization of deforma-
tions (associated with loss of ellipticity of the governing equations for the incremental deformations
in a boundary value problem), localization is not specifically addressed in the present study. No
localization of deformations has been reported in the tests for which the calibrations are performed.

2. GENERIC FORMULATION OF DESTRUCTURATION MECHANISM

In this section, an appropriate mechanism for capturing the destructuration is proposed. This
mechanism is defined in a generic sense for a general class of soil constitutive models and is
presented first in triaxial stress/strain space and then is generalized to the multiaxial space. In the
sequel r and e are generic symbols for the stress and strain tensors and their components thereof,
while a superposed dot denotes the material time derivative, or rate. Note that in this paper all
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stress components are considered effective and as usual in geomechanics, both stress and strain
quantities are assumed positive in compression.

2.1. Formulation in the triaxial space

It is very common in geomechanics to formulate the constitutive relations first in the triaxial space
in terms of the following stress and strain quantities:

p = 1
3 (�1+2�3), q=(�1−�3) (1)

εv = (ε1+2ε3), εq = 2
3 (ε1−ε3) (2)

where recall that �2=�3 and ε2=ε3. Here, (p,q) and (εv,εq) are energy-conjugate, in the sense
that r :e represents the increment on work per unit volume done on the material.

2.1.1. Unstructured reference model. With the total strain rate additive decomposition ė= ėe+ ėp
into elastic (superscript e) and plastic (superscript p) parts, the isotropic hypoelastic relations

ε̇ev = ṗ

K
, ε̇eq = q̇

3G
(3)

are adopted, with K and G the hypoelastic bulk and shear moduli, respectively.
The volumetric and deviatoric plastic strain rates are given by the flow rule

ε̇ p
v =〈L〉 �g

�p
, ε̇

p
q =〈L〉�g

�q
(4)

where g is the plastic potential, and L is the plastic loading index (or plastic multiplier), enclosed in
the Maccauley brackets 〈〉 to be defined in the following. The plastic potential surface is analytically
given by a relation

g(p,q,�, p�,M)=0 (5)

where M is the critical stress ratio, � is a stress-ratio type internal variable (it will be a tensor-valued
quantity in the multiaxial stress space), which accounts for evolving anisotropy by controlling the
rotational hardening of the plastic potential and is assumed to be bounded by M , and p� is chosen
such that g=0 passes through the current stress point. The yield surface equation, which in general
is different from the plastic potential for non-associative flow rule, is given by an equation of the
form

f (p,q,�, p0,N )=0 (6)

where p0 and the stress-ratio type of internal variable �, which will be a tensor-valued quantity in
the multiaxial stress space, represent the isotropic and rotational hardening variables, respectively,
while N is a constant similar in nature to M , and serves as the bound for �. The rate equations
for the internal variables are as follows:

ṗ0 = 〈L〉 p̄0 (7a)

�̇ = 〈L〉�̄ (7b)

�̇ = 〈L〉�̄ (7c)
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where p̄0, �̄, and �̄ are to be defined according to the model used. Finally, the determination of the
loading index L is obtained by considering the consistency condition ḟ =0 in which Equations (7a)
and (7c) are substituted to yield

L = 1

Kp

(
� f

�p
ṗ+ � f

�q
q̇

)
(8a)

Kp = −
(

� f

�p0
p̄0+ � f

��
�̄

)
(8b)

with Kp the plastic modulus. Notice that the evolution of � does not effect the value of Kp directly.

2.1.2. General approach to introduce structuration. The effect of structure will be expressed by
changing the value of p0 to p∗

0 by means of an isotropic structuration factor Si , and the values of
M and N to M∗ and N∗, respectively, by means of a frictional structuration factor S f according
to the relations

p∗
0 = Si p0 (9a)

N∗ = S f N (9b)

M∗ = S f M (9c)

where Si�1 and S f �1. Often the Si and S f are referred to as structuration factors. Equation (9a)
has been proposed in previous works while Equations (9b) and (9c) appear to be novel. A value
of unity for either Si or S f implies the unstructured soil state. The structuration factors will be
considered as internal variables evolving according to the equations

Ṡi = 〈L〉S̄i (10a)

Ṡ f = 〈L〉S̄ f (10b)

with S̄i and S̄ f to be defined in the sequel. Whatever their definition may be, since destructuration
diminishes the values of Si and S f toward unity, it follows that the S̄i and S̄ f must be negative.
By taking the rate of Equations (9a)–(9c) and using Equation (10a) one has

ṗ∗
0 = Ṡi p0+Si ṗ0=〈L〉(S̄i p0+Si p̄0)=〈L〉 p̄∗

0 (11a)

Ṅ∗ = Ṡ f N =〈L〉S̄ f N =〈L〉N̄∗ (11b)

Ṁ∗ = Ṡ f M=〈L〉S̄ f M=〈L〉M̄∗ (11c)

where

p̄∗
0 = S̄i p0+Si p̄0 (12a)

N̄∗ = S̄ f N (12b)

M̄∗ = S̄ f M (12c)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2010; 34:1009–1040
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DESTRUCTURATION THEORY 1015

Equations (11a) and (12a) clearly show the effect of isotropic destructuration on isotropic
hardening expressed by the evolution of p∗

0 . Recalling that the S̄i�0 while Si , p0, and p̄0 are
positive (for the p̄0 this is true under consolidation), Equation (11a) portrays the competition
between the process of destructuration that tends to decrease p∗

0 via the first term S̄i p0, and
consolidation that tends to increase p∗

0 via the second term Si p̄0. The frictional destructuration has
no bearing on such an isotropic hardening but it does have an effect on the anisotropic evolution
expressed by Equations (7b) and (7c). Recalling that the M and N are bounds on the evolving
values of � and � for the unstructured clay, it is then expected that for the structured one it is the
M∗ and N∗ which will serve as corresponding bounds. As frictional destructuration diminishes
the values of M∗ and N∗ while the evolution Equations (7b) and (7c) are not affected by it,
it is conceivable that such an unrelated evolution of these quantities may lead to having � and
� reaching values greater than M∗ and N∗, respectively. To prevent that from happening, one
can introduce additional terms in the evolution Equations (7b) and (7c) for � and � such that
proportionality of change due to destructuration for M∗, N∗, �, and � is postulated, which can be
expressed analytically by

Ṁ∗

M∗ = Ṅ∗

N∗ = �̇ f

�
= �̇ f

�
(13)

where �̇ f and �̇ f are the aforementioned additional terms for �̇ and �̇. The foregoing Equations (13)
in conjunction with Equations (11b) and (11c) yields:

�̇ f = �
Ṁ∗

M∗ =�
Ṡ f M

S f M
= Ṡ f

S f
�=〈L〉 S̄ f

S f
�=〈L〉�̄ f ⇒ �̄ f = S̄ f

S f
� (14a)

�̇ f = �
Ṅ∗

N∗ =�
Ṡ f N

S f N
= Ṡ f

S f
�=〈L〉 S̄ f

S f
�=〈L〉�̄ f ⇒ �̄ f = S̄ f

S f
� (14b)

Hence, a combination of Equations (7b) and (7c) with the foregoing two equations for the
additional terms of �̇ and �̇ yields:

�̇ = 〈L〉�̄+ �̇ f =〈L〉(�̄+ �̄ f )=〈L〉�̄∗ ⇒ �̄∗ = �̄+ S̄ f

S f
� (15a)

�̇ = 〈L〉�̄+ �̇ f =〈L〉(�̄+ �̄ f )=〈L〉�̄∗ ⇒ �̄
∗ = �̄+ S̄ f

S f
� (15b)

With the N∗ evolving according to Equation (11b), contrary to the fixed value of N for the
unstructured soil, and � evolving according to Equation (15b), the consistency condition ḟ =0
yields for the plastic modulus Kp instead of Equation (8b) the expression

Kp =−
(

� f

�p∗
0

p̄∗
0 + � f

�N∗ N̄
∗+ � f

��
�̄

∗
)

(16)

where p̄∗
0 , N̄

∗, and �̄
∗
are given above in Equations (12a), (12b) and (15b).

The incorporation of destructuration in a given model of the general framework provided by
Equations (1)–(8b) results into the substitution of M∗, N∗, and p∗

0 for M , N , and p0, respectively,
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in various quantities entering the constitutive equations associated with the above formulation, for
example, the p̄0, �̄, �̄, � f/dp, �g/dp, f =0, g=0, etc, with one exception: in the corresponding
equation for p̄0 (e.g. Equation (45)), which enters Equation (12a) and will depend on the specific
hardening law used, while the M∗, N∗ must substitute for M , N as said, the p∗

0 must not substitute
for the p0 (which equals p∗

0/Si ). This is because the rate of p0, which is in fact the basis for the
definition of the quantity p̄0 according to Equation (7a), must be related to the plastic strain rates
associated with the current structured state that is defined in terms of M∗, N∗ in lieu of M , N .
On the other hand, the rate of p0 is related to p0 itself and not to p∗

0 , because the evolution of p∗
0

has been already taken into account by the two terms of Equation (11a). Also one must not forget
that the bounds in the hardening relations for � and � are now expressed in terms of N∗ and M∗,
consistent with the above substitutions.

2.1.3. Determination of S̄i and S̄ f . A link between the plastic strain rates and a measure of
destructuration rate must now be established, since the former cause the latter. To this extent,
the following previous suggestions in the literature [32, 33, 38–40] , an auxiliary internal variable
called the destructuration plastic strain rate, ε̇

p
d , is defined by

ε̇
p
d =

√
(1−A)ε̇

p2
v +Aε̇

p2
q =〈L〉ε̄ p

d (17a)

ε̄
p
d =

√
(1−A)

(
�g
�p

)2

+A

(
�g
�q

)2

(17b)

where A is a new material constant distributing the effect of volumetric and deviatoric plastic
strain rates to the value of ε̇

p
d . Referring to Equations (10a), (10b) in conjunction with

Equations (17a), (17b) one can propose a specific form of evolution equation for the Si and S f
which reads

Ṡi = −ki

(
1+e

�−�

)
(Si −1)ε̇ p

d =−〈L〉ki
(
1+e

�−�

)
(Si −1)ε̄ p

d =〈L〉S̄i

⇒ S̄i =−ki

(
1+e

�−�

)
(Si −1)ε̄ p

d (18a)

Ṡ f = −k f

(
1+e

�−�

)
(S f −1)ε̇ p

d =−〈L〉k f

(
1+e

�−�

)
(S f −1)ε̄ p

d =〈L〉S̄ f

⇒ S̄ f =−k f

(
1+e

�−�

)
(S f −1)ε̄ p

d (18b)

where e is the void ratio and the term (1+e)/(�−�) is introduced only for convenience because it
appears later in the evolution equation of p0, where also the constants � and � are defined, while
notice the fact that S̄i and S̄ f are negative as they should. The specific form of the rate equations
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allows their integration yielding

Si = 1+(Si0−1)exp

(
−ki (1+e)ε p

d

�−�

)
(19a)

S f = 1+(S f 0−1)exp

(
−k f (1+e)ε p

d

�−�

)
(19b)

Note that in the above integration the void ratio e is considered constant, as it happens under
undrained loading. Of course it is conceivable that other forms of the rate equation for the Si
and S f , not necessarily integrable, can also be used. With S̄i , S̄ f , and ε̄

p
d , known from above,

the destructuration formulation is complete. New model constants addressing the destructuration
constitutive ingredient are the ki , k f , and A (= 1

2 default), and new initial values are Si0 and S f 0.

2.2. Formulation in the multiaxial space

In multiaxial stress and strain space all second-order tensors will be denoted by bold face. The
stress tensor r can be analyzed in a hydrostatic pI and a deviatoric component s, defined by

p=(trr)/3, s=r− pI (20)

where tr means the trace, and I is the identity tensor. The strain tensor e is similarly decomposed
in a volumetric εv and a deviatoric component e defined as

εv = tre, e=e−εv(I/3) (21)

A systematic multiaxial generalization of the triaxial constitutive relations is based on the
following observation. In the triaxial setting any deviatoric tensor x develops only normal compo-
nents xi (i=1,2,3) with trx=0, which means x2= x3=(−1

2 )x1. It is straight forward to show
that the following relation holds true:

3
2x :x=(x1−x3)

2=( 32 x1)
2= x2 (22)

where the symbol : implies the trace of the product of two adjacent tensors in which case x :x= trx2,
and where the triaxial counterpart x of x is introduced with the obvious association ( 32 )x1= x . For
instance, substituting the deviatoric stress tensor s into Equation (22), one has ( 32 )s :s=(s1−s3)2,
and knowing that (s1−s3)=(�1−�3)=q , the following relation between the deviatoric stress
tensor s and its triaxial counterpart q is established:

3
2 s :s=q2 (23)

Similarly, substituting the deviatoric strain tensor e into Equation (22), one obtains (3/2)e :
e=(e1−e3)2, and knowing that (e1−e3)=(ε1−ε3)=( 32 )εq , the following relation between the
deviatoric strain tensor e and its triaxial counterpart εq is established:

2
3e :e=ε2q (24)

Notice the difference between the coefficients in Equations (23) and (24), which comes directly
from the difference of the definitions for q and εq .
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2.2.1. Unstructured reference model. As usual, the strain tensor and its rate are decomposed into
elastic and plastic parts, and so do the εv and e and their rates. The multiaxial generalization of
the hypoelastic relations (3) is straightforward based on Equations (23) and (24) as

ėe= ε̇ev

3
I+ ėe= ṗ

3K
I+ ṡ

2G
(25)

In the multiaxial space, the plastic strain rate ėp is given by the following flow rule:

ėp =〈L〉�g
�r

(26)

where g is the plastic potential, and L is the plastic loading index. The plastic potential and yield
surface Equations (5) and (6) generalize as

g(r,a, p�,M) = 0 (27)

f (r,b, p0,N ) = 0 (28)

where a and b are deviatoric back stress-ratio tensors and serve as the multiaxial counterparts of
the triaxial entities � and �, such that under triaxial conditions

3
2a :a=�2, 3

2b :b=�2 (29)

where (3/2)�1=� and (3/2)�1=� according to Equation (22). The rate equations for the internal
variables are given by

ṗ0 = 〈L〉 p̄0 (30a)

ȧ= 〈L〉ā (30b)

ḃ= 〈L〉b̄ (30c)

with proper generalization of the tensors ā and b̄ from their triaxial counterparts �̄ and �̄. Finally,
the generalized determination of the loading index L is obtained by the consistency condition
ḟ =0 in conjunction with Equations (30a) and (30b) as

L = 1

Kp

(
� f

�r
: ṙ
)

= 1

Kp

(
� f

�s
: ṡ+ � f

�p
: ṗ
)

(31a)

Kp = −
(

� f

�p0
p̄0+ � f

�b
: b̄
)

(31b)

2.2.2. General approach to introduce structuration. As for the triaxial case, scalar isotropic and
frictional destructuration factors Si and S f are introduced by Equations (9) and evolve according to
Equations (10). A clarification is needed in generalizing Equations (11), because in the multiaxial
case M can vary as a function of the stress state (via its dependence on Lode’s angle to be
introduced in Section 3.2.2). Therefore, in generalizing Equations 11 and 13, Ṁ∗ and Ṅ∗ are taken
to represent the rate of change in M∗ and N∗, respectively, due to destructuration only. Further a
and a f are now tensors, so the ratio a f /a in Equation (13) becomes the scalar by which alpha is

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2010; 34:1009–1040
DOI: 10.1002/nag



DESTRUCTURATION THEORY 1019

multiplied to obtain a f . The same applies to the tensors b, b f . Proceeding in the same manner as
for Equations (14) one then has

�̄ f = S̄ f

S f
�⇒

√
3

2
ā f : ā f = S̄ f

S f

√
3

2
a :a⇒ ā f = S̄ f

S f
a (32a)

�̄ f = S̄ f

S f
�⇒

√
3

2
b̄ f : b̄ f = S̄ f

S f

√
3

2
b :b⇒ b̄ f = S̄ f

S f
b (32b)

where
√

( 32 )ā f : ā f = �̄ f and
√

( 32 )b̄ f : b̄ f = �̄ f are the scalar magnitudes of the tensors ā f and b̄ f ,
respectively, in the same manner as q is the scalar magnitude of the deviatoric stress tensor s in
Equation (23). Generalization of Equations (15a) and (15b) follows as:

ȧ= 〈L〉ā+ ȧ f =〈L〉(ā+ ā f )=〈L〉ā∗ ⇒ ā∗ = ā+ S̄ f

S f
a (33a)

ḃ= 〈L〉b̄+ ḃ f =〈L〉(b̄+ b̄ f )=〈L〉b̄∗ ⇒ b̄∗ = b̄+ S̄ f

S f
b (33b)

Finally, the generalized form of Equation (16) for the plastic modulus becomes

Kp =−
(

� f

�p∗
0

p̄∗
0 + � f

�N∗ N̄
∗+ � f

�b
: b̄∗
)

(34)

where p̄∗
0 , N̄

∗, and b̄∗ are given by Equations (12a), (12b), and (15b), respectively.

2.2.3. Determination of S̄i and S̄ f . For the application of the proposed destructuration mechanism
in the multiaxial stress/strain space, an equivalent generalized expression for the destructuration
plastic strain rate is needed. The deviatoric strain tensor e and its triaxial counterpart εq are related
by (2/3)e :e=ε2q according to Equation (24), therefore, the multiaxial expression of the ε̇

p
d is as

follows:

ε̇
p
d =〈L〉ε̄ p

d =
√

(1−A)ε̇
p2
v +A( 23 ė

p : ėp) (35)

where

ε̇ p
v = trėp =〈L〉tr

(
�g
�r

)
(36a)

ėp = ėp− 1

3
ε̇ p
v I=〈L〉

[
�g
�r

− 1

3
tr

(
�g
�r

)
I
]

(36b)

and the form of ε̄
p
d in multiaxial setting can easily be derived based on Equations (35), (36a)

and (36b). With this generalized expression for ε̄
p
d , the terms S̄i and S̄ f are given again from

Equations (18a) and (18b) and the formulation in the multiaxial space is complete.
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3. THE SANICLAY MODEL WITH DESTRUCTURATION

The presentation of the combined isotropic and frictional destructuration modeling is generic,
in the sense that it can be incorporated in various elastoplastic soil constitutive models that fall
within the general framework of the formulation by specifying, for example, forms of the yield
and plastic potential surfaces (in lieu of the latter one needs only to specify the flow rule by other
means) and rate evolution equations for the internal variables.

In order to illustrate the application of the presented constitutive ingredient for simulation of
destructuration, the clay model by Dafalias et al. [15] is selected as a candidate. In addition to
accounting for the destructuration, the model has a number of additional enhancements from its
previous formulation in [15], namely:

1. The current void ratio e is used instead of the initial void ratio ein wherever the latter appears
in the formulation.

2. The N , and consequently the yield surface expression, is made function of the Lode angle,
thus, N can be different in triaxial compression and extension.

3. The redefinition of the bounds for the evolving back stress ratios � and � in order to avoid
a possible mathematical pitfall due to the Lode angle dependence.

3.1. The structured clay model in the triaxial space

The new formulation of the model is first presented in triaxial stress–strain space. The stress ratio
� is defined by �=q/p.

3.1.1. Elastic relations. The hypoelastic relations given by Equation (3) are adopted where the
elastic bulk and shear moduli K and G, respectively, are obtained from

K = p(1+e)

�
, G= 3K (1−2�)

2(1+�)
(37)

in which p and e are the current confining pressure and void ratio, respectively, � the slope of the
rebound line in the e− ln p space, and � the constant Poisson’s ratio.

3.1.2. Flow rule. The corresponding equations for the volumetric and deviatoric plastic strain rates
are given by the flow rule of Equation (4) where the plastic potential g=0 of Equation (5) for
the structured clay can be found by substituting M∗ for M in the plastic potential of Dafalias [6]
which yields

g=(q− p�)2−(M∗2−�2)p(p�− p)=0 (38)

with

M∗ = S f M;
{
M=Mc for �>�

M=Me for �<�
(39)

and where � is the stress anisotropy variable, introducing the coupling of deviatoric and volumetric
plastic strain rates in the plastic work expression postulated in Dafalias [6], Mc and Me are
the values of the critical state stress ratio M in compression and extension, respectively, and
m=Me/Mc for future reference. The p� is the value of p at �=�, and can be obtained by solving
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for it from g=0 if desired. Clearly, one must have |�|<M for real-valued p and q in Equation (38).
The plastic potential gradient components used in (4) are given by

�g
�p

= p(M∗2−�2),
�g
�q

=2p(�−�) (40)

3.1.3. Yield surface. By substituting p∗
0 and N∗ for p0 and N in the yield surface/plastic potential

expression of Dafalias [6] in order to account for destructuration, and � for � in order to distinguish
the rotational hardenings of the yield and plastic potential surfaces, the yield surface f =0 of
Equation (6) for the structured clay is given by

f =(q− p�)2−(N∗2−�2)p(p∗
0 − p)=0 (41)

with

p∗
0 = Si p0 (42)

N∗ = S f N ,

{
N =Nc for �>�

N =Ne for �<�
(43)

The N , similar in nature to M , is defined by its values Nc and Ne in compression and extension,
and n=Ne/Nc for future reference. Clearly, one must have |�|<M for real-valued p and q in
Equation (41). The yield surface gradient components are given by

� f

�p
= p(N∗2−�2),

� f

�q
=2p(�−�) (44)

3.1.4. Hardening rules. The evolution laws for the structuration factors Si and S f are given by
the generic Equations (18a), (18b) in the section for the general development of desructuration. It
remains to define the specific evolution laws for p0, �, and �, which in conjunction with those of
Si and S f will define the evolution for the p∗

0 , M
∗, and N∗. For p0 the classical evolution law in

conjunction with Equation (40) for the volumetric plastic strain rate of the structured clay yields:

ṗ0=〈L〉
(
1+e

�−�

)
p0

�g
�p

=〈L〉
(
1+e

�−�

)
p0 p(M

∗2−�2)=〈L〉 p̄0 (45)

where the definition of p̄0 is self-evident. Notice that according to the observations and expla-
nations given after Equation (16), the p0 instead of p∗

0 and the M∗ instead of M appears in the
above expression for p̄0. With this value of p̄0, use of Equations (11a)–(11c) and (12a)–(12c) in
conjunction with Equations (18a) and (18b), which define the S̄i and S̄ f , provides the evolution
laws for p∗

0 , M
∗, and N∗.

The evolution laws for � and � are given by Equations (14a) and (14b) and each one includes
two components. The first component, �̄ or �̄, is as proposed in Dafalias et al. [15] while the
second component, �̄ f or �̄ f , which is adopted for inclusion of the frictional destructuration, is
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defined in Equations (15a) and (15b). Thus, referring also to Dafalias et al. [15] one has

�̇ = 〈L〉(�̄+ �̄ f )=〈L〉�̄∗ =〈L〉
[(

1+e

�−�

)
C

(
p

p∗
0

)2 ∣∣∣∣ �g�p

∣∣∣∣ |�−x��|(�b−�)+ S̄ f

S f
�

]
(46)

�̇ = 〈L〉(�̄+ �̄ f )=〈L〉�̄∗ =〈L〉
[(

1+e

�−�

)
C

(
p

p∗
0

)2 ∣∣∣∣ �g�p

∣∣∣∣ |�−x��|(�b−�)+ S̄ f

S f
�

]
(47)

where the definition of �̄∗ and �̄
∗
is evident, C and x�, x� (both �1) are model constants, and

the term involving e, �, and � is introduced only for the convenience of similarity with the
corresponding term in Equation (45). The term x� will have the default value of 1, but it is left
as x� in Equation (47) in order to facilitate in the sequel the simplification of the model to one
with a single surface. The value x� =1 yields an expression for �̄ as in [15]. The various terms
associated with �̄ or �̄ and their explanation can be found in [15]. A difference with the foregoing
reference concerns the values of the bounds �b and �b in the above equations, which are defined
here as

�b=M∗
e = S f Me for �/x�>�

�b=−M∗
e =−S f Me for �/x�<�

(48)

and

�b=N∗
e = S f Ne for �/x�>�

�b=−N∗
e =−S f Ne for �/x�<�

(49)

Equations (48) and (49) are modified compared with the similar equations in Dafalias et al. [15]
(where the rational behind the definition of the bounds is developed in detail) in two respects. The
first is the obvious use of the structured values M∗

e and N∗
e instead of Me and Ne, consistent with

the observations following Equation (16). The second is that the bounds are expressed in terms of
the extension values Me and Ne for both compression and extension loading, while in [15] each
bound was associated with the corresponding values of M and N in compression or extension.
This is done here in order to avoid the following situation. Assume that, for example, we load at
very high � values in which case the � would approach the bound Mc, which exceeds the Me.
This might create problems if one decides then to change from compression to extension because
|�|>Me! This is not likely to happen because in very high values of � the yield surface begins to
shrink very fast due to dilation and we reach the critical state before we have the evolution of �
toward its bound Mc. But in order to avoid even a minute possibility for such a situation to arise,
the bounds are set using the smaller Me for either compression or extension. The same applies for
the bounds of �. Such a modification has insignificant effect on the simulative capability of the
model, while it guarantees avoidance of mathematical problems.

3.1.5. Loading index and plastic modulus. For the completion of the model, the determination
of the loading index L is required. The L is given by Equation (8a) of the generic development
with the components of the gradient of f =0 given above by Equations (44). As the destructura-
tion is included, the corresponding plastic modulus is now given by Equation (16) rather than
Equation (8b), where the p̄∗

0 , N̄∗, and �̄
∗
are defined by Equations (12a), (12b), and (15b),
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respectively, in conjunction with Equations (45), (18a), and (18b) which define the p̄0, S̄i and S̄ f ,
and the derivatives:

� f

�p∗
0

=−p(N∗2−�2),
� f

�N∗ =−2p(p∗
0 − p)N∗, � f

��
=−2p(q− p∗

0�) (50)

3.2. The structured clay model in the multiaxial space

Following the general rules presented in Equations (23) and (24), the generalization of the triaxial
formulation to the multiaxial stress space is presented in this section. In the following equations
the stress ratio tensor r is defined by r=s/p, and serves as the the multiaxial counterpart of the
triaxial entity �=q/p, such that according to Equation (23) one has

3
2r :r=�2 (51)

3.2.1. Elastic relations. The hypoelastic Equations (25) of the generic formulation are adopted
with K and G given by Equation (37) of the triaxial formulation.

3.2.2. Flow rule. The corresponding equation for the plastic strain rate in multiaxial space is given
by the flow rule of Equation (26). Based on Equations (23) and (29)1, the analytical expression
38 of the plastic potential generalizes to

g= 3
2 (s− pa) :(s− pa)−(M∗2− 3

2a :a)p(p�− p)=0 (52)

with M∗ = S f M according to Equation (9c) of the generic formulation. Recall that the critical
state stress-ratio M in Equation (38) acquires different values Mc and Me=mMc according to
the sign of �−� as explained in Equation (39). The M in the multiaxial stress space will be
interpolated between its values Mc and mMc by means of a Lode angle 	�, as already presented
in [15] according to the proposition by Argyris et al. [41], which reads as

M = �(	�,m)Mc= 2m

(1+m)−(1−m)cos3	�
Mc (53)

cos3	� = √
6trn3�, n� = r/x�−a

[(r/x�−a):(r/x�−a)]1/2 (54)

The gradient of g is calculated based on Equations (52)–(54), similar to what was presented in
Equations (18) of [15], as

�g
�r

=3(s− pa)+ 1

3
p

(
M∗2− 3

2
r :r
)
I+ �g

�	�

�	�

�r
(55)

with

�g
�	�

= 6M∗2 p(p�− p)

(
1−m

2m

)
�(	�,m)sin3	� (56)

�	�

�r
= −3[n2�−(trn3�)n�− 1

3 I(1+ tr(n2�a)− trn3�tr(n�a))]
p[(3/2)(r−a):(r−a)]1/2(1−6tr2n3�)1/2

(57)

The p� is the value of p at s= pa, and can easily be obtained by solving for it from g=0.
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3.2.3. Yield surface. Similarly, the generalization of Equation (41) for the yield surface is based
on Equations (23) and (29)1 and yields

f = 3
2 (s− pb):(s− pb)−(N∗2− 3

2b :b)p(p∗
0 − p)=0 (58)

with p∗
0 = Si p0 and N∗ = S f N according to Equations (9a) and (9b) of the generic formulation.

Similar to M of Equation (52) for the plastic potential, the N acquires different values of Nc and
Ne=nNc according to the sign of �−� as explained in Equation (43). Interpolation of the N
in the multiaxial stress space between its values Nc and nNc is done by means of another Lode
angle 	� as

N = �(	�,n)Nc= 2n

(1+n)−(1−n)cos3	�
Nc (59)

cos3	� = √
6trn3�, n� = (r/x�)−b

[((r/x�)−b):((r/x�)−b)]1/2 (60)

Observe that by setting n=1, the value of interpolation function �(	�,n) will be equal to 1
regardless of the value of the Lode angle 	�, which changes this part of the formulation back to
its original form in [15]. The gradient of f =0 is given by

� f

�r
=3(s− pb)+ 1

3
p

(
N∗2− 3

2
r :r
)
I+ � f

�	�

�	�

�r
(61)

with

� f

�	�
= 6N∗2 p(p∗

0 − p)

(
1−n

2n

)
�(	,n)sin3	� (62)

�	�

�r
=

−3[n2�−(trn3�)n�− 1
3 I(1+ tr(n2�b)− trn3�tr(n�b))]

p[(3/2)(r−b):(r−b)]1/2(1−6tr2n3�)
1/2

(63)

3.2.4. Hardening rules. The rate equations of evolution of the internal variables Si , S f , p0, a, and b
must be determined which, in turn, will define the evolution for the p∗

0 , M
∗, and N∗. The evolution

laws for the structuration factors Si and S f are given by the generic Equations (18a) and (18b)
of the section for the general development of desructuration, as they were for the triaxial space.
The generalized form of the expressions for ε̇

p
d and ε̄

p
d has been already presented in Equations

(35)–(35), of the generic multiaxial formulation. For the p0, the same equation as Equation (45)
in the triaxial is assumed, whereby rephrasing the expression for ε̇

p
v based on Equation (36a) one

has

ṗ0=〈L〉
(
1+e

�−�

)
p0tr

(
�g
�r

)
=〈L〉 p̄0 (64)

where the definition of p̄0 is evident. With this value of p̄0, use of Equations (11a)–(12c) in
conjunction with Equations (18a) and (18b) which define the S̄i and S̄ f provide the evolution laws
for p∗

0 , M
∗, and N∗.
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The evolution laws for a and b are given by Equations (15a) and (15b) of the generic multiaxial
formulation and each one includes two components. The first component, �̄ or �̄, is as proposed
in [15] while the second component, �̄ f or �̄ f , which is adopted for inclusion of the frictional
destructuration, is defined in Equations (15a) and (15b). Thus, with reference to [15] one can write

ȧ= 〈L〉(ā+ ā f )=〈L〉ā∗

= 〈L〉
[(

1+e

�−�

)
C

(
p

p∗
0

)2 ∣∣∣∣tr
(

�g
�r

)∣∣∣∣
[
3

2
(r−x�a) :(r−x�a)

]1/2
(ab−a)+ S̄ f

S f
a

]

ḃ= 〈L〉(b̄+ b̄ f )=〈L〉b̄∗

= 〈L〉
[(

1+e

�−�

)
C

(
p

p∗
0

)2 ∣∣∣∣tr
(

�g
�r

)∣∣∣∣
[
3

2
(r−x�b) :(r−x�b)

]1/2
(bb−b)+ S̄ f

S f
b

]

The generalization of Equations (48) and (49) for the bounds ab and bb reads

ab=
√

2
3 S f Men�, bb=

√
2
3 S f Nen� (65)

where n� is defined by Equation (54)2 with r/x� substituting for r and n� defined by Equation (60)2.
The various terms appearing as part of the first component ā or b̄ are elaborated in [15]. The
reason for the difference of the bounds defined above from those of [15] is explained along the
same lines for the triaxial formulation.

3.2.5. Loading index and plastic modulus. From the consistency condition ḟ =0 applied to
Equation (58), one obtains Equations (8a) and (16) of the generic formulation for the loading index
L and plastic modulus Kp, respectively, where the gradient � f/�r is given by Equation (61),
the p̄∗

0 , N̄
∗, and �̄

∗
are given by Equations (12a)–(12c) with p̄0 defined in Equation (45) and the

derivatives entering Equation (16) for Kp given by

� f

�p∗
0

= −p

(
N∗2− 3

2
b:b

)
(66)

� f

�N∗ = −2p(p∗
0 − p)N∗ (67)

� f

�b
= −3p(s− pb)+3p(p∗

0− p)b (68)

3.3. Illustration of the destructuration effect

Figure 2 illustrates the effects of isotropic and frictional destructuration mechanisms independently
and in combination. In order to have a visual impression of the destructuration effect, undrained
triaxial loading in compression and extension is simulated from a K0 initial stress state assuming
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Figure 2. Illustration of the effects of isotropic and frictional destructuration
mechanisms independently and in combination.

Table I. Constant of the SANICLAY model with destructuration for Bothkennar clay.

Parameter Description Value

Mc(Nc) Slope of the CSL on the compression side of p−q plane 1.4 (1.2)
(shape of the yield surface)

m(n) Ratio of the slope of the CSL on the extension and on the 0.75 (1)
compression side of p−q plane (shape of the yield surface)

� Poisson’s ratio 0.2
� Total volume change due to a change in mean stress 0.255
� Elastic volume change due to a change in mean stress 0.03
x�(x�) Saturation limit of anisotropy under paths with �= const. 3.14 (1)
C Rate of evolution of anisotropy 12
ki Parameter describing the rate of isotropic destructuration 0.9
k f Parameter describing the rate of frictional destructuration 1.3
A Parameter describing coupling between volumetric 0.2

and frictional destructuration

that the structure is given by specific values of the structuration parameters Si and S f existing at
the initiation of loading, which for our purpose constitute the initial values Si0 and S f 0. The initial
values of p∗

0 and M∗ are kept the same in the simulations. The existence of Si and S f at values
greater than one reflects the development of the structure over time for a soil sample in-situ under
K0 conditions. The values of various constants used are typical of a structured clay and are taken
from Table I reflecting the values of a calibration procedure to be explained in the sequel for an
actual clay. The plots of the undrained stress paths as well as the triaxial deviatoric stress–strain
curves are shown in Figure 2. The runs are made with different combinations of values of Si0
and S f 0. Notice that according to Equations (18a) and (18b) the value of 1 for one of the Si0 or
S f 0 implies that the corresponding destructuration mechanism is inactive since there is no structure
associated with it.
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Either one of the isotropic or frictional destructuration induces softening in the response and
the combination of both the destructuration mechanisms induces the more intense softening, as
expected. Given that the initial values of p∗

0 and M∗ are kept the same in different simulations,
observe that the presence of only isotropic destructuration (S f 0=1) brings the final stress-ratio
q/p to M=M∗, whereas the presence of the frictional destructuration (S f 0>1) brings the final
stress ratio q/p to M<M∗. The above help in understanding the relative role each destructuration
mechanism plays vis-a-vis the simulated clay response.

3.4. Special cases

The current presentation of the SANICLAY model gives the freedom to the user for choosing the
level of complexity of the model formulation and to some extent the number of model parameters.
In general, this model has a non-associative flow rule, that is, the plastic potential surface is
different from the yield surface. The two surfaces have different back stress-ratios � and �, and
bound values M and N . The most general form of the model is associated with all of the introduced
features, that is, independent values for M , N , �, and �. The followings, however, are two special
cases that can be attained from this versatile model formulation which look promising simpler
alternatives.

3.4.1. Two surface model with N =M. The main reason for introducing an M different from
N in the original SANICLAY model [15] was to capture softening without destructuration in
undrained loading after a K0 consolidation process for clays that did not exhibit destructuration
characteristics; the resulting non-associative flow rule had also other advantages as to the more
realistic simulation of the undrained stress path. Destructuration features allow us to capture such
softening even with M=N . Of course the possibility of setting different M and N values gives
freedom during calibration process for obtaining better match to the results, but in a boundary
value problem one may prefer to save calibration of two parameters (Nc and n) by having N =M ,
which still leaves the two surfaces different because of different � and �. In the current formulation
this is achieved by setting Nc=Mc and n=m. This version of the model uses a unique bound
for the rotational hardening of both the yield and plastic potential surfaces, that is, N =M . In
this case softening, if any, can still be predicted not only in undrained but also in drained cases
of loading using the embedded destructuration mechanism. Notice that for better simulation of
the initial part of the undrained loading after oedometric consolidation the choice x� =1 is made,
which leads the b toward r under constant r loading.

Simulations with the destructuration mechanism show that it is actually possible not to have
softening under drained loading for a structured sample, while having softening under undrained,
thus, negating the argument presented in [15] that ‘destructuration would have induced softening
under both drained and undrained conditions’. In other words, when one sees softening in undrained
data and no softening in drained, as in the Lower Cromer Till (LCT) clay in data of Gens [42],
he must not necessarily conclude that no destructuration exists.

3.4.2. One surface model (associative flow rule). By setting N =M (i.e. Nc=Mc and n=m) and
x� = x�>1, one obtains automatically a single surface version of the model which, apart from the
destructuration constitutive ingredient, is in fact the original version proposed by Dafalias (1986)
and is characterized by an associative flow rule and ensuing normality. Such simplification has clear
advantages in large computational schemes to solve boundary-value problems, since (a) the single
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Figure 3. Effect of the choice of x� on the undrained stress path of a K0 consolidated sample: (a) two
surface model with N =M ; and (b) one surface model (YS: Yield Surface; PP: Plastic Potential).

surface version offers the symmetry of the elastoplastic stiffens matrix due to associative flow
rule; (b) only one rotational back stress ratio needs to be updated. Nevertheless, the simplifications
produce some serious drawbacks in the model’s ability to reproduce real soil behavior, as illustrated
in Figure 3 and further explained in what follows.

First, it is important to understand that the plastic potential cannot have a rotational back stress
� that stabilizes at �k , the stress ratio under K0.§ This is because K0 loading must produce both
volumetric and deviatoric plastic strains, which is not possible if the � is identical to �k in which
case only volumetric plastic strain is produced (the normal to the plastic potential is parallel to
the p axis). In other words, one must have x�>1 in the evolution law for �, so that �=�k/x� at
stabilization of rotation.

Then, as the choice of a single surface version implies necessarily �=�, it means that also the
yield surface will stabilize at �=�=�k/x� under K0. The negative consequence of this simplifying
assumption is that upon undrained triaxial loading following K0 the undrained stress path in
compression will start with a steep slope to the left, instead of rising first vertically and then
turning to the left as shown in the experiments. Moreover, the undrained stress path in extension
after K0 will first go down vertically inside the elastic domain, before it turns left again as it was
supposed to do from the beginning. These drawbacks are shown in Figure 3. Avoidance of such
a response was the reason to use two surfaces where �=�k/x� with x�>1 and �=�k with the
choice x� =1 (see Figure 3).

On balance the choice between simplicity and accuracy of simulation belongs to the user’s
needs. The complexity associated with the Lode angle remains in the one-surface model, and the
symmetry of the tangent stiffness matrix is not an issue if explicit time-integration is used in the
solution of a boundary-value problem.

§This would happen if one sets x� =1 in Equations (46) and (47) and considers the end of frictional destructuration
when S f =1 and S̄ f =0.
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In the following the soil behavior will be simulated using all three versions, namely the general
one, the one with M=N but with different � and � and the single surface where M=N and �=�,
providing a clear comparison.

4. MODEL CALIBRATION AND SIMULATIONS

4.1. Calibration of the model

The calibration will be done based on the most general form of the model, that is, using independent
values for M , N , �, and �. The SANICLAY model with destructuration requires the calibration
of 13 constants (see Table I). Three of these are the new model constants for simulation of
destructuration (ki ,k f , A). The parameter A could be set to 0.5 as a default value. Parameters Nc
and n could be chosen same as Mc and m, respectively. If more accuracy is required one can
also calibrate these three parameters accordingly. Finally, parameter x� will be set equal to 1 for
reasons explained earlier, unless one prefers to go with a single surface version and associative
flow rule in which case x� = x��1. The model constants associated with the original SANICLAY
model can be calibrated based on the instructions given in [15]. Calibration of the destructuration
parameters requires data from well-established laboratory tests on intact samples, namely:

• One-dimensional (K0) or preferably isotropic consolidation tests to stresses beyond the
destructuration limit using an oedometric or a triaxial device (for constant ki and initial value
of the state variable Si ).

• Undrained triaxial compression or extension tests on intact samples to strains beyond the
destructuration limit (for constant k f and initial value of the state variable S f ).

The mechanical response of undisturbed and reconstituted samples of Bothkennar clay have
been studied by Smith et al. [21] and Allman and Atkinson [43], respectively. Gajo and Muir
Wood [34] have proposed two constitutive models for natural and reconstituted clays. They have
calibrated their models for the presented data by Smith et al. [21] and Allman and Atkinson [43].
In the current work, however, we focus on the structured clay and calibrate the present model for
undisturbed Bothkennar clay to capture the presented experimental results in Smith et al. [21].
The material was taken with Laval and Sherbrooke samplers from depths of 5.3−6.2m.

4.1.1. Parameters Mc, m, Nc (and Estimation of n). Figure 4(a) presents the behavior of Both-
kennar clay in undrained compression and extension tests. In this figure points A, B, C , and D
correspond to the in-situ, oedometrically consolidated, isotropically consolidated, and passively
consolidated states of the soil sample, respectively, with cases B, C , and D started off with the
same in-situ consolidation of case A. The data are presented in terms of effective stress path. Given
these tests on Bothkennar clay, the Mc and m=Me/Mc are estimated directly from the effective
stresses at the end of the tests as Mc=1.4 and m=Me/Mc�0.75. Clearly, using Mc=Me=1.4
in this case would seriously overestimate the strength in extension.

Figure 4(b) shows the corresponding yield surface for the model at point B for three different
values of N∗

c . For a non-rotating or slowly rotating yield surface, the undrained stress path for
triaxial compression almost follows the shape of the yield surface. Therefore, having the exper-
imental results of undrained stress path for the triaxial compression test at point B lead to the
estimation of N∗

c =1.2 for point B. This is already smaller than the value of Mc=1.4 and on the
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Figure 4. Calibration of constants Mc, m=Me/Mc and N∗
c .

other hand, the experimental results suggest that in this stress path there is not much of frictional
destructuration after point B, which means that the frictional structuration factor S f , if any, has
been exhausted and reached its limit value of 1 during the one-dimensional compression path,
which brought the state from point A to point B. Hence, it is a plausible assumption that at point
B the sample has S f =1 and therefore Nc=N∗

c /S f =1.2. The value of n can be assumed to be
the same as m but later fine tunning of the model parameters shows that for this clay a value of
n=1 gives better results.

4.1.2. Parameter �. Poisson’s ratio � is calibrated based on results shown in Figure 5 for (elastic)
K0 unloading after K0 consolidation on a reconstituted sample. This figure shows the stress
paths followed during one-dimensional compression to p=200kPa and swelling to p=100kPa or
50 kPa. As an approximation, the initial part of the swelling path is proposed for use in calibration
of the elastic Poison’s ratio � of the clay. Upon unloading from K0 conditions the initial part of
the stress path lies within the yield surface [15]. In such a path, the ratio of the elastic strain
rates ε̇ev/ε̇

e
q = 3

2 , which gives q̇/ ṗ=2(1−2�)/(1+�). Comparison with the slope dq/dp of the
data from Figure 5, yields a value �=0.2 for Bothkennar clay. Please note that the data belong to
reconstituted Bothkennar clay [43], which we assume has approximately the same Poison’s ratio
as the intact sample of this clay.

4.1.3. Parameters � and �. The parameters � and � can be obtained from the results of isotropic
or one-dimensional compression (C I or CK0) presented in e− log p space. We use the data of
oedometric consolidation test on reconstituted (unstructured) samples of Bothkennar clay (Intrinsic
Compression Curve, ICC) in order to calibrate these parameters. Smith et al. [21] have presented
their results in e− log�a space (Figure 6(a)) with no information about the horizontal stress, a
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Figure 6. Calibration of constants � and � via Cr and Cc from oedometer tests on reconstituted samples.

typical type of results from many experimentalists. The procedure to obtain the corresponding plot
in e− log p space (Figure 6(b)) is as follows.

Both Figures 4 and 5 show a value of �ko=0.74 that defines the corresponding value of
K0=(3−�k0)/(2�k0 +3)=0.52. Assuming a constant K0, for the loading part we have ṗ= �̇a(1+
2K0)/3. The initial part of the unloading is elastic where we have ε̇h =((1−�)�̇h−��̇a)/E=0
or �̇a = �̇h(1−�)/�, which implies that ṗ=(�̇a+2�̇h)/3=(�̇a/3)(1+�)/(1−�). Figure 6(b) is
reproduced from Figure 6(a) using the above-mentioned relations for the loading and unloading
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parts. In other words, Figures 6(a), (b) show the results of oedometric consolidation in e− log�a
and e− log p spaces, respectively.

Given that the model constants � and � are defined as slopes of the normal compression
and swelling lines in e− ln p space, and knowing that these lines are parallel to the oedometric
consolidation and swelling lines, the Cc and Cr slopes that are measured in Figure 6(b) are related
to � and � as: �=Cc/ ln10=0.255 and �=Cr/ ln10=0.03.

4.1.4. Parameter x� (and x�). For the estimation of the constant x�, the case of a drained path
with �=�k =constant is considered. In such a path eventually the two surfaces cease to rotate while
the yield surface keeps expanding due to the increase of p∗

0 . Then �=�k =�k/x� and �=�k =�k
(since x� =1) as it follows from Equations (46) and (47), respectively, when �̇= �̇=0 , � is fixed
and smaller than M and N and the frictional destructuration has been completed (S̄ f =0), hence
M∗

c =Mc. Dafalias et al. [15] have presented the following closed-form relation for x�:

�k = �

x�
= Bε�3k+�2k+[2(1−�/�)−BM2

c ]ε�k−M2
c

2ε(1−�/�)
, B= 2(1+�)

9(1−2�)

�

�
(69)

Different paths with �k =constant correspond to different ε values, where ε= ε̇v ε̇q , i.e. the ratio
of total strain rates. Of all possible such paths, the most frequently run is the K0-loading path, for
which ε=3/2 and �k =�k0. For the Bothkennar clay and for �=0.03, �=0.255, Mc=1.4 (at point
B), �=0.2, and �ko=0.74, Equation (69) yields x� �3.14. The parameter x� allows the model
to correctly capture exactly the measured value of K0. The parameter x� was set equal to 1 in
order to the model to correctly capture the initial part of undrained stress path after an oedometric
consolidation (recall Equation (69)). For a single surface version with associative flow rule, the x�
must be the same as x�.

4.1.5. Initial values of state variables p∗
0 , �, S f , and (estimation of) �. In Figure 7 the symbols

show the experimental results for the initial (in-situ) configuration of the yield surface for Sherbrook
sample. A good estimation of the initial value of some model state variables can be obtained
from this set of results. The solid line presents the estimated initial location of the yield surface
in the model. It can be observed that, thanks to the proposed mathematical skewing that induces
an apparent rotation of the elliptical yield surface supplemented by the large value of N∗

c , which
characterizes the initially structured condition (frictional sensitivity S f �1), the rotated yield surface
appears elongated as experimentally observed. This good model estimation of the initial yield
surface is obtained using p∗

0 =53kPa, �=0.7, and N∗
c =1.56. Recalling from Figure 4(b) that

N =1.2, the initial value of the frictional structuration factor can be estimated as S f 0=N∗
c /Nc=1.3.

It is the opportunity to mention here the important advantage of having N or N∗ different than
M or M∗, because one can use appropriate values of the former in order to fit the experimentally
determined yield points independently from the friction angle embodied in the values of the
latter.

The choice of the initial value of � does not drastically affect the results, however, knowing
the initial anisotropy in the plastic yield surface (�=0.7) one expects similar effect in the plastic
potential (i.e. in �). For a rotationally stabilized state of the surfaces (e.g. already saturated under
K0 loading) it is know that �=�/x� =�/x�. This relation can be used here for estimation of
the initial value of � without introducing considerable error in the overall results, which yields
�=�/x� =0.7/3.14�0.2.
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Figure 7. Calibration of initial values of internal variables p∗
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4.1.6. Initial values of state variable Si and estimation of parameters ki and k f . The best exper-
iment for calibration of the initial value of Si and the parameter ki is an isotropic compression of
an intact sample until complete loss of structure occurs. However, due to unavailability of such
an experiment we use instead data of oedometric consolidation of Bothkennar clay. The observed
behavior of Bothkennar clay in one-dimensional compression tests (8) is consistent with the general
framework proposed in the literature for structured soils [26]: within the yield surface the stress–
strain behavior is very stiff and mostly elastic with a low value of Poisson’s ratio and, when
yield occurs, compressibility increases rapidly, owing to loss of structure. Eventually a completely
destructured state is obtained, which is characterized by a compressibility equal to that of the
remoulded or reconstituted soil [34]. The initial stiff (elastic) part of response that falls within
the yield surface can give a good estimate of the initial value of Si , which approximately is the
ratio of the axial (or confining) stress at the end of initial stiff regime and the corresponding stress
on the LCC at the same void ratio. Figure 8(a) suggests that for the Bothkennar clay this ratio
yields Si0�72/12=6. The parameter ki , which controls the rate of isotropic destructuration, is
calibrated to ki =0.9 in Figure 8(b). Similarly (not shown here) the parameter k f can be estimated
given that the frictional sensitivity S f should be exhausted during a one-dimensional compression
path that brings the state from point A to point B, as previously discussed after Figure 4, and this
assumption yields k f �1.3. Of course larger values of k f also provide the same result but then
deteriorate the predictions in 8(b).

4.1.7. Parameters C. The calibration of constant C requires the execution of trial runs, having all
other constants calibrated in advance. Observe that the constant C quantifies the rate of rotation
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and distortion of the yield surface and the plastic potential surface in Equations (46) and (47).
Hence, tests appropriate for its calibration are those that induce significant surface rotation, or
in other words, tests for which the �in is far from the final stress ratio � f of the effective stress
path, and possibly of opposite sign. Practically, a CKoUE test on normally consolidated clay is
very suitable for the purpose at hand. Hence, Figure 9 presents the undrained extension tests on
in-situ and K0 consolidated as well as an undrained compression test on normally consolidated
Bothkennar clay, along with a series of trial runs for C=6, 12, and 18. Observe that the higher the
value of C , the larger the predicted undrained strength in the triaxial extension. For the Bothkennar
clay in particular, C=12 appears most appropriate.

The foregoing calibration procedure for the Bothkennar clay provided the value of the model
parameters and initial values of the state variables presented in Tables I and II. Nevertheless, the
procedure itself is generic and should be considered appropriate for calibrating this model for any
rate-independent sensitive clay with or without manifestation of destructuration during loading.

4.2. Simulations

This section presents the performance of the SANICLAY model with destructuration under various
loading paths. The comparison of model simulations with the experimental results obtained on
destructured sample as well as undisturbed (structured) samples of Bothkennar clay in one-
dimensional compression are presented in Figure 10. Please note that the oedometric Intrinsic
Compression Curve (ICC) in this figure is obtained by testing the reconstituted soil at initial slurry
state (the procedure explained by Smith et al. [21]) and can be considered as the case in which the
structuration of the sample has been already fully destroyed (i.e. Si = S f =1). Sherbrooke and Laval
are two types of undisturbed specimens and the former appeared to suffer marginally less distur-
bance. The model response is fairly consistent with observations and a complete destructuration
is correctly obtained only at very large stresses and strains.

Figure 11 compares model simulations with the experimental results of undrained triaxial
compression and extension on Bothkennar samples at states A, B, C , and D (total of six

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2010; 34:1009–1040
DOI: 10.1002/nag



DESTRUCTURATION THEORY 1035

0 30 60 90 120 150

0

30

60

90

120

p (kPa)

q 
(k

P
a) A

B

C

C=12

C=18

C=6

Figure 9. Calibration of constant C .

Table II. Initial conditions (model state variables) for undisturbed Bothkennar clay.

Variable Description Value

e Initial void ratio 1.86
p∗
0 Defining the initial size of the yield surface 53

�(�) Initial orientation of the plastic potential (yield) surface 0.2 (0.7)
Si Initial volumetric structuration factor 6.0
S f Initial frictional structuration factor 1.3

stress paths). Out of this six stress pathes Smith et al. [21] have presented only the stress strain
response of the samples that are sheared at the overconsolidated point A, for which model perfor-
mance has been compared with the experimental results (see Figure 12). In fact for these later
tests they have presented the stress–strain results from both Sherbrook and Laval samples.

In these two sets of figures, part (a) presents the simulations of the two-surface model version
with the full set of parameters and initial states as presented in Tables I and II. Parts (b) and (c)
present the model simulations for the two simplified versions of the model described in Section 3.4.1
for a two surface version with M=N and in Section 3.4.2 for a single surface version. It can
be observed that although these cases do not show the accuracy that was obtained in part (a)
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Figure 10. Comparison of model simulations (solid lines) with experimental data (symbols) for oedometric
consolidation tests on destructured (reconstituted) and structured (undisturbed) samples of Bothkennar clay.

of these figures, still the results may be of acceptable level of accuracy from a practical point
of view. Please note that these two model versions do not produce considerably different results
for Figure 10 and that is why in this figure only simulations with the general form of the model
(maximum freedom in choices of model parameters) are presented.

Finally, it is worth mentioning that in order to obtain a good match to the experimental results,
in all of the present simulations the parameter A is chosen as 0.2 instead of the default value of
0.5. This parameter directly affects the rate of softening during destructuration in the stress–strain
results of structured samples.

5. CONCLUSION AND DISCUSSION

The destructuration phenomenon for sensitive or structured clays can me modeled as a softening
constitutive mechanism of the yield surface within an elastoplastic constitutive framework. As such
it can be presented in a generic format appropriate for various forms of clay constitutive models,
which was done in both the triaxial and multiaxial stress space at the beginning of this work.
The novel element introduced in this development is the frictional destructuration addressing the
decrease of the critical state friction angle via M , in addition to the classical isotropic destructuration
addressing the reduction of the size of the yield surface as presented in numerous works preceding
the current.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2010; 34:1009–1040
DOI: 10.1002/nag



DESTRUCTURATION THEORY 1037

0 30 60 90 120 150

0

30

60

90

120

p (kPa)

q 
(k

P
a) A

B

D

C

(a)
0 30 60 90 120 150

0

30

60

90

120

p (kPa)

q 
(k

P
a)

A

B

D

C

(b)
0 30 60 90 120 150

0

30

60

90

120

p (kPa)

q 
(k

P
a)

A

B

D

C

(c)

Figure 11. Comparison of model simulations (solid lines) with experimental data (symbols) for undrained
stress paths of triaxial compression and extension tests on undisturbed Sherbrooke samples of Bothkennar
clay following consolidation at points B (oedometrically consolidated), C (isotropically consolidated), D
(passively consolidated) and A (in-situ state), using (a) two surface model with N �=M ; (b) two surface

model with N =M ; and (c) one surface model (◦,�,�,�: Sherbrooke sample).

Subsequently the developed destructuration mechanism was incorporated into a slightly modified
version of the SANICLAY model [15] and used to simulate the response of various loading paths
of structures clays. Of interest is the comparison of the full model simulations with those of two
simplified versions of it obtained by prescribing specific values to a number of parameters. Such
a comparison shows that the full model yields better simulations of data but also the simplified
versions provide an acceptable level of accuracy. In particular, the simplest version with the same
yield and plastic potential surfaces and ensuing associative flow rule may be a good alternative to
the full model for a very large scale computations.

A few more comments on deviatoric destruction are pertinent. For the structured material,
isovolumetric plastic deformation (at a stress ratio �=M) does not necessarily imply that critical
state has been reached. Indeed by definition critical state is yielding at constant stress and volume.
Therefore, it can only be reached after complete destructuration (remoulding) of the soil. However,
according to this model (or any plasticity model with associated or non-associated plastic flow),
it is possible to reach the point of isovolumetric plastic deformations via a purely elastic stress
path, and thus with no destructuration at all. Under subsequent isovolumetric plastic loading,
destructuration could cause the stress ratio �=M as well as the deviatoric stress q to change.
Frictional destructuration has been introduced here to capture this possibility, because only isotropic
destructuration would have caused the reduction of q but not of �=M . For the Bothkennar clay,
the best fit frictional destructuration ratio of 1.3 implies that the stress ratio decreases under
such loading. This suggests that structuration bonds in this clay are relatively more effective in
resisting shear than istotropic compression. This is consistent with a more adhesive rather than
purely repulsive nature of particle-to-particle interactions in the structured sample, which does not
seem physically unreasonable. An attempt to simulate the response shown in Figures 10 and 11
neglecting all together the frictional destructuration and using only the isotropic resulted in a
poorer fitting of the data.
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Figure 12. Comparison of model simulations (solid lines) with experimental data (symbols)
for undrained stress path (detailed repetition of Figure 11) and the stress–strain curves of
triaxial compression and extension tests on samples of Bothkennar clay following the in-situ
state at point A, using (a) Two surface model with N �=M ; (b) two surface model with

N =M ; and (c) one surface model (◦: Sherbrooke sample; �: Laval sample).

One issue that must be emphasized is that the calibration of a model for a structured clay
cannot be simple. This is because one cannot obtain a truly intact sample from in-situ sampling
since its sensitivity will alter the in-situ existing structure during the sampling process and the
stressing up to the level of the in-situ stress. Thus, plausible assumptions and educated guesses
are required for the level of destructuration before a laboratory experiment is performed for the
purpose of calibrating the model constants. These aspects have been explained and exhibited during
the calibration of the specific clays considered in this work.
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50(4):431–447.

26. Leroueil S, Vaughan PR. The general and congruent effects of structure in natural soils and weak rocks.
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