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Abstract

This paper introduces novel vacuum/compression valves (VCVs) utilizing paraffin wax. A VCV is implemented by sealing the
venting channel/hole with wax plugs (for normally-closed valve), or to be sealed by wax (for normally-open valve), and is
activated by localized heating on the CD surface. We demonstrate that the VCV provides the advantages of avoiding
unnecessary heating of the sample/reagents in the diagnostic process, allowing for vacuum sealing of the CD, and clear
separation of the paraffin wax from the sample/reagents in the microfluidic process. As a proof of concept, the microfluidic
processes of liquid flow switching and liquid metering is demonstrated with the VCV. Results show that the VCV lowers the
required spinning frequency to perform the microfluidic processes with high accuracy and ease of control.
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Introduction

Centrifugal microfluidic CD platforms offer many advantages

over larger traditional fluidic platforms such as a reduction of the

required sample/reagent volumes, portability, low fabrication cost,

and full automation. In one of its simplest embodiments, a

microfluidic CD platform controls fluid sequencing based on the

balancing of the centrifugal force and the capillary force [1].

Examples of applications developed on the centrifugal microfluidic

CD platform include enzyme linked immunosorbent assays

(ELISA) [2,3], real time polymerase chain reaction (PCR) [4,5],

and particle separation [6–8].

The most essential of mechanisms on a microfluidic CD is a

valve that allows for fluid flow sequencing. A valve is a component

that stops (normally-open valve), starts (normally-closed valve) or

controls (proportional valve) fluid flow through a specialized

passage or channel [1,9,10]. According to Oh et al [9],

microfluidic valves fall under two main categories: passive

(dependent on centrifugal forces) and active (independent of

centrifugal forces) valves. Many kinds of valves fall under these two

categories such as mechanical, non-mechanical, and externally

actuated valves. These valves were categorized according to the

mechanism of operation and/or actuation methods. For a valve to

function effectively in a diagnostic process, several requirements

must be met. First, it must be able to operate with relevant clinical

samples and reagents of widely varying physicochemical properties

typically used in diagnostic processes [1,10,11]. The valves must

be unaffected by these substances to prevent the degradation of the

valve before its actuation. Second, for all the steps of a traditional

clinical diagnostic process to be replicated identically on a

microfluidic CD platform [12] may require a multitude of valves

including passive and active valves, proportional valve, normally-

closed valves, and normally-open valves. Third, fluid manipulation

for any diagnostic process must be tightly controlled. Failure to

adhere to any of these requirements will result in rejection by the

FDA and misdiagnosis of a disease or error in clinical test results,

especially when biomarkers are present in very low concentrations.

In general, the main criteria for a successful microvalve includes

the prevention of evaporation or leakage sample, reduction of the

dead volume, short time to actuation, and reduced power

consumption [9].

While there are a wide variety of passive valves available, such

as hydrophobic, hydrophilic, siphon, Coriolis, flap valves

[1,10,12–16] etc, in most cases, these valving techniques lack a

physical barrier to prevent evaporation of liquids during test

storage and operation [16]. Furthermore, there are serious

challenges involved in making passive valves repeatable and

manufacturable. To meet the requirements for a diagnosis process,

active valves are often required alone or in addition to passive

valves.
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Active valves on the CD platform are components that operate

independently from the centrifugal force. These valves require

external forces to actuate a physical blocking mechanism for

liquids and vapors, examples include; pneumatic valve, ice valves,

wax valves, hydrogel valves, and mechanical base valves [4,17–

24]. However, these valves are either too complicated to fabricate,

too expensive, limited to individual actuation, or may involve the

mixing of valve material with the analyte. Among active valves,

wax valves provide the benefit of addressing the issue of liquid

evaporation, are relatively simple to fabricate and actuate and

represent the least expensive option. Moreover, by implementing

wax material with different melting temperature, different valves

can be actuated at different instances in the same process [19].

Wax valves implemented today however, come with two obvious

disadvantages, i.e., the unnecessary heating of sample and reagents

that are in close proximity to the valve [19], and the possible

contamination of the sample/reagent as the wax is mixed with the

liquid after actuation [18,19].

To solve the issues of unnecessary heating and possible

contamination, we have introduced and implemented a new

Vacuum/Compression Valve (VCV) by using paraffin wax to seal

chamber venting channels/holes. The new method has two main

advantages: relocating the point of heating away from the

diagnostic process, and preventing the direct contact between

the samples and the wax material.

To implement VCVs, paraffin wax is installed on the venting

channels/holes of the source and destination chambers. The VCV

causes a vacuum state in source chambers, and air-compression in

destination chambers. The vacuum/air-compression state pre-

vents the fluid from flowing out of the chamber. In this work, we

show how a VCV is implemented, and demonstrate that a VCV

provides proper valving and sealing of a sample/reagent

containing chamber.

Centrifugal Force

In a microfluidic CD, the centrifugal pressure (Pcentrif) is the main

force that propels the liquid from the center toward the rim of the

microfluidic CD during spinning. This force can be calculated by

the following equation [25]:

Pcentrif ~rv2Drr: ð1Þ

At a certain rotational speed in rpm, fluid starts flowing from the

source chamber to the destination chamber. This speed is referred

to as the ‘‘burst frequency’’ and it can be calculated using the

following equation [25]:

rpm~v|
30

p
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pcentrif

rDrr

s
30

p

� �
ð2Þ

In this study, Equations 1 and 2 are utilized to calculate the

theoretical burst frequency to be compared to the experimental

results.

Methodology

1. Experimental Setup and Materials
A custom made computerized CD Spin Test System equipped

with a high speed camera and an rpm measuring laser is used to

run the tests (see figure 1). For melting the wax during actuation of

the valve, an industrial hot-air gun is positioned 1 cm above the

top surface of the CD to provide forced convection heat transfer.

The hot-air gun is equipped with nozzle of 1 cm diameter to focus

the forced convection heat only on the required area. This nozzle

provides a heating zone of 1 cm2 on the CD surface which is

enough to cover only the wax-plug area. The CD surface

temperature is measured with a digital infrared (IR) thermometer

every 90 seconds.

The micro-scale features (channels and chambers) of the CD

fluidic platform are engraved in a 4 mm thick Polymethyl

methacrylate (PMMA) plastic layer (bottom layer) using a

Computer Numerical Control (CNC) machine (model VISION

2525, by Vision Engraving and Routing Systems, USA). A 2 mm

PMMA layer with venting holes cut through is fabricated as a

cover layer (top layer) for the microfluidic CD. The PMMA layers

are then bonded together using a Pressure Sensitive Adhesive

(PSA) material (by FLEXcon, USA) (see figure 2). A cutter plotter

(model PUMA II, by GCC, Taiwan) is utilized to cut the

Figure 1. Experimental Setup. Experimental setup: controlling computer system connected to high speed camera, digital rpm meter, manually
controlled forced convection heatingand IR thermometer.
doi:10.1371/journal.pone.0058523.g001

Vacuum/Compression Valving (VCV) on Microfluidic CD
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microfluidic CD design in the PSA layers. Channels and

chambers, corresponding to the design of the bottom PMMA

layer, are cut out from the PSA layer to avoid having the liquid

come in contact with the adhesive material of the PSA layer. This

ensures a more consistent solid-liquid interface between the liquid

and the channel/chamber walls.

Paraffin wax with a melting temperature of 57.2uC (135uF) is

applied for the normally-closed and normally-open VCV valves. A

custom made press-roller machine is used for bonding the different

CD layers together. De-ionized (DI) water with red food dye (at a

ratio of 1 part dye to 10 part water) is used as the test liquid.

2. Expermental Method and CD Design
In this study, the effect of vacuum/compression valving on the

burst frequency is investigated. Paraffin wax is applied to the

venting holes of source/destination chambers to create vacuum/

compression valving respectively. The following experiments were

conducted for this study: microfluidic CD heat profiles are

registered, vacuum/compression valve effectiveness is measured,

and two possible applications for the VCV valving method are

demonstrated.

2 (a) Microfluidic CD heat profile. First, a study was

conducted to investigate the heating profile for the microfluidic

CD to better understand the thermal behavior. As shown in

figure 2, three-layer microfluidic CDs (2 PMMA plastic layers and

one PSA layer) were fabricated to perform this study. Forced

convection heating at 130uC is applied to the top surface of the

CDs. The CD was spun at different speeds of 0 to 350 rpm, and

the CD surface temperature was measured using a digital IR

thermometer. This experiment allows for the determination of the

surface temperature required to melt the wax valves at different

rotation speeds.

Figure 2. Microfluidic CD layers. Three layers microfluidic CD: 2 mm thick PMMA as the top layer, and 4 mm thick PMMA for bottom layer, PSA
layer in the middle.
doi:10.1371/journal.pone.0058523.g002

Figure 3. VCV microfluidic CD Design. CD Design for test of vacuum/compression valve effectiveness. (a) general design (b) vcuum valving
experimental setup, (c) compression valving experimental setup.
doi:10.1371/journal.pone.0058523.g003

Vacuum/Compression Valving (VCV) on Microfluidic CD
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Figure 4. CD design for Switching process. Microfluidic CD design for liquid switching, (a) position of chambers and wax plug, (b) sealed venting
B forces liquid to go to chamber A, (c) melting of wax-plug releases venting hole B and blocks venting hole A, (d) liquid goes to chamber B, (e) final
liquid status.
doi:10.1371/journal.pone.0058523.g004

Figure 5. CD design for liquid metering process. Microfluidic CD design for liquid metering, (a) position of chambers and wax plugs, (b) liquid
fills the first metering cahmber, (c) liquid fills the second metering chamber, (d) liquid filled all metering chambers and extra liquid flows to the waste
chamber, (e) melting of wax-plug allows liquid to move to the destination chambers.
doi:10.1371/journal.pone.0058523.g005

Vacuum/Compression Valving (VCV) on Microfluidic CD
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2 (b) Vacuum/Compression valve (VCV)

effectiveness. In this study, the same three-layer microfluidic

CD design was used to fabricate and test the proposed VCV

valving method. Figure 3(a) shows the design of a VCV valve

fabricated with a set of source and destination chambers. As

illustrated, the design consists of a source Chamber A, destination

Chamber B, and the corresponding Venting hole A and B.

Figure 3(b) & (c) illustrates the vacuum and compression setup

using the proposed basic design. To actuate vacuum valving,

venting hole A is sealed with a wax plug to create air-trapping on

top of the liquid in source chamber A (Figure 3(b)). This trapped

air prevents liquid in source chamber A to move toward

destination chamber B until the venting hole A is released (by

melting the wax plug). On the other hand, Figure 3(c) shows the

setup for compression valving. Venting hole B is sealed by a wax

plug to create air-trapping in the channel below the liquid in

source chamber A and also in chamber B. This trapped air stops

liquid from chamber A to flow to chamber B until venting hole B is

released. In both vacuum and compression cases, increase the CD

spin speed increases the vacuum pressure on top of the liquid

(Figure 3(b)), and increase the air compression pressure in

destination chamber B (Figure 3(c)). This experiment tests the

effectiveness of the vacuum and compression states by respectively

sealing venting hole A & B with wax plugs. The CD is spun and

the wax is melted with forced convection heating. The results of

the two experiments are compared with a control set, and

theoretical calculation obtained by using Equations (1) and (2).

2 (c) Applications of VCV. Many potential microfluidic

processes can be controlled using the proposed VCV.

Vacuum valving can be implemented to replace the tradition-

ally used passive valves in a multi-step microfluidic process. The

bursting of each chamber can be redefined by selectively melting

the various wax plugs and releasing the venting holes of the

respective source chambers. Compression valving can be imple-

mented in liquid flow switching and liquid metering applications.

Figure 4(a) shows the design of the microfluidic CD fabricated

to perform a liquid flow switching process. The design consists of

two source chambers (A & B), two destination chambers (A & B),

and the corresponding venting holes with compression wax plugs

(venting hole A & B, see figure 4(a)). Two different colored DI

water aliquots (red and green) are used to allow for a clearer

observation of the switching process. A 40 ml volume of the two

colored DI water is injected in each one of the source chambers

which are designed to have different burst frequencies. In this

process, a VCV incorporating both a normally-closed and a

normally-open compression valve (see figure 4(b)) is used to switch

the liquid flow direction to the intended destination chamber.

Figure 4 (b, c, d, and e) illustrates how the switching design is

expected to work. It can be observed from figure 4(b), that air

compression in chamber B (created by the sealing of venting hole

B) prevents liquid from flowing into destination chamber B, and

forces the liquid to burst into destination chamber A. (Note the air

in chamber B is only compressed when liquid from chamber A

attempts to flow into destination chamber B. The principle behind

this occurrence is discussed in detail in the ‘‘Results and

Discussion’’ section). Afterward, the wax-plug is melted and the

centrifugal force pushes it towards the U bent junction, effectively

blocking the venting channel leading to venting hole A. Air

compression now occurs in destination chamber A, and the next

bursting of liquid will be forced into destination chamber B. The

main advantage of this design is that a single wax plug is used to

block the two venting holes in two different steps.

Another microfluidic process implemented in this study using

the proposed VCV is liquid metering. The microfluidic CD

designed to perform this process is presented in figure 5(a). The

design consists of three metering chambers that are respectively

connected to three destination chambers via 0.4 mm-width

channels. The venting holes of the three destination chambers

are controlled with the proposed VCV (air compression valve).

Figure 5(b, c, d, and e) presents the expected sequence of liquid

metering process which starts with the pumping of the colored DI

water to fill the metering chambers during the spinning process.

The liquid fills the metering chambers, but does not enter the

destination chambers because of the air-compression created by

the VCV. After the liquid settles and levels in the metering

chambers, the venting holes are released by melting the wax plugs

and the liquid then flows into the destination chambers.

Results and Discussion

This work is divided into three parts: microfluidic CD heat

profile, VCV effectiveness test, and the two possible microfluidic

processes using the proposed VCV. The following subsections

present and discuss the results of each part separately.

1. Microfluidic CD Heat Profile
In figure 6 we show the heating profile for the microfluidic CD

during the heating process. The x-axis represents the temperature

of the microfluidic CD surface, while the y-axis presents the

experiment time (bottom y-axis) and the CD spinning speed (top y-

axis). The forced convection heating is fixed at 130uC for this

experiment.

The graph can be divided up into two main parts: the first part

represents the heating profile of the CD (heater is ON), while the

second part represents the cooling profile of the CD (heater is

OFF). The CD surface temperature increases dramatically in the

first 2 minutes from room temperature at 27uC to approximately

48uC, then continues to rise somewhat slower to the minimum

wax melting temperature of 57.2uC (135uF), and peaks out around

60uC at around the 8th minute mark. The temperature is observed

to remain around 60uC for the next 4 minutes. The forced

convection heating is then shut off, and the CD spinning is also

stopped temporarily before the start of the cooling process. Next,

the CD is left to cool at increasing rpm speeds and the temperature

reaches room temperature in 12 minutes.

Throughout the experiment, we had observed that the

temperature of the CD surface outside of the heating zone rises

slightly, and saturates at around 5uC above room temperature. It is

also determined experimentally that the heat setting of 130uC
provides the optimum balance between the shortest time to melt

the wax plugs without exposing the PMMA material to heat shock

(where sudden temperature increase melts or deforms the PMMA

material).

Figure 6. Microfluidic CD heating profile. Heating profile for
Microfluidic CD and wax melting points.
doi:10.1371/journal.pone.0058523.g006
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The result provides an understanding of how the CD surface

responds to forced convection heating. It is clear that with the

forced convection heating set at 130uC, the CD would require 8

minutes to melt the wax to operate the VCV.

2. Vacuum/Compression Valve (VCV) Effectiveness
The second part of this study focuses on testing the effectiveness

of the proposed valve and its response towards increasing pressure

produced by an incremental spinning speed. Figure 7 presents the

liquid behavior at three different points of the experimental test for

the air-compression state (venting hole B is sealed). Figure 7(a)

presents the initial status of the liquid before and during the early

stages of spinning, figure 7(b) shows liquid spilling into the micro-

channel due to the high spinning speed (more than 900 rpm) that

leads to air compression inside the destination chamber. Figure 7(c)

shows the final result at 1500 rpm where a minor leakage of one

droplet occurs when the liquid/compressed-air interface destabi-

lizes and some air escapes in the form of bubbles up the micro-

channel. This result shows that the proposed VCV is able to

prevent liquid from bursting into the destination chamber up to

speeds of 1000 rpm. However, at spinning speeds above

1000 rpm, although the fluid still does not flow into Chamber B,

some leakage is observed. Experimental data for compression and

vacuum valving is presented separately in figure 8. Moreover, the

experimental results are compared to the control (experimental

results without valving) and theoretical results calculated using

Equations (1) and (2).

From our results, it is clear that vacuum valving (source

chamber venting hole sealed) is more dynamic than compression

valving (destination chamber venting hole sealed). There are two

reasons for this; the first is the smaller volume of air in vacuum

valving (air that is trapped in the source chamber on top of the

liquid and inside the venting channel), is hard to expand. The

second is the effect of the lower centrifugal force experienced by

the liquid in the source chamber with a vacuum valve. In

comparison to the liquid in the micro-channel in the configuration

with a compression valve, the liquid in a configuration with a

vacuum valve is closer to the center of the CD.

In comparison to the wax valving proposed by Allen et al [18]

and Abi-Samra et al [19], the proposed VCV method prevents

any mixing between the sealing material and the test samples. This

design improvement gives way to the possibility of using different

types of material for valving which may be more easily managed.

Moreover, the layout of the VCV on the CD can be easily

relocated to be further away from the test samples. This is an

advantage when compared to the valving method by Abi-Samra

et al [19] where the heating source is directly focused on the

Figure 7. Liquid postion during testing process. Liquid state during the testing of VCV valving effectiveness (a) initial liquid postion during low
spinning speed, (b) liquid goes into the channel at spinning frequency .900 rpm, (c) final position of liquid at 1500 rpm.
doi:10.1371/journal.pone.0058523.g007

Figure 8. Burst frequency for VCV valve. Burst frequency "rpm" for
liquid using the proposed Vacuum/Compression valaving, and burst
frequency for Control & Theoretical calculation.
doi:10.1371/journal.pone.0058523.g008

Vacuum/Compression Valving (VCV) on Microfluidic CD
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micro-channels, concurrently heating the wax and the liquid in the

channel.

3. Applications of VCV
In figures 9 and 10 we show photos from two types of

applications at various stages during the tests. Figure 9(a) shows the

liquid bursting out of source chamber A at 360 rpm. It is observed

that at the junction of the two channels, although the perpendic-

ular angle of the channel leading from the junction towards

destination chamber B helps to direct liquid flow into destination

chamber A, initially a very small volume of liquid enters the start

of the channel leading into chamber B. This causes the trapped air

in chamber B to be compressed, and the compressed air then

pushes the liquid back out of the channel into the junction. The

small volume of liquid then flows with the rest of the liquid towards

destination chamber A (figure 9(b)). When the liquid from source

chamber A completely enters destination chamber A, the forced

convection heating is turned ON to melt the wax plug and to

release venting hole A (figure 9(c)). The centrifugal force pushes

the molten wax towards venting hole B and seals it. The heating

Figure 9. Liquid switching sequence. Experment sequence for liquid switching using VCV valving method, (a) green clored liquid flows out from
source chamber A, (b) green liquid switched to chamber A due to the compressed air in chamber B, (c) venting hole B released by melting wax plug,
and wax moves to block venting hole A, (d) red liquid switched to chamber B due to the air compression in chamber A.
doi:10.1371/journal.pone.0058523.g009

Figure 10. Liquid metering sequence. Experment sequence for liquid metering using VCV valving method, (a) liquid pumped from source
chamber to the metering chambers, (b) liquid filling the first metering chamber, (c) liquid filled the second metering chamber and moving to the
third, (d) liquid filled all metering chambers and overflowed to the waste chamber, (e) wax-plug melted and liquid moved to the destination
chambers.
doi:10.1371/journal.pone.0058523.g010

Vacuum/Compression Valving (VCV) on Microfluidic CD
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source is then turned OFF and the spinning speed is increased

gradually. At 650 rpm, the liquid from source chamber B bursts.

Similarly to the case in figure 9(b), any liquid that enters into the

channel leading towards destination chamber A creates air-

compression, and the liquid is pushed back out into the junction.

The liquid from chamber B is observed to flow toward destination

chamber B (figure 9(d)).

The result shows that switching with a VCV can be controlled

accurately, cleanly, and at low spinning speed. This is advanta-

geous when compared to switching processes applying external air

pressure by Kong et al [17], and Coriolis force by Kim et al [13].

Moreover, by applying more VCVs, liquid flow switching into

more than two destination chambers can be accomplished.

Figure 10 presents the experimental sequence for the micro-

fluidic metering process. As shown, the liquid is pumped from the

source chamber to the metering chambers (figure 10(a)). Then,

liquid starts to flow and fill the three metering chambers without

entering the destination chamber because of the compressed air

(figure 10 (b & c)). After all metering chambers are filled; the extra

liquid flows into the waste chamber (figure 10(d)). The heating

source is turned ON to heat the CD surface to 60uC (which is the

melting temperature for the wax plugs). Once the wax-plug has

been melted away, the venting hole is opened and the liquid bursts

from the metering chambers into the destination chambers

(figure 10(e)).

One additional observation made during the melting of the wax,

particularly during the initial preparation of the wax plug, is the

spreading of the wax into unintended areas. While the VCV is

designed such that melted wax flows away from the liquid

chambers during spinning, care needs to be taken when loading

melted wax over the venting holes. Because wax is hydrophilic on

PMMA surfaces, melted wax easily seeps into any channel it

comes in contact with. To prevent this, only a precise volume of

wax (sufficient to cover the venting hole) needs to be injected into

the venting hole such that there will be no excess wax flowing into

the connected channel. However, in our experiments, the melted

wax does not enter the liquid chamber area and thus does not

affect the outcome of the experiments.

The presented microfluidic metering process has many advan-

tages in comparison to published metering method introduced by

Mark et al [26,27]. Mark et al’s [27] method requires high

spinning frequency to generate the turbulence at the air-liquid

contact point for the liquid to burst into the destination chambers.

In contrast, our proposed metering process can be performed at

low spinning speeds (less than 400 rpm). Furthermore, the

destination chamber for our proposed method can be connected

to other microfluidic networks on the CD (where other processes

can be performed) by implementing the VCV at appropriate

points.

Conclusion
This paper proposes VCV valving on microfluidic CDs using

paraffin wax to seal venting chambers/holes. The results indicate

high flexibility and accuracy in controlling the liquid burst

frequency. It is noticed that a vacuum valve on the source

chamber is more resilient against bursting at high spinning

frequencies compared to compression valves. Furthermore, the

presented VCV method can reduce the direct heating of samples

and reagents in the microfluidic process.

Two microfluidic processes which are liquid flow switching and

liquid metering have been implemented with the VCV, and have

been successfully demonstrated. The experimental results show

that by using the VCV valving, the required spinning frequency to

perform the process is reduced greatly, and the VCV valving

allows for multiple path switching.

In the liquid flow switching demonstration, we have also showed

a novel way of implementing two valves using a single VCV wax

plug. This is done by positioning the valves such that melted wax

from a normally-closed valve (which releases it when the wax is

melted) is later transferred to a normally-opened valve (which seals

it when the wax solidifies) by centrifugal force.
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22. Szilágyi A, Sumaru K, Hattori K, Takagi T, Filipcsei G, et al. (2009) On-
demand microfluidic control by micropatterned light irradiation of a photo-

responsive hydrogel sheet. Lab Chip 9: 196–198.
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