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ABSTRACT OF THE DISSERTATIONNovel Photoni Bandgap Based Arhitetures forQuantum Computers and NetworksbyDurdu G�uneyDotor of Philosophy in Eletrial Engineering (Applied Physis)University of California, San Diego, 2007Professor David A. Meyer, ChairAll of the approahes for quantum information proessing have their ownadvantages, but unfortunately also their own drawbaks. Ideally, one would mergethe most attrative features of those di�erent approahes in a single tehnology.We envision that large-sale photoni rystal (PC) integrated iruits and �bersould be the basis for robust and ompat quantum iruits and proessors of thenext generation quantum omputers and networking devies. Cavity QED, solid-state, and (non)linear optial models for omputing, and optial �ber approahfor ommuniations are the most promising andidates to be improved throughthis novel tehnology. In our work, we onsider both digital and analog quantumomputing.In the digital domain, we �rst perform gate-level analysis. To ahieve thistask, we solve the Jaynes-Cummings Hamiltonian with time-dependent ouplingparameters under the dipole and rotating-wave approximations for a 3D PC single-mode avity with a suÆiently high Q-fator. We then exploit the results to showhow to reate a maximally entangled state of two atoms and how to implementseveral quantum logi gates: a dual-rail Hadamard gate, a dual-rail NOT gate,and a SWAP gate. In all of these operations, we synhronize atoms, as opposed
xiii



to previous studies with PCs. The method has the potential for extension to N-atom entanglement, universal quantum logi operations, and the implementationof other useful, avity QED-based quantum information proessing tasks.In the next part of the digital domain, we study iruit-level implemen-tations. We design and simulate an integrated teleportation and readout iruiton a single PC hip. The readout part of our devie an not only be used on itsown but an also be integrated with other ompatible optial iruits to ahieveatomi state detetion. Further improvement of the devie in terms of ompatnessand robustness is possible by integrating with soures and detetors in the optialregime. In the analog domain, we onsider a quantum simulation problem. Weshow that the Klein paradox for the Klein-Gordon equation of a spin-zero partilemanifests exatly the same kind of wave propagation and negative refration phe-nomenon as the sattering of a transverse-eletri-polarized eletromagneti waveinident on a negative index medium. Using this peuliar feature of negative indexmaterials, we show that real time ontrol and proessing of some quantum exper-iments related with Klein paradox an be ahieved by an optoeletroni simulatordesigned aording to ertain transformations and approximations.
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Chapter I
Introdution

Most of the material in xI.A (quantum state evolution) and xI.B (quan-tum measurement) is studied in more depth in Ref. [1℄. Quantum proess to-mography that we review in xI.C is based on Nielsen and Chuang's introdutorybook on quantum omputation and quantum information [2℄. Information that wepresent in xI.D (atomi interferometers) is mostly taken from Steven Chu's ourseon `atomi interferometers' [3℄. For more details and referenes please onsult thesevaluable resoures. In xI.D.1 (Ramsey interferometer) we review the interationof atomi beams with two separated osillatory �elds based on Ref. [4℄, whihdesribes the proess in an exellent and intuitive fashion with many referenes.Ref. [5℄ provides an exellent review of \deoherene" phenomenon in quantummehanis and explains how the transition from quantum in the mirosale to las-sial in our marosale world ours. In xI.E (deoherene) we briey summarizethis onept ritial to quantum information proessing.I.A Quantum State EvolutionControlled time evolution of quantum states of a physial system formsthe basis of quantum logi operations. In quantum mehanis time is not anobservable (i.e., not an operator) in the sense that it is only a parameter.
1



2Dynamis of a quantum state j	(t0)i under time displaement t0 ! t anbe desribed by the time evolution operator U(t; t0), in suh a way thatj	(t)i = U(t; t0)j	(t0)i (I.1)Note that if we an engineer the time evolution operator on demandwe ould build many useful operations relevant to quantum omputation suh asquantum gates and reation of entanglement. The nature of U(t; t0) is determinedby the underlying Hamiltonian operatorH that desribes the physial system. Therelation between U(t; t0) and H is given by the Shrodinger equation,i�h ��tU(t; t0) = HU(t; t0): (I.2)Formal solutions to this equation an be investigated in three ases de-pending on how the Hamiltonian operator H evolves in time. One we �nd thesolution for U(t; t0) in Eqn. (I.1), we an determine how the state j	i evolvesin time using Eqn. (I.2) and whether or not we manage to build useful quantumoperations for our purpose under given physial system design parameters.If the Hamiltonian operator H is independent of time then the solutionto Eqn. (I.2) an be written asU(t; t0) = e� i�hH(t�t0): (I.3)In the ase that H is time-dependent but the H's at di�erent times ommutethen the formal solution to the Shrodinger equation (I.2) isU(t; t0) = e�( i�h ) R tt0 dt0H(t0) (I.4)For onveniene we an expand the exponential as follows:e�( i�h ) R tt0 dt0H(t0) = 1� i�h Z tt0 dt0H(t0) + [(�i)22 ℄[R tt0 dt0H(t0)�h ℄2 + ::: (I.5)



3The Hamiltonian operator that desribes the atom-miroavity interation inChapters IV and V for the reation of atom-atom and atom-avity entanglementsand the implementation of several quantum logi operations falls into thisategory.The third ase is that the H's at di�erent times do not ommute. Thistype of Hamiltonian operator is not onvenient from the omputational perspetive,although it might be the ase that it presents riher possibilities. The formalsolution to Eqn. (I.2) in suh a situation is given byU(t; t0) = 1 + 1Xn=1(�i�h )n Z tt0 dt1 Z t1t0 dt2::: Z tn�1t0 dtnH(t1)H(t2):::H(tn); (I.6)whih is sometimes known as the Dyson series.I.B Quantum MeasurementQuantum measurement is an essential part of quantum omputing modelssuh as iruit and luster state quantum omputing. Dira says, \A measurementalways auses the system to jump into an eigenstate of the dynamial variablethat is being measured." Before the measurement the quantum state j	i anbe assumed to be in a linear superposition of eigenstates of the observable beingmeasured. In mathematial terms this an be expressed asj	i =Xa0 a0 ja0i; (I.7)where a0 is the omplex probability amplitude for the orresponding eigenstateja0i. Therefore, the measurement ollapses j	i into ja0i with a probability ja0 j2.This is one of the fundamental postulates of quantum mehanis. More preiselyquantum measurements are desribed by a set fMmg of projetion operators,whih satis�es the ompleteness equation



4Xm M ymMm = I: (I.8)The probability that the result m ours is given byp(m) = h	jM ymMmj	i (I.9)and the state of the system after the measurement is thrown intoMmj	iqp(m) (I.10)For example, a two-level atom an be prepared in an arbitrary superpo-sition of ground (i.e., j0i) and exited (i.e., j1i) states suh thatj	i = aj0i+ bj1i; (I.11)and a �eld ionization detetor an be used to measure j	i. In this ase two mea-surement operators M0 = j0ih0j and M1 = j1ih1j are used. Then the probabilitiesof obtaining the measurement outomes 0 and 1 from Eqns. (I.9) and (I.10) arerespetively p(0) = h	jM y0M0j	i = jaj2 (I.12)and p(1) = h	jM y1M1j	i = jbj2: (I.13)Therefore post-measurement results for the two ases using Eqn. (I.10) areM0j	ijaj = ajaj j0i; (I.14)and



5M1j	ijaj = bjbj j1i: (I.15)Note that to determine the probabilities empirially we need an ensemble of iden-tially prepared atoms (i.e., pure ensemble).In Chapter V, we will use the above properties of quantum measurementto ahieve both the teleportation and readout of an unknown or arbitrary quantumstate of a two-level atom.I.C Quantum Proess TomographyClosed quantum systems are immune to unwanted interations with theirenvironment. This leads to no noise showing up in these ideal quantum informationproessing systems. In pratie, however, no suh perfetly losed systems areavailable. Therefore it is essential to understand and ontrol the noise mehanismsto build a salable quantum omputer. The \quantum operations formalism" isa powerful tool to ahieve this task. It an not only be used to desribe opensystems but also be employed to study losed systems that are opened suddenlyand subjet to measurement.The quantum operations formalism desribes the evolution of quantumsystems under various irumstanes inluding stohasti proesses. Unitary trans-formations and measurements are two simple examples of quantum operations. Ingeneral, we an denote a quantum operation as the map " suh that�0 = "(�); (I.16)where � is the density operator for the quantum state being transformed. For aunitary transformation and measurements�(�) = U�U y (I.17)and



6�m(�) =Mm�M ym; (I.18)respetively. For example, onsider the measurement as a quantum operation.Remember (see x1.B) that a quantum measurement an be desribed by a set ofmeasurement operators fMmg that satis�es the ompleteness equation (I.8). If thestate of the system immediately before the measurement is given by �, then thequantum operation (I.18) transforms the state immediately after the measurementinto �m(�)tr(�m(�)) ; (I.19)whih is equivalent to Eqn. (I.10), sinep(m) = tr(�m(�)): (I.20)One appliation of quantum operations formalism is \quantum proesstomography", a proedure to experimentally determine the dynamis of a quantumsystem. To understand proess tomography, however, we �rst need to understandquantum state tomography, whih is another proedure to experimentally deter-mine an unknown quantum state. If we have only a single opy of the state to bemeasured, it is impossible to haraterize. Therefore we need to repeat the exper-iment many times to produe a large number of opies of the same state. Thisis similar to the atomi state readout proess that we will desribe in ChapterV, where we repeat the teleportation protool many times to produe identiallyprepared atoms to be deteted.Consider a single qubit density matrix �. We an expand � as� = tr(�)I + tr(X�)X + tr(Y �)Y + tr(Z�)Z2 ; (I.21)where I, X, Y , and Z are identity and Pauli matries, respetively. The set Ip2 ,Xp2 , Yp2 ; Zp2 forms an orthonormal set of matries with respet to Hilbert-Shimidt



7inner produt. Remember that tr(A�) is the average value of the observable A.For example, if we measure Z a large number of times m, we an estimate the truevalue of tr(Z�) as Pi zi=m with standard deviation 1=pm. zi is the ith outome ofthe measurement. Similarly we an estimate tr(X�) and tr(Y �) with a high levelof on�dene in the limit of large sample size.Having desribed quantum state tomography, now we an use it to doproess tomography. We will show how a useful representation for the dynamisof a quantum system may be experimentally determined using a systemati pro-edure. Our goal is to �nd a set of operation elements fEig suh that the map "in Eqn. (I.16) has the form "(�) =Xi Ei�Eyi : (I.22)To determine Ei from measurable parameters, it is more onvenient to use a �xedset of operators E 0i, whih form a basis for the set of operators in the state spae,suh that Ei =Xm eimE 0m: (I.23)where the eim's are omplex numbers. Substituting Eqn. (I.23) into Eqn. (I.22)gives "(�) =Xmn E 0m�E 0yn�mn; (I.24)where �mn is de�ned as �mn �Xi eime�in: (I.25)Expression (I.24) shows that the map " an be ompletely desribed by the �matrix, one the set of operators E 0i has been �xed.In the following we give the proess tomography for a single qubit oper-ation as an example. Given the experimental state tomography and preparation



8proedures available in the laboratory, the dynamis of a multiple qubit quantumblak box an be implemented numerially in a relatively straightforward way.For a single qubit ase, for example, it is onvenient mathematially to use thefollowing set of �xed operators E 0i E 00 = I; (I.26)E 01 = X; (I.27)E 02 = �iY; (I.28)E 03 = Z: (I.29)Here is the experimental proedure to do quantum proess tomography. In a singlequbit ase the state spae is d = 2 dimensional. Therefore, we hoose d2 = 4 purestates so that the orresponding density matries �1, �2, �3, and �4 form a basis setfor the state spae. One we determine this basis set, eah state is subjeted to thequantum proess that we wish to haraterize. After it is ompleted we obtain thedensity matries �0j = "(�j) for eah state j	ji using quantum state tomographyas explained above. Knowing the �js and the �0js the � matrix representation ofthe quantum proess follows. The onnetion between these density matries andthe � matrix is established through the equations:E 0m�jE 0yn =Xk �mnjk �k; (I.30)�0j =Xk �jk�k; (I.31)Xmn �mnjk �mn = �jk: (I.32)



9�mnjk and �jk an be determined from Eqns. (I.30) and (I.31), respetively, usingstandard linear algebra, and hene the � matrix using Eqn. (I.32). Relation (I.32)gives the ondition for the � matrix, whih desribes the quantum operation ".Coming bak to the single qubit ase, we hoose to prepare the inputstates j0i, j1i, j+i = (j0i + j1i)=p2, j�i = (j0i + ij1i)=p2 and we use the set ofdensity matries �1, �2 = �1X, �3 = X�1, and �4 = X�1X, where �1 is de�ned as264 1 00 0 375 : (I.33)The quantum proess that we want to haraterize maps these density matriesinto �01 = "(j0ih0j) (I.34)�02 = "(j1ih1j) (I.35)�03 = "(j+ih+j)� i"(j�ih�j)� (1� i)(�01 + �04)=2 (I.36)�04 = "(j+ih+j) + i"(j�ih�j)� (1 + i)(�01 + �04)=2 (I.37)and we an determine them from quantum state tomography. One we know �j and�0js we an determine � and � matries from Eqns. (I.30) and (I.31), respetively,and hene the � matrix that desribes the two-qubit quantum proess using Eqn.(I.32). After some algebra, due to the partiular hoie of basis, the � matrix inthis ase an be expressed as � = � 264 �01 �02�03 �04 375� (I.38)in terms of blok matries and � is given as



10
� = 12 264 I XX �I 375 : (I.39)I.D Atomi InterferometersThe �rst atom interferometers were demonstrated in the early 1990s.They were based on atomi di�ration from periodi mirofabriated strutures.Shortly afterwards, another lass of atomi interferometers was developed by usingoptial light pulses. Here we will only onsider single partile interferometry.The physial system that we will study in Chapters IV and V operatesin the mirowave regime. Therefore, we assume below that internal and externaldegrees of freedom of a two-level atom are deoupled, beause the momentum reoilof the atom due to the mirowave photon is negligible in our analysis.The Hamiltonian for the interation of a two-level atom with an eletro-magneti �eld an be written asH = �h!ejeihej+ �h!gjgihgj � d:E (I.40)or in the matrix form H = 264 �h!e VegV �eg �h!g 375 : (I.41)!e and !g are the exited and ground state energies of the two-level atom, respe-tively. The eletromagneti �eld operator E in Eqn. (I.40) is given byE = E0os(!Lt+ �): (I.42)The last term in the Hamiltonian [Eqn. (I.40)℄,V = �d:E = �er:E; (I.43)



11is the atom-eletri dipole interation term and its matrix element Veg an be foundusing Eqns. (I.42) and (I.43) asVeg = hejVjgi = �h
eg(ei(!Lt+�) + e�i(!Lt+�)2 ); (I.44)where 
eg is alled the Rabi frequeny and is de�ned as
eg = �hejd:E0jgi�h : (I.45)r in Eqn. (I.43) is the position of the eletron in the two-level atom with respetto the nuleus.The general solution to the Shrodinger equation (see Eqn. I.2) using theHamiltonian (I.40) an be expressed asj	(t)i = ae(t)jei+ ag(t)jgi: (I.46)The probability amplitudes ae(t) and ag(t) in Eqn. (I.46) an be written in theform ae(t) = e(t)e�i!et=2; (I.47)ag(t) = g(t)e�i!gt=2; (I.48)for mathematial onveniene to separate the slowly varying funtions of time e(t)and g(t). Using Eqns. (I.47) and (I.48) and the rotating wave approximation wean transform the matrix form of the Hamiltonian in Eqn. (I.41) intoHr = �h2 264 0 
ege�i(Æt+�)
�egei(Æt+�) 0 375 : (I.49)Æ � !L � !eg is the laser-atom detuning, where !eg � !e � !g. Note that thetransformed Hamiltonian in Eqn. (I.49) is time-dependent. Under the followingtransformation of variables it an be made time-independent:



12e(t) = de(t)e�iÆt=2; (I.50)g(t) = dg(t)eiÆt=2: (I.51)Transformations (I.50) and (I.51) physially mean that the quantum state rotatesaround the z-axis with a frequeny Æ. Similarly, the transformation from theShrodinger piture into the interation piture an be interpreted as a rotatingframe with a frequeny !eg: Therefore our time-independent Hamiltonian inorpo-rates both transformations.The transformation of a quantum state j	i into a rotating frame withfrequeny Æ around the z-axis is desribed by a rotation operator D(z;�Æt) suhthat D(z;�Æt)j	i = j	iR: (I.52)The representation of the rotation operator in matrix form an be written asD(z;�Æt) = ei�zÆt=2 = 264 eiÆt=2 00 e�iÆt=2 375 ; (I.53)where �z is the Pauli matrix.Now, let's �nd the time-independent Hamiltonian by transforming theShrodinger equation into the rotating frame. We an express the Shrodingerequation as i�h ddt(Dyj	iR) = H(Dyj	iR): (I.54)Multiplying both sides with D from the left and rearranging the equation givesi�h ddt j	iR = [DHDy � i�hD(dDydt )℄j	iR: (I.55)



13Thus the e�etive Hamiltonian in the square brakets an be de�ned as the Hamil-tonian in the rotating frame. It an be represented by the matrixHR = �h2 264 �Æ 
ege�i�
�egei� Æ 375 : (I.56)The eigenvalues of this Hamiltonian are�� = ��h
r2 ; (I.57)where 
r � qj
egj2 + Æ2 is the o�-resonant Rabi frequeny. The phase � inEqn. (I.56) an be inorporated into 
eg to make it positive and real. Then theeigenstates of HR an be alulated to bej�+i = os(�2)jeiRe�i�=2 + sin(�2)jgiRei�=2 (I.58)and j��i = -sin(�2)jeiRe�i�=2 + os(�2)jgiRei�=2; (I.59)where sin(�) = 
eg=
r, os(�) = �Æ=
r and 0 � � � �: Then the time evolutionof the state j	(t0)iR an be written asj	(t0 + �)iR = (e�i�+�=�hj�+ih�+j+ e�i���=�hj��ih��j)j	(t0)iR: (I.60)For Æ = 0 and onstant �eld amplitude the evolution operator an be expressed inthe matrix form asUR = 264 os(
r�=2) �ie�i�sin(
r�=2)�iei�sin(
r�=2) os(
r�=2) 375 : (I.61)When the initial state is the ground state and it is subjeted to two pulses of areaR 
r(t)dt = 
r� = �=2, we obtain the exited state if the atomi osillation inbetween the two �=2 pulses is the same as the mirowave osillator (i.e., ÆT = n�,



14where T is time elapsed between two pulses and n is an even integer). If thereis a phase di�erene m� (m is odd), the atom is left in the ground state. Thusinterferene reates an osillation between the exited and ground states of theatom.I.D.1 Ramsey InterferometerAssume an osillator frequeny�0 = (Wq �Wp)=2��h (I.62)at whih a resonane transition between states of energy Wp and Wq ours. Inpratie not only the resonane frequeny but also the width of the resonane isimportant, beause the linewidth a�ets the transition probabilities, although themaximum transition ours at the osillator frequeny (I.62).We an give a qualitative physial desription of the resonane proess byonsidering a magneti moment assoiated with a large angular momentum suhthat the problem an be treated lassially. Consider that suh a magneti momententers a region with a stati magneti �eld H0. Then the magneti moment willpreess around H0 with the Larmor frequeny!0 = �I�hIH0; (I.63)where �I is the z-omponent of the nulear magneti moment and I is the nulearspin quantum number. When H1, a weak magneti �eld perpendiular to the axisof H0 and rotating around it, is added, the magneti moment also preesses aroundH1: This hanges the angle � between the nulear magneti moment and H0. If H1rotates faster than the Larmor frequeny (I.63), angle � on the average does nothange. When it rotates at a frequeny equal to the Larmor frequeny, however,there is a net angle � aumulated.Below we will alulate the transition probability between two states jpi



15and jqi of an atom with a magneti moment subjet to an osillatory perturbationV . We an write the matrix elements of V asVpq = hpjV jqi = �hbei!t; (I.64)Vqp = V �pq; (I.65)Vpp = Vqq = 0; (I.66)where ! is the rate of rotation of the magneti �eld around the axis of quantizationand b is proportional to the magneti �eld.The quantum state of the system that makes transitions between jpi andjqi an be written at time t asj	(t)i = Cp(t)j	pi+ Cq(t)j	qi; (I.67)and the Shr�odinger equation for above Hamiltonian an be expressed asi�h ��t j	(t)i = H0j	(t)i+ V j	(t)i: (I.68)Multiplying Eqn. (I.68) by h	pj and h	qj givesi�h ��tCp(t) = WpCp(t) + �hbei!tCq(t) (I.69)and i�h ��tCq(t) = �hbe�i!tCp(t) +WqCq(t); (I.70)respetively. Assuming the initial onditions Cp(0) = 1 and Cq(0) = 0, the solutionat time t an be found asCp(t) = [ios�sin(at2 ) + os(at2 )℄ei[!=2�(Wp+Wq)=2�h℄t; (I.71)



16Cq(t) = isin�sin(at2 )ei[�!=2�(Wp+Wq)=2�h℄t; (I.72)where os� = (!0 � !)=a; (I.73)sin� = �2b=a; (I.74)a2 = [(!0 � !)2 + (2b)2℄; (I.75)!0 = (Wq �Wp)=�h: (I.76)Then the probability of a transition from state j	pi to state j	qi by time t isjCq(t)j2 or Pp;q = (2b)2(!0 � !)2 + (2b)2 sin2f t2[(!0 � !)2 + (2b)2℄1=2g: (I.77)Note that at resonane (i.e., when ! = !0) the �rst fator in Eqn. (I.77) reahesunity. One of the approximations in the preeding alulations is the omission ofpossible osillatory diagonal elements in Eqn. (I.66). The e�ets of suh osillatorydiagonal elements are negligible near resonane.Ramsey pointed out that approximately uniform intensity throughoutthe regions of the apparatus was not the most advantageous method of applyingthe osillatory �eld. Rather, amplitude and phase of the osillating �eld ould bevaried to obtain more useful resonanes. A partiular arrangement that is moreuseful in many ases is separated osillatory �elds, where two osillatory �elds areon�ned tightly in two separate loations.Consider again a magneti moment (with a large angular momentum totreat the problem lassially) whih enters a region with strong uniform magneti



17�eld H0 at the entrane and exit ends of whih there is a weak magneti �eldperpendiular to H0 and rotating about an axis parallel to it. If the angular mo-mentum is initially aligned with the �eld so that � = 0, we an tune it to � = �=2by applying a weak rotating �eld with a ertain amplitude and period of time in the�rst osillating region. In the intermediate region of no rotating �eld the magnetimoment simply preesses with the Larmor frequeny (I.63). When it proeeds tothe next osillatory region, however, � starts to hange again. If the frequeny ofthe seond rotating �eld is exatly the same as the mean Larmor frequeny in theintermediate region, no relative phase shift ours between the angular momentumand the rotating �eld. Then, with the magnitude of the rotating �eld and the timeof appliation equal to those of the �rst osillatory region, � inreases by another�=2, making � = �. If the phase shift between the preessing angular momentumand the rotating �eld is �, the seond osillating �eld reverses the e�et of the �rstosillatory �eld, returning to � = 0. If the Larmor frequeny and the frequenyof the rotating �eld di�ers in suh a way that the phase shift in the intermedi-ate region is an integral multiple of 2�, then � will be the same as at the exatresonane, whih is �.Below we will �nd the transition probability for a single atom passingthrough two separated osillating �elds. A more general solution to Eqns. (I.69)and (I.70) an be obtained by onsidering that the atom enters the osillatoryregion at time t1 with probability amplitudes Cp(t1) and Cq(t1) and exits at timet1 + T: Under these initial onditions the solution to Eqns. (I.69) and (I.70) isCp(t1 + T ) = [(ios�sinaT2 + osaT2 )Cp(t1)+(isin�sinaT2 ei!t1)Cq(t1)℄efi[!=2�(Wp+Wq)=2�h℄Tg; (I.78)Cq(t1 + T ) = [(isin�sinaT2 e�i!t1)Cp(t1)+(�ios�sinaT2 + osaT2 )Cq(t1)℄efi[�!=2�(Wp+Wq)=2�h℄Tg:(I.79)



18For the speial ase of b = 0, Eqns. (I.78) and (I.79) redue toCp(t1 + T ) = e[�i(Wp=�h)T ℄Cp(t1) (I.80)Cq(t1 + T ) = e[�i(Wq=�h)T ℄Cq(t1): (I.81)Now let's onsider a single atom rossing two separated osillatory regionsin whih the perturbation of Eqns. (I.64)-(I.66) ours. Both regions have widthl and take time � for the atom to traverse. In between the two osillatory regionsno perturbation exists (i.e., b = 0). We assume, however, that the energies of thestates j	pi and j	qi are di�erent in eah sub-region of the intermediate region suhthat the kth sub-region of duration �tk has the energies Wp;k and Wq;k. Then,using Eqns. (I.78) and (I.79) and the initial onditions Cp(0) = 1 and Cq(0) = 0,we obtain at time � when the atoms reah the entrae to the �rst osillatory region,Cp(�) = (ios�sina�2 + osa�2 )ei[!=2�(Wp+Wq)=2�h℄� ; (I.82)Cq(�) = isin�sina�2 ei[�!=2�(Wp+Wq)=2�h℄� : (I.83)The �rst osillatory region is followed by the intermediate region (i.e., b = 0) inwhih the atom propagates until time � + T . Then, the transition probabilityamplitudes an be found asCp(� + T ) =Yk e�iWp;k�t;k=�hCp(�) = e�(i=�h)PkWp;k�t;kCp(�) = e�iWpT=�hCp(�);(I.84)Cq(� + T ) = e�iW qT=�hCq(�); (I.85)One the atom exits the intermediate region, it enters the seond osillatory regionwhih takes an additional time � . Then, we obtain the �nal probability amplitudesat time 2� + T as



19
Cp(2� + T ) = [(ios�sina�2 + osa�2 )Cp(� + T )+isin�sina�2 ei!(�+T )Cq(� + T )℄ei[!=2�(Wp+Wq)=2�h℄� ; (I.86)
Cq(2� + T ) = [isin�sina�2 e�i!(�+T )Cp(� + T ) + (�ios�sina�2+osa�2 )Cq(� + T )℄ei[�!=2�(Wp+Wq)=2�h℄� : (I.87)We an rewrite Eqn. (I.87) by eliminating Cp and Cq asCq(2� + T ) = �2isin�(os�sin2a�2 sin�T2 � 12sina�os�T2 )�e�i[(!=2+(Wp+Wq)=2�h)(2�+T )+[(W p�Wp+W q�Wq)=2�h℄T ℄; (I.88)where � = [(W q �W p)=�h℄� !: (I.89)Using Eqn. (I.88), we an write the transition probability of the atomfrom state j	pi to j	qi asPp;q = jCq(2� + T )j2 = 4sin2�sin2a�2 (os�T2 osa�2 � os�sin�T2 sina�2 )2: (I.90)I.E DeohereneThere is no known evidene of onit between the experiments and thepreditions of quantum mehanis. There is, however, ontinuing debate on therelation of quantum mehanis with our familiar physial world.The emergene of lassial behavior from quantum dynamis an be un-derstood by studying the quantum apparatus for measurement that was analyzed



20by John von Neumann. Consider a two-level quantum sytem S and a detetor D.The Hilbert spae HS of the system is spanned by j "i and j #i. jd"i and jd#ispan the Hilbert spae HD of the detetor. A quantum detetor an be devised,for example, in suh a way that the detetor hanges its state when the system isin state j "i only: j "ijd#i ! j "ijd"i (I.91)Assume a pure state j	Si = �j "i+ �j #i: (I.92)Initially if we express the omposite system in the form j	Sijd#i, it evolves into aorrelated state j�i, whih an be expressed asj�i = �j "ijd"i+ �j #ijd#i: (I.93)Correlation in Eqn. (I.93) implies that if the detetor is found in jd"i, then thesystem is thrown into j "i state. When the detetor gives jd#i state, the systemis in j #i state. To illustrate environment-indued deoherene, onsider also theenvironment as a quantum system E . The environment also interats, and beomesorrelated, with j�i;j�ijE0i = (�j "ijd"i+ �j #ijd#i)jE0i 7! �j "ijd"ijE"i+ �j #ijd#ijE#i = j	i: (I.94)When the states of the environment orresponding to the detetor statesjd"i and jd#i are orthogonal, we an obtain the redued density matrix for thesystem-detetor omposite state by traing over the environment in the ompletedensity matrix,�DS = TrE j	ih	j =Xi hEij	ih	jEi0i = j�j2j "ih" jjd"ihd"j+ j�j2j #ih# jjd#ihd#j:(I.95)



21When a stone falls into a lake, it reates ripples on the surfae of thelake, whih is otherwise at. Similarly when a partile exists in the eletromag-neti sea the �eld exitations satter o� the partile and arry information aboutits quantum observables suh as position, momentum, energy, et. Surprisingly, inquantum mehanis even in a storm the stone thrown into the lake reates distur-banes that an be deteted, despite the diÆulty of deiphering the partile dueto the preexisting �elds in suh a \messy environment".Below we will illustrate the deoherene by giving an example. We willonsider the interation of a partile at position x that is subjet to a salar �eld.The Hamiltonian for suh a system an be desribed byHint = "xd�dt ; (I.96)where � is a salar �eld and "2=2 is the \visosity". We take thermal-exitatione�ets of the �eld � into aount and neglet the e�et of zero point vauumutuations. Then, in the \high temperature limit" the position representation ofthe density matrix �(x; x0) evolves asd�dt = � i�h [H; �℄� (x� x0)( ��x � ��x0 )�� 2mkBT�h2 (x� x0)2�: (I.97)H is the Hamiltonian for the system. , m, kB; and T are the relaxation onstant,mass of the partile, the Boltzman onstant, and temperature, respetively. Eqn.(I.97) is obtained by solving the Shrodinger equation for a partile in a �eldand traing over the environment (i.e., �eld) suh as in Eqn. (I.95). The �rstterm (i.e., von Neumann equation) desribes the reversible lassial evolution ofthe expeted value of an observable that has a lassial ounterpart. The seondterm is the relaxation or dissipation term. It is responsible for the derease of theaverage momentum or energy loss due to the interation with the salar �eld. Therelaxation term is proportional to the relaxation onstant  = �=2m, where � isthe visosity. The last term is the \deoherene" term. Below we will explain it



22in more detail by an example.For our purposes the e�et of the last term on the oherene of quantumsuperposition states is the greatest interest. Now we will briey desribe the e�etof this term on a quantum superposition of two spatially separated wavepaketsby studying the o�-diagonal elements of the density matrix.Consider a oherent quantum superposition of two Gaussian wavefun-tions separated by �x, �(x) = [�+(x) + ��(x)℄=p2; (I.98)where ��(x) are de�ned as��(x) = hxj�i � e�(x��x)2=(2Æ)2 : (I.99)If the wavepakets are widely separated (i.e., �x� Æ), the density matrix�(x; x0) = �(x)��(x0) has four peaks on the xx0plane. Those peaks whih areentered on the line x = x0 form the diagonal elements. O�-diagonal peaks (orelements) lie in the two other quadrants on the line x = �x0 passes. The amplitudesof these o�-diagonal elements desribe how oherent is the superposition state. Iftheir amplitudes are large enough then the partile is in a highly oherent quantumsuperposition. If their amplitudes are zero, however, it an be regarded as alassial probability distribution with an equal probability of �nding the partilein either of the loations of the Gaussian wavepakets.The deoherene term (i.e., last term) in Eqn. (I.97) has little e�eton the diagonal peaks, but it largely a�ets the o�-diagonal peaks. Note thatdeoherene is proportional to (x�x0)2, whih is approximately equal to the squareof the separation (�x)2: The time sale for the deoherene an be given as�D ' 1  �DB�x !2 = �R  �h�xp2mkBT !2 ; (I.100)where �DB = �h=p2mkBT is the de Broglie wavelength and �R = 1= is the re-



23laxation time. For marosopi objets deoherene time is typially muh lessthan the relaxation time, �D � �R. For mirosopi systems, however, the deo-herene time is relatively long. For an eletron (me = 10�27kg), for example, thedeoherene time an be muh larger than other relevant time sales.There are two roles of deoherene in quantum information proessing. Itinvalidates the quantum superposition priniple and therefore negates the potentialpower of quantum omputers by turning them into lassial ones at best. But, onthe other hand, it is also a neessary ingredient for quantum information proessingto ahieve quantum measurement.In the last deade deoherene was studied experimentally in many phys-ial systems by several groups and the results on�rmed the thoretial tenets. Inpartiular, Brune, Harohe, Raimond, and their oworkers in Frane manipulatedeletromagneti �elds in the mirowave region into Shr�odinger at-like superpo-sition states using Rb atoms and they investigated the ensuing loss of quantumoherene. Sine then the group upgraded their equipment to grow \bigger andbetter" ats. They have very reently reported the observation of step-by-stepquantum state ollapse by non-destrutively measuring the photon number of a�eld stored in a avity using atoms.



Chapter II
Quantum Computation andCommuniation

Most of the material in this hapter is visited by Nielsen and Chuang inmore depth in Ref. [2℄. Therefore, for more details of the onepts introdued hereand for many helpful referenes please see this exellent introdution to \quantumomputation and quantum information".II.A Quantum Logi GatesQuantum logi gates perform manipulation of quantum information fromone form into another. Imagine a physial proess whih onverts the j0i state intothe j1i state, and vie versa. Although this physial proess an be employed toimplement a lassial NOT gate (only non-trivial single bit logi gate) it is insuÆientas a quantum logi gate. The analogous quantum NOT gate has to operate not onlyon lassial states but also on their quantum superpositions �j0i+ �j1i in a linearmanner. This linear behaviour is the general property of quantum meahanis.The matrix representation of the NOT gate an be given as
24
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X = 264 0 11 0 375 : (II.1)If we represent an arbitrary single qubit in the vetor form264 �� 375 ; (II.2)with the upper element orresponding to the probability amplitude for j0i and thelower one the probability amplitude for j1i; then the operation of the quantum NOTgate an be desribed as X 264 �� 375 = 264 �� 375 : (II.3)Single qubit quantum gates U , in general, an be desribed by two by twounitary matries, that is UU y = I. Note that the normalization ondition requiresj�j2 + j�j2 = j�0j2 + j� 0j2 = 1; (II.4)where �0 and � 0 orrespond to the output of the quantum logi gate. Unitarityguarantees the normalization ondition.In ontrast to the lassial gates, there are many non-trivial single qubitgates. Some important ones are Pauli X, Y, Z gates and Hadamard gate. Z gate, forexample, transforms j1i into �j1i (seond olumn below) while it leaves j0i (�rstolumn) unhanged. Two by two Pauli matries for these gates areX � 264 0 11 0 375 ; Y � 264 0 �ii 0 375 ; Z � 264 1 00 �1 375 : (II.5)The Hadamard gate reates an equal superposition from an input state j0i or j1i.It transforms j0i state into (j0i+ j1i)=p2 and j1i into (j0i � j1i)=p2:H = 1p2 264 1 11 �1 375 : (II.6)



26A single qubit aj0i+ bj1i an be represented as a point (�; �) on the unitsphere, alled the Bloh sphere, where a = os(�=2) and b = ei� sin(�=2) and thevetor (os� sin �; sin� sin �; os �) is alled the Bloh vetor.An arbitrary single qubit gate an be deomposed into a produt of tworotations and a global phase shift, that isei� 264 e�i�=2 00 ei�=2 375 264 os 2 � sin 2sin 2 os 2 375 : (II.7)An important lassial theoretial result is that any funtion on multiplebits an be omputed by using NAND gates alone. Therefore the NAND gate is auniversal gate. In ontrast to lassial omputation, any multiple qubit logi gatemay be omposed from CNOT and single qubit gates. Single qubit gates an befurther approximated to arbitrary auray using the Hadamard, phase, and �=8gates. Matries for the phase and �=8 gates, respetively, areS = 264 1 00 i 375 ; T = 264 1 00 ei�=4 375 : (II.8)CNOT gate has two inputs: ontrol and target qubits. If the ontrol qubitis in the j1i state, the target qubit is ipped, whereas it is left unhanged whenthe ontrol qubit is in j0i state, that isjA;Bi ! jA;A� Bi; (II.9)where � is addition modulo two, whih is exatly how XOR gate operates. Similarto single qubit gates, CNOT gate is also a unitary gate to onserve probability.II.B Quantum CiruitsQuantum iruits are useful as models of quantum proesses suh as om-putation, ommuniation, and even quantum noise. A simple quantum iruitwhih swaps the states of qubits an be onstruted by integrating three CNOT



27gates properly. In this quantum iruit the following ations take plae sequen-tially:ja; bi ! ja; a�bi ! ja�(a�b); a�bi = jb; a�bi ! jb; (a�b)�bi = jb; ai: (II.10)Measurement is an important part of quantum iruits. It onverts theinput qubit j	i = �j0i + �j1i into one of the lassial bits M probabilistially.M an be 0 with probability j�j2 and 1 with probability j�j2. Measurement isrepresented by a \meter" symbol in quantum iruits.Classially we an opy a bit using a lassial CNOT gate suh thatjx; 0i 7! jx; x� 0i = jx; xi: (II.11)Suppose we try to opy an unknown qubit j	i = aj0i + bj1i in the same mannerusing quantum CNOT gate, that is(aj0i+ bj1i)j0i = aj00i+ bj10i ! aj00i+ bj11i: (II.12)A suessful quantum opying iruit should, however, generatej	ij	i = a2j00i+ abj01i+ abj10i+ b2j11i: (II.13)Therefore, quantum CNOT gate annot produe the opy of an unknown quantumstate unless ab = 0. This is known as the \no-loning theorem".II.C Quantum EntanglementQuantum entanglement is a new type of resoure for information theorythat di�ers vastly from the traditional resoures in lassial information theory. Ageneral theory of quantum entanglement has still not been ompleted, despite someenouraging progress in the �eld. Understanding the di�erene between quantummehanis and the lassial world is ruial for quantum information proessing to



28harvest its potential power in omputing and ommuniations. Quantum entan-glement is one ompelling example of this di�erene.In our lassial world when we speak of an objet we assume that itsphysial properties exist independently of observation. Quantum mehanially,however, an unobserved partile does not possess physial properties that existindependently of observation.Consider, for example, the spin singlet, a two qubit entangled state,j	i = j01i � j10ip2 : (II.14)Suppose we measure the spin along the ~v axis on both qubits. When the measure-ment yields +1 on the �rst qubit, then the measurement on the seond qubit willgive �1, and vie versa, regardless of the ~v axis we hose. It is simple to showwhy this anti-orrelation is independent of the measurement axis. Suppose thatjai and jbi are the eigenstates of the spin. Then we an express j0i and j1i statesin Eqn. (II.13) as j0i = �jai+ �jbi (II.15)j1i = jai+ Æjbi; (II.16)where �, �, , and Æ are omplex numbers. Substituting Eqns. (II.15) and (II.16)into Eqn. (II.14) gives j01i � j10ip2 = (�Æ � �) jabi � jbaip2 : (II.17)Note that �Æ�� is nothing more than a global fator whih annot be observed.So it is lear that the anti-orrelation above is independent of measurement axis.Now by using the singlet state in Eqn. (II.14), we will show below thatquantum mehanial analysis is not onsistent with the ommon sense analysis.



29Imagine that Charlie sends a partile to Alie and another to Bob. Aliean measure the physial properties PQ and PR of her partile, while Bob is allowedto measure PS and PT for his own partile. Q and R are the objetive values of thephysial properties PQ and PR, respetively, that Alie an obtain. Similarly, Sand T orrespond to Bob's measurement. Suppose that Alie and Bob randomlybut simultaneously perform series of available measurements in their toolbox. Forsimpliity, we assume that all of these measurements reveal either +1 or �1.Now onsider the quantityQS +RS +RT �QT = (Q+ R)S + (R �Q)T: (II.18)Beause R, Q = �1, either (Q+R)S = 0 or (R�Q)T = 0. In both asesQS +RS +RT �QT = �2. Assume that initially (i.e., before the measurement)the system is in a state where Q = q, R = r, S = s; and T = t. Then, theexpetation valueE(QS +RS +RT +QT ) =Xqrst p(q; r; s; t)(qs+ rs+ rt� qt) �Xqrst 2p(q; r; s; t) = 2:(II.19)We an also express this asE(QS +RS +RT �QT ) = Xqrst p(q; r; s; t)qs+Xqrst p(q; r; s; t)rs+Xqrst p(q; r; s; t)rt�Xqrst p(q; r; s; t)qt= E(QS) + E(RS) + E(RT )� E(QT ): (II.20)Comparing Eqns. (II.19) and (II.20) gives the Bell inequalityE(QS) + E(RS) + E(RT )� E(QT ) � 2: (II.21)To �nd the expetation value, say QS, Alie measures PQ and Bob measures PS.Then they multiply their results. Alie and Bob perform this experiment a number



30of times and average over their sample.How about quantum systems? Consider, for example, the singlet state inEqn. (II.14). Charlie prepares this entangled state and passes eah of Alie andBob one of the two qubits. Having reeived their qubit, Alie and Bob measurethe following observablesQ = Z; R = X; S = �Z �Xp2 ; T = Z �Xp2 : (II.22)The quantum expetation values for these obsevables an be found ashQSi = hRSi = hRT i = 1p2; hQT i = � 1p2 ; (II.23)hene hQSi+ hRSi+ hRT i � hQT i = 2p2: (II.24)Note that Eqn. (II.24) does not satisfy the Bell inequality in Eqn. (II.21). Itseems that at least one of the two assumptions we made does not hold in quantummehanis:1. Physial properties PQ, PR; PS, and PT have de�nite values Q, R, S, and Twhih exist independent of observation.2. Alie performing her measurement does not a�et the result of Bob's mea-surement.The �rst assumption is sometimes known as realism, while the seond is knownas loality. Bell's inequality tells us that entanglement is a fundamentally newresoure whih may open up a new world of possibilities unimaginable with lassialinformation. Teleportation, superdense oding, quantum ommuniations may beonly the tip of an ieberg.



31II.D Quantum TeleportationSuppose that Alie and Bob share an Einstein-Podolsky-Rosen (EPR)pair (i.e., an entangled two-qubit Bell state) at two distant loations. Alie wouldlike to send Bob a qubit j	i: Neither Alie nor Bob knows the state of the qubitand Alie an only send a lassial message. How an she ahieve this task?Alie interats the qubit j	i with her half of the EPR pair and thenmeasures the resultant qubits in her possession. She obtains one of four possiblelassial results: 00, 01, 10, and 11. One she sends the outome to Bob, hereovers the qubit j	i by doing one of the four operations on the qubit in hispossession.We an express the whole state as a tensor produt of the unknown statej	i = �j0i+ �j1i and the EPR pair j�00i = (j00i+ j11i)=p2 that Alie and Bobuse j	0i = 1p2[�j0i(j00i+ j11i) + �j1i(j00i+ j11i)℄: (II.25)Assume that the �rst two qubits belong to Alie and the last qubit belongs to Bob.Alie �rst ats on her qubits by CNOT gate, obtainingj	1i = 1p2[�j0i(j00i+ j11i) + �j1i(j10i+ j01i)℄: (II.26)Then she performs Hadamard operation on her �rst qubit, obtainingj	2i = 12[�(j0i+ j1i)(j00i+ j11i) + �(j0i � j1i)(j10i+ j01i)℄: (II.27)We an reexpress Eqn. (II.27) asj	3i = 12[j00i(�j0i+�j1i)+j01i(�j1i+�j0i)+j10i(�j0i��j1i)+j11i(�j1i��j0i)℄:(II.28)



32Remember that the �rst two qubits are Alie's and the third is Bob's. Therefore,given the result of Alie's measurements, Bob's qubit ollapses into one of thefollowing states: 00 7! j	3(00)i � �j0i+ �j1i (II.29)01 7! j	3(01)i � �j1i+ �j0i (II.30)10 7! j	3(10)i � �j0i � �j1i (II.31)11 7! j	3(11)i � �j1i � �j0i: (II.32)Then, in order for Bob to reover the state j	i he performs the operationZM1XM2 on his half of the EPR pair, where M1 and M2 are the lassial bits thatAlie obtains from her measurements and sends to Bob. For example, if Aliemeasures M1 = 1 and M2 = 0, then Bob has to apply Z gate to the qubit in hispossession to reover the original unknown state j	i = �j0i+ �j1i.Quantum teleportation an be used to build noise-resistant quantum logigates and is intimately onneted with quantum error-orreting odes.II.E Quantum SimulationsA dynamial system an be simulated eÆiently, if it an be desribedeÆiently by some di�erential equations suh as the eletromagneti vetor waveequation, ~r � ~r ~E = �0�0�2 ~E�t2 ; (II.33)or the di�usion equation,



33~r2 = 1a2 � �t ; (II.34)to name a very few. The dynamial behaviour of many simple quantum systems,however, is desribed by Shr�odinger's equation (�h is absorbed into H),i ddt j i = Hj i; (II.35)whih in the position representation an be given asi ��t (x) = "� 12m �2�x2 + V (x)# (x): (II.36)Eqn. (II.36) is similar to the di�usion Eqn. (II.34). The diÆulty is not insimulating Shr�odinger's equation. The key hallenge in simulating quantum sys-tems is the exponential number of di�erential equations, whih must be solved, asthe number of qubits inrease. The simulation of n qubits involves 2n equations.Therefore, lassial simulation of quantum systems is not feasible for many phys-ially interesting quantum systems, suh as the Hubbard and Ising models, andmany others.In most physial systems we an write the Hamiltonian for a system of npartiles as a summation over many loal Hamiltonians whih usually involve onlynearest neighbor interations: H = LXk=1Hk: (II.37)Most interations deay rapidly with inreasing distane or energy di�erene.Therefore, Hk ats on at most a onstant  number of partiles and L = poly(n).It is in general diÆult to ompute the evolution operator e�iHt, but we an ap-proximate e�iHkt using eÆient quantum iruits, sine it only ats on a smallsubsystem. The problem, however, is that [Hj; Hk℄ 6= 0 for most interations, andtherefore e�iHt 6= Qk e�iHkt:



34Then, how an we simulate those quantum systems? We an approxi-mate e�iHt by using one of the following methods with �t suh that the error isaeptable: ei(A+B)�t = eiA�teiB�t +O(�t2); (II.38)ei(A+B)�t = eiA�t=2eiB�teiA�t=2 +O(�t3); (II.39)or the Baker-Campbell-Hausdor� formula,e(A+B)�t = eA�teB�te� 12 [A;B℄�t2 +O(�t3): (II.40)Suppose that we have a Hamiltonian of the form in Eqn. (II.37) ating onan N -dimensional system and our initial state at time t = 0 is j 0i:We would liketo simulate the system to �nd the state j tf i at time tf with a positive aurayÆ, suh that jh ~ (tf )je�iHtf j 0ij2 � 1� Æ: (II.41)A simple algorithm that is given below for this simulation requires O[poly(1=Æ)℄steps:1. j ~ 0i; j = 0: (initialization)2. ! j ~ j+1i = U�tj ~ ji (iterative update)3. !j = j + 1; goto 2 until j�t � tf (loop)4. !j ~ (tf )i = j ~ ji. (�nal result)U�t in the above algorithm is the quantum iruit for eah iterative step that anbe approximated as one of those given in Eqns. (II.38)-(II.40).



35Although we desribed above the quantum simulation proedure for Hamil-tonians that are sums of loal interations, eÆient quantum simulations are pos-sible even for Hamiltonians that at on all or nearly all parts of the total system.One suh form of a Hamiltonian isH = nOk=1�k(k); (II.42)where �k(k) is a Pauli matrix [or identity for (k) = 0℄ ating on the kth qubit,(k) 2 f0; 1; 2; 3g speifying one of fI;X; Y; Zg.



Chapter III
Inspiring Tehnologies

In this hapter we review the reent ahievements and hallenges in av-ity QED and linear optial approahes to quantum information proessing andquantum omputing based on \a quantum information siene and tehnologyroadmap" developed in 2004 sponsored by ARDA and other government sponsors.Aomplishments in these areas are ritial to photoni rystal based fault-tolerantand salable arhitetures for quantum omputers and networks. For more infor-mation about the reent reports and referenes please onsult Refs. [6-7℄.III.A Cavity Quantum EletrodynamisAtomi, photoni, and motional qubits form the three major qubits foravity quantum eletrodynamis (QED). Photoni qubits in avity QED manifestthemselves as exitations of a avity or ying qubits that esape from it. In theontext of quantum information proessing avity QED refers to oherent intera-tion of light with material, suh as the interation of single photons and movingor trapped atoms and as well as semiondutor quantum dots in high �nesse av-ities. Cavity QED also o�ers nonlinear photon-photon interation in a avity. Toahieve oherent dynamis between a single photon and an atom, the ombinedsystem should operate in the strong oupling regime; that is, the spontaneous
36



37emission rate of the atom and the deay rate of the avity must be smaller thanthe atom-photon interation to start the Rabi osillations. Strong oupling anbe ahieved in a high-Q avity with low mode volume. Some experimental groupshave aomplished this hallenging task over the last two deades.Using highly exited energy states of Rydberg atoms the strong ou-pling regime is ahieved experimentally in mirowave avities. These experimentsdemonstrate some of the leanest entanglements. The strong oupling limit is alsoahieved experimentally using neutral atoms in optial avities.Single-qubit rotations in avity QED an be ahieved with high �delity.Several photon-photon and atom-atom gates have been proposed. Atom-atom gateexperiments have been performed in mirowave regime. Over 90% suess rate iswithin reah in urrent experiments. In avity QED many atom-atom and photon-photon gates an be adapted to atom-photon entanglements. Using this idea manytwo-qubit quantum logi operations, atom-atom, atom-photon, and photon-photonentanglements are proposed and some proof-of-priniple experiments have beenperformed at various labs. These ahievements suggest that salable avity QEDarhitetures may be possible. Cavity QED systems amount to distributed om-puting where individual nodes are interonneted by optial �ber or waveguidebased quantum ommuniation hannels.More uniquely, avity QED approah is also studied to build single ormultiple photon soures as well as to implement simple quantum networks. CavityQED systems are espeially interesting for quantum information proessing pur-poses to intra-onvert atomi and photoni qubits. For a networkable quantumomputer the ability to intraonvert stationary and ying qubits and transmissionof the latter faithfully between the spei�ed nodes through �bers or other meansare needed. There has not been suÆient proof of priniple for networkability ofavity QED systems either, despite the potentially viable solutions that have beenproposed. Mapping atomi qubits to ying photoni qubits is one of the strongestpotentials of avity QED.



38Qubit spei� measurement apability of avity QED tehnique has alsoahieved suÆient proof of priniple. Individual neutral atoms have been detetedin a state sensitive manner. Additionally, avity QED provides exellent singleatom detetion.Long-lived hyper�ne states of neutral atoms are available for storing quan-tum information. Cavity QED quantum omputing has good ability to initializethe hyper�ne state of qubits by optial pumping tehniques in atomi physis.Despite promising ahivements in state initialization and measurement, however,there has not been suÆient proof of priniple in salability of the system withwell-haraterized qubits, deoherene times, and universal set of quantum gates.Creation of an arbitrary qubit, two-qubit operations, and generation andharaterization of Bell and three-qubit GHZ states require further experimentalwork. There have been some preliminary experimental demonstrations for prepa-ration and readout of qubits, implementation of oherent two-qubit quantum logioperations, muh longer qubit deoherene time than two-qubit gate operationtimes, prodution of GHZ entangled states in mirowave avity QED systems,quantum proess and state tomography for two qubits, two-qubit deoherene freesubspae, and two-qubit quantum algorithms.Major types of avity QED systems inlude Rydberg atoms in mirowaveavities, neutral atoms in optial avities, trapped ion avity QED, semiondutorquantum dot systems, solid state ion vaany systems, superonduting juntionsand avity systems, and neutral atom ensemble based avity QED systems.In avity QED deoherene time is, in general, muh longer than the gateoperation time. In ontrast to trapped ions, atomi oherene for neutral atomsis somewhat less due to the Stark shifts indued by trapping potentials. Qubitoherene during quantum operations, on the other hand, depends on the strongoupling regime, that is, the geometry of the avity and internal states of the atoms.There have been signi�ant experimental demonstrations of single-qubit rotationsespeially Rabi op and high-Q transition of a qubit. Qubit oherene on the



39order of seonds to minutes has been realized. Single-qubit gates are not limitedby qubit deoherene. They are degraded by external noise in the environment ordriving �eld and di�erential Stark shift due to trapping potentials.The major obstale for the Rydberg atoms in mirowave avities is thatthese systems are not salable, beause stohasti atomi beams are used and theyhave to interset with the avities. Moreover, mirowave photons leaking from theavity annot be oupled to �ber and deteted eÆiently, although this an besuesfully ahieved in the optial regime.In ontrast to Rydberg atoms in mirowave avities, the main obstale forneutral atoms in optial avities is to inorporate salable trapping geometries withmagneti and optial potentials, whih are inompatible with low mode volume ofthe avities, while preserving the strong oupling regime and ompat size. Trap-ping and delivering single atoms in one-dimensional arrays has been establishedusing atom onveyors. There is, however, trade-o� between small mode volumefor strong oupling and inorporating an array of atoms inside the avity. Further-more, long-range dipole-dipole interations annot be implemented in a ontrolledmanner. There have been no experimental demonstrations on three and more qubitoperations (other than GHZ states) suh as repetitive error orretion and fault-tolerant quantum ontrol of a single logial qubit.To sum up, speial strengths of avity QED are its well-known theoryand abilities for interonversion between stationary and ying qubits, deterministisingle and entangled photon soures, and distributed quantum omputing. Thereare also some unknowns and weaknesses. The role of atomi motion degrees offreedom during gate operations is not well understood. New tehniques to loalizeand ontrol Rydberg atoms under strong oupling need to be developed. Otheremerging avity tehnologies suh as photoni rystal and whispering gallery modemay lead to stronger oupling regime and hene better performane.The next important steps in the �eld may be demonstrations of determin-



40isti high quality single photon and entangled photon pair soures, deterministientanglement between atoms and photons in optial avity, distributed entangle-ment over di�erent avity QED systems, and system salability.III.B Linear OptisOptial manipulations of qubits led to many suessful experimental re-alizations in quantum information tehnology whih inlude quantum ryptogra-phy, �rst realization of multipartile entanglement, quantum state and proesstomography, teleportation, deoherene free subspaes, and some simple quantumalgorithms.Photon-photon oupling in existing materials is extremely small. How-ever, reent advanes in slow light and stopped light may overome this diÆulty.It has also been shown in the Knill, Laamme, Milburn (KLM) sheme that deter-ministi single photon soures, and highly eÆient single photon detetors are suf-�ient to realize quantum omputing using only linear optial omponents. Someauthors suggested simpli�ations and modi�ations to the original sheme. Themain hallenge is the requirement to produe entangled anilla states, beausemore than 99% detetor eÆieny is needed. Therefore, generation of entangledstates an play a key role in optial quantum omputing. In addition to KLMsheme, other shemes without single photon soures are also proposed.There has been a suÆient proof of priniple in optial quantum omput-ing for deoherene times muh longer than gate operation times. Single qubit op-erations typially take less than a pioseond. Two-qubit gate times depend on theteleportation protool. Gates on demand have not yet been demonstrated. Typi-ally these gates would operate three order of magnitude slower (i.e., nanoseonds)than single qubit ones. Although the oupling of optial qubits to the thermal en-vironment is low, photons are lost in the system. The main soures of deohereneor error are interferometri stability, both spatial and temporal mode mathing,



41photon loss, and detetor eÆieny. If gates are realized in the form of optialouplers or planar integrated iruits, mode mathing and interferometri stabilitywould be less problemati, but then the oupling of qubits to these devies mustbe optimized.In optial quantum omputing systems, potentially viable approaheshave been proposed for salability with well-haraterized qubits, initializationof the qubits, universal set of quantum gates, and qubit-spei� measurements.Qubits in the KLM sheme are represented by the oupation of one ofthe modes of a pair of optial modes (suh as polarization modes), whih is alleddual-rail representation. Some other shemes use a single mode where qubits areenoded by oherent amplitudes of the same optial mode.Initialization of qubits in optial quantum omputing requires fast, reli-able, and on-demand (periodi) single photon soures. They must generate one andonly one photon and demonstrate interferene between two single photon pulsesusing Hong, Ou, Mandel (HOM) interferometer.Single qubit operations are ahieved by linear optial elements suh asbeam splitters, phase shifters, and polarization rotators. Teleportation gates, how-ever, require very fast eletro-opti ontrol or photon storage. This is also relevantto onventional eletro-optial swithing tehnologies. Although no prior entan-glement on demand has been yet demonstrated, it is useful for error-orretionodes and to redue the gate omplexity substantialy. In the long term, integratedoptial devies and elementary interferometer modules need to be developed to re-plae urrent bulky devies. For example, planar optial waveguides and photonibandgap based devies integrated with single photon soures an be used to buildmore ompat and robust quantum iruits.Regarding the networkability of linear optial quantum omputing andommuniations systems, the ability to transmit ying qubits between spei�edloations has ahieved suÆient proof of priniple. Good mode-mathing is re-quired to ouple free-spae or optial �ber photons to quantum iruits. Photoni



42rystals an also be used as quantum interonnets to faithfully transmit photoniqubits inside the hip. However, interonverting stationary and ying qubits havenot been suÆiently demonstrated.There have been suÆient experimental demonstrations in single-qubitoperations, quantum state tomography for one and two qubits and proess to-mography for single qubit, two-qubit deoherene free subspae, and two-qubitquantum algorithms suh as Deutsh-Josza, Grover, and quantum Baker's mapalgorithms. Although they are not salable, these systems allow to inorporateand test various error avoidane and orretion tehniques. Further improvementrequires good single photon detetors and soures.Regarding single-qubit operations, Rabi ops of a qubit and deoherenetimes muh longer than Rabi osillation have been realized experimentally. Singlephoton gates require only a beam splitter with variable amplitude reetivity.Huge numbers of logi operations an be performed before dephasing or photonloss beomes a problem. In dual rail polarization enoding, single qubit rotationan be easily implemented. Similarly, polarization qubits an be transformed withessentially no deoherene. Basi photon storage has also been demonstrated inlinear optial approahes to quantum omputing.Creation of a qubit, implementation of oherent two-qubit logi oper-ations, prodution and haraterization of Bell states, deoherene times muhlonger than two-qubit gate times, prodution of three-qubit GHZ state, and trans-fer of quantum information (suh as teleportation, entanglement swapping, multi-ple swap operations) do not have suÆient experimental demonstrations.Preparation and readout of single photon states using spontaneous para-metri down onversion and post-seletion have been demonstrated. Preision statetomography has been realized. The �rst eletrially driven single photon souresbased on Coulomb blokade in a p-n juntion have been demonstrated. Promisingresults using quantum dots have been reported. Independently generated singlephotons from a quantum dot were demonstrated to have HOM interferene. How-



43ever, the probability of obtaining more than a single photon in quantum dots isstill high. Single nitrogen vaanies in diamond manifest photon antibunhing,but olletion eÆieny and bandwidth make it not appealing for linear optialquantum omputing. Some avity QED tehniques have also been reported us-ing single atoms in a high-�nesse avity, but the outoupling eÆieny in thesesystems is very low. Single photon detetors with eÆienies of 88% have beendemonstrated. They are apable of distinguishing inident photon number. Su-peronduting detetors are exellent to resolve photon number, but the detetioneÆieny is very low. Suggestions for single photon detetors with 99% detetioneÆieny and photon number resolving apability have been reported based onoupling to atomi systems. Similar shemes for photoni quantum memories havebeen proposed.A nonuniversal two-qubit gate based on spontaneous parametri downonversion and post-seletion has been partially ahieved. Independently produeddownonverted photons were demonstrated to violate Bell inequality. Produtionand generation of Bell states and GHZ states using spontaneous parametri down-onversion and post-seletion have been demonstrated, but the major hallengeis to make these proess on demand without post-seletion. This requires single-photon soures or entanglement-on-demand soures.No experimental demonstrations of maximally entangled states, quan-tum state and proess tomography, deoherene free subspaes, quantum error-orreting odes, and quantum logi operations with fault-tolerant preision withthree or more qubits have been performed.It is diÆult to mode-math and stabilize many multiply-nested interfer-ometers. Linear optial quantum omputing is diretly ompatible with quantumommuniations and a large sale integration may be available using planar inte-grated iruits or photoni bandgap tehnology, if it is shown to be more robustand stable. This will require a onsiderable amount of lassial eletromagnetimodeling. Beause the information is enoded in optial modes, there may be no



44need to onvert the qubits to onnet the all-optial quantum iruits to ommu-niation systems. If the quantum ommuniation will rely on teleommuniationswavelength 1:55�m, then photoni qubits will either need to be at the same wave-length or will need to be onverted to 1:55�m to avoid propagation loss. Whetheror not the quantum proessor is realized optially, optial qubits seem to be themost attrative qubits for interonneting di�erent parts of the quantum proes-sor as well as for distributed quantum omputing to onnet distant nodes. HigheÆieny wavelength onverters are needed to math the optimal proessing wave-length with the optimal transmission wavelength. We need to develop the designrules for saling-up integrated devies.



Chapter IV
Gate-Level Design: QuantumEntanglement and LogiOperations

The superiority of quantum omputing over lassial omputation forproblems with solutions based on the quantum Fourier transform, as well as searhand (quantum) simulation problems has attrated inreasing attention over the lastdeade. Despite promising developments in theory, however, progress in physialrealization of quantum iruits, algorithms, and ommuniation systems to datehas been extremely hallenging. Major model physial systems inlude photonsand nonlinear optial media, avity QED devies, ion traps, and nulear magnetiresonane (NMR) with moleules, quantum dots, superonduting gates, and spinsin semiondutors [2℄.Quantum logi gates and quantum entanglement onstitute two buildingbloks, among others, of more sophistiated quantum iruits and ommuniationprotools. The latter also allows us to test basi postulates of quantum mehanis.In this hapter we propose an alternative method for reating entangle-ment and implementing ertain quantum logi gates based on single mode PC mi-roavities. Our sheme requires high-Q PC miroavities with Q-fator of around45



46108, and where atoms an freely propagate through the onneted void regions.We onsider 3D PCs for our purposes, sine they are more attrative, ompared to2D PC slabs, for the realization of suh high-Q miroavities. Although the fab-riation of these high-Q 3D PC miroavities is urrently hallenging, espeiallyin the optial frequenies, mainly due to the redued size of the rystals at thosewavelengths; in the mirowave or millimeter-wave regime, where our proposed PCavity operates (� 50GHz), the fabriation proess is relatively easier thanks tothe rather marosopi nature of the rystals at that sale. Thus, simple mahin-ing or rapid prototyping methods an be exploited to build them [8℄. It is forthis reason that the initial experiments on PCs were performed in the mirowaveregion. Subsequently, muh of the researh onentrated on the infrared or theoptial regime of the spetrum beause of numerous appliations whih demandteleommuniations wavelengths and/or miniaturization. In the less studied butalso less tehnially hallenging mirowave region the Q-fator is limited by theintrinsi loss of the material [9, 10℄. Using an appropriate low-loss dieletri suhas sapphire, for example, it has been predited by Yablonovith [9℄ that a Q-fatorof more than 109 should indeed experimentally be ahievable. M. Qi, et al. [11℄have furthermore predited that using interferene, imprint or X-ray lithographyombined with sanning-eletron-beam-lithography, their layer-by-layer approahould allow the manufaturing of large area (several square entimeters) PCs whihare low-ost, optial or even visible spetrum versions of 3D PC avities similar toours.IV.A Theory of Photoni Crystal Gate Intera-tionsWe �rst explore the possibility of mutually entangling two Rb atomsby exploiting their interation, mediated by a single defet mode on�ned to athree-dimensional PC avity. We then desribe various logi gates that an be



47implemented using the same interation. We ahieve this in three steps: analysisof a single mode avity (i) in a generi 3D PC, (ii) in a spei� 2D PC and(iii) ultimately in a 3D version of the 2D PC of (ii). We assume that the defetfrequeny is resonant with the Rb atoms. Beause the atoms are moving, thetime-dependent Hamiltonian (Jaynes-Cummings Model) for this interation in thedipole and rotating wave approximations isH(t) = �h$2 Xj �jz + �h$�y� + �hXj [Gj(t)�j+� + h::℄ (IV.1)where the summation is over two atoms, A and B, ! is the resonant frequeny,�z is the z-omponent of the Pauli spin operator and �� are atomi raising andlowering operators. � and �y are photon destrution and onstrution operators,respetively. The time-dependent oupling parameters an be expressed as [12℄Gj(t) = 
0fj(t) os(�j) (IV.2)where 
0 is the peak atomi Rabi frequeny over the defet mode and fj(t) isthe spatial pro�le of the defet state observed by the atom j at time t. �j isthe angle between the atomi dipole moment vetor, �jeg, for atom j and themode polarization at the atom loation. For the rest of the paper os �A = 1, andp = os �B will be a parameter that we adjust to e�et desired interations betweenatoms A and B.We ignore the resonant dipole-dipole interation (RDDI), beause theatoms have their transition frequenies lose to the enter of a wide photoni bandgap (PBG) and the distane between them is always suÆiently large that RDDIe�et is not signi�ant [13, 14℄.Initially we prepare one of the atoms, A, in the exited state and theavity is left in its vauum state, soj	(0)i = j100i; (IV.3)where the tensor fators desribe the states of atom A, atom B, and the avity,suessively.



48The PC should be designed to allow the atoms to go through the defet.This an be ahieved by injeting atoms through the void regions of a PC with adefet state of aeptor type. Sine the spontaneous emission of a photon from theatoms is suppressed in the periodi region of the rystal, no signi�ant interationours outside the avity. When the atoms enter the avity, the interation be-tween the atoms is enhaned by the single mode avity. This atom-photon-atominteration allows us to design an entanglement proess between atoms.Given the initial state, Eq. (IV.3), the state of the system at time tshould be in the formj	(t)i = a(t)j100i+ b(t)j010i+ (t)j001i (IV.4)to satisfy the probability and energy onservation. We will show analytially thatthe amplitudes at time t an be expressed in terms of the oupling parameters andthe veloities of the atoms.We an write the Shr�odinger equation for the time-evolution operator inthe form [1℄ i�h ��tU(t; t0) = H(t)U(t; t0): (IV.5)In the basis fj100i; j010i; j001ig, the matrix elements of the Hamiltonian, Eq.(IV.1), in the rotating wave approximation, areH11 = H12 = H21 = H22 = H33 = 0 (IV.6)H13 = H31 = �hGA(t) (IV.7)H23 = H32 = �hGB(t): (IV.8)The Hamiltonian operators H(t) and H(t0) ommute for t0 6= t, if GB(t)is a onstant multiple p of GA(t). This ondition an be satis�ed easily by theappropriate orientation of atomi dieletri moment of the inoming atoms withrespet to the eletri �eld in Eq. (IV.2). Then the formal solution to Eq. (IV.5)beomes U(t; t0) = exp[� i�h Z tt0 d�H(�)℄ = exp(� i�hI); (IV.9)



49where I is de�ned as the integral of the Hamiltonian operator. By expanding theexponential, Eq. (IV.9), we obtainU(t; t0) = 1 + (�i�h )I + 12!(�i�h )2I2 + � � �+ ( 1n! )(�i�h )nIn + � � � (IV.10)Multiplying Eq. (IV.10) by the initial state j100i from the right and omparingwith Eq. (IV.4) givesa(t) = 1 +G2A Xn=1(�1)n 12n! (G2A +G2B)n�1 (IV.11)b(t) = GAGB Xn=1(�1)n 12n! (G2A +G2B)n�1 (IV.12)(t) = iGA Xn=1(�1)n 1(2n� 1)!(G2A +G2B)n�1; (IV.13)where we have de�ned Gj = Z tt0 Gj(�)d�: (IV.14)Reognizing the Taylor series for sine and osine allows us to rewrite equations(IV.11){(IV.13) as a(t) = 1 + G2AG2A +G2B [os(G2A +G2B)1=2 � 1℄ (IV.15)b(t) = GAGBG2A +G2B [os(G2A +G2B)1=2 � 1℄ (IV.16)(t) = �i GA(G2A +G2B)1=2 sin(G2A +G2B)1=2: (IV.17)For a single initially exited atom, A, passing aross the avity we an set GB = 0in equations (IV.15){(IV.17), whih gives the same result as Eq. (IV.15) of Ref.[13℄. The exat solution for the time-independent problem of N idential twolevel atoms with a resonant single mode quantized �eld given in Ref. [16℄ ould behelpful to generalize our results to the N -atom ase, see for example Ref. [13℄.Absent a rigorous alulation of the defet mode in the three-dimensionalPC, whih we postpone until xIV.C, let us �rst assume a generi spatial pro�le for



50the mode, whih osillates and deays exponentially. Thus, fj(t) in Eq. (IV.2) anbe expressed as [12℄fj(t) = exp(�jVjt� Lj=Rdef) os[�l (Vjt� L)℄; (IV.18)where Vj, L, Rdef , and l are the veloity of atom j, the total path length of theatoms, the defet radius, and the lattie onstant of the PC, respetively.We hoose the veloities of the atoms to be the same, Vj = V , with150m=s < V < 650m=s, a typial veloity range appropriate for both experimentsand our alulations. Setting the atoms to have the same veloity has two imme-diate advantages: First, it makes the Hamiltonians at di�erent times ommute,sine the oupling parameters of the atoms di�er by only a onstant fator [see Eq.(IV.2)℄, and thus greatly simpli�es the analysis. Seond, it synhronizes the atoms,providing ylial readout that ould also be synhronized with the yle time ofa quantum omputer [17℄. These features are not present in previous studies [12,13, 18℄.

Figure IV.1: Probability amplitudes as a funtion of the veloity and p. Surfaes(a) a(V; p) and (b) b(V; p) (or a(V; p)) if the initial state is j100i (or j010i). ()Surfae b(V; p), if the system is initially prepared in the j010i state.It was shown by E. Hagley, et al. [19℄ in 1997 that atomi veloity reso-lution ould be as small as 0:4m=s in experiments, whih means that our proposedentangler and logi gates are rather robust and insensitive to experimental veloity



51utuations. In fat, with our design the veloity resolution of the atomi pairsan be further relaxed up to slightly more than �1m=s, inreasing the eÆienyof the system at the expense of less than 1% deviation in the output probabilityamplitudes.Using equations (IV.15){(IV.18) we an express the asymptoti proba-bility amplitudes, a(t) and b(t), as funtions of V and p. Fig. IV.1a illustratesa(V; p), when the initial state is j100i. The result for b(V; p) (or a(V; p)), if theinitial state is j100i (or j010i), is displayed in Fig. IV.1b. Note that Fig. IV.1billustrates two probability amplitudes simultaneously. This is a onsequene ofthe symmetry in Eq. (IV.16). To ompute these surfaes we used the asymptoti(onstant) values of the Gj, whih desribe the aumulated atom-avity ouplingduring the interation time [(see Eq. (IV.14)℄. One this interation eases toour as the atoms leave the avity, those asymptoti values of the Gj are reahed,and thus must be used in equations (IV.15)-(IV.17).Fig. IV.2a illustrates a slie from the surfae in Fig. IV.1a where theveloity of the atoms is V = 433m=s. Note that we obtain the maximally entangledstate, j	10i �= j10i+ j01ip2 ; (IV.19)up to an overall phase, �1, when the veloity of the atoms, V = 433m=s, and theinitial state is j100i. Similarly if we keep the veloities of the atoms the same butset the atom B to be exited initially (i.e., the initial state is j010i), we obtain theslie in Fig. IV.2b and thus the maximally entangled state,j	01i �= j10i � j01ip2 ; (IV.20)up to the same overall phase fator as in Eq. (IV.19). [In equations (IV.19) and(IV.20), and in the following, we omit the avity state in the kets, sine it fatorsout and does not ontribute to the logi operations with whih we are onerned.℄Fig. IV.3 shows the oupling parameters alulated in the referene frameof the atoms as a funtion of time, Gj(t), with the hosen values of 
0, L, Rdef ,
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Figure IV.2: Slies from eah surfae in Fig. IV.1. (a) Probability amplitudesa(V; p)|red|and b(V; p)|dashed blue|with V = 433m=s. The entangled state,Eq. (IV.19), is obtained at p = 0:414. (b) Probability amplitudes a(V; p)|dashedblue|and b(V; p)|red|with the same veloity, V = 433m=s. The entangledstate, Eq. (IV.20), is observed at the same value, p = 0:414.



53and l. The solid red urve and blue dashed urve orrespond to atoms A and B,respetively. The total interation time is less than 20ns.The probabilities ja(t)j2, jb(t)j2 and j(t)j2 from equations (IV.15){(IV.17)are graphed in Fig. IV.4. Fig. IV.4a shows the evolution of the probabilities whenthe initial state is j100i. Note that the avity is disentangled from the atoms andwe end up with the �nal state, Eq. (IV.19). On the other hand, if the initial stateis j010i, the time evolution of the probabilities is illustrated in Fig. IV.4b. Notethat the �nal state in this setting beomes Eq. (IV.20), sine the avity is againdisentangled. From equations (IV.19) and (IV.20) it is lear that the quantumsystem we have desribed not only entangles the atoms but also operates as adual-rail Hadamard gate [2℄, up to an overall phase.

Figure IV.3: Coupling parameters in the referene frame of moving atoms withveloities V = 433m=s at p = 0:414. 
0 = 11�109Hz, ! = 2:4�1015Hz, l = 1:6�! ,L = 10l, Rdef = l [12℄. Atom A experienes the oupling parameter shown withthe red solid urve and atom B the one shown with dashed blue.
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Figure IV.4: Time evolution of the probabilities showing the �nal entanglementwhen the initial state is (a) j100i and (b) j010i.
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Figure IV.5: Time evolution of the probabilities that leads to a dual-rail NOT(Pauli �x) logi operation when the initial state is (a) j100i and (b) j010i.



56Using the same quantum system one an also design a dual-rail NOT gateunder ertain onditions. If we set VA = VB = 565m=s, for example, we obtain thefollowing logial transformations, up to an unimportant global phase fator, whihde�ne a dual-rail NOT gate (see Fig. IV.5):j10i 7! j01i (IV.21)j01i 7! j10i: (IV.22)Furthermore, using the Hamiltonian, Eq. (IV.1), it an be shown that aj00i initial state only gains a deterministi phase fator of �1 in the interationpiture. One the onditions, equations (IV.21) and (IV.22), are satis�ed, a j11iinitial state is transformed into itself up to the same global phase as the statesin equations (IV.21) and (IV.22). Thus, inluding these as possible initial states,our dual-rail NOT gate also operates as a SWAP gate up to the relative phase ofthe j00i state. Similar analysis shows that a dual-rail Z gate is also possible forertain parameter hoies.IV.B Two-dimensional Emulating DesignIn the preeding analysis we have assumed the generi form, Eq. (IV.18),for the spatial pro�le of the defet mode in order to demonstrate that, in prini-ple, PC miroavities an be used as entanglers, and more spei�ally, as ertainlogi gates. In the following we apply these ideas to two- and �nally real three-dimensional photoni rystal miroavity designs, to show that implementationsof these quantum devies are indeed possible in these photoni systems. As theauthors of Ref. [13℄ observe, however, \a rigorous alulation of the eletromag-neti �eld in the presene of a defet in a 3D photoni rystal an be a diÆulttask". In the following we address this task systematially.First we onsider a 2D photoni rystal design with a triangular lattie ofdieletri rods with dieletri onstant of 12 (i.e., silion) in Fig. IV.6. The radius
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Figure IV.6: (a) A single-mode miroavity in a 2D photoni rystal with a trian-gular lattie (see the text for details). (b) The orresponding eletri �eld spatialpro�le for the transverse-magneti (TM) mode allowed in the avity.of the rods is 0:175l, where l is the lattie onstant. The symmetry is broken inthe enter by introduing a defet with redued rod-radius of 0:071l to form themiroavity of our quantum system. We assume that the atoms A and B travelalong the dashed green lines shown in Fig. IV.6a, although any two of the obviouspaths shown by dashed lines (or any void regions with line of sight to the avity)work as well.We should note that the 2D avity is only designed for preliminary pur-poses. Sine it assumes in�nite height, it annot be intended for atual implemen-tation of our entangler or logi operations. However, the real 3D PC, desribedin xIV.C, is suÆiently losely related to the 2D avity designed in this setionthat the mode pro�les along the 1D atomi trajetories in the 2D avity overlapto a great extent with those of the 3D avity. Regardless of the lak of vertialon�nement in this preliminary 2D design, designing it �rst redues the extensiveomputational resoures needed in more sophistiated 3D logi designs.



58In order to �nd the probability amplitudes for the atoms as a funtionof time while travelling through the rystal, we need to alulate the ouplingparameters in Eq. (IV.14) and substitute them in equations (IV.15){(IV.17). Onewe obtain the probability amplitudes, we an demonstrate entanglement reationand design logi gates as before. We also note that the quality fator of the avityshould be high enough that the interation time (i.e., the logi operation time) ismuh less than the photon lifetime in the avity. Below we show that typial logioperations take 50�s for the Hadamard gate and 30�s for the NOT or the SWAPgate. Thus a quality fator of 108 should be suÆient for reliable gate operationsin real 3D PC miroavities. Sine our preliminary 2D PC avity is not realisti,however, only an in-plane Q-fator of the same value is taken into onsiderationto math the mode pro�les along the atomi trajetories in both 2D and 3D. Toahieve this mathing the Q-fator of the avity ould be inreased exponentiallywith additional periods of rods [20℄ in Fig. IV.6a. We observe, however, that thespatial pro�le of the mode in Fig. IV.6b does not hange signi�antly (and henedegrade the gate) after a ertain number of periods. Thus, the exat number ofperiods required for a quality fator of 108 is not essential to demonstrate our maingoal in this paper, namely that suh logi operations and entanglement reationare indeed possible in these photoni rystal strutures.In our generi pro�le, Eq. (IV.18), the oupling parameter is assumedto be real. For generality, however, we must allow it to be a omplex parameter.Thus, the interation part of the Hamiltonian, Eq. (IV.1), for a single-atom avityinteration an be written as [21-24℄HI = �hjg(r)j(�y�� + ��+); (IV.23)by inorporating a omplex oupling parameter g(r) into Eq. (IV.1).In a photoni rystal we an express the atom-�eld oupling parameter[21, 25℄ at the position of atom j, asg(rj) = g0	(rj) os(�j) (IV.24)



59where g0 and 	(rj) are de�ned as:g0 � �eg�h ( �h!2"0"mVmode )1=2 (IV.25)	(rj) � E(rj)=jE(rm)j: (IV.26)rm denotes the position in the dieletri where "(r)jE(r)j2 is maximum and "m isde�ned as the dieletri onstant at that point. The avity mode volume, Vmode,is given by Vmode = R R R "(r)jE(r)j2dr"mjE(rm)j2 : (IV.27)

Figure IV.7: Normalized oupling parameters (i.e., divided by g0) in the refereneframe of moving atoms with veloities V = 374m=s at p = 0:414, where g0 is foundto be 2:765MHz. Blue and red urves orrespond to normalized oupling strengthsfor atoms A and B, respetively.Using the blok iterative plane-wave expansion method [26℄ we found thenormalized frequeny of the avity mode shown in Fig. IV.6b to be 0:3733=l.By setting l = 2:202mm, we tune the resonant wavelength to 5:9mm. At thiswavelength, �eg for the Rb atom is 2 � 10�26Cm [12℄. Sine we observe that theenergy density is onentrated in the enter of the avity, "m in equations (IV.25)



60and (IV.27) beomes 12. On the other hand, os(�j) in Eq. (IV.24) an be safelyassumed onstant for eah atom, beause our avity mode is a transverse-magneti(TM) mode and its eletri �eld polarization diretion an always be assumed tohave a onstant angle with the atomi dipole moment vetor, �egj. We an omputethe oupling parameters as funtions of time in the referene frame of the movingatoms, as shown in Fig. IV.7. The tails of the oupling parameter funtions donot ontribute signi�antly to the results due to exponential deay away from theavity. With these settings Fig. IV.8 demonstrates an entangler whih operatesas a dual-rail Hadamard gate. If the initial state is j10i (i.e., atom A is exited),we end up with state j	10i [see Eq. (IV.19) above and Fig. IV.8a℄. If atom B isinitially exited (i.e., the initial state is j01i), however, we obtain the state j	01i,up to an unimportant global phase fator of �1 [see Eq. (IV.20) above and Fig.IV.8b℄ as the output of the logi gate.In order to get the system to at as a dual-rail NOT gate, we simplyset the veloities of the atoms to be VA = VB = 490m=s. The evolution of theprobability amplitudes for the atoms is shown in Fig. IV.9. When the exitation isinitially at atom A (or at atom B), it is transferred to atom B (or atom A). Notethat we also get an unimportant phase fator of �1 in the output. Furthermore, asexplained above, the input states j00i (or j11i) are not transformed into di�erentstates, and only j00i gains a di�erent phase fator of +1. If this phase problemwith the j00i state were solved, the system ould also be exploited as a SWAPgate.IV.C Three-dimensional DesignAlthough the implementation of logi gates in 2D photoni rystals lookspromising, in reality we need 3D devies. The 2D analysis is useful, however,for reduing the substantial omputation required for analyzing more realisti 3D
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Figure IV.8: Probability amplitudes for entangled atoms reated by a dual-railHadamard operation in the 2D photoni rystal (see Fig. IV.6) (a) when atom A isinitially in the exited state and (b) when atom B is initially in the exited state.a(t), b(t) and (t) are probability amplitudes for the states j100i, j010i and j001i,respetively.
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Figure IV.9: Probability amplitudes for atom A and B under the dual-rail NOToperation in the 2D photoni rystal when initially (a) atom A is exited only and(b) atom B is exited only.



63strutures, beause there is great similarity between the modes allowed in these2D rystals and in their arefully hosen 3D ounterparts (see Fig. IV.10), whihwe desribe next.To engineer logi operations in 3D photoni rystals, we employ the stru-ture [11, 27, 28℄ shown in Fig. IV.10a. The 3D photoni rystal we have hosenhas various advantages over others [29-31℄: emulation of 2D properties in 3D [11,28℄, polarization of the modes, and simpli�ed design and simulation. It onsistsof alternating layers of a triangular lattie of air holes and a triangular lattie ofdieletri rods, where the enters of the holes are staked along the [111℄ diretionof the fae-entered ubi (f) lattie. The parameters for the rystal are given inthe aption of Fig. IV.10a. Using the blok iterative plane-wave expansion method[26℄, we alulate that the struture exhibits a 3D band gap of over 20%, arossthe frequeny range of 0:507=l{0:623=l.As in the 2D geometry, we introdue a defet by reduing the radius of arod inside the rystal as shown in Fig. IV.10b. Using the superell method we anompute that this avity supports only a single mode with a frequeny of 0:539=l.Setting l = 3:18mm tunes the avity mode to the atomi transition wavelength of5:9mm. Thus we an design a 3D single-mode avity for our system to operate asthe desired quantum logi gates.The spatial pro�le for the eletri �eld of the mode is shown in Figs.IV.10 and IV.10d. Note that it has a similar pro�le to its 2D ounterpart in Fig.IV.6b, where the energy density is also maximized in the enter of the avity. Itis this similarity whih simpli�es our design and analysis for the 3D ase.In our designs, although the maximum �eld intensity is onentrated inhigh-dieletri regions, the resultant atom-avity interation is suÆient to ahieveour goals. Cavities maximizing the �eld intensity in low-index regions, whereatoms an strongly interat with the mode, ould lead to higher performane.However, from the design and implementation perspetive we �nd the former moreappropriate. Some of the drawbaks of the latter an be stated as follows: If we
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Figure IV.10: (a) Top view of the 3D photoni rystal with f lattie. It onsistsof alternating layers of a triangular lattie of air holes and a triangular lattie ofdieletri rods (for details of the struture, see Refs. [11, 27, 28℄). The nearest-neighbor spaing within either a hole or rod layer is 1p2 l, where l is the f lattieonstant. The hole and rod radii are 0:293l and 0:124l, respetively. The thik-nesses of a hole layer and a rod layer are taken to be 0:225l and 0:354l, respetively.Silion is assumed as the high-index material of dieletri onstant 12. (b) Hori-zontal ross-setion of the rystal. Dashed lines show the obvious paths atoms antravel. In our simulations we assumed the path shown by the dashed yellow line.A defet is introdued by reduing the radius of the middle rod down to 0:050l tohold a single mode in the avity. The () real part and (d) imaginary part of theeletri-�eld of the TM mode allowed in the avity at a partiular instant in timewith the frequeny of 0:539=l. The imaginary part is half a period later.



65remove the dieletri ompletely in the enter of the defet to maximize the �eldintensity in air, then the defet frequeny would be lose to the band edge, whihwould thus strengthen the otherwise negligible RDDI mehanism [13℄. If we use aholey lattie, on the other hand, emulating the 2D PBG inside a 3D rystal andsimultaneously allowing the free passage of atoms, without interfering with thedieletri bakbone of the 3D rystal, would ompliate the design onsiderably.Nevertheless, further optimization of the proposed struture ould be possible.We an quantify [28℄ the TM-polarization of the mode in a plane as:P � R d2rjEz(!; r)j2R d2rjE(!; r)j2 : (IV.28)We ompute that P is almost 0:99 in the defet plane shown in Fig. IV.10b forthe spatial pro�le exhibited in Figs. IV.10 and IV.10d. Thus it is safe to assumea TM polarized mode in the system Hamiltonian, beause this doesn't a�et theprobability amplitudes signi�antly in the mirowave regime, for the parameterswe have hosen.The oupling parameters as funtion of time in the referene frame of theatoms are shown in Fig. IV.11, where the veloities of the atoms are both set toV = 353m=s, with p = 0:414.In Fig. IV.12 we demonstrate the 3D version of our 2D dual-rail Hadamardgate, whih also ats as an atomi entangler. Just as in the 2D ase, if the initialexitation is on atom A, the resulting state is j	10i [see Eq. (IV.19) above℄ asshown in Fig. IV.12a, while if it is on atom B the output state is j	01i [see Eq.(IV.20) above℄ as displayed in Fig. IV.12b, up to an unimportant global phase of�1. The interation between atom A and B is mediated by the photoni qubitwhen the parameters are set orretly.We set the veloity of both atoms to VA = VB = 459m=s to obtain adual-rail NOT gate in the 3D photoni rystal, up to an unimportant global phasefator, �1. The probability amplitude evolution of the atoms is displayed in Fig.IV.13.
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Figure IV.11: Coupling parameters in the referene frame of the moving atoms withboth veloities V = 353m=s, and p = 0:414, where g0 is found to be 2:899MHz.Blue and red urves orrespond to normalized oupling strengths for atoms A andB, respetively.The exitation of the exited atom is transferred to the ground stateatom with the help of the photoni qubit allowed in the designed avity. Note thatbeause of the symmetry of the problem, the b(t)s in Figs. IV.5a, IV.9a and IV.13aare indeed approximately the same as the a(t)s of Figs. IV.5b, IV.9b and IV.13b,respetively. Furthermore, for the same reason as in the 2D ase, analyzed in theprevious setion, our 3D dual-rail NOT gate also operates as a SWAP gate up tosome deterministi phase. That is,j00i 7! �j00i (IV.29)j01i 7! j10i (IV.30)j10i 7! j01i (IV.31)j11i 7! j11i: (IV.32)Note also that the values of the veloities of the atoms, and g0, for the



67

Figure IV.12: Probability amplitudes for the entangled atoms under dual-railHadamard operation in the 3D photoni rystal (see Fig. IV.10) when (a) atomA is initially in the exited state and (b) atom B is initially in the exited state.a(t), b(t) and (t) are probability amplitudes for the states j100i, j010i and j001i,respetively.
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Figure IV.13: Probability amplitudes for atoms A and B under the dual-rail NOToperation in the 3D photoni rystal when initially (a) only atom A is exited and(b) only atom B is exited.



692D logi gates are within 10% of those in the 3D gates. This is a onsequene ofthe fat that the loalized modes allowed in 2D and 3D avities have more than90% overlap in their spatial pro�les [28℄. Thus our results are also onsistent withRef. [28℄ and justify �rst investigating the 2D ase.Portions of this hapter were presented in the paper: D. �O. G�uney andD. A. Meyer, \Creation of entanglement and implementation of quantum logi gateoperations using a three-dimensional photoni rystal single-mode avity", J. Opt.So. Am. B 24, 283 (2007).



Chapter V
Ciruit-Level Design:Teleportation and Readout

It has been shown theoretially by Bennett [32℄, et al. that quantumteleportation of an unknown state an be ahieved using Bell states. Sine thenseveral theoretial and experimental shemes have been proposed, whih inludeimplementation in optial, NMR, and avity QED systems [2, 33-35℄. Inspired bythe reent paper of S.-B. Zheng [33℄, in this letter we propose a photoni rystal(PC) based avity QED implementation of the sheme desribed therein, as well asthe integration of the devie with an atomi readout iruit to detet the teleportedstate. Underlying our interest in Zheng's proposal is the vision of more sophis-tiated large-sale photoni rystal integration for ompat, robust, and salablequantum omputation tehnology. Zheng's teleportation protool is only ondi-tional (i.e., the suess of the protool is onditioned on a spei� measurementresult ontrary to unonditional teleportation), but the relative simpliity of theproposed sheme from the perspetive of design and implementation is attrativefor an initial step toward that vision. Compared to other avity QED based tele-portation shemes, it does not require a two-qubit Bell-state measurement andthus an be implemented, in priniple, using only two atoms interating with a70



71single mode avity. Briey, atom B, initially prepared in the exited state, is �rstentangled with an initially empty avity. Then atom A, whose state is to be tele-ported, interats with the avity. Subsequent detetion of atom A in the exitedstate ollapses atom B to the initial state of atom A.V.A Design Spei�ationsAn illustration of the photoni rystal hip that we propose is shown inFig. V.1, where a single mode avity is integrated with two parallel waveguides.The distanes between various omponents of the iruit and the sizes are hosenin suh a way that the possible soures of error due to the design of the PC areminimized. To ahieve suÆiently strong and oherent atom-avity interation,negligibly small ouplings between the avity and the waveguide, and separatedosillatory waveguide modes we set the following size and distane parameters inour design: The atual size of the hip, whih is designed in this hapter, is largerthan that of the illustration. The atual height (i.e., vertial) is 17p3a2 and thewidth (i.e., horizontal) is 79a, where a is the lattie onstant. x1, x2, x3, x4 and yare 9a, 43a, 18a, 9a, and 4p3a, respetively. Beause of its large size, we design thehip in a 2D lattie to redue the high omputational ost of 3D rystal analysis.This is, however, a good approximation due to the ability of 2D photoni rystaldefet modes to emulate those of 3D photoni rystals. This emulation issue isonsidered in detail in Ref. [28℄ and its advantages for photoni rystal basedquantum logi gate design are disussed in Chapter IV (also in Ref. [36℄), wherewe have used exatly the same lattie parameters. Thus, our 2D PC strutureis hosen to emulate its 3D ounterpart and is based on a triangular lattie ofsilion rods with dieletri onstant of 12 and lattie onstant of 2:202mm for theresonant atom-avity interation at 51GHz. The radii of the rods and the defetsare 0:175a and 0:071a, respetively. The trajetories of the atoms through the PCare depited by the di�erently dashed lines in Fig. V.1.



72

Figure V.1: Illustration of the proposed photoni rystal quantum iruit. Thisillustration is not to sale.Inorporated with detetors, the avity part of the hip operates as ateleportation iruit and the parallel waveguides at as a readout iruit to detetthe teleported atomi state (see Fig. V.1). Below we use the terms teleportationiruit (TC) and readout iruit (RC), respetively, to refer those two integratedphotoni rystal iruits. We hoose the width of the former to be 43a and thelatter to be 36a in order to avoid unwanted oupling between the two iruits. Inthe �rst part of this hapter we desribe the teleportation mehanism and in theseond part we explain how to detet the atomi state [37-40℄ within our designedPC quantum iruit (PCQC).V.B Teleportation CiruitThe TC involves the interation of two Rb atoms with a resonant high-Q(assumed to be larger than 108 to prevent avity deoherene) single mode avityand the detetion of one of the atoms using a detetor. The total Hamiltonian(Jaynes-Cummings Model) for the TC under the dipole and rotating wave approx-imations is given by Chapter IV:Hatom�avity = �h!2 Xj �jz + �h!�y� + �hXj jg(rj)j(�y�j� + ��j+) (V.1)



73where the summation is arried over two atoms, A and B, ! is the resonant fre-queny, �z is the z-omponent of the Pauli spin operator and �� are the atomiraising and lowering operators. � and �y are the annihilation and reation oper-ators, respetively. g(rj) is the atom-avity oupling parameter at the position ofatom j and an be written asg(rj) = g0E(rj)=jE(rm)j: (V.2)g0 denotes the vauum Rabi frequeny and rm is the position in the dieletri wherethe eletri �eld energy density is maximum. Note that we impliitly assume inEq. (V.2) that the atomi dipole moments, �j10, of the atoms are aligned with thephoton polarization.In the �rst stage of the onditional teleportation protool, atom B (whosetrajetory is horizontal in Fig. V.1), initially in the exited state j1iB, traversesthe avity, whih is initially in the vauum state j0i, with veloity VB. Sine atthis stage atom A, whose state is to be teleported, is not in play, index j only takesvalue B in Eq. (V.1). The omposite state for atom B and the avity at time tthen an be written asj	(t)i = osGB(t)j1iBj0i � isinGB(t)j0iBj1i; (V.3)where Gj(t) � Z tt0 jg(rj)jd�: (V.4)The avity we have designed in this hapter supports a transverse mag-neti (TM) polarized monopole mode as illustrated in Fig. V.1. Based on theblok-iterative plane wave expansion method [26℄, with 32 grid points per a, we�nd the normalized frequeny of the avity mode to be 0:3733=a. By settinga = 2:202mm, we tune the resonant wavelength to 5:9mm. At this wavelength,the atomi dipole moment for the Rb atom is taken to be 2� 10�26Cm. [36℄Using these parameters, we obtain GB(t) �= 9�=4 at time t1 = 51:6�s at18a from the left edge of the TC, if VB is set to 767:7m=s, and hene atom-avity
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Figure V.2: (a) The time-dependent atom-avity oupling parameter and (b) theevolution of the probability amplitudes of states j1iBj0i (initially at 1; shown inblue online) and �ij0iBj1i (initially at 0; shown in pink online) in Eq. (V.3), asatom B travels aross the avity.



75entanglement in Eq. (V.3). In other words, this asymptoti (onstant) value ofGB(t) is the neessary ondition for the ompletion of the entanglement proess [seeEq. (V.3)℄ and an be satis�ed only under ertain irumstanes at the end of theatom-avity interation. As atom B travels aross the avity, the time-dependentatom-avity oupling parameter and the evolution of the probability amplitudesof states j1iBj0i (initially at 1; shown in blue online) and �ij0iBj1i (initially at 0;shown in pink online) in Eq. (V.3) are displayed in Fig. V.2. In our alulationswe neglet the insigni�ant e�et of the mode tail on the probability amplitudesof the entangled state|less than 1% beyond 18a. Another even less signi�antsoure of error in our design is the oupling of the waveguides in the RC to theavity [41, 42℄, whih is simply irumvented by keeping x2 in Fig. V.1 suÆientlylarge (i.e., 43a).Having entangled atom B and the avity, the seond stage of the on-ditional teleportation protool is to injet atom A (whose trajetory is diagonalin Fig. V.1), whih is initially (i.e., at time t1) in an arbitrary (or an unknown)quantum state, j�iA = 0j0iA + 1j1iA: (V.5)Thus at time t1, the state of the whole system is written asj'(t1)i �= 1p2(0j0iA + 1j1iA)(j1iBj0i � ij0iBj1i): (V.6)One atom A arrives at the detetor, right before the detetion, say attime t1 + t2, the state of the whole has evolved intoj'(t1 + t2)i �= 1p2f0j0iAj1iBj0i � i0j0iB[osGA(t2)j0iAj1i � isinGA(t2)j1iAj0i℄+1j1iB[osGA(t2)j1iAj0i � isinGA(t2)j0iAj1i℄�i1j0iB[osp2GA(t2)j1iAj1i � isinp2GA(t2)j0iAj2i℄g; (V.7)whih would redue to Eq. (V.6) of Ref. [33℄, if jg(rj)j were spatially uniform inEq. (V.1).



76In the derivation of Eq. (V.7), the ontribution of jg(rB)j in Eq. (V.1) isnegleted, sine atom B is suÆiently far from the avity when atom A is injeted.At times lose to t1, although jg(rB)j � jg(rA)j, neither atom alone nor ombinedan start the Rabi osillation (see Chapter IV). On the other hand, as atom Aproeeds its oupling to the avity mode inreases, while the oupling of atom Bdereases. This means that the e�et of jg(rB)j beomes even less signi�ant fortimes greater than t1.The third stage of the onditional teleportation protool is the measure-ment of the state of atom A. If the result is j1iA, the ombined state of atom Band the avity beomes	(t1 + t2) �= �0sinGA(t2)j0iBj0i+ 1osGA(t2)j1iBj0i � i1osp2GA(t2)j0iBj1i[j0j2sin2GA(t2) + j1j2os2GA(t2) + j1j2os2p2GA(t2)℄1=2 :(V.8)The denominator in Eq. (V.8) is simply the norm of the unnormalized state in thenumerator. We obtain GA(t2) �= 7�=4 [i.e., the neessary ondition to be satis�edfor the ompletion of the teleportation proess, see Eq. (V.8)℄ in Eq. (V.8) if weset VA = 987m=s, and thus j�iB �= 0j0iB + 1j1iB: (V.9)That is, the initial arbitrary (or unknown) state of atom A has been teleportedto atom B, onditional on deteting atom A in state j1iA, whih ours withprobability 1=4. The time-dependent oupling parameter for atom A and theevolution of the probability amplitudes of states �0j0iBj0i (initially at 0; shownin pink online), 1j1iBj0i (dark urve initially at 1; shown in blue online), and�i1j0iBj1i (light urve initially at 1; shown in yellow online) for the unnormalizedstate (i.e., the numerator) in Eq. (V.8) are shown in Fig. V.3. Note that as timeelapses Eq. (V.8) transforms into Eq. (V.9). Note also that atom B arrives at 31aat time t1 + t2 (i.e., 88:9�s). After an additional distane of 12a, the fourth stageof our onditional teleportation and detetion protool begins as atom B entersthe RC at time t1 + t2 + t3 (i.e., 123:3�s). Next we study how to detet its state.



77

Figure V.3: (a) Time-dependent oupling parameter for atom A and (b) the evolu-tion of the probability amplitudes of states �0j0iBj0i (initially at 0; shown in pinkonline), 1j1iBj0i (dark urve initially at 1; shown in blue online), and �i1j0iBj1i(light urve initially at 1; shown in yellow online) for the unnormalized state (i.e.,numerator) in Eq. (V.8).



78V.C Readout CiruitWe an write the atom-maser Hamiltonian, under the dipole and rotatingwave approximations, as [43℄Hatom�maser = �h!2 �z + �h
(r)2 (ei!mt�� + e�i!mt�+) (V.10)where 
(r) = 2�10jE(r)j�h (V.11)is the Rabi frequeny and !m is the frequeny of the maser, whose polarization isalso mathed with the atomi dipole moment, �10, of the atom. In the following wewill �rst assume a onstant 
(r) = 
0 to simplify the explanation of the detetionmehanism, and then we will modify the analysis to apply to our proposed PCQC,where 
(r) is not onstant.Assume that atom B in state j�iB [see Eq. (V.9)℄ enters a uniform �eldregion at time t and interats during a time interval t4. Then its probabilityamplitudes at time t+ t4 an be omputed to be [4℄0(t + t4) = f[i os� sin(�t42 ) + os(�t42 )℄0 + i sin� sin(�t42 )ei!mt1gei!mt4=2;(V.12)1(t+ t4) = fi sin� sin(�t42 )e�i!mt0 + [�i os� sin(�t42 ) + os(�t42 )℄1ge�i!mt4=2:(V.13)where os�, sin�, and � are de�ned as follows.� � q(! � !m)2 + 
20; (V.14)os� � (! � !m)� ; (V.15)sin� � �
0� : (V.16)After this interation, atom B interats with a seond uniform �eld regionfor the same time interval t4 starting at time t + t4. The probability amplitudes,0(t+2t4) and 1(t+2t4), in this ase an be also found from equations (V.12) and(V.13) by replaing 0, 1, and t with 0(t+ t4), 1(t+ t4), and t+ t4, respetively.



79Note that one an also treat these two uniform �eld regions as a singleuniform �eld region with an interation time of 2t4. In this hapter, however, wealso intend to show that our RC has the potential to be an atomi interferometer,like a Ramsey interferometer [4℄. In order to hint how this ould work, we designtwo separate osillating �eld regions based on two parallel waveguides as disussedbelow. Implementation of a fully working interferometer, however, requires furtheronsideration.After atom B has interated with the two uniform �eld regions, we animpliitly write the �nal state of atom B at time t+ 2t4, before detetion asj�(t+ 2t4)iB �= (000 + 110)j0iB + (001 + 111)j1iB (V.17)where ij is the probability amplitude of the atom being in state jji at time t+ t4if it is initially prepared in state jii. For example if the atom is initially in statej1i then it evolves into 10j0i+ 11j1i at time t + t4.Having interated with both waveguides, atom B is �nally deteted byan ionization detetor, as shown in Fig. V.1. The probability of �nding it in theexited state isP1 = j0j2j01j2+j1j2j11j2+[(r)0 (r)1 +(i)0 (i)1 ℄2(01?11)(r)+[(r)0 (i)1 +(i)0 (r)1 ℄2(01?11)(i):(V.18)Supersripts (r) and (i) represent the real and imaginary part, respetively.We an simplify Eq. (V.18) by writing Eq. (V.9) in the formj�iB �= os(�=2)j0iB + sin(�=2)ei'j1iB (V.19)where we have impliitly set (r)0 = os(�=2), (i)0 = 0, (r)1 = sin(�=2) os', and(i)1 = sin(�=2) sin'.Then, at four di�erent � � !m � ! values we alulate j01j2, j11j2,2(01?11)(r), and 2(01?11)(i) diretly from the system parameters using Eqs. (V.12)and (V.13); and measure only P1 using �eld ionization detetor. Thus having ob-tained four equations, we an �nd j0j2, j1j2, [(r)0 (r)1 + (i)0 (i)1 ℄, [(r)0 (i)1 � (i)0 (r)1 ℄



80and hene j�iB. Note that, although we have only two unknowns in Eq. (V.19),it is onvenient to use four equations due to the form of Eq. (V.18). This demon-strates that one ould detet a teleported (or an arbitrary) unknown state with ourproposed devie, provided that P1 is measured by employing an atomi beam ofidentially prepared single atoms, sine multiple observations are neessary to esti-mate the probability. Sine the TC only has a 25 perent onditional suess rate,inoming atoms to the RC will not be idential. Thus if atom A of the relevantpair is not deteted in the exited state, the orresponding atom B measurementis disarded from the alulation of P1.

Figure V.4: The steady-state ross setion of the eletri �eld magnitude, for� = 0, along the path of atom B (see text).Finally, we desribe how to apply these ideas to our proposed PCQC.Remember that atom B in state j�iB enters the RC at time t1 + t2 + t3. Thesteady-state mode pro�les of the waveguides are alulated by the two-dimensional-�nite-di�erene-time-domain (2D-FDTD) method with disretizations of a13 anda13 p32 in the horizontal and vertial diretions, respetively. We have designed thewaveguides as oupled-avity-waveguides [44, 45℄ to allow the atoms suÆientlylarge void regions through whih to travel freely without a resonant-dipole-dipole-



81interation or the Casimir-Polder e�et (see Fig. V.1). The steady-state rosssetion of the eletri �eld magnitude, for � = 0, along the path of atom B isshown in Fig. V.4. At the steady state the oupling between the two parallelwaveguides [46-49℄ is not signi�ant.In our alulations we assume that atom B interats with two separatenonuniform waveguide modes of total width 36a, shown by the part of the urvein Fig. V.4 to the right of approximately 95mm (shown in pink online). In otherwords we trunated their tails (the part of the urve to the left of approximately95mm in Fig. V.4; shown in blue online), whih overlap with the avity mode. Thee�et of this trunation in our design is observed to be negligibly small. We haveobserved that the oupling of waveguide modes to the avity mode is less than theavity oupling to waveguides, whih does not a�et the probability amplitudes bymore than 0:6%.Sine there is no feedbak mehanism, as there is in the atom-avityinteration, the atom-waveguide interation an be desribed by a Marko� ap-proximation. In other words, when an atom emits a photon into the waveguide,the photon leaves the interation region immediately and annot at bak on theatom. Then the waveguides must be designed in suh a way that total rate of spon-taneous emission into the waveguide and the free-spae lossy modes is suÆientlylow as atom B traverses them. In our design onsidering the estimated e�etivetransverse ross setion of the orresponding three-dimensional waveguide modethe maximum probability of spontaneous emission for a given atom is estimatedto be on the order of 10�4 [50℄. Thus, it is safe to assume that the Bloh vetor ofatom B an be manipulated without being orrelated with the defet mode [51℄ ofthe waveguides.The total interation time with the parallel waveguides is also 2t4, as inthe uniform ase above, with t4 (i.e., 51:6�s) for eah. Note that, sine the Rabifrequeny, 
(r), is proportional to jE(r)j, the part of the urve in Fig. V.4 to theright of approximately 95mm (shown in pink online) also desribes the position
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Figure V.5: Calulated values of j01j2 (solid line; shown in green online), j11j2(`�'; shown in red online), 2(01?11)(r) (dotted line; shown in light blue online),2(01?11)(i) (`o'; shown in purple online), and to be measured value of P1 (`+';shown in dark blue online) (see text).dependene of the Rabi frequeny if multiplied by 2�10=�h. Thus the evolution ofthe teleported state, as it interats with the parallel waveguides, an be determinednumerially by exploiting equations (V.12) and (V.13) suessively, with t4 replaedwith the maximum tolerated time-step, whih is 44ns in our ase (the time for atomB to travel a=65).Thus, right before the detetion, the �nal state is j�(t1+ t2+ t3+2t4)iB,whih an be written in the form of Eq. (V.17). The probability of deteting atomB in the exited state is then given by Eq. (V.18), and following the same methodas in the uniform ase above, we an easily detet j�iB, the state output by TC.As an example, assume that the �nal state of the TC [see Eq. (V.19)℄ isj�iB = os(�=8)j0iB + sin(�=8)e�i�=6j1iB (V.20)



83The orresponding alulated values of j01j2 (solid line; shown in greenonline), j11j2 (`�'; shown in red online), 2(01?11)(r) (dotted line; shown in lightblue online), 2(01?11)(i) (`o'; shown in purple online), and the value of P1 (`+';shown in dark blue online), whih will be measured, are shown in Fig. V.5. Pikingfour di�erent values of �, we an easily determine that � = �=4 and ' = ��=6.V.D DisussionOur readout sheme does not require 100% detetion eÆieny. Finitedetetion eÆieny with a relatively larger atomi ensemble an lead to an arbi-trarily aurate result. For example, with a detetion eÆieny of 40% (as in Ref.[38℄), our detetion sheme gives about �4% error using the Poisson distribution(on�dene level 99%) in P1 out of 104 events. Inreasing the number of eventsto 105 redues the error to about �1% with the same on�dene level. Using thelatter number, we have estimated that the maximum error in the probability am-plitudes (i.e., (r)0 , (r)1 , and (i)1 ) is about 0:1; for most states the error is at leastan order of magnitude smaller.The total operation time in our iruit is 226:5�s ompared to the 30mslifetime of the Rb atoms, whih are prepared one at a time in a irular Rydbergstate with prinipal quantum number 50 (ground) or 51 (exited) [52℄.Note that we need a maser (as assumed in xV.C) or a oherent mirowavesoure operating around the atomi transition frequeny (i.e., 51GHz), whih al-lows measurements at four di�erent detunings of 10s of kHz as shown in Fig. V.5.We an ahieve this task using, for example, ontinuously tunable bakward waveosillators (BWO) whih an generate oherent, highly monohromati and linearlypolarized radiation [53℄. Minimum frequeny steps of 100Hz and frequeny stabil-ity of up to 10�11 an be obtained for BWOs, [54℄ using an external 5MHz signalfrom a rubidium standard. This would be more than suÆient for our purpose.Due to the eletromagneti salability of photoni rystals one ould also



84implement this devie in more ompat form in the optial regime. In this ase,however, the eletri �eld gradient and the momentum reoil of the atom wouldalso have to be analyzed. In the mirowave regime studied in this hapter, the smallmomentum reoil due to a mirowave photon does not ause external degrees offreedom (i.e., the position or momentum) of the atom to ouple with its internaldegrees of freedom (i.e., the ground or exited state).To implement our PCQC, one should also engineer the surfae states,whih reside at the air-photoni rystal interfaes. These surfae modes may alsobeome orrelated with the atoms exiting the rystal. These modes an be handled,however, by appropriate termination of the rystal [55-58℄.Portions of this hapter were presented in the paper: D. �O. G�uney andD. A. Meyer, \Integrated onditional teleportation and readout iruit based on aphotoni rystal single hip", J. Opt. So. Am. B 24, 391 (2007).



Chapter VI
Analog Design: OptoeletroniQuantum Simulation of KleinParadox

In 1968, Veselago [64℄ demonstrated that the refrative index (n) of amaterial should be negative when permittivity � and permeability � are simultane-ously negative. In his paper, Veselago alled suh materials left-handed materials(LHMs) and treated them purely formally, sine existed no suh material at thattime. Nonetheless, he gave a number of arguments as to how one should look forsuh materials. He pointed out how the Doppler e�et, the Cerenkov radiation,and even Snell's law are inverted. He also onsidered some questions related withthe physial realization of materials with � < 0 and � < 0.It has been reently demonstrated that an e�etive LHM, whih onsistsof periodi array of split ring resonators (SRRs) and ontinuous wires manifestsn < 0 for a ertain frequeny region in the mirowave regime, whih then leads toanomalous eletromagneti wave propagation [65-66℄. An experimental veri�ationof a negative index has been established by R. A. Shelby et al [67℄.A treatment of the refration of physial eletromagneti waves in newlydeveloped LHMs has been reently put forward by Valanju, et al. while raising85



86objetions about the previous interpretations of the wave refration phenomena inthese peuliar materials [68℄. However, it has been shown later that in an isotropinegative index medium (NIM), a modulated beam with �nite width exhibits neg-ative refration, while the modulation interferene fronts do not propagate notnormal to the group veloity [69℄. Refration of the eletromagneti waves in me-dia with negative index has also been veri�ed very reently by S. Foteinopoulou,et al. They exploited a photoni rystal struture, whih almost isotropially ex-hibits negative e�etive refrative index for ertain modes. They also explainedusing the �nite-di�erene time-domain (FDTD) method, why ausality and speedof light are not violated [70℄.In this hapter, we show how the wave propagation and refration in anisotropi NIM displays exatly the similar phenomena with that of a well knownquantum relativisti problem, whih is known as the Klein paradox. To aomplishthis, we will �rst underline some signi�ant results for the refration at the interfaebetween a positive refrative index material and e�etively LHM. We will defer theKlein paradox till xVI.B.Although one-dimensional (1D) sattering from a Klein step has beenonsidered in various publiations [71{73℄, to best of our knowledge suh a two-dimensional (2D) sattering from a semi-in�nite Klein step potential is treated �rsthere inspired by the works about its optial ounterpart, LHM [64, 68-70℄. It isamazing that extra one-dimension not only veri�es the Klein paradox existing inone dimension but also shows the negative refration of matter waves whih neverhas been reorded before. It is not the �rst time, however, the Klein paradox isshown to exist in Maxwell's equations for the problem of optial sattering fromexited targets [74℄.In xVI.C, we will note how the LHMs ould be used to simulate theproblems where the Klein paradox exists and vie versa. Our work highlightsriher possibilities of novel optial devies by alling attention to works, whih havealready been established in the �eld of relativisti quantum mehanis as well as



87alling attention for the searh of many other useful quantum mehanial potentialbarrier problems for various appliations in optis. The onverse is also true.Implemented or demonstrated optial devies and phenomena ould be analogproessors and motivating guides for the more abstrat quantum world, sine theoptial experiments are in general easier and heaper to realize physially thanhigh energy physis experiments. LHMs and photoni band gap (PBG) materials,whih are sometimes alled arti�ial semiondutors for light, are only two kindsof fruits among others harvested from this fertile optis-quantum �eld.VI.A Left Handed MaterialsFollowing the suggestions given in Refs. [64, 68-70℄ about wave propa-gation in the LHM, we assume the geometry shown in Fig. VI.1, to study waverefration at the interfae between two semi-in�nite layers of optial media.Wave vetor, KL (L denotes LHM), of the eletri �eld inident on thefrequeny dependent NIM from vauum makes an angle, �i, with the normal tothe boundary loated at z = 0. We assume the inident eletri �eld to be aplane wave and linearly polarized along the y-axis. Thus its wave vetor lies in thexz-plane. That is E(r; t) = ei(KL�r�!t); (VI.1)with unit amplitude. It an be shown by the phase mathing ondition and ausal-ity for the refrated wave that the transmitted wave vetor QL isQL = jKLjxx̂+ �qn2jKLj2 � jKLj2xẑ: (VI.2)� = +1 for the positive index medium and �1 for the NIM (or LHM) [68℄. Fromthe de�nition of group veloity for isotropi, low loss materials, the refrated beamhas the group veloity



88Vg = QLjQLj �nng ; (VI.3)where  is the light speed and ng is the group index, whih is by ausality alwaysgreater than unity [69℄. Thus the group veloity is always antiparallel to the phaseveloity of the refrated wave for � = �1. Sine the time-averaged energy uxhSi = huiVg [70℄, where hui is the time-averaged energy density, it is lear fromEqns. (VI.2) and (VI.3) and by ausality that the inident wave should undergonegative refration.

Figure VI.1: Negative refration of a beam of photons at the interfae between aPIM (z < 0) and a NIM (z > 0). The white arrows indiate the wavevetor for anarbitrary wave (KL) in the inident ux and its orresponding transmitted (QL)and reeted (K0L) wavevetor. The angle between the boundary normal and KLis �i. Field transmission (�L) and reetion (�L) oeÆients for NIM an bedetermined by mathing the eletri and magneti �elds at the interfae betweenpositive and NIM. That gives,



89�L = 2�jKLjz�jKLjz + jQLjz (VI.4)�L = �jKLjz � jQLjz�jKLjz + jQLjz : (VI.5)where � is the permeability of the NIM assuming that the eletromagneti wave isinident from a non-magneti material. Power transmission and reetion oeÆ-ients an be obtained from the average energy ux hSi = (=8�)<[E�H�℄. Thuswe have, respetively, TL = j�Lj2jQLjz�jKLjz ; (VI.6)RL = j�Lj2: (VI.7)It an be shown from Eq. (VI.2) that if the inident beam is a superposi-tion of two omponent waves with the same diretion of propagation but di�erentfrequenies, they are refrated at di�erent angles. This results in interferenefronts, whih are not normal to the group veloity. For example, following thesuggestions of D. R. Smith et al [69℄, if we have two �nite width omponent waves,the resultant interferene front exhibits sideways motion relative to the beam. Fur-ther from the interfae, in the NIM, these two omponent waves are suÆientlyseparated that no interferene pattern is observed.VI.B Klein ParadoxNow, we turn our attention to the Klein paradox. Although the nonrel-ativisti quantum mehanis of the sattering of a quantum partile is straight-forward, the quantum relativisti ase displays quite peuliar situation alled theKlein Paradox [72℄. In the following we disuss 2D sattering of a partile from a



90Klein step potential and onsider some of these peuliarities, whih inlude trans-mission through strong potential barrier, pair prodution, negative transmissionand negative refration.We onsider a spin-0 partile, whih is governed by the KG equation,[E� V (r)℄2j	i = (�2P2 +m24)j	i; (VI.8)where m is the mass of the partile. The problem is desribed in Fig. VI.2. Apartile on�ned to the xz-plane with energy E = (P 22 +m24)1=2 is inident ona potential barrier, at angle �i with the normal to the interfae. The potential,V (r), is assumed to be 0 on the inident side and it is desribed by a 2D Kleinstep potential, V (r) = V for z > 0.In the position representation, Eqn. (VI.8) beomesf[i�h�t � V (r)℄2 + 2�h2r2 �m24g	(r; t) = 0: (VI.9)For z < 0, we onsider a positive energy inoming wave of the form�(r; t) = ei(KK �r�Et=�h): (VI.10)Note that Eqn. (VI.10) is similar to Eqn. (VI.1) given for the y-polarized eletri�eld. We look for the solution of the form	(r) = �(�z)[e�iEt=�h(eiKK �r + �KeiK0K �r)℄ + �(z)�Ke�iEt=�heiQK �r: (VI.11)Substitution of Eqn. (VI.11) into Eqn. (VI.9) and satisfying the phase mathingondition yields E2 = 2�h2jKKj2 +m24; z < 0 (VI.12)2�h2jQKj2 = (E � V )2 �m24; z > 0: (VI.13)



91We an analyse Eqn. (VI.13) by onsidering three ases. If the potential V is weak,suh that it is less than E �m2, then jQKj has to be real. For the intermediatease, where E �m2 < V < E +m2; jQKj is purely imaginary, so the trasmitted�eld is damped.

Figure VI.2: Negative refration of a beam of spin-zero partiles at the boundaryof a strong potential, V , for z > 0. White arrows indiate wave vetors for an arbi-trary wave (KK) omponent in the inident ux and its orresponding transmitted(QK) and reeted (K0K) ounterparts. The wave vetor shown with red is notallowed due to the ausality and phase mathing onditions at the interfae. Thegreen arrows show the diretions of group (Vg) and phase (Vp) veloities, whihare antiparallel. The angle between KK and the normal to the interfae is �i.We onentrate on the strong potential ase, that is V > E +m2. Notethat we again have real jQKj. Even when the energy of the inident partile isless than the height of the potential, the transmitted partile doesn't neessarilyundergo any attenuation. This is a lassially (also in nonrelativisti quantummehanis) forbidden situation.The question thus naturally arises: What is the diretion of the momen-



92tum of the transmitted wave, QK, for the strong potential ase? Sine E(QK) =E(jQKj) in Eqn. (VI.13), for the group veloity of the transmitted wave we haveVg = dE(jQKj)djQKj = �hQKE � V : (VI.14)Regardless of Eqn. (VI.14), to satisfy the phase mathing ondition at the inter-fae, inoming wave in Eqn. (VI.10) should either follow white-path or red-path.Sine the group veloity is the veloity of the moving wave paket, if we allowwhite path it looks as if the transmitted wave paket ame in from positive-z side.This ontradits the ausality whih only allows an inoming wave paket fromnegative-z side. Thus, it is lear that QK in Eqn. (VI.14) should be diretedtoward the boundary as shown in Fig. VI.2.Sine the momentum, QK , of the transmitted wave is a funtion of theenergy of the inident partile E, we an write Eqn. (VI.13) in terms of its om-ponents as 2�h2jQKj2z = 2�h2jKKj2z � 2EV + V 2: (VI.15)Remember that we found jQK j to be real in the strong potential ase, where E < Vand we know that jQKj2x = jKKj2x is real. So we immediately onlude from Eqn.(VI.15) that jQK j2z an be real as well as purely imaginary, even though jQKjis real. Now we losely examine the ondition whih makes jQK jz either real orpurely imaginary. To ahieve that we de�ne the exess potential as�� � V � E �m2: (VI.16)If we substitute V in Eqn. (VI.16), into Eqn. (VI.15) we obtain2�h2jQK j2z = 2m2(��) + (��)2 � 2�h2jKKj2x: (VI.17)Sine �� is arbitrarily hosen, for a given inident partile with massm, it is interesting that the stronger the potential the more momentum transfer



93to the z-omponent of the transmitted wave ours without any damping. Aswe inrease the height of the potential step, keeping m and jKKjx the same, theangle of refration approahes zero. However, for the relatively weaker potentialsuh that 0 < �� < �m2 + (2�h2jKKj2x + m24)1=2, the transmitted wave isattenuated as it propagates through the Klein step. This is ontrary to lassialphysis. More interestingly it does not our in the 1D sattering from a strongpotential of the same kind, either. First, this ould be easily understood fromEqn. (VI.17) by setting jKKjx = 0, so that jQKjz never beomes purely imaginary.Seond, Eqn. (VI.17) also states that pair prodution in 2D sattering requiresan additional potential of �� = �m2 + (2�h2jKKj2x + m24)1=2 for given m andjKKjx, ompared to 1D sattering. Besides, in the resonant state of the Klein step,�� = �m2+(2�h2jKKj2x+m24)1=2, the inident wave is totally reeted withoutany damping inside the potential barrier.The expressions for �K and �K in Eqn. (VI.11) are determined by impos-ing the boundary onditions on 	(r) and �z	(r) at the interfae, z = 0. Thus weobtain �K = 2jKKjzjQK jz + jKKjz (VI.18)�K = jQKjz � jKKjzjQKjz + jKKjz : (VI.19)We �nd the transmission TK and reetion RK oeÆients from the probabilityurrent, whih is given by J = 12im(	?r	� 	r	?): (VI.20)If jQKjz is purely imaginary (i.e. relatively weaker strong potential), we getRK = j�K j2 = 1; TK = 0: (VI.21)



94This is the same result with the intermediate Klein step in 1D. If jQKjz is real,however, the oeÆients are TK = jQKjzj�K j2jKKjz (VI.22)RK = j�Kj2: (VI.23)Note that the probability is onserved at the expense of a negative transmissionoeÆient and a reetion oeÆient exeeding unity. This paradox an be re-solved by employing the notion of partile-antipartile pair prodution due to thestrong potential. The antipartiles reate a negative harged urrent moving rightinside the potential barrier, while the partiles are reeted and ombined withthe inident beam leading to a positively harged urrent moving to the left. Thisis the essene of the peuliarities in Eqn. (VI.22) and Eqn. (VI.23).VI.C Analog Quantum SimulationHaving presented the two problems, we realize that wave propagationand refration in the LHM is exatly the same with that of the matter waveinterating with the Klein step potential onsidered here. They both have reversedgroup and phase veloity and manifest negative refration. Moreover, we havemathematial expressions above, whih onnet these two problems to eah other,to help us simulate one with the other. The question we would like to address nowis how to simulate the Klein paradox using LHMs? Although this is possible undermany di�erent transformations, here, we only onsider the following transformationto simulate the Klein paradox. To be more preise in some results or to solveother spei� problems, similar but di�erent transformations based on the sameargument ould also be applied.We math the input and output (I/O) in the LHM ase to the I/O ofthe Klein ase, respetively, whih basially inlude mathing the inident and



95transmitted wavevetors in one ase with the other, as well as the phase veloityin both problems. Thus, Eqn. (VI.2) through Eqn. (VI.3) and Eqn. (VI.12)through Eqn. (VI.15) lead to the transformation given byE ! �h! (VI.24)V ! (jnj+ 1)�h! (VI.25)where n is the e�etive refrative index of LHM. Arrows should be understood inthis way: Left-hand side gives us the physial properties in the Klein problem, interms of the physial properties of the LHM problem on the right. However, thistransformation is only valid for V � E � m2 and jVgj ! , independent of anygroup index, whih is de�ned as ng � d(n!)d! : (VI.26)On the other hand, sine jQLjz is assumed to be real negative, �� > �m2 +(2�h2jKKj2x +m24)1=2 and lossless LHM are onsidered.Clearly, given a wave with angular frequeny ! inident on an LHM re-sults in exatly the same kind of wave propagation and refration with that of itsequivalent Klein ounterpart, whih is haraterised by the transformations (VI.24)and (VI.25). Sine the orresponding parameters (E, V , et.) are on the order ofthe energy of a typial photon, they have to be saled up to desribe the Kleinsystem with higher energies. Thus, having obtained the power transmission andreetion oeÆients for the LHM, it is simple matter to �nd the equivalent pairprodution probabilities regardless of any saling fator, sine these oeÆients areinvariant under suh saling. Comparing Eqn. (VI.6) to Eqn. (VI.22) and Eqn.(VI.7) to Eqn. (VI.23), we observe that the � ! 1 applied to Eqns. (VI.6) and(VI.7) leads to Eqns. (VI.22) and (VI.23), respetively. Notie that this transfor-mation negates the power transmission oeÆient of the LHM thus simulating thepartile-antipartile pair prodution.



96From the experimental point of view, one we obtained the power oeÆ-ients for LHM, their Klein ounterparts an be found fromjTKjTL � T (!; �i) = 1j�j (�s� a)2(s� a)2 ; (VI.27)RKRL � R(!; �i) = [(s+ a)(�s� a)℄2[(s� a)(�s+ a)℄2 : (VI.28)s and a are de�ned as s � os �i (VI.29)a � qjnj2 � sin2 �i; (VI.30)where s 6= a or s 6= �a=m. Note that these ratios are only funtions of appliedfrequeny and inidene angle. This is remarkable for the physial realization ofsuh a simulator.For example, let the inoming pulse be polarized but not monohromati,suh that it is represented by individual delta funtions in frequeny domain sepa-rated by �!0 � �!i (i.e., �!i is the bandwidth of individual pulses). Then eahfrequeny omponent (!i) simulates a single Klein partile with di�erent Ei, Vi;and mi as well as ��i orresponding to those delta funtions. In other words, it ispossible to simulate all single Klein partiles simultaneously in the spetral band-width of the inoming pulse. The piture beyond the interfae an be desribedas the superposition of all these solutions. However, sine the transmitted wavesinterfere in LHM, to get output for these individual Klein partiles, we need aspetral �lter at the output.The physial realization of suh a proessor performing this simulationis possible with urrent integrated optoeletronis and miroeletronis mahiningtehnology. It mainly onsists of an integration of an analog LHM omponent with



97a digital readout iruit as well as some other optoeletroni omponents, whihare ontrolled digitally.

Figure VI.3: Blok diagram for the simulator whih roughly illustrates the om-ponents of the simulator. The quantum problem is de�ned and pre-proessedin the red blok and then sent to green blok. Having been solved there, it ispost-proessed in the blue blok, before obtaining output in Fig. VI.6. The sim-ulator mainly onsists of miroontrollers (MC), miroeletromehanial systems(MEMS) atuator, transmitters (T), amplitude (AM) and frequeny modulators(FM), LHM, photodetetors, analog to digital onverters (A/D) and logi iruits(L/C). Hardware implementation of this simulator is roughly illustrated in Fig.VI.3. The more detailed arhiteture design issues are out of the sope of thishapter and we will not onsider here. The devie mainly onsists of three bloks.The problem we would like to solve is �rst de�ned and pre-proessed in the redblok, then it is solved in the green blok and post-proessed in the blue blok.A miroeletromehanial systems (MEMS) atuator, whih is ontrolled by amiroontroller, hanges the diretion of the laser beam, while the amplitude and



98frequeny of the signal are tuned by using modulators in aordane with R(!; �i)and T (!; �i), before it is sent to LHM.

Figure VI.4: To get the same spatial pattern in the LHM with that of the Kleinproblem, the intensity of the input signal is modulated in a square wave manner.In this �gure R(!; �i) is assumed to be larger than T (!; �i) for given ! and �i. Halfthe period Tm input intensity is set to I0R(!; �i) and in the remaining half it is setto I0T (!; �i).Sine the reetion oeÆient for the Klein problem is bigger than one,normally it is not possible to obtain suh a reetion oeÆient using LHM. How-ever, this problem an be overome by using an amplitude modulator (AM) in thered blok. AM, whih is also driven by a MEMS atuator modulates the inputsignal between a peak and minimum value in the form of a square wave as shown inFig. VI.4. Thus the intensity of the input signal is modulated between I0R(!; �i)and I0T (!; �i) in a square wave manner where I0 is a onstant. If the modula-tion period is Tm, half of the period the transmitter sends signal with intensityI0T (!; �i) whih results in exatly the same spatial pattern in the LHM with thatof antipartiles under Klein potential, and half of the period it sends signal whihresults in reetion to be bigger than one and exatly same spatial pattern with



99that of the reeted partiles due to the Klein step. Sine we have divided Tminto two time slots, the sampling time and response speed for the detetors areimportant.

Figure VI.5: Negative refration of a gaussian wavepaket with enter frequenyof 5GHz, whih is inident on a NIM of refrative index �2:412. For an inideneangle of �=6, the orresponding transmittane TL and reetane RL are 0:855and 0:145, respetively. The olors show the relative intensity pattern at a randomtime. An interferene fringes our due to the inident (bottom left) and reeted(top left) wavepakets near the interfae.The alulated net e�et of the LHM (i.e. no modulation) in Fig. VI.3is shown in Fig. VI.5. In this alulation we assumed the form for the refrativeindex given by Ref. [66℄n(!) = �0! "(!2 � !2b )(!2 � !2p)!2 � !20 #1=2 ; (VI.31)where �0 is -1 for simultaneously negative permittivity and permeability. The angleof inidene is taken as �=6 and the enter frequeny for the inident wavepaketis assumed to be 5GHz to have a negative refrative index in Eqn. (VI.31). The



100gaussian wavepaket is designed by exploiting the method explained by Kong, et al[75℄. The other parameters are the same as in Ref. [66℄, whih are !p = 12:0GHz,!b = 6:0GHz, and !0 = 4:0GHz.

Figure VI.6: Solution to the Klein problem orresponding to the LHM problem inFig. VI.5., whih is obtained simply by setting � = 1. In this equivalent problem,the enter energy of the wavepaket is 20:7�eV and the height of the potentialbarrier is 70:63�eV. For the same inidene angle of �=6, the orresponding trans-mittane TK and reetane RK are �3:66 and 4:66, respetively. Colors show theprobability density at the same random time with Fig. VI.5. Here also interferenefringes our near the interfae between the inident (bottom left) and reeted(top left) wavepakets.After the modulation the problem is ready to be simulated by the LHM,then its output is deteted by the pixel arrays in the blue blok and post-proessedby means of analog to digital onverters (A/D) and logi iruit to get the outputshown in Fig. VI.6. Although mathematially it is easy to transform Fig. VI.5 toVI.6, �! 1 transformation, modulation and some additional proessing is requiredin its physial implementation.



101The essential point to note in this operation is that although some digitaloperations take plae, the problem is indeed solved by the LHM.If the inident �eld ontains in�nitely many modes with the same fre-queny but propagating along di�erent diretions in the xz-plane, this orrespondsto the simulation of the sattering of in�nitely many non-interating idential Kleinpartiles with the same energy (or average energy per partile) due to a onstantKlein step.More ompliated senarios under these (or other) transformations with(or without) some approximations ould also be possible.Above simulations ould indeed also be performed by PIMs. However,this would require additional iruitry and logi operations. One drawbak ofthe NIM, on the other hand, is dynami range problem. For more powerful andomplex problems alternative types of NIMs with higher dynami range are desired.Here, we do not onsider how to simulate a spei� problem existing inthe quantum relativisti �eld but we present a basi approah for how to handlesome general and ompliated problems, whih might have/had been risen in this�eld, related with the Klein paradox using LHMs. Suh a devie performing ertainoperations based on mathematial onnetion ould also be helpful in ontrollingsome related quantum proesses in real time, suh as ontrolling pair produtionrate, distribution, and et.After we showed that the wave propagation in negative index materialsis analogous to that of the Klein paradox, it ame to our attention that the Kleinparadox also exists in graphene, whih was reported after our work. This made usto think that given our work and Ref. [76℄, there may be a link between negativeindex materials and graphene too, beause of the Klein paradox. Shortly after thatanother paper was published in Siene onneting the negative index materialsand graphene [77℄.Observation of the Klein tunnelling in negative index materials and thegraphene are only two examples, whih may open a way to the exploration of this



102ounterintuitive behavior in a relatively simple benhtop experiment. Otherwise itwould appear suh as at ollisions of ultra-heavy nulei or blak hole evaporations[77℄. A portion of this hapter was presented in a onferene paper: D. �O.G�uney and D. A. Meyer, \Optoeletroni simulation of the Klein paradox usingleft-handed materials", 2004 MRS Spring Meeting, 12-16 Apr. 2004, San Fransiso,CA, USA.



Chapter VII
Conlusions and Future Work

Control over eletrial properties of materials led to transistor revolutionin eletronis. PCs may have similar impat by ontrolling the ow of light. Giventhe immense literature produed only in about two deades, apabilities seem tobe only laked by the human imagination. Compatibility with other tehnologiessuh as miroeletromehanial systems (MEMS), quantum dots, and �bers mayfurther enhane their apabilities.All of the approahes for quantum information proessing have their ownadvantages, but unfortunately also their own drawbaks. Ideally, one would mergethe most attrative features of those di�erent approahes in a single tehnology.We envision that large-sale photoni rystal (PC) integrated iruits and �bersould be the basis for robust and ompat quantum iruits and proessors of thenext generation quantum omputers and networking devies. Cavity QED, solid-state, and (non)linear optial models for omputing, and optial �ber approahfor ommuniations are the most promising andidates to be improved throughthis novel tehnology. In our work, we onsider both digital and analog quantumomputing.The high quality fator and extremely low mode volume ahieved suess-fully in miroavities have already made photoni rystals an espeially attrativeparadigm for quantum information proessing experiments in avity QED [12,
103



10413, 59℄. In our work we have extended this paradigm by solving analytially theJaynes-Cummings Hamiltonian under the dipole and rotating wave approxima-tions for two synhronized two-level atoms moving in a photoni rystal and byapplying the solution to produe the two maximally entangled states in equations(IV.19) and (IV.20). We have also demonstrated the design of quantum logi gates,inluding dual-rail Hadamard and NOT gates, and SWAP gate operations. Ourproposed system is quite tolerant to alulation and/or fabriation errors, in thesense that most errors remaining after the design an be orreted by simply exper-imentally adjusting the veloity or the angle between the atomi moment vetor ofthe atom and the mode polarization. Our tehnique ould not only be generalizedto N -atom entanglement [13℄ but also has potential for universal quantum logigates, atom-photon entanglement proesses, as well as the implementation of var-ious, useful avity QED based quantum information proessing tasks. We shouldalso mention the methodologial result that due to the emulation of 2D photonirystal avity modes in 3D photoni rystals [11, 29℄, one an design the moresophistiated iruit �rst in 2D to redue the diÆulty of the 3D omputations,where typially muh more omputational power is needed.In the iruit-level, we have designed an integrated onditional telepor-tation iruit with readout in a single PC hip. Our proposed PCQC an beimplemented by urrent or near future semiondutor proessing tehnologies andexperimental tehniques. Even the detetors and soures illustrated in Fig. V.1ould also be integrated|the feasibility of single atom detetion on a PC hip hasalready been demonstrated [60℄, as have PC based lasers [61, 62℄. In Ref. [60℄, forexample, the detetion of single atoms by exploiting a highly eÆient integratedoptial �ber-PC waveguide oupling is proposed. It ould be envisioned that aompatible integrated atomi detetion devie based on suh an experimental sys-tem might lead to more ompat and robust PCQCs in general. The RC part ofour devie an not only be used with the TC but also an be used independently,or integrated with other ompatible optial iruits to read out atomi states. It



105also hints at the potential for implementation of atomi interferometers, suh asthe Ramsey interferometer, in photoni rystals.The teleportation sheme we have designed an also be used for (i) quan-tum swithing/routing, (ii) hanging the veloity and diretion of atoms on demandin a large sale PC quantum iruits and networks, among other appliations.To the best of our knowledge our work presents the �rst expliit designsof quantum iruits in the literature using PCs .Ahieving good mode-mathing stability beomes quite umbersome formany multiply nested interferometers in optial quantum omputing. Photonirystals, however, may be an espeially promising paradigm as robust quantumiruit boards for deliate, next generation, salable optial quantum omputingand networking tehnologies, as well as salable quantum dynami random aessmemory [63℄, where qubits are refreshed using PC based ylial quantum iruits.Integrated PC devies, suh as planar waveguides and elementary interferometermodules, ould replae the urrent bulky elements in linear optial quantum ir-uits. Furthermore, suh devies ould be made quite ompat using PC integratedwith single photon soures [7℄.In the analog domain, we have shown that the Klein paradox for the KGequation of spin-zero partile exhibits exatly the same kind of wave propagationand refration with those of the TM-polarized eletromagneti wave inident onLHM. Based on this amazing nature of LHMs, we have examined how to simulatethe Klein paradox related problems and pointed out the possible appliations ofthis optoeletroni simulator. Our work also highlights an optial approah to theanalog quantum simulations based on the wave-partile duality in nature.After we showed that the wave propagation in negative index materialsis analogous to that of the Klein paradox, it ame to our attention that the Kleinparadox also exists in graphene, whih was reported after our work. This madeus to think that given our work in Chapter VI and Ref. [76℄, there may be a linkbetween negative index materials and graphene too, beause of the Klein paradox.



106Shortly after that another paper was published in Siene onneting the negativeindex materials and graphene [77℄.Observation of the Klein tunnelling in negative index materials and thegraphene are only two examples, whih may open a way to the exploration of thisounterintuitive behavior in a relatively simple benhtop experiment. Otherwise itwould appear suh as at ollisions of ultra-heavy nulei or blak hole evaporations[77℄. Our simulation of the Klein paradox using NIMs also opens a way to analogquantum simulation ontrary to onventional digital quantum simulations, wherethe unitary transformations are approximated by sequene of logi gates [2℄.Photoni rystal �bers (PCFs), on the other hand, may transform notonly onventional optial ommuniations but also may open a way to ultra highdistane and data rate, seure quantum ommuniations.Fiber attenuation is ritial for long distane and high data rate seuretransmission. Attenuation of onventional teleom �ber (CTF) is about 0:2dB/kmand to the best of our knowledge the minimum attenuation obtained experimen-tally is about 0:15dB/km [82℄. Regarding PCF, on the other hand, holey �bersappear more promissing. Beause the mode is on�ned inside the air ore, whihprevents absorption that exists in solid ore optial �bers. However, the urrentattenuation obtained in these PCFs is still higher than that of CTFs. The reordbreaking number is urrently 0:28dB/km . This is mainly beause of the fabri-ation imperfetions and surfae modes residing between air-ladding interfae.Minimum PCF attenuation predited by P. Roberts, et al. is 0:1dB/km [83℄. Un-der this value in our preliminary work (to be publishe elsewhere) we have shownthat the transmission distane an be extended to about 100km from its originalvalue of about 50km [84℄. This is espeially important for quantum ommunia-tion, beause data-rate exponentially dereases [85℄ with the number of deliatequantum repeaters.Exploration of photoni rystals in the way of the realization of quantumomputers may also lead to interesting avenues of fundamental physis beyond



107negative index [67℄, eletromagneti loak [78℄, and quantum Hall e�et [79-81℄.Future hallenge is the development of fault-tolerant salable quantumomputer and network arhitetures based on photoni bandgap tehnology. Givenurrent fabriation tehnoloy, optial properties of the designed strutures agreewell with the experiments. Although we onsider a Q-fator of 108 in our work,inorporation of spontaneous emission rate and avity deay into equations willderease the required Q-fator substantially.
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