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The developing discipline of synthetic biology attempts to recreate in artificial

systems the emergent properties found in natural biology. Progress in this field requires

a thorough understanding of the basic cellular functions that underly complex biolog-

ical networks. Here, we present several studies that use existing and novel methods

to probe the dynamic behavior of the model organisms Saccharomyces cerevisiae and

Escherichia coli at the single cell level. First, we develop a microfluidic chemostat for

monitoring single-cell gene expression within large populations of S. cerevisiae over

many cellular generations. Second, we investigate the sources of extrinsic variability

in eukaryotic gene expression using a combination of computational modeling and flu-

orescence data generated from multiple promoter-gene inserts in S. cerevisiae. Third,

we use an enhanced version of the microfluidic chemostat to subject a large population

of S. cerevisiae to a periodically varying carbon source, uncovering a novel regulatory

property of a well-characterized metabolic network. Fourth, we use fluorescence mi-
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croscopy to acquire long-term volume trajectories for a large population of S. cerevisiae

cells and reveal cell cycle dependent variations in protein concentration. Finally, we de-

sign and construct a synthetic signaling network in E. coli to investigate the coupling

effect of “waiting lines” for enzymatic processing and discover correlated signaling

through coupled protein degradation. Together, these studies illustrate the need for new

approaches to studying fundamental cellular processes, in order to ultimately advance

the goals of synthetic biology.
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Chapter 1

Introduction

1.1 Synthetic Biology Overview

Systems biology has grown rapidly in the wake of the human genome project,

as it has become clear that an integration of experimental and computational research

will be required to quantitatively describe complex biological systems. The utilization

of high-throughput technologies has led to the successful reconstruction of gene regula-

tory networks in many organisms (Tavazoie et al., 1999; Ibarra et al., 2002; Ideker et al.,

2001b; Gardner et al., 2003), along with the development of quantitative models for

many complex and fundamental cellular processes (Breeden, 2003; Simon et al., 2001;

Vogelstein et al., 2000; Kohn and Pommier, 2005; Begley and Samson, 2004; Bartek

et al., 2004). To complement the progress of genome-scale measurement technologies,

the developing discipline of synthetic biology aims to design and build novel biological

systems that reproduce the behavior of natural systems and contribute to our understand-

ing of how complex biological functions arise from the connectivity of gene regulatory

networks (Hasty et al., 2002; Basu et al., 2005; Mangan et al., 2003; Rosenfeld et al.,

2005a; Pedraza and van Oudenaarden, 2005a).

Within the broad field of synthetic biology, our research focuses on the design,

construction, and modeling of engineered gene circuits. Because the genetic networks

1
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found in cells are often highly integrated and quite complex, redesigning simpler syn-

thetic systems for study is a valuable approach to understanding gene regulation. The

emergence and growing prominence of synthetic biology is largely due to vast improve-

ments in molecular biology techniques, advances in the microfabrication of microscopy

devices, and the increased application of mathematical modeling to biological systems

over the past few decades (Fig. 1.1). Therefore, it is important to understand the sig-

nificant contribution that each of these aspects makes to the overall goal of synthetic

biology. First, the tools of molecular biology allow scientists to easily manipulate and

clone DNA, enabling the rapid design and construction of simple genetic circuits. Sec-

ond, microfabricated microfluidic devices, tailored to the acquisition of long-term data

from large populations of individual cells, provide scientists with a means to moni-

tor the dynamic behavior of a novel biological circuit. And finally, the application of

engineering-based modeling techniques to the study of biological systems provides in-

sight into the design of new circuits, as well-formulated models can predict the behavior

of a circuit before it is even constructed. The growing excitement and recent successes

in synthetic biology illustrate the great impact that the union of biology, engineering,

and technology can have on our understanding of biological systems.

1.2 Synthetic Biology in Practice

1.2.1 Molecular Biology

The increasing ease with which scientists are able to modify DNA and geneti-

cally engineer organisms has led to a recent burst of interest in synthetic biology. Over

the past few decades, several breakthroughs in molecular biology techniques have led

to a more detailed understanding of basic biological functions and a greater ability to

mimic these functions for the purpose of modifying natural biological systems. Recom-

binant DNA technology allows for the artificial rearrangement and cloning of DNA, and

many tasks that were previously tedious or even impossible have become efficient and
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cost-effective over the past few decades. There are several techniques that are essential

to the field of synthetic biology. First is the ability to cleave DNA, using enzymes called

restriction nucleases that cut DNA at a specific target sequence. Second is DNA cloning,

which produces billions of identical copies of a DNA molecule of interest. And third

is rapid and reliable sequencing a purified DNA fragment. These days, a scientist can

isolate a specific gene, make unlimited copies of it, and determine its exact sequence all

in a day’s work. Not only can we copy a gene, but we can also alter it and transfer it

back into a cell to be incorporated into the organism’s genome.

The ease with which we can genetically engineer organisms has already served

many purposes, such as aiding in the discovery of the function of new genes, advanc-

ing the understanding of evolutionary links between organisms, and enabling the mass

production of proteins for use as hormones or vaccines. In addition, now that we have

access to the genomic sequences of many organisms, we can begin to unravel complex

regulatory networks, develop a strong understanding of native biological systems, and

even piece network components back together to create new functionality. Ultimately,

we can envision the ability to construct simple gene modules that could be integrated

into a diseased cell to perform the function of a damaged or missing cellular compo-

nent. With the technology for analyzing proteins, DNA and RNA advancing rapidly, we

have the increasing potential to obtain a complete understanding of how a cell’s genetic

network regulates its behavior and its response to the extracellular environment.

The tools of recombinant DNA technology, including the techniques to “cut and

paste,” clone, and rapidly sequence DNA, have become indispensable to bioscientists in-

terested in probing natural systems. They have also made possible the birth of a new era

of synthetic biology, in which we will use these techniques to genetically engineer novel

genetic circuits as we strive not only to understand native systems but also to design and

build novel biological functions and systems. The output, or “read-out,” of synthetic

gene networks is typically a fluorescent protein, such as GFP. There are various tech-

niques for measuring the fluorescence output of a cell, such as flow cytometry, which

allows the rapid measurement of size and fluorescence for a large population of cells.
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However, this only provides a snap-shot in time, and does not allow for the tracking

of individual cells over time. Alternatively, traditional microscopy assays yield useful

and very detailed information about the dynamical behavior of a small number of cells

but typically run only for a short time period and sacrifice the ability to generate good

statistics over a population. Microfluidic devices offer a nice solution, as they allow

us to tightly control the cellular environment and measure the production of fluorescent

reporters in many cells simultaneously over long periods of time.

1.2.2 Microfluidic Technology

Future successes in synthetic biology depend upon our ability to accurately ex-

tract quantitative measurements of dynamic gene regulation and to integrate this data

into complete quantitative models of biological systems. This will require novel exper-

imental techniques that enable the generation of time series data for long durations in a

large number of individual living cells. An ideal data acquisition system would allow

for the growth of a large population of cells in a defined environment which can be mon-

itored by high resolution microscopy. With such a setup, the gene expression state of

each cell could be monitored for the length of the experiment, providing accurate data

about the temporal progression of each individual cell in the population. To this end,

researchers have increasingly employed devices with fluid channels on the micron scale

known as microfluidic devices.

Recently, the use of microfluidic technology has become widely popular in the

field of synthetic biology and beyond. Microfluidics facilitates the study of cellular

behavior because it provides the necessary tools for recreating in vivo-like cellular mi-

croenvironments. Microfluidics involves the handling and manipulation of very small

fluid volumes, enabling the creation and control of microliter-volume reactors. The flow

within microfluidic devices is laminar, ensuring that the system does not include turbu-

lent flows which could disrupt cellular growth and observation. Over the past several

years, microfluidic devices have been used to observe cellular development within dy-
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namic microenvironments. Examples include devices designed to generate thermal or

chemical gradients (Dertinger et al., 2001; Mao et al., 2002; Lin et al., 2004) and oth-

ers designed to incorporate large-scale networks of fluidic channels for high-throughput

cellular analysis (Hong et al., 2004; Fu et al., 2002; Balaban et al., 2004).

However, while there has been much success in the design and implementation

of microfluidic devices for some purposes, it has been a challenge to design successful

platforms for the long-term monitoring of single cells within a large population. There-

fore, much recent research has focused on this goal using various design strategies.

To monitor long-term gene expression dynamics within a larger microbial population,

several researchers have developed microfluidic chemostats (Groisman et al., 2005a;

Balagaddé et al., 2005). In continually providing fresh nutrients and removing cellular

waste to support exponential growth, the microfluidic chemostat presents a nearly con-

stant environment that is ideal for investigating single-cell biodynamics. In Chapter 2,

we discuss the implementation of a microfluidic platform designed for the acquisition

of long-term single-cell trajectories of gene expression in S. cerevisiae. The ability to

generate single-cell expression profiles for a large number of cells is essential to un-

derstanding the roles of regulatory motifs within native and synthetic gene networks.

Through such an understanding, we aim to develop an engineering-based approach to

building gene-regulatory circuits, where design specifications generated from computa-

tional modeling drive the construction of regulatory networks with desired properties.

1.2.3 Computational Modeling

The final aspect of synthetic biology involves the application of computational

modeling to understand and predict the behavior of gene networks (Hasty et al., 2002;

Sprinzak and Elowitz, 2005; Gardner et al., 2000; Becskei and Serrano, 2000; Ozbudak

et al., 2002; Basu et al., 2005; Blake et al., 2006). This involves the development of a

set of “rules” that govern network behavior based on the connections and interactions

between its components. First, genetic wiring diagrams are translated into equations
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that can be analyzed. This step is analogous to the physicist’s determination of Ohm’s

Law for the components and Kirchhoff’s laws for the circuits. Next, tools from applied

math and computer science are used to analyze the model in order to extract the “design

criteria” for a desired output. Then modern recombinant DNA techniques are used to

construct gene-regulatory networks in living cells according to the design specifications.

Our ability to synthesize and manipulate gene networks, study their behavior in

living organisms, and develop a thorough quantitative understanding of their behavior

has led to significant discoveries regarding some of the most fundamental cellular pro-

cesses (Kepler and Elston, 2001; Ozbudak et al., 2002; Gardner et al., 2003; Carrera

et al., 2009). Essential to this approach is the ability to develop computational models

that can simulate and predict the behavior of cellular networks in growing and prolifer-

ating cells. For example, models of gene regulation have been developed to elucidate

sources of noise in gene expression, to study the role of feedback in cellular networks,

and have led to discoveries of novel network structure (Elowitz et al., 2002; Volfson

et al., 2006; Ozbudak et al., 2002; Becskei and Serrano, 2000; Bennett et al., 2008; Basu

et al., 2005; Simpson et al., 2003; Blake et al., 2003; Wang et al., 2006).

In addition, the construction of synthetic networks according to the specifica-

tions of quantitative models has led to the refinement of our understanding of the princi-

ples of cellular regulation (Gardner et al., 2000; Guido et al., 2006; Hasty et al., 2001a;

McMillen et al., 2002). The successes in applying computational techniques to further

our understanding of cellular behavior give promise to the field of synthetic biology. By

combining the tools of molecular biology, microfluidic technology, and computational

modeling, we can begin to probe and even mimic native network architecture and high-

light key design principles that, while buried deep in the intricate regulatory web, are

actually the driving force for fundamental cellular function.
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1.2.4 Successes in Synthetic Biology

Recently, there has been significant activity directed towards designing synthetic

gene networks that mimic the functionality of natural systems. Various architectures

have been explored, such as toggle switches, binary logical circuits, and negative and

positive autoregulatory networks (Gardner et al., 2000; Isaacs et al., 2003; Tyson et al.,

2003; Becskei and Serrano, 2000; Guet et al., 2002). One particularly interesting genre

of synthetic circuits is the genetic oscillator. The crucial role of time-keeping has re-

quired organisms to develop sophisticated regulatory networks to ensure the reliable

propagation of periodic behavior. While many of these clock networks have been stud-

ied in great detail and their fundamental regulatory mechanisms are well-understood, it

remains a challenge to engineer a synthetic system that is capable of mimicking their

behavior.

The difficulty of emulating native behavior highlights the importance of infor-

mation that is still unknown. The parameters that determine network dynamics are dif-

ficult to measure and impossible to ascertain from static network diagrams. Therefore,

“forward engineering” can be a highly informative approach to studying the dynamics

that arise from such complex network topologies, as step-by-step reconstruction can

contribute invaluable information about key network properties.

Over the past several years, there have been several successful attempts at de-

veloping a synthetic oscillatory network controlled at the gene regulation level (Elowitz

and Leibler, 2000; Atkinson et al., 2003; Tigges et al., 2009; Stricker, J.* et al., 2008).

These networks involved only two or three components, and mathematical modeling

was instrumental in the process of designing and analyzing the network structure and

demonstrating the theory behind their ability to drive periodic behavior. In E. coli, the

repressilator (Elowitz and Leibler, 2000) consisted of a ring architecture of cyclic re-

pression that was capable of generating sustained oscillations in a subset of the cells that

were examined, while a two-component feedback-based circuit (Atkinson et al., 2003)

was shown to generate damped oscillations. A synthetic mammalian oscillator based
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on an autoregulated sense-antisense transcription control circuit yielded self-sustained

and tunable oscillatory gene expression in a fraction of the cells observed (Tigges et al.,

2009).

These examples represent progress in implementing an engineering-based ap-

proach to the study of gene networks, in which computational modeling is used to guide

the design of novel networks and accurately predict their dynamic behavior. However,

the lack of robustness in each of these networks demonstrates the need to focus on a

network architecture that more closely mimics native networks. Recently, a novel and

very robust two-component oscillator was created, based on principles observed to be

critical for the core of a circadian clock network (Stricker, J.* et al., 2008). The foun-

dation of the design of the oscillator was coupled positive and negative feedback loops,

and computational modeling was used to develop design criteria for robust oscillations

in this system.

The success in building a network from the ground up that is capable of com-

plex dynamic behavior validates the synthetic biology approach and demonstrates the

power of computational modeling for understanding and predicting biological behavior.

Using these tools, we can mimic native network architecture and highlight key features

that, while buried deep in the intricate regulatory web, are actually the driving force for

fundamental cellular function. In the following chapters, we describe various studies

aimed at probing the fundamental functions of cells that underlay the complex behav-

ior that sustains life, such as cellular growth and gene expression dynamics, noise and

variability in gene regulation, and the cellular response to a changing environment. By

understanding these basic functions, we hope to reveal design principles that are key to

driving and regulating dynamic behavior.



Chapter 2

Monitoring Dynamics of Single-Cell

Gene Expression over Multiple Cell

Cycles

2.1 Introduction

The utility of single-cell measurements with high temporal resolution has been

demonstrated by recent bacterial studies, which used optical microscopy to observe

E. coli over long time periods and reveal interesting temporal fluctuations and cell-cell

variability that would otherwise be masked by population-wide measurements (Pedraza

and van Oudenaarden, 2005a; Rosenfeld et al., 2005a). However, traditional microscopy

methods, which typically involve viewing cells on a microscope slide or an agar plate,

limit both the length and quality of an experimental run, as large groups of cells tend

to grow out of the focal plane. Here, we present the development and application of

a novel “free-running” microfluidic platform tailored to the generation and analysis of

single-cell fluorescence data over many cellular generations. We demonstrate the util-

ity of the platform with experimental data acquired from S. cerevisiae, a workhorse for

eukaryotic cell biology. In addition, we present software designed for the extraction of

10
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time-series data from a sequence of fluorescence images. The availability of this device

should greatly aid quantitative modelers of both native and synthetic genetic circuits

by facilitating the long-term observance of dynamical properties of gene regulation in

S. cerevisiae and other model organisms.

2.2 Design and Fabrication

The TµC is based on an implementation of the classic Tesla diode loop (Tesla,

1920; Duffy et al., 1999; Bendib and Français, 2001), modified for the imaging of a

monolayer culture of cells growing in exponential phase for many generations. The

construction is such that the side-arm of the diode forms a shallow trapping region that

constrains a population of cells to the same focal plane (Fig. 2.1). Fluid flow is utilized

to continuously purge cells that grow beyond the trapping region boundaries so that the

device can function as a standard chemostat. Coupled with optical autofocus, this design

feature allows for the TµC to operate in “free-run” mode over long time periods without

the need for external adjustment.

In order to achieve free-running long experimental runs, a critical design objec-

tive was to avoid clogging between the media port and the trapping region. We devel-

oped a three-port chip design in which the main channel extending from the cell port

splits into both a media channel and a waste channel downstream of the trapping re-

gion, which prohibits the collection of cells in the media port during the loading process

(Fig. 2.1A). By constructing the height of the bypass channel to be two or three times the

height of the trapping region, substantial flow can be maintained throughout this chan-

nel while flow through the trapping region remains minimal. Once cells are loaded, they

receive nutrients via a combination of diffusion and advection. As the colony grows,

fluidic resistance increases through the trapping region, and diffusion dominates the

transport process (see Device Characterization section of Materials and Methods). Sup-

plied with abundant nutrients, the cells are able to grow exponentially to fill the trapping

region in a monolayer (Fig. 2.1C, D). The open walls of the trapping region allow for



12

M

C
T1

T2
W

Cell
loading Media

flow

C D

A B

4-µm-high
chamber

8 µm height

4 µm height

Figure 2.1: The TµC design was optimized to allow for long-term growth of cells in a
monolayer. (A) Three separate ports for cell loading (C), media supply (M), and waste (W)
minimize potential clogging of media supply lines. With this layout, we are able to generate
optimal fluid flow both for the loading of cells into the trapping region and for the delivery
of nutrients over many generations. Strong flow toward the trapping region provides the
momentum necessary to carry cells into the region against high resistance. Cells that do not
enter the trapping region are forced into the waste port by strong flow from the media port.
Once cells are loaded, flow is reversed to run from the media port to both the waste and cell
ports. Running temperature-regulated water through thermal lines T1 and T2 maintains
the device at an optimal temperature. (B) A magnified view of the diode loop (red boxed
region in A). The height of the trapping region (dark gray) is customized based on species.
The flow channels (black) are 2–3 times higher than the trapping region. An open trapping
region (black/gray interface) allows for peripheral cells to be pushed from the observation
region as the colony grows. (C) Shallow trapping regions confine cells to a monolayer.
Cells residing at the trapping region entrance highlight the benefit of a height-constrained
growth environment. Scale bar, 20 µm. (D) The 4-µm-high yeast TµC full of cells after
24 h of growth. Scale bar, 20 µm.
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peripheral cells to escape when they are pushed into the high flow of the main channel,

thus permitting continuous exponential growth long after the trapping region becomes

full.

Based on these design considerations, the TµC is constructed using standard mi-

crofabrication techniques (see Fabrication Procedure section of Materials and Methods).

Briefly, a PDMS chip is created with the desired channels and microstructures from a

patterned silicon wafer template. Device fabrication is relatively straightforward, as it

requires only a single PDMS layer. Furthermore, flow control is maintained by pas-

sive gravitational forces alone, eliminating the need for complex on-chip actuators, flow

circuitry, and run-time software. The minimal three-port design allows for a rapid exper-

imental setup that has been optimized for convenience and requires approximately 1 h

of bench time. The simplicity of device construction and experimental setup makes the

platform accessible to experimentalists with minimal experience in microfabrication.

2.3 Experimental Results

We illustrate the utility of the device using the budding yeast S. cerevisiae, an

excellent test for the TµC device owing to the tendency of cells to flocculate, or aggre-

gate into clumps. This property presents a major obstacle in the attainment of long-term

single-cell temporal data in this important model organism(Hartwell et al., 1997; Simon

et al., 2001; Simon and Yen, 2003; Chen et al., 2004; McMurray and Gottschling, 2004;

Scheibel et al., 2004). To address this problem, we designed the trapping region height to

be approximately equal to the diameter of a single yeast cell. The significant advantage

of monolayer growth in a height-constrained chamber is demonstrated by visualizing

the group of cells residing at the trapping region boundary (Fig. 2.1C). The cells grow-

ing inside the 4-µm-high cell chamber are collectively in focus, and individual cells can

easily be distinguished. In contrast, cells just outside of the chamber, where the height

is 8 µm, grow in multiple layers, producing blurry aggregates from which quantitative

single-cell data are very difficult to extract using wide-field microscopy. Although this
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may not impede the observation of a few cells over a short period of time, as these cells

begin to divide it becomes increasingly difficult to resolve individual cells and quantify

their behavior.

Using the TµC device to grow a monolayer colony of cells, we can obtain a

long sequence of consistently focused fluorescence images. The extraction of single-

cell expression dynamics from a sequence of images involves two major steps: (i) we

segment each image into individual cells and (ii) we resolve the temporal evolution

from the segmented images (see Image Processing section of Materials and Methods).

We utilized cells that exhibit galactose-dependent production of yeast-enhanced Venus

fluorescent protein (yeVFP) from three integrated copies of the gal1 promoter driving

yeVFP expression. Fully induced cells are tracked through a series of images, yield-

ing fluorescence trajectories that rise and fall with each cell cycle (Figs. 2.2A and 2.3).

Since segmentation involves tracking a daughter cell from the moment the bud begins to

emerge, the fluorescence signal of the mother is observed to decrease as yeVFP freely

diffuses to the bud throughout the S, G2, and M phases. The fluorescence signal rises

again at the beginning of the next G1 phase, when the mother and daughter have fully

divided and the mother can resume the accumulation of yeVFP (Fig. 2.2B). The cell

count grows exponentially until the chamber fills, at which point the chemostat enables

extended run times as the population can continue growing by pushing peripheral cells

out of the trapping region (Fig. 2.2C). Histograms of cell sizes at different time points

throughout the experiment retain a constant distribution, indicating that growth condi-

tions remain optimal for the duration of the run (Fig. 2.2D).

The most novel utility of the TµC is the ability to observe single-cell dynam-

ics over long time periods. Quantitative accuracy of the fluorescence trajectories can

be ensured by compensating for errors that may be introduced by experimental condi-

tions and image analysis (see Quantitative Controls and Error Compensation section of

Materials and Methods). These trajectories can be used to extract many types of in-

formation about individual cells, such as the average cell cycle time for any individual

cell (Fig. 2.2E, F). We can also use fluorescence to monitor how the division rate of an
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Figure 2.2: Analysis of long-term expression data acquired using the TµC. (A) Four rep-
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tories showing fluorescence of each cell as a function of time. (B) Cartoon illustrating how
the cell tracking leads to oscillations in a gene expression time series. (C) Total number
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as a function of time. (D) Histograms of cell sizes at various times throughout the experi-
ment. (E) Data processing: raw data smoothed with an 8-point Savitsky-Golay filter (solid
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detrended data input to Lomb-Scargle transform (solid red). (F) Sample frequency spec-
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individual cell evolves as it ages. Given that the local minima of a trajectory mark the

beginning of each G1 phase, we can calculate the duration of each cell division as the

time between each G1 start. As expected, the first cell cycle of a new bud is unusually

long, as the bud first has to grow to a certain size before it can begin producing buds of its

own. However, our fluorescence data suggest that it often takes a young cell two or three

cycles to recover to a normal division rate (Fig. 2.2G). This phenomenon is particularly

pronounced in daughters of old, nearly senescent cells, as reported in various studies

of aging in yeast (Egilmez and Jazwinski, 1989). Fig. 2.2G compares the evolution of

division times for direct progeny of an old cell and direct progeny of a young cell, av-

eraged over three examples of each. For progeny of the young cell, we see that the first

division time is long, as expected, and then the cells quickly recover down to a steady

division rate. In contrast, progeny of older cells take longer to reach this steady state, as

indicated by the longer division times for the first few cell cycles. This phenomenon is

highlighted in Fig. 2.2H, where the division times for the daughter, granddaughter, and

great-granddaughter of a nearly senescent cell are plotted. We observe that the daugh-

ter takes three cycles to recover to steady state, the granddaughter takes two cycles to

recover, and the great-granddaughter recovers immediately. These cycle-time results

are consistent with previous studies that utilized different assays (Egilmez and Jazwin-

ski, 1989), and the ability to simultaneously track gene expression over long periods

highlights the utility of the device.

2.4 Materials and Methods

2.4.1 Fabrication Procedure

Microfluidic devices were constructed using well-established techniques (Duffy

et al., 1999; Hansen and Quake, 2003) and the UCSD Integrated Technology Laboratory

(ITL). Briefly, photolithographic photomasks were drawn using FreeHand MX (Macro-

media Inc.; San Francisco, CA), printed onto transparency film at high resolution (Out-
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put City; Poway, CA), and mounted to clean borosilicate glass plates (McMaster-Carr;

Los Angeles, CA). To make master molds, SU-8 2000 (MicroChem Corp.; Newton,

MA) was spin-coated to appropriate depths using a Headway PWM32 programmable

spinner (Headway Research Inc.; Garland, TX) and patterned by UV exposure via ap-

propriate photomasks using a contact mask aligner (HTG; San Jose, CA). After all pho-

tolithographic steps were completed, SU-8 feature heights were verified using a DEK-

TAK 3030ST profilometer (Sloan Technology Corp.; Santa Barbara, CA), and treated

with vaporous chlorotrimethylsilane (CTMS) for 5–10 min. PDMS (Sylgard 184; Dow

Corning; Midland, MI), was mixed in a 10:1 ratio with the supplied crosslinking agent

and degassed in a vacuum desiccator at ∼-1 atm for 30 min to 1 h. The degassed

PDMS was then poured over the silicon/SU-8 master to a depth of approximately 0.5 cm

and cured at 80◦C for 1 h. After curing, the hardened PDMS monolith was care-

fully released from the master. Fluidic ports for media/cell loading and heated water

lines were bored with 20- and 16-gauge Luer stub adapters, respectively, and flushed

with 0.2-µm-filtered dH2O. Individual chips were sectioned from the PDMS mono-

lith, sonicated in a 0.1% v/v TWEEN 80 solution for 15 min, and rinsed with dH2O.

Scotch 810 office tape was used to remove any remaining particles from the PDMS sur-

face. Finally, each chip was exposed to O2 plasma at 30 W for 30 s in a 500-II Plasma

Asher (Technics Plasma; Danville, CA) and brought into contact with plasma-cleaned

24×40 mm2 number (no.) 11
2

coverslips (Corning Inc.; Corning, NY), which forms a

strong irreversible bond between the two surfaces (Wu et al., 2002). Our photomask

files are freely available for academic use and may be downloaded from our website

(http://biodynamics.ucsd.edu/download.htm).

2.4.2 Device Characterization

We used two methods to characterize fluid flow through the TµC under typical

run-time conditions. First, we used 0.5 µm yellow-green (YG) beads as tracers to map

the flow field through the trapping region under the pressures used to deliver nutrients.

http://biodynamics.ucsd.edu/download.htm
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We acquired a movie of bead flow at 10 frames s−1 and input this to a MATLAB imple-

mentation of the particle image velocimetry (PIV) method (Sveen and Cowen, 2004).

PIV provides a vector field that accurately describes the magnitude and direction of

flow, and the results affirmed our prediction of creeping flow through the trapping re-

gion (Fig. 2.4). From this vector field, the maximum velocity through the feeder channel

was found to be ∼75 µm s−1, and the mean velocity through the trapping region was

∼1.5 µm s−1.

v≈1.5 µm/s

v≈75 µm/s
0 75 µm/s

Figure 2.4: Flow vector field produced by implementing a PIV method to process images
of fluorescent beads used as flow tracers. Unit velocity vectors show the direction of flow,
and colors (from blue to red) correspond to the velocity magnitude (from low to high) on a
log scale.

Second, in order to ensure that a culture growing in the trapping region would

receive sufficient nutrients, we performed a more detailed flow characterization by sim-

ulating nutrient delivery using two red fluorescent dyes. Nutrient transport throughout

the trapping region of the TµC is driven by both advective and diffusive processes, and

the key parameters involved are the diffusion coefficient of each nutrient species and

the advective velocity through the trapping region. We modeled this transport process

by deriving a closed-form solution of the time-dependent chemical concentration pro-

file throughout the trapping region. The analytical solution was fit to experimental data,

yielding an estimate of the advective velocity.
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The chemical species mass balance for unsteady diffusion with advection is

∂c

∂t
+ ~v · ~∇c = D∇2c. (2.1)

Because flow within the microfluidic device is restricted to the laminar regime, anal-

ysis can be performed on the central streamline of flow through the trapping region

(Fig. 2.5A). It is assumed that components of the velocity and concentration gradient

normal to the direction of flow are negligible relative to the tangent components. Us-

ing this assumption, the physical process can be reduced to a 1D system (Fig. 2.5B),

simplifying Equation (Eqn.) 2.1 to

∂c

∂t
+ V0

∂c

∂x
= D ∂2c

∂x2
(2.2)

with the following boundary and initial conditions:

c (0, t) = c0, t > 0 (2.3)

c (L, t) = c0, t > 0 (2.4)

c (x, 0) = 0, 0 < x < L. (2.5)

Here, V0 is the average channel velocity, D is the molecular diffusivity of the chemical

species, and c0 is both the steady-state and boundary-supported concentration.

This system of equations can be further simplified by introducing the following

dimensionless parameters:

C =
c− c0

c0

(2.6)

ξ =
x

L
(2.7)

τ =
D
L2

t. (2.8)

Hence, Eqns. 2.2–2.5 become
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A B

Central
streamline

Trapping
region

Media flow

Figure 2.5: Schematics used in simulating nutrient delivery in the TµC. (A) Analysis is
performed on the central streamline of flow through the trapping region. (B) 1D reduction
of the system used to characterize diffusive and advective transport.

∂C

∂τ
+ NPe

∂C

∂ξ
=

∂2C

∂ξ2
(2.9)

and

C (0, τ) = 0, τ > 0 (2.10)

C (1, τ) = 0, τ > 0 (2.11)

C (ξ, 0) = −1, 0 < ξ < 1, (2.12)

where

NPe =
V0L

D
(2.13)

is a dimensionless ratio of advective to diffusive transport that commonly arises in heat

and mass transfer problems and is known as the Peclet number. Because this system

is linear with respect to C and has homogeneous boundary conditions, it can easily

be solved using the separation of variables method (Haberman, 1998). This yields the

closed-form solution,

C (ξ, τ) = exp

(
NPe

2
ξ

) ∞∑
n=1

An sin (nπξ) exp (−λnτ) (2.14)
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or

c (x, t) = c0

[
exp

(
NPe

2L
x

) ∞∑
n=1

An sin
(nπ

L
x
)

exp

(
−λn

D
L2

t

)
+ 1

]
, (2.15)

where

λn =
1

4

[
(2nπ)2 + N2

Pe

]
(2.16)

and

An = 4 exp

(
−NPe

2

) [
2nπ cos (nπ) + NPe sin (nπ)− 2nπ exp

(
NPe

2

)
N2

Pe + (2nπ)2

]
. (2.17)

Experimental concentration profiles were visualized using 10 kDa conjugated

Rhodamine B isothiocyanate (RBITC). We estimated the diffusion constant of this dye

using the Stokes-Einstein equation for large diffusing particles (Bird et al., 2002) as

DAB =
kbT

6πµBsA

, (2.18)

where DAB is the diffusion coefficient of solute A in solvent B, kb is Boltzmann’s con-

stant, T is the ambient temperature, µB is the dynamic viscosity of solvent B, and sA

is the molecular Stokes radius of solute A. The value of sA was determined using a

previously-reported correlation for dextrans based on molecular weight (MW) (Ventur-

oli and Rippe, 2005):

sA = 0.488 (MW )0.437 . (2.19)

Using this approximation,DAB for a 10 kDa dextran was found to be 7.90×10−7 cm2 s−1.

The calculated diffusivity of the dye was input to our analytical model of the transport

process, which yielded a value of 1 µm s−1 for the advection velocity, V0, and a path

length, L, of 570 µm (approximately the path length analyzed in the experimental data),

altogether providing a NPe of 7.125.
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Experimental data was acquired by imaging fluorescent dye entering the trap-

ping region and recording intensity values along the central streamline. Fluorescence

images were acquired every 5 s for 1.4 h and post-processed by background subtraction,

flat field correction, and smoothing using a 5-pixel Gaussian kernel. A quadratic inter-

polating spline was fit to 6–10 points manually chosen to define the central streamline

and then subdivided into 100 points. For each image, fluorescence values at each point

along the path were calculated as the mean pixel intensity over a 10-µm line normal

to the spline. Experimental concentration was assumed to be linearly proportional to

fluorescence signal and was normalized by the steady-state value. The temporal evolu-

tion profiles of the experimental data and the analytical model for the empty device are

shown in Fig. 2.6. Analytical data is calculated from a 100-term Fourier series and plot-

ted as C ′ (ξ, t) = C (ξ, t) + 1. A comparison of the two profiles shows good agreement,

supporting the existence of creeping flow on the order of 1 µm s−1 within the trapping

region of the device under normal operating conditions. In addition, the calculated ve-

locity of the creeping flow closely matches the value obtained from the PIV analysis

(1.5 versus 1.0 µm s−1). The asymmetry in the concentration profile over ξ is due pri-

marily to advective transport. Closer inspection of the analytical solution reveals that as

NPe → 0, Eqns. 2.14–2.17 degenerate to the solution for simple 1D unsteady diffusion

and the physical process becomes spatially symmetric about ξ = 0.5. Moreover, the

speed of the transport process is highly dependent on the value of NPe (Fig. 2.7).

Our transport analysis based on the RBITC dye provides an estimate for the

Peclet number in the case of a heavy molecule perfusing into the empty trapping region.

To better approximate the diffusive transport of nutrients through the trapping region,

we repeated this analysis with the red dye Sulforhodamine 101 (Acid-Free Texas Red),

which has a diffusion constant on the same order of magnitude as a typical nutrient

molecule (calculated to be 5.72×10−6 cm2 s−1). With the diffusion constant an order of

magnitude larger than RBITC, the Peclet number was an order of magnitude smaller, and

we observed increased domination of diffusive over advective transport in both experi-

mental and analytical results (Fig. 2.8). In experiments involving cells growing within
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Figure 2.6: Comparison of experimental data and analytical solution for nutrient transport
into the trapping region using 10 kDa Dextran-conjugated RBITC. (A) Experimental data
collected along the central streamline of the trapping region. The inset shows the path ana-
lyzed (blue line), starting from the green circle and ending at the red square. (B) Analytical
solution of 1D diffusion with advection for large molecule transport.
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Figure 2.7: Analytical analysis of the time evolution of 1D concentration profiles for dif-
ferent advective velocities. (A) V0 = 0 µm s−1, NPe = 0. (B) V0 = 0.2 µm s−1,
NPe = 1.425. (C) V0 = 5 µm s−1, NPe = 36.625.
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the trapping region, we expected to see the Peclet number decrease even further, as ad-

vective velocity should be slowed by the increased resistance provided by colony expan-

sion. Indeed, upon monitoring Sulforhodamine 101 dye penetration with the chamber

both empty and full of cells, we found that diffusion dominates the transport process.
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Figure 2.8: Comparison of experimental data and analytical solution for nutrient transport
into the trapping region using Sulforhodamine 101. (A) Experimental data collected along
the central streamline of the trapping region. (B) Analytical solution of 1D diffusion with
advection for small molecule transport.

2.4.3 Strain and Cell Culture

The yeast strain was created by targeted chromosomal integration of the pRS41-

yv vector (Fig. 2.9) at the gal1-10 promoter locus of S. cerevisiae strain K699 (a, ADE2,

ura3, his3, trp1, leu2). The vector was constructed using standard recombination tech-

niques from two commercially available vectors. The tryptophan marker from pRS404

was inserted into the pESC-His vector containing the gal1-10 promoter locus of S. cere-

visiae by cutting both vectors at the AatII and NaeI restriction sites. The gene encoding a

YFP variant, yeVFP, was inserted into the BamHI and XhoI restriction sites downstream

of the gal1 promoter for fluorescence production inducible by the addition of galactose

to the medium. In preparation for transformation, the resulting vector, pRS41-yv, was

cut at the AgeI restriction site within the gal1-10 promoter to ensure sufficient homol-
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ogy for recombination into the yeast genome. Selection of integrants was performed by

first growing cultures in synthetic drop-out (SD) medium containing 2% w/v glucose

and supplemented with all amino acids except tryptophan. Subsequently, flow cytome-

try was used to identify a triple integrant in order to maximize yeVFP production. For

experiments, cultures were grown in SD supplemented with all amino acids and contain-

ing 2% w/v galactose for full induction of the gal1 promoter. To minimize flocculation

of yeast while growing in the incubator shaker, a single colony was initially inoculated

into a microcentrifuge tube containing 1 ml of medium and vortexed on high for 2 min

before being transferred to a culture tube containing 4 ml total medium. Cultures were

then grown at 30◦C for 18–24 h to an optical density at 600 nm (OD600) of 1.0 ± 0.25.

In preparation for loading, four samples from a single culture were diluted to an OD600

of 0.05 in microcentrifuge tubes containing 1 ml of medium and vortexed for 5–10 min.

Cultures were then recombined for a total loading volume of 4 ml.

yeVFP

pRS41-yv

Figure 2.9: Map of the pRS41-yv vector used to integrate three copies of the gal1 promoter
driving expression of yeVFP into the yeast genome.
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2.4.4 Loading Procedure

In preparation for cell observation, devices were mounted to the microscope

stage and connected to thermal water baths to maintain the optimal growth temperature

of 30◦C. Thermal connections were made using Tygon microbore tubing (0.050 in inner

diameter, 0.090 in outer diameter; Cole Parmer; Vernon Hills, IL) connected to chip

thermal ports with 16-gauge dispensing needles (McMaster-Carr; Los Angeles, CA).

Water temperatures flowing into and out of the device were monitored using in-line

thermocouples. Following device priming with filtered dH2O, an open 10 ml syringe

serving as a waste reservoir was filled with medium and suspended 5 in above the device.

A similar connection for medium was made at the device media port at a height of 25 in.

Cells and 2.5-µm-diameter YG fluorescent beads were loaded into the device at the cell

port, with the beads serving as a fluorescence intensity standard, until several of each

entered the trapping region. During loading, all flows were directed toward the waste

port to prevent contamination of the media line. To minimize clogging, strong flow from

the media port was used to flush clear all cells residing in the shared fluid channels.

Finally, the three reservoirs were brought to their final run-time heights, with the cell

reservoir fixed at a height 1 in above the waste reservoir and the medium reservoir fixed

at a height 1 in above the cell reservoir. These differential heights provided for both

gentle flow of medium through the trapping region and strong flow of medium into the

waste port, thereby feeding the cells to be monitored while preventing discarded cells

from re-entering the system.

2.4.5 Microscopy

Image acquisition was performed on a Diaphot TMD epifluorescent inverted mi-

croscope (Nikon Instruments Inc.; Tokyo, Japan) outfitted with fluorescence excitation

and emission filter wheels, a ProScan II XY-motorized stage with fine focus control

and a hardware-based autofocus controller (Prior Scientific Inc.; Rockland, MA), and

Uniblitz VS35 high-speed shutters (Vincent Associates; Rochester, NY). Images were
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acquired using an Orca-ER cooled CCD camera (Hamamatsu Photonics; Hamamatsu,

Japan) and a custom positioning and multispectral acquisition application written in

LabVIEW (National Instruments; Austin, TX). Imaging for the autofocus controller

was performed using a Cohu 4900 Series CCD camera (Cohu Inc.; San Diego, CA)

mounted to one of the microscope eyepieces. Fluorescence visualization of yeVFP and

red fluorescent beads was performed with narrow band-pass excitation and emission fil-

ters (filter set #86006 for CFP/YFP/DsRed; Chroma Technology Corp.; Rockingham,

VT).

2.4.6 Image Processing

The extraction of single-cell expression dynamics from a sequence of images

involves two major steps: (i) we segment each image into individual cells, and (ii) we

resolve the temporal evolution from the segmented images. To begin the segmentation

process, each image is flat field corrected and pre-processed with a 3×3-pixel2 Gaus-

sian filter to remove high-frequency noise (Fig. 2.10A). Approximate locations of the

cells are determined using a seeding technique (Adams and Bischof, 1994). To form

seeds, we use the differential of the image averaged with boxcar filters of small and

large sizes (5×5 pixel2 and 15×15 pixel2, respectively) to support the robust location of

local intensity maxima independent of the mean level of the signal. The resulting binary

mask is over-segmented in most cases due to the presence of vacuoles which appear

as islands of the background inside the foreground cell seeds (Fig. 2.10B). These is-

lands are eliminated by the transferring of closely-connected regions of the background

into the foreground. After this correction, the resulting binary image is processed with a

morphological distance transform and a watershed segmentation (Vincent, 1993). These

operations produce a set of dams which separate cell seeds and are typically located at

troughs of the grayscale intensity image (Fig. 2.10C). In the final step of segmentation,

the seeds are used for growing the grayscale region in an operation which involves ex-

panding the area of the cells from the peaks within the seeds down to a specified level
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A

DC

B

Figure 2.10: Major steps of image segmentation. For visual clarity, only one fourth of the
entire image is shown. (A) Original fluorescence image after flat field correction and the
removal of high-frequency noise. (B) Results of initial seeding (white) along with filled
“holes” (blue) form the resulting binary mask. (C) Results of the watershed segmentation,
where segments (white lines) joining nodes (red dots) may be eliminated in the interactive
mode to allow the merging of neighboring cells. (D) To complete segmentation, recog-
nized cells are enumerated and their boundaries are displayed in black. Cells crossing the
boundaries of the field of view are abandoned.
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above the background (Fig. 2.10D). Here, the watershed dams serve to preclude the

joining of neighboring cells during the growth process. In addition, the same skeleton

of dams is used to allow for an effective means of manual correction, since the removal

of a dam segment between touching cells usually results in their joining during the grow-

ing of the grayscale region. The resulting algorithm is implemented using the Interactive

Data Language (IDL) programming language (ITT Visual Information Solutions; Boul-

der, CO). In automated mode, which is used in most cases, the segmentation of a single

image with 800 cells takes about 30 s on a standard personal workstation. In this mode,

we determined that the fraction of errors in segmentation typically does not exceed 5%

of the total number of recognized cells. Segmentation errors arise primarily when dark

regions inside a cell take on values close to the background level, causing the software

to draw a watershed line through the cell, or when the boundary between two cells is

difficult to observe, causing them to be considered a single cell.

For the second step of image analysis, in which cells are tracked through a set

of segmented images, we adopted a set of tools developed in the context of colloidal

suspensions and granular materials (Crocker and Grier, 1996). These tools implement

cluster analysis, and we used the center of mass coordinates and the total fluorescence

integrated over the cellular area as our cluster variables. Errors in this step arise pri-

marily when a clump of cells near the trapping region boundary breaks off and leaves

the chamber, causing a shift in the positions of many cells in the chamber. A manual

correction option during each step of the image processing makes it possible to correct

for errors, and future implementations of the software will include improvements upon

these methods. Our image analysis software is freely available for academic use and

may be downloaded from our website (http://biodynamics.ucsd.edu/download.htm).

2.4.7 Quantitative Controls and Error Compensation

Quantitative accuracy of the fluorescence trajectories can be ensured by compen-

sating for errors that may be introduced by experimental conditions and image analysis.

http://biodynamics.ucsd.edu/download.htm
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As a quantitative control in our cell experiments, we simultaneously imaged calibration-

standard fluorescent beads of similar brightness. Because these beads are resistant to

photobleaching, any variation in intensity from frame to frame will be a measure of

deviations due to either focal drift or fluorescent bulb fluctuations. The trajectory of a

bead is shown in Fig. 2.11A alongside a typical cell trajectory. The coefficient of vari-

ation of the bead signal was found to be 3.0%. While this low noise level is negligible

when analyzing general trends in data, the bead trajectory can be used to compensate for

experimental error in studies for which these fluctuations would be more detrimental.
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Figure 2.11: Quantitative controls performed to ensure accuracy of the fluorescence data.
(A) The fluorescence trajectory of a bead (red) alongside a sample cell trajectory (blue).
(B) Mean division period in each of six subsections of the field of view. Error bars represent
standard deviation, and the inset shows a map of subsections. (C) Results of a photobleach-
ing experiment to determine the decay rate of yeVFP in response to fluorescent light expo-
sure. Experimental data is shown as red circles. The best fit is given by a two-exponential
function (solid blue curve). However, in the analysis we used a one-exponential fit (dashed
green curve) for simplicity.

A concern regarding cells being constrained to a shallow chamber is that nutri-

ents may be unevenly distributed, leading to varying growth rates throughout the trap-

ping region. To address this question, we divided the field of view into subsections and

calculated division period statistics for all cells residing in each area. We extracted the

average cell cycle time for each trajectory by analyzing a power spectrum of the time-

series data. Spectra were calculated using the Lomb-Scargle transform for unevenly-

spaced data to account for occasional gaps due to tracking errors. In calculating the

average cell division period in each of six regions, we found a mean and standard de-

viation of 86.88 and 3.43 min respectively (Fig. 2.11B). This low variation reflects the
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constant micro-environment throughout the observed region.

Another typical concern in fluorescence microscopy is that the intermittent ex-

posure of fluorescent molecules to high-intensity light will bleach them over time, ad-

versely affecting the data. To address this, we acquired a photobleaching curve and

modeled the effects of exposure on the quantitative integrity of our fluorescence trajec-

tories. In a typical experiment, fluorescence images were acquired every 5 min with

exposure times of 50–250 ms. With these acquisition settings, effects of photobleaching

of yeVFP molecules were determined to be negligible. A photobleaching curve was ob-

tained by subjecting a full field of view of cells expressing yeVFP to constant exposure

of fluorescent light. Images were captured every 1.6 s, and mean fluorescence over a

region of interest was plotted against time (Fig. 2.11C). We fit this data using both one-

and two-exponential functions and for simplicity used a one-exponential fit to obtain the

decay rate, γp, for yeVFP due to exposure from fluorescent light.

To model the effect of photobleaching on our acquisition of a single-cell fluo-

rescence trajectory, we assume that the fluorescence data obtained from a cell, ẋ, is a

combination of the true fluorescence signal, f (x, t), plus a degradation term dependent

on the amount of yeVFP present in the cell, x:

ẋ = f (x, t)− γpx. (2.20)

In order to extract the true signal from the observed signal, we use an explicit first-order

discrete model of the ordinary differential equation (ODE) as follows:

(xi+1 − xi)
1

∆t
= fi (x, t)− γeffxi. (2.21)

Here, γeff is the effective decay rate representing the effect of photobleaching due to a

single exposure of duration ∆t. This equation can be rearranged to give an expression

for fi (x, t):

fi (x, t) = (xi+1 − xi)
1

∆t
+ γeffxi. (2.22)
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We now want to approximate the actual value of the fluorescence data as it would

be recorded if there was no degradation due to photobleaching. The corrected fluores-

cence value, x̃i+1, at each time point can be evaluated based on the current and previous

data points as follows:

x̃i+1 = xi + ∆tfi (x, t) = xi + ∆t

[
(xi+1 − xi)

1

∆t
+ γeffxi

]
= xi+1 + ∆tγeffxi.

(2.23)

The effective decay rate, γeff , should have the same effect on fluorescent intensity over

∆t that the calculated decay rate, γp, has over the duration of exposure, texp. That

is, γeff∆t = γptexp. Given a maximum exposure time of 250 ms and the value of

γp calculated from the photobleaching curve of 0.256, we find that the value of γeff∆t

yields a negligible correction term of 0.1% for each fluorescence value, xi+1. Correcting

a given trajectory for this effect has a negligible effect on the data.

An additional concern regarding the extraction of quantitative information from

fluorescence microscopy data is that an individual cell, which often moves throughout

the field of view during an experiment due to colony expansion, may not experience

spatially-constant illumination. To address this concern, we applied a flat field cor-

rection to each image to compensate for nonlinearities in our microscope optics. The

correction matrix was determined by filling the field of view with a fluorescent dye of

even thickness and acquiring an image at the run-time settings. Since the ideal signal

should be constant over all pixels, this image could be used as a weighting template

to remove optical artifacts from our data due to variations in either the pixel-to-pixel

sensitivity of the camera or distortions in the optical path.
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Chapter 3

Origins of extrinsic variability in

eukaryotic gene expression

3.1 Introduction

Variable gene expression within a clonal population of cells has been impli-

cated in a number of important processes including mutation and evolution (Rao et al.,

2002; Reanney, 2002), determination of cell fates (Sternberg and Felix, 1997; Gross-

man, 1995) and the development of genetic disease (Kemkemer et al., 2002; Cook

et al., 1998). Recent studies have demonstrated that a significant component of ex-

pression variability arises from extrinsic factors thought to influence multiple genes in

concert (Elowitz et al., 2002; Raser and O’Shea, 2004; Pedraza and van Oudenaarden,

2005b; Rosenfeld et al., 2005b), yet the biological origins of this extrinsic variability

have received little attention. Here we combine computational modeling (Arkin et al.,

1998; Ozbudak et al., 2002; Kepler and Elston, 2001; Hasty et al., 2002; Blake et al.,

2003; Isaacs et al., 2003; Kaern et al., 2005; Simpson et al., 2003) with fluorescence data

generated from multiple promoter-gene inserts in Saccharomyces cerevisiae to identify

two major sources of extrinsic variability. One unavoidable source arising from the cou-

pling of gene expression with population dynamics leads to a ubiquitous noise floor in

35
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expression variability. A second source which is modeled as originating from a common

upstream transcription factor exemplifies how regulatory networks can convert noise in

upstream regulator expression into extrinsic noise at the output of a target gene (Pedraza

and van Oudenaarden, 2005b). Our results highlight the importance of the interplay of

gene regulatory networks with population heterogeneity for understanding the origins

of cellular diversity.

3.2 Results and Discussion

To investigate variability in eukaryotic gene expression, we used the native GAL1

promoter of the yeast Saccharomyces cerevisiae with the yEGFP (yeast-enhanced Green

Fluorescent Protein) as a quantifiable marker. We constructed five yeast strains by vary-

ing the number of copies integrated into the GAL1-10 locus on chromosome II. These

multiple-copy constructs can be used to determine if the variability in gene expression is

due to intrinsic or extrinsic sources. Adopting the standard nomenclature, intrinsic noise

originates from the small number of regulatory molecules participating in the inherently

noisy biochemical reactions leading to expression, while extrinsic variability arises from

sources such as the variation of the elements of the transcriptional machinery common

to all genes or fluctuating environmental variables. This extrinsic variability can have

stochastic or deterministic origins, and we reserve the use of the term noise to denote a

random, as opposed to a deterministic, origin for the variations.

In the absence of glucose, the GAL1 promoter is activated in response to galac-

tose, and our cell strains were induced to produce yEGFP using varying amounts of

galactose ranging from 0.1% to 2%. Single-cell fluorescence data was collected using

flow cytometry, and representative distributions are depicted in Fig. 3.1a for fixed galac-

tose concentration. Information regarding the underlying transcriptional process can be

extracted by analyzing the scaling properties of the data sets with respect to the copy

number. For example, the mean fluorescence increases as a function of galactose con-

centration and the copy number (Fig. 3.1c), and when fluorescence is divided by the
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Figure 3.1: Experimental results for GFP expression for different copy numbers and galac-
tose concentrations. a, Histograms of GFP measurements for copy numbers from M = 1
to M = 5 above the saturation (gal = 1.2%). b, The collapse of GFP distributions under
the transformation F → F/M , P (F ) → MP (F/M) implies an extrinsic source of vari-
ability c, Induction curves for copy numbers from M = 1 to M = 5. d, Collapse of the
induction curves implies that transcription from each promoter is independent. e, Standard
deviations of GFP corresponding to induction curves. f, The collapse of the standard de-
viation implies an extrinsic source of variability e. g, The collapse of the CV for different
copy number implies an extrinsic source of variability. h, Lack of collapse implies the
variability is not of intrinsic origin.
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corresponding copy number, the induction curves for all of the strains “collapse” to a

single curve (Figs. 3.1c,d). This indicates that each promoter-gene pair transcribes at

the same mean rate upon insertion. We can utilize scaling in an analogous manner to

deduce information about the origins of variability in the system. Depending on the

relative magnitude of intrinsic noise versus extrinsic variability, we expect to observe

different dependencies (scalings) on the copy number M .

In order to illustrate how scaling can be used to determine whether the observed

variability is intrinsic or extrinsic, suppose there are M promoter-gene pairs producing

GFP molecules, and let the level of production of the ith copy be the sum of two terms

representing the mean and fluctuations about the mean: gi = 〈gi〉+ g̃i. The time-average

of the fluctuating term is zero (〈g̃i〉 = 0) and the variance is given by vi = 〈g2
i 〉 − 〈gi〉2.

Then the mean and variance for the total amount of GFP produced by M copies are

〈GM〉 =
∑M

i=1
〈gi〉 and VM =

∑M

i=1

[
vi +

∑
j 6=i
〈g̃ig̃j〉

]
, respectively. The first term

in the expression for VM represents the sum of the variances of the individual copies,

and the second term is the contribution of cross-correlations between them. For identi-

cal copies, 〈gi〉 = 〈g〉, vi = v, 〈g̃ig̃j〉 = c, and the total mean is proportional to the copy

number, 〈GM〉 = M〈g〉, while the total variance is given by VM = Mv + M(M − 1)c.

When c = 0, the fluctuations are completely uncorrelated and the variance is propor-

tional to the copy number. This is the intrinsic noise limit, where expression events from

individual copies are completely independent. When c = v, the variance is proportional

to the square of the copy number. In this limit the fluctuations are completely correlated,

and it is often caused by extrinsic factors. Using the results for the variance and mean,

the coefficient of variation (CV) η (standard deviation divided by the mean), is expected

to scale as η ∝ M−1/2 for the case of purely intrinsic noise and be independent of the

copy number in the case of extrinsic variability. Thus, if the system is dominated by

intrinsic factors, the quantity M1/2η should collapse to the same galactose-dependent

curve for all copy numbers. On the other hand, if the system is dominated by extrinsic

sources, then η itself should collapse for all copy numbers.

In order to ascertain if the GAL system is dominated by intrinsic noise or ex-
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trinsic variability, we plot the unscaled (η) and scaled (M1/2η) coefficient of variation

as a function of galactose (Figs. 3.1g,h). We observe that even though different strains

exhibit small differences, the collapse of the data in the unscaled case indicates that

the coefficient of variation is independent of the copy number. An even more striking

collapse is presented in Fig. 3.1b, where we rescale fluorescence distributions P (F ) for

a representative value of galactose concentration above saturation (gal=1.2%) and for

different strains. In obtaining this collapse, we first normalized the distributions and

rescale by the copy number as follows: F → F/M , P (F ) → MP (F/M). This col-

lapse implies that not only the standard deviation is proportional to the copy number,

but generally the nth moment of the fluorescence distribution is proportional to Mn.

These results corroborate findings by Raser and O’Shea (Raser and O’Shea, 2004), who

recently used a “two-color” approach (Elowitz et al., 2002) to demonstrate that extrinsic

sources dominate the variations observed in the GAL system. In the Materials and Meth-

ods section below, we demonstrate that our findings are unchanged when the genes are

moved to different chromosomes, and describe how our data analysis can be generalized

for intermediate cases where there is mixture of scaling arising from the contribution of

both intrinsic and extrinsic sources.

Our analysis of the experimental data provides an important constraint when

attempting to deduce the biological origin of the variability, since a nontrivial test of

any model description is that it must exhibit correct copy number scaling. We first con-

struct a fully deterministic model which couples a mesoscopic description of cell growth

and division with a microscopic description of gene expression (Modeling Box: Model

A). For colony growth, we generalize the classical model introduced by Hartwell and

Unger (Hartwell and Unger, 1977), which is known to capture the major experimen-

tal observations regarding the cell size distributions. We assume that each cell grows

exponentially at a rate α and divides after reaching the same size x0. The division is

asymmetric so that the size of a mother cell after division is ξ/κ larger than that of a

daughter cell (ξ + κ = 1). After a transient, such a colony reaches a stationary distribu-

tion of sizes with two characteristic peaks corresponding to subpopulations of daughter
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and mother cells (see Fig. 3.2a where the theoretical distribution is compared with ex-

perimental data obtained from the flow cytometry forward scatter data).

In addition to the process of growth and division, Model A assumes that each

cell is producing GFP at a constant rate γ, and GFP is distributed at division in the

same proportion as the volume. The joint probability of finding a cell of a given size

x, and with GFP content g, has the functional form Pvg(x, g) = Pv(x)Pg(g/a, κ),

where a = γ/α is the ratio of the GFP production rate and volume growth rate. Us-

ing this result, we then derive an explicit expression for the distribution Pg(g/a, κ)

(see Fig. 3.2b ), and from there generate expressions for the mean and standard de-

viation of the stationary distribution of GFP, 〈g〉 = a and σg = aηg(κ), where ηg(κ) =[
1− 2

3κξ
(κ2 ln(κ)2 + κξ ln(κ) ln(ξ) + ξ2 ln(ξ)2)

]1/2

.

The model results for the mean and standard deviation have nontrivial impli-

cations consistent with our experimental findings. Since the rate of GFP production

γ = aα is proportional to the copy number M , the functional form Pg(g/a, κ) implies

that distributions of GFP for different copy numbers M should collapse after the trans-

formation g → g/M , Pg → MPg. In particular, since the mean value of the GFP

distribution is proportional to the copy number and the standard deviation is propor-

tional to the mean, the CV is independent of M as observed in the experiments. In

addition, the model yields an explicit dependence of the CV on the partition ratio κ, and

using a previously reported value for this parameter (Woldringh et al., 1993) we obtain

a CV which is in close quantitative agreement with our experiments for high concentra-

tions of galactose (Fig. 3.2e, straight line). Importantly, this result was obtained without

any additional fitting (in this model, the CV is shown to be a function of κ only). As

an additional confirmation of the role of the population dynamics in genetic variability

we calculated the coefficient of variation in gated subpopulations of cells within narrow

windows of sizes and found that gating reduces the CV by as much as 50%.

Since the variability in the model arises from the coupling of population ef-

fects and deterministic gene expression, an interesting model prediction is that there is a

“noise floor” that provides the lower limit for expression variability. If there are no other
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sources of variability, this implies that for various highly expressing genes the observed

variability should be similar. We tested this prediction by constructing GFP fusions to

10 highly expressed Saccharomyces cerevisiae genes. As predicted, we observed a near-

constant level of variability for all of the constructed fusions (Fig. 3.2f). This level is

consistent with the lower noise floor observed in the GAL system (Fig. 3.2e), and can be

taken as the lower limit for the variability in a growing population of cells. These results

suggest that for high expression levels population effects dominate and gene expression

within a single cell is mostly deterministic.

While our fully deterministic Model A accounts for the majority of the observed

variations in the inducible GAL1-GFP system, there are still certain limitations of this

simple model. In particular, the theoretical GFP distribution shows a large peak that is

not present in the experimental data (Fig. 3.2b). It occurs since Model A ignores the

stochastic fluctuations in the cell size at division, as well as the binomial nature of divi-

sion of GFP among mother and daughter cells, and thus the GFP distribution is narrow.

Furthermore, Model A does not account for the increase of variability at small galactose

values. We next generalize the model to describe the variability at small galactose val-

ues (Model B). In this regime, the variations increase as the number of GFP molecules

decreases. While this dependence is consistent with an intrinsic noise source, the scal-

ing of the CV with copy number implies an extrinsic source and thus fluctuations in

expression from uncorrelated GAL1 promoters cannot be the origin. We therefore look

upstream of the GAL1 promoter. The GAL1 promoter is activated by GAL4p protein

dimers, so a common stochastic component of gene expression may originate from fluc-

tuations in the level of the GAL4p activators. We tested the idea of activator mediated

fluctuations with a quantitative model incorporating the galactose-dependent degrada-

tion of GAL4p (Figs. 3.2a-c). The generalized model shows excellent agreement for

the distributions and scaling of the CV as a function of galactose. In addition, Model B

predicts that other GAL4p-regulated promoters should exhibit extrinsic scaling at low

galactose, and we present experimental validation of this prediction in the Materials and

Methods section below.
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We have shown how experimental classification of variability can be used to

constrained the space of possible models, and lead to the development of a model incor-

porating variations arising from the coupling of population growth and gene expression.

While this dominant source of variability is likely to exist in all systems, the general-

ization of our model to include upstream activators of the GAL1 promoter is system

specific. It would be interesting to explore other inducible eukaryotic systems to see if

the scaling of the variability also implies an extrinsic source for low induction levels.

In the context of the reported correlations observed in the transcripts of proximally lo-

cated genes (Cohen et al., 2000), our results suggest that the biological origin of these

correlations could be a common upstream transcriptional regulator.

3.3 Computational Model

Our two models are constructed by coupling a subsystem for gene expression

from the GAL1 promoter to a subsystem representing the growth and division of indi-

vidual cells in the population. For the gene expression subsystem, we introduce a simple

scheme analogous to the previously reported model (Blake et al., 2003). In our model

each of the M identical promoters may be in either inactive state (O1) or in active state

(O2). The latter represents preinitiation complex with all the components necessary for

transcription in place. The production of mRNA proceeds from state O2 with rate km.

After mRNA has been produced, translation ensues with rate kg. Both mRNA and

GFP are allowed to decay at rates γm and γg, respectively. The effect of the inducer is

modeled by taking into account the presence of GAL4p proteins which are responsible

for the activation of PGAL1 promoter. These proteins dimerize and bind to four bind-

ing sites of PGAL1 activating the process of transcription. When multiple copies of the

promoter-gene pair are inserted, they share the pools of GAL4p, mRNA, and GFP .

We assume that GAL4p monomers are constitutively produced with rate α4. Another

protein (GAL80p) binds to GAL4p and renders it unable to activate the promoter. We

model this by taking the degradation rate of GAL4p (γ4) to be inversely proportional
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to the galactose concentration. Combining these assumptions, the differential equations

describing the deterministic model for gene expression may be deduced from the chem-

ical reactions. The rate equations for GAL4p, mRNA, and GFP , respectively, read

ġ4 = α4 − γ4g4, ṙ = MkrH(g4)− γrr, ġ = kgr − γgg

where H(g4) = Kgz
4/(1 + Kgz

4) is the Hill function for the activation process and we

use the cooperativity z = 8 which stems from the binding of four GAL4p dimers; K

is a lumped parameter which describes the net effect of dimerization/dissociation and

binding/unbinding; the dependence on the galactose concentration arises from γ4 ∝

gal−1.
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Figure 3.3: Illustrations of cell growth and galactose regulatory network.

Model A: Our primary motivation is to elicit the extrinsic variability arising

from cell growth and division, so we first develop a deterministic model for the gene

expression component. The characteristic timescale here is set by the growth rate of

the cells. The stability of GFP implies a negligible degradation rate γg, and since

the rates of degradation of GAL4p and mRNA are fast compared with the cellular

growth rate, we can eliminate the dynamical equations for g4 and m. Utilizing these

considerations, the dynamics of GFP is then reduced to production at a constant rate,

ġ = Γ = M [kgkrH(α4/γ4)/γm].

We next couple a deterministic model for cellular growth and division with the

deterministic production of GFP. To account for population dynamics we consider an

asynchronous population of cells, each growing exponentially with rate α and dividing
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in an asymmetric fashion (Hartwell and Unger, 1977) after reaching a certain maximum

size. We let the size of a mother cell after division be ξ/κ times larger than that of the

daughter cell, where κ < 1/2 (ξ + κ = 1). The process of growth and division repeats

indefinitely, producing a growing structured population of cells of multiple generations

where each cell is described by a position within the cell cycle and genealogical age. The

coupling between this growth model and gene expression arises through the partitioning

of GFP content at division. The system of evolution equations describing the size (x)

and number of GFP molecules (g) is given by

ẋ = αx, ġ = Γ,

which should be supplemented by the renewal equations (division rules), according to

x0 → κx0 + ξx0, g(x0) → κg(x0) + ξg(x0) where x0, g(x0) are the cell size and

GFP content at the moment of division respectively. The additional assumptions behind

this model may be summarized as follows. We distinguish only two generations of

cells, daughters and mothers, thus neglecting the difference between mothers of second

generation and higher. We assume that cells are growing with the same rate regardless

of their age, and that both daughters and mothers divide after reaching the same size and

in the same proportion. Finally, we assume GFP is distributed among daughter cells in

the same proportion as the size (fast diffusion of GFP molecules). Overall, the statistics

of the population is modeled in terms of the equation for the joint probability Pvg(x, g)

to find a cell of a given size x and with a certain amount of GFP g, which is solved

analytically.

Model B generalizes Model A by including several realistic features of both

gene expression and population dynamics. For gene expression we utilize a hybrid

approach whereby production and degradation of GAL4p proteins is modeled stochas-

tically using the Gillespie algorithm (Gillespie, 1977), while production of mRNA and

GFP is simulated with the set of ordinary differential equations introduced above. Con-

sistent with our experimental observations, our hybrid approach eliminates all intrinsic

fluctuations except for those induced by GAL4p monomers. This intrinsic noise is then
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transferred to the level of mRNA production through fluctuations in the production rate

of mRNA, which is proportional to the Hill function H(g4). Here the intrinsic noise

manifests itself as extrinsic fluctuations common to all M copies. For the population

dynamics we introduce genealogical age by utilizing different values of κ depending on

the generation (Woldringh et al., 1993), and introduce a stochastic component in divi-

sion by drawing a cell size at division from a narrow gaussian distribution centered at

x0. In addition, upon division the amounts of GAL4p, mRNA and GFP are distributed

among the offspring in a binomial fashion.

3.4 Materials and Methods

3.4.1 Plasmids, Yeast Strains and Growth Conditions

All plasmid backbones were derived from pRS403, pRS404, pRS405, or pRS406

shuttle vectors (Stratagene). The GAL1-10 promoter region and the yEGFP was ob-

tained from pESC1-yG. The first plasmid was constructed by combining the integra-

tive feature of pRS405 (Stratagene), and the GAL1-yEGFP portion of pESC1-yG. Each

plasmid was digested using the restriction enzyme PvuII and the pertinent pieces were

ligated together to make pRS51-yG. Plasmids pRS31-yG, pRS41-yG, and pRS61-yG

differ from pRS51-yG in their yeast selective markers (see Table 3.1). All plasmids

contain an ampicillin resistance marker and the ColEI replication origin. All restriction

enzymes and T4 DNA ligase were purchased from New England Biolabs. Plasmids

were introduced into Escherichia coli XL10-Gold (Stratagene) by using a standard heat

shock transformation protocol. All bacterial cells were grown in LB (Fisher) with 100

µg/mL of ampicillin (Sigma). All yeast strains (see Table 3.2) in this study are de-

rived from the Saccharomyces cerevisiae parent strain YPH500 (α, ura3-52, lys2-801,

ade2-101, trp1∆63, his3∆200, leu2∆1) (Stratagene). The strains were created by tar-

geted chromosomal integration of shuttle vector constructs at either the GAL1-10 locus

on chromosome II or the TRP1 locus on chromosome IV. All fusion strains were con-
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structed as described by Sheff et al. (Sheff and Thorn, 2004a). The yeast strains were

grown in synthetic drop-out (SD) medium supplemented for selection of correct inte-

grands containing 2% glucose at 30◦ C. The strains were selected for the proper number

of promoter-gene pairs by growing the cells on 2% galactose and assaying the cells for

average fluorescence. All cloning steps were performed in Escherichia coli XL10-Gold

(Stratagene).

Table 3.1: Summary of integration plasmids.
Plasmid Name Description
pRS31-yG integrating vector with GAL1 promoter driving yEGFP; his3 marker
pRS41-yG integrating vector with GAL1 promoter driving yEGFP; trp1 marker
pRS51-YG integrating vector with GAL1 promoter driving yEGFP; leu2 marker
pRS61-yG integrating vector with GAL1 promoter driving yEGFP; ura3 marker

Table 3.2: Summary of yeast strains.
Strain Description
YPH500 WT strain
JYM101 pRS31-yG integrated at GAL1-10 locus
JYM113 pRS31-yG and pRS41-yG integrated at GAL1-10 locus
JYM154 pRS31-yG, pRS51-yG, and pRS61-yG integrated at GAL1-10 locus
JYM198 pRS31-yG, pRS41-yG, pRS51-yG, and pRS61-yG integrated at GAL1-10 locus
JYM199 pRS31-yG, pRS41-yG, pRS51-yG, and pRS61-yG integrated at GAL1-10 locus
JYM203 pRS41-yG integrated at TRP1 locus
JYM213 pRS31-yG integrated at GAL1-10 locus; pRS41-yG integrated at TRP1 locus
FUS001 yEGFP fused to FBA1
FUS002 yEGFP fused to YEF3
FUS003 yEGFP fused to RPP2B
FUS004 yEGFP fused to SOD1
FUS005 yEGFP fused to RPS26B
FUS006 yEGFP fused to HSP82
FUS007 yEGFP fused to RPP2A
FUS008 yEGFP fused to TSA1
FUS009 yEGFP fused to GAL1
FUS010 yEGFP fused to GAL7
FUS011 yEGFP fused to GAL10
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3.4.2 Gene Expression Experiments

Exponentially growing yeast cells were diluted from 1:40 to 1:70 into medium

containing 2% raffinose and a range of galactose concentrations (0.1-2.0% galactose) as

inducer. After 14-18 hours, the cells were assayed at mid-log phase at an OD600 of 0.55

± 0.15. Expression data were collected using a Becton-Dickinson FACSCalibur flow

cytometer with a 488-nm argon excitation laser and a 515- to 545-nm emission filter

(FL1) at a low flow rate. Forward scatter values and fluorescence values were collected

for 100,000 cells. The standard list-mode files obtained from the flow cytometer were

converted to ASCII format with MFI (E. Martz, University of Massachusetts, Amherst;

http://www.umass.edu/microbio/mfi) and analyzed using Matlab (The MathWorks, Inc.,

Natick, Massachusetts).

3.4.3 Variability of gated subpopulations

We calculated coefficient of variation for subpopulations of cells within narrow

windows of cell sizes separated in Fig. 3.4a by thin vertical lines. As seen in Fig. 3.4b,

the coefficient of variation for subpopulations with small distribution of cell sizes (as

measured by the forward scatter in flow cytomoter) is up to 50% smaller than that for

the whole population. This observation implied that cell growth and division shouild

play an important role in the observed variability of gene expression.

3.4.4 Modeling studies

Model A was solved analytically. For the comparison with the experiment we

used an effective ratio of the volumes of daughter after division to mother before the

division, κ = 0.34, representing the weighted average of κ among several generations

(Woldringh et al., 1993) (Fig. 3.1g). Model B was solved numerically using a hybrid

technique (Adalsteinsson et al., 2004) whereby the stochastic dynamics of GAL4p pro-

tein have been modeled with the Direct Gillespie algorithm (Gillespie, 1977), the in-
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Figure 3.4: Cell size distributions (a) and coefficients of variation for gfp expression mea-
sured within narrow gates separated by thin vertical lines, for several values of the copy
number M .

termediate reactions of dimerization and binding of GAL4p dimers were eliminated

employing quasi-stationary assumptions for the sake of simplicity and the dynamics of

mRNA and GFP were simulated using the rate equations presented in Box 1. For the

population dynamics we used previously reported measurements regarding the structure

of the population of Saccharomyces cerevisiae (Woldringh et al., 1993). Namely, for

the first generation, we used κ = 0.4 and for subsequent generations κ = 0.3, the mean

size of the cells at divisions was chosen to be 1.089, 1.179, 1.268, for genealogical ages

from 2 to 4 respectively and 1.357 for all older generations; and the size at division for

a particular cell was drawn from a narrow gaussian distribution near these mean values

with coefficient of variation 0.15. The parameters of the simulations in units of average

growth rate are, kr = 80, γm = 4, kg = 4, γg = 0, k4 = 8, γ4 = 0.5gal−1, K = 0.05.

The protocol of the simulations closely resembled the experimental procedure. We

started from a small collection of cells (typically 103), with Gaussian distributions of

sizes and quantities of GAL4p, mRNA, and GFP near the expected mean values. This

small population was “grown” until it reached 100,000 cells. The state of the population

was recorded within a narrow time window right after that. We checked that this mea-

surement was consistent with the time-ensemble average over a longer period of time
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indicating that the evolution of the population reached the stationary state.

3.4.5 GAL4p regulation of other promoters

If the extrinsic variability observed from the GAL1 promoter at low galactose

is due to the GAL4p regulator, an interesting model prediction is that other GAL4p-

regulated promoters should also exhibit extrinsic noise at low galactose. We tested this

prediction with the construction of two additional strains. In the first strain, we fused

GFP to GAL7p, whose promoter is activated by GAL4p. In a second strain, we fused to

both GAL7p and to GAL1p. As predicted by the model, we observed scaling which indi-

cates that extrinsic noise dominates the system at low galactose levels (Fig. 3.5). While

it is still certainly possible that other upstream factors are responsible for the observed

downstream variations, these results provide additional support for our hypothesis that

variability in the GAL4p activator is a dominant factor.
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Figure 3.5: Coefficient of variation as a function of galactose for three promoters regulated
by GAL4p. Two strains contain GAL1p and GAL7p fusions, respectively, while a third
strain contains both a GAL1p and GAL7p fusion. The collapse is predicted by the model.
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3.4.6 Fusion Strains

Yeast-enhanced Green Fluorescence Protein (yEGFP) was fused to several yeast

genes that were found to be highly expressed during normal growth conditions and three

genes of the galactose utilization pathway (see Table 3.3). Fusion strains were created

by amplifying pKT128 Sheff and Thorn (2004a) using the PhusionTM High- Fidelity

DNA Polymerase (Finnzymes) PCR system following the manufacturer’s instructions.

Each primer consists of 40 base pairs that overlap with the yeast gene of interest in order

to encourage homologous recombination. The portion of the plasmid that is amplified

contains yEGFP and the SpHIS5 selective marker. The PCR product was introduced

into YPH500 using heat shock.

Table 3.3: Summary of yeast genes fused to yEGFP
Gene Function
FBA1 Fructose 1,6-bisphosphate aldolase: catalyses the reversible forma-

tion of fructose-1,6 bisphosphate from dihydroxyacetone phosphate and
glyceraldehyde-3-phosphate.

YEF3 Translational elongation factor 3: stimulates the binding of aminoacyl-
tRNA to ribosomes.

RPP2B Ribosomal protein P2 beta: regulates the accumulation of P1 in the cyto-
plasm

SOD1 Cu, Zn superoxide dismutase: catalyzes the dismutation of superoxide anion
RPS26B Ribosomal protein S26B: protein component of the small (40S) ribosomal

subunit
HSP82 Heat shock protein 90: a cytoplasmic chaperone that is required for

pheromone signaling and negative regulation of Hsf1p
RPP2A Ribosomal protein P2 alpha: regulates the accumulation of P1 in the cyto-

plasm
TSA1 Thioredoxin-peroxidase: reduces H2O2 and alkyl hydroperoxides
GAL1 Galactokinase: phosphorylates alpha-D-galactose to alpha-D-galactose-1-

phosphate
GAL7 Galactose-1-phosphate uridyl transferase: synthesizes glucose-1-phosphate

and UDP-galactose from UDP-D-glucose and alpha-D-galactose-1-
phosphate

GAL10 UDP-glucose-4-epimerase: catalyzes the interconversion of UDP-galactose
and UDP-D-glucose in galactose metabolism; also catalyzes the conversion
of alpha-D-glucose or alpha-D-galactose to their beta-anomers
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3.4.7 Gene Expression Experiments

Yeast strains are plated from frozen stock on agar plates with synthetic drop-

out (SD) medium supplemented for selection of transformants containing 2% glucose

and grown for 40-48 hours. One colony is chosen and grown in liquid SD medium

with appropriate supplements and 2% raffinose. Raffinose is used as the primary carbon

source to avoid the inhibitory effects of glucose on the galactose-utilization pathway.

To prepare cells for the flow cytometer, they are pelleted, resuspended in filtered PBS

(Sigma), and vortexed to reduce clumps.
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Chapter 4

Metabolic gene regulation in a

dynamically changing environment

4.1 Introduction

Natural selection dictates that cells constantly adapt to dynamically changing

environments in a context-dependent manner. Gene-regulatory networks often mediate

the cellular response to perturbation (Beadle and Tatum, 1941; Jacob and Monod, 1961;

Douglas and Hawthorne, 1966), and an understanding of cellular adaptation will require

experimental approaches aimed at subjecting cells to a dynamic environment that mim-

ics their natural habitat (Thattai and Shraiman, 2003; Lipan and Wong, 2005; Kussell

and Leibler, 2005; Kruse and Julicher, 2005; Ronen and Botstein, 2006; Thattai and van

Oudenaarden, 2004). Here, we monitor the response of S. cerevisiae metabolic gene

regulation to periodic changes in the external carbon source by utilizing a microfluidic

platform that allows precise, dynamic control over environmental conditions. We find

that the metabolic system acts as a low-pass filter that reliably responds to a slowly

changing environment, while effectively ignoring fluctuations that are too fast for the

cell to mount an efficient response. We use computational modeling calibrated with

experimental data to determine how frequency selection in the system is controlled by

53
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the interaction of coupled regulatory networks governing the signal transduction of al-

ternative carbon sources. Experimental verification of model predictions leads to the

discovery of two novel properties of the regulatory network. First, we reveal a previ-

ously unknown mechanism for post-transcriptional control, by demonstrating that two

key transcripts are degraded at a rate that depends on the carbon source. Second, we

compare two S. cerevisiae strains and find that they exhibit the same frequency response

despite having markedly different induction characteristics. Our results suggest that

while certain characteristics of the complex networks may differ when probed in a static

environment, the system has been optimized for a robust response to a dynamically

changing environment. Importantly, the integration of a novel experimental platform

with numerical simulations revealed previously masked network properties, and the ap-

proach establishes a framework for dynamically probing organisms in order to reveal

mechanisms that have evolved to mediate cellular responses to unpredictable environ-

ments.

4.2 Results and Discussion

In order to probe the response of a metabolic gene network to a fluctuating envi-

ronment, we developed a microfluidic platform which can subject a population of cells

to a continuously varying media supply (Fig. 4.1). The device is designed to gener-

ate a fluctuating media signal by dynamically combining two media reservoirs accord-

ing to a time-dependent function. Feeding channels deliver the media downstream to

a customizable growth chamber, which for this study was constructed to constrain a

population of yeast cells to grow in a monolayer, allowing for long-term data acquisi-

tion (Cookson et al., 2005). The composition of the media is dynamically controlled

by a fluidic switch (Groisman et al., 2005b), such that changes in the upstream source

may be detected almost immediately by the cells. The fluidic switch was optimized to

generate a linear range of mixing ratios from the two media inputs, allowing a variety

of periodic waveforms or random signals to be generated.
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Figure 4.1: Design and implementation of the microfluidic platform developed for our
study. (a) Conceptual design of the imaging chamber. The chamber is coupled to the
switch output channel via multiple 1 µm tall “feeding” channels. The feeding channels
are fed by a controllable wave-form generator that creates sinusoidal perturbations in the
glucose concentration while maintaining constant background levels of galactose. (b) An
overview of the design shows the layout of the device. The device makes use of three
flow networks for (1) loading cells (middle, black), (2) generating microenvironmental
waveforms (bottom, green), (3) and controlling on-chip temperature (top, orange). The
imaging chamber (center, gray region) is designed to be about 4 µm tall in order to constrain
a population of yeast cells to grow in a monolayer. (c) Representative brightfield image of
cells growing in the imaging chamber. These images are used to measure the total size of
the colony. Scale bar is 25 µm in length, and large circles are support posts in the chamber.
(d) Green fluorescence image of the same cells as in (c). These images allow us to measure
the amount of Gal1p in each cell. (e) Red fluorescence image of the chamber. The glucose
media also contains a red fluorescent dye, and therefore the intensity of the red fluorescence
is proportional to the amount of glucose in the chamber at any given time.
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As a quantifiable reporter of the cellular response to environmental fluctuations,

we fused the native Gal1p protein of S. cerevisiae to the yeast-optimized enhanced cyan

fluorescent protein (yECFP) (Sheff and Thorn, 2004b; Raser and O’Shea, 2004). The

enzymes for galactose utilization, including Gal1p, are among the most tightly regu-

lated proteins in yeast. Because glucose requires much less energy to metabolize, cells

will only consume galactose if glucose is not available. Therefore, S. cerevisiae has

evolved a highly complex regulatory network to ensure that the galactose enzymes will

be strongly activated when they are needed, but tightly repressed if glucose is present in

the environment (Fig. 4.2(a)). Because the network is well studied and involves regula-

tory motifs common to many higher organisms, galactose utilization is a paradigm for

gene regulation. In order to build on the current understanding of its robust regulatory

mechanisms, we employed our microfluidic platform to monitor the dynamics of net-

work activation and repression in response to sinusoidal perturbations of glucose over a

galactose background.

A population of yeast cells was subjected to sinusoidal glucose waves over a

0.2% (w/v) galactose background, with varying glucose concentration from 0.0% (no

repression of GAL1 transcription) to 0.25%. For each run we changed the frequency

of the glucose signal, varying the period from 0.75 to 4.5 hr, and we imaged the pop-

ulation for a minimum of four full cycles. Time-lapse fluorescence imaging of the cell

population in the growth chamber was used to calculate the amplitude ratio and phase

shift of the cellular response relative to glucose signal. The results show a maximum

response frequency of about 5.6 rads hr−1 (1.125 hr period). At this frequency, the re-

sponse trace was indistinguishable from a normal step function response, whereas at the

lower frequencies the temporal fluorescence trajectories clearly oscillated in response

to the signal. In this sense, the galactose system appears to function as a low-pass fil-

ter that reliably responds to a slowly changing environment, while effectively ignoring

fluctuations that are too fast for the cell to mount an efficient response.

Since the sinusoidal driving of the galactose utilization network leads to complex

cellular behavior, we used computational modeling to simulate the response and uncover
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key aspects of the network architecture that give rise to the observed behavior (Hasty

et al., 2001b). In particular, we were interested in how the interplay of the galactose

and glucose utilization networks gives rise to the observed frequency response to car-

bon source fluctuations. By itself, the turnover of Gal1p-yECFP, either due to dilution

or active degradation (or both), leads to low pass filtering of periodic signals. However,

feedback loops inherent to gene regulatory networks can alter the response of proteins

to stimuli (Savageau, 1974). Therefore, in order to simulate the effects of galactose ac-

tivation and glucose repression on our experimental data, we adapted a comprehensive

model of the galactose network originally described by deAtauri et al. (de Atauri et al.,

2004) This model includes the transcription and translation of the GAL1, GAL2, GAL3,

GAL4 and GAL80 genes as well as the interactions of their respective proteins with each

other and galactose (such as dimerization, transport and metabolism). Whenever possi-

ble we used parameter values either at or close to the values reported by deAtauri et al.

In addition to this galactose network model, it was necessary to model the dynamics of

the glucose network. The glucose network is much more complex than that of galac-

tose (Demir and Kurnaz, 2006; Kaniak et al., 2004; Verma et al., 2005) and models for

it are much less well established. Therefore, we chose to model the glucose network

with a simplified module describing a basic transport regulatory system. In it, protein

products of the glucose network are responsible for transporting external glucose into

the cell while internalized glucose acts to induce transcription in the network, giving

rise to a positive feedback loop (see Fig. 4.2(a)).

Calibration of the computational model to the experimental data led to several

important observations that would not have arisen from an analysis of steady-state batch

culture data. The large amplitude ratios observed at low frequencies suggested that when

glucose was added to the system the degradation rates of some galactose network com-

ponents were greater than in the absence of glucose. Previous studies have suggested

that components of the glucose network can actively degrade mRNA produced by genes

involved in the galactose/glucose switch (Ronen and Botstein, 2006), and such a phe-

nomenon has also been shown to exist for the mRNA of other genes (Scheffler et al.,
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Figure 4.2: Regulation in the galactose utilization network (a) Schematic of the gene reg-
ulatory networks involved. The regulatory genes in the galactose network are activated
by the Gal4p protein which binds to upstream activation sites. The GAL80 gene provides
negative feedback in the system by prohibiting the inducing affects of Gal4p. Positive feed-
back is provided by both GAL2 and GAL3. Internalized galactose can bind to Gal3p and
the resulting complex binds to Gal80p. Gal80p bound to the Gal3p-galactose complex is
incapable of repressing Gal4p. Also, the transporter Gal2p increases the amount of internal
galactose which stimulates the galactose network. The glucose network inhibits the trans-
port of galactose and represses transcription of the galactose network in the presence of
glucose through the action of Mig1p, which can bind to upstream regulatory sites of GAL1,
GAL3 and GAL4 (Verma et al., 2005). The glucose network also regulates the hexose trans-
porter genes (HXT) which are responsible for transporting glucose into the cell (Boles and
Hollenberg, 1997), which then activates the glucose network. (b) Experimentally measured
decay of GAL1 transcripts in galactose (circles) and glucose (squares). Also shown are the
best-fit lines corresponding to half-lives of around 17 min in galactose (solid line) and 4
min in glucose (dashed line), similar to the values predicted by the numerical model. Data
is normalized to the initial concentration of mRNA predicted by the best-fit lines.
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1998; de la Cruz et al., 2002; Andrade et al., 2005). Therefore, we added enzymatic

decay terms (governed by Michaelis-Menten dynamics) to the equations describing the

dynamics of the GAL1 and GAL3 mRNA and found that it greatly increased the accu-

racy of the model. These two genes are among those in the galactose network that are

targeted by the glucose induced Mig1p that represses transcription by binding to up-

stream regulatory sites (Verma et al., 2005). Thus, if proteins from the glucose network

do actively degrade galactose network transcripts, GAL1 and GAL3 are likely targets.

To test this prediction, we measured the degradation rates of GAL1 and GAL3 in both

galactose and glucose. Both transcripts showed a 2-8 fold increase in their decay rates

when in the presence of glucose (see Fig. 4.2(b)), consistent with the values predicted by

the computational model. This form of post-transcriptional regulation, in which glucose

acts to down-regulate GAL protein synthesis, is a previously unknown source of regula-

tion in the galactose utilization network. Furthermore, the inclusion of glucose mediated

mRNA decay results in a model that accurately reproduces the dynamic response of a

population of cells to sinusoidal repression over a large range of frequencies (Fig. 4.3).

Batch-culture induction characteristics for metabolic genes can vary from strain

to strain or depend sensitively on the growth state of the culture. Therefore, we were also

interested in using the model to determine how galactose induction differences would af-

fect the response to the glucose fluctuations. The model demonstrated that significantly

different galactose induction does not necessarily lead to significant differences in the

response characteristics (data not shown). In other words, the model led to the hypoth-

esis that deficiencies in network induction capabilities might not hinder a cell’s ability

to adapt and thrive in a changing environment. The yeast strain used to collect this

data, K699, is sensitive to external galactose concentrations, with full induction of the

galactose network occurring around 0.05% (w/v) galactose. In order to test our hypoth-

esis, we turned to a strain (YPH499) that is known to have a deficiency in the galactose

utilization network, which causes it to require more galactose than “normal” to induce

production of the galactose enzymes (Rohde et al., 2000). YPH499 is a derivative of a

GAL2 mutant strain, and while the mutations were reportedly repaired, the GAL2 alleles
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Figure 4.3: Experimental and computational results for cells expressing a GAL1-yECFP
fusion gene in response to alternating glucose and galactose media for strains K699 and
YPH499. The top row of each strain depicts the input glucose signal measured during
each experimental run and also used to simulate the responses. The mean fluorescence of
a red tracer dye, representing the glucose concentration in the media, is normalized and
subtracted from 1 to represent the “induction” signal used in the experimental and com-
putational runs above. The middle rows show normalized and detrended fluorescence tra-
jectories for a population of cells as they respond to glucose waves of various frequencies
over a galactose background. In the absence of glucose, galactose induces transcription of
GAL1-yECFP causing an increase in cellular fluorescence. However, as glucose is intro-
duced into the extracellular environment, transcription of the galactose enzymes is shut off,
causing a decrease in fluorescence signal as the Gal1p-yECFP protein is degraded. Oscil-
lation periods shown from left to right are 4.5, 3.0, 2.25, 1.5, 1.125, and 0.75 hr. For input
waves with a period shorter than 1.125 hr, cells no longer respond to sinusoidal repression
in a periodic fashion, demonstrating their ability to “filter” out high frequency environ-
mental fluctuations. The bottom rows show simulation results for the same frequencies
as above. The model, calibrated to experimental induction and repression data, accurately
reproduces the cellular responses over a large range of frequencies.
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Figure 4.4: Experimental and computational comparison of two yeast strains, one of
which (YPH499) is known to have a deficiency in the galactose utilization network. Ampli-
tude (top row) and phase shift (bottom row) of the response of cells to sinusoidal repression
at various frequencies are shown for both K699 (red) and YPH499 (blue) strains. For the
highest frequency trial, reliable phases could not be calculated at all due to the noise, and
have been omitted from the graphs. The experimental data (left column) demonstrate that
the amplitude responses of the two strains are strikingly similar, especially considering
their significantly different induction curves. This phenomenon was predicted by model
simulations, as slight modifications to the model parameters that affected induction and
repression curves did not affect the cell population’s robust response to a dynamic environ-
ment. This suggests that the complex structure of the glucose and galactose networks may
confer robustness to cells even if faced with seemingly detrimental network deficiencies.
The phase responses (bottom row) of the two strains did show a marked difference, with
YPH499 cells exhibiting a greater phase lag than K699.



62

in many of the derivative strains have been shown to cause significantly impaired galac-

tose uptake (Rohde et al., 2000). The Gal2p protein is responsible for the transport of

extracellular galactose into the cell and its activity is markedly different in YPH499 than

in K699. Our flow cytometry population data demonstrated that YPH499 cells require

about ten times more galactose to reach full induction than do K699 cells.

Despite the difference in induction sensitivity between K699 and YPH499, our

model predicted that inefficient Gal2p transport does not translate into a less robust re-

sponse to a fluctuating environment. This suggests that the complex interplay of the

glucose and galactose networks may confer robustness to cells even if faced with de-

ficiencies in the induction characteristics. To validate this finding, we repeated the

microfluidic runs at each frequency, this time using the YPH499 strain with a Gal1p-

yECFP fusion. As predicted, the amplitude responses of the two strains are strikingly

similar (Fig. 4.4), especially considering the significant difference in their galactose

sensitivity. We do not at present know the underlying mechanistic property of the regu-

latory network that leads to the robust response of the two strains. Future studies might

endeavor to deduce this mechanism through the systematic deconstruction of the regu-

latory elements in a single strain. While the present study demonstrates how robustness

can occur despite large differences in induction characteristics, one could further inves-

tigate the generality of this phenomenon by comparing the responses of many different

strains to different types of temporal perturbation.

4.3 Materials and Methods

4.3.1 Dynamic environment experiments

Cells containing a GAL1-yECFP fusion were imaged every 5 min for up to 24 hr

using time lapse fluorescent microscopy to estimate the concentration of GAL1p as a

function of time. Cells were constrained to grow in a custom designed microfluidic

platform which allows for dynamically controlled mixing of two growth media. Here,
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our inducing media contained 2% raffinose + 0.2% galactose while the repressing me-

dia contained 2% raffinose + 0.2% galactose + 0.25% glucose. The resulting images

were processed with cell segmentation and tracking software, and the population aver-

aged fluorescence concentrations were measured. To ensure correct waveform genera-

tion, glucose concentrations were monitored by introducing a red fluorescent tracer dye

(0.01 mg/mL, sulforhodamine 101) to the repressing media.

4.3.2 Microfluidic chips and waveform generation

The PDMS (polydimethylsiloxane) microfluidic devices were designed to allow

for monolayer growth of yeast cells in the imaging chamber and were fabricated using

standard replica molding techniques (Whitesides et al., 2001, 2004; Xia and Whitesides,

1998). An upstream fluidic switch controlled the media input into the chamber by mix-

ing the flows of the inducing and repressing media. The mixing ratio of the two media

was governed by a software controlled, custom-designed pressurization system able to

consistently produce time-varying waveforms.

4.3.3 mRNA degradation experiments

The degradation rates of GAL1 and GAL3 transcripts were measured using stan-

dard rt-qPCR techniques. Knockout strains for both genes were first created, and then

ectopic GAL1 and GAL3 were placed back into the cell under the control of a doxy-

cycline repressible promoter. mRNA half-lives were measured from cells grown in the

presence or absence of glucose.
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Chapter 5

Cell cycle dependent variations in

protein concentration

5.1 Introduction

Computational modeling of biological systems has become an effective tool for

analyzing cellular behavior and for elucidating key properties of the intricate networks

that underlie experimental observations. While most modeling techniques rely heavily

on the concentrations of intracellular molecules, little attention has been paid to tracking

and simulating the significant volume fluctuations that occur over each cell division cy-

cle. Here, we use fluorescence microscopy to acquire single cell volume trajectories for

a large population of S. cerevisiae cells. Using this data, we generate a comprehensive

set of statistics that govern the growth and division of these cells over many generations,

and we discover several interesting trends in their size, growth, and protein production

characteristics. We use these statistics to develop an accurate model of cell cycle volume

dynamics, starting at cell birth. Finally, we demonstrate the importance of tracking vol-

ume fluctuations by combining cell division dynamics with a minimal gene expression

model for a constitutively expressed fluorescent protein. The significant oscillations in

the cellular concentration of a stable, highly expressed protein mimic the observed ex-

65



66

perimental trajectories and demonstrate the fundamental impact that the cell cycle has

on cellular functions.

Synthetic biology has emerged as an important field in the effort to quantitatively

understand biological systems (Hasty et al., 2002; Sprinzak and Elowitz, 2005). Bridg-

ing the gap between engineering and biology, this broad field includes a wide range

of disciplines ranging from synthetic biochemistry to the recreation of life through ar-

tificial reconstruction of entire genomes (Iafolla and McMillen, 2006; Gibson et al.,

2008). An important aspect of synthetic biology involves the design and construction

of engineered gene circuits. Combining the powerful tools of molecular biology and

computational modeling, synthetic gene networks can be designed to perform a spe-

cific biological function, and experimental data can be used to refine our quantitative

understanding of the predicted behavior.

Our ability to synthesize and manipulate gene networks and study their behavior

in living organisms has led to significant discoveries regarding some of the most fun-

damental cellular processes (Kepler and Elston, 2001; Ozbudak et al., 2002; Gardner

et al., 2003; Carrera et al., 2009). In addition, the construction of synthetic networks

according to the specifications of quantitative models has led to the refinement of our

understanding of the principles of cellular regulation (Gardner et al., 2000; Guido et al.,

2006; Hasty et al., 2001a; McMillen et al., 2002). Essential to this approach is the ability

to develop computational models that can simulate and predict the behavior of cellular

networks in growing and proliferating cells. In particular, the yeast S. cerevisiae has

served as an important eukaryotic model for cellular functions as fundamental as gene

regulation and as complex as cell cycle orchestration (Raser and O’Shea, 2004; Acar

et al., 2005; Breeden, 2003; Chen et al., 2004). Models of gene regulation have been

developed to elucidate sources of noise in gene expression and the effect of noise on

fitness, to study the role of feedback in cellular networks, and have led to discoveries of

novel network structure (Elowitz et al., 2002; Volfson et al., 2006; Ozbudak et al., 2002;

Becskei and Serrano, 2000; Bennett et al., 2008; Basu et al., 2005; Simpson et al., 2003;

Blake et al., 2003; Wang et al., 2006; Blake et al., 2006; Smith et al., 2007; Bayer et al.,
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2009; Nevozhay et al., 2009; Austin et al., 2006).

As we continue to develop these models as tools to refine our quantitative under-

standing of basic biological functions, an important and often overlooked contribution

to network dynamics is the effect of volume fluctuations associated with the cell growth

and division cycle. The majority of gene regulatory models rely on rate constants that

are concentration dependent, yet typically the cellular volume is assumed to be constant.

By ignoring volume fluctuations that affect concentrations in a quasi-periodic manner,

the protein concentrations of “constitutively expressed” genes are often considered to be

constant, which can lead to incomplete conclusions regarding gene network behavior.

To address this issue, we measured volume dynamics along with gene expression

in a population of yeast cells. We analyzed the growth characteristics of budding cells,

starting at birth, and generated a set of descriptive statistics governing the growth and

division process. We used this information to develop an accurate cell division model,

which takes into account the two distinct linear growth rates observed in the G1 and

S phases. When combined with constitutive production of a fluorescent protein, the

analysis reveals an oscillatory trend in the protein concentration over time. This effect

of cellular growth and division is commonly overlooked, but it can play an important

role in the behavior of both native and synthetic gene networks.

5.2 Results and Discussion

In order to obtain a quantitative set of cell cycle growth characteristics, we

tracked a large population of cells growing in a monolayer inside a microfluidic chemo-

stat. The cells expressed a stable Venus YFP from the constitutive gal1 promoter. A

segmentation algorithm was applied to each image, providing an accurate area and po-

sition measurement for each cell at each time point (Raser and O’Shea, 2004; Cookson,

S. et al., 2005). Volume for each cell was measured by calculating the major and minor

axes for each cell area and fitting an ellipsoid to these values (Figure 5.1a, b, and c). The

height of the cell was assumed to be equal to the minor axis, unless the minor axis was
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larger than the height of the chamber. In that case, the height of the cell was set equal to

the height of the chamber.

Cells were tracked from birth, and the volumes of a mother and bud cell were

added together throughout each S phase (Figure 5.1a). The first appearance of the bud

marks the beginning of S phase, so we used this visual cue to split each cell cycle into

two growth phases. Using this time point for each cell cycle, we were able to measure the

time spent in each phase and the growth rate of the cell in each phase (approximated by a

linear fit to the slope of the volume). At the time of mitosis, the two volume trajectories

were split and their volumes were considered separate starting at the beginning of the

next G1 phase (Figure 5.1b). For the mother cell, this yields a discontinuity at the point

of mitosis, with the volume dropping as the daughter receives a fraction of the volume

and the mother retains the remaining fraction (Figure 5.1d, top).

YFP gene expression trajectories were generated by integrating the fluorescence

signal over the entire cell at each time point (Figure 5.1d, middle), and concentration

was calculated as the total fluorescence divided by the total volume (Figure 5.1d, bot-

tom). The volume trajectories clearly show two distinct linear growth phases: a period

of slow growth during the G1 phase of the cell cycle, and a period of faster growth as

the cell begins to bud and progress through S phase towards mitosis. The production

of YFP, on the other hand, remains roughly constant throughout each cell cycle. Be-

cause the tracking algorithm involves measuring the total fluorescence of a stable protein

over each cell as a whole (including mother and bud, when appropriate), the production

of YFP is calculated as the slope of the fluorescence trajectory between two budding

events. The combination of these two phenomena leads to clear oscillations of the con-

centration trajectories. A density plot of fifteen concentration trajectories demonstrates

both the oscillations in individual trajectories as well as the large degree of cell-to-cell

variability (Figure 5.1e).

For each cell, we tracked various growth characteristics to obtain distributions

and determine trends in these characteristics (Figure 5.2a, See Materials and Methods

below). Each cell included in the analysis was tracked from birth, in order to be able
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Figure 5.1: Single cell volume trajectories for a population of S. cerevisiae. (a) Assymet-
rically budding yeast cells were tracked through many generations of growth and division.
During S phase, a mother cell begins to produce a small daughter cell. Until mitosis, the
mother and daughter are connected, so their volumes are added together. (b) After mitosis,
the mother and daughter cells have split, and their volumes are independent. During G1
phase, they grow very slowly as they prepare to produce their next buds. (c) Each cell was
approximated to be an ellipsoid, with a major and minor axis (a and b, respectively). For
larger cells with a minor axis greater than the height of the imaging chamber, the height of
the cell was set equal to the height of the chamber; otherwise, the height of the cell was
set equal to the minor axis. (d) Trajectories were generated for each cell, based on these
volume measurements. The volume (top) clearly displays two different growth rates for
G1 and S phase. Fluorescence (middle) was integrated over the entire area of each cell,
and concentration (bottom) was calculated as total fluorescence divided by total volume.
The combination of constant fluorescence production and bilinear volume growth yields
oscillatory concentration trajectories. (e) Concentration trajectories for fifteen cells show
clear oscillations and a high degree of variability.
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to confidently discern generation-dependent behaviors. That is, some statistics were ob-

served to change over the first few generations of life, as the cell gradually reached a

healthy adult size and growth rate. For example, the time required to complete each

cell division cycle decreases over the first few generations (Figure 5.2b). This is a

well known phenomenon, which has been observed using various techniques over the

years (Egilmez and Jazwinski, 1989; Cookson, S. et al., 2005).

Other traits that we observed and characterized include growth rates during both

G1 and S phases, growth phase durations, fraction of volume loss at the end of each mi-

tosis occurrence, and cellular volume at the beginning and end of each cell cycle. While

some characteristics are fairly constant, others vary greatly from cell to cell or even for

an individual cell throughout its trajectory. Figure 5.2 shows all of the characteristics

that we quantified and how they vary by generation. For each characteristic, we quan-

tified the mean and standard deviation across all cells as well as across each individual

cell’s multiple generations.

Our volume trajectories demonstrate two clear growth phases, which could each

be approximated by a linear growth rate. As expected, the G1 phase growth rate is

significantly slower than the S phase growth rate (Figure 5.2c, S in blue, G1 in red).

Interestingly, the growth rates in each phase remain constant throughout the generations

observed. However, the time spent in each phase changes over the first three cycles,

following a similar trend as the overall cell cycle time (Figure 5.2d). The time spent in

G1 has a more extreme trend, with the time almost dropping in half over the first three

generations. The S phase growth rate on the other hand speeds up a little as well, but

our data demonstrates that the extra time required to complete the cell cycle early in life

is spent mostly in the G1 phase. This is consistent with other studies that have demon-

strated that changes in growth rate in different media conditions are mainly reflections

of altered lengths of the G1 phase, with the duration of the S phase remaining fairly

constant (Slater et al., 1977).

We also looked at cell size trends. For each cell, we examined how the maximum

size reached at the end of each cell cycle varies over time, as well as how the mean of
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Figure 5.2: Volume growth and division statistics. (a) For each trajectory, we determined
the mean and standard deviation of certain cell growth characteristics, starting at birth.
These features were compared across each cell’s various generations as well as across all
trajectories. (b) The time to complete each cell cycle shows a downward trend over the
first few generations. (c) The G1 (red) and S (blue) growth rates remain constant over time.
(d) The time spent in each phase decreases over the first few generations, although the
majority of time during the early generations is spent in G1. (e) The size of cells increases
linearly with generation, although a larger jump in size of about 5% is observed between
the first and second generations. (f) The percent of volume lost by a mother cell to its bud
decreases on average for about five generations. (g) Finally, the fluorescence production
rate is observed to increase over the first five or six generations, on average.



72

the maximum size compares to that of other cells (Figure 5.2e). As consistent with

previous findings, our trajectories show a slight linear increase of cellular volume with

age (Egilmez et al., 1990). However, by tracking cells from birth, we were also able

to detect a more marked increase in size between the first and second generations of

about 5% on average. We also tracked the percentage of volume lost by a mother to

its new bud, which also had an interesting trend (Figure 5.2f). We found that it takes

over five cycles for the value to level off to about 32%. This indicates that cells in their

early generations bud daughter cells that are larger relative to their own size than they

do throughout most of their lives.

These statistics and trends come together to form a comprehensive picture of

how the volume changes in a quasi-periodic manner over many cellular generations,

starting at birth. To determine how these volume fluctuations can affect the concentra-

tions of intracellular proteins, we also measured fluorescence in the same cells. The

fluorescence trajectories revealed a constant rate of protein production during each cell

cycle (Figure 5.1d, middle). While fairly constant and linear, we found that the protein

production rate for this constitutive promoter increases over the first five cycles before

leveling off (Figure 5.2g). This could be due to many factors, such as a gradual build-

ing up of protein synthesis machinery, freeing up of resources originally dedicated to

maturing into a healthy adult cell, or a priority shift to metabolic gene expression as the

cell matures.

We compiled all of this information into a model that combines growth and di-

vision of budding yeast cells with constitutive YFP production. The model generates

volume and fluorescence trajectories for newly budded cells for an arbitrary number of

generations, which closely match the experimental results (Figure 5.3a and b). His-

tograms of volume, fluorescence, and concentration distributions provide a good metric

for comparing the experimental and simulated trajectories, and our simulations match

the means and standard deviations of the experiments well (Figure 5.3c, d, and e).

Additionally, histograms from the microscopy data can be used as a standard

for understanding flow cytometry data, which is commonly used to measure gene ex-
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Figure 5.3: Comparison of experimental volume trajectories to model simulations and
flow cytometry data. (a) Simulated volume (top), fluorescence (middle), and concentra-
tion (bottom) trajectories have similar trends as the experimental data (Figure 1). (b) Sim-
ulated concentration trajectories for fifteen cells. (c, d, e) Comparisons of histograms of
volume, fluorescence, and concentration from the simulations (blue) and microscopy (red)
data show well matched means and standard deviations. (f) Comparison of size data from
the flow cytometry (black) and microscopy (red) data demonstrates that the flow cytometer
generates a deceptively wide distribution. (g) We can use the microscopy data to deter-
mine how to gate the flow cytometry data in order to sample just individual yeast cells.
This metric yields a gate of 20% on either side of the forward scatter peak. (h) Using
these gated cells, we can compare the fluorescence histograms from the flow cytometry
and microscopy data, which yields very well matched means and standard deviations.
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pression noise but is often difficult to interpret. The forward scatter (FSC) measurement

provided by a flow cytometer is believed to be proportional to the size of the object being

measured, but it is unclear exactly what this value represents. In addition, the tendency

of yeast cells to clump and their unusual shape due to asymmetric budding result in

misleading size distributions. In order to compare our microscopy size data to the FSC

histogram provided by the flow cytometer, we had to first calibrate the FSC measure-

ment to some physical characteristic of a yeast cell. To do this, we used spherical flow

calibration beads of various diameters ranging from 2 to 15 µm. We ran these beads

through the flow cytometer on the same settings we use to collect our yeast data, and we

calculated the mean FSC measurement. In order to determine if the FSC was propor-

tional to the length, area, or volume of a sphere, we compared the diameter, diameter2,

and diameter3 of the beads to the mean FSC value. It was clear from our data that

the FSC measurement is proportional to the diameter of the bead (See Materials and

Methods below).

Using the scope data as a reference for the true distribution of sizes for individ-

ual budding cells, we show that the forward scatter data provided by the flow cytometer

yields a much wider distribution (Figure 5.3f), which translates to much higher fluo-

rescence variability than is actually present in a healthy population of single cells. The

presence of clumps of two or more cells as well as smaller particles (dead cells or media

debris) creates a much wider size distribution than a homogeneous population of single

cells would yield. We can use our microscopy size histogram to determine a metric

for gating the flow cytometry size histogram about the mode of the distribution (Fig-

ure 5.3g). The fluorescence distribution of only the gated cells accurately reproduces

the microscopy data (Figure 5.3h) and yields a coefficient of variation that is three times

lower than that of the entire ungated data set.

As synthetic biology moves steadily towards the goal of developing accurate and

predictive models of cellular behavior, it is clear that computational modeling will rely

heavily on quantitative measurements of cellular phenomena. The cell division cycle is

a highly dynamic and noisy process that affects a cell’s behavior on many levels, and
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the fluctuations in cellular volume will affect the function of both native and synthetic

gene networks. It will be important to account for these fluctuations in the construction

of synthetic circuits designed to perform a specific function, such as to generate oscilla-

tions or toggle between two states, as they will inevitably affect network dynamics. In

addition, determining the sources and effects of noise in biological circuits is becoming

increasingly critical, as we try to develop more detailed and robust models of genetic

networks. These quasi-periodic fluctuations will have an impact on the study of noise bi-

ology, which relies heavily on precise terms for the dilution of cellular components due

to cell growth. Our results demonstrate the importance of accurately representing the

complex growth trends of a population of cells in order to account for the effect that the

resulting volume fluctuations have on the concentrations of intracellular components.

5.3 Materials and Methods

5.3.1 Strain and cell culture

The yeast strain was created by targeted chromosomal integration of the pRS61-

yv vector at the gal1-10 locus of S. cerevisiae strain K699 (a, ADE2, ura3, his3, trp1,

leu2). This vector was constructed using standard recombination techniques and con-

tains the gal1 promoter locus of S. cerevisiae driving production of the yeast enhanced

Venus fluorescent protein (yEVFP), a YFP variant (Raser and O’Shea, 2004). Cultures

were grown in synthetic drop-out (SD) medium supplemented with all amino acids ex-

cept uracil for selection of correct integration and containing 2% glucose. After se-

lection, cultures were grown in SD supplemented with all amino acids and containing

2% galactose for full induction of the production of the yEVFP protein. Cultures were

grown at 30 oC for 12-18 hours to an OD600 of 1.0± .25. In preparation for loading into

the microfluidic device, the sample was passed back to an OD600 of 0.1 and allowed to

grow for about 3 hours to re-enter exponential growth.
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5.3.2 Data acquisition

Image acquisition was performed on a Nikon Diaphot TMD epifluorescent in-

verted microscope with a hardware based autofocus controller (Prior Scientific, Rock-

land, Massachusetts). Images were acquired using a Hamamatsu ORCA-ERG cooled

CCD camera, and fluorescence visualization was performed with narrow bandpass ex-

citation and emission filters for YFP (Chroma, Inc., Rockingham, Vermont). The cells

were imaged inside a microfluidic chemostat as previously described (Cookson, S. et al.,

2005).

5.3.3 Flow cytometry data acquisition

Flow cytometry data was acquired with a Becton-Dickinson FACSCalibur flow

cytometer. To prepare the cells to be assayed, we grew them overnight in medium con-

taining 2% galactose. In the morning, cells were passed to an OD600 of .05 and allowed

to grow for 8 hours. At this time, 1 mL of the culture was spun down at 8000 RPM

for 1 minute, and the cells were resuspended in sterile phosphate buffered saline (PBS).

The cells were run through the flow cytometer, and 50,000 cells were sampled. Again,

MATLAB was used to analyze the flow cytometry data.

5.3.4 Forward scatter size calibration

In order to compare our microscopy size data to the FSC histogram provided

by the flow cytometer, we had to first determine what size dimension the FSC data

represents. To do this, we used spherical flow calibration beads of various diame-

ters ranging from 2 to 15 µm (SPHERO Flow Cytometry Size Standard Kit). Using

a Becton-Dickinson FACSCalibur flow cytometer, we ran these beads through on the

same settings we use to collect our yeast data. For each size bead, we collected 50,000

samples, and we used MATLAB (The MathWorks, Inc.) to calculate the mean FSC

measurement. In order to determine if the FSC was proportional to the length, area, or
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volume of a sphere, we compared the diameter, diameter2, and diameter3 of the beads to

the mean FSC value. It is clear from our data that the FSC measurement is proportional

to the diameter of the bead (Figure 5.4). Also, a linear fit to the diameter vs. FSC data

provides a nice equation to convert FSC to length.
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Figure 5.4: Size data for flow calibration beads. The top panel compares the diameter of
the beads to the mean forward scatter reported by the flow cytometer. The bottom panel
compares the diameter squared (area) of the beads, and the bottom compares the diameter
cubed (volume) of the beads to the forward scatter.
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5.3.5 Fluorescence Integration

In order to measure total fluorescence emitted by a single cell, we must be able

to assume that our image acquisition method is able to capture the fluorescence signal

from the entire cell. Wide-field microscopy is ideal for this purpose, as a wide-field

microscope collects the light from all points in the focal plane at once plus all the light

from illuminated regions of the sample that are above and below the focal plane. In addi-

tion, a 40x objective was chosen in order to strike a good balance between fluorescence

signal, depth of field, and field of view.

The depth of field (the axial range through which an objective can be focused

without any appreciable change in image sharpness) of the 40x oil objective used is

about 1.0 µm. While light outside of this region will be collected, this signal may not be

integrated linearly. However, as the imaging region is only 4 µm high, and the cells are

confined to a monolayer within this region, the loss of light due to out-of-focus regions

of a cell’s volume is likely insignificant and should affect all cells in a similar manner.

As a check to ensure that images were composed of light emitted from all regions of the

cell, we examined the fluorescence profile extracted along the major axis of a healthy

adult cell. Assuming an ellipsoidal cell shape and nonspecific YFP localization, we

would expect this fluorescence profile to fit an elliptical curve created based on the

major and minor axis dimensions of the cell.

Below, this verification is demonstrated, with a high degree of correlation (Fig-

ure 5.5). Slight imperfections in the correlation may be due to deviations from a purely

ellipsoidal cell shape as well as the imperfect distribution of YFP throughout the cel-

lular volume. Fluorescent proteins should not be localized to any particular area and

should be robust to pH differences, so we expect the signal to be more or less constant

throughout the cellular volume. However, since we are measuring the fluorescence of

the cell as a whole, the accurate measurement of total fluorescence does not rely on the

homogeneity of the fluorescent protein.
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Figure 5.5: Correlation between the fluorescence profile of a cell taken along its major
axis (inset) and the corresponding elliptical shape.

5.3.6 Computational model

MATLAB was used to model the growth and division of a population of yeast

cells. The data from the trajectory analysis was used to generate histograms for each

characteristic. These histograms were fit to Gaussian distributions, and the mean and

standard deviation was calculated for each. These statistics were fed into the MATLAB

model. Each cell was initialized using values drawn from a distribution based on this

data. As cells were modeled from birth, the trends of the characteristics as a function

of generation were also taken into account. That is, cells were initialized to a size

drawn from the distribution of cells sizes at birth. Similarly, the fluorescence production

rate, growth rate, and growth phase characteristics were chosen from histograms of first

generation measurements. After initialization, a cell was grown over time according to

the current value of the growth rate, and fluorescence was produced based on the current

value of fluorescence production.

The cell size was grown at the current value of the G1 growth rate until a thresh-
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old time was reached, set by the product of the cycle time and the fraction of time to

be spent in G1. After this time, the cell size was grown at the current value of the S

growth rate. The fluorescence was grown at a constant rate for the entire duration of the

current cell cycle. When cell cycle end time was reached, the size and fluorescence of

a cell was multiplied by the current value of ε, the fraction of volume to be retained by

the mother at the time of division. For the next cycle, the values above were reset, again

drawn from the distributions extracted from experimental data. The cells were grown

for 836 minutes, the average length of the experimental trajectories. One thousand cells

were simulated and compared to the experimental data.

—- Begin MATLAB Code —–

function conc array = YeastGrowth()

numcells = 1000; % total # cells to simulate

totaltime = 836; % total # time points - the average length of the experimental trajecto-

ries

volume array = zeros(numcells,totaltime); % array to store volume trajectories

fluor array = zeros(numcells,totaltime); % array to store the fluorescence trajectories

for c = 1:numcells % iterate through cells

initialSizeMean = .4352; % mean initial volume of cells

initialSizeStd = .0772; % std. dev. of initial volume of cells

maxSizeMean = 1.00; % mean max volume reached by a cell at the end of each cell

cycle

maxSizeStd = .1199; % std. dev. of max volume

maxSizeStdInd = .0842; % once a max volume is chosen for a particular cell, it will

vary by generation about this mean

meanCycleGrowth = 0.3577; % mean volume increase over one cell cycle

stdCycleGrowth = 0.0948; % std. dev. of volume increase over one cell cycle

cycletimes = [143.20 104.42 86.64]; % mean cycle times for the 1st, 2nd, and all fol-

lowing generations

cycletimes stds = [31.00 26.32 11.50]; % std. dev. of cycle times
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epsilon means = [0.5963 0.6367 0.6443 0.6650 0.6656 0.6703 0.6760]; % fraction of

volume the mother retains at bud event for 1st, 2nd, 3rd, ... and all following generations

epsilon stds = [0.0479 0.0522 0.0483 0.0489 0.0470 0.0474 0.0513]; % std. dev. of ep-

silons

g1 fraction means = [.611 .523 .511]; % mean fraction of cell cycle time spent in G1

phase

g1 fraction stds = [.097 .112 .094]; % std. dev. of fractions

G1 rate = .0014; % mean growth rate for G1 phase

G1 std = .000099; % std. dev. growth rate for G1 phase

fluor rate means = [2426 3163 3789 4061 4313]; % mean rate of YFP production for

the first 4 cycles and all cycles after

fluor rate stds = [1039 882 908 1083 1004]; % std. dev. of rate of YFP production for

the first 4 cycles and all cycles after

initialConcMean = 5.8353e+05; % mean initial YFP concentration in a new cell

initialConcStd = 1.5686e+05; % std. dev. of initial YFP concentration in a new cell

cellarr = zeros(totaltime,12); % trajectory information of single cell: # rows = # time

points

cellarr(:,1) = (1:totaltime); % column #1 stores the current time

initial size = randn(1)*initialSizeStd + initialSizeMean;

cellarr(1,2) = initial size; % column #2 stores the current volume - starting size chosen

from distribution

cellarr(1,12) = initial size; % column #12 stores the initial volume of the cell for the

current cell cycle

cellarr(1,3) = 1; % column #3 stores the current generation - various parameters are de-

pendent on generation #

cellGrowth = randn(1)*stdCycleGrowth + meanCycleGrowth; % the amount the cell

will grow over the current cell cycle

maxSizeNew = initial size + cellGrowth;

cellarr(1,4) = maxSizeNew; % column #4 stores the maximum volume that a cell will
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reach during the current generation

cycleTimeCell = randn(1)*cycletimes stds(1) + cycletimes(1);

cellarr(1,5) = cycleTimeCell; % column #5 stores the time to complete current cell divi-

sion cycle

alpha0 = rand(1)*G1 std + G1 rate;

cellarr(1,6) = alpha0; % column #6 stores the growth rate during the G1 phase

eps = randn(1)*epsilon stds(1) + epsilon means(1);

cellarr(1,8) = eps; % column #8 stores the current epsilon value - the fraction of volume

that the mother maintains after division

g1 fraction = randn(1)*g1 fraction stds(1) + g1 fraction means(1);

cellarr(1,9) = g1 fraction; % column #9 stores the fraction of the cell cycle duration

spent in G1 phase

halfdouble = cycleTimeCell*g1 fraction; % S phase growth rate is calcuated based on

other factors - G1 fraction, G1 growth rate, cell cycle time, and maximum size

maxSize = cellarr(1,4);

d1 = alpha0*halfdouble;

d2 = maxSize - d1 - initial size;

alpha1 = d2/(cycleTimeCell-halfdouble);

cellarr(1,7) = alpha1; % column #7 stores the growth rate during S phase

fluor rate = randn(1)*fluor rate stds(1) + fluor rate means(1);

cellarr(1,10) = fluor rate; % column #10 stores the rate of YFP production in the cell

initialConc = randn(1)*(initialConcStd) + initialConcMean; % YFP amount is calcu-

lated based on the initial YFP concentration and the intial size of the cell

initialFluor = initialConc*initial size;

cellarr(1,11) = initialFluor; % column #11 stores the total amount of YFP in the cell

tau = 1.0; % time step in minutes

tct = 0; % initialize time counter - helps keep track of cell cycle phase

for tpt = 2:totaltime % step through time and generate a volume trajectory

alpha0 = cellarr(tpt-1,6); % get current G1 growth rate
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alpha1 = cellarr(tpt-1,7); % get current S growth rate

cycletime curr = cellarr(tpt-1,5); % get current cell cycle duration

g1 fraction curr = cellarr(tpt-1,9); % get current G1 fraction

fluor rate curr = cellarr(tpt-1,10); % get current YFP production rate

halfdouble = cycletime curr*g1 fraction curr; % calculate the time to end the G1 phase

for this generation

if (tct*tau < halfdouble) % check cell cycle phase to determine growth rate

cellarr(tpt,2) = cellarr(tpt-1,2) + alpha0; % linear size growth - slower in G1 phase than

S phase else

cellarr(tpt,2) = cellarr(tpt-1,2) + alpha1; % after G1 phase, grow at faster rate

end

cellarr(tpt,11) = cellarr(tpt-1,11) + fluor rate curr; % linear YFP production

tct = tct+1; % increment tct

cellarr(tpt,3) = cellarr(tpt-1,3); % update cell array with previous values - these will only

change if it is time to divide

cellarr(tpt,4) = cellarr(tpt-1,4);

cellarr(tpt,5) = cellarr(tpt-1,5);

cellarr(tpt,6) = cellarr(tpt-1,6);

cellarr(tpt,7) = cellarr(tpt-1,7);

cellarr(tpt,8) = cellarr(tpt-1,8);

cellarr(tpt,9) = cellarr(tpt-1,9);

cellarr(tpt,10) = cellarr(tpt-1,10);

cellarr(tpt,12) = cellarr(tpt-1,12);

if(cellarr(tpt-1,5) < tct) % check if cell needs to divide; if so, proceed with division

size = cellarr(tpt,2); % get current volume

eps = cellarr(tpt,8); % get current epsilon

yfp = cellarr(tpt,11); % get current YFP level

cellarr(tpt,11) = yfp*eps; % divide YFP and volume according to epsilon value

initial size = size*eps;
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cellarr(tpt,2) = initial size; % update current volume

cellarr(tpt,12) = initial size; % update initial volume

cellarr(tpt,3) = gen; % update generation

cellGrowth = randn(1)*stdCycleGrowth + meanCycleGrowth;

maxSizeNew = initial size + cellGrowth; % generate new max volume

if gen == 2 % increase next size appropriately between generations 1 and 2 - this is a

larger increase than in later gens

maxSizeNew = maxSizeNew*1.06;

end

maxSizeNew = maxSizeNew*1.026; % increase next size appropriately after generation

2

cellarr(tpt,4) = maxSizeNew; % update max volume for next cycle

alpha0 = rand(1)*G1 std + G1 rate;

cellarr(tpt,6) = alpha0; % update G1 growth rate for next cell division cycle

ind = gen; % create an index based on the new generation - 1, 2, 3 or 4 and beyond

if (ind > 3)

ind = 3;

end

cycleTimeCell = randn(1)*cycletimes stds(ind) + cycletimes(ind); % use appropriate

value for cycle time and G1 fraction based on generation

cellarr(tpt,5) = cycleTimeCell; % update time to complete next cell division cycle

g1 fraction = randn(1)*g1 fraction stds(ind) + g1 fraction means(ind);

cellarr(tpt,9) = g1 fraction; % update G1 fraction for next cell division cycle

halfdouble = cycleTimeCell*g1 fraction;

d1 = alpha0*halfdouble;

d2 = maxSizeNew - d1 - initial size;

alpha1 = d2/(cycleTimeCell-halfdouble);

cellarr(tpt,7) = alpha1; % update S grwoth rate for next cell division cycle

ind = gen; % create an index based on the new generation - 1, 2, 3...6, or 7 and beyond
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if (ind > 7)

ind = 7;

end

eps = randn(1)*epsilon stds(ind) + epsilon means(ind); % use appropriate value for ep-

silon based on generation

cellarr(tpt,8) = eps; % update epsilon for next cell division cycle

ind = gen; % create an index based on the generation - 1, 2, 3, 4 or 5 and beyond

if (ind > 5)

ind = 5;

end

fluor rate = randn(1)*fluor rate stds(ind) + fluor rate means(ind); % use appropriate

value for YFP production rate based on generation

cellarr(tpt,10) = fluor rate; % update YFP production rate

tct = 0; % reset time counter for next cell division cycle

end

end

volume array(c,:) = cellarr(:,2)’; % fill next row of volume array with current cell’s vol-

ume trajectory

fluor array(c,:) = cellarr(:,11)’; % fill next row of fluorescence array with current cell’s

fluorescence trajectory

end

mean(volume array(:)) % display the mean of the volume array

std(volume array(:)) % display the std. dev. of the volume array

mean(fluor array(:)) % display the mean of the fluor array

std(fluor array(:)) % display the std. dev. of the fluor array

vbins = .24:.01:1.46; % plot the distributions for volume and fluorescence

figure(1);

[vhist,vbins] = hist(volume array(:),vbins);

hist(volume array(:),100)
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fbins = 60000:11800:1500000;

figure(2);

[fhist,fbins] = hist(fluor array(:),fbins);

hist(fluor array(:),100)

output = [vhist; vbins; fhist; fbins];

—- End MATLAB Code —–

5.3.7 Volume Growth Characteristics

The code is provided in the preceding section. This code details the values used

for each of the characteristics that we measured and integrated into the cell volume

model. All size measurements were normalized so that the average adult cell had a

mean maximum volume (volume attained at the end of each cell cycle) of 1.0. The

characteristics measured were the following:

• Initial Size: The volume of a newly budded daughter cell.

• Maximum Size: The maximum volume reached by a cell at the end of each cell

division cycle.

• Cycle Growth: The volume increase over a single cell division cycle.

• Cycle Time: Time to complete the cell division cycle.

• Epsilon: Fraction of volume the mother retains at bud event.

• G1 Fraction: Fraction of cell cycle time spent in G1 phase.

• G1 Rate: Growth rate for G1 phase.

• S Rate: Growth rate for S phase.

• Fluor. Rate: Rate of YFP production.
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• Initial Fluor.: Initial YFP level in a new cell.

• Initial Conc.: Inital YFP concentration in a new cell.

In the table below, we detail the mean and standard deviation of each of these

characteristics. If a characteristic changed throughout the early generations (gen #), we

document the specific value for each cycle, until the value leveled off (at which point

we leave the table blank).

Table 5.1: Statistics of growth characteristics as they change over the generations.
Characteristic Gen 1 Gen 2 Gen 3 Gen 4 Gen 5 Gen 6 Gen 7
Initial Size Mean .4532
Initial Size Std. .0772
Max. Size Mean 1.0
Max. Size Std. .1199
Cyc. Growth Mean .3577
Cyc. Growth Std. .0948
Cyc. Time Mean 143.20 104.42 86.64
Cyc. Time Std. 31.00 26.32 11.50
Epsilon Mean .5963 .6367 .6443 .6650 .6656 .6703 .6760
Epsilon Std. .0479 .0522 .0483 .0489 .0470 .0474 .0513
G1 Fraction Mean .611 .523 .511
G1 Fraction Std. .097 .112 .094
G1 Rate Mean .0014
G1 Rate Std. .0001
S Rate Mean .0082
S Rate Std. .003
Fluor. Rate Mean 2,426 3,163 3,789 4,061 4,313
Fluor. Rate Std. 1,039 882 908 1,083 1,004
Init. Fluor. Mean 267,800
Init. Fluor. Std. 100,500
Init. Conc. Mean 583,530
Init. Conc. Std. 156,860
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We also measured the growth rate in batch culture of this strain, using the stan-

dard OD600 technique and found a doubling time of 86.6 minutes, which corresponds

with the mean cycle time for a healthy adult cell (Figure 5.6).
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Figure 5.6: Growth rate calculated by measuring the OD600 over time.
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Chapter 6

Queuing up for enzymatic processing:

Correlated signaling through coupled

degradation

6.1 Introduction

Genomic technologies have led to significant progress in the deduction of net-

work connections arising from transcriptional and post-transcriptional regulation, yet

few studies have considered global mechanisms of indirect coupling that effectively in-

crease network connectivity. Such indirect coupling may arise from an abundance of

target molecules relative to a limited number of processing components, resulting in

“waiting lines” that occur in the context of queuing theory. Using the E. coli clpXP

degradation machine as a model processing system, we induce a “master” signaling net-

work and monitor a “slaved” constitutive system that is indirectly coupled to the master

through the common clpXP degradation processor. We observe significant correlations

between master and slave in their steady-state dose-response curves and dynamic sig-

naling responses. Our results demonstrate how global processing queues can provide a

mechanistic origin for intracellular correlations between many molecular species.

89
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Genetic wiring diagrams have arisen as a post-sequencing paradigm for depict-

ing the interactions between vast and diverse cellular species (Ideker et al., 2001a; Sauer,

2004; Li et al., 2004). These diagrams typically arise from high-throughput experiments

that probe cellular networks for interactions between genes either at the level of tran-

scriptional regulation or protein-protein interactions, enabling the connection of compo-

nents in a large-scale network “map.” An alternative approach to drawing connections

between cellular components involves subjecting cells to a particular stimulus, such as

DNA damage or starvation, observing the response of a large number of cellular compo-

nents, and looking for correlated behavior (Alon et al., 1999; Golub et al., 1999). This

approach often leads to much more highly interconnected networks than are predicted

by standard gene and protein interaction maps, suggesting the existence of alternative,

indirect sources of coupling.

6.2 Results and Discussion

Here, we use notions from queuing theory to investigate the effect that “waiting

lines” can have on the coupling of proteins, resulting from enzymatic processes involv-

ing many target molecules and a relatively small number of processing machines (see

Fig. 6.1a). Suppose that two proteins x1 and x2 involved in different signaling path-

ways do not directly interact with each other but are being processed downstream with

the same enzyme E. If E is abundant, its interaction with x1 and x2 is not limited by

the amount of E, and thus x1 and x2 remain uncoupled. If however the amount of E

is limited, x1 and x2 “compete” for E and this competition introduces correlations be-

tween x1 and x2, which may be hard to distinguish from direct crosstalk that arises from

regulatory mechanisms or bimolecular protein-protein interactions. A common exam-

ple of such shared enzymatic machinery is the superfamily of AAA+ proteases which

target for degradation multiple types of proteins which are either damaged or no longer

required (Maurizi et al., 1990; Wojtkowiak et al., 1993; Sauer et al., 2004; Levchenko

et al., 2000). These “degradation factories” are a natural object of study in the context of
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queuing theory, which deals with delays in processing that occur when multiple types of

“customers” wait for service from one or more “servers” (Kelly, 1979; Bramson, 1998;

Williams, 1998; Bramson and Dai, 2001). When servers are busy, customers of differ-

ent types compete for service, and that introduces correlations in their waiting times:

increasing the number of customers of one type will increase the waiting time of other

types as well.

The coupling effect of a common enzyme can be understood in the framework of

a deterministic model based on a Michaelis-Menten kinetics approximation for proteins

processed in dividing cells (Michaelis and Menten, 1913). The concentrations x1 and

x2 for two distinguishable proteins are assumed to obey the dynamics

dx1

dt
= λ1 − γx1 − µx1/(K + x1 + x2),

dx2

dt
= λ2 − γx2 − µx2/(K + x1 + x2)(6.1)

where λ1, λ2 are production rates, γ is the dilution rate due to cell growth, K is a

Michaelis-Menten molar constant, and µ is the maximum enzymatic processing rate.

Near so-called balance, i.e. when λ1 + λ2 ≈ µ, x1 and x2 strongly contract onto a slow

manifold (see Fig. 6.1b). The steady state solutions x
(ss)
1 and x

(ss)
2 in the limit K → 0

are (see SI for the more general result)

x
(ss)
1 = θ(η) η λ1 / γ (λ1 + λ2), x

(ss)
2 = θ(η) η λ2 / γ (λ1 + λ2) (6.2)

where η = λ1 + λ2 − µ, and θ(·) is the Heaviside step function: θ(η) = 1 if η ≥ 0

and θ(η) = 0 if η < 0. From Equations 6.2, coupling between non-zero steady state

concentrations arises when λ1 and λ2 are simultaneously nonzero and λ1 + λ2 > µ (see

Fig. 6.1c). This coupling can also be seen for a driven system (see Fig. 6.1d), where a

signal in λ1 can propagate into x2 signal.

As a model enzymatic queuing process, we explored the degradation of ssrA-

tagged proteins by the native E. coli ClpXP machine. ClpXP is a protease composed

of two multimeric subunits, ClpX and ClpP. ClpX is a hexameric ATP-ase which binds

and denatures proteins that are targeted for rapid removal from the system; these pro-

teins are then translocated into the degradation chamber within ClpP, where they are
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Figure 6.1: (A) Rate-limited processing can couple the queue lengths of different job
types. Here, jobs (red squares) are flowing into their respective queues (open black boxes).
The set of servers removes these jobs from their queues and processes each job with some
characteristic time. Queue lengths become coupled due to different jobs competing for
the attention of the servers. (B) Flow of the variables x1 and x2 with the dynamics in
Equations 6.1, using parameters λ1 = λ2 = 100, µ = 200, γ = 1, and K = 1. Coupling
due to common degradation tends to contract x1 and x2 to a slow manifold, defined ap-
proximately by x1/x2 = λ1/λ2. A steady state (black circle) is eventually reached. (C)
Coupling is apparent at the level of steady state concentrations. Using Equations 6.2 for the
steady state concentrations x

(ss)
1 and x̃

(ss)
1 with (λ2 6= 0) and without (λ2 = 0) the effect of

degradation coupling, respectively, the difference x
(ss)
1 − x̃

(ss)
1 is plotted as a measure of

coupling. This coupling arises when λ1 and λ2 are simultaneously nonzero and λ1 + λ2 is
sufficiently large. (D) Degradation coupling in a driven system. Here, λ2 = 1 is constant,
while λ1 varies between 0 and 2.5 (indicated by yellow line, scaled 10x). Oscillating signal
in x1 (green) is propagated into x2 (red) by the degradation coupling. Other parameters are
µ = 2, γ = 0, K → 0. Note that the drive alternatively places the system above and below
balance.
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destroyed (Maurizi et al., 1990; Wojtkowiak et al., 1993; Sauer et al., 2004; Levchenko

et al., 2000). An important role of ClpXP is to target proteins that have stalled in the ribo-

some; these incomplete proteins are marked with a well-characterized ssrA tag (Keiler

et al., 1996). Because ClpXP is involved in regulating the activity of metabolic en-

zymes as well as increasing degradation rates in stress response, thousands of cellular

substrates (Damerau and St John, 1993; Schweder et al., 1996; Flynn et al., 2003; Ne-

her et al., 2006) are often competing to be processed by only hundreds of degradation

machines (Farrell et al., 2005). This results in a “waiting line” for degradation and can

produce a coupling of cellular components that is unexpected and unaccounted for in

the context of traditional gene and protein interaction maps.

To mimic a cellular environment in which ClpXP machinery is saturated, caus-

ing target molecules to enter a processing queue, we constructed a synthetic system

to over-express two different tagged proteins from separate and uncorrelated promot-

ers (Fig. 6.2A). The PLtetO−1 promoter, used to drive expression of YFP (yeast-enhanced

venus fluorescent protein, (Raser and O’Shea, 2004)), is tightly repressible by the Tet

repressor (TetR) and can be regulated over an up to 5000-fold range by supplying doxy-

cycline to the culture (Lutz and Bujard, 1997). The hybrid promoter, Plac/ara−1, used

to drive expression of CFP (yeast-enhanced cerulean fluorescent protein, (Raser and

O’Shea, 2004)), is tightly repressed by the Lac repressor (LacR) and activated by AraC

and can be regulated over an up to 1800-fold range in the presence of IPTG and arabi-

nose in the culture. For maximum expression off of the Plac/ara−1 promoter, we used

1mM of IPTG in all samples and used various levels of arabinose to tune the induc-

tion level of CFP. Both YFP and CFP were tagged on their C terminus with the well-

characterized 11-residue “LAA” tag (AANDENYALAA), marking them as targets for

rapid degradation by ClpXP (Keiler et al., 1996). In order to ensure stable synthesis and

maintenance of the regulatory proteins, the synthetic system was transformed into an E.

coli DH5αZ1 host that produces constitutive levels of TetR, LacR, and AraC off of the

chromosome (Lutz and Bujard, 1997). Our analysis of the process of enzymatic decay

of highly expressed proteins predicts that at certain levels of expression, the mean level
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of one protein will be significantly coupled to the mean of the other.

We used two-color flow cytometry to generate induction curves for the two in-

ducible systems. As expected, the mean CFP expression level was not induced by

the presence of doxycycline alone (Fig. 6.2B, blue curve), but the mean YFP expres-

sion showed typical induction characteristics in response to doxycycline (Fig. 6.2B, red

curve). Interestingly, the addition of both arabinose and doxycycline to the medium in-

creased the mean expression level of YFP for most doxycycline levels (Fig. 6.2B, green

curve). That is, by inducing expression of CFP at the same time that YFP expression is

induced, the ClpXP degradation machines are faced with increasingly overloaded levels

of tagged proteins, resulting in a decreased overall degradation rate and increased mean

levels of both proteins. A similar result is observed in response to arabinose induc-

tion (Fig. 6.2C). In this case, YFP expression is observed to show no response to arabi-

nose alone, as expected (Fig. 6.2C, red curve), while CFP mean expression does increase

in response to arabinose alone (Fig. 6.2C, blue curve). Again, we can clearly observe

the effect of inducing both promoters simultaneously, as the addition of both arabinose

and doxycycline dramatically increases the induction characteristics of CFP (Fig. 6.2C,

green curve).

In order to further investigate the implications for enzymatic queueing, we de-

signed a novel microfluidic platform to drive and monitor the signaling responses of a

“master” and “slave” system at the single-cell level. We drove production of the mas-

ter YFP circuit with a square-wave signal of doxycycline (see Materials and Methods

below) and used two-color microscopy to observe the response of both the master and

the slave CFP systems. Whole-field fluorescence of a population of E. coli cells demon-

strates how the coupling of the two proteins through the shared degradation pathway

serves to drive the slave system in response to the behavior of the master system, as

both the YFP (Fig. 6.3A, green) and CFP (Fig. 6.3A, blue) signals oscillate with the

driving signal (Fig. 6.3A, red). Similar trends can be observed in the fluorescence tra-

jectories of individual cells (Fig. 6.3B). Correlated behavior is observed in response to

the driving signal as well as in long-term expression trends.
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Figure 6.2: Steady-state behavior of a synthetic signaling network. (A) Two independently
produced fluorescent proteins are coupled only by degradation. LAA-tagged YFP is pro-
duced by the PLtetO promoter, which is repressed by tetR in the absence of doxycycline.
LAA-tagged CFP is produced by the Plac/ara promoter, which is activated by araC in the
present of arabinose. (B) Mean YFP production of a large population E. coli. The syn-
thetic system showed no YFP response to the addition of arabinose (blue curve), a typical
induction response to the addition of doxycycline (red), and an increased response to the
presence of both inducers, indicating the overloaded burden on the clpXP machinery as
both CFP and YFP were being produced simultaneously. (C) Mean CFP production of a
large population E. coli. The synthetic system showed no CFP a typical induction response
to the addition of arabinose (blue curve), no response to the addition of doxycycline (red),
and an increased response to the presence of both inducers.
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Figure 6.3: Dynamic behavior of a synthetic signaling network. (A) Using a microfluidic
platform capable of generating a time-dependent induction signal, a large population of E.
coli expressing the synthetic network were subject to a series of doxycyline pulses (red).
The YFP and CFP production, integrated over the entire colony, demonstrates the direct re-
sponse of the PLtetO promoter, producing YFP (green) as tetR is periodically deactivated,
as well as the indirect response of the CFP signal (blue) due to the time-dependent satura-
tion of the clpXP machinery. (B) Trajectories for several individual cells demonstrate the
response at a single-cell level.
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The steady-state induction characteristics and dynamic signaling properties of

the two synthetic networks provide an unambiguous demonstration of how queueing

for enzymatic processing can induce correlations when there is a significant abundance

of proteins relative to the number of functional proteases. If such behavior were ob-

served in a native or uncharacterized system, it would likely be assumed that these two

proteins were correlated in a direct way, such as by coordinated gene expression or a

protein-protein interaction. However, our results demonstrate the strong correlated be-

havior that can be observed between two components that are only indirectly coupled

via an overloaded enzymatic process. The observed behavior suggests the importance of

considering this type of coupling as a form of post-transcriptional regulation when com-

piling and interpreting genetic wiring diagrams, as this could provide new connections

in existing networks or help to understand existing but currently inexplicable links.

6.3 Materials and Methods

6.3.1 Plasmid Construction

The plasmid pNO-2CLAA was constructed using the pZE24-mcs2a cloning plas-

mid (Lutz and Bujard, 1997), which has a kanamycin resistance marker and the hybrid

Para/lac−1 promoter upstream of a multiple cloning site (mcs). The sequence for CFP

was tagged by PCR with a carboxy-terminal ssrA tag (AANDENYALAA) (Keiler et al.,

1996) and inserted between the KpnI and HIndIII sites of the mcs, creating pZE42-

CFP-LAA. The YFP fragment was similarly tagged and inserted onto the pZS31-mcs2a

cloning plasmid, which contains a chloramphenicol resistance marker and the PLtetO−1

promoter upstream of a multiple cloning site. The fragment of this plasmid containing

the marker gene and PLtetO−1 driving YFP was copied by PCR and inserted into the

SacI site of pZE24-CFP-LAA, creating the final plasmid pNO-2CLAA, containing the

independently controlled fluorescent proteins.
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6.3.2 Flow Cytometry

Flow cytometry data was taken with a Becton-Dickinson LSR II Cell Analyzer,

fitted with 405nm and 488nm lasers. The cells were grown overnight in non-inducing

medium: LB plus kanamycin for plasmid selection. The cells were passed in the morn-

ing into LB plus kanamycin plus various levels of inducer, either doxycycline, arabi-

nose/IPTG, or both. The cells were grown in a 37◦C shaker at 300rpm. After 3 hours,

the cells were harvested by centrifugation, resuspended in sterile PBS, and put on ice

until they were ready to be sampled. Using the LSR II, 100,000 cells were assayed, and

the mean CFP and YFP fluorescence was calculated using MATLAB (The MathWorks,

Inc.).

6.3.3 Microscopy

Image acquisition was performed on a Nikon Eclipse TI epifluorescent inverted

microscope outfitted with fluorescence filter cubes optimized for YFP and CFP imaging

and a phase-contrast based autofocus algorithm. Images were acquired using a Photo-

metrics CoolSNAP HQ2 cooled CCD camera, controlled by Nikon Elements software.

Images were acquired every 1 minute in phase contrast, in order to provide the optimal

temporal coverage to suit the automated tracking program. Fluorescent images were ac-

quired every five minutes. The cells were imaged inside a microfluidic with an upstream

switch, with the ability to mix or switch between two different media sources. A custom

application written in LabVIEW (National Instruments, Austin, Texas) controlled linear

actuators, to which two reservoirs containing inducing and non-inducing medium were

attached. Using this algorithm, a square wave of 3 hour period was generated, subjecting

the cells to alternating 90 minute terms of inducer or non-inducer.
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Chapter 7

Summary

The field of synthetic biology is growing rapidly as there is increasing success

in the application of computational techniques to describe and predict dynamic cellular

behavior. This progress is aided by the continuing development of powerful tools in

molecular biology, microfluidic, and computational techniques. The ability to construct

networks from simple biological components, based on computational guidelines and

predictions will require a thorough understanding of the basic cellular functions that

underly complex biological networks. Here, we have presented several studies aimed

at probing the dynamic behavior of the model organisms Saccharomyces cerevisiae and

Escherichia coli at the single cell level.

In Chapter 2, we demonstrated the utility of a novel microchemostat designed for

monitoring long-term gene expression dynamics in S. cerevisiae (Cookson*, Ostroff*,

Pang*, Volfson, and Hasty, 2005, *equal contribution). This device provides many ben-

efits over traditional methods for measuring cellular fluorescence, such as flow cytome-

try and traditional microscopy. Flow cytometry provides a snapshot of single-cell data

but does not offer the ability to track any given cell. These population measurements

provide very useful information about the steady-state behavior of biological networks,

but they inherently sacrifice details at the single-cell dynamical level. Traditional mi-

croscopy assays yield useful and very detailed information on the dynamical behavior

100
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of a small number of cells but typically run only for a short time period and sacrifice

the ability to generate good statistics over a population. In contrast, the TµC allows

for long-term single-cell dynamical measurements over a large population. Within the

context of systems biology, the ability to generate such data at the single-cell level will

aid in the development of predictive dynamical modeling (Chen et al., 2004) and facil-

itate the application of novel approaches such as the use of frequency-space analysis to

quantify the variability inherent in gene expression (Simpson et al., 2003). The unique

capability of the TµC for studying both the dynamics and the variability of biological

processes within a population of living cells represents an important step toward bring-

ing quantitative single-cell data to the field of systems biology.

In Chapter 3, we studied the biological origins of variable gene expression within

a clonal population of yeast cells (Volfson*, Marciniak*, Ostroff, Blake, Tsimring, and

Hasty, 2006, *equal contribution). We combined computational modeling with fluores-

cence data generated from multiple promoter-gene inserts in S. cerevisiae to identify

two major sources of extrinsic variability. One unavoidable source arising from the cou-

pling of gene expression with population dynamics leads to a ubiquitous noise floor in

expression variability. A second source which is modeled as originating from a common

upstream transcription factor exemplifies how regulatory networks can convert noise in

upstream regulator expression into extrinsic noise at the output of a target gene (Pedraza

and van Oudenaarden, 2005b). Our results highlight the importance of the interplay of

gene regulatory networks with population heterogeneity for understanding the origins

of cellular diversity.

In Chapter 4, we monitored the response of S. cerevisiae metabolic gene reg-

ulation to periodic changes in the external carbon source by utilizing a microfluidic

platform that allows precise, dynamic control over environmental conditions (Bennett*,

Pang*, Ostroff, Baumgartner, Nayak, Tsimring, and Hasty, 2008, *equal contribution).

We found that the metabolic system acts as a low-pass filter that reliably responds to

a slowly changing environment, while effectively ignoring fluctuations that are too fast

for the cell to mount an efficient response. We used computational modeling calibrated
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with experimental data to determine how frequency selection in the system is controlled

by the interaction of coupled regulatory networks governing the signal transduction of

alternative carbon sources. Experimental verification of model predictions led to the

discovery of two novel properties of the regulatory network. First, we revealed a previ-

ously unknown mechanism for post-transcriptional control, by demonstrating that two

key transcripts are degraded at a rate that depends on the carbon source. Second, we

compared two S. cerevisiae strains and find that they exhibit the same frequency re-

sponse despite having markedly different induction characteristics. Our results suggest

that while certain characteristics of the complex networks may differ when probed in a

static environment, the system has been optimized for a robust response to a dynamically

changing environment.

In Chapter 5 we used fluorescence microscopy to acquire single cell volume tra-

jectories for a large population of S. cerevisiae cells (Cookson, N., Cookson, S., Tsim-

ring, and Hasty, 2009). Using this data, we generated a comprehensive set of statis-

tics that govern the growth and division of these cells over many generations, and we

discovered several interesting trends in their size, growth, and protein production char-

acteristics. We used these statistics to develop an accurate model of cell cycle volume

dynamics, starting at cell birth. Finally, we demonstrated the importance of tracking vol-

ume fluctuations by combining cell division dynamics with a minimal gene expression

model for a constitutively expressed fluorescent protein. The significant oscillations in

the cellular concentration of a stable, highly expressed protein mimicked the observed

experimental trajectories and demonstrated the fundamental impact that the cell cycle

has on cellular functions.

In Chapter 6 we investigated a mechanism of indirect protein coupling that effec-

tively increases the connectivity of biological networks (Cookson*, Mather*, Mondragon-

Palomino, Williams, Tsimring, and Hasty, 2009, *equal contribution). The indirect

coupling we studied arises from an abundance of target molecules relative to a limited

number of processing components, resulting in “waiting lines” that occur in the context

of queuing theory. Using the E. coli clpXP degradation machine as a model system, we
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constructed a synthetic signaling network to demonstrate the unexpected coupling of

two otherwise independent components, resulting from being subject to a degradation

queue. Our results highlight the importance of considering indirect sources of coupling

between biological components, as they can yield observed correlated behavior that is

strikingly similar to that of more directly connected components.

Together, these studies highlight the importance of studying the dynamics of

biological systems, using methods that allow the tracking of long-term behavior in single

cells. The ability to take high-resolution data over long time periods for comparison with

computational modeling allows us to elucidate novel properties of biological systems.

The synthetic biology approach will become increasingly effective as these technologies

continue to improve and we gain more information about fundament cellular behavior at

the single-cell level. By understanding these basic functions, we hope to reveal design

principles that are key to driving and regulating dynamic behavior. This will allow the

advanced development of synthetic networks from the ground up, that are capable of

dynamic behavior that can be controlled and accurately predicted. Ultimately, we can

envision applications in the development of “personalized” medicine, with the ability to

construct simple gene modules that could be integrated into a diseased cell to perform

the function of a damaged or missing cellular component, returning the system to a

healthy state.
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