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Abstract Next generation Web 2.0 communities and distributed P2P systems rely
on the cooperation of diverse user populations spread across numerous administra-
tive and security domains. Zero accountability via anonymous online identities and
divergent interests result in selfish behavior that can disrupt or manipulate networks
for personal gain. While “reputation systems” are recognized as a promising means
to establish social control for such communities, developing reliable reputation sys-
tems remains a challenge. Several unaddressed threats still limit the effectiveness of
reputation systems. Furthermore, most existing work on reputations has focused on
accurate reputations for stable systems, but not examined the implications of inte-
grating user reputations into scalable distributed infrastructures. The primary goal
of this paper is to investigate and address the critical open challenges that limit the
effectiveness of reputations. First, we identify a thorough taxonomy on reputation
management, and use it as our framework to classify adversarial threats that compro-
mise reliable operation of reputation systems. Second, we survey existing research
to address these threats. Finally, we present our solutions to address the two leading
reasons for erroneous and misleading values produced by reputation systems today,
i.e., user collusion and short-lived online identities. We believe that this paper not
only serves as an introduction to reputation systems design, but will also help re-
searchers deploy reliable reputation solutions that contribute towards improving the
performance of large distributed applications.

Keywords Peer-to-peer systems · Reputation · Security · Trust

G. Swamynathan · K.C. Almeroth (�) · B.Y. Zhao
Department of Computer Science, University of California, Santa Barbara, CA 93106-5110, USA
e-mail: almeroth@cs.ucsb.edu

G. Swamynathan
e-mail: gayatri@cs.ucsb.edu

B.Y. Zhao
e-mail: ravenben@cs.ucsb.edu

mailto:almeroth@cs.ucsb.edu
mailto:gayatri@cs.ucsb.edu
mailto:ravenben@cs.ucsb.edu


240 G. Swamynathan et al.

1 Introduction

The burst in Internet connectivity around the globe in the last decade has resulted
in the rapid increase in the popularity of online communities. Internet marketplaces
like eBay.com witness trading of millions of unique items each day between diverse
communities of individuals. Popular P2P protocols and Web 2.0 applications such as
BitTorrent, Facebook, and YouTube also attract users worldwide by offering new and
novel user-generated content and services. Their popularity stems from the ability to
exchange information, digital content, and goods with a wide community of users not
reachable through traditional means.

While these next-generation Internet communities offer a variety of opportunities,
there is also risk involved for their members. These applications rely primarily on
cooperative user behavior for their correct operation, a challenging task given that
users are distributed over many distinct networks and administrative domains. These
users are also autonomous and self-interested, behaving only in their best interests.
Moreover, the availability of cheap and anonymous online identities frees them from
the consequences of their actions. This open and anonymous nature that makes inter-
acting in online communities so popular also makes them vulnerable to attacks from
malicious and self-interested members.

As a popular P2P network, for example, Gnutella is susceptible to a variety of
attacks [21]. One common attack is “whitewashing,” where a free-riding peer repeat-
edly joins the network under a new identity in order to avoid the penalties imposed on
free-riders. A more serious attack is when dishonest peers distribute viruses and Tro-
jan horses hidden as files. The VBS.Gnutella worm, for example, stores Trojan-horse
executable files on network peers [55]. Another Gnutella worm called Mandragore
registers itself as an active peer in the network, and provides a renamed copy of itself
for download in response to intercepted queries [11]. Finally, dishonest peers often
pass corrupted or blank files as legitimate content.

In order to reduce such transaction risks and improve performance, applications
must manage trust relationships between users, motivating cooperation and honest
participation within their networks. Introducing trust to large-scale distributed appli-
cations is a difficult challenge, but one well-suited for reputation systems. A reputa-
tion system collects, aggregates, and disseminates feedback about a user’s behavior,
or reputation, based on the user’s past interactions with others. Like real-world mar-
kets where personal or corporate reputations play a fundamental role in pricing goods
and initiating transactions, digital reputations present a powerful mechanism to estab-
lish trust between strangers on the Internet and facilitate transactions between them.

A large amount of research confirms the fact that online reputation systems are
an effective means of social management; they discourage maliciousness and mo-
tivate trustworthiness and cooperation among users [1, 6, 28, 40, 45, 57]. Most ex-
isting work on reputations, however, has focused on accurate reputations for stable
systems, but not examined the implications of integrating user reputations into scal-
able distributed infrastructures. For instance, existing reputation systems provide mis-
leading results for unstable and “short-lived” user identities, a commonly observed
phenomenon in dynamic distributed systems. Since reputations assess a user’s trust-
worthiness using historical feedback of its past interactions, longer user lifetimes lead
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to more interactions, and a more accurate reputation. But users in “high-churn” sys-
tems are often short-lived as they periodically exit the application or leave due to
failures. Furthermore, malicious users penalized by reputation systems for poor per-
formance have the ability to rejoin the network with newly acquired identities and a
clean history. Such users accrue inaccurate reputations computed from only a small
number of past interactions.

On the other hand, “long-term” reputations, aggregated from a larger number of
past transactions, are challenged with another serious threat—vulnerability to user
collusion. Reputation systems generally assume that each online identity represents a
single user. However, recent work has shown that given the relative low cost of online
identities, users often generate multiple “Sybil” identities to gain benefits beyond the
fair allocation for a single identity [59]. The Sybil attack, as this is popularly known,
also allows these multiple identities to “collaborate” or collude for the good of the
user. For example, users can collude to artificially boost the reputation values of one
or more friends [34], or falsely accuse well-behaved users of misbehavior. Detecting
such collusion attacks is yet an unsolved problem that severely limits the impact of
existing reputation systems.

The primary objective of this paper is to investigate and address the critical open
challenges that limit the effectiveness of reputations and prevent their integration into
large-scale distributed applications today. Integrating reliable reputation solutions
will contribute tremendously towards increasing user cooperation, thereby improv-
ing the performance of these applications. Towards this end, this paper first identifies
a thorough taxonomy on reputation management, namely, the tasks of collection, ag-
gregation, storage, and communication of reputation data. Our goal is to employ this
taxonomy as a framework to facilitate two specific contributions: identify challenges
that compromise reliable operation in each category, and survey prominent strategies
to overcome these challenges. Furthermore, we present our contributions towards ad-
dressing the two critical reputation reliability challenges that remain largely unsolved
today—collusion and churn attacks.

First, we counter user collusion by augmenting traditional reputation systems with
a “reliability metric” [54]. Our approach helps users make more accurate decisions
based on trust by quantifying the risk that a given reputation value has been affected
by collusion or collusion-like behavior. As a basis for our metric, we leverage a pair
of well-studied mechanisms used in economic studies, the Lorenz curve [35] and
the Gini coefficient [10]. Applied to reputations, they characterize how far a user’s
per-partner distribution of transactions deviates from the ideal. Using our metric,
a user can easily distinguish between reputations generated by truthful transactions
and those that might be strongly influenced by user collusion.

A user deemed “unreliable” by our metric could either have transacted exclusively
with a small number of partners, or performed very few transactions, possibly due
to having just joined the network. For such users, we describe the use of proactive
reputations, a technique to obtain accurate, firsthand estimates of a user’s reliabil-
ity [51]. Our experimental evaluations demonstrate how these firsthand observations
are resistant to both churn attacks and user collusion.

The remainder of this paper is organized as follows. We begin by presenting an
overview of reputation systems and our taxonomy on reputation management in
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Sect. 2. We also present a summary of six representative reputation systems. Sec-
tion 2 also describes each aspect of reputation management, identifying challenges
that compromise reliable operation and surveying research efforts to overcome these
challenges. In Sects. 3 and 4, we discuss the critical challenges of collusion and churn,
and describe our solutions towards addressing them. First, we describe our reliability
metric for reputation systems that protects users from collusion attacks (Sect. 3). We
also describe the use proactive reputations to compensate for unreliable reputations.
Second, we evaluate both mechanisms via detailed simulations of peer collusion and
churn models based on measurements of deployed P2P systems, and show how our
enhancements greatly improve the accuracy of traditional reputation systems under
collusion and churn (Sect. 4). Finally, we present related work in Sect. 5 and conclude
the paper in Sect. 6.

2 Taxonomy on reputation management

A reputation is a statistical estimate of a user’s trustworthiness computed from feed-
back given by previous transaction partners to the user. As depicted in Fig. 1, a ser-
vice requester, R, uses the reputation profile of a provider, P , to determine whether
to transact with P . Following the transaction, R provides its assessment (or rating)
of P to the reputation system. Examples of rating schemes include binary ratings (0
indicating bad, 1 indicating good) or subjective ratings like (Very Good, Good, OK,
Bad, Very Bad).

The predictive power of reputation assumes that past behavior of a user is indica-
tive of her future behavior [31]. A user enjoying a highly valued reputation would
imply that the user has conducted good transactions in the past, and can be trusted

Fig. 1 A reputation system collects, updates, and disseminates each peer’s behavior in the network in the
form of its reputation profile
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to perform honestly in future transactions as well. eBay.com, for example, one of
the largest marketplaces on the Internet today, uses a feedback-based reputation sys-
tem where buyers and sellers rate each other following each transaction. The eBay
reputation system (the Feedback Forum) computes a user’s reputation as the sum
of its lifetime (positive, neutral, negative) ratings. Sellers with excellent reputations
can claim higher prices for their products while poor reputation holders attract fewer
buyers [43].

We identify a taxonomy of four reputation management processes that need to be
effectively designed in order to build a reliable reputation system, namely, the col-
lection, aggregation, storage, and communication of reputation data. We employ this
taxonomy as a framework to organize recent research in reputations as well as ex-
amine the various strategies proposed by the research community to ensure reliable
operation of reputation systems. In the collection process, we describe the generation
of ratings by users undertaking transactions. We discuss the sources and types of rat-
ings, and the various ratings schemes that can be employed by a reputation system. In
the aggregation process, we describe how individual user ratings can be aggregated
to form a reputation profile. This reputation profile needs to efficiently stored in or-
der to minimize communication and processing overheads. In the storage process,
we discuss the various forms in which reputation can be stored, the choice of data
store, and storage methodology. The communication process discusses the various
reputation exchange protocols that can be employed.

Each of these components needs safeguarding against a variety of adversarial
threats. For example, reliability in terms of reputation accuracy is a critical require-
ment from the aggregation component. Reliability guarantees like privacy and avail-
ability are critical from the storage component managing reputation data. Likewise,
the communication infrastructure should be resistant to packet sniffers who attempt
to maliciously tamper with information and present false information to reputation
seekers. This paper, therefore, studies the extent to which existing research efforts
counter such threats.

We now present an overview of the prominent P2P reputation systems analyzed
in this paper. Next, we describe each aspect of reputation management in detail and
survey related work. While the area of P2P networks has experienced a predominant
amount of reputations research, Sect. 5.1 discusses other applications of reputation
systems, including eCommerce marketplaces, Web 2.0 applications, and wireless net-
works.

Summary of P2P reputation systems We analyze six major reputation systems,
namely, PGrid [1], XRep [11], EigenTrust [28], CONFIDANT [6], TrustGuard [49],
and Credence [56]. We choose to compare these systems not only because they have
significantly shaped the area of reputations research over the last five years, but also
because of the diversity in their reputation mechanisms that we wish to analyze. We
discuss the strengths and weaknesses of each of these reputations systems with re-
spect to our reputation management taxonomy. In addition to our six representative
systems, we discuss other P2P reputation systems that present interesting solutions
for specific process contexts in the text when appropriate.

Aberer and Despotovic were one of the first to propose a reputation system for
decentralized networks [1]. Their approach, PGrid, assumes that network peers are
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honest in most cases. The reputation system expresses distrust in the form of com-
plaints and a simple summarization of complaints received and filed is performed.
The authors use probabilistic analysis to compute an average trust measure (based
on number of complaints) for network peers and determine dishonest peers as ones
which exceed the average trust value. Decentralized data management is achieved
using a PGrid.

The XRep protocol, proposed by Damiani et al., is a reputation sharing protocol
proposed for Gnutella, where each peer keeps track and shares with others the rep-
utation of their peers [11]. A combination of peer and object reputations are used to
minimize the potential risk involved with the download and use of a resource. A dis-
tributed polling algorithm is employed to manage the reputations.

Kamvar et al. propose EigenTrust, a reputation system to help P2P file sharing
networks combat the spread of inauthentic files [28]. Each peer is associated with a
global trust value that reflects the experiences of all the peers in the network with
that peer. Eigentrust uses a distributed algorithm where these global trust values are
iteratively aggregated along transitive trust chains of local trust values weighted by
the reputation rating of the raters.

Buchegger et al. propose CONFIDANT, where each node monitors its neighbors’
behavior and maintains a reputation for each neighbor [5, 6]. The authors attack the
problem of false ratings by using a Bayesian approach. They distinguish between
reputation, how well a node behaves in routing, and trust, how well it behaves in
the reputation system. A node distributes only firsthand information to other nodes,
and only accepts other firsthand information if those opinions are similar to its own
opinion.

Srivatsa et al. propose TrustGuard to counter three vulnerabilities identified by
them as detrimental to decentralized reputation management, namely, oscillatory
peer behavior, fake transactions, and unfair rating attacks [49]. TrustGuard em-
ploys a personalized similarity measure (previously proposed by the same authors in
PeerTrust [57]) in order to more heavily weigh opinions of peers who have provided
similar ratings for a common set of past partners, thereby, addressing the problem of
dishonest feedback. The PeerTrust trust model also considers the transaction context
(on the basis of transaction size, category or time stamp) and incentives to provide
feedback.

Walsh et al. propose Credence with the goal of thwarting file (or object) pollution
in P2P file-sharing networks [56]. Similar to XRep, the authors generate object rep-
utations and deploy their mechanism for files in the Limewire client for the Gnutella
P2P network [21]. Credence employs a web-of-trust to account for the lack of di-
rect observations. This is because it is impossible for a single object to be widespread
enough to have a sufficient number of raters for it. Like PeerTrust’s personalized sim-
ilarity metric, Credence employs a correlation coefficient to compare voting histories
between peer pairs.

Table 1 summarizes these reputation systems. We now begin a detailed discussion
of each aspect of reputation management.
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Table 1 Summary of P2P reputation systems

Reputation
system

Collection Aggregation Storage and communication

PGrid [1] Only complaints
are reported

Simple summarization of complaints Decentralized P-Grid

XRep [11] Binary votes
(for peers and
resources)

Distributed polling algorithm; no
formal trust metric

Local repositories
maintained by users;
Vote polling via broadcast

EigenTrust
[28]

(−1,0,+1)

ratings
Transitive trust chains of local trust
values weighted by the rating of the
raters aggregated to form global trust
values

DHT-based structured
approach

CONFIDANT
[6]

ALARM
messages warn
users

Decoupled service and feedback trust;
Bayesian approach of aggregating
“similar” ratings

Trust table maintained by
each user; Control messages
exchange reputation data

TrustGuard
[49]

Binary ratings Decoupled service and feedback trust;
Personalized “similarity” metric with
cached and dynamic computations

P-Grid-based approach

Credence [56] Only resources
voted (−1,+1)

Correlation “coefficient” compares
voting histories of user pairs

Local vote databases;
Vote gathering protocol

2.1 Reputation collection

Peer-to-peer networks are defined by interactions between peers. An interaction be-
tween two peers could include a file transfer, remote storage, CPU usage, or simi-
lar transactions. The service requesting peer uses reputation information to decide
among multiple providers. At the end of the transaction, the requester furnishes the
system with its evaluation of the service provider in the form of a reputation rating.
Examples of quantitative rating schemes include a binary rating scheme (0 indicating
bad, 1 indicating good) [57], or a (−1,1) scheme where −1 indicates a bad transac-
tion, and 1 indicates a good transaction [28]. Mobile ad hoc nodes use ALARM-type
messages to warn others of malicious nodes [6].

Reputation ratings are normally associated with peers. In Credence, a reputation
rating is associated with a resource instead such as a file in a file-sharing network [56].
Similarly, XRep employs a combination of peer-based reputations and resource-
based reputations [11]. Damiani et al. present an elaborate discussion on short-
comings of using a pure peer-based reputation scheme or resource-based reputation
scheme. Peer-based reputations suffer from the cold-start problem for peers; new-
comers offering a limited number of resources need to struggle initially to build their
reputations. By distributing well-reputed resources, newcomers can more quickly
participate actively in the network. This also improves load balancing by directing
peers to multiple copies of a well-reputed resource. Also, resources, and their repu-
tations, are generally more persistent than peer identities in the system.

There are several disadvantages of using a pure resource-based reputation scheme.
New files will need to build a reputation only after a file transfer (cold-start problem
for files). However, with a peer-based reputation scheme, new resources offered by
a well-established peer will be regarded as reliable. A major problem of using just a
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resource-based reputation scheme is in the identification of malicious peers. There is
no effective way of linking a bad resource to the peer that provided it. In a peer-based
scheme, peers can be easily blacklisted. However, since reputations are associated
with pseudonyms, peers have the ability to change identities and discard their poor
reputations.

Combining peer-based and resource-based reputations helps take care of the short-
comings of any one approach. However, storage overheads are substantially higher
when incorporating resource-based reputations as the number of resources in any sys-
tem is significantly more than the number of peers. Also, a single resource cannot be
widespread enough to have a sufficient number of raters for it. The choice of using
peer-based reputations or resource-based reputations could also depend on the churn
rate for each entity. If the turnover of peers in the network is high due to free and eas-
ily generated identities, then resource-based reputations may turn out to be a better
option. On the other hand, if the turnover of resources in the network is high, then it
may be better to leverage the more stable nature of peers.

2.2 Reputation aggregation

Reputation systems aggregate peer feedback using two approaches. One approach is
to use only firsthand information to evaluate peers. That is, each peer does not con-
sider any other peer’s feedback or observations. Ratings are aggregated locally with
no global information. The second approach is to use global information. Feedback
from all the peers that have interacted with a peer are aggregated in a meaningful
way to compute the peer’s reputation. The trade-off is between the efficiency of us-
ing available reputation information and vulnerability to false ratings. While global
reputation is efficient and helps quickly detect misbehavior in the system, it is vul-
nerable to false ratings. On the other hand, reputation ratings directly derived from
firsthand experience are highly reliable, but do not help blacklist malicious peers for
others. Also, firsthand information only proves effective if a peer locates honest ser-
vice providers with which to repeatedly transact [36].

Since global reputations provide significantly more information than firsthand rep-
utations, reputation systems predominantly employ them. We enlist some types of
ratings misbehavior commonly observed due to global reputation aggregation.

– Dishonest raters. An honest peer is one that is honest in its ratings of other peers.
A dishonest peer, on the other hand, tries to subvert a system by falsely rating a bad
transaction as good, and vice versa. Such unfair ratings presented due to jealousy,
competition, or other malicious reasons adversely affects the quality of reputation
scores generated by a reputation system.

– Dynamic personalities. Some peers exhibit a dynamic personality, switching be-
tween honest and dishonest behavior. Behavior changes can be based on the type or
value of the transaction or the party involved at the other end. Reputation milkers,
or oscillating peers, attack a reputation system by first building a good reputation
and then taking advantage of it to do harm.

– Collusion. Collusion occurs when two of more peers collectively boost one an-
other’s reputations or conspire against one or more peers in the network. Dellarocas
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Fig. 2 Three different collusion models. (A) Two-user; (B) Sybil-based; (C) Group

identifies four types of collusion misbehavior [12]. In ballot stuffing form of collu-
sion, a colluding group inflates each other’s reputations which then allows them to
use the good reputation to attack other system peers. Another form of collusion is
bad-mouthing where a malicious collective conspires against one or more peers in
the network by assigning unfairly low ratings to the target peers, thereby hurting
their reputation. Finally, positive (and negative) discrimination arises when peers
provide good (and poor) service to a few targeted peers.

– Sybil-based collusion. The Sybil attack occurs in the absence of a centrally trusted
party, when a peer with sufficient resources can establish a potentially unbounded
number of distinct online identities (or Sybils) [16, 59, 60]. Prior work has shown
that users can use these identities to collude and artificially inflate their own rep-
utations in order to monopolize service, lure users into scams, or otherwise gain
performance benefits from the system [4]. Figure 2 depicts three common types
of collusion, including, Sybil-based collusion, collusion between two users, and
group-based collusion involving more than two users.

– Churn attacks. While reputations have been deployed in online marketplaces such
as eBay.com, they are not necessarily a natural fit for the dynamic nature of P2P
overlay networks. Since reputations assess a peer’s trustworthiness using historical
feedback of its past interactions, longer peer lifetimes lead to more interactions,
and a more accurate reputation. Distributed communities like P2P file sharing
networks, however, experience significant churn (or peer turnover) which means
a high percentage of peers will have relatively “short-term” reputations accrued
from a small number of past interactions. For instance, malicious peers penalized
by reputation systems for poor performance have the ability to rejoin the network
with newly acquired identities and a clean history. Such churn attacks result in
erroneous or misleading reputations for malicious peers.

While an innumerable variety of attacks can be devised by malicious peers, our
above set comprise attack strategies most commonly observed by reputation systems.
We now discuss related work to counter these attack strategies. Our discussion is
largely qualitative due to the lack of a uniform experimental infrastructure to com-
pare the various systems. Kerr and Cohen propose a testbed formulation designed to
support systematic experimentation and evaluation of reputation systems [29]. How-
ever, the model is based on vulnerabilities investigated by the authors in online mar-
ketplaces, and its application to P2P systems and other applications is not known.

Reputation estimation methods based on a simple summation are particularly vul-
nerable to ratings attacks. For example, the overall reputation of a participant in
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eBay.com is computed as the sum of (+1,0,−1) transaction ratings acquired by the
participant over its lifetime [43]. Such simple schemes result in the “increased trust
by increased volume” vulnerability, i.e., a peer could increase its trust value by in-
creasing its transaction volume, thereby hiding the fact that it frequently misbehaves
at a certain rate. For example, a peer could undertake a thousand good transactions
of low value (say, worth $1) and use the accumulated good reputation towards one
dishonest transaction of high value (say, worth $1000). Additionally, all the ratings
are given an equal weight which encourages Sybil attacks and collusion.

Clearly, simple summarization schemes are ineffective given the sophisticated
types of attacks presented by dishonest individuals and groups. We now discuss more
interesting solutions proposed by the research community to counter the prominent
attack strategies identified by us.

Dishonest raters and dynamic personalities The impact of false ratings is mitigated
by incorporating credibility of the feedback source while processing a reputation rat-
ing. If Peer A trusts Peer B and Peer B trusts Peer C, then Peer A trusts Peer C. Josang
et al. describe requirements for the validity of such transitivity by expressing seman-
tic constraints under which trust may be transitive [26]. Furthermore, subjectivity is
of concern to reputation systems built on transitive web-of-trust models. Peer A may
regard 0.8 in an interval of [0,1] as a very high value of trust while Peer B may
perceive this value as only average. Hasan et al. discuss solutions to eliminate such
subjectivity from web-of-trust systems [23].

Several reputation systems employ web-of-trust chains to establish and propagate
trust among peers [33]. In general, a longer chain implies a greater risk of encoun-
tering a malicious “link.” Some schemes weigh ratings of a transitive chain by the
reputation of the least reputed peer in the chain [17] or proportionally weigh down
ratings as the length of the chain increases [7]. EigenTrust, a mechanism similar to
PageRank [41], uses a distributed algorithm where global trust values are an aggre-
gation of local trust values weighed by the reputation rating of the raters [28]. The
algorithm, however, requires strong coordination between peers and while effective
at countering false raters, the approach is complex and a more general solution is
needed.

EigenTrust and PGrid are “coupled” trust approaches—they correlate service trust
to imply feedback trust. That is, peers reputed to provide trustworthy service likely
provide trustworthy feedback. The feedback from peers with higher credibility, con-
sequently, weighs more in the calculation of a reputation score than those with lower
credibility [1]. While useful as a simple defense, such a mechanism can easily fail or
be manipulated. For example, colluding nodes can offer honest service for the express
purpose of boosting their reputations so they can badmouth other peers.

An alternative to coupled (or correlated) trust is to build a separate trust metric
to evaluate the credibility of feedback [6, 53, 57]. Feedback from peers with higher
feedback trust ratings will have more impact on a reputation score than those with
lower feedback ratings. But this technique requires additional overhead and compu-
tational complexity. For instance, TrustGuard uses the root mean square or standard
deviation to determine dissimilarity in the feedback ratings between any two peers,
thereby, determining the likelihood of credibility of each other’s opinions [49]. In a
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large P2P system, however, finding a statistically significant set of such past partners
is a challenge. Peers are likely to make choices among a set of candidates for which
there is no information.

CONFIDANT, another decoupled trust mechanism, distinguishes between reputa-
tion, i.e., how well a node behaves in routing, and trust, i.e., how well it behaves in
the reputation system. A node distributes only first-hand information to other nodes,
and only accepts other first-hand information if those opinions are similar to its own
opinion. Compared to CONFIDANT, where a node’s referral is interpreted subjec-
tively per node, Swamynathan et al. produce a system-wide referrer rating per node
making it more scalable [53]. The authors also demonstrate how the lack of trust data
can impact the effectiveness and scalability of TrustGuard in its computation of trust
values.

Both coupled and decoupled trust models need to take into account the distribution
of peer feedback in the computation of global reputation values. Zhou et al. propose
PowerTrust, a reputation system that, by taking into account the power-law charac-
teristics of feedback distributions, observes improvements in reputation accuracy and
speed of reputation aggregation [65].

Finally, to deal with dynamic personalities, reputation systems commonly employ
reputation fading or decay. By weighing feedback from recent transactions more than
old transactions, a peer is forced to maintain its honest behavior. This idea also helps
previously malicious participants shed their poor reputation, and with time, re-build
a good reputation.

Peer collusion Dellarocas identifies ballot-stuffing and bad-mouthing as two col-
luding scenarios in which peers can intentionally try to “rig the system” with biased
reputations, and demonstrates that while controlled anonymity can be used to avoid
bad-mouthing, cluster filtering approaches help reduce ballot-stuffing [12].

PageRank, one of the most popular reputation systems for ranking and web search
today, can be easily manipulated by collusion and Sybil strategies [41]. The Eigen-
Trust algorithm applies PageRank for P2P networks, but attempts to address the prob-
lem of malicious collectives by assuming pre-trusted peers in the network which may
not be a practical consideration. Lian et al. demonstrate the vulnerability of Eigentrust
to collusion by applying the algorithm to the Maze P2P system data set [34]. Zhang
et al. improve eigenvector-based reputations by capturing the amount of PageRank
inflation obtained by collusions [62]. They observe that colluding nodes cheat the
algorithm by stalling the PageRank random walk in a small web graph, and hence,
these nodes are sensitive to the reset probability of the random walk.

Sybil attacks All distributed reputation systems are vulnerable to Sybil attacks;
peers can generate a large number of identities and maliciously increase the repu-
tation of one or more master identities by giving false recommendations to it. Dewan
et al. suggest such liar farms can be countered if all the identities of a peer can be
mapped back to it [13]. They propose an IP-based mechanism that defines a security
zone and averages all the recommendations received by identities whose IP lie in the
same security zone. Similarly, the Maze system counters the Sybil attack by employ-
ing a combination of IP address and hard-drive serial IDs to track machines [58].
Other schemes, like OpenPrivacy, use identity plugins [7].
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Cheng et al. show that symmetric reputation functions cannot be resistant to Sybil
attacks as web-of-trust subgraphs can be duplicated by malicious peers to raise their
reputations arbitrarily. Sybilproof reputation mechanisms, consequently, need to de-
sign asymmetric reputation functions [9]. As with collusion, eigenvector algorithms
are extremely vulnerable to the Sybil attack as peers can increase their reputation
values by creating complete subgraphs of Sybil identities. Finally, the SybilGuard
protocol is based on the idea that malicious users can create several identities but
fewer trust relationships [59, 60]. The disproportionately-small “cut” in the social
network graph between the Sybil nodes and the honest nodes is exploited to bound
the impact of multiple identities.

Malicious colluders and Sybils present a significant challenge to reputation sys-
tems design. Our previous work proposed a “reliability metric” to detect and penalize
collusion-like behavior, and encourage peers to interact with diverse groups of users
across the network. This metric leverages two mechanisms used in economic stud-
ies, the Lorenz curve [35] and the Gini coefficient [10], which characterize how far a
user’s per-partner distribution of transactions deviates from the ideal uniform distrib-
ution [54]. We discuss our solution in greater detail in Sects. 3 and 4.

Churn attacks High rates of peer turnover, or churn, means a significant percentage
of peers will have relatively “short-term” reputations accrued from a small number
of past interactions. For applications that rely on peers for data storage, message for-
warding, or distributed computation, choosing a peer based on short-term reputations
is highly undesirable. This fundamental reliability concern greatly limits the effec-
tiveness of existing reputations mechanisms and their potential impact in network
protocols and distributed applications today.

The availability of cheap identities results commonly in the whitewashing at-
tack presented by free-riding (or selfish) peers. A free-riding peer conserves band-
width and CPU by not contributing any resources to the system. Various incentive
schemes have been proposed to encourage cooperation and participation in the net-
work [17, 18]. One proven way for a system to deal with high churn is to distrust
all newcomers in the system [19]. However, with such a mechanism, legitimate new-
comers are treated poorly initially, at least until they build a positive reputation. Feld-
man et al. suggest a “stranger adaptive” strategy to counter whitewashing in a net-
work [17]. Using recent transactions with strangers, a peer estimates the probability
of being cheated by the next stranger, and decides whether to trust the next stranger
using that probability. Swamynathan et al. explore proactive firsthand reputations as a
solution to generate quick and reliable reputations for short-lived network peers [51].
We discuss this solution in greater detail in Sects. 3 and 4.

2.3 Reputation storage

Different applications use different storage schemes that determine how data is in-
serted, accessed, and updated. Because any central storage approach would limit the
scalability of a peer-to-peer system, reputation data needs to stored in a decentralized
fashion. Decentralized storage can be achieved by having reputation data stored by
the provider [13, 40], the requester [11], or an anonymous third-party [1, 28].
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Chord [50], CAN [42], Tapestry [63] and PGrid [1] use a Distributed Hash Table
(DHT) that deterministically maps keys into points in a logical coordinate space.
Searches, as well as storage space required at each node, are on the order of logN .
Anonymity and redundancy mitigate peer collusion and tampering of reputation. In
PGrid, security concerns can arise if a peer stores its own trust information. However,
the authors find this occurrence rare and propose redundancy to ensure data integrity.

An alternative to the structured storage mechanism is to have each peer store trust
values locally [11, 13]. PRIDE employs an elicitation-storage protocol that crypto-
graphically prevents malicious modification of reputation information [13]. Peers in
XRep maintain a cryptographically-secure experience repository of resources and
“servents” with which they have interacted [11]. Certificates are another common
way of storing trust values. To prevent tampering, certificates can be digitally signed
with the private key of the certificate creators. Certificates can be stored at the cre-
ator and the target [7], or by the target alone [40]. The tradeoffs to storing reputation
data at only one location are the communication and processing overheads involved
in ensuring the integrity and authenticity of the data.

2.4 Reputation communication

The data exchanged, the storage mechanism employed, and the type of peer-to-peer
network (structured or unstructured) are some factors that determine the type of com-
munication protocol that can be employed. XRep, the reputation sharing protocol
proposed for Gnutella, employs vote polling via broadcasting on the Gnutella net-
work [11]. Poll messages are implemented on top of ordinary Query messages. To
protect the integrity and confidentiality of poll responses, the poll request includes a
public key, generated on the fly, with which poll responses need to encrypted. Sim-
ilarly, Dimitriou et al. describe SuperTrust, an encryption-based framework to pre-
serve the privacy and anonymity of transaction ratings [14]. In DHT-based storage
approaches, a peer is responsible for multiple keys and also the maintenance of a
routing table for other keys [1, 57]. When the peer receives a search or an update
message with a data key that it is not responsible for, it forwards the request accord-
ing to its routing table. Searches take O(logN), where N is the number of peers
in the network. Encryption schemes can be incorporated for secure transmission of
data [57]. Another issue in reputation systems is to determine between cached and dy-
namic computations of user reputations. Dynamic computation of data is expensive
if a peer has to retrieve the trust data of several peers in the network at run time. Each
peer can alternatively maintain a trust cache that stores the most recent trust values of
peers with which it has interacted [57]. Data retrieved from the cache results in only
approximate computations, but it is a cost-effective solution.

Issues like storage and communication integrity of reputation data are critical for
building reliable reputation systems, but these are generic challenges encountered by
most distributed infrastructures and are not a particularly novel problem for repu-
tation systems. Reputation systems can be designed to leverage secure storage and
communication protocols implemented by the underlying distributed application. We
refer readers to [30, 40] for a more complete analysis of design challenges in distrib-
uted systems storage and communication.
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As pointed out earlier in this section, two critical challenges still hinder reputation
systems in detecting and penalizing malicious users. These are the challenges posed
by user collusion and high churn in large-scale dynamic systems. The following sec-
tions now describe our solutions to address these open challenges.

3 The challenges of collusion and churn

Despite their effectiveness in traditional controlled environments, current reputation
systems can be highly inaccurate in large dynamic networks, such as online com-
munities. One of the leading factors to inaccurate reputation values is the increasing
presence of user collusion behavior. First, most online communities lack strong au-
thentication, allowing users to obtain multiple “independent” online identities. Prior
work has shown that a user can use these identities to collude and artificially inflate
his own reputation to monopolize service, lure users into scams, or otherwise gain
performance benefits from the system [34]. A second issue deals with “short-lived”
peers who have conducted few transactions. Since reputation systems rely on sam-
pling prior transactions, few transactions mean a small sample set and a reputation
that is easily influenced by malicious partners. Furthermore, malicious users penal-
ized by reputation systems for poor performance have the ability to rejoin the network
with newly acquired identities and a clean history. Such users accrue inaccurate rep-
utations computed from only a small number of past transaction.

We address these issues of reputation accuracy using two complementary repu-
tation mechanisms. First, we introduce a “reliability” metric that estimates the ac-
curacy of a network reputation based on the observation that reputation values are
most accurate when computed from numerous past transactions distributed across
many distinct partners. Second, for a user that determines that its service partners do
not have reliable reputations, we describe how to leverage “proactive reputations” to
produce reputation values with the desired accuracy.

3.1 Understanding user collusion behavior

Before defining our collusion-resistant metric, we need to first clearly define our col-
lusion attack model. We begin this section by quantifying the potential impact of
collusion behavior on system-wide performance. We then describe our assumptions
and models for colluding attackers, with models drawn from previous measurement
studies.

Impact of user collusion To better understand the threat that collusion attacks pose
to reputation systems, we perform an experiment using an event-driven simulator
where random subsets of a network of 10,000 peers collude to improve their reputa-
tion values. We define reputations as values between 0 and 1, where 0 indicates no
trust, and 1 indicates absolute trust. For each peer, we define an “intrinsic trust value”
that guides the peer in its transactions. For example, a peer with an intrinsic trust value
of 0.8 has a random 80% chance of behaving honestly on any given transaction. We
set malicious peers with trust values less than 0.3. We then allow random peer pairs
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Fig. 3 Impact of user collusion
on perceived reputations

to perform transactions in the system, with the subsequent feedback recorded to com-
pute the participants’ reputations. We assume a uniform distribution of transactions
with an average of 15 normal transactions initiated per peer. In addition to these nor-
mal transactions, we allow a subset of 2–5 peers to perform collusion by performing
transactions within the group which is always followed by mutual positive feedback.
Figure 3 plots the collusion-induced absolute error values for affected peers as com-
puted by the difference in reputation values with and without colluding transactions.
Clearly, even a relatively low rate of collusion can have a dramatic impact on a peer’s
perceived reputation values.

Collusion model Our collusion model begins with two assumptions. First, we as-
sume that peers cannot modify the application, and must provide verifiable proof of a
transaction along with its transaction feedback. This prevents colluders from spoof-
ing an unlimited number of transactions, and can be achieved using reasonable secure
signature mechanisms. Second, we assume that while colluders cannot forge transac-
tions, they can perform collusion transactions with resource costs lower than legiti-
mate transactions. For example, data transfers between two application instances on
the same machine generally incur much lower processing and I/O overhead compared
to typical transactions between distant peers. To model the lower cost of collusion
transactions, we use a collusion cost factor to represent the ratio of resource costs
between a legitimate transaction and a colluding transaction. We use this factor to
estimate the number of illegitimate transactions that can be reasonably performed by
colluders in our experiments.

To accurately evaluate our metric, we require a test framework with realistic mod-
els of user collusion. For this purpose, we leverage the results of a recent measure-
ment study on the Maze peer-to-peer file-sharing network that showed user behavior
strongly indicative of multi-user collusion. Maze is a popular file-sharing system in
Asia, and uses a centralized architecture that logs all transactions, crediting users
for each successful file upload while consuming credits for downloads based on file
size [58].

This study examined a complete log of the Maze system over a period of one
month, including 32 million file transfers totaling more than 437 terabytes between
161,000 users [34]. It observed several types of highly probable collusion-like behav-
ior, including how multiple peers performed repetitive or faulty transactions to artifi-
cially inflate the download credits of certain peers. The results support the prevalence
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of three popular collusion models. We use these models to drive the test framework
used in Sect. 4. We illustrated these models in Fig. 2, and describe them below:

– Pairwise collusion. The simplest model where two peers collude to mutually boost
reputation values, e.g., repeatedly download the same content from each other. This
can be performed by two distinct users, or by two Sybil identities.

– Sybil-based collusion. A single user boosts its reputation with help from a large
number of “slave peers” obtained via a Sybil attack [16]. Slaves exist only to trans-
act with the “master peer” and improve its reputation.

– Group-based mesh collusion. Finally, multiple peers can form cliques where all
members collaborate to mutually boost reputation values. Peers maximize their
benefit by performing pairwise collusion with all other peers in the clique. While
the aggregate benefit increases with clique size, clique sizes are limited by non-
trivial maintenance and coordination costs.

3.2 A statistical reliability metric

To quantify the likelihood that a reputation value has been influenced by possible col-
lusion, we propose a peer reliability metric based on the distribution of transactions
among a peer’s partner set. A reputation is less reliable if a significant fraction of
transactions are performed with a small number of peers, and “more reliable” when
all transactions are distributed evenly across many distinct partners. Intuitively, we
can compute such a reliability by representing a Peer P’s reputation as a Cumulative
Function (CF) of its transaction history. That is, if we plot on the x-axis the cumu-
lative percent of P’s distinct partners (sorted by number of transactions undertaken
with P) and on the y-axis the cumulative percent of P’s transactions, then the most
reliable distribution is represented by the 45 degree line.

Figure 4 plots transaction distributions of 3 peers that each conduct 100 trans-
actions with 20 peers. A peer maximizes its reputation reliability by spreading its
transactions evenly across all 20 peers in the system (shown by Distribution A). A col-
luder who performs 82% of its total transactions with two colluding partners obtains
a much lower reliability value for the same total number of transactions (Distribu-
tion C). Finally, an average peer might obtain a partner distribution better than the
colluder (Distribution B).

We investigated the effectiveness of several different measures as potential relia-
bility metrics. Our search led us to the area of economic statistics, where statistical

Fig. 4 The cumulative
transaction percentage for
reputation reliability
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Fig. 5 A Lorenz curve
representing the proportionality
of a distribution

models are used to compute and compare the proportionality of such distributions.
The Lorenz curve [35], in particular, is a graphical representation of the cumulative
distribution function of a probability distribution. Developed by Max Lorenz in 1905,
it is used in economics and ecology to describe inequality in income or size (for ex-
ample, bottom X% of society has Y% of the total income). As shown in Fig. 5, the
Lorenz curve of a given dataset is compared with the perfect equality line. In our
case, this represents a perfect distribution of transactions among a peer’s entire trans-
action partner set. The further the Lorenz curve lies below the line of equality, the
more skewed is the distribution of transactions. Formally, the Lorenz curve can be
expressed as:

Z(y) =
∫ y

0 xdF(x)

μ
, (1)

where F(x) is the cumulative distribution function of ordered individuals and μ is
the average size. The total amount of inequality is summarized by the Gini coeffi-
cient [10] (G). The Gini coefficient of a given data set is the ratio between the area
enclosed by the line of equality and its Lorenz curve, and the total triangular area
under the line of equality. That is:

G =
(

A

A + B

)

. (2)

The Gini coefficient ranges between 0 to 1. 0 corresponds to perfect equality, i.e.,
all partners have had the same number of transactions with the given peer. 1 corre-
sponds to maximum inequality, i.e., all transactions were undertaken with one single
partner. Since higher values are favored by our metric, we compute reliability (or
reputation quality) from the Gini coefficient as:

Q = (1 − G). (3)

Here, Q denotes a peer reputation’s reliability score. We performed a detailed
experimental evaluation of this metric and report a subset of our results in Sect. 4.
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Fig. 6 The impact of collusion
on the reliability of an inflated
reputation

We note that colluders seeking to boost their aggregate reputation value can easily
achieve a high reputation reliability (Q) at the same time, by distributing its transac-
tions evenly between its colluding partners. This tactic fails, however, when a colluder
actually seeks to make use of its reputation by cheating (and interacting) with a nor-
mal user. The more a user colludes with her friends to inflate her reputation, the more
significant her drop in reliability after interacting with a non-colluder. In Fig. 6, we
show how the reliability values of three colluders change as they periodically interact
with honest peers. Each colluder starts by building their reputation through collusion,
then goes through periodic phases of interacting with normal users followed by more
collusion. We compute each colluder’s reliability score, Q, after each transaction.
During collusion, the colluder cycles through its partner set in a round-robin fashion
to evenly distribute its transactions among them.

As Fig. 6 shows, transacting uniformly with its partner set produces perfect relia-
bility scores for each user. However, the scores fall dramatically when colluders in-
teract with non-colluders. Reducing the number of colluding partners or transactions
per partner does not result in any improvement in reliability scores for the colluder.
Once a reputation’s reliability drops, it is hard to re-build it. Therefore, a user that
colludes frequently with a single partner is permanently damaging her chances to
obtain a high reliability score. Colluders must choose between colluding for higher
reputations or spreading transactions for a higher reliability score.

The most reliable distribution, represented by the 45 degree line, denotes the per-
fect distribution of transactions among a peer’s entire transaction partner set. Appli-
cation dynamics, however, may result in imperfect distributions resulting in unfairly
penalizing honest users. For instance, online storefronts may have a loyal customer
base resulting in repeat business from those shoppers. The Gini coefficient could be
tuned on a per-application basis such that the expected reliability value experienced
in the application determines the perfect equality line for the system, and all users are
evaluated against the system’s average Gini coefficient.

3.3 Addressing unreliable reputations

While our reliability metric allows us to approximate the reliability of a peer’s rep-
utation value, it does not provide information about the reliability of the peer itself.
A peer can have low-reliability reputations for two reasons: the peer has transacted
exclusively with a small number of partners, or it has performed very few transac-
tions, possibly due to having just joined the network. To help assess user reliability
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quickly and accurately in high-churn systems, we propose the use of proactive repu-
tations [52].

Where traditional reputation systems rely on feedback given after a transaction,
proactive reputations allow a peer to initiate transactions with a target for the express
purpose of evaluating its reliability for future transactions. For example, take a Peer
X that needs to interact with two other peers, A and B , both of whom have unreliable
reputations. X can initiate a number of proactive requests to gauge A and B’s reli-
ability and trustworthiness. Unlike challenge-response mechanisms where the target
has a clear incentive to respond correctly, the goal of proactive requests is to blend in
with regular requests to measure the candidate’s response to a normal request.

To accurately measure a target peer’s true behavior, proactive reputation systems
must satisfy several requirements. First, transactions must be relatively low cost to
minimize the overhead introduced. Second, they must be verifiable by the sender or
a third party to ensure integrity of the feedback. Third, proactive transactions should
be anonymous and indistinguishable from normal requests. Request anonymity pro-
tects the initiator from detection. Since detection occurs in real-time, we need only
a weak level of anonymity which can easily be achieved by redirecting the request
through one or more proxy peers. Proxy peers can be trusted third parties or even
Sybil accounts belonging to the requester.

When a requester peer, R, uses proactive reputations to test a service provider, P,
the result is a set of feedback values that R generates for service provided by P. R can
use these results in several ways.

– The proactive feedback values can be added to the pool of transaction feedback val-
ues in order to compute a new reputation value, treating them the same as feedback
generated by other requesters. This technique, however, is extremely vulnerable to
malicious reputation inflation.

– R can compute a local reputation for P based on its first-hand experiences. Given
its source, this local reputation value is significantly more reliable than a global
reputation. Conservative applications seeking to avoid inflated reputation values
can use this value instead of the global reputation.

– Finally, we recommend feedback from proactive reputations be integrated into our
reputation reliability metric. Since proactive transactions are forwarded through
proxies, P should not be colluding with R. Therefore, we treat each proactive
transaction as a transaction with a distinct partner. Thus n proactive transactions
with P can be included in our reliability metric as n transactions spread evenly
across n unique transaction partners. This maximizes the positive impact on P ’s
reliability metric, but generates a reliability value that is only valid to R. Further,
given a desired reputation reliability value, R can compute the number of proactive
transactions necessary to reach the target level of reputation reliability. Our evalu-
ations demonstrate that, used in conjunction with proactive reputations, this third
technique produces highly accurate measures of user behavior. Our experimental
evaluations in the next section demonstrate the effectiveness of using this approach
to counter collusion under a dynamic churn environment.
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4 Performance evaluation

In this section, we perform detailed evaluation of our proposed solutions and demon-
strate their role in improving effectiveness of traditional reputation systems. We be-
gin by discussing our simulation setup, including the peer community, reputation
schemes employed, and metrics used to evaluate the reputation mechanisms.

Simulation setup Our experiments are performed on an event-driven network sim-
ulator of 5,000 peers. We simulate a large number of peer transactions, where each
peer utilizes our reputation framework to choose partners with which to transact.
A transaction is a two step process: the service requester R, chooses, then performs a
transaction with a service provider, P . R then assigns P a binary feedback rating of 0
(negative) or 1 (positive). Our “transactions” are general and effectively represent any
type of peer-to-peer requests, including financial transactions, information exchange,
file read/write or message forwarding operations.

Before each simulation run, we assign each peer a random intrinsic trust value be-
tween 0 and 1 that represents the rate at which a peer behaves honestly. For instance,
an intrinsic trust value of 0.45 means the peer will provide services or ratings hon-
estly with a probability of 0.45. Since colluders are likely malicious peers with low
reliability, we set intrinsic trust values for colluders to random values less than 0.30.

Each experiment run includes two distinct phases: a bootstrap phase and an ex-
periment phase. The bootstrap phase initializes peer reputations for all peers. In this
phase, each peer performs transactions with random partners, and rates each provider
according to its own intrinsic trust value. We fix the number of bootstrap transactions
to 10 in our experiments. We assume that colluders can perform more collusion trans-
actions than regular peers, since collusion transactions often consume less resources.
We use our collusion cost factor parameter to determine the number of collusion
transactions undertaken by colluders during the bootstrap phase. For example, a cost
factor of 1:1 means colluders can collude at the same transaction rate as normal net-
work peers, while a cost factor of 5:1 means colluders can perform 5 times as many
colluding transactions as normal peers.

Once reputation values have been initialized, we begin our experiment phase. In
each run, we conduct 150,000 transactions over 5,000 peers for an average of 30
requests per peer. For each transaction, a peer makes a transaction request, and 25
random peers respond. The initiating peer then uses our reputation framework to
choose a transaction partner. We use the partner’s intrinsic value to determine if the
resulting transaction is a success or failure.

Peer selection algorithms To quantify the benefits of our reputation framework, in-
cluding the reliability metric and proactive reputations, we compare the performance
of three different reputation systems in our experiments: basic reputations (denoted
by R), reputations with reliability metric (L), and reputations with reliability metric
and proactive reputations (P).

1. Basic reputations (R): a peer chooses the service provider with the highest repu-
tation value. We compute Peer i’s reputation value, Ri , as the average of all of its
past transaction feedback values. Reputations range between 0 and 1.
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2. Reputations with reliability (L): a peer chooses the provider with the highest
weighted combination of reputation and reliability value:

Li = (1 − α) · Ri + α · Qi. (4)

Qi , peer i’s reliability score, is computed using Eqs. 2 and 3. The weight parame-
ter, α, can be tuned on a per-application basis to favor either higher reputations or
more accurate reputations. We fix α to be 0.5 for our experiments.

3. Reputations with reliability and proactive reputations (P): Requesters send an
average of 5 to 10 proactive probes to providers with reliabilities less than 0.5.
As proactive transactions are anonymous, we treat each proactive transaction as
a transaction with a distinct user. The resulting firsthand reputation values and
transaction histories are then integrated with the globally generated values (Eqs. 3
and 4).

4.1 Effectiveness, accuracy, and overheads

We quantify the impact of our reliability mechanisms using three key metrics: trans-
action success rate, trust computation error, and metric overheads.

Transaction success rate We measure the rate of successful transactions experi-
enced by all peers in the network. A transaction is deemed successful if the provider
behaved honestly. The success rate is the ratio of the number of successful transac-
tions over the total number of transactions in the system, and increases when users
can avoid untrustworthy partners by making more accurate trust decisions.

Trust computation error (TCE) This metric represents how accurately a peer’s com-
puted reputation reflects its intrinsic trust value. We use our metric as a relative metric
to choose between pairs of partners. We define the TCE in terms of a peer’s position
in an ordered list of peers sorted by computed reputation. For each reputation system,
we compute a sorted list of all network peers based on their reputation values. We
then compare this ordered list to the sorted list of all peers based on their intrinsic
trust values. A peer’s TCE is the difference in its position from one list to the other.
For example, if, in a network of 10 peers, the most reliable peer (according to in-
trinsic trust values) has the third highest computed reputation, its per-peer TCE is
(3 − 1)/10. The TCE of a network is the average TCE of all peers, defined as:

TCE = 1

n

n∑

k=1

|pc(k) − pt (k)|
n

. (5)

Here, pc and pt respectively refer to positions of peer k’s computed trust and intrinsic
trust values in the ordered list of all peers sorted on the basis of their reputation values.

Overhead Our reliability metric requires that the network store not only each peer’s
aggregated trust value, but also a compressed transaction history (in order to compute
its reliability value). The transaction history only needs to keep the identity of its
past partners and the total number of transactions performed with each partner. We



260 G. Swamynathan et al.

Table 2 Peer selection
algorithms notation T Intrinsic trust value

R Basic reputations

L Reliability-based reputations

P Reliability-based and proactive reputations

Fig. 7 Benefits of using
reputations for peer selection

compute this storage overhead as the number of unique transaction partners per peer.
Computational and communication overheads for generating our reliability metric
are comparable to a traditional reputation system.

We now present the performance of our reliability mechanism in countering collu-
sion. Each data point represents an average of results from at least three randomized
runs.

4.2 Using reputations for peer selection

We first demonstrate the benefit of using reputation-based peer selection in network
protocols and applications, as compared to a “random” peer selection scheme. The
goal of this simple experiment is to validate previously published benefits of repu-
tations in our experimental context [6, 11, 13, 28, 40, 57]. We simulate a network of
1,000 peers, including 25% dishonest peers that always provide unfair service and
unfair ratings to others. We vary the number of transactions, where each transaction
is initiated by an honest peer. As Fig. 7 shows, without a trust model, there is a 50%
probability of a transaction succeeding. Using a basic reputation model results in a
much higher success rate. All reputation-based trust schemes have a success rate close
to 100%. Avoiding transactions with these peers reduces the impact of malicious and
unreliable network entities, thus improving the robustness of the network protocol or
application.

4.3 Resistance to pairwise and Sybil collusion

Pairwise collusion is the most basic form of collusion, where two peers undertake
fake transactions to raise each other’s reputation. We vary the percentage of pairwise
colluders in the network from 10% to 50% on the x-axis, and plot the transaction
success rate on the y-axis. As shown in Fig. 8(a), our reliability-based reputations
schemes demonstrate a 80% average success rate, and a 30–40% improvement in
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Fig. 8 Effectiveness and
accuracy against pairwise
collusion. R refers to the pure
reputations scheme and L refers
to the reliability-based
reputations scheme. The ratios
represent the collusion cost
factors

network productivity as compared to a pure reputations mechanism. Our mechanism
observes little impact with increasing percentage of network colluders. Also, as seen
in Fig. 8(b), we observe higher accuracy of peer reputations using our reliability
scheme despite the increasing amount of collusion in the network.

Next, we evaluate the effectiveness of reliability-based reputations in countering
Sybil colluders. A user launching a Sybil attack can establish multiple slave identities
and use them to inflate its reputation. We fix the number of bootstrap transactions to
10 and the number of slaves to 5 per attacker. These slaves only behave as service re-
questers to the master peer and are not a part of the regular peer community. We vary
the percentage of Sybil colluders in the network from 10% to 50% on the x-axis, and
plot the transaction success rate on the y-axis. As shown in Fig. 9(a), the pure reputa-
tions scheme performs badly with increasing amounts of Sybil attacks and collusion
cost ratios in the network. Though we observe a general drop in performance with
increasing percentage of users launching these attacks, our mechanism is effective
in countering the Sybil attack. We observe a 30% improved success rate even when
the Sybils conduct five times as many transactions as normal peers. Similar to our
experiment on pairwise collusion, our mechanism observes greater trust computation
accuracies as compared to a pure reputations scheme (Fig. 9(b)).

A greater number of colluding slaves helps Sybils inflate their reputations with
higher reliability scores (as compared to pairwise colluders). However, transacting
with even one non-colluder results in a highly disproportionate Lorenz distribution
for the Sybil colluder and a sharp drop in its reliability score. Increasing the magni-
tude of collusion with each of its slaves further aggravates the poor reliability score of



262 G. Swamynathan et al.

Fig. 9 Effectiveness and
accuracy against Sybil collusion.
R refers to the pure reputations
scheme and L refers to the
reliability-based reputations
scheme. The ratios represent the
collusion cost factors

the Sybil. A Sybil is challenged to maintain transactions rates per slave comparable
to the rates with other non-colluding peers. But this drastically reduces the impact
of each colluding partner, resulting in a reputation that more accurately reflects the
user’s real behavior. We observe similar results for our experiments on the group-
based mesh collusion model.

Impact of collusion cost and bootstrap Our next experiment investigates the impact
of the amount of pairwise collusion on reputation systems. For this experiment, we
fix the number of colluders to 30% of the total population and for each cost factor
ratio (1:1 and 5:1), we vary the number of bootstrap transactions undertaken by nor-
mal peers (10, 20, and 30 transactions). For example, a bootstrap value of 10 implies
that a normal peer conducted 10 bootstrap transactions while a colluder undertook 10
and 50 transactions, respectively, for each cost factor ratio. As shown in Figs. 10(a)
and 10(b), an increase in the amount of network collusion results in a drastic drop in
performance of the pure reputations scheme. On the other hand, increasing the magni-
tude of collusion has little to no effect on the success rate of our proposed mechanism.
In fact, we observe more accurate results when the amount of pairwise collusion rises
in the network, because the inequality in the Lorenz curves for colluders rises sharply
when a colluder transacts with even one normal user. Therefore, while these colluders
possess high reputations, the reliability of their reputations turns out to be really poor.
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Fig. 10 The effect of collusion
cost and bootstrap transactions
on effectiveness and accuracy of
reliability-based reputations

4.4 Resistance to churn

We employ the Gnutella churn trace to evaluate our proactive reputations scheme.
The trace was collected by the University of Washington in May 2001 as part of the
Snowtella project. Each node was monitored for approximately 60 hours and the time
intervals each node is online in that period is recorded. We limit our experiments to a
truncated churn trace of the first 14 hours.

We run our experiments on a simulated community of 5,000 peers with 30% pair-
wise colluders. Once the bootstrap phase is completed (10 transaction for normal
peers, 20 transactions for colluders), we conduct approximately 50,000 transactions
over approximately 14 hours, i.e., an average of 10 requests per peer. We conduct one
request per time cycle, and choose providers for a transaction based on their availabil-
ity modeled by the Gnutella churn. That is, for each transaction, we choose a subset
of 25 providers that are online at the time the request was made.

Requesters send an average of 5 to 10 proactive probes to providers with reliabil-
ities less than 0.5. As proactive transactions are anonymous, we treat each proactive
transaction as a transaction with a distinct user. The consequent firsthand reputation
values and transaction histories are then integrated with the globally generated values
(as given by Eqs. 3 and 4). The resulting aggregation (P) of proactive reputations and
reliability metric provides a flexible and powerful requester-centric perspective of a
global reputation.

The objective of this experiment is to observe the error, E, in reputation values
as computed using proactive reputations (P) and pure reputations (R) schemes with
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Fig. 11 The performance of
proactive reliability-based
reputations against Gnutella
churn and 30% pairwise
collusion. Proactive transactions
accounted for less than 5% of all
transactions

respect to the intrinsic trust values (T) for each transaction. That is,

ER = |R − T |, (6)

EP = |P − T |. (7)

Figure 11 illustrates the performance of proactive reputations in the presence of
network churn. As shown in the figure, 90% of all transactions experience less than
0.2 error using proactive reputation values while we observe that the pure reputations
scheme performs significantly worse with 50% network transactions experiencing
greater than 0.6 error in reputation values. Clearly, our reliability-based proactive
reputations are very effective even in high churn environments. Additionally, proac-
tive transactions accounted for less than 5% of all transactions in the system. The
increased accuracies we observe in our experiment justify this additional proactive
traffic.

4.5 Storage overhead

Our objective is to compute additional storage overhead imposed by reliability-based
reputations. As part of our performance evaluations, we test our reliability solutions
using transaction histories of 18,000 random eBay users.1 In Fig. 12, we plot the num-
ber of unique transaction partners as observed by these sellers. We observe that 60%
of the sellers had less than 100 unique transaction partners, and 85% had less than
1,000 unique transaction partners. We believe that storing an average of 100–1000
transaction records per peer is an acceptable overhead given the improved system
productivity we observe from our reliability mechanisms.

5 Related work

While P2P networks have been heavily researched, reputation systems are being im-
plemented by practically every Internet application today to improve individual user
satisfaction as well as overall system productivity. We first briefly discuss trust-related

1Details on the eBay data set are not provided for space reasons. We refer readers to [54] for a complete
description of data and other results.
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Fig. 12 Storage overhead: the
number of unique transaction
partner records

research in the context of e-Commerce markets, Web 2.0 applications, wireless net-
works, and grids. Next, we discuss related surveys in trust and reputations.

5.1 Other applications of reputation systems

e-Commerce marketplaces Reputations today play a fundamental role in the deci-
sion to initiate a transaction, and the pricing of goods or services in online market-
places like eBay.com. eBay’s Feedback Forum computes a user’s reputation as the
sum of its lifetime ratings. Reputation profiles are designed to predict future perfor-
mance and help users decide with who to transact. Sellers with excellent reputations
can claim higher prices for their products while poor reputation holders attract fewer
buyers [43].

Overstock Auctions is another online auction house similar to eBay in that feed-
back ratings are aggregated to form a user’s “business rating” and “positive percent-
age” score. Unlike eBay, however, Overstock is unique in its integration of a social
network into the market community. Like other social networks, Overstock Auctions
encourages users to establish an online presence through personalized homepage with
personal history, photos, and links to friends. User profiles often include their shop-
ping preferences and return policies.

Collaborative filtering has witnessed a lot of research because of its high utility in
marketplaces like Amazon.com [61]. If A likes gardening and cooking, and B likes
gardening, it is likely that B likes cooking too. Collaborative filtering techniques cal-
culate a personalized reputation estimate of an item, X, for a buyer, B, as the weighted
average of previous ratings given to X by other buyers. The weights are proportional
to the similarity between the buyer, B, and the previous buyers. This buyer similarity
is typically calculated as a function of the correlation between ratings assigned to a
common set of past sellers. Amazon.com uses such techniques to provide frequent
shoppers with personalized recommendations on books, music, and other products
that are likely of interest to the user.

Web 2.0 applications Google’s PageRank is one of the most popular reputation sys-
tems for ranking and web search today [41]. The PageRank algorithm ranks web
pages based on the number of links that point to a page as well as the PageRanks
of those back links. While extremely successful, the algorithm can be easily manip-
ulated by collusion and Sybil strategies. Zhang et al. observe that colluding nodes
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cheat the algorithm by stalling the PageRank random walk in a small web graph,
and suggest techniques to capture the amount of PageRank inflation obtained by such
collusion [62].

Discussion forms and expert sites like Slashdot, Epinions, and BizRate employ
reputation systems to rate experts providing answers and advice in their areas of
expertise. Slashdot, for instance, employs an automated moderation mechanism
whereby registered users who frequent the site regularly are chosen to either mod-
erate comments to articles, or moderate other moderators.

Lately, online social networks are being explored as an alternative means to es-
tablish trust. Social networks have been proposed as a means to defend reputation
systems against Sybil attacks [59], and improve the reliability of reputation systems
[24, 25]. Kumar et al. study the evolution of structure of the Flickr and Yahoo!360
social networks, and discover that while isolated individuals and communities exist in
these networks, there also exists a large strongly connected component spanning the
entire network [32]. Others have profiled the power-law, small-world, and scale-free
properties of social networks such as Orkut, YouTube, CyWorld, and MySpace [2].
Information from social networks can be exploited to enhance many practical areas
of research. Mislove et. al. used social networking data to improve Internet search
engines [39], while others have applied this information to increase yields from viral
marketing campaigns [15, 46].

Wireless networks and grids Cooperation in wireless ad hoc networks is known to
be a critical issue. Significant work in mobile ad hoc networks has gone towards
stimulating cooperation and maximizing the throughput of the network [8, 48]. In ad
hoc networks, nodes communicate with far off destinations using intermediate nodes
as relays. Nodes are energy-constrained and may not always accept relay requests.
Nodes could also be malicious and present sophisticated attacks like denial-of-service
attacks and network partitioning. Packets dropped by such free-riding nodes and ma-
licious nodes call for mechanisms to rate nodes and their trustworthiness.

Reputation systems have been employed in wireless ad hoc networks to ensure
path reliability and increased throughput in the network [38]. Trust relationships and
routing decisions in CONFIDANT, for example, are made based on experienced,
observed, or reported routing and forwarding behavior of other nodes [6]. Incentive
schemes have been proposed that reward highly reputed nodes with increased traffic
in the network [64]. However, most approaches improve cooperation in the network
but do not punish maliciousness.

Global public computing systems, called grids, also need reputation-based trust
mechanisms. Here, clients sometimes pay for services (computing resources) before-
hand to untrusted servers. Malicious servers may overcharge clients or dishonor the
service agreement. Likewise, malicious clients may refuse to pay or abuse the re-
sources given to them. Reputation schemes have been proposed to reduce free-riding
in grids and encourage honesty [18]. Reputations are also suggested as a means to
ensure data integrity in Grids where computational results are the primary service
products [20].
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5.2 Surveys on trust and reputations

Resnick et al. present an excellent introduction to the area of reputation systems [44].
Their work describes three challenges for a successful reputation system: first, enti-
ties must be long-lived to account for accurate reputations; second, feedback must be
captured and distributed; third, reputations should help distinguish between trustwor-
thy and untrustworthy partners. The area of trust and reputations, in general, has wit-
nessed a tremendous amount of research over the last decade. These efforts, however,
have not been systematic and rigorous, partly due to the varied nature of applications
and systems that require trust implementations and also due to the innumerable vari-
ety of threats that can be posed at any time by malicious entities. There is no single
solution suitable in all contexts and applications.

A fair amount of literature, therefore, has surveyed the growth of reputation sys-
tems in various contexts like P2P networks [37, 47], Semantic Web [3], multi-agent
systems [27], economics and management [19, 43, 45]. Marti and Garcia-Molina
present concepts in P2P reputation systems design [37]. While their taxonomy dis-
cusses the conflict between system constraints and user behavior, our work presents
design issues and threats in reputation systems from the perspective of the four dis-
tinct reputation management tasks of collection, aggregation, storage, and commu-
nication. Grandison and Sloman classify trust based on the “purpose” it plays in a
system like service provision trust (i.e., trust in service or resource provided), access
control trust, trust in delegation, identity trust, and so on [22]. Artz and Gil present
a review of trust for the Semantic Web, discussing design issues for trust in envi-
ronments where humans are not the only consumers of information [3]. Josang et al.
present the current state-of-the-art in reputations by surveying the reputation systems
deployed on the Internet today [27]. Their work also presents a thorough analysis of
various reputation aggregation models.

6 Conclusions

Introducing trust and cooperation among strangers is a significant challenge facing an
increasing number of large-scale distributed applications. Despite numerous propos-
als confirming that reputation systems are a powerful mechanism to establish trust,
designing a robust and reliable reputation system is still largely an open challenge.
The primary goal of this paper has been to investigate and address the critical open
challenges that limit the effectiveness of reputations today. We compare prominent
reputation schemes proposed by the research community using our taxonomy on rep-
utation management, and examine the extent to which they address the challenges in
reputation systems design.

Furthermore, we present solutions to address the two leading reasons for erroneous
and misleading values produced by reputation systems today, i.e., user collusion and
short-lived online identities. By leveraging the well-accepted Lorenz curve and Gini
coefficient, we provide a reliability metric designed to detect and penalize collusion-
like behavior, and encourage peers to interact with diverse groups of users across the
network. Our evaluations find that our metric complements traditional reputations
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well. Together with proactive reputations, an approach that establishes quick and re-
liable reputations for unknown peers or newcomers, they produce highly accurate
measures of user behavior.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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