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XNDM: AN EXPERIMENTAL NETWORK DATA MANAGER 

Stephen R. Kimbleton 
Pearl S.·C. Wang 

and 
Elizabeth N. Fong 

National Bureau of Standards 
Washington, D.C. 20234 

ABSTRACT 

Data base access is increasingly important in a networking 
environment. Two alternative approaches can be identified: i) 
implementation of distributed databases presenting the user with 
one logical database implemented across a collection of computers 
or, alternatively, ii) development of network data managers 
providing a uniform user and program viewpoint across 
heterogenous DBMSs. While the first approach is the most 
natural extension of the concept of an individual DBMS, its 
utilization imposes certain requirements including the necessity 
for converting existing DBMSs if their data is to be supported in 
the distributed environment. The second approach minimiz.es or 
eliminates cO"lwersion problems; however, it has not yet caen 
shown feasible. This paper describes an ongoing research project 
concerned with establishing the feasibility, issues, alternatives, 
and a technical approach for supporting a network data manager. 
Although implementation has not been completed, the initial 
evidence is positive and suggests that network data managers 
may well prove either an acceptable alternative or useful 
intermediate stage to a distributed database. 

1. INTRODUCTION 

Computer networks support the sharing of remote programs and data. The gradual 
maturation of networking technology, as measured by the increasingly sophisticated 
protocols and applications being implemented [ARPAN 76], [INWG 77], has resulted in 
increasing demands for supporting remote access to data. 

This work Is a contribution of the National Bureau of Standards and Is not subject to copyright. Partial 
funding for the preparation of this paper was provided by the U.S. Air Force Rome Air Development Center 
(RADC) under Contract No. F 30602·n·0068. Certain commercial products are identified in this paper In 
order to adequately specify the procedures being described. In no case does such Identification imply 
recommendation or endorsement by the National Bureau of Standards, nor does It Imply that the material 
identified is necessarily the best for the purpose. 
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An individual user, interacting with a remote database management system (DBMS), 
issues queries and updates in the dr.ta manipulation language (DML) used by the system 
and receives data in response. Because of differences in: i) the data model used in 
constructing DBMS supported data structures, ii) the functionality provided by the 
software even if the underlying data models are the same, iii) data structure, e.g. data 
base semantic differences which are also likely even if the same underlying data model is 
employed, iv) DML differences, and v) computer system differences, the user wishing to 
access multiple remote databases is faced with a substantial learning burden. 

This paper argues that this learning burden can be substantially offloaded from the 
user. Accomplishing this requires a network data manager providing a uniform user 
viewpoint across multiple remote heterogeneous DBMSs. The feasibility of this approach 
is being explored through constructing an Experimental Network Data Manager (XNDM) 
at the National Bureau of Standards. 

The basic assumption underlying the design of XNDM is heterogeneity of data 
models, data structures, DBMSs, DMLs and computer systems on which these DBMSs 
reside. Superimposing a uniform user viewpoint in such an environment clearly 
requires a substantial amount of software and may be a significant source of 
delay in processing user requests. 

To explore this issue, recall that information processing requirements can be divided 
into three categories [ANTHR 65]: operational control, managerial control and 
strategic planning. As one passes from operational control to strategic planning, the 
bandwidth of the application decreases as does its predictability. Intuitively, we 
believe that network data managers are inappropriate for operational control, highly 
appropriate for strategic planning, and may be of help in managerial control. For 
example, handling inventory out-of-stock conditions could be simplified through a means 
for querying remote DBMSs to determine an alternative source of supply when 
an out-of-stock is indicated by the local DBMS. 

The preceding suggests that strategic planning and exception reporting constitute two 
likely applications for a network data manager. Moreover, the nature of these applications 
suggests that the additional overhead of supporting a network data manager is likely to 
prove very acceptable in comparison with the burden of manually performing the 
necessary translation processes in response to unpredictable and non-recurrent demands. 

The remainder of this paper provides a more detailed discussion of XNDM. To 
provide context, section 2 establishes some comparisons between a network data 
manager and a distributed database. Section 3 describes the user's view provided by 
XNDM. Section 4 discusses translation technology required to support this view and 
observes that it differs substantially from that currently discussed in the data translation 
literature. Section 5 describes the current XNDM implementation status and presents 
some concluding remarks. 

2. NETWORK DATA SUPPORT OPTIONS 

A distributed DBMS (DDBMS) is usually viewed as one logical DBMS implemented across 
several host computers. Thus, excluding performance differences, there is. no 
apparent difference to the user in accessing a DDBMS and accessing a DBMS resident on 
a single host using the same data structures and data manipulatiqn language. 
Moreover, through redundancy, the DDBMS potentially permits increased reliability and 
decreased access times to frequently used portions of the database. Redundancy does 
require care in ensuring consistency of multiple data copies and in synchronizing 
updates [ROTHJ 77], [STONM 77]. 
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Using a DDBMS poses the need for conversion of existing DBMSs. The current state 
of database conversion suggests that non-trivial costs are associated with this process 
[NAVAS 76]. Moreover, even if these costs were insignificant, the resulting 
organizational dislocation in adapting to the new DDBMS is likely to be extensive. 
Consequently, the DDBMS approach may prove, infeasible given the environment in which it 
is to be implemented. 

A network data manager is intended, to provide an alternative to the DDBMS through 
providing an easy means for simplifying network access to multiple, heterogeneous DBMSs. 
The basic relationship between a network data manager and the individual DBMSs is 
illustrated in Figure 2-1 in the context of the NBS Experimental Network Data Manager 
(XNDM). Thus, a process represented as a circle within one computer (PHOST) interacts in 
a uniform way with multiple independent DBMSs located in one or more computer systems. 

Our working hypothesis is tha,t the network data manager approach is !ikely to prove 
very acceptable in handling unpredictable and non-recurrent requests. Moreqver, given 
the cost of database conversion, it is also likely to be the only feasible way of easily 
adapting to the opportunities for sharing information which are provided by networking. 
Thus, we are motivated to consider its design and development in greater detail. 

3. THE NETWORK USER ENVIRONMENT 

The two essential functions of a Network Data Manager are provIsion of a uniform user 
environment across individual (heterogeneous) local DBMSs (LDBMSs), and translating 
between, this user environment and the LDBMSs: The remainder of this section structures 
the basic components of the XNDM supported user environment while the following 
section addresses translation technology. 

3.1 Data ModeJ/Data Language Selection 

Developing a data language and data model for XNDM can be approached either as a 
problem of developing a 'best' data model and data language and then considering the 
issues in translating to existing data models and languages or through selecting one of the 
existing data models and languages. The former is a problem of independent interest. 
Requiring its solution as the prerequisite to analyzing network data managers seems 
undesirable. Instead, we have chosen to examine the existing alternatives, select a 
reasonable candidate, and place primary emphasis on the data manager specific aspects 
of the problem. This has expedited our consideration of the basic nature of the 
problem. It will be interesting to see if future data model/data language research can 
be easily accommodated as we expect or, instead, will require substantial revision. 

Selection of a data model for XNDM has been driven by three basic assumptions. The 
first is that the network user is naive vis-a-vis the access requirements of local DBMSs. The 
second is that the network user should be assisted to ensure that queries and updates are 
meaningful. The third is that the local DBMS should be provided with relatively tight 
guarantees that the network user will not be able to adversely affect its operations 
through ignorance or intent. Note that the second and third assumptions are closely 
interrelated. 

The first assumption motivates selection of a data model and data language minimizing the 
knowledge and effort required to support access. That is, the data model should present 
data in a way which is easy for the user to understand. Further, the Data' Manipulation 
Language (DML) should minimize procedural (extent to which the user must specify how 
rather than what is to be retrieved or updated) and navigational (need for explicitly 
speCifying interrelationships between data elements) requirements. 
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Of the three basic data models: relational, hierarchical, and network, it is our opinion that 
the relational model is the simplest to understand. Accordingly, we have chosen tables 
as the basic mechanism for representing data. Although a properly chosen user schema 
can result in an appropriately simple user viewpoint regardless of the particular global 
schema employed, the static nature of such a schema conflicts with the random and 
unpredicatable nature of arriving requests. 

The requirements for our second assumption are met through a semantic integrity 
system that ensures meaningful queries and updates as discussed below. Moreover, an 
access control mechanism is also being implemented to ensure that the network user 
is only permitted to access data appropriate to his/her access rights. This is the 
basic tool for meeting the third requirement. 

3.2 Global Schema Specification 

Central to the specification of an XNDM global schema is the balancing of the conflicting 
requirements of the network users so as to provide a design that can satisfy the need of the 
"community" of users· as opposed to the need of any individual user. 

As discussed above, a basic XNDM assumption is that a uniform user environment is to 
be superimposed on a highly heterogeneous collection of existing local DBMSs. This 
requires: i) a common view of data to be presented to the network user, and ii) a means 
for mapping from this common view to the target systems. Note that this common view 
need not contain all of the data in the local DBMSs. Rather, it will probably comprise 
only that data thought to be of common interest. This, in turn, is likely to be a subset 
of the data which local DBMS management is willing to make available to the network user. 
Since both of these selection processes are judgmental, we assume that the selection of 
data and its attributes is performed by a team (of database administrators?) responsible 

. for the overall utilization~of the network data manager. 

Given this selection, and the resulting structuring using the described data model, the 
need arises for a suitable translation process. This translation process proves to be 
substantially different from that currently discussed in the data translation literature. It is 
discussed in some detail in the following section. 

3.3 Experimental Network Data Language 

The Experimental Network Data Language consists of three major components: i) 
Experimental Network Data Manipulation Language (XNDML), ii) Experimental Network 
Data Control Language (XNDCL), and iii) Experimental Network Data Definition Language 
(XNDDL). 

Since the basic XNDM objective was to explore the feasibility of providing a uniform 
environment for the network user, we decided to adopt an existing DML and add any 
extensions which proved necessary. After some consideration, we have chosen SEQUEL 
[CHAMD 76] to provide the basic framework for XNDL since: i) it is a table based DML, and 
ii) it has been subjected to human factors oriented investigations which have improved 
the quality of its user interface [REISP 75]. 

Currently, the design of both the query and update portions of XNDML has been completed 
and implementation of the query portion is underway. Implementation of update 
capabilities is being deferred pending completion of the design of XNDCL and XNDDL. 
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XNDML is both a subset and extension of SEQUEL. XNDML is a subset since it does 
not contain the SEQUEL sorting facilities and certain alternative ways of stating 
predicates. Sorting was eliminated because it adds little to demonstrating the feasibility of 
a network data manager and can be an expensive consumer of processing time on the 
host containing the LDBMS. XNDML is invoked via subroutine CALLs. Thus it does not 
have a host language interface corresponding to that provided by SEQUEL. Table 3-1 lists 
the six major categories of XNOML query commands 

XNOML extends its SEQUEL subset to meet the need for specifying the target database. 
Three major alternatives can be identified: explicit specification, implicit specification, 
and specification of location as a virtual attribute. 

The target database can be explicitly specified by using the statement 0 AT ABASE IS 
'OAT ABASENAME'. The effect of this statement is to make all subsequent XNOML 
statements refer to this DATABASE until another target specification is encountered. 

Implicit specification of the target database occurs when the user issues an XNOML 
statement without any target database specification. In this case, XNDM maintained 
information is used to identify the relevant databases {those containing information about 
the entities and relationships identified in the XNDML statement). The statement is 
then applied against each such database and the results aggregated. 

The third and most. sophisticated specification is through treatment of location as a 
virtual attribute. This logically attaches a location column to each relation seen by the user. 
This permits one to construct queries in which the predicate applies to location as well as 
to entities and their attributes. Thus, assuming that the distance between sites is known, 
one can specify the site of the location to replenish an out-of-stock condition as 
a function of conditions prevailing at each relevant location. For instance, an out-of· 
stock replenishment rule might be to replenish in an amount inversely proportional to 
distance and directly proportional to stock on hand. Distance proportionality can be used 
to lower shipping cost overhead while stock on hand proportionality could be used to avoid 
unduly impacting a site with a low stock level. 

Two required XNDM support functions are data location and access path determination. 
Data location uses the Network Wide Directory System contained within the NBS 
Experimental Network Operating System [KIMB 78]. Access path information is provided by 
the XNOOL processor. 

TABLE 3·1. XNDML Query Categories. 

C1 SELECT (columns) 

C2 SELECT .... WHERE (rows) 

C3 PARTITION 

C4 SET OPERATIONS 

C5 AGGREGATION 

C6 COMPOSITION 
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3.4 Semantic Integrity 

Semantic integrity is a significant issue in the context of an individual DBMS since. it 
provides a means of assuring that the database is a valid representation of the 
application environment. Two major reports [MCLED 76] and [BRODM 78] have appeared 
on this subject as well as a variety of papers. The general objective is ensuring that if 
one starts with 'a valid DBMS configuration, subsequent updates will not impair this 
validity. 

Semantic integrity is of greater importance in the context of a network data manager 
since local DBMS management is likely to want strong assurances that remote, and 
therefore presumably less knowledgeable users, will not affect DBMS integrity. This problem 
varies somewhat from that for an individual DBMS. XNDM cannot assure that the 
database is, initially, in a consistent state. Thus, the major concern is that updates are 
semantically correct. A lesser concern is facilitating the correct structuring of queries 
through supporting strong domain typing. 

XNDM semantic integrity concerns also differ from the corresponding problem for an 
individual DBMS because the network user's view of data is virtual. Thus, there is a 
premium on performing all non-data dependent integrity checking before proceeding 
with the data dependent checks. This may ultimately result in a partitioning of integrity 
checking functions between XNDM and the LDBMS. In any event, the major issues 
can be divided into two major categories: i) assurance of integrity at the network level, 
and ii) assurance of integrity at the local DBMS level. 

Although work on the XNDM Semantic Integrity System is in its preliminary stages 
[FONGE 79], some initial observations can be made. Semantic integrity can be expressed 
at the global schema level through the (virtual) tabular data model. Assuring integrity 
within an individual table can be subdivided into assurance of attribute integrity, row 
integrity, column integrity, and predicate integrity. 

Assurance of semantic integrity is provided via two facilities: strong domain typing 
and predicate-based assertions. Strong domain typing facilities of XNDM permit the user 
to define: i) the format of the data, ii) the acceptable range of values, iii) the collection 
of legal (arithmetic, logical and string) operations, and iv) the interrelationships among 
data elements in terms of the collection of legally acceptable operations. 

Predicate-based assertions specify validity criteria which are to hold in the application 
environment. The facility provided in XNDM will permit: i) specification of rules for 
conSistency and correctness of data bases, ii) the time at which the assertion is to be 
enforced, and iii) the actions to be taken when the assertions are not satisfied. 

Assuring predicate-based integrity for either an individual relation or for a collection of 
relations can imply significant overhead depending on the amount of data involved 
and the types of checks which must be performed. 

3.5 Access Controls 

A second major support function required for acceptance of XNDM is provIsion of an 
appropriate access control mechanism. Currently, many DBMSs provide access controls 
via passwords on files [DATEC 77]. This is clearly insufficient for the level of 
functionality intended to be provided by XNDM. The issue is wheth~r a significantly 
better system can be implemented. This issue has been discussed in [WOODH 79]; 
the following summary considerations are based on the discussion contained therein. 
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Access control mechanisms can be divided into two major categories [KARGP 77]: i) 
non-discretionary access control mechanisms which support organizational constraints on 
the sharing of information, and ii) discretionary access control mechanisms which permit 
user directed controlled sharing of information. 

Security levels and compartments constitute a major example of non-discretionary 
access control mechanisms. Conceptually, a user is labelled with security level(s) and 
compartments, e.g. level is SECRET, compartment is NATO, and is entitled to access all 
information having the same, or lower levels, e.g. level is SECRET or CONFIDENTIAL, 
compartment is NATO. 

System-R provides an example of a sophisticated DBMS discretionary access control 
mechanism [GRIFP 76]. Through its use, an individual user is permitted to grant a subset 
of his/her access rights to another user. The supported functionality permits 
READing, INSERTing, DELETEing, UPDATEing, and DRaPing (of an entire table). 
Moreover, a GRANT command permits one user to provide another user with the ability to 
GRANT rights. These mechanisms are supported for both an entire table and for individual 
columns of a table. 

XNDM provides both discretionary and non-discretionary access controls. Their 
combined support requires a mechanism for checking that discretionary grants do not 
conflict with non-discretionary controls. This checking process has been implemented 
using the lattice sacurity model [DENNO 76]. 

4. TRANSLATION TECHNOLOGY 

This section: i) establishes the differences between data translation required to support 
XNDM and that currently considered in the data translation literature, ii) discusses the two 
major alternatives in implementing a translation capability, and iii) describes the translation 
process which we have selected. Currently, translation has only been implemented for 
the query portion of XNDML which, for simplicity, we refer to as the Experimental 
Network Query Language (XNQL). 

4.1 The Nature of the Translation Process 

Data translation can be characterized in two different dimensions: i) online vs. 
offline, and ii) constraints on source and target data structures. XNDM translation 
requirements differ from those usually discussed in the data translation literature since: i) it 
is a real-time, online process, and ii) it is dependent upon both source and target data 
structures. 

The requirement that the translation process be real-time and online forces a substantially 
different translation process than that usually considered in the context of database 
translation [NAVAS 76]. Specifically, the need for explicit consideration of physical 
representations of data is eliminated while the need for an online and re.altime level of 
functionality cannot be avoided. . 

XNDM translation also differs from that usually associated with database front ends 
and database terminals. (A database front end presents the user with data structures 
differing from those actually employed by the DBMS being accessed and often based on 
a different data model. Thus, there is substantial interest in relatioRal front ends to 
DBTG DBMSs. For a front end, the data structures presented to the user are 'fixed' and 
the data structures employed by the target DBMS are derived from the user presented 
data structures. Database terminals, in contrast, provide the user with a constant data 
model and DML across heterogeneous DBMSs. The target data structures are fixed and 
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the data structures presented to the user are derived from these target data structures 
[KLUGA 78].) 

In both of these cases only one set of data structures is fixed while the other is derived 
from this fixed set. This allows substantial freedom in tailoring data structures to simplify 
the translation process. Such freedom is not available in constructing a network data 
manager in which the data structures presented to the network user are fixed (recall that 
they were chosen by a committee) and the data structures of the target systems are also 
fixed. 

4.2 XNDM Translation Alternatives 

An XNQL statement specifies the sequence of operations to be performed on the underlying 
information structures. It is a high-level language, and by its very nature, does not 
specify the step-by-step, system-specific actions needed to evaluate the query by a given 
target DBMS. It is the function of the translator to supply these details. 

Since XNQL is a query language, the primitive information structures of the language are 
aggregated, not simple, data. That is, the basic 'atoms' of data expressed in an XNQL 
statement are relations rather than individual data elements. The translator interprets 
these data objects in terms of the primitive data constructs provided by the particular 
target DBMS and its data structuring rules. 

Construction of the XNQL translator is further complicated by the fact that different target 
systems support different primitive operations and data structures; therefore we need not a 
single translator but a family of translators. Two approaches to their realization can 
be identified: construction of a collection of source-target specific translators or, 
alternatively, construction of a single translator for the bulk of the translation process 
common to all translators together with custom tailored front ends handling the source 
specific portion of the translation process and custom tailored back ends handling the 
target specific portion of the translation process. 

ConstrUction of independent translators has the advantage that design unity and run·time 
efficiency is more achievable with a single translator for each target DBMS. However, an 
entire translator is needed to support each additional target, whereas in the family 
approach all the translators share a core design which defines the common (source 
and target· independent} part of the translator. . Each new translator in the family I,s . 
obtained by building source and target-oriented specialities on top of the basic design. 
Therefore the bulk of the implementation effort is available across different target systems 
and new developments need not start from scratch. 

An important side·effect of the family approach is the insight it provides for· DBMS 
data manipulation and structuring facilities. That is, a simple, coherent design for a 
translator family is impossible without abstracting the essential properties of target systems 
and recognizing their commonalities and differences. Thus, we have chosen the 
approach of designing a good general framework, i.e. a consistent, efficiently 
implementable translator allowing effective use of target system facilities. . The insights 
provided by this framework are augmented by those developed in preparing the mappings 
to and from specific t~rget systems. 
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4.3 XNOL Translation 

The complex semantic manipulations required for translation are achieved by means of step­
by-step transformations of an appropriately chosen internal representation of the input 
text. We have chosen a tree as the intermediate representation because of the requirement 
for flexibility in handling a wide range of target DML's and data structures. 

Each transformation takes us somewhat closer to the target query by either changing the 
original form of the input text to uncover the underlying "basic structure" of the query tree 
which characterizes the system-independent organization of queries, or reshaping the basic 
tree to incorporate the surface structure of the target language. The value of this 
transformational approach is that it reduces the overall translator complexity and also 
supports a simple, consistent, modular design [DEREF 76]. 

The translation process is (vertically) segmented into five phases as illustrated in Figure 4-
1. A more extensive discussion is contained in [WANGP 79]. 

Lexical and Syntactic Analysis 

The tasks of the lexical and syntactic analysis modules are conventional [GRIED 
69]. They produce a source(XNQL)-specific syntax tree representation of the input 
query. This tree contains all the information originally present in the source text as 
well as all the information that is inherent in the XNQL grammatical description. The 
source syntax tree is the first of a sequence of trees used in the translator as 
intermodular data structures. Each later module takes as input the tree produced by 
the previous module and leaves a tree that is closer to the target query by 
reshaping the tree, pruning source-specific information from the tree and/or 
incorporating target-specific information into the tree. The basic task facing the 
translator writer is disentangling those aspects of the source and target queries 
that reflect "essential" (language-independent) logical structures frem those that 
characterize "incidental" (language-specific) representational details. 

Standardization 

Processing beyond the syntactic level can be made simpler if the source syntax tree 
is transformed into a standard form where each WHERE clause is represented as a binary 
tree of predicates connected by AND and OR nodes arranged in conjunctive normal form 
[STONM 76]. 

Static Semantic Processing 

Since each XNQL query interacts with a data space which is the Cartesian product of 
several relations subject to the restriction of the WHERE clause, and frequently these 
restrictions are such that the Cartesian product becomes an equi-join (merging of two 
relations based on a common column), differences in source and target structur.es at 
the record level imply different join conditions in the queries. 

The static semantic level of the translator does the processing needed to account for data 
structure differences at and below the record level by first resolving data item name 
differences and then the differences in the joins. 

The "data item renaming" module traverses the source syntax tree from the top down, 
replacing all leaf references to source(user) data items with corresponding references to 
target data items and depositing their attribute information at these nodes. The "record 
structure mapping" module then deletes all predicate nodes representing joins between 
different source relations and inserts the appropriate join predicates for target records. 
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Figure 4-1. The XNQL Translator as a Tree Transformer 
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Dynamic Semantic Processing 

The transformations happening at this level account for the differences in the logical 
structures of the source and target query languages. Since the unit of data structure for 
each target query may be smaller than for XNQL (e.g. each Codasyl DML statement can 
only involve a single record (or set) type, whereas there is no limitation to the number of 
different tuple types (relations) an XNQL statement can manipulate), we first decompose 
the query trE!e into sub-trees, each of which involves a single unit of data structure 
that a target query can handle. The "sequence" module then chains the sub-trees 
together in the order that the corresponding queries should be sequenced for the target 
DBMS and selects the execution sequence of these chains that minimizes the amount of 
intermediate records needed to be processed. 

Code Generation 

This is the final phase of the translator and outputs the desired target DML statements 
that can be executed by the local DBMSs. The first module interprets each of the sub­
trees along the chains produced by the Sequencer and generates CALL statements to 
primitive target database operations. The second (code generation) module then expands 
these CALLs into sequences of actual target DML statements. 

The exact form of the primitives depend upon the particular target system we are 
considering. Their behavior characteristics fall, in general, into the following categories: 
search or return the first/next instance of a specified record type, test the truth value 
of some predicate expression of the r"3cord type, partition all instances of a record 
type on the basis of some data item values and evaluate aggregate functions for the 
specified record type. (These correspond roughly to the information algebra operations 
[CODAS 62] of searching/returning the first/next point of a line, bundling, glumping and 
evaluating functions oftines.) 

This extra level of indirection before the actual code generation allows us to separate 
out the representational details of the target DMLs and makes it possible to have a standard 
set of primitives for each general class of target systems, that is, Codasyl, relational 
calculus and relational algebra systems. 

The decision to set the primitives at a fairly procedural level (namely, one record 
instance at a time) was driven by the flexibility it provides for expressing a variety of 
access strategies. This allows easy incorporation of optimization modules which 
selects the "best" access paths for the input query based upon knowledge of how the 
records are stored (keys,inversion indices, etc.). This is particularly important since the 
value and usefulness of XNDM in a real environment depends critically upon its performance 
and experiences with current relational DBMSs indicate that some form of optimization is· 
essential in bringing the performance to an acceptable level [SMIT J 75]. 

5. IMPLEMENTATION STATUS AND CONCLUDING REMARKS 

This paper has described the design and ongoing implementation of a collection of 
functions for providing a uniform network view of data across a heterogeneous 
collection of network accessible DBMSs. Our experience to date suggests that XNDM 
is a realistic and pragmatic approach for achieving the advantages of networking given 
a significant, in place, collection of DBMSs. 
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Perhaps the three key issues in ensuring user acceptance of a network data 
manager are: i) access controls and semantic integrity, ii) developing more sophisticated 
translation capabilities optimizing the allocation of the translation process among NOM 
and LDBMS, and iii) performance. We believe the basic issues and a reasonable 
approach for (i) have, been discussed in this paper. Developing a more sophisticated 
translation capability is of obvious importance and closely relates to the performance 
issue. Implementation of translators should be paralleled with research directed toward 
a better understanding of the nature of the translation process. Some work is 
beginning to appear in this area [KLUGA 78] establishing the theoretical limits of 
translation feasibility. 

5.1 Implementation Status 

XNDM translation is performed on a PDp·11 /45 attached to the Arpanet as are the 
other host computers. Tbe operating system for the PDp·11 145 is UNIX [THOMK 74] 
and the translator' is programmed in C. To provide a more uniform interface to the 
translator, small support modules termed envelopes are implemented on the system on 
which each LDBMS resides. Basic communications support between systems and the 
ability to preserve meaning ,in transporting structured records between heterogeneous 
systems is provided by. an Experimental Network Operating System (XNOS) [KIMBS 
78]. Work on the XNQL translator is still in progress. The current version handles two 
out of the six XNQL constructs (selections of columns and rows), for the following target 
systems: the Multics Relational Data Store (MRDS) [HONEY 77], a relational calculus 
system, and the Honeywell 600/6000 Integrated Data Store (IDS) [HONEY 71], a 
Codasyl·like system. For MRDS, the translator can handle all target data structures In 
general, but for IDS, target records with multiple owners and multiple members are 
excluded. 

5.2 Implementation Approach 

Two different approaches to implementing XNDM can be considered. The first distributes 
the implementation across the supported host systems whiie the second, which we have 
adopted, offloads the implementation, to the extent possible, onto a separate satellite 
computer. 

The tradeoffs between these two approaches are essentially those of evaluating the 
cost of supporting an additional computer versus the cost of implementing common 
modules on several different systems. Given the opportunity for centralized design, 
implementation and support. afforded by offloading and the increasingly high' cost of 
software, we believe that offloading is the natural approach in an evolving technology. 
The alternative might be appropriate for an extremely static environment. 
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AN ARCHITECTURE FOR SUPPORT OF NETWORK OPERATING SYSTEM SERVICES 
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ThIs paper argues that networh archItectures should be desIgned 
wIth the explIcIt purpose of creatIng a coherent networh operatIng 
system (NOS). The resultIng NOS must be capable of effIcIent 
ImplementatIon as the base (natIve) operatIng system on a gIven machIne 
or machInes, or of beIng layer~d on tOP of exIstIng operatIng systems 
as a guest system. 

The goals and elements of a networh archItecture to support a NOS 
are outlIned. ThIs archItecture consIsts of a NOS model and three 
layers of protocol: an Interprocess communIcatIon (IPC) layer, wIth an 
end-end protocol and lower sub-layer protocols as needed to support 
rei lable unlnt~~preted logIcal-message communIcatIon; a servIce support 
layer (SSL) , abstractIng logIcal structures and needs common to most 
servIces, IncludIng namIng, protectIon, request/reply structure, 
data-type translatIon, and sessIon support; and a layer of standard 
servIces, (fl Ie, dIrectory, termInal, process, cloch, etc.). 
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o. INTRODUCTION 

MOSt current network architectures consist of one or more 
function-oriented protocols, such as virtual terminal or file transfer 
protocols, bul It on tOP of an Interprocess communication (IPC) protocol 
layer [6,7,19,22,26,35,411. The potential of computer networking for 
resource sharing and distributed computing cannot be realized with such 
architectures because [17,24,44,491: 

No basis Is provided for easily creating, In a layered 
fashion, new resources or services OUt of existing ones. 

Each programmer desiring to provide or use a new network 
sharable resource must face anew al I the Issues of data-type 
translation, command and reply formatting and parsing, 
naming, protection, and Interfacing to the IPC protocol 
layer. 

The terminal user or programmer must know the different 
naming and other access mechanisms required by the network, 
each host, and each service. 

The setting up of accounts and other administrative 
procedures are aWkward. 

These problems can be ellmlr:ated If a network architecture Is 
explicitly designed to support the evolution of a network operating 
s y s t em (NOS). Th r eel m port ant NOS des I g n goa I s are the for low I n g . 

The prime (resign goal Is that a process (program), terminal user, 
or programmer have a uniform coherent view of distributed resources. 
Processes, programmers, and terminal users should not have to be 
explicitly aware of whether a needed resource Is local or remote. This 
does not mean that programs or users have no control over where a 
process Is to be run or other resource Is to be located or that they 
cannot learn the locations of resources. It means that a user need not 
(although he may) program differently or use different terminal 
procedures depending on resource location and that network operations 
and the Idiosyncrasies of local hosts can be largely or completely 
hidden. There may however, depending on resource location, be 
performance differences. One consequence of this goal Is that If a 
resource or Irs controlling service Is relocated for economic, 
performance, or other reasons to another system In the network, then at 
most a new name (address) Is required, but no changes are required In 
the program logic or resource access mechanisms. 

A second goal Is that the NOS structure be efficiently 
Implementable and usable as the base (native) operating syste~ on a 
single system of common current architecture, as wei I as be 
Implementable as a "guest" layer on existing operating systems that 
support appropriate Interprocess communication [211. By the former 
condition we mean that, when Implemented as the native operating 
system, access by local user processes to local services should be as 
efficient and no more Involved In terms of the number and k1nd of 
messages or system calls exchanged than Is common on existing single 
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'i Y s t ems OS' s . I nit I a I I Y NOS' s w I I I I I h ely bel m pie men ted, a s g u est 
systems, on tOP of existing OS's, but over time, as part of the 
evolution toward distributed computing, we expect that the structure of 
base OS design to evolve toward that required for a NOS. 

A third Important goal Is extenslbl I Ity, Implying: 

That users can easily add new services bul It on existing services 
without requiring system programmers to add new resident or 
privileged code. (Some services may be made resident or 
privileged for performance enhancement, but that Is a separate 
Iss u e. ) 

That the basic NOS structure not require the NOS to spring ful I 
blown Into existence with all possible services to be useful; In 
other words that It can start with a few services and evolve. 

That systems desiring to partlclpatge In the NOS as users of or 
providers of a single service be able to do so with minimal 
Implementation. 

A NOS must perform the same basic functions as an operating system 
on a single hos!:: 

Turn a collection of hardware/software resources Into a coherent 
set of abstract objects or resources (such as proce~ses, files, 
directories, clochs, accounts, etc.) and support their naming, 
access, sharing, protection, synchronization, and 
Intercommunication (Including error recovery). 

Multiplex a~d allocate these resources among many computations. 

An NOS must solve the problems that exist for single host OS's and 
must deal with the problems arising from Its distributed nature and the 
heterogeneous systems on which It Is based: translation problems due 
to different encodlngs and data representations, distributed service 
and resource structures, potentially more complex error recovery, 
multiple copy file or database update problems, mul\:lple controlling 
administrations, and special efficiency problems arising from distance 
and bandwidth between components. Creating an extensible, coherent set 
of services or resources In an environment of distributed and 
heterogeneous systems requires a NOS model and supporting structure \:0 
handle the above problems. This paper Is focused on such a NOS 
frameworh and the areas where we see coding, communication, and other 
standard conventions to be required or useful to support the services 
that wi I I reside within an NOS. I\: Is beyond \:he scope of \:hls paper 
\:0 discuss design of specific NOS services, or many of the crl\:lcal 
Implemen\:a\:lon Issues of an NOS. 

The Lawrence Livermore Labora\:ory's high performance local ne\:worh 
(Octopus) [13,141 Is currently undergoing a change In Its hardware 
Interconnection to Increase performance and be more modular, Is being 
extended to Interconnec\: hundreds of local micro/mini/midi comput~rs 
w I \:h each 0 t her and \: he h I g h performance c en \: r a I f a c I I I tie s , and 
Interconnect wl\:h other networhs [461. The networh architecture under 
development described here wi I I provide the new software baie for this 
evolution. A prototype operating system for a single machine using 
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many of the features of the NOS sl:rucl:ure to be descrIbed Is also 
presently beIng Implemented. 
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1. NETWORK OPERATING SYSTEM MODEL 

Mo del S t r u ct u r e 

We believe that the first step In creating a network architecture 
Is to choose an NOS model [10,17,24,441. One approach Is to use an 
existing operating system as the NOS model and extend It Into a 
distributed environment. The RSEXEC work at BBN Is a pioneering 
example that extended some of the facl I Itles of an existing OS CTENEX) 
to distributed homogeneous systems and was later layered on OS's of 
other sys.tems as well [431. We do not believe this to be the preferred 
approach, because most existing OS's have monolithic structures and 
weaknesses In their Inteprorcess communication mechanisms [211 that 
Inhibit their easy extension Into a distributed environment. The 
National Software Works CNSW) [28,391 and the later BBN works on the 

·ELAN system represent documented approaches to designing NOS's from 
scratch for explicit distribution [17,441. 

The NOS framework we have chosen Is based on the ob[ect or 
resource model of an operating system [23,381. AI I communication among 
processes Is by message passing. The model Is shown In Figure 1. 

I 
\ 
\ 
\ 
\ 
\ 

Arbitrary length messages 

Distributed 
customer and server processes 

Figure 1 NOS Structure 

account, process, 
database, etc.) 
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Objects or resources are entItIes such as processes, fIles, 
dIrectorIes, vIrtual I/O devIces, databases, etc. Resources can be 
accessed or manIpulated only In terms of wei I-defIned functIons or 
operatIons. Each type of resource Is specIfIed by 1) a logIcal set of 
data structures, and 2) a set of operatIons that can be performed on 
these data structures. Two resources are of the same ~ If they have 
the same specIfIcatIon. The abstract representatIon of a resource and 
the operatIons on the representatIon are Implemented by one or more 
modu I es ca I led servers. 

The ImplementatIon detal Is of a resource representatIon are of 
concern only to the server. Two dIfferent servers of a resource of 
type, say fIle, mIght Internally represent the fIles they manage quIte 
dIfferently, whl Ie presentIng externally the same representatIon and 
operations. ThIs charaderlstlc Is Important as we want to buIld the 
NOS on tOP of exIstIng operatIng systems or Implement It as the base 
operatIng system on many vendors' hardware. The system can be extended 
by creatIng new resources, usIng exIstIng ones as components. 

A gIven process can operate In eIther or both server and customer 
roles at dIfferent tImes. A customer process accesses a resource by 
sendIng requests contalng operatIon specIfIcatIon and parameters to the 
approprIate server. The server may then satIsfy the request by 
accessIng data structures local to It or by sendIng addItIonal requests 
to other servers to aId It In carryIng OUt the orIgInal request. When 
a request Is satIsfIed, the server sends replIes contaInIng an 
IndIcatIon of success or fal lure and results (If any). 

Requests and replIes consIst of control and data parts. BesIdes 
the customer and g:erver processes beIng dIstInct, the handler of 
repl les ~ be a dIfferent process from the requester, or a dIfferent 
address port on the requester than that used to send the request. 
Further, the sources and sInks for data ~ be at dIfferent locatIons 
or addresses from the above as shown In FIgure 2. The basIc NOS 
request/reply model supports the fol lowIng dIstrIbuted roles for 
processes communIcatIng by messages. 

Requester - The requester Is the customer process desIrIng some 
servIce, such as the copyIng of InformatIon from a source to a 
sInk. The requester controls the data source/sInk C. 

Server - The server Is the process provIdIng a servIce In terms of 
abstract resources. The server controls the data source/sInk E. 

Source - There are a varIety of possIble sources: a fl Ie, an 
Input devIce, the memory of a process, etc. 

SIn k - t he rea rea v a r let y 0 f P 0 s sIb I e sIn k s : a f I Ie, an ou t PUt 
devIce, the memory of a process, etc. 

Reply-handler - The reply-handler Is where control InformatIon 
assocIated wIth the transfer Is to be sent. No~\mally thIs would 
be a port of the requester, but In a dIstrIbuted system thIs may 
not be the case. ReplIes may be desIred at dlff)erent tImes: only 
when the request Is completed, or also when the/legalIty of the 
request and parameters has been verIfIed, or aLso when some 
I n t e r m e d I ate pol n I: I nth e pro c e s sIn g 0 f the v(fq u est has bee n 
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reached. etc. A parameter of data movement requests. the 
reply-optIon. IndIcates, when replIes are to be sent and another 
the reply-capabI Ilty. IndIcates where. 

c Data movement E 

FIgure 2 Request/Reply Data Movement Model 

Another feature of the data movement model desIred Is that data 
not move untl I source and sInk are both ready. BesIdes normal 
end-to-end flow control. each end may be unwIllIng to allocate needed 
resources unt II the other end has reached some state of "read I ness". 
For example. a sInk may be unwIllIng to allocate dIsk space untIl JUSt 
before a transfer can take place. If the source Is a tape In a vault 
whIch must fIrst be fetched and then assIgned a tape drIve. thIs could 
take some tIme. A readIness negotIatIon abI I Ity and other hIgher level 
conventIons necessary to support the request/reply. data movemenl model 
are presented In SectIon 4. 

The NOS structure above has the fol lowIng desIrable propertIes 
needed for a dIstrIbuted system. 

It places no a prIorI restrIctIons on whIch processes can· 
communIcate wIth whIch others. KnowIng a process's address Is 
suffIcIent to communIcate. 
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It allows all components, Including data sources and sinKs, to be 
distributed. 

It provides for user extenslbl I Ity, location Independence, and a 
uniform user view, because communication among al I processes use 
the same mechanism and form, whether local or remote, user or 
system provided. Logical addressing, as the other aspect of 
location Independence, 15 discussed later. 

11: allows a system to participate In the NOS by minimally 
supporting the basic NOS message passing service defined below. 

Interprocess Communication and Syncronlzatlon Services 

The structure shown In Figure 1 supports an Interprocess 
communication (IPC) service of logical messages (letters). Logical 
messages, or JUSt messages, can be of arbitrary length. The IPC 
provides for transmission of beglnnlng-of-message (BOM) and 
end-of-message (EOM) marKs (as part of Its "headers") between.source 
and destination processes. These marKs al low the source and 
destination processes to use different buffer sizes and management 
strategies, allow messages to be fragmented In transmission, provide 
data resynchronlzatlon after a fal lure and provide wei I defined points 
In the data stream for starting parsing or other operations. Messages 
are reliably delivered (not lost, mlsaddressed, mlssequenced, damaged, 
or duplicated). Messages are exchanged between networK addresses, 
viewed at l:hls level as porl:s on processes. (AI I communlcal:lng 
enl:ll:les are loosely thought of as processes.) Al: the Interface to the 
IPC layer l:here 15 no concept of establishing connedlons or virtual 
clrcull:s, only Utat of sending and receiving messages, possibly In 
pieces, bounded by BOM and EOM marKs where appropriate. 

The Information at source and destination transmll:ted across l:he 
Interface to the IPC layer In l:he Send and Receive primitives Includes: 

Destlnal:lon and source address, 
BOM,EOM marKs, 
Se cur I l: Y I eve I 0 f the me 5 5 age, 
Unlnterprel:ed message contenl:. 

Wall: and Abort are also primitives. Walt 15 the basic process 
synchronization mechanism In l:he system. A process can Wall: or nOt, at 
Its option, for any of Il:s pending Sends or Recelve~ to complete. 
Servers l:o support semaphores or ol:her higher level synchronization 
mechanisms can be constructed on l:op of this prlmll:lve service [25,36]. 
Abort a I lows any pend I ng or ad I ve Sends or Rece I ves to be cance II ed or 
stopped. 

The fol lowing subsectlo~s discuss general NOS model Issu~~ above 
the IPC layer. 

Resource Naming 

Two Kinds of resource names are needed In a Nns, one convenient 
for people and one convenient for machines [38]. 1he latl:er should 
have the same form across al I resources, be machine-oriented, contain 



-28-

communication level. Rather, each service may need none at all, a 
quite simple one [19,22] or one that Is quite complex [20,391. This 
Issue Is discussed further In reference [47], In the context of a fl Ie 
service. The conventions outlined below, we believe, should allow a 
range of error recovery strategies to be supported. In particular, 
within certain assumptions, conventions for crash detection and 
separation of data and control are provided. 

Resource Location or Placement 

One of the NOS architecture goals Is that user or user processes 
should not have to be explicitly aware of where a resource Is located. 
For example, In a distributed file system, the location or level of 
storage that Information resides on can be made Invisible for many 
applications, and files can migrate as appropriate. Reasonable file 
copying/caching and control strategies can also be envisioned as 
outlined In references [44,47]. (There are many difficult problems 
associated with updating multiple copies [21.) Global resource 
placement strategies across different types of servers may enventual Iy 
prove needed, but the Issues here are not wei I understood [17,37,44]. 
Our Initial assumptions are that each hoit computer system wi I I 
multiplex Its own local hardware resources, and, that In early versions 
of the NOS, users can explicitly seleCt where resources reside or 
execute. Later, when these Issues are better understood, automatic 
allocation or location on a global basis can b'e added to the frameworh 
presented here. The National Software Worhs represents pioneering worh 
In this area [28,39]. The difficult problems associated with automatic 
handling of distributed directory structures Is discussed In reference 
[44]. 

Re sou r c e A I I 0 c al Ion Lim I tat Ion and Ac c 0 u n tt n 9 : 

These Issues are not necessarily related. Even on single systems, 
they are confused by organization politics. The desires for autonomy 
of remote systems under local control, while yet allowing participation 
within the larger NOS, further complicate these Issues. The NSW 
represents Initial worh on this problem [281. What Is required here Is 
a clean separation between basic mechanism and pol Icy decision and 
Implementation. The use of account capabl Iitles, In addition to 
principal capabl I Itles to represent users, and provision of account and 
authentication servers using the basic capabl I Ity mechanism outlined 
above should allow a variety of policies to be supported. 
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2. NOS PROTOCOL STRUCTURE OVERVIEW 

The pro~ocol s~ruc~ure, ~o suppor~ ~he NOS model above, Is bul I~ 
on fIve prIncIples: 

Layered desIgn - A layered desIgn Is used ~o achIeve 
unders~andlng, ease of evolu~lon, and Implemen~a~lon modularl~y 
[10,26,351. The In~erfaces be~ween each layer are kep~ as sImple 
as possIble. 

Transac~lon orlen~a~lon - Mos~ opera~lng sys~em servIces are 
~ransac~lon orlen~ed: a cus~omer process Issues a reques~, and 
~he server process replIes and no addl~lonal conversa~lon need 
ever ~ake place, and ~he pro~ocol s~ruc~ure should no~ requIre ~he 
overhead of addl~lonal messages. The s~ruc~ure perml~s, however, 
~he crea~lon of ex~ended conversa~lons, cal led sessIons, where 
~hey are useful. The IPC ~ransac~lon orlen~ed servIce ~ha~ we 
wIsh ~o suppor~ Is dlfferen~ ~han ~ha~ of conven~lonal da~agrams 
[341 In ~ha~ we wan~ a relIable servIce, whIch Is no~ usually 
guaran~eed for da~agrams, and we wan~ ~he messages ~o be of 
arbl~rary leng~h, also no~ usual Iy suppor~ed for da~agrams. 

Symme~ry - Processes can opera~e bo~h In cus~omer and server roles 
d urI n g a con v e r s a ~ Ion. Th e pro ~ 0 col s ~ rue ~ u rem u s ~ a I low for ~ hIs 
shlf~ In roles [491. 

Abs~rac~lon of commonal I~y - Common aspec~s of servers and 
resources, such as ~helr logIcal s~ruc~ure, namIng, pro~ec~lon, 
and the commQn opera~ Ions app II cab I e ~o them shou I d be abs~raded 
and s ~ and ar dTz e d . 

ProvIsIon of a comple~e se~ of prlmlllve servIces - I~ mus~ 
Include ~hose servIces necessary In sIngle hos~ sys~ems ~o form a 
comple~e se~ of buIldIng blocks. The prImItive operations mus~ 
facl I I~a~e, bu~ no~ demand, ~helr dls~rlbu~lon. 

For ~he purposes of ~hls paper a pro~ocol Is loosely defIned as 
any agreed se~ of conven~lons assocla~ed wl~h ~he exchange of 
Informa~lon by peer en~I~les durIng communlca~lon. Deflnl~lons of da~a 
and message forma~s are Included, as wei I as rules for con~rol and da~a 
In~erchanges ~o achIeve some defIned servIce. 

The pro~ocol hIerarchy, descrIbed bo~~om up, consls~s of ~hree 
layers: 

In~erprocess communlca~lon layer supplyIng ~he IPC servIce 
men~loned earlIer. 

ServIce Suppor~ Layer - DefInes s~andard server and resource 
logIcal s~ruc~ures, resource namIng, pro~ec~lon, da~a forma~s, 
reques~/reply func~lons and form, and sessIons. 

ServIce Layer - suppor~s basIc resources and servIces, 
authen~lca~lon, loggIng, fIles, dlredorles, proces'3es, clocks, 
accoun~lng, ~errnlnals, e~c. 
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The structure Is deplclted In Figure 3. Each of the following sections 
discusses a layer. 

CUSTOMER LAYER 

SERVICE LAYER 

• Customer processes 

8 

• 
• 

customer/SL interface 

• Higher level servers (data base, etc.) 

• Basic servers (file, directory, process, clock, etc.) 

______________ SL/SSL interface 

{

e Resource structure, resource and resource name operations/replies 

Higher grouping • Server state model (coservers), and.operations/replies 

SERVICE SUPPORT 
LAYER 

. • Request/reply, data movement conventions, and operations/replies 

• Sessions 

• General request/reply form 

Lower grouping e Data types anoencodings, including capability form 

• Data and control message mode forms 

., General logical message 

SSL/IPC interface 

• End--end (process-process) protocol (Oelta-t) 

IPC LAYER • Link protocols 

• Other 

Figure 3 Structure of Protocols and Conventions 
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3. INTERPROCESS COMMUNICATION LAYER 

IntroductIon 

The basIc Interprocess communIcatIon servIce was defIned In 
SectIon 1. To support thIs servIce In a dIstrIbuted envIronment 
requIres a layered set of protocols. The maIn protocol relevant here, 
whIch rests on I Ink-level protocols, Is a transport or end-end protocol 
provIdIng, addressIng from a source (orIgIn) to a sInk (destInatIon) 
process, delIvery assurance (InformatIon Is not lost, damaged, 
duplIcated, mlssequenced, or mlsdellvered), and flow control to the 
sInk's rate of acceptance. A (source, sInk) address paIr Is called an 
assocIatIon. ThIs layer supports transport of unInterpreted arbItrary 
length logIcal messages delImIted by 80M and EOM marks. The 80M, EOM 
marks are carrIed oUt-of-band In packet headers. The two major areas 
of addressIng and assurance are now dIscussed brIefly, as these are 
where our approach may dIffer somewhat from that used In other 
transport protocols. 

AddressIng 

Each source and sInk Is IdentIfIed by a unIque hIerarchIcal 
address that routIng modules parse from left to rIght. The further 
away the sInk Is, In terms of the chosen hIerarchy, the sooner the 
parse Is stopped. That Is, the address of a process reflects the 
hIerarchIcal geometry of the network (network, cluster, host, process 
etc.), whIch means that every node need not store InformatIon about 
every potentIal sInk IndIvldully. Each branch down the tree could 
contaIn a dlff~~ent number of levels and a dIfferent fan-out at each 
level. The network address space Is large enough that every process 
can have several addresses (allowIng It to have ports), and none of the 
addresses has to be reused, even after the process Is destroyed 
(assumIng reasonable lIfetIme for the network). ThIs feature Is 
Important as one element In achIevIng the transactIon orIentatIon of 
the archItecture, because a process does not fIrst have to go to a wei I 
known logger or connectIon establIshment port, present a hIgher level 
name, and then be allocated a logIcal channel, socket or other reusable 
network address before enterIng a data transfer phase. 

WIthIn thIs framework, we also provIde for logIcal, generIc, or 
functIonal addressIng [27,31,44]. A portIon of the network-address 
space, characterIzed by a standard value for the leftmost bIts, Is set 
asIde for thIs purpose. The routIng tables In eac~ node of the network 
then poInt to the nearest "representatIve" of a generIc servIce. 
CommunIcatIon and, If necessary, synchronIzatIon among the 
representatIves of a generIc servIce uses non-generIc (physIcal) 
addresses and Is a hIgher-level problem. 

LogIcal addressIng can also be handled at hIgher levels, wIth 
translatIon from logIcal to physIcal address takIng place above the 
end-end protocol level at the source. In some cases, the network 
address of a servIce appearIng In a capabI I Ity may actually be to a 
hIgher level logIcal-address server whose only Job Is to forward 
messages to I:he actual server, whIch It locates by means of records 
("yellow pages") that II: maIntaIns. MaIntaInIng I:he dIstrIbuted or 
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centralized logical to physical address maps when processes move will 
require forwarding protocols, not currently defined. We expect logical 
addressing to be Important In certain NOS servlcees [471. It has 
already proved useful within the NSW [28,311. 

Assurance and Flow Control 

To achieve assurance and flow control, while maintaining a 
transaction or single message orientation, we have had to design our 
own process-to-process (end-to-end) protocol. Published work on 
me s sag e s y s t ems h a v e g e n era I I Y not d e a I t wit h rei I a b I I I t y [1, 12, 31 ,45 1 . 
Wei I-known existing and proposed protocols such as INWG, and TCP 
[4,32,331, and X.25 al I require overhead messages to be sent between 
source and sink In order to rei lably set up and tear down a connection 
or virtual circuit, even If only one request and one reply are to be 
exchanged [18,421. In some network architectures this overhead has to 
be borne at each of severa I I eve Is. Th I s overhead, we be II eve, Is 
unacceptable, not primarily because of the raw bandwidth consumed, but 
because of the COSt and delay Involved In generating messages, forming 
them Into packets, placing them onto the transmission media, and 
buffering and handling them along the way. Our experience and that of 
o the r s [ 50 1 s how t hat g e n era I OS 0 v e r h e a d for pack eI: han d I I n g may 
require several times the time required for actual protocol processing. 

It has been demonstrated by Belsnes [31 that for rei lable single 
message transmission, the rei lable connection set up overhead Is 
unavoidable unless the state Information kept by the tWO ends of a 
conversation Is under timer control. Accordingly our protocol depends 
on the use of I:lmers and Is called Delta-I:, Delta-t Is based on the 
fact that the total time of existence of a packet, Including the 
Interval between Its first and last transmission, Its maximum lifetime 
with I n the rouTI ng nel:work, and the de I ay before It Is acknow I edged by 
the sink, can be bounded. This bound Is expressed In terms of an 
Interval ~t, hence the name of the protocol. 

Briefly, Delta-t works as follows. the state Information used for 
generating sequence numbers at the source, packet acceptance at the 
sink, acknowledgement, and flow control (normal window flow control) 
are kept In connection records at each end, as for any non-timer 
protocol. These records have a lifetime under control of a Send-tlme~ 
at the source, and a Receive-timer at the sink. When either of these 
timers go to zero, the corresponding record can be destroyed. These 
timers do not have to be synchronized, but are expected to run at the 
same rate. When Initialized or refreshed, these "timers are set to 
mull:lples of~1:, The rules for timer Intervals, control of the I:lmers, 
setting of header control flags, sequence number ~electlon, and packet 
acceptance are given In references [16,481. The protocol header for 
the Delta-t protocol Is shown In Figure 4. 

Simplified, the lifetime of a packet Is strictly controlled by 
Including a field In the packet header that Is Initialized by the 
source and counted down by Intermediate nodes. Each node, Including 
the end protocol module, must count at least once, more If It holds the 
pack eI: Ion g e r th an 0 n e I:l me un I t (tI c k ). Rei: r an 5 m Iss Ion SSt a rI: par tl y 
counted down. The packet 15 discarded and nacked If the count reaches 
z e rob e for e del I ve r y . Ou r I Ink pro t 0 col s, 0 n I Ink 5 t hat h a vel n t ern a I 
buffering that could hold a packet for an Indefinite period of time, 
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have been augmented by a feature that guarantees hnowledge of the 
transit time. An entire networh could be such a logical Iinh. The 
Idea Is that each I Inh frame Is time-stamped by the sender so that the 
transit time can be computed by the receiver. The tWO loglca\ Iinh 
clochs, send and receive, are simply synchronized whenever necessary by 
the receiver sending Its cloch value to the sender. This mechanism 
assures that the transit times are always overestimated, never 
un d ere s tim ate d; the d eta I I s are pre sen ted I n ref ere n c e s [ 40 ,48] . 
Routing nodes also destroy al I pachets on recovery from a crash. 

Routing header 

Assurance, flow 
control header 

o 

r 

7 15 23 

Total header Security ~t(l) Lifetime(2) Routing(3) 
length level Exponent flags 

Reserved for future Total packet length 

Destination address 

Destination address 

Source address 

Source address 

Header checksum Data Checksum 

Data sequence number (DSN) 

Acknowledge sequence number (ASN) 

Assurance(4) 
flow control Window 

flags 

Options (variable) 

Data 

Lengths and window are in octets. Sequence numbers are for octets. 

31 

• 

(1) ~t-exponent allows the receiver to calculate senders ~t. ~t = K X 2 At-exponent 

(2) Lifetime equals number of "ticks" remaining for oldest data octet in this packet. 

T'k & . 
IC = 256 secs 

(3) Routing flags: FIR fragm'entation allowed, BaM, EOM, NAK 

(4) Assurance flow control flags: DRF (all previous DSN's acted), ARF (ASN field 
valid), WaF (window overflow) 

Figure 4 Oelta-t Protocol Header 
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4. SERVICE SUPPORT LAYER 

Introdud Ion 

The service suppor~ layer (SSL) defines a hierarchy of conven~lons 
consls~lng of ~wo main groupings shown In Figure 3. The flrs~ of ~hese 
(lower grouping) con~alns conventions to establ Ish data and control 
message separation, provide for data and con~rol parame~er translation, 
establish the general syntax of request/reply messages, and provide 
crash detection. The second of these (higher grouping) supports the 
request/reply, da~a movement model of Figure 2, and abstracts common 
server and resource s~ructures and reques~s/reply semantics. 

Th e pur p 0 s e s 0 f ~ h e s e r v Ice sup port I aye r are the f 0 I low I n g : 

Each new service should not have to be designed from scratch, 
dealing with the above Issues anew. This faclll~ates the 
In~roduc~lon of a new service. A run-time envlronmen~ can be 
created embodying ~he common service suppor~ features In ~erms of 
I ibrary routines, utility processes, or other building block 
mechan Isms [49]. 

A uniform user view Is crea~ed tha~ eases the learning time and 
other difficulties of a customer trying to use a new service. As 
seen by processes, an operating system or protocol Interface Is a 
language and should meet good language design criteria such as 
uniformity and compac~ness. 

We now preseht ~he SSL Issues and conventions In the order shown 
In Figure 3. 

Separa~lon of Data and Control 

The lowes~ convention of the SSL Identifies each message as being 
In one of at least tWO modes: control or da~a. Con~rol messages, In 
general, are reques~s or replies In a standard encoding ~ha~ contain 
~he semantics of the customer-server dialog. Data messages are, In 
effed, parame~ers tha~ are tOO large to be conveniently or efflclenUy 
enclosed within a control message; an obvious example Is the contents 
of a fl Ie being ~ransml~~ed. We want to be able to suppor~ data or 
control messages on the same or different associations. For example, 
In Figure 2, association (C,E) may be as shown, or In fad be the same 
as associations (8,0) or (A,D). 

Knowing the mode enables a process to quickly and unambiguously 
separate what It must Interpret from what It must simply store, print 
or pass on. It greatly reduces the danger that after a loss of state 
Information (e.g., at deadstart) It wi I I treat raw data as a command. 
It perml.ts control Information, such as a Statement of an error 
condition, multlstream synchronization mark, or checkpoint number to 
occur In contexts where data Is expected, without causing confusion or 
data scanning. Finally, It cleanly separates control translation 
Issues from data translation Issues. Control needs to adhe~e to a 
standard format so that al I processes may understand one another, whl Ie 
It Is often desirable that data be shipped In Its raw form or be 
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translated In an appllcal:lon-dependenl: way, l:he laHer being a 
higher-level Issue. 

The mode Indlcal:lon could be ell:her an "oul:-of-band" signal In l:he 
IPC prol:ocol heading (as, for example, l:he qualifier bll: of X.25) or II: 
could be I:he flrsl: few bll:s of I:he message. We have chosen 1:0 maKe II: 
I:he flrsl: byl:e (I:he mode byl:e) of l:he message so l:hal: I:he SSL can we 
used wll:h I:ransporl: prol:ocols ol:her l:han oell:a-I:. The SSL hierarchical 
sl:rucl:urlng of logical messages Is shown In Figure 5. 

r 
Mode 
octet 

Data 
mode 
octet 

Control 
mode 
octet 

Control 
mode 
octet 

Header 

Length 

Un interpreted bits or octets 

IPC level logical message 

a) 

Data or control message 

NOS message form 

b) 

Data message 

c) 

Data 

Token 1 Token2 ... 

Function 
token 

Control messages 

d) 

Parameter Parameter 
token token 

General request/reply form 

e) 

T 

Tokenn 

Parameter ... 
token 

Body 
Body = bit string, text string, 

integer, capability, etc. 

Token form 

f) 

Usage 

Token header form 

g) 

Type , 
Length = length of token 

Usage = purpose of token 
Type = date type of body 

Figure 5 Logical Message Sl:rucl:ure 



-36-

Iransla~lon and Con~rol Mode Message S~ruc~ure 

In order for ~ransla~lon ~o be performed, expllcl~ or Impllcl~ 
da~a ~ype Informa~lon mus~ exIst. For the parameters In requests and 
replys, explIcIt typIng of each parameter Is provIded as descrIbed 
below. It would be IneffIcIent for each data Item In a data message to 
be typed. For data messages, the data type InformatIon can be hnown In 
three ways: ImplIcItly by the nature of the servIce or address, 
conveyed In control messages, or explIcItly encoded In the message mode 
code. 

Let us now consIder the structure of control messges. DesIrable 
goals are to allow parameters In functIons to be omlHed and defaulted 
(achIevIng data compressIon), appear In any order (allowIng servIces to 
evolve by addIng new parameters to functIons), to be varIable length, 
and to be automatIcally translated to and from a servers Internal 
representatIon from and to standard networh encodlngs. To achIeve 
these goals control messages are consIdered a strIng of tohens. A 
tohen cons I StS of tWO ma I n pads: a header fo I lowed by a~. The 
header descrIbes the body, whIle the body represents the actual value 
conveyed by the tohen. The header In turh consIsts of three parts: 

The length defInes the number of bytes Included In the entIre 
tohen. 

The ~ defInes the purpose of the tohen, such as functIon code, 
source (resource) IdentIfIer, source label (fIrst-bIt-address, for 
example), count, etc. 

The .~ IndIcates the data type of the body, such as Integer, bIt 
s tr I n g, dt.a r act e r s tr I n g, cap a b I I I t y, et c . 

Type has been separated from usage because there are examples of 
usages that may be of varIous types; It permIts a sImpler common 
translator to be desIgned for each programmIng language or system that 
translates tohens to and from theIr Internal representatIons to and 
from the standard. The translator's decIsIons are based only on the 
type. The tohen encodIng that we are developIng Is expected to mahe 
the most commonly-occurrIng, tohen headers only one byte long, wIth an 
escape to tWO bytes for most of the remaInIng cases. 

The tohens of a message are grouped Into statements. Each 
statement begIns wIth a tohen of usage "functIon code" and ends JUSt 
before the next tohen of that usage or at the end of message. (The 
fIrst tohen of a message should be of usage "func~lon code.") The 
tohens of a statement fol lowIng the functIon code are parameter tohens. 
The functIon code tohen defInes an operatIon to be performed or 
IndIcates a reply; the parameter tohens supply arguments or results; 
AllowIng (not demandIng) multIple statements per message helps reduce 
message traffIc. . 

E~ch functIon, In general, expects parameters of several dIfferent 
hInds of usage. If a needed usage Is omlHed, then a default value Is 
.assumed; for example, the default for usage "count" Is one. The 
concept of usage thus permIts a form of InformatIon compressIon. More 
Importantly, It permIts new optIons to be added to a functIon, 
expressed by new parameters, wIthout ImpactIng exIstIng customers. 
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l...Jhen a parameter of a funcl:lon acl:ully occurs In a preceding or 
following data message (possibly on a separate association), a 
parameter Is placed In the control message, In effecl: an "Indlrecl:lng 
pointer," Indicating this facl:. 

Standard Data Types, Capabl I Ity Form 

Among the standard data types defined by the SSL Is a standard 
capabl I Ity as shown In Figure 6. Human-orIented names are handled at a 
hIgher level by naming graphs as mentioned earlier. A standard 
capabl I Ity Is a tohen body that IdentIfies a resource and confers right 
of access to a particular resource. It consists of the fol lowing 
fie Ids. 

The address Is the networh address (logical or physical) of the 
server that manages the resource. This would be D of Figure 2. 
Often the customer uses the address of one of the capabl I Itles In 
a request message to determIne where to send the request. 

The properties are a set of standard bits and fields that Indicate 
to the customer the nature of the capabl I Ity, such as 
controlled/uncontrolled, resource type, access mode, resource 
Ilfel:!me, security level, etc. 

The unique Identifier Is used by the server to Identify and locate 
the specific resource named, and possibly for other 
server-dependent purposes. 

The password, If present, guards the unique Identifier part of the 
capabl I Ity agaInst forgery. The Idea Is that, If any process or 
user tried roo forge a capability, It would not be accepted by the 
server unless the password were correCt. Encryption can also be 
used for this purpose [5,29]. 

Password Unique identifier Properties 
Network address 

. of server 

~----~------~--------------~I~'----~--~I\~------~------~ 
Variable up to 

152 bits 
32 bits 

Figure 6 Standard CapabIlity Form 

64 bits 

Other standard data types to be supported Include at least 
Integer, bit string, and character string. 
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SessIons 

AI I servers maIntaIn state InformatIon for an assocIatIon for some 
length of tIme, dependIng on the nature of the server: durIng a sIngle 
operatlon, multlple operatIons (statements) In a sIngle logIcal 
message, or across multIple messages. In addItIon some servers may 
want to support parallelIsm such as parallel operatIons, parallel 
streams, etc. on a sIngle assoclatlon. WhIle actIve state Informatlon 
Is beIng maIntaIned for an assocIatIon a sessIon Is In exIstence. 

Th e I PC I aye r end - end pro t 0 col wIth Its BOM, EOM mar h s a I low s 
customer or server processes to detect crashes wIth loss of memory 
durIng a logIcal message, but cannot aId detectIon of crashes between 
messages, although Its rules pro ted agaInst lost, damaged, duplIcate, 
mlssequenced pachets across crashes. DetectIon Is achIeved because 
after deadstart the server expects a BOM, and a customer generates a 
80M when the server Is expectIng a EOM fIrst. If state InformatIon Is 
beIng maIntaIned across messages, tIed to an assocIatIon, there Is a 
need to provIde a mechanIsm for customer or server crash detectIon 
between messages. ThIs Is the purpose of a sessIon. SessIons are 
delImIted explIcItly or ImplIcItly wIth beglnnlng-of-sesslon CBOS) and 
end-of-sesslon (EOS) functIon tohens, dependIng on whether or not a 
service supports multIple message sessIons. ThIs allows crash 
detectIon, as now descrIbed. 

When a server crashes, It deadstarts wIth InactIve sessIons 
logIcally on all assocIatIons, whIch exped a BOS as the fIrst tohen 
receIved. If the customer thought a sessIon was In progress It wI I I 
not Include a BOS In the message sent the server, and the server wI I I 
generate an error reply, forcIng the customer to enter an error 
recovery procedure •. ~Iml larly when a customer process deadstarts It 
sends a BOS as part of Its recovery procedure and wI I I be Informed by 
the server If a sessIon was In progress. Then the cutomer can tahe 
whatever recovery action Is approprIate. 

Request/Reply, Data Movement Model support 

To support the request/reply, data movement model of FIgure 2, 
conventIons are reqUIred so that al I communIcatIng entItIes can hnow 
each others address, authentIcate the rIght of a partner to send them a 
message, and deted a partner crash. These needs are met as fo II ows: 

The requester obtaIns the server address D from a capabl I Ity or 
some a prIorI way. The requester can detect a serv~r crash by the 
sessIon mechanIsm above. 

The server obtaIns the address A of the reply-handler from a 
capabl I Ity passed as a parameter In the request. ThIs address 
defaults to that of the requester B, always provIded by the IPC 
layer Interface. The server may requIre a capabl I Ity passed as a 
parameter In the request to authentIcate the requester's rIght to 
mahe the request. Address B can be used by the server to protect 
controlled capabIlItIes as mentIoned In Sedlon 1. 

The reply-handler and requester are worhlng together and tha 
reply-handler can be sent the address D of the server If needed. 
The reply-handler receIves the reply-handler capabIlIty In replIes 
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from the server, authentIcatIng the server as the process wIth the 
rIght to send It messages. FaIlure to receIve a reply could 
resu I t from a server or rep I y-hand I er crash. A dup II cate request 
could then be sent wIth an attendent rlsh of a duplIcate operatIon 
not detectable by lower level IPe layer mechanIsm. Therefore, 
duplIcate requests are not recommended unless requests are 
formulated such that duplIcates can not cause harm. Instead, when 
a reply falls to arrIve wIthIn some tImeout perIod or the 
reply-handler detects It has crashed, the state of the approprIate 
coserver-state-record (see next subsectIon) can be Interrogated 
for status to determIne whether or not to reIssue a request. 

For servers supportIng or requIrIng data movement In data mode 
messages (normally only those Involved In bulh data movement such 
as the fIle server), a mechanIsm Is requIred to exchange data 
source/sInh addresses e and E. Because these addresses cannot, In 
general, be hnown ahead of l:1me, a sImple "open" protocol Is 
requIred to be used before data movement can begIn. The requester 
sends the server an approprIate resource capabl I Ity (such as to a 
fIle), address e, and other parameters to Intlallze state. 
Address e could also be provIded In data movement prImItIves also 
so that several cooperatIng customer processes could serve as 
sources or slnhs, at dIfferent tImes. The server returns a 
capabIlIty to the "open-resource" wIth E In Its address fIeld. 
Addresses E and e wI I I only accept messages from each other. Note 
that therefore operatIons InvolvIng bulh data movement are not of 
the sIngle request/reply form. ThIs seems acceptable because the 
"open" exchange Is small overhead relatIve to the expected large 
data movement. InformatIon In control messages can be sent on the 
assocIatIon (e,E) for chechpolnt restart or hIgher-level chechsums 
If desIred for ,eTror detectIon and recovery mechanIsms. A crash 
at eIther end would be detected by the IPe layer fal lIng to get a 
message through or fal lure to receIve the expected amount (count) 
of data. 

Data Is actually moved wIth standard "read" or "wrIte" operal:1ons 
defIned for sequentIal and random open-resources. These operatIons are 
sent to address D. (We are consIderIng whether or not to extend the 
model to allow a dIfferent control address for the read and wrIte 
operatIons so that the module servIng actual data movement could be 
dIstrIbuted wIthout IndIrectIon through address D.) BesIdes the normal 
parameters for reads and wrItes (open-resource capabl Ilty, fIrst 
element address, count etc.), there Is an addItIonal parameter for 
"readIness" negol:1atlon. Normally the customer process Is ready and so 
no negotIatIon tahes place. If the customer desIres to ~egln a 
readIness negotIatIon It sends a read or wrIte wIth the readIness 
parameter IndIcatIng Its current state of readIness. The server sends 
a reply IndIcatIng Its readIness when It reaches a state "more" ready 
than the requester. ThIs cycle contInues untl I the customer sends a 
request IndIcatIng fully ready. 

Th ere I 5 a Iso a s tan dar d "c 0 p Y 'lOp era t Ion ex p I I cIt I Y s P e c I f yIn g 
tWO resources as source and sInh to be used for "thIrd party" data 
movement requests. ThIs allows transfers dIrectly from one fIle to 
another or specIal servers to support copyIng from one arbItrary, 
resource to another wIthout havIng to Involve the orIgInal requester. 
The "copy" server would Issue "opens" and successIve reads or wrItes to 
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the source and sinh, or If the source or sinh supported "copy", then a 
"copy" could be forwarded to one of them, which would In turn "open" 
the other, and then perform the reads or writes. 

Coservers 

As part of the goal of providing users (customer processes) as 
uniform a view of servers as possible, the coserver concept has been 
developed. The Idea of a coserver Is quite parallel with the 
conventional Idea of a process and Is motivated by the desire to: 

Support server state Information across many types of servers In a 
consistent manner. 

Support state Information across messages for data compression. 

Allow state I nformat I on after one operat Ion to be defau Ited as 
Input parameters for succeeding operations. 

Share state Information across tWO or more associations. 

Be able to operate on state records even when an association Is 
bloded by lower level flow control. 

Su p p 0 r t par a I I e I s e r v Ice son a sin g I e ass 0 c I a t Ion. 

Be a b let 0 I n t err 0 gat e the s tat e 0 fan 0 per a t Ion w h I I e I tis I n 
progress from the same or a different association. 

Be able to distinguish and specify when and where replies for an 
operation ara~to be sent and from which paral lei entity the reply 
Is coming from. 

Be able to abort, suspend, restart an operation. 

Pr 0 v Ide for \:h e abo v e s e r v Ice sin g e n era I, but 0 n I y r e qui rea 
minimal Implementation when, as Is expected to be common, a server 
only supports sequential operations, and does not require state to 
be saved across messages. 

The coserver mechanism or protocol briefly Is \:he following. For 
a given association, a server may In some cases be viewed by the 
customer process as logically providing Independent parallel servers. 
1\: seems useful to mahe \:hIs notion explicit and to talh about server 
processes \:hat multiplex themselves to run abstract s(Orvers called 
coservers (which are Ilhe coroutlnes), each represented by a 
coserver-state-record (CSR). The CSR consists of tWO parts, a set of 
parameter-registers (PR) readable and writable, and a set of 
executlon-state-reglsters (ESR) , read only. The way a coserver Is 
viewed as worhlng Is as follows: 

It r~celves Its operation stream from logical messages. The 
operations al lowed are any accepted by a server and permitted by 
capabl I Ity access rights. 

The parameters In the message are loaded Into the PRs named by 
~. When end-of-message (EOM) or the next operation tohen Is 
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reached, executIon begIns, the parameters In the PRs needed by the 
operatIon are used. Parameters are thus defaulted from values In 
these regIsters If they are not Included In the message. 

As the operatIon proceeds Its state evolves and Is recorded In the 
ESR as advertIsed by the server. 

ReplIes are sent when specIfIed In the reply-optIon parameter. 

ReplIes are sent to the reply-handler represented In the 
capabIlity In the reply-handler usage parameter. 

A gIven coserver Is sequentIal, that Is, It can perform only one 
operatIon at a tIme. 

At any gIven tIme one and only one CSR Is selected as attached to 
an assocIatIon. The CSR Is In one of two states actIve or 
InactIve. A sessIon Is In progress If the selected CSR Is actIve. 

At tIme 0 on an assocIatIon a default CSR, contaInIng InItIal 
default values for !:he PRs, Is logIcally tIed to It and Is marhed 
InactIve. The only acceptable operatIon on an InactIve CSR Is the 
80S tohen. Any other tohen wI I I cause an error return. The 80S 
operat Ion mahes' the CSR act I ve and now any advert I sed server 
operatIon Is acceptable. There Is a correspondIng EOS tohen whIch 
detaches the current CSR from the assocIatIon (but does not 
destroy It--therefore It can contInue executIng Its current 
ope rat Ion) and a t t a c h e san I n a ct I v e d e f a u I t CSR tot h e 
assocIatIon. 

A 80S wI I I no!: be accepted on an actIve CSR and an error message 
wIll be returned. 

All coservers are named by capabliltles eIther explIcItly returned 
on CSR creatlon or left In the CSR for return If Interrogated. 

If two or more assocIatIons are sharIng a CSR (whIch Is 
permItted), then they are assumed to be synchronIzIng themselves 
at a hIgher level. 

Th ere are a set 0 f con v e n t Ion s for de a I I n g wIt h rep I I e s fro m 
detached coservers. RequIrements are to provIde optIons that 
would eIther 1) send such replIes Into a "bloch hole" not 
requIrIng the coserver to bloch, 2) requIre the c~server to bloch, 
If a reply Is generated, untIl It Is reattached to an assocIatIon, 
3) allow all replys but the last to enter the blach hole, but 
allow the last reply to be obtaIned by an Interrogatlon. 

Coservers can also be explIcItly created, destroyed, Interrogated, 
reattached, suspended restarted, aborted by a standard set of 
operatIons. 

Convent Ions are requ I red to a I Iowa command affect I ng the CSR 
currently attached to an assocIatIon not to be bloched by flow 
control on that assocIatIon or the fact that the attached ,coserver 
Is executIng a normal resource operatIon. A number of mechanIsms 
to meet thIs need are under consIderatIon. 
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UnIform Resource VIew 

We want to provIde a unIform and compact language for manIpulatIng 
resources. ThIs requIres a unIform vIew of resource strUCture. The 
followIng unIform resource model Is under consIderatIon. 

A typIcal resource can be vIewed as a data structure (possIbly 
dIstrIbuted) consIstIng of tWO major parts: 

The headIng or resource state record contaIns named fIxed fIelds 
of InformatIon of varyIng length and type, such as creatIon tIme, 
last access tIme, account capabIlIty, securIty level, access 
rIghts, IdentIty verIfIcatIon, mnemonIcs or other commentary, etc. 

The ~ Is the resource proper. Its structure varIes dependIng 
on the nature of a resource. 

For e x amp Ie, a f II e c 0 u I d be an array of bIt s or records I abe I I ed 
by consecutIve natural Integers, whIle a dIrectory Is a lIst of 
capabIlItIes labelled by character strIngs. For some resources, such 
as most prInters, only one Item of the body ~s accessible at a time, 
and a label Is not needed. We believe all possibIlities can be treated 
as spec I a I cases of one or a few genera I forms. A resource usua II y Is 
named by a token of'type capability, whIle the Items In Its body are 
labelled by tokens of various types. 

Only a few functions are required to cover the vast bulk of 
operations performed on resources. AI I uperatlons Involving queryIng 
or modIfying coserver state records and resource headings, or reading 
or writing resource bodies are actually specIal cases of generIc read 
and write functIons. Functions are needed to "create" and "destroy" 
entire resources and to "enter" and "delete" Items of a resource (as, 
for example, In a directory where the Items are neIther fIxed In number 
nor strictly consecutive). Another group of functIons Is needed for 
valIdating or InvalIdatIng controlled capabilItIes and creating a new 
capability with different access privileges. Some Important functIons 
apply to only certain kInds of resources; actIve resources, such as 
co servers or processes, need to be "started," and "stopped," whIle 
synchron I zers, such as semaphores, have the I r own spec I a II zed 
operations. Standard operatIons for coserver state record handlIng 
were mentIoned earlIer. 

SpecIfyIng an essentially complete small set of functions seems a 
language goal wei I worth pursuIng, provided that we exclude servers 
that perform primarIly a processIng function, such as editors, 
compIlers, and applIcations In general, although we would expect server 
desIgners to use the standard operatIons where approprIate. 

One more standard functIon needs mentIon, It Is the one that 
usually appears as the only functIon In a reply. The parameters 
following It defIne the results or the status to be conveyed IncludIng, 
If approprl.ate, resIdual count and address. The most Important of 
these parameters Is one that IndIcates eIther no error or the nature of 
an e r r·o r, s u c has I n val I d cap a b I I I t y, a c c e s s den led, Imp r 0 per I abe I , 
InsuffIcIent funds, Inadequate securIty level, excessIve count" server 
fault., resource destroyed, etc. 
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O~her aspects of a uniform resource model that need specification 
Include the fol lowing: (1) standard access rights, as Indicated In the 
properties field of a capabl I Ity or the heading of a resource, such as 
read, wrl~e, execute; (2) standard tohen usages that categorize the 
parameters of functions; and (3) standard tohen types. 
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5. SERVICE LEVEL 

The servIce level (SL) defInes standard KInds of servers, the 
structure of the resources they manage, and those formats and protocols 
that do not seem wIdely applIcable to many servers. Examples of Issues 
we be II eve to be server dependen t are error hand II ng and recovery; 
optImal resource locatIon or placement strategIes and protocols, such 
as automatIc fIle cachIng; and Internal server structure, centralIzed 
or dl~trlbuted [17,44,471. 

The maIn goal of the servIce level 15 to try to assure a complete 
set of basIc standard servers Is defIned, and that, for example, al I 
servers of a gIven resource type are compatIble wIth one another and 
present the same external appearance no matter where In the networK 
they are located or from where they are accessed. A dIscussIon of 
Issues and our current plans assocIated wIth a standard fl Ie server 15 
contaIned In reference [471. 

lr-Je are InItIally plannIng the followIng standard servers: fIle, 
dIrectory, process, termInal, authentIcatIon, clocK, account, 
synchronIzatIon. ,Most of the operatIons for these servers wI I I be the 
standard ones mentIoned In the last sectIon. 
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6. CONCLUS ION 

We have outlined our goals for a NOS, a NOS model, and a prolocol 
structure to supporl this model. Our curent status Is that the 
transport level of the protocol structure Is designed [48]; the message 
format sublayers of the service support. layer are complete except for 
minor details; the coserver and data movement models are slill being 
refined; and we are beginning specification of the standard servers. 

We be II eve shong I y that an I ntegrated approach to NOS and 
protocol design Is required If true resource sharing, multiprocessing, 
and distributed computing are to evolve. We have further argued that 
protocol structures must be bul It on a message or transaction base. We 
have shown the main elements reqUired to provide the transaction base, 
adequate address space 50 that addresses do not have to be reused and 
can be permanently assigned, timer based IPC layer assurance mechanism, 
expliCit data typing, capability based naming, and a requesUreply 
dlalo~ structure. On tOP of this, single or multiple message sessions 
can be builL 

The elements of a uniform customer/server model were presented; 
which Included a distributed request/reply data movement model, server 
state model (coservers), and resource model. Using such an approach 
should; 1) provide a firm basis for dlshlbuted application or service 
design, and 2) allow a simpler, more consiStent, easier to learn 
operating system language, which we believe will be Impodant for a 
extensible NOS with many services. The Ideas presented here also seem 
useful for development of portable as wei I as distributed operating 
systems. Increased".lntegratlon of protocol, OS, and language design 
concepts should be encouraged. 

We don 0 t· bel I eve t hat a NOS must 5 p r I n g f u I I Y g row n I n t 0 

existence. Even If ones Initial need Is for a single service such as 
virtual terminal service or fl Ie transfer, If protocols for providing 
these services are designed on the type of structure outlined In this 
paper, then a foundation wi I I exist for smooth evolution toward a 
fu II er NOS as add I tiona I serv I ces are requ I red. 

There Is a large amount of worK yet to be done to fully specify 
the protocols outlined above, create Implementations both as a base OS 
and layered on existing OS's, and write new dlshlbuted applications 
and servers. On I y when lhese taSKS are comp I eled will we be II eve we 
really have a handle on all the NOS Issues. 
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ABSTRACT 

The ADAPT (A DAta Parsing and Transformation) sys­
tem provides an efficient generalized language 
driven approach towards data translation. Its 
high-level languages are easily lea.rned and under­
stood. The data descriptions and transformations 
can be easily ~odified as the conversion require­
ments evolve. It provides transformations on an 
inter-record level as well as the power of stan­
dard text editors for intra-record transforma­
tions. 

ADAPT has other uses besides that of a one­
time data translation. Since the process of data 
conversion may· cover a long time frame, logically 
consistent copies of the source and target data 
bases must be maintained. The ADAPT system can be 
used as a tool to insure consistency of the source 
and target data bases, even if they exist on dif­
ferent machines. Another use of the ADAPT system 
is in a distributed data base context. Logical 
reco'rds which are distributed to different nodes 
of the data base can be "collected" by ADAPT and 
presented as a single phys ical record to a user at 
one node. This paper presents a functional over­
view of the ADAPT system and discusses applica­
tions of the ADAPT system to computer net~ork 
problems. 

1. Introduction 

The traditional approach to data conversion requires 
development of independent hard-coded conversion systems for 
every conversion process. Such systems consume valuable 
resources in development and maintenance. The need for gen­
eralized high-level data translation systems has been well 
documented over the last few years. Such systems can make 
the conversion process much simpler, as the conversion code 
is easier to develop, easier to understand, easier to main­
tain, and easier to modify. Unfortunately, the appearance 
of generalized translation systems in a production 
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environment has lagged far behind research into the concep­
tual problems surrounding data conversion. 

Significant work in the area of data conversion has 
been done at the University of Michigan [3-9]. But the 
emphasis in that work was to provide a foundation for future 
research and development in data translation. Other signi­
ficant work in the area has been done by Smith [10-11], 
Ramirez [12~'13], Sibley and Taylor [1], Shoshani [14], and 
Bakkom and Behymer [15]. Work by Housel, Shu, and Lum [16-
2e] at IBM is based on two descriptive languages which drive 
their translation systemo The IBM work is principally 
geared towards logical restructuring of hierarchical data 
structures, but it is one of the only generalized transla­
tion systems being used in a production environment. 

The ADAPT ( A DAta Parsing and Transformation) system 
provides an efficient generalized language-driven approach 
towards data translation. ADAPT provides the user with a 
language for describing the source and target data formats 
and structures, and a language for specifying the mappings 
between the source and target data structures. ADAPT allows 
transformations involving multiple record types, follows a 
generative approach towards data conversion, provides logi­
cal restructuring and reformatting operations including 
those performed by the UNIX* text editor, and provides a 
neat modular scheiiie for crossing over machine boundaries. 
Further, ADAPT was designed to be a production environment 
translation tool.. As such, effie iency and functional com­
pleteness for handling production translation requirements 
were prime design criteria. 

The ADAPT system lends itself to quick and simple 
modifications of the data descriptions and transformations, 
as the source data and conversion requirements become better 
understood by the user. ADAPT can be used for other appli­
cations besides a one-time translation system. It can be 
used for consistency control between the source and target 
data bases during the conversion period. It can also be 
used to control access to a distributed data'base system. 
In short, it can be used dynamically by any application 
requiring transformation of a data stream from one format to 
another& This paper presents a functional overview of the 
ADAPT system and discusses applications of the ADAPT system 
to data base' network problems. 

20 System Configuration 

All components of ADAPT are written (or generated) in 
the C language [23]. ADAPT was originally designed to run 

* UNIX is a Trademark of Bell Laboratories. 



-53~ 

on the PDP 11/70 computer under the MERT/UNIX operating sys­
tem [24]. ADAPT runs as a single process in that environ­
ment; communication with other (UNIX) processes is a natural 
extension of this environment. ADAPT is also portable to 
any machine/operating system which supports a C compiler. 
If ADAPT is used as a sub-module of a larger process in 
those environments, the appropriate inter-process communica­
tion protocols must be followed. currently, ADAPT is port­
able to the IBM 370 and UNIVAC 1100 series computers, and it 
will soon be ported to the VAX 11/780 computerG 

The ADAPT system consists of two compilers, and a run­
time system consisting primarily of code generated by the 
two compilers. The user describes the format and structure 
of the source and target data using the Description Language 
for Data Parsing and Generation (DDPG) e The Transformation .. ? 

Programming Language (TPL) is then used to describe the map­
pings between the source and target data~ Subsequent sec­
tions of this paper will present the DDPG and TPL languages 
in more detail. 

Based on the user data descriptions, the DDPG compiler 
generates two data parsers - corresponding to the source and 
target data descriptions. The target data parser is called 
the Resrap module. The TPL compiler is then run on the 
user's TPL specification and, using the user data descrip­
tions, generates the Transformer module. As can be seen, 
with this generative approach, each executable ADAPT system 
is automatically tailored to the particular application's 
conversion requirements, thus optimizing the performance of 
the conversion system for each application environment. 

The run-time data flow through the ADAPT system is 
shown in Figure 1. The Translation Controller acts as the 
main routine, controlling the execution of the other 
modules, collecting statistics and performing error han­
dling. The Reader prepares the input data for the rest of 
the system. After the data has been read, the Data Parser 
parses the source data, matching it to the user source 
description. The Data Parser also performs hardware­
dependent data conversions. The Transformer then applies 
the user-specified transformations to the source data and 
produces the target data. The Resrap module does a 
"reverse" parse of the target data, formatting it according 
to the target descri~tion, and then sends the target data to 
the Writer for target hardware-dependent conversions and 
final output. 

3. DDPG Compiler and Data Parser 

As mentioned above, the DDPG language is a high level 
language used to describe the format and structure of the 
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source and target data bases. The user-supplied DDPG 
description contains separate sections for the source and 
target data. Each section is further subdivided into an 
environment section, a cluster definition section, a data 
filtering section, a table definition section, and a data 
section. The env ironment section spec i fies such information 
as the application machine and character code set. The data 
filtering section allows the user to specify certain condi­
tions under which data should not be translatedo This is 
described further in the discussion below on the DUMP and 
DISCARD commands. The table definition section contains the 
descriptions of user supplied tables. Since these tables 
can also be used by the TPL, their description will be given 
in the section on TPL operators. The cluster section and 
the data section contain the complete logical description of 
the user data. 

An item is the elementary data unit. A group is a 
named ordered collection of items and/or other groups. The 
named set of multi-level hierarchical structures formed by 
nesting and concatenating groups and i terns is a record type. 
A record is a collection of data conforming to a record 
type. The complete DDPG data section consists of multiple 
record types. The records described in the data section can 
occur in different run-time combin~tions, called clusters. 
The cluster section specifies the run-time conditions under 
which records oc~~r, as well as the number of times they 
occur. The ADAPT system processes clusters of records 
sequentially. 

Some of the major data attributes which can be 
described in the DDPG language are the following: 

- specification of a variety of data types (e.g. charac­
ter, integer, packed decimal) 0 

- fixed or variable length data fields, where the field 
length can be expressed as an arithmetic expression or 
can be determined by a character terminatoro 

- character justification, pads, null values, and string 
terminators which can be expressed globally in the 
record header or overridden at the item level. The 
record head'er can also contain blocking information and 
a record type indicatoro 

specification of self-defining data using the MATCH 
function. Match provides the user with the ability to 
"look ahead" at data, returning "true" if a pattern is 
matched, "false~ otherwise. 

Match takes the form 
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MATCH(offl,off2,pattern) 

where offl and off2 are the byte offsets relative to 
the current position of the Data Parser within the 
record, and pattern is a character string expression to 
be used as the pattern matching criteria. The charac­
ter string expressions used in patterns are equivalent 
to those used in the UNIX text editor. 

For example, the boolean expression 

MATCH (2,4," [ABC] [0-9] {2}") 

instructs the Data Parser to look ahead to byte Posi­
tion 2 through 4 relative to the current position in 
the record. If the characters in those bytes consist 
of an A or B or C followed by any two numeric digits, 
then the match is true; otherwise it is false. 

- optional data (at the GROUP or ITEM level) specified 
with a conditional expression via the EXISTS clause. 
For example, 

GROUP gname EXISTS (boolean expression) 

means that the.group identified by gname exists in the 
data stream if the boolean expression evaluates to 
true 0 

- mutually-exclusive descriptions of the same data using 
the VIEW construct. Views can be used at the group or 
item level, and they can be nested. 

e .. g .. 
GROUP gname 

VIEW vnamel (a == "YES" ) 
[ 

other DDPG constructs 
] 
VIEW vname2 (a == "NO" ) 
[ 

other DDPG constructs 
] 
VIEW vname3 (a == "MAYBE" ) 
[ 

other DDPG constructs 
] 

; 

In this example, for any instance of the gname group, 
one and only one of the three views apply depending on 
whether item a (previously parsed) is "YES", "NO", or 
"MAYBE" .. The" other" DDPG constructs associated wi th 
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the view describe the data for that particular instance 
of gname. If no views apply, a run-time error results8 

- mutually-exclusive descriptions of data using the SET­
ELEMENT construct. 

e.g. 
SET listing until ( match( 0, 3, "EOF") 

ELEMENT name ( match( 0, 2, "NAil) ) 

; 

[ 
other DDPG constructs 

] 
ELEMENT address ( match( 0, 2v "AD") ) 
[ 

other DDPG constructs 
] 
ELEMENT phone num ( match( 0, 2, "PN") ) 
[ -

other DDPG constructs 

Syntactically, this is similar to views within repeat­
ing groups. Semantically, however, elements in a set 
have a closer relationship to each other than views; 
elements are later referenced in the TPL independent of 
the order they were parsed, whereas views must be 
referenced via subscripting. The set will be parsed 
until its match expression ("EOFtI) is true. Elements 
name, address and phone num apply when their respective 
match expressions are true. 

- specification of repeating items or 
OCCURS clause. This specification 
variable. 

groups via the 
can be fixed or 

- specification of characters which must be stripped from 
the middle of data fields, via composite itemsa For 
example, an ADAPT application requires that a number of 
physical lines, each of length 80 characters, be 
treated as a single logical line. But the blank char­
acters at the beginning of each physical line must be 
omitted. The DDPG specification for this application 
is 

composite item logi line until ( ! (match(0,1," ") ) 
physi line ~har (80) just right p~d II "; 

end log i _1 ine-; 

The Parser parses 80 character 
the left-most blanks, until 

fields, stripping off 
it encounters a line 



starting with a non-blank character. The concatenation 
of the physical lines is treated as a single logical 
line .. 

record filtering criteria expressed via the DUMP and 
DISCARD commandse 

DUMP rname to fname (boolean expression) 

The boolean expression is evaluated at data parse time. 
If true, the associated record or cluster is dumped to 
the named file, an associated logging message is writ­
ten out, and processing continues with the parsing of 
the next record or clustero DISCARD performs a similar 
function as DUMP except, in this case, the record or 
cluster is thrown away rather than dumped to a file. 
Thus, DUMP can be used to control the order in which 
records get translated (since the files built via the 
DUMP commands could be translated at a later point in 
~ime) without separately pre-processing the source data 
and applying pre-determined translation selection cri­
teria" 

data validation. criteria via the FORMAT clause. 

iname CHAR(arithmetic expression) FORMAT (pattern) 

Here, as a record is being parsed, a character string 
item whose length is given via an arithmetic expres­
sion, is validated according to the user-supplied pat­
terne If the validation test fails, the user can 
filter the record or cluster to appropriate files. 

- special constant data generation for the target data 
through use of the ATTACHL, ATTACHR, and VA'LUE clauses. 
The ATTACHL and ATTACHR clauses can be used to attach 
special user-supplied field identifiers to the left or 
right of the actual target field value. The VALUE 
clause can be used to specify a fixed value to be 
assigned to a target field. . 

The Data Parser and Resrap modules can perform more 
extensive validation than the FORMAT clause allows by means 
of the elegant table handler provided by ADAPT (see' next 
section) " 
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4. TPL Compiler and Transformer 

The Transformation programming Language (TPL) is a high 
level language used to perform the actual translation of 
data from the source data base to the target data base. The 
TPL compiler generates the Transformer module based on the 
DDPG descriptions and the user-specified TPL transforma­
tions. 

The user's TPL code is divided into several translation 
blocks. Each block consists of a set of many-to-one 
transformations. That is, each block contains all of the 
transformations involving one and only one target record 
type regardless of how many source record types map into it. 
Thus, the user has the ability to combine fields from dif­
ferent record types to produce fields in the target record 
type. 

e.g. TRANSLATE RECOBDS a,b,c TO d; 

• 

tpl code 

• 

END_BLOCK; 

would take source records a, b, and c and produce target 
record d. If the target record is only produced under cer­
tain conditions, the translation block header would have the 
following form: 

TRANSLATE RECORDS a,b,c TO d WHEN (boolean condition); 

The operators currently supported by the TPL compiler 
incl ude assig nment, sel ection, concatenation I. extraction, 
control flow, explicit type conversion, table handling, user 
specified termination, looping mechanisms, and user supplied 
functions. These operators interact among themselves and 
with the usual .Boolean and ari thmetic operators to form the 
expressions referred to below. A brief description of each 
operator follows. 

- ASSIGN. The assignment operator correlates the 
transformed data with the appropriate target field(s). 

ASSIGN TO field name (expression); 

ASSIGN is designed to 
other operators, in 

work 
that 

in conj unction 
these operators 

with the 
form TPL 
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expressions which are evaluated at run time and 
assigned to the target field(s). 

- SELECT. The selection operators retrieve source data 
entities~ that is, they retrieve either source items or 
groups of itemso There are three variations of the 
SELECT operator: 

a. retrieval of subtrees from the source data struc­
tures. 

SELECT subtree 

b~ retrieval of subtrees satisfying certain condi­
tions using the WHERE clause. 

SELECT subtree WHERE (boolean expression) 

c. retrieval of entire data entities without nesting 
other operators, i.e. retrieval where no further 
transformations are to be performed other than 
ASSIGN .. 

SELECT AS IS field name 

This is a more efficient form of 

ASSIGN TO field name2 (SE,LECT field_namel) 

CONCATo The concatenation operator is used to concaten­
ate any number of data fields, constan,t values, or 
other expressions. 

CONCAT (expl, exp2, ••• , expn) 

EXTRACT. The field extraction operator is used to match 
a pattern in a character data field. 

EXTRACT FROM (exp) pattern 

The class of patterns which can be extracted is 
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equivalent to that of the UNIX text editor~ For exam­
ple, 

EXTRACT FROM (field_a) "[A-Z]{2}[0-9]*" 

returns the string in field a which has two upper case 
alphabetic characters followed by any number of 'numeric 
characters. 

The fixed field extraction operator SPLIT is used 
to extract that portion of a data field lying between 
specified byte offsets. 

SPLIT (offsetl, offset2, exp) 

- IF-ELSE. The control flow operator allows blocks of TPL 
statements to be executed dependent upon the evaluation 
of a boolean expression. 

IF (boolean expression) tpl statement list; 

ELSE tpl statement list; (optional) 

- Explicit Type Conversion. These operators allow the 
user to specifically convert data from one type to a 
second type. 

type (expression) 

For instance, if line num were defined as a character 
field, then 

converts line num to its integer representation. 

- Table Handler. In the table definition section of the 
DDPG, the user specifies the structure of a table, sort 
keys, and the file containing the table data in the 
following manner: 
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TABLE t {KEY type fieldl; ••• ;type field n;} 
FILE file_name; 

where "type" is the data type such as "character". 

ADAPT reads the table into the system and generates a 
function to access it. The user references the table 
by indicating the field whose value is to be returned, 
qualified by values of the key fields. 

t.return field SUCH THAT (boolean condition on key 
fields of table t) 

For instance, if the user had 
taining a table "listings" 
"address", and "phone" sorted 
be defined by 

a file "directory" con­
with field names "name", 

by "name", then it would 

TABLE listings (KEY char(16) name; 
char(40) address; 
char(7) phone; 

} FILE directory; 

An expression such as 

listingsophone SUCH THAT (name == 'kaplan') 

retrieves the phone number of someone named 'kaplan'. 
This facility can be used to return data values, or it 
can be used by the Data Parser and Resrap modules to 
perform data validation. 

- User Specified Termination. This will cause an immedi­
ate return from the Transformer, presumably when some 
error condition has been discovered. 

IF (error condition) ABORT; 

- Run-time Variables. Special run-time variables can be 
assigned values in the TPL code. These improve effi­
ciency since repetitive calculations need only be per­
formed once, then assigned to the variables. In addi­
tion, run-time variables can be assigned from the 
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·command" line which starts execution of the ADAPT sys­
tem. These variables can participate in all arithmetic 
and boolean expressions. Execution of entire blocks of 
code may depend on their values. This gives the user 
greater flexibility in running ADAPT from a uniform set 
of descriptions and transformations without rewriting 
and recompiling ADAPT code. 

- Looping Mechanisms. The TPL allows two kinds of "for" 
loops. The first kind uses explicit user indices, as 
in 

FOR (i = 0; 
{ 

i < LIM; 

loop body 
} 

i++) 

Here, the variable 1 1S initialized to 0 and incre­
mented by I (i++) after each execution of the body of 
the loop until it is no longer less than LIM. The user 
must explicitly subscript field names in this scheme. 
The second kind of II for" loop uses impl ic it ind ices, as 
in 

FOR each g name 
{ 

loop body 
} 

Here, gname was subject to an occurs clause in the DDPG 
description. For each occurrence of gname, the loop 
body is executed; the appropriate indices are supplied 
automatically to all field names in the loop body which 
are in the scope of the gname structure. 

- User Functions. The user may supply a set of special­
ized routines which perform operations particular to 
the given application but not supported by ADAPT. They 
are called from the TPL code by the CALL operator. 

CALL function_name(expl,exp2, ••• ,expn) 

The source code of the function can be written in any 
language supported by the translation machine. It is 
compiled on the translation machine, then linked with 
the other modules of the ADAPT system. 



-64-

5.. Clustering 

As mentioned above, ADAPT processes clusters of records 
sequentially. Applications frequently require that more 
than one source record be utilized to produce target 
records, and that several target records be produced from a 
single set of source records. The specification of source 
records appearing in a cluster and the target records output 
in a cluster is given in the cluster section of the source 
and target data descriptions. 

Records can be described as conditionally existing and 
occurring a multiple number of times per cluster using the 
same EXISTS and OCCURS constructs described in the data sec­
tion of the DDPG. EXISTS and OCCURS expressions in the 
source cluster may depend on the values of fields in records 
which were already parsed, or they may depend solely on 
their existence in the data stream. The existence of 
records in the data stream is determined by examining the 
record type indicator as specified in the record header. 
For instance, records named "BEE" may have an indicator "B" 
in its third character positiono When ,a record is read, the 
reader checks if it is a "BEE" record, and if so, calls the 
correct parse routineo 

The target cluster is constructed by the Transformer 
module. Conditional translation blocks control the creation 
of target records. The target cluster section is then used 
to validate the integrity of the records produced by the 
Transformer. 

Records in a cluster bear an implicit relationship to 
other records in the same cluster, but for purposes of the 
data translation process, they are considered unrelated to 
,records in other clusters. Assignment of run-time vari­
ables, however, allows information to be "remembered" 
between clusters. When translating between arbitrary source 
and target data bases, the record structures must be 
"linearized" into the cluster format befor,e entering the 
ADAPT system. 

Records in a cluster can be in different physical files 
as specified in the DDPGdescription. ADAPT accesses the 
correct fil,e when reading (writing) records of particular 
types. The only restriction is that all records of a par­
ticulai type must be in the same physical file, and they 
must appear in the order in which they are to be read. The 
"logical" record stream input to (output from) the ADAPT 
system is thus identical to the sorted physical record 
stream input from (output to) the files. 
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6. Applications of ADAPT 

Data base translation is a relatively infrequent opera­
tion, and hence, data base translators are usually only 
thought of in terms of performing this one-time translation. 
However, they could have much wider use in applications 
involving transformations of data streams. ADAPT, in par­
ticular, can be used as a dynamic translation module in a 
larger software system. Two such applications will be dis­
cussed in this section. 

Data conversion takes a long period of time even when 
an efficient data translation program is used. The 
translated data must be examined and tested against live 
data before the original source system is replaced. During 
this time, the source data base cannot always be frozen 
since it must be constantly updated to reflect the real­
world situation. If source data which was already converted 
is updated, the corresponding target data must also be 
updated. For any significant volume of update activity, 
manually updating both data bases is difficult and subject 
to error. 

The ADAPT system can be utilized to overcome many of 
these transition problems. ADAPT accepts the update request 
to one data base and outputs two update requests: one for 
each data base. The input data to the ADAPT system consists 
of the update command to the first data base. ADAPT. outputs 
a cluster consisting of two target records. The first tar­
get record is identical to ADAPT's input record and is 
passed directly to the update facility of the first data 
base. The second target record is the semantic equivalent 
of the input (update) record, but is reformatted to conform 
to the syntax and semantics of the update facility of the 
second data base. Note that even though the input and out­
put records are really command lines, ADAPT treats them as 
streams of data. 

Since ADAPT can convert data from one machine format to 
another, this scheme can also be used when converting across 
machine boundaries. An application requiring conversion of 
directory assistance products uses ADAPT in this fashion. 
Communication between the machines is provided by an 
independent computer network facility called BANCS [26], 
which handles all of the physical machine interfaces, and 
has its own independent queuing facility. 

For example, suppose the user made the following 
request to the data base: 

SET PHONE NUMBER EQUAL TO '4769' IN DIRECTORY 
STICH THAT NAME IS 'KAPLAN' 
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Two configurations exist depending on which machine the 
ADAPT program resides. If it resides on the same machine 
where the user request is made, then ADAPT accepts this 
request as an input record. It outputs the exact record to 
the first data base, whose update facility accepts this 
stream of data as a command, and performs the appropriate 
operation on the data base. ADAPT's second output record 
may have the following form: 

UPDATE PHONE NUMBER '4769' (DIRECTORY.NAME = 'KAPLAN') 

This record is sent to the BANCS communication facility 
which transmits the record to the second data base. The 
update facility of the second data base then treats this 
data stream as a command and performs the appropriate opera­
tion on the data base. 

Alternatively, if ADAPT does not reside on the machine 
where the user request originates, then that request is 
immediately transmitted via BANCS to the second machine and 
input to ADAPT. ADAPT produces the two target records in 
the manner described above but sends the original request 
back to the first machine via BANCS. 

The extension of this idea to distributed data bases is 
straightforward. The data in a distributed data base exists 
at all nodes of thEf-het'work, but a user at any node of the 
distributed data base has no knowledge of the underlying 
structure of the data base. For security reasons, the data 
base administrator may not want particular users to access 
certain fields of data so these data fields are invisible to 
them. Using ADAPT, the data base administrator has an effi­
cient, easy way to accomplish these aims. 

The data base administrator writes an ADAPT program for 
each set of users, specifically geared to the users' appli­
cation requirements. The source description for the ADAPT 
program accepts all allowable user queries to the distri­
buted data base. Based on the type of user command, the 
associated data values supplied by the user, and the known 
location of data types in the distributed data base network, 
the ADAPT program outputs a cluster of records which are 
really commands to be sent to different nodes of the data 
base network. User requests which differ with regard to 
command type-or associated data values are automatically 
routed by ADAPT to the proper nodes of the network. When 
the nodes return the data to the user node, another ADAPT 
program accepts all of these records as an input cl~ster. 
From these records, a single output record is built and 
returned to the user. 

Since ADAPT can convert data across machine boundaries, 
the distributed data base can exist on different machines, 
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providing a true computer-data base network. As opposed to 
"standard" distributed data base systems, individual data 
bases at different nodes of the network can be of different 
types. Synchronization of data transfer is handled by an 
inter-machine communication facility such as BANeS, men­
tioned above. The user interfaces with the distributed data 
base through individualized ADAPT systems. This has the 
added security advantage that the user is totally unaware of 
other data in the data base. 

An example of the use of ADAPT in a distributed data 
base environment is depicted in Figure 2. 

NODE 2 

USER 
REQUEST 

RESPONSE' 
TO USER 

NODE 3 

USE OF ADAPT IN DISTRIBUTED DATA BASES 
FIGURE 2 

Suppose a user enters a request at node 1 of a computer net­
work. The request is sent to the ADAPT 1 module which for­
mulates the request as (possibly different) queries to nodes 
2 and 3 of the netwo rk 0 The two quer ies represe'nt two 
record types of an ADAPT target cluster. The ADAPT 1 module 
directs the queries to the correct "channels" of the commun­
ications link, from where they are sent to the appropriate 
nodes. When the responses from nodes 2 and 3 are received 
at node 1, they are treated as records in the input cluster 
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to the ADAPT 2 module. The output from the ADAPT 2 module 
is the response to the original user query. 

7. Conclusions 

The need for an efficient high-level language approach 
to data conversion has been proven historically by the large 
and expensive conversion effort experienced by almost every 
data processing application. The ADAPT system provides a 
generalized, efficient approach towards meeting the needs of 
many of these applications. The functional capabilities pro­
vided by the ADAPT system are those that appear to be most 
often required by applications. These facilities have been 
tuned over a period of time and now operate in a manner that 
provides a system throughput rate which is well within the 
operational requirements of most applications. 

ADAPT's first major application was to translate a data 
base comprising a set of directory assistance products. The 
source data base resided on an IBM 370/168, and the target 
data base was to reside on a PDP 11/70. The source records 
had an average size of 340 bytes and the target records had 
an average size of 165 bytes. For this application, ADAPT 
was able to achieve a throughput rate of 30 records per 
second running o,n a PDP 11/70, and a throughput rate of 75 
records per second running on an IBM 370/168. 

The ADAPT system can also be used in a computer network 
environment where a data translation step is required for 
inter-node communication. For instance, concurrent copies 
of source and target data bases can be synchronized during 
the conversion process, using ADAPT. On a larger scale, 
ADAPT can be linked with an inter-machine communication 
facility to support many of the concepts of distributed data 
base systems. 
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Simulation models for four concurrency control algo-

rithms were used to study the effects on a distributed data-

base. In a distributed database, the data and transactions 

are distributed over several computer sites connected 

through some.~ype of network. Some transactions access data 

at only one site, while others access data at several of the 

computer sites. 

The concurrency control algorithms simulated can be 

divided into two general classes: primary site control and 

decentralized control. In the primary site control models, 

all of the locking takes place at one of the nodes desig-

nated the primary site. Note that even "local transactions" 

(transactions that just access data at their originating 

sites) must send lock requests to the primary site. 

In the decentralized control models, the locking of the 

data items takes place at the site where the data being 

accessed is stored. In these models, then, local transac-
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tions need not send any messages over the computer network. 

1. INTRODUCTION 

Recently, considerable attention has been devoted to 

the development and use of distributed databases. A distri­

buted database is a database which is stored at multiple 

computer sites connected by some type of computer network. 

In this environment, a transaction originates at one of the 

computer sites and potentially accesses data at other sites 

as well as at the originating site. 

One of the primary advant8ges of a distributed database 

over a nentralized database is that increased parallelism is 

possible because multiple sites can be simultaneously pro­

cessing transactions. However, the distributed ooncurrency 

control meohanism may have to expand additional overhead to 

guarantee database consistency [ESWA76, GRAY76] during this 

simultaneous processing. This additional overhead is due to 

the costs required to set looks at remote sites and/or the 

costs which may be required to resolve deadlock between 

transactions at different sites. 

Several solutions to the ooncurrency control problems 

for distributed databases have been proposed ([BERN77], 

[ROSE77], [GRAY78], [MENA78], [STON78] and [THOM78]). 

Often, one performance goal of suoh proposals is to minimize 

the number of concurrenoy oontrol messages which have to be 
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sent across a computer network. In [BERN77J, it is shown 

that if the transactions are known in advance, different 

types of concurrency control can be used for different types 

of transactions and thereby reduoe even further the overhead 

network traffic. 

Unfortunately, the count of overhead mess-age traffic 

does not, by itself, determine the effects of the con­

currency control on the overall performance of a distributed 

database system. Other factors such as the processing load 

at each site ,_ the overall network load and the types and 

sizes of the transactions must also be considered. 

Thus, simulation models were developed to more ade­

quately invesigate the performance trade offs between 

increased parallelism and increased overheads of a distri­

buted database. These models simulated four concurrency 

control algorithms and were used 

locking granularity ([GRAY75J, 

to study the effects of 

[RIES77J, [RIES79J), the 

effects of the proportion of transactions requiring non-

local or remote resources, and the effeots of different net­

work throughputs and bandwidths on the uverall performance 

of a distributed management system. 

In the next seotion, the basic model of a distributed 

database that was simulated is described. In section 3, the 

four different concurrency control algorithms are disoussed. 

In section 4, the simulation results for each of the four 

algor i thms are reported. In the final section, the major 
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conclusions are reiterated. 

2. The Simulation Model 

The model of a distributed database system that was 

simulated closely follows the basic model being implemented 

in distributed INGRES [STON77]. In the simulation model, 

the database was assumed to be distributed among a number of 

different computer sites or nodes connected by some type of 

network. 

Transactions were submitted to the database management 

system at each site. Some of the transactions, called 

'local' transactions, only accessed data at the site where 

they originated. Other transactions, called 'non-local' 

transactions, required seme database access at other than 

the originating sites. 

Such a non-local transaction was realized by a 'MASTER' 

transaction at the originating site and 'SLAVE' transactions 

at the other sites where processing was required. The MAS­

TER transaction initiated all of its SLAVES and waited for 

those slaves to oomp1ete. In the simulation, transactions 

were cycled around a closed loop model (shown in Figure 1) 

for each node or site in the distributed database. Each of 

these site models was very similar te the simulation models 

in [RIES77], [RIES79]. At each site, the transactions ini­

tially arrived one simulation time unit apart and went 
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through the following steps: 1) left the pending queue, 2) 

1/0 processing, 3) CPU processing, 4) data transmission, 5) 

local processing completion, and 6) distributed processing 

synchronization. 

detail below. 

Each of these steps is described in more 

1) When a transaction left the pending queue it was placed 

on the 1/0 queue. If the transaction was a MASTER, it 

sent SLAVE create messages to the appropriate nodes. 

2) The 1/0 server was multiplexed among the transactions 

on the 1/0 queue. When a transaction had received its 

share of 1/0 resources, it was placed on the CPU queue. 

3) The CPU server was multiplexed among the transactions 

in the CPU queue. When a transaction had received its 

share of CPU resources, its ne'xt action depended on 

whether or not the transaction was local. 

4) Local transactions were considered complete at this 

point and were recycled to the p~nding queue. Non­

local transactions (both SLAVES and MASTERS) were 

placed on the data transmission queues. If any data 

was to be transmitted to another node, a data transmis­

sion message was sent. 

5) When the data transmission message had been delivered 

(or if no data was to be transmitted), the non-local 
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transaction proceeded to the Network done queue. At 

this time, SLAVE transactions sent a SLAVE complete 

message back to the MASTER transaction. 

6) Depending on the concurrency control strategy, a SLAVE 

ei ther wai ted on the Network done queue or was simply 

released. The release of a slave is discussed in more 

detail in section 3. The MASTER transaction waited on 

the Network done queue until it had received "slave 

complete" messages from all its slaves. At that point, 

the transaction was recycled back to the pending queue. 

Several simplifying assumptions should be noted about 

the model. First, all of the SLAVEs were identical to the 

originating MASTER in terms of the proportion of database 

accessed and whether or not data needed to be transferred. 

In distributed database applications, the actual charac­

teristics of the SLAVEs could be quite different from the 

MASTER and from each other. Second, the only synchroniza­

tion between the SLAVEs and their MASTER transaction 

occurred at the beginning and end of the transaction. Some 

applications would require additional synchronizations on 

the data being transmitted [WONG77, EPST78J. 

Also note that a transaction is on each of the I/O, CPU 

and data transmission queues once in the indicated serial 

order. The total processing required is the same as if the 

transaction cyclically accessed the I/O, CPU and data 
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transmission queues. To send a message, a transaotor would 

plaoe the message on the message- out queue together with a 

message destination and length. Messages were taken from 

the message-out queue and given to the Network Manager as 

shown in Figure 2. When a message had reoeived the needed 

amount of network servioe, it was plaoed on the destination 

message-in queue. 

Both a speed and a bandwidth are assooiated with the 

Network Manager. The network speed was represented by the 

minimum time a message of any type spent in the network 

where time was measured in the time units of the simulation. 

The bandwidth was represented by the maximum number of mes­

sages whioh oould be servioed in one of those time units. 

The flow of a message in the Network Manager oan be 

desoribed as follows: 

1) When a message entered the network manager, the time 

remaining for that message was initialized to the mes­

sage length in the time units of the simulation. The 

message length oan vary depending ,on whether or not 

data is being sent but is at least equal to the minimum 

length mentioned above. 

2) If MESSBDWH was the bandwidth of the Network Manager, 

the times remaining of the first MESSBDWH messages in 

the Network queue were reduced by one time unit. 
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3) If the time remaining for any message was zero, it was 

delivered to the message-in queue ef the destination 

node. 

In several of the concurrency control schemes, a si te 

was allowed to send messages to itself. In these cases, the 

network manager was bypassed and the message went directly 

from the message-out queue to the message-in queue. 

3. Concurrency Control Algorithms 

Feur concurrency control algorithms were simulated. 

All of the algorithms required that transactiens 'lock' the 

parts of the database they acoess and obey a 'two- phased' 

locking protoool [ESWA76]. A 'lock' on a oertain portien or 

granule of the database was granted to one transaotion and 

prevented any other transactions from aooessing that portion 

of the database until the given transactien released the 

look. Note that in the simu1 at ion mod e1 s, eaoh lock was 

assumed to be exclusive in that it oou1d only be held by one 

transaotion at a time. Thus, in the simulation mede1s, no 

distinotion was made between read and write aooess to the 

database. 

the 'two-phased' protocol required that a transaotion 

first aoquired all of the needed looks (oal1ed a 'growing' 

phase) before releasing any locks (during a 'shrinking' 

phase) . This protocol, together with the requirement that 



-85-

all accessed parts of the database be locked, insured that 

the effect of the transactions would be equivalent to the 

effects of running the transactions one at a time in some 

serial disorders. This 'serializability' [ESWA76J of the 

transaotions insures a certain level of database consistency 

[GRAY76J. 

The four concurrency conrol algorithms simulated can be 

divided into two general classes: primary site concurrency 

control ([ALSB76 J , [M~NA78 J) and decentralized oontrol 

([ELLI77J, [GRAY78J, [ROSE77J, [STON77]). In two primary 

site models, one site was chosen to manage the locking for 

the entire database. In both of these models, when any 

transaction (local or MASTER) left the pending queue (see 

Figure 1), a global lock request was sent to the 'primary' 

site. The transaction then waited until it reoeived an 'all 

locks granted' message and proceeded to the I/O, CPU, and 

data transmission queues. Also at this point, a MASTER 

translation, which was smart enough to request locks for all 

its slaves, sent the 'SLAVE create' messages to the 

appropriate nodes. 

Thus, when a 'SLAVE oreate' message was received at a 

site, the SLAVE transaction went directly to the I/O queue. 

When the SLAVE transaction was through with the I/O, CPU and 

data transmission queues, it sent an 'all done' message back 

to the MASTER transaction and did not wai t on the Network 

Done Queue. When a local transaction completed, it sent a 
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'release locks' message to the PRIMARY site. When a MASTER 

had completed, however, it had to wait for all of the SLAVES 

to complete before sending the 'release .locks' message to 

the primary site. 

The two primary site models differed by the activities 

at the primary site. In the primary site one model (denoted 

PS1), a fixed ordering was placed on all of the sites and 

locks, for a transaction was acquired one site at a time in 

that order. In other words, a transaction would be granted 

locks for the first site, then the second site, etc. If the 

required locks for a given site were already held by a 

second transaction, the first transaction would wait for the 

second transaction to complete and re-request the locks for 

the given site. When the locks for all of the sites had 

been acquired, the primary site sent a 'locks granted' mes­

sage back to the requesting transaction. Note that the 

fixed ordering of sites is used to prevent deadlock. Also 

note that for 'local' transactions locks were only requested 

at one site. 

The primary site two model (PS2) differs from the PS1 

model in only one respect. In the PS2 model, if the locks 

needed by a given trans~ction for a given site were already 

held, all of the locks a lower numbered sites (in the fixed 

ordering) that were granted to the given transaction were 

released. When the locks in contention were eventually 

released, the acquisition of the given transaction locks for 
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all of these nodes had to be re-requested. Note that in the 

PS2 model, no transactions oould hold looks for one node 

while waiting for other looks for another node. Also note 

that the PS2 model would favor th0se transactions whioh 

required looks at a fewer number of nodes. Thus the differ­

enoe in the two primary site models is essentially one of 

transaction scheduling. 

The other two concurrency control algorithms simulated 

were decentralized in that a ooncurrency control mechanism 

at each site managed the looks for the portion of the data­

base at that site. In those models, a MASTER transaotion 

sent the look requirements for the SLAVE along. with the 

'SLAVE oreate' messages. A transaotion requested its looks 

for a site when it left the pending queue (see Figure 1). 

I f the lecks were granted, the transaction could prooeed. 

If the looks were denied, the requesting transaction waited 

for the blocking transaction to release its looks. Note 

that at a site, the looks for a transaotion were either all 

granted or all denied. 

When a local transaotion had oompleted, it would simply 

release its looks and be recyoled baok to the pending queue. 

A non-local transaotion, however, had to wait until its pro­

oessing had oompleted at all of the nodes. Thus, in the 

deoentralized conourrenoy oontrol models, the SLAVE transac­

tions had to wait on the Network done queue (again, see Fig­

ure 1) until they had reoeived a 'release locks' message 
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from their MASTER. At that point; the SLAVES OQuld release 

their looks. The MASTER transaotion waited for the 'all 

done' messages from eaoh of the SLAVES before it oould send 

those 'release looks' messages. 

Unfortunately, in the above deoentralized oonourrenoy 

oontrol models, dead look is possible. Two transaotions 

oould eaoh be waiting (direotly or indireotly) at different 

sites for the other to complete. The two oonourrenoy oon­

trol models simulated differed in the way they solved the 

deadlock problem. 

A wound-wait model (denoted WW), based on the algorithm 

presented in [ROSE77], prevented deadlock by using a unique 

timestamp for eaoh transaction to resolve oonfliots between 

distributed transaotions (note that SLAVES had the same 

timestamp as their MASTER). In the WW simulation implemen­

tation, the following aotions took plaoe if one distributed 

transaotion, say T1 was blooked by another distributed tran­

saotion, say T2: if T1 was older than T2, T2 was "wounded". 

When a transaction was wounded, the MASTER and all of the 

SLAVES were notified. If T1 is younger than T2, T1 simply 

waited for T2 to release its locks. 

When a wounded transaotion (a SLAVE or MASTER) was 

itself blooked by an older distributed transaotion, the 

wounded transaotion "killed" itself. The killing of a tran­

saotion involved the release of all looks by both SLAVES and 

MASTERS and the reincarnation of the MASTER transaction back 
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on the pending queue. 

The second decentralized control algorithm is based on 

the SNOOP [STON78 J or the global detector [GRAY78 J algo­

rithms. In the SNOOP simulation implementation, a conflict 

between distributed transaotions were reported to a "SNOOP" 

site which ohecked for deadlock. 

a transaction was "killed" and 

wound-wait model. 

4. Simulation Results 

If deadloCk was deteoted, 

reihcarnated as in the 

The simulation models were highly parameterized in 

order to provide insights into the effects of oonourrency 

control on the performance of a wide variety of distributed 

. databases. Simulation experiments were conducted varying 

the locking granularity, the number of nodes in the network, 

the number of SLAVES for each distributed transaction, and 

the number of distributed transactions. Different networks 

evirnonments were represented by varying the network speed, 

the network bandwidth, the messages hankdling overhead at 

the nodes and the percentage and rates for data transfer. 

The details of these experiments for all four concurrency 

control algorithms and two classes of transactions are 

presented in [RIES79J. 

In this paper, the discussion is limited to the parame­

ters of greatest signi ficance including the locking granu-
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larity, the percentage of distributed transactions, the net­

work bandwidth, the types (or classes) of transactions and 

the concurrency control algorithms. 

For all of the experiments reported, the other parame­

ters were set to simulate the following scenario. Ten tran­

sactions were active at each of the six nodes in the distri~ 

buted database. Each node contained 10,000 entities of the 

database where an entity can be thought of as the unit of 

data moved between the ·operating system and the database 

management system. It took a transaction 30 milliseconds on 

both the liD and CPU queues to process one entity and 3 mil­

liseconds of CPU time to set one lock. It took 15 mil­

liseconds of CPU time to check for a deadlock condition. 

The number of entities and locks required by a transaction 

depended on the transaction class and is discussed below. 

Each distributed transaction had 5 SLAVES and was thus 

active at all nodes in the network. Forty percent of these 

transactions transferred 25% of their entities across a 

megahertz data transfer network. To transfer a simple mes­

sage across the network took 90 milliseconds. 

Under the above scenario, the parameters shown in 'Table 

1 were v ar ied. Locking granular i ty, the LG RAN parameter, 

refers to the number of locks at each node. A value of 1 

would imply that there were 6 locks - one for 'each node in 

the database .. A value of 10,000, on the other hand, implies 

that each entity has its own lock and allows for the maximum 
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petential parallelism. 

The transaotion olass parameter, TCLASS, aotually 

represents a set of parameters governing the transaction 

sizes and look plaoement assumptions. With "Class 1" tran­

saotions, a hyperexponential distribution of the number of 

entities aooessed by the transaotions was used. Ninety per­

oent of the transactiens acoessed on the average 5 entities 

of the database while the other 10% aocessed on the average 

250 entities. With "Class 1" transactions, the locks were 

oonsidered te be well-plaoed, in that a tranasaction 

required the minimum number of looks that oould oover the 

enti ties aooessed by the transaotion. This olass of tran­

saotions implies that the transaction aooess paths are all 

sequential, most of the transactions are small, but a few 

are relatively large in terms of the proportion of the data­

base they aooess. 

With "Class 2" transaotions, all of the transaotions 

are aooessed, on the average, only 5 entities in the data­

base and a random plaoement of looks was·assumed. The Class 

2 transaotion environment implies that the data aooess pat­

terns are primarily random and that all of the transaotions 

are small. 

The PREDIST parameter oontrols how many transaotions 

were non-looal. A value of zero, for example" would imply 

that all of the transaotions were looal. A value of 100 

peroent implied that eaoh of the 10 transactions at eaoh 
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nOQe was a MASTER transaction and would spawn 5 SLAVE tran-

sactions at the other 5 nodes. 

The message bandwidth parameter, MESBDNT, represents the 

number of messages which can be simultaneously processed by 

the network manager. The four concurrency oontrol algo-

rithms have already been disoussed. 

The results of varying the locking granularity, the 

percentage of distributed transactions, and the message 

bandwidth for the four conourrency oontrol algor i thms and 

the two transaction classes is disoussed below. 

1.1. Locking Granularity 

Figure 3 shows the effects of varying the looking 

granularity on the "Useful I/O" utilization for eaoh of the 

four ooncurrenoy control algorithms when 10% of the transac-

tions were distributed and Class 1 transaotions were 

Parameter 

LGRAN 

TCLASS 

PREDIST 

MESBDWT 

CCALGORITH 

Table 1 

Desoription 

No. of locks at eaoh node 

Transaotion class 

Peroentage of the Transactions 
whioh are distributed 

Message Bandwidth 

Concurrenoy Control Algorithm 
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assumed. The "Useful 1/0" refers to the net utilization of 

the 1/0 resources for processing transactions. The c\.lrves 

for "Useful CPU" utilization were similar and not shown. 

For all four concurrency control algorithms, the maximum 

useful 1/0 occurred with 500 to 1000 granules. For the pri-

mary site 2 (PS2), the primary site (PS1), and the global 

deadlock detector (SNOOP) model s, the peak occurred at 500 

granules. For the wound-wait (WW) models, 1,000 granules 

were optimal. In either case, 99% of the maximum 1/0 utili-

zation was reached with 500 or 1000 granules. 
I 

Several observations about figure 3 should be noted. 

First, the primary site two model (PS2) aohieved 98% of the 

maximum 1/0 utilization with 100 granules and 90% of that 

maximum with as few as 50 granules. Eaoh of the other three 

models required at least 250 granules to reaoh 90% of its 

respective maximum. In the primary site 2 model, no tran-

sactions held locks at one node while waiting for locks at 

another node. In eaoh of the other models this condition 

was nat true. Also note that the differenoes in the perfor-

mances af the differenct canourrency control models was very 

small at the optimum granulaties. 

The computer utilization for each of the four oon-

currency oontrol algorithms for class 2 transactions are 

shown in Figure 4. Under the randomly placed, locks with 

only small transactions, the finest granularity, 10,000 

locks in this case, was optimal. With this optimal granu-
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larity, as with olass 1 transaotions, only slight differ-

enoes in oomputer utilizations were due to the oonourrenoy 

oontrol algorithms. 

However, the wound-wait and global deadlook deteotor 

algorithms did oonsistently produoe somewhat better results 

than the primary site algorithms over a wide variety of 

granularities. In faot, only with fewer than 50 looks at 

eaoh node, were the primary site models advantageous. 

No differenoe in oomputer titilization was observed 

between the two primary site models onoe the granularity 

beoame fine enough. This result was true for olass 2 tran-

saotions, sinoe the probability of suooess on a look request 

was extremel y high. Thus, very few of these transaotions 

waited for looks at one node, while holding looks at another 

node. 

Similarly, onoe the granularity was less ooarse (about 

50 granules), little differenoe in oomputer utilization is 

realized between the two deoentralized algorithms. This 

result was also realized beoause of the high probability of 

suooess on a look request. 

1.2. Peroentage of Distributed Transaotions 

Changes in the peroentage of distributed C~ass 1 tran­

saotions affeoted the optimum granulari tios and the ohoioe 

of a "best" algorithm. In general, finer granularity was 
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required to aohieve the best oomputer utilization and 

response times for the PS 1, WW and SNOOP model s. However, 

with the PS2 model 500 granules was always olose to optimal. 

Figure 5 shows the effeots on the useful 1/0 and the 

average response time of the peroent of distributed transao­

tions for eaoh of the four oonourrenoy oontrol algorithms. 

(For eaoh peroentage, and for eaoh algorithm, the best use­

ful 1/0 and average response time regardless of granularity 

was plotted.) 

The 'dish' shaped curves for 1/0 utilization were 

surprising. As the percentage of distributed transaotions 

was increased up to 50%, all four models showed deoreases in 

useful oomputer ut il i zat ion due to the add i tional overhead 

(mes sage handl ing and looking) required to run d istri buted 

transaotions. 

75%, the 

inoreased. 

However, as the peroentage inoreased beyond 

useful computer utilization signifioantly 

That increase was due to two faotors. First, the 

number of transaotions running at eaoh node was greatly 

increased. For example, when all of the transaotions were 

distributed, parts of transaotions were aotive at each node. 

Second, the average tran~action size at eaoh node was 

smaller as more and more transactions were distributed. 

The simulation parameters were modified to keep the 

number and sizes of active transaotions at eaoh node oon-

stant as the peroentage of distributed transactions 
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increased. Only when both parameters were held fixed did 

the 'dish' shaped curves disappear. When only one of the 

parameters were held constant, having all transactions dis­

tributed produced more useful 1/0 (and CPU) than when only 

50% of the transactions were distributed. 

The average response time curves also demonstrated dish 

shaped curves. In almost all cases, the second primary site 

model (PS2), produced the best average response time of the 

four mOdels. The holding of locks at one node while waiting 

for locks at another was quite detrimental to the throughput 

of the system and occurred with increasing frequency in the 

other three models as the percentage of distribut&d transac­

tions increased. 

With class 2 transactions, the finest granularity was 

optimal, regardless of the percentage of distributed tran­

sactions. Furthermore, the performance of the concurrency 

control algorithms also changed consistently as the percen­

tage of distributed transactions increased. 

Figure 6 (a) shows the 1/0 utilization for the four 

algorithms as that percentage increased. The utilization 

wi th the decentral i zed algor i thms was affected very 1 it tle 

by the increase in non-local transactions. Again, a slight 

increase in useful computer utilization was realized due to 

the increased distribution of transaction processing. 

In the primary site algorithms, on the other hand, the 

overall computer utilization decreased as the percentage of 
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non-local transactions increased. 

dramatio between 25 and 75 peroent. 

The deorease was most 

The same advantage for the deoentralized algorithms 

over the primary site algorithm appeared in the average 

response time, as shown in figure 6 (b) . For all four algo­

rithms the response times inorease as the peroentage of dis­

tributed transaotions inoreased. However, the inorease was 

muoh less for the deoentralized oonourrenoy oontrol algo­

rithms than for the primary site oonourrenoy control algo­

rithms. 

Two faotors oaused the dramatio differenoe between the 

primary site and deoentralized models for olass 2 transao­

tions: the transaotions were all small and the primary site 

oreated a bottleneck. 

The transaotions of olass 2 were all small and the 

results in Figure 6 were for the finest granularity. Under 

those oonditions, the probability of suooess on a look 

request was extremely high, whioh oonsiderably reduoed the 

advantage that the primary site 2 model exhibited for olass 

type transaotions. 

The seoond faotor whioh affeoted the performance of the 

conourrenoy oontrol algorithms was the bottleneok at the 

primary si te. Over 7,000 time units out of a possible 

20,000 were used for locking at the primary site when all of 

the transaotions were non-looal. Moreover, all transaotions 

required some database prooessing at that primary site and 
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were thus all delayed by the locking overhead. This 

bottleneck became increasingly worse as the percentage of 

distributed transactions increased. 

One solution to the bottleneck problem would be to 

offload the primary site concurrency control to a separate 

processor. The primary site 2 simulation was modified to 

test this strategy and in fact then produced 'results very 

similar to the decentralized models. 

1.3. Message Bandwidth 

The above observations changed when a lower network 

bandwidth was assumed. MESBDWT settings of 100, 50, 10, 6 

and 1 were tested for each of the four concurrency oontrol 

algorithms and each class of transactions. 

For Class 1 transactions, 10% of which were distri­

buted, MESBDWT settings of 100 and 50 produced useful com­

puter utilizations and average response time identioal to 

the infinite sett ing prev iously used. Sl ight drops in the 

useful 1/0 and CPU utilizations were realized with message 

bandwidths of 10 and 6. The drops with a message bandwidth 

of 10, however, were less than 1% and not oonsidered signi­

ficant. 

A message bandwidth of 6 did produoe more noticeable 

reductions in the useful 1/0 and CPU util izations. The 

drops in useful utilization were only about 2-3% with the 
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primary site and SNOOP models. The wound-wait model, on the 

other hand, realized a drop of almost 7%. Although the pri­

mary site models sent more lock messages, they were mainly 

sent one message at a time. A wound or kill, however, 

resul ted in 5 messages being sent, or broadcast over the 

network. These "bursts" of messages were effected more by 

the lower bandwidth than the grea ter number of ind i vidual 

messages in the primary site models. In the SNOOP model, on 

the other hand, a conflict only required 1 message. A kill 

still required 5 messages, but occurred very rarely. 

Figure 7 shows the effects of the PREDIST parameter on 

Class 1 transactions on a reduced bandwidth network. With 

fewer than 40% of the transactions being non-local, the glq­

bal deadlock detector algorithm produced more useful I/O 

utilization than" the other algorithms. When 45% or more of 

the transactions were distributed, the primary site 2 model 

again produced better results. In these cases, the extra 

two messages for locking were not that significant; a dis­

tributed transaction required at least 2 * 5(no. of SLAVES) 

messages anyway. 

Note also tha.t the 'dish' shape curves for Useful I/O 

have practically disappeared with a limited bandwidth net­

work. In these cases the extra network delay overhead 

caused by an increased PREDIST parameter more than offset 

the increases in transaction parallelism. 
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For Class 1 transactions, only the message bandwidth 

parameter significantly affected the performance of the 

database under the four concurrency control algorithms. For 

Class 2 transacticms, hewever, some of the other network 

parameters did effeot the ohoice of concurrency oontrol 

algerithms. The results are thus repeated for the message 

speed or time to send a simple message, MESRATE j the CPU 

time to prooess (send or receive) a message a site, 

MESCPURATEj as well as the network bandwidth, MESBDWT. 

The IIO utilization and the average respense time (in 

parenthesis) is given in Table 2 for each of the four con-

currency control algorithms. In the first set, the MESRATE 

parameter was varied while the MESCPURATE and MESBDWT were 

fixed at .01 and 1000 respectively. As the message rate 

increases, the gap between the primary si te and decentral-

Table 2: Effects of Network Parameters 

PS1 PS2 WW SNOOP 
MESRATE 
1 94994(63) 94720(63) 96839(61.) 97037(62) 
3 93996(64) 93319(64) 97134(61 ) 96204(62) 
10 87998(67) 88078(67) 96037(63) 96875(62) 

MESCPURATE 
.0.1 93996(64) 93319(64) 97145(65) 96204(62) 
.05 88953(67) 88767(68) 95048(63) 94710(64) 
. 1 83273(72) 83086(73) 92394(65) 91860(65) 
.3 58676(102) 58372(102) 83313(72) 82690(73) 

MESBDWT 
1000-50 93996(64) 93319(64) 97145(61) 90204(62) 
10 82804(72) 83234(72) 96827(62) 96979(62) 
6 55200(108) 55692(108) 95948(63) 96242(62) 
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ized oontrol models widened. A MESRATE of 1 oan be inter­

preted as requiring 30 milliseoonds to send a message. 

A more dramatio change occurred when the message CPU 

rate was varied. During these experiments, the MESRATE and 

MESBDWT were fixed at 3 and 1000 respecti vel y. With a 3 

mill isecond cost (MESCPU RATE = .1) for sending a message, 

the primary site models produced only 89% of the useful com­

puter utili zat ion that was real i zed with the decentral i zed 

oonourrency oontrol algbrithms. With a 9 msec message rate 

(MESCPURATE = .3) this percentage drops to 72%. 

A dramatic change in oomputer utilization and response 

time for the primary site models and Class 2 transactions 

was realized as the message bandwidth was restrioted. While 

the performance of the primary site models was heavily 

affected by the restricted bandwidth, the decentralized 

models were hardly affeoted at all. This result is due to 

the fact that with the primary site models, almost 40,000 

more messages were sent than with the decentralized algo­

rithms. 

The PREDIST simulation experiments for class 2 transac­

ti9ns were repeated wi th a limited bandwidth network. In 

these experiments, the primary site models were best if more 

than 50% of the transactions were distributed. In those 

cases, the primary site models actually sent fewer locking 

messages than the decentralized algorithms. However, if 

fewer slaves were used, the decentralized algorithms would 
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send fewer messages even in 100% of the transactions were 

distributed. 

5. Summary 

Four oonourrenoy oontrol algorithms thus were simulated 

in order to study their effeots on the performanoe of a dis­

tributed database management system under a variety of'data­

base and network oonditions. Whioh model was best in terms 

of the overall database system performanoe is applioation 

dependent as shown, in Table 3. Class 1 transaotions refer 

to a workload environment where the looks are assumed to be 

..Jell-plaoed with respeot to the aooessing transaotions and 

that those transaotions are of mixed sizes . Class 2 tran-

saotions refer to workloads where all of the transaotions 

are small and random placement of looks is assumed. 

In some oases, it appears that the conourrenoy oontrol 

meohanism is not a signifioant faotor in the database system 

performanoe. For olass 2 transactions" additional simula­

tion runs showed that the preference for deoentralized oon-. (-'/ 

ourrenoy oontrol oould be offset by reduoing the database 

load at the primary site. Thus in these oases, the ohoioe 

of oonourrenoy oontrol algorithm may again not be signifi-

oant. 

For olass 1 transaotions, when most of the transaotions 

only required looal prooessing and a slower, lower bandwidth 
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Table 3: Concurrency Control Models 

Fast Net. 
M0st trans. 
local 

Slow Net. 
Most trans. 
local 

Fast Net. 
Most trans. 
non-local 

Slow Net. 
Most trans. 
non-local 

Class1 
Transactions 

Primary Site or 
Decentralized 

SNOOP 

Primary Site 2 

Primary Site 2 

Class2 
Transactions 

Primary Site or 
Decentralized 

Decentralized 

Deoentralized 

Primary Site 

network is assumed, the SNOOP algorithm is preferred. In 

this case, the SNOOP model was favored because of the lower 

number of messages required. 
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Abstract 

In this paper we present a new efficient concurrency control 
mechanism for distributed databases. This general concurrency control 
mechanism is based on the idea of having a centralized locking controller 
for each replicated fragment of data. The independent centralized 
controllers operate without explicit backup controllers. A simplified 
two phase commit protocol is used to perform updates. In this protocol, 
only a majority of acknowledgments from the copies of a fragment for the 
"prepare" (first phase) messages is required before committing new data. 
The major protocols required for 'the concurrency mechanism are outlined. 
These include the transaction cancelling protocol and the new controller 
election protocol. 

1. THE MODEL. 

In order to discuss transaction processing and concurrency control, 
we first define a simple model of a distributed database [5]. We view 
the database as a collection of named items. Each item has a name and 
some values associated with it; each value is stored at a different node 
in the system. In addition, each item i has associated with it a set 
S(i). Set S(i) is the set of nodes which have a value for item i stored 
in them. We assume that all sets S(i) are not empty. We represent the 
values associated with item i by d[i,x], where x is anode in S(i). (For 
nodes y not in S(i), d[i,y] is undefined.) The values for a given item i 
at different nodes should be the same (i.e., d[i,x] should equal d[i,z] 
for all nodes x, z in S(i)). However, due to the updating activity, the 
values may be temporarily different. 

We can group items that have identical storage characteristics into 
"fragments". A fragment F is a set of items that have the same S sets. 
We use the notation S(F) for the set of nodes where F is stored. (That 
is, S(F) = S(i) for all items i in F). 

----i----------
Author's current address: Department of Electrical Engineering and 

Computer Science, Princeton University, Princeton, N. J. 08540 
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Operations on the data are grouped into transactions [2]. A 
transaction T first specifies a subset of items it wants to read. The 
transaction does not indicate where the items are to be read; it is up to 
the system to select one of the available values for each item specified 
by T. Based on the values read, transaction T performs some computations 
and proceeds to update some items. In this final step, T produces a set 
of new values for a subset of items. For each item i updated by T, the 
system must make sure that the new value for i produced by T is stored at 
all nodes in S(i). Notice that the data reading and computing phases of 
T may be interleaved. Also notice that transactions do not necessarily 
update data. However, to simplify the discussion, we assume that all 
transactions are update transactions. The concurrency control mechanism 
of the system must guarantee that the effect of running transactions 
concurrently is as if the transactions were run one at a time. 

In this paper we concentrate on the concurrency control issues of 
transaction processing. We avoid two other important issues: directory 
management and transaction optimization. That is, we assume that the S 
set for each item (which is part of the directory) is known at all nodes. 
We also assume that a transaction can read the items it needs in any 
order and at any node that has the values available. The directory 
information, which constitutes a distributed database in itself; can be 
updated (e.g., a new node can be added to an S set). However, the 
concurrency control mechanism for this directory information is different 
from the concurrency control mechanism we discuss in this paper because 
more safeguards must be taken when modifying the directory. We will not 
discuss directory updating here. 

2. A CONCURRENCY CONTROL MECHANISM. 

In this section we will illustrate a common concurrency control 
mechanism for transaction processing [7] through an example. (The 
description is simplified and we omit many details.) Suppose that item i 
is duplicated at nodes x1 and x2, while item j is replicated at nodes x2, 
x3 and x4. That is, S(i) = {x1,x2} and S(j) = {x2,x3,x4}. A transaction 
T wishes to read item i and then update item j. The way T is processed 
is by having T "visit" nodes x1, x2, x3 and x4 requesting locks for the 
referenced items. Each node in the system has locks associated with each 
value stored at the site. When a node grants a lock to a transaction, it 
gives the transaction exclusive access to the value (until the lock is 
released). Thus, after T obtains locks for d[i,x1], d[i,x2], d[j,x2], 
d[j,x3] and d[j,x4], it can compute the new values for item j without any 
interference from other transactions. 

When transaction T has computed the new value for item j, the system 
updates j and releases the locks through a two phase commit protocol. In 
the first phase of this protocol, a "master" node (which can be any node) 
sends out "prepare" messages with the value for j and the lock release 
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information to all the nodes that participated in T (i.e., x1, x2, x3 and 
x4). When these sites receive the information, they save it but do not 
update j or release any locks. Instead, they acknowledge receipt of the 
information to the master. After having received acknowledgments for all 
participating nodes, the master starts the second phase of the protocol 
by sending out "commit" messages to all sites invol,ved. (The time when T 
obtains all the necessary acknowledgments is called the commit point.) 
When a node receives a "commit" message for T, it actually releases the 
locks held by T and stores the new value for item j (except node x1 which 
does not have a value of j). The two phase commit protocol guarantees 
that T terminates correctly at all nodes. 

3. A NEW CONCURRENCY CONTROL MECHANISM. 

We propose a variation of this transaction processing mechanism which 
we believe has several important advantages over the mechanism we have 
just described. The main difference is in the way we propose to handle 
replicated data in the system. The motivation for such a mechanism comes 
from a performance analysis [6] which indicates that a centralized 
control strategy for managing replicated data is superior to a 
distributed control strategy. Notice that in the mechanism of section 2, 
the control of an item i is distributed among the nodes in S(i). That 
is, each node in S(i) has a lock for the value of item i stored at the 
node, and in order to access the item, a transaction must secure all 
locks for the item. We will replace this control structure by creating a 
central "controller" for item i which can grant exclusive access to the 
values of item i at all nodes. 

The idea of centralized control is not new. Alsberg and Day [1] 
suggested having a primary site for executing all update transactions. 
In the mechanism we are proposing, only the control of the data (i.e., 
the locks) is centralized; reading the data needed and performing the 
computations for a transaction can be done at other nodes in the system. 
This reduces the load at the central site. In turn, this can improve 
performance because the central site is usually a "bottleneck". Menasce 
et al [8] have also suggested the use of a central controller. Their 
lock controller is a unified control structure for the entire system; 
here we propose a collection of independent controllers. The lock 
controller in [8] has "local" controllers which act as backups for the 
main controller. In our system, we do not have backup controllers. When 
one of the controllers fails, we do not reconstruct its lock information. 
Instead, we either cancel or successfully terminate all pending 
transactions that involve the failed controller. This strategy 
eliminates the overhead associated with backups. 
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4 . AN EXAMPLE. 

Before we proceed, we illustrate how we propose to process 
transactions with the example we used in section 2. Recall that item i 
is replicated at two nodes ( S(i) = {x1,x2} ), while item j is replicated 
at three nodes ( S(j) = {x2,x3,x4}). We select a controller for item i, 
C(i). Controller C(i) is a "module" which can be located anywhere in the 
system, but for convenience we will assume that it is located at a node 
in S(i). Suppose that C(i) is located at node x2. Similarly, assume 
that the controller for item j, C(j), is located at node x4. 

Transaction T reads item i and updates item j. To process T, we make 
T "visit" controllers C(i) (at node x2) and C(j) (at node x4) and request 
locks for those items. After obtaining locks at both controllers, T has 
exclusive access to the two items and can proceed. (Notice that 
controllers C(i) and C(j) grant their locks without sending any messages 
to backup nodes.) 

Once T has computed the new value for item j, the system performs the 
update and releases the locks using a modified two phase commit protocol. 
In this protocol, the master (which can again be any node) sends out 
prep,are messages informing all nodes involved in T (i. e., x 1, x2., x3, x4) 
that T has completed. But now, the master only has to wait for a 
majority of acknowledgments from each S(i) set involved. For example, if 
the master gets acknowledgments from nodes x1, x2 and x3, then it can 
send out the commit messages because a majority of nodes in each set 
S(i), S(j) have responded. When a node receives a commit message, it 
updates item j if it has a copy of the item. If the node has a 
controller involved in T, then the commit message also causes the locks 
to be released. Notice that no acknowledgment is necessary for the 
commit message. 

Due to failures, some nodes that participated in T may not find out 
about T'S completion (e.g., node x4). These nodes will eventually 
discover that they missed this information because of a sequence number 
mechanism. (See section 6.3.) When a node discovers this, it obtains the 
missing information from other nodes. If the information cannot be 
found, the node attempts to cancel T. (See section 6.6.) 

5. ADVANTAGES OF THE PROPOSED CONCURRENCY MECHANISM. 

The main advantages of the concurrency control mechanism we propose 
are: (1) There is no need to lock an item at all nodes where a copy of 
its value exists, (2) In the two phase commit protocol, only a majority 
of acknowledgments (for each item referenced) are required, (3) No 
explicit backup of the controllers and their lock information has to be 
maintained, and (4) Operation with missing nodes is straightforward 
because a transaction that references item i can complete even if a 
minority of the nodes in S(i) are unavailable. 
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The main disadvantages of our concurrency mechanism are: (1) When a 
central controller fails, transactions involving the controller are 
temporarily halted until a new controller is elected. In the process, 
some transactions may be cancelled or aborted, and (2) The mechanism is 
more complex than the one described in section 2. Thus, we are not 
proposing our solution as the best for all cases. Our solution is an 
interesting alternative which may be well suited for some cases. In 
particular, our mechanism seems to be attractive for cases where 
performance is important, where data replication is common, and where we 
expect failures to be rare. 

6. AN OUTLINE OF THE MECHANISM. 

Up to this point, we have only given a very informal description of 
the concurrency control mechanism, omitting most of the details. In the 
rest of this paper, we will attempt to convince the reader that such a 
mechanism can operate correctly even in the face of (detectable) 
failures. In the limited space available, we will give an extremely 
brief outline of the major concepts and protocols that are required in 
our mechanism. In [4J we discuss these ideas in detail. In that report 
we also give a fairly detailed description of the concurrency mechanism 
for the case of a single controller. The mechanism we present here is 
simply an extension of the one controller case given in [4J. 

6.1 Controllers. 

The basic idea in our concurrency control mechanism is that each item 
i in the database has associated with it a controller C(i). Several 
items can have the same controller. In other words, each controller J 
resides at a node N(J) and manages the locks for the items in the set 
I(J). For simplicity, we assume that all items that share a controller 
(i.e., the items in I(J» are replicated at the same set of nodes. That 
is, a controller is always in charge of a fragment of the data. (See 
section 1.) We use the notation C(F) for the controller of fragment F 
(i.e., C(F) = C(i) for all i in F). 

Each node in S(F) must know where the (current) controller C(F) is 
located. (This location amy change in the controller node crashes. See 
section 6.7.) The location of C(F) may also be placed in the system 
directory so that nodes not in S(F) may find C(F). However, this 
directory information need not be current because if the controller is 
not found, any node in S(F) can be interrogated to discover the true 
location of the controller. 
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6.2 The majority of nodes requirement. 

In order to avoid the serious problems that arise when a network is 
partitioned, we will require that a majority of nodes in S(F) be active 
and able to communicate with each other before any transactions involving 
F are processed. This restriction is embedded in the commit protocol 
because a transaction needs a majority of acknowledgments from nodes in F 
before any update involving F can be committed. This restriction is also 
embedded in the new controller election protocol (section 6.7) because 
only a majority of nodes in S(F) can elect a new controller C(F) in case 
the old one fails. No controller C(F) can be in operation if it cannot 
communicate with a majority of the nodes in S(F). 

6.3 Sequence and version numbers. 

Another important concept in the concurrency control mechanism is the 
use of sequence and version numbers. Each transaction T that requests 
locks from C(F) receives a sequence number. This number must be appended 
to all messages generated by T; This sequence number plays an important 
role because it is used to order the operations of T with respect to the 
operations of other transactions. For example, if T received sequence 
number 15 from C(F), T must wait until all transactions with a sequence 
number less than 15 are processed at node x before T can read data from F 
at node x. To eliminate unnecessary delays, additional sequencing 
information can be assigned to T by C(F). For example, C(F) can give T a 
"wait for" list which includes the sequence number of all previous 
transactions that conflicted with T. This way, nodes that perform 
operations of T only have to wait until they finish processing 
transactions in this list [3]. (Sequence numbers also play an important 
role in crash recovery. See sections 6.4 and 6.7.) 

Since a fragment F may have several different controllers over time, 
it is necessary to distinguish between these controllers and the 
transactions that they authorized. (Of course, at any given instant, 
there can only be one controller for F.) Version numbers are used to 
differentiate controllers of F. A unique version number is associated to 
each controller of F, and this number is appended to each sequence number 
generated by the controller. All active nodes in S(F) are aware of the 
current version number, and are thus able to detect any transactions 
whose locks were not granted by the current controller. (See section 
6.7.) 

When a transaction T spans several controllers, all the version and 
sequence numbers obtained by T at the controllers are included in the 
messages generated by T. Each sequence, version number pair carries with 
it an indication of what fragment it corresponds to. 
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6.4 Update logs. 

Any distributed database system needs a mechanism for recording 
completed transactions. To see this, consider what happens when a node 
in S(F) crashes. (Assume that the controller C(F) was not at that node.) 
Since this node will be out of operation, it will miss a set of updates. 
This means that somehow the rest of the system will have to save these 
updates for the crashed node. There are many alternatives for doing 
this. 

One solution is to use update logs. An update log is a collection of 
performed updates that is kept safely at a node. Each log entry contains 
the database values that were modified by a transaction, plus the 
sequence and version numbers of the transaction. For simplicity, in our 
system we assume that a log is kept at each node. Each such log keeps 
track of all the updates processed at that node. (It is also possible to 
operate with fewer logs but we do not consider this case here.) When a 
node x recovers from a failure, it brings each fragment F stored in x up 
to date by requesting the missed updates from the logs at other nodes in 
S(F). Sequence and version numbers are very helpful here because the 
recovering node knows exactly what updates it missed. 

6.5 The two phase commit protocol. 

When a transaction T is ready to store values into the database, it 
uses the modified two phase commit protocol described in section 4. This 
guarantees that either no values are stored at all or that all values 
produced by T are eventually stored at all nodes involved. When a node 
in S(F) acknowledges receipt of the prepare message for T, it makes a 
commitment to remember T (and the values it produced) and to do 
everything in its power to see that T completes correctly. The node 
remembers T by placing the information in the prepare message in a 
"prepare" list. We assume that the information in this list cannot be 
lost. (Log entries can be made to make the prepare list safe. In [7] we 
discuss what happens when this and other state information is destroyed.) 

When the master node for T receives a majority of acknowledgments 
from the nodes in S(F), it knows that the update to F cannot be lost. In 
the case of failures, we know that at least one member of any working 
majority of nodes in S(F) will have a record of T and will "speak up" for 
T. Thus, after receiving a majority of acknowledgments from the nodes in 
each S set involved in T, the master node can send out the commit 
messages. When a node in S(F) receives a commit message, it adds T's 
sequence and version numbers to its list of performed transactions (which 
is kept by all nodes); it writes out a log entry; it performs the update 
on F indicated by T; and finally it removes T from the prepare- list. 

Due to failures, a transaction may be unable to get the majority of 
acknowledgments needed for committing. In such a case, the transaction 
"times out" and the system attempts to cancel the transaction. This 
cancelling protocol is described in the next section. 
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6.6 The transaction cancelling protocol. 

In many cases a transaction will have to be cancelled. One such 
instance is when a deadlock occurs and a transaction must be backed out. 
Another case occurs when a transaction which holds locks fails to release 
its locks. For example, a transaction may have been computing at a node 
which crashed. In this case, the transaction must be cancelled and its 
locks reclaimed. 

A transaction will only be cancelled if no data has been committed by 
the transaction. Thus, the first step in the cancelling protocol is to 
verify that the transaction had not reached the commit point. Notice 
that if a transaction T has reached the commit pOint, then a majority of 
nodes in each S(F) set, for each fragment F referenced, have a record of 
T. Hence, if a single fragment F can be found where a majority of nodes 
in S(F) have no record of T, then T can be cancelled. 

To cancel a transaction T we proceed as follows. First, a node w is 
selected to be the master node for the cancellation. Any node can be the 
master, and several such nodes may be attempting to cancel T 
concurrently. We assume that node w knows that T referenced fragments F1, 
F2, ... , Fk. (The protocol can easily be modified to handle the case 
where only one fragment is known initially.) Node w sends out messages 
to controllers C(F1), C(F2), ... , C(Fk) asking them if they can cancel T. 
Each controller responds either that T can be cancelled or that it does 
not know if T can be cancelled. Controllers do not take any action on T 
at this point. However, if a controller says that T can be cancelled, it 
makes sure that T can not reach the commit point in the future. 

When node w receives answers from all controllers, it decides if T 
will be cancelled. If at least one controller said that T could be 
cancelled, then T has not committed and is cancelled. If all controllers 
say that they do not know if T can be cancelled, then T may have 
committed and node w attempts to complete T. (Notice that in this case 
all controllers found a record of T. Thus, all the update values 
produced by T are known and T can be completed.) The decision of node w 
is broadcast to all controllers, which then carry out the decision. 

When a controller C(F) wishes to know if T can be cancelled (in 
response to node w's first message), C(F) sends out "propose to cancel T" 
messages to all nodes in S(F). When a node y in S(F) receives the 
"propose to cancel T" message, it checks to see if it has a record for T. 
That is, node y checks if it has previously received a prepare or a 
commit message for T. If Y has such a record, it informs the controller. 
If y has no record of T, then it sends a "have seen proposal to cancel T" 
message to C(F). With that message, node y makes a commitment not to 
acknowledge any prepare messages for T it might receive later. Thus, 
node y remembers the "propose to cancel T" message until it hears from 
the controller again. (We assume that node y cannot forget its 
commitment.) 
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If C(F) receives a majority of "have seen proposal to cancel T" 
messages', then C(F) knows that T has not committed and that T will not 
commit in the future. Thus, C(F) can answer node w that T can be 
cancelled. On the other hand, if C(F) discovered a record of T among the 
nodes in S(F), then it must answer that it does not know if T can be 
cancelled because as far as it knows, T could have committed. In this 
case, T'S record (including its update values) is sent to w. 

When controller C(F) receives a command from node w to actually 
cancel T, it does this using a two phase commit protocol similar to the 
one used by transactions to commit. This guarantees either that T is 
cancelled at all nodes in S(F) (as far as F is concerned) or that T is 
not cancelled at all. A node in S(F) finally cancels T by recording a 
null or dummy update. That is, T is processed as if T has committed, 
except that no values are stored in the database. Similarly, a command 
from w to complete T because it could not be cancelled causes C(F) to 
distribute the update values for T to nodes in S(F) and to commit them 
using a two phase commit protocol (with a majority of acknowledgments 
only) . 

A nice feature of the cancelling protocol we have described is that 
it can be interrupted and restarted anywhere without undesirable 
consequences. Thus, if the cancellation master node w or any of the 
controllers crashes in the middle of the cancellation, the procedure can 
simply be abandoned and then restarted by any node that notices that T is 
still pending. 

6.7 The election protocol. 

When a controller C(F) fails, a majority of nodes in S(F) elect a new 
controller. As nodes in S(F) detect that the controller is not active, 
they go into a special state where all normal processing is halted. (If 
a node x later finds out that C(F) did not really fail, then node x 
recovers as if it was the one that failed.) When a halted node discovers 
a majority of other halted nodes, it attempts to become the node with the 
new controller. One way to do this is to try to "lock out" all other 
nodes. If a node succeeds, it creates the new controller. If it fails 
in locking out the other nodes, then it must release all nodes it was 
able to lock out and must try again later. 

A new controller is assigned a new version number different from all 
previous version numbers. Every node that participated in the election 
is given and records the new version number. Before the new controller 
starts operating, it must deal with the unfinished transactions left by 
the old controller. Since the old controller did not leave any backup 
information behind, it is impossible, for the new controller to 
reconstruct the locking information that existed before. Hence, the new 
controller has to force the release of all locks by either cancelling or 
completing all outstanding transactions involving fragment F. 
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To do this, the new controller requests copies of all pending prepare 
messages in nodes in S(F), as well as the list of the committed 
transactions at these nodes. 

Let s be the largest sequence number from the old version observed in 
this process by the new controller. If the new controller discovers that 
a commit message has been received somewhere in S(F) for a transaction T, 
then T has committed and must be completed using a two phase commit 
protocol (with a majority of acknowledgments only). The new controller 
attempts to cancel all other transactions with sequence numbers between 1 
and s issued by the old controller. This is done with the cancelling 
protocol of section 6.6. Finally, notice that transactions with sequence 
numbers s+1, s+2, ..• may have been authorized by the old controller, but 
no nodes in S(F) knew about these transactions before the crash of the 
old controller. Thus the new controller must also cancel all 
transactions with sequence numbers s+1, s+2, since they have 
definitely not committed. This is done through the version number 
mechanism. Since the new controller and all the nodes in S(F) now have 
the new version number, all uncommitted transactions (if any) with the 
old version number will be unable to commit because they can no longer 
get acknmvledgments from the nodes in S(F). When these transactions time 
out because they cannot commit, they will be cancelled entirely. 

As a last step, a new central controller makes an entry into the logs 
indicating what the largest sequence number of the old version was. This 
information is used by recovering nodes in order to know what updates 
they missed from older versions. After this, C(F) and the nodes in S(F) 
can go back to normal operation. 

Like the cancelling protocol, the election protocol can be safely 
interrupted by failures (like the crash of a newly elected controller 
node). Another working majority of nodes can then restart the protocol at 
a later time. 

6.8 Deadlock detection. 

Deadlocks are possible with our concurrency control mechanism. 
Deadlocks may be avoided by forcing all transactions to request locks 
from the controllers in the same predefined order. In some systems, this 
may not be feasible, so deadlocks must be detected and eliminated. Gray 
[7] (among others) discusses several deadlock detection strategies that 
may be used. Once we choose a transaction that must be backed out, it can 
be cancelled with the protocol of section 6.6. Also notice that a 
transaction may make several lock requests to the same controller, but 
this should not cause any problems. 
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1. _CONCLUSION. 

We have proposed a new concurrency control mechanism for distributed 
databases. We believe that this control strategy has some advantages 
over the other well known strategies. Work is currently underway to 
evaluate the performance of this proposed mechanism, as well as to verify 
its correctness. 
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Abstract 

A principal problem with the use of database integrity 
assertions for monitoring the integrity of dynamically 
changing database is the high cost due to the evaluation of 
such assertions. In this paper we analyze and compare the 
cost and performance of several integrity validation methods 
in distributed database environment where the communication 
cost and delay are principal factors. 

INTRODUCTION 

It is often argued that the users of databases should 
be able to specify semantic integrity (SI) assertions about 
their data. Such assertions delimit values in the database 
in terms of other database values or constants. Although 
considerable work has been done on the specification 
methodology for such assertions /McL 76, STO 74, BOY 75, ZLO 
74, GRA 75, MAC 76, FLO 74, MIN 74, WEB 76/, there seems to 
be much less cobcern with implementation issues /STO 75, ESW 
75, ESW 76, STO 76, HAM 78/. 

A major problem in validating transactions with respect 
to a set of SI assertions is the high overhead ( or cost) 
caused by the dependency of transactions and SI assertions 
on values stored in the database. Such dependencies prevent 
a priori proofs of transaction correctness with respect to a 
set of SI assertions. An example of such a database data 
dependent transaction T and SI assertion A could be as 
follows: 

T: increase the salary of employee J. Johnson by 10 
percent 

A: salary of employee < MAX (salary of manager, 
1.5*average s~lary) 
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Transactions whose SI correctness cannot be proven must 
be dynamically monitored to determine whether their final 
values violate SI assertions. The subsystem which monitors 
such SI assertion violations is properly a part of database 
management and in this paper we analyze the cost and the 
performance of several methods of semantic integrity (Sr) 
validation of transactions. 

SI VALIDATION METHODS 

The validation of transactions with respect to SI 
assertions can occur at compile time (i.e. before 
transaction execution), during transaction execution (i.e. 
at run time), after transaction execution; or partially 
during each of these phases. Each method of SI validation 
has advantages and drawbacks, and each method introduces 
overhead. The cost of SI validation consists of three 
factors: 

(1) Accessing database data in order to evaluate SI 
assertions, 

(2) Computation to evaluate SI assertions, and 

(3) The communication cost if SI assertion arguments 
are stored at several sites of a distributed 
database system. 

We assume here that ~he computational cost for SI 
ass~rtion evaluation is the same for any SI validation 
method. Therefore, the major components of SI enforcement 
cost result from accessing database data for SI assertion 
evaluation and from communication cost due to SI validation 
that requires access to several sites of a distributed 
database system. 

Compile Time ~l Validation 

Compile time SI validation means that a transaction is 
allowed to execute only after its SI assertions are 
evaluated and all assertions are found true. Hammer and 
Sirin /HAM 78/ suggest compile time SI validation based on 
SI tests. The purpose of these tests is to obtain those 
values which database data would have had if the transaction 
had been executed. The values are then used for SI 
validation of the transaction, i.e. for evaluation of all SI 
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assertions which interact with the transaction. Compile time 
SI validation has one obvious advantage it does not 
require transaction rollback when SI assertions are 
violated. However, compile time SI validation has the 
following disadvantages: 

(1) Validation and execution are sequential, slowing 
response. 

(2) The database objects on which compile time SI 
tests are run cannot be modified by any other 
transaction until the transaction being validated 
is executed. Effectively, such database data 
objects have to remain write-locked from S1 
validation through transaction execution, since 
compile time S1 validation tests must execute on 
the same database data values as the transaction 
will during its execution. Otherwise revalidation 
is required. 

Run Time S1 Validation 

Run time SI validation means that SI validation of 
transactions is concurrent with transaction execution, where 
the result of transaction execution is not committed, e.g. 
the actual update is not performed, i.e. is not transferred 
to the transaction write site and executed, until 
transaction validation has been terminated without 
violations of SI assertions /BAD 79/. Thus, if transaction 
execution is seen ( and implemented) as a sequence of read­
compute and write events, then all SI assertions can be 
evaluated as part of transaction execution. After the 
transaction executed its read-compute events S1 assertions 
can be evaluated because the result of transaction is known 
at that time. Then depending on the outcome of S1 validation 
the write events of the transaction can be executed, i.e. 
the update messages are transferred to the transaction write 
sites and performed there. The major advantages of this 
approach result from concurrent execution; there is no need 
for transaction rollback, the time interval during which the 
database data must be locked for SI validation is reduced to 
transaction execution time, and duplicate reads are avoided. 

Another proposal based on run time S1 validation 
appears in INGRES /STO 74, STO 75/ where single variable 
aggregate-free integrity assertions can be efficiently 
evaluated during transaction run time by appending such 
assertions to the query. However, the evaluation of 
integrity assertions involving aggregates occurs after 
transaction execution, i.e. the resulting (updated) relation 
is tested for the integrity assertions and then the update 
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is undone if the assertions are not satisfied. The strategy 
is therefore mixed partialy run time and partially 
postexecution time. 

Post Execution SI Validation 

The conventional method of SI validation is to execute 
the transaction first and then to validate the results. The 
proposal by Eswaran et al. IESW 76/. employs postexecution 
time SI validation where the violation of SI assertions by 
the transaction triggers corrective action. Transaction 
rollback or some other compensating action, depending on the 
semantics of the SI assertions and the transaction, may take 
place. One advantage of postexec~tion time SI validation is 
its conceptual simplicity. The obvious disadvantage is the 
need for transaction rollback and the longer time interval 
during which the database objects modified by the 
transaction may be locked. If the objects are not locked, 
then any other transactions which access the database data 
which were undone would have to be rolled back too. 

COST AND PERFORMANCE ANALYSIS OF SI VALIDATION METHODS IN 
DISTRIBUTED DBS 

In centralized database systems the only significant 
factor of SI validation cost is the number of database 
accesses due to SI validation.It has been shown IBAD 79,BAD 
79al that in terms of the cost of database accesses 

a) the run time 
the other 
operations, 
transaction 

SI validation is superior to any of 
methods for realistic database 

i.e. for systems without high 
rejection rates; 

b) compile time SI validation yields better 
performance than run time SI validation when the 
compile time SI tests are very efficient, i.e. 
require substantially fewer database accesses 
compared to the transaction reads and if DBS has a 
relatively high rejection rate; 

c) postexecution time SI validation has consistently 
worse performance than other SI validation 
methods; 

d) the use of fast access memory to store data for 
evaluation of some SI assertions results in 
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increased performance that differs for each SI 
validation method. 

However, the principal cost and performance criterion 
for SI validation in nonlocal ( or loosely coupled ) 
distributed database systems is the communication cost and 
communication delay, and the number of database accesses is 
of secondary importance.Therefore,in our analysis we neglect 
the cost overhead due to database accesses required for SI 
validation at each site of distributed database system and 
we consider the communication cost only. 

We derive the cost of SI validation in distributed 
databases without considering transaction processing 
strategy. We consider here only the number of messages 
needed either to access sites or to set local locks there. 
We assume that there is one control site which either does 
evaluation of SI assertions (i.e. SI validation is 
centralized) or it receives the results of distributed SI 
validation. However, in both cases such site controls 
subsequent transaction execution steps. Assuming a two-phase 
locking /GRA 76, GRA 78, ESW 76al we analyze SI validation 
methods in distributed database in terms of lock and unlock 
messages. 

Let 

P be the average number of sites at which the 
transaction during its execution reads and writes 
or reads only. 

Q be the average number of sites at which the 
transaction during its execution writes only. 

S be the average number of sites counted in P above at 
which the transaction reads and that are also 
accessed for SI validation. Clearly, S <= P. 

V be the average number of sites counted in P above 
at which the transaction writes~ Clearly, V <= P 

R be the average number of sites not accessed by the 
transaction but accessed for SI validation only. 

The cost of compile time SI validation in distributed 
database environment can be derived as follows. Since from n 
transactions only m (m <= n) transactions will be accepted, 
i.e. n - m transactions are rejected because they violated 
SI assertions, then the communication cost of executing 
those m transactions can be derived from the following 
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compile ~ime S1 validation algorithm: 

Algorithm C1: 

1) lock at Rand S sites 

2) Rand S sites either evaluate S1 assertions and 
send the result to a control site or they send 
data to the control site which does S1 validation 

3) if S1 validation results in S1 violation, then 
reject transaction and terminate, else do 4) 

4) lock at Q + P - S sites and execute transaction 

5) unlock at Q + P + R sites and terminate 

The number of messages gen~rated at each step of algorithm 
C 1 is 

1) n(R + S) 

2) n(R + S) 

3) (n - m)(R + S) 

4) m( P + Q - S) 

5) m( P + Q + R) 

Thus the total communication cost of the compile time 
S1 validation (i.e. the cost of n transactions employing 
compile time S1 validation) is 

C1 = 2n(R + S) + (n - m)(R + S) + m(2P + 2Q + R - S) = 3n(R 
+ S) + 2m(P + Q - S) 

where 

(1) 

n is the number of transactions 

m is the number of accepted transactions, 
i.e. the number of transacti6ns which 
did not cause any S1 violations; m <= n 
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The communication cost of postexecution time 3I 
validation can be derived from the following algorithm C2. 

Algorithm C2: 

1) lock at P and Q sites and execute transaction 

2) lock at R sites, send the 3I assertion argum01t 
values or 3I validation results to the control 
site and release locks after sending the above 
message to the control site 

3) control site requests and receives 3I messages from 
3 sites 

4) if 3I validation results in 3I violation, then send 
reject messages to all sites at which transaction 
writes, i.e. to Q and V sites, else do 5) 

5) unlock at P + Q sites and terminate 

The number of messages generated at each step of algorithm 
C2 is: 

1) n(P + Q) 

2) 2nR 

3) 2n3 

4) (n - m)(Q + V) 

5) n(P + Q) 

Thus the communication cost of postexecution time 3I 
validation is: 

(2) 
C 2 = 2n ( P + Q) + 2n (R + 3) + (n - m) (Q + V) 

The communication cost of run time 3I validation can be 
derived from the following algorithm C3. 

Algorithm C3: 

1) lock at P and R sites 
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2) execute read-compute (i.e. generate final update 
messages at P sites) and read SI values at R sites 

3) send SI assertion argument values or the results of 
SI validation from Rand S sites to the control 
site 

4) if SI validation results in SI violation , then 
reject transaction via unlock messages to Rand P 
sites and terminate, else do 5) 

5Y lock at Q sites and execute updates 

6) unlock at P + Q + R sites and terminate 

The number of messages generated by the algorithm C3 is: 

1) n(P + R) 

2) none 

3) nCR + S) 

4) (n - m)(P + R) 

5) mQ 

6) m(P + Q + R) 

Thus the communication cost of postexecution time SI 
validation is: 

C3 = n(P + R) + meR + S) + (n - m)(P + R) + mQ + m(P + Q + 
R) 

C3 = 2n(P + R + S) + 2mQ 

The communication cost of mixed run time and 
postexecution time SI validation can be obtained by adapting 
formulae (2) and (3) : 

C4 = (2n[1](P + R + S) +'2m[1]Q) + (2n[2](P + Q) + 2n[2J(R + 
(4 ) 

S) + (n[2] - m[2](Q + V» 

where 

n[1] is the number of transactions validated 
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at run time; n[1] <= n 

n[2] is the number of transactions validated 
at postexecution time; n[2] <= nand 
n[1] + n[2] = n 

m[1] is the number of transactions rejected 
due to run time SI validation; m[1] <= m 

m[2] is the number of transactions rejected 
(rolled back) due to postexecution time 
SI validation; m[2] <= m and m[1] + m[2] 
= m 

Now that a 
expressing the 
validation methods 
compare them. 

consistent, straightforward method 
communication cost of the various 

has been provided, it is useful 

of 
SI 
to 

Lemma 1: 

The communication cost of run time SI validation C3 is 
greater than the communic~tion cost of compile time SI 
validation C1 only if the accesses for SI validation 
transaction read sites or read and write sites are 
numerous than the accesses for SI validation at sites 
accessed by the transaction, i.e. C3 > C1 only if 0 <= 

at 
more 

not 
R <= 

S. 

Proof: 

Since 

Assume C1 > C3. Then substituting from (1) and (3) we 
obtain 

(4a) 
3n(R + S) + 2m(P + Q - S) < 2n(P + R + S) + 2mQ 

(4a) reduces to the following condition 

(5 ) 
ml n > 1 12 (1 + ( P - R) I (P - S» 

m <= n we observe the following: 

case 1 : if R = 0, then (5 ) is not satisfied, i • e • C1 < 
C3 

case 2: if R = P , then (5 ) is satisfied, i • e . C3 < C 1 
if m > .5n 
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case 3 : if R < P, then 

if R < S < P , then (5) is not satisf.ied, i • e • C1 < C3 

if P > R > S, then (5) is satisfied ,i • e • C3 < C 1 

if R = S,then (5) is not satisfied, i • e • C1 < C3 

case 4: if R > P, then (5) is satisfied, i • e. C3 < C 1 

Therefore, C3 > C 1 if 0 <= R <= S and C3 < C 1 if S < R. This 
concludes the proof. 

Lemma 2: 

The communication cost of compile time SI validation C1 
is less than the communication cost of postexecution time SI 
validation C2, i.e. C1 <C2 only if 0 <= R <= S. 

Proof: 

Assume C1 > C2. Substitution from (1) and (2) leads to 

3n(R + S) + 2m(P + Q - S) > 2n(P + Q) + 2n(R + S) + (n 
(5 a) 

- m) (Q + V) 

(5a) reduces to 

(6) 
mIn> (2P + 3Q + V - R - S) I (2P + 3Q + V - 2S) 

Since m <= n we observe that if R = 0 or R = S or R < 
S, then (6) is not satisfied, i.e. C1 < C2, otherwise (Le. 
if R > S ) C1 > C2. This concludes the proof. 

Lemma 1: 
The communication cost of run time SI validation C3 is 

always less or equal to ( if m=n ) the communication cost of 
postexecution time SI validation C2, i.e. C3 <= C2. 

Proof: 

Assume C3 <= C2.Substituting from (2) and (3) l~ads to 

2n(P + R + S) + 2mQ <= 2n(P + Q) + 2n(R + S) 
(7 ) 
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+ (n - m)(Q + V) 

(7) reduces to 

( 8 ) 
(n - m)(V + 3Q) => 0 

Since all terms are positive, 
satisfied (for any transaction 
consistency i.e.,which updates the 
the proof. 

and n => m then (8) is 
which affects database 

database). This concludes 

Lemma 4: 

The communication cost of mixed 
postexecution time SI validation isat 
time SI validation and at worst as costly 
time SI validation. 

Proof: 

We want to show that C3 <= C4 <= C2. 

run time and 
best equal to run 
as postexecution 

If in (4) n[l] = n,i.e. n[2] = 0, then C4 = C3. If in 
(4) n[2] = n, i.e. n[l]= 0 ,then C4 = C2. Since C2 > C3 
(Lemma 3 ),then the lower bound for C4 is C3 and the upper 
bound for C4 is C2. This concludes the proof. 

CONCLUSION. 

In this paper we have shown that in the distributed 
database when there is an extensive global SI validation, 
i.e. when R > S, then in terms of communication cost the run 
time SI validation is the least costly and the compile time 
SI validation has the highest communication overhead, i.e. 
C3 <= C2 < Cl. However, if there is not an extensive global 
SI validation, i.e. when 0 <= S <= R, then the compile time 
SI validation has the lowest communication overhead and the 
postexecutiontime SI validation has the highest 
communication overhead, i.e. C1 < C3 <= C2. We would like 
to point out that the conclusions reached here apply to any 
type of distributed database, i.e. they apply to fully 
replicated, partially replicated or nonredundant distributed 
databases. This is so because the obtained results do not 
depend on the number of sites at which transaction writes 
only, i.e. on Q. 



-136-

REFERENCES 

BAD 79 Badal, D. Z. "Semantic integrity, consistency and 
concurrency in distributed database systems," Ph.D. 
dissertation, Computer Science Dept., UCLA, March 1979. 

BAD79a Badal,D.Z. and Popek,G.J. "Cost 
analysis of semantic integrity validation 
of ACM SIGMOD 79 International Conference 
Data, Boston, May 1979, pp.109-115. 

and performance 
methods" , Proc. 
on Management of 

ESW 75 Eswaran, K. P. and Chamberlin, D. D. "Functional 
specification of a subsystem for data base integrity," IBM 
Research Report RJ 1601, June 1975. 

ESW 76 Eswaran, K. P. "Specifications, implementations and 
interactions of a trigger subsystem in an integrated 
database system," IBM Research Report RJ 1820, November 
1976. 

ESW 76a Eswaran, K. P. eta1. "The 
and predicate locks in database 
(1976),pp.624-633. 

notions of consistency 
system," CACM 19, 11 

FLO 74 F1orentin, J. J. "Consistency auditinfl of data 
bases," Computer Journal 17, 2 (1974), pp. 52-58. 

GRA 75 Graves, R. W. "Integrity control in a relational 
data description language," Proc. of ACM Pacific Conference, 
San Francisco, April 1975, pp. 108-113. 

GRA 76 Gray, J. etal. "Granularity of locks and degrees of 
consistency in a ~hared data base," Modelling in Data Base 
Management Systems, G.M. Nijssen(ed.), North Holland, 1976, 
pp.~65-395. 

GRA 78 Gray, J. "Notes on data base operating systems,"IBM 
Research Report RJ 2188, February 1978. 

HAM 78 Hammer, M. M. and Sarin, S. K. "Efficient monitoring 
of database assertions," ACMISlGMOD 78 Int. Conference on 
Management of Data, Dallas, June 1978, pp.38-48. 

MAC 76 Machge1es, C. "A procedural language for expressing 
integrity constraints in the coexistence model," Modelling 
in Data Base Management Systems, edt by G. M. Nijssen, 
Amsterdam, North-Holland, 1976, pp. 293-301. 

McL 76 McLeod, D. J. "High level expression of semantic 
integrity specifications in a relational data base system," 
MIT/LCS/TR-165, September 1976. 

MIN 74 Minsky, N. "On interaction with data bases," Proc. 



-137-

of CM,SIGFIDET Workshop on Data Description, Access, and 
Control, ACM, New York, 1974. 

STO 74 Stonebraker, M. "High level integrity assurance in 
relational data management systems," Electr. Res. Lab. Memo 
ERL-M473, UC Berkeley, August 1974. 

STO 75 Stonebraker, M. "Implementation of integrity 
constraints and views by query modification," Electronics 
Res. Lab. Memo ERL-M514, UC Berkeley, March 1975. 

STO 76 Stonebraker, M. and Neuhold, E. "A distributed data 
base version of INGRES," Electronics Res. Lab. Memo ERL­
M612, UC Berkeley, September 1976. 

WEB 76 Weber, H. "A semantic model of integrity constraints 
on a relational data ~ase," Modelling in Data Base 
Manamgement Systems, ed. by G. M. Nijssen, Amsterdam, 
North-Holland, 1976, pp. 269-293. 

ZLO 74 Zloof, M. M. "Query by example," IBM Research Report 
RC 4917, July 1974. 

/ 





PROTOCOL MODELING 





-141-

A STUDY OF THE CSMA PROTOCOL IN 

LOCAL NETWORKS* 

Simon S. Lam 
Department of Computer Sciences 

The University of Texas at Austin 
Austin, Texas 78712 

Abstract 

A consequence of bursty traffic in computer communications is that 
among a large population of network users, at anyone time only a small 
number of them have data to send (ready users). In this environment, 
the performance of an access protocol for a broadcast network depends 
mainly upon how quickly one of the ready users can be identified and 
given sole access to the shared channel. The relative merits of the 
access protocols of polling, probing and carrier sense multiple access 
(CSMA) with respect to this channel assignment delay in local networks 
are considered. A central controller is needed for polling and probing 
while CSMA employs distributed control. A specific CSMA protocol is 
defined which requires that "collisions" in the channel be detected and 
that the users involved in a collision abort their transmissions quickly. 
In addition, it is assumed that the contention algorithm is adaptive 
and gives rise to a stable channel. An analytic model is developed. 
Our main result is the moment generating function of the distributed 
queue size (number of ready users). Mean value formulas for message 
delay and channel assignment delay are also derived. These results on 
queue size and delay are the major contribution of this paper, since 
they are not available in prior CSMA models in closed analytical form. 
Numerical results are given to illustrate the performance of the CSMA 
protocol. When the channel utilization is light to moderate, the mean 
channel assignment delay of the CSMA protocol is significantly less than 
that of both polling and probing; consequently, the mean message delay 
is much smaller. It is also shown that when queueing of messages is 
permitted at individual users, the maximum channel throughput of CSMA 
approaches unity in the limit of very long queues. 

1. INTRODUCTION 

Multipoint networks have been widely used in local networking for 
the interconnection of terminals to a central site: either a central 
computing facility or a gateway to a resource sharing computer network. 
The terminals are typically unintelltgent and access to the shared data 
path (channel) is managed by the central site using a polling protocol 
[1]. With increasing interest in local networking and the availability 

* This work was supported by the National Science Foundation under 
Grant No. ENG78-01803. 
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of inexpensive microprocessors, other interconnection topologies, 
transmission media and access protocols have been ~roposed and investi­
gated. They include loop networks with centralized control [2] or 
distributed control [3], a digital cable network using time-division 
multiple access [4], the ALOHANET [5] and Packet Radio Network [6], 
which pioneered the use of radio channels and contention protocols for 
multiple access. Recently, considerable interest has been revived in 
multipoint cable networks (based upon CATV technology) employing a 
variety of mUltiple access protocols [7-10]. 

The multiple access problem in multipoint networks is addressed in 
this paper. A multipoint cable network such as those in [8,9] can be 
viewed upon as a broadcast channel shared by a population of distributed 
users. Two major categories of multiple access protocols may be used: 
polling and contention protocols [11]. Polling protocols require a 
central controller. On the other hand, with.contention protocols each 
network user makes his own decision according to an algorithm which 
is driven by observable outcomes in the broadcast channel. We shall 
consider multipoint networks that have short propagation delays between 
users relative to the transmission time of a message. In a short 
propagation delay environment, carrier sense multiple access (CSMA) 
protocols have been found to be the most efficient among contention 
protocols [12-15]. 

Consider a broadcast .channel (the multipoint network) shared bya 
population of N users (terminals, computers, etc.). There are two 
problems to be addressed by an access protocol: (1) among the N users, 
identify those with data who desire access to the channel, the ready 
users,and (2) assign channel access to exactly one of the ready users 
if at least one exists. 

The ready users can be considered as forming a "distributed queue" 
waiting to use the broadcast channel. We assume that each user 
generates and holds for transmission at most one message of arbitrary 
length at a time. (The effect of queuing messages at individual users 
is discussed in the last· section of this paper .) A consequence of the 
conservation law in queuing theory [12] is that the average message 
delay performance of an access protocol is independent of the order of 
service but depends mainly upon the amount of overhead needed for 
assigning channel access. Thus, when access protocols are compared 
solely on the basis of average message delay performance for a given 
channel throughput level, the above two problems reduce to just the 
following: whenever the.channe1 is free and there are one or more ready 
users, how quickly can channel access be assigned to a ready user? 

In conventional polling protocols [1], the above problem is solved 
by a central controller that queries the N users one after the other. 
Let w be the average overhead associated with querying one user; w 
includes propagation delay, polling message transmission time etc. To 
find out who the ready users are, the overhead per polling cycle 
(querying all N users) is Nw, regardless of the number of ready users 
present. This overhead is an indirect measure of the responsiveness of 
the access protocol; Konheim and Meister [16] showed that the mean 
delay of a polled network is directly proportional to N;. 

Hayes [17] recently proposed and studied the method of probing: 
polling a group of users all at one. The key idea is as follows. If a 
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group of users is probed and none responds, the whole group can be elim­
inated. If probing a group produces a positive response, it is subdiv­
ided into two groups which are then probed separately. Thus when the 
network is lightly loaded, with few ready users, significant overhead 
reduction results through eliminating groups of non-ready users all at 
once. In the extreme case of only one out of the N users being ready, 
the number of queries required by probing is 2(log2N) + I instead of N 
required by polling. However, if

2
all N users are ready, the number of 

queries required by probing is (N -1). (See [17] and [11].) Thus 
probing is penalized when the channel is heavily utilized. Hayes 
proposed an adaptive algorithm which optimizes the performance of 
probing and also avoids the above penalty by reverting to pure polling 
beyond a certain level of channel utilization. 

Unlike polling and probing, which require a central controller and 
are designed for "passive" users, contention protocols require that 
each ready user actively seek channel access and make his own decisions 
in the process. We define below a CSMA protocol and show that the time 
required by it to assign channel access to a ready user is independent 
of N. Under this protocol, when there is exactly one ready user and 
the channel is free, the ready user gets channel access immediately. 
Thus the average "channel assignment delay" is near zero when the 
channel is lightly utilized. On the other hand, when the channel is 
heavily utilized the average channel assignment delay is bounded above 
by a small constant (see below). 

CSMA protocols have been studied extensively in the past within a 
packet radio network environment by Kleinrock and Tobagi [13, 14] and 
later by Hansen and Schwartz [15]. Analytic results in these references 
are mainly concerned with the maxi:mum channel "throughput" achievable 
by various protocols. Characterization of the number of ready users 
and message delay is limited to approximate numerical solutions or 
simulation results. 

The main contribution of this paper is an analytic model of a CSMA 
protocol. The protocol is defined and our assumptions stated in Section 
2. In Section 3, the moment generating function of the number of ready 
users is obtained. Formulas for the average message delay and average 
channel assignment delay are also derived. In Section 4, numerical 
results are plotted to illustrate the performance of the CSMA protocol,. 
which is also compared with polling. We conclude by discussing possible 
extensions of this work in Section 5. 

2. THE PROTOCOL AND ASSUMPTIONS 

The main difference between th~ CSMA protocol studied in this paper 
and the p-persistent CSMA protocol of Kleinrock and Tobagi [13, 14] is 
as follows. We assume here that collisions in the channel are detected 
and that users involved in a collision abort their transmissions immedi­
ately upon detecting the collision. Mechanisms for detecting collisions 
and aborting collided transmissions have been implemented in at least 
two multipoint cable networks [8,9]. However, it appears to be much 
more difficult to implement a "collision abort" capability in the radio 
environment of interest in [13, 14]. 
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Like the p-persistent protocol in [13,14] network users are 
assumed to be time synchronized so that following each successful 
transmission, the channel is slotted in time. (See Fig. 1.) Users 
can start transmissions only at the beginning of a time siot. Let. be 
the amount of time from the start of transmission by one user to when 
all users sense the presence of this transmission. It is equal to the 
maximum propagation delay between two users in the network plus carrier 
detection time. (The latter depends upon the modulation technique and 
channel bandwidth. It was considered to be negligible relative to the 
propagation delay in [14].) In order to implement the collision abort 
capability described above, the minimum duration of a time slot is 
T = 2., so that within a time slot if a collision is detected and the 
collided transmissions are aborted immediately, the channel will be 
free of any transmissions at the beginning of the next time slot. 

The slotted channel assumption is made to simplify our analysis. 
(The practical problem of time synchronizing all users in the network 
is a classical one and beyond the scope of this paper.) In a real 
system, either a slotted or uns10tted channel may be implemented. We 
discuss in Section 5 that the performance of an uns10tted channel is 
likely to be approximated by that of the slotted model in this paper. 

The CSMA protocol in this paper is defined by the following two 
possible courses of action for ready users: 

(P1) Following a successful transmission, each ready user transmits 
with probability 1 into the next time slot. 

(P2) Upon detection of a collision, each ready user uses an adaptive 
algorithm for selecting its transmission probability «1) in the 
next time slot. 

It should be clear at this point that we have effectively reduced 
the contention problem in CSMA to a slotted ALOHA problem. Slotted 
ALOHA has been studied extensively in the past [18-25], from which we 
learned that to prevent channel saturation (with zero probability of 
a successful transmission), the transmission probability of each ready 
user must be adaptive1y adjusted. Various control strategies have been 
proposed and studied. Experimental results have shown that a slotted 
ALOF~ channel can be adaptive1y controlled to yield an equilibrium 
throughput rate S close to the theoretical limit of lIe (=0.368) for a 
large population of users [21-24]. l..Jith an asymmetric strategy, the 
achievable S will be even higher [25]. 

For our analysis in the next section, we shall assume that in (P2) 
a suitable adaptive algorithm is used so that the probability of a 
successful transmission (slotted ALOHA throughput) in the next time slot 
is equal to a constant S. This assumption is an approximation but has 
been found to be a very good one in simulation studies [21-24]~ 

We shall further assume that errors due to random noise are insig­
nificant relative to errors due to collisions and can be neglected. 
The source of traffic to the broadcast channel consists of an infinite 
population of users who collectively form an independent Poisson process 
with an aggregate mean message generation rate of A messages per second. 
This approximates a large but finite population in which each user 
generates messages infrequently; each message can be transmitted in an 
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interval much less than the average time between successive mesaages 
generated by a given user. Each user is allowed to store and attempt 
to transmit at most one message at a time. Thus the generation of a new 
message is equivalent to increasing the number of ready users by one. 
The effect of queuing messages at individual users is discussed later. 

Finally, the transmission time of each message is an independent 
identically distributed (i.i.d.) random variable with the probability 
distribution function (PDF) Sex), mean value b

1
, second moment b2 and 

Laplace transform S*(s). 

3. THE ANALYSIS 

The ready users can be considered to form a distributed queue with 
random order of service for the broadcast channel. We are interested 
in obtaining the equilibrium moment generating function of the distrib­
uted queue size. We shall use an imbedded Markov chain analysis. 
Under the assumptions of Poisson arrivals and that messages arrive and 
depart one at a time, the moment generating function of queue size 
obtained for the imbedded points is valid for all points in time. 

A snapshot of the channel is illustrated in Fig. 1. We define the 
following random variables: 

qn = number of ready users -left behind by the departure of the 
th .. C n transm1SS10n, n 

Yn+1 = time from the departure of Cn to the beginning of the next 

successful transmission 

un+1 = number of new (Poisson) arrivals during Yn+1 

xn+1 transmission time of Cn+1 
vn+1 = number of new (Poisso~ arrivals during xn+1 + T. 

We assumed earlier that xn+1 has the PDF Sex). We shall let B(x) 

be the PDF of xn+
1 

+ T. The corresponding Laplace transform is thus 

B*(s) = S*(s)e-ST 

The random variable Yn+1 is the sum of two independent random time 

intervals 

Yn+1 = (In+1 + r n+1)T I 

where T is the duration of a slot, In+1 is the number of slots in an 

idle period immediately following the departure of Cn' and rn+1 is the 

number of slots in the contention period following a collision until 

the next successful transmission. The slot containing the initial 

collision is included in r n+1 • We note that In+1 is nonzero only if 

qn = O. Also, if there has been no collision when Cn+1 begin~ rn+1 = O. 

slot. 

Let p. be the probability of j new arrivals (ready users) in a time 
J 
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j = 0,1,2, ..• 

At the start of the next time slot, each new arrival executes (P1) or 
(P2) in exactly the same manner as all other ready users. 

Also, 

Given our earlier assumptions, we have 
k-1 

Prob[In+1 = k/qn = 0] = (l-PO)PO k = 1,2, ... 

Prob[rn+1 = k/co11ision occurred] = S(1_S)k-1 k = 1,2, ••• 

From this last result, the Laplace transform of the probability density 

function (pdf) of a contention period (given a collision occurred) is 
-sT c* (s) = _'_S_e __ _ 

l_(l_S)e-sT 

which has a mean of TIs and a second moment of T2(1 + 2(1;S)). 
S 

The following important relationship is evident from Fig. 1. 

qnt-1 = qn + unt-1 + vnt-1 - 1 (1) 

where vnt-1 is an independent random variable with the z-transform 

* B (A-AZ), while unt-1depends upon qn in the following manner as a 

consequence of (P1) and (P2). Given 

(1) q" = 0, n 

= f 1 

P1 
with probe 1-p 

o 

( j + number of arrivals during 
a contention period 

(2) q = 1, unt-1 = 0 n 

with probe 

(3) q~ > 2, un+1 = number of arrivals during a conterttion period. 

.!L 
I-PO 

(2) 

Given the occurrence of a collision, the number of new arrivals during 

a contention period is an independent random variable with the z-trans­

* fot:m C (I .. -Az). 

The equilibrium queue length probabilities 

Qk = lim Prob[qn = k] 

n-+«> 

k = 0,1,2, ••• 

exist if A(b
1 

+ L + TIS) <1 (see below). Define the z-transform 

Q(z) = 
co 

k t Qk z • 
k=O 
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By considering Eqs. (1) and (2) and taking the n-+«> limit, we obtain 
after some algebraic manipulations the following important result: 

* * QO * * -AT(l-z) 
B (A-Az){Ql z[l-C (A-Az) ]+l-po [PI z(l-C (A-Az»-C (A-Az)(l-e )]} 

Q(z) 

where 

and 

* * z - B (A->..z) C (A-Az) 

I-A (b
l
+ T +T/8) 

1 1 
AT [ l-p - B * ( A) 8 ] 

o 

(3) 

(4) 

1 PI 
Ql = (B*(A) - l-p ) QO (5) 

o 
Using Eqs. (3) - (5), we can obtain the mean queue size. Application of 
Little's result [12] yields the mean message delay (time of arrival to 
time of departure) to be 

- T. T I-PO 2 
D = x + S + 2" - 2[B*(A)8-(1-PO)] (1 + 8T - 3T) 

+ 
(6) 

2[1 - A(x + ; )] 
where 

and 

We next consider the channel assignment delay, that is, given that 
the channel is free and that there is at least one ready user, we want 
the pdf of the time from when the above conditions are satisfied to the start 
of the next successful transmission. Let d be'a random variable repre­
senting the channel assignment delay immedi~tely prior to the nth trans­
mission and 

d = lim d n 
n-+«> 
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It can be readily shown that 

PI 
Ql 

k 0 --+ = 
l-p 0 

Prob [d k] = 
()() 

fa 
Pl S(l_S)k-l Qi] 

k = 1,2, .•• 
[QO(l~ ) + i.: 

0 i=2 (7) 

The mean channel assignment delay is thus 

d = 1:.(1 - Q 
S 0 

(8) 

Pl 
Note that QO l-p + Ql is the fraction of transmissions that incur zero 

o delay in gaining channel access (given that the channel is free). 

4. PERFORMANCE OBSERVATIONS 

An important performance parameter is the ratio of the carrier 
sense time L to the mean message transmission time b

l
: 

ex. = --1. 
bl 

The throughput o·f the CSMA channel is defined to be the fraction of 
" channel time utilized by data messages, which is 

P = Ab 1 

under equilibrium, conditl..uns. 
In Fig. 2, we show the delay performance of the CSMA channel as a 

function of ex. and p. The normalized delay D/bl is plotted and it is 
assumeq that messages are of 'constant length. Observe that the delay 
performance of CSMA improves significantly as ex. becomes small. A small 
ex. may come about either by decreasing the carrier sense time L or by 
increasing the duration bl of each user transmission. 

In these numerical calculations, the probability S of a successful 
transmission during contention periods is assumed to be lIe which is the 
slotted ALOHA throughput rate in an. infinite population model. Experi­
ence with experimental results [21-25] indicates that S = lIe is 
pessimistic when the number of contending ready users is small (small p) 
and optimistic when the number of contending ready users is large 
(large p). Thus the same co~nts will apply to the CSMA delay results 
in Fig. 2. 

The delay-throughput performance of roll-call polling is also shown 
using the delay formula in [16]. The delay results shown for polling 
also assume Poisson message arrivals and constant message length. The 
ratio of propagation delay to message transmission time is ex. = 0.05. 
The ratio of 'data to polling message length is 10. Queuing of messages 
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at individual users is assumed; hence the maximum channel throughput is 
one. Delay-throughput curves for both 10 users and 100 users are shown. 
Note that the corresponding delay-throughput performance of CSMA at 
a = 0.05 is independent of the number of users. It also permits no 
queuing of messages at individual users; hence the maximum throughput 
is less than 1. We observe that CSMA is superior to polling when the 
channel throughput is low but becomes inferior when the channel through­
put is increased to one. However, if queuing of messages is possible at 
individual users for CSMA, more than one message may be transmitted 
every time a user gains channel access. Hence, as the network load p 
is increased from 0 to 1, the delay performance of CSMA is first given 
by the a = 0.05 curve at a small channel throughput but switches to the 
a = O.O~ curve and then the a = 0.001 curve and so on as the channel 
throughput increases and queues become long. The channel throughput of 
CSMA is one in the limit of infinitely long queues at individual users. 

In Fig. 3, we show the mean channel assignment delay d as a function 
of a and p. Note that d decreases to zero when p is small. This is 
because (PI) in the CSMA protocol permits a ready user to access the 
channel innnediately. In Fig. 4 we plot the fraction of transmissions· 
that incur zero delay in gaining channel access given that the channel 
is free. For comparison, recall that when only one ready user is present, 
the polling cycle overhead is Nw for conventional polling and 
[Z(logZ N)+l]w for probing. . 

Referring again to Fig. 3, observe that as p is increased, d/T 
increases to the maximum value of lIs. This desirable property is a 
consequence of the presence of an adaptive algorithm that we assumed in 
(P2) which guarantees channel stability during contention periods. 

Another advantage that CSMA has over polling protocols is that the 
time slot duration T is typically much smaller than its counterpart w 
in polling protocols since w must include the transmission time of a 
polling message. 

5. CONCLUSIONS 

We considered a CSMAprotocol as a distributed control technique 
for a population of users sharing a multipoint network. The capability 
of aborting collided transmissions is the main difference between our 
model and previous models of CSMA. It is also assumed that the channel 
is stable during contention periods (presence of an adaptive control 
algorithm). Our main results include the moment generating function of 
the number of ready users, as well as mean value formulas for message 
delay and channel assignment delay. These results are new. The 
modeling of the queue size and message delay has previously been limited 
to numerical solutions or simulations. 

We found that the CSMA protocol as defined in this paper has the 
desirable property that when the channel is lightly utilized, the channel 
assignment delay is extremely short. The performance of CSMA when the 
channel is heavily utilized depends upon the ratio a. We make the 
following obserVation. If the number of users is finite and queuing of 
messages is permitted at individual users, then as ptl, we must have a-}O, 
since the transmission time of each user increases as a result of long 
queues. In this case, the maximum channel throughput of CSMA is one 
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(the same as polling with queueing permitted at individual users). 
Lastly, we discuss the issue of channel slotting. A slotted 

channel was assumed in our analysis. In practice, either a slotted Ot 

uns10tted channel may be implemented. The analysis of an uns10tted 
protocol will be more involved. However, the following observation 
indicates that the performance of an uns10tted protocol should be 
approximated by our slotted model in this paper. In the analysis of 
slotted and pure ALOHA [12,18] it was found that the probability of 
success of a transmission depends mainly upon the duration of its 
"vulnerable period" to another transmission. The vulnerable period in 
our slotted CSMA channel is the duration of a time slot T. On the 
other hand, the vulnerable period in an unslotted version of our CSMA 
protocol would be 2. (after a little thought) which is the sames as T. 
Thus the probability that an attempted transmission is successful 
during a contention period is approximately the same in both cases. 
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Figure 1. A snapshot of the broadcast channel. 
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throughput. 
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Abstract 

Two models for the specification of distributed systems are presented; 
they are named global and local models. The global model can be used 
to specify the system requirements without suggesting any specific 

. design to achieve these requirements. The local model can be used to 
specify some particular system designs which satisfy the given 
requirements. Some general ver.ification techniques are proposed to 
prove theorems about the specifications in both models. We use the 
two models to specify a number of well- known distributed systems such 
as shared resource systems, schedulers, readers and writers, and the 
five dining philosophers. The proposed verification techniques are 
also applied to some of these systems. 
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Formal Modeling 

1. INTRODUCTION 

There has been a great interest in distributed systems in recent 
years (Gouda 76), (Brinch Hansen 78), (Hoare 78), and (Lamport 78). 
Part of this interest is due to the bel ief that these systems can 
offer high degrees of extensibility, performance, and fault tolerance 
(Jensen 78). However, there are still many problems concerning these 
systems which need to be solved before distributed systems can be 
realized and exploited in a practical way. One of these problems 
is the specification of distributed systems (Greif'75), (Gouda 76), 
(Boebert 79), (Laventhal 79), and (Riddle 79). In this paper, we 
address this problem by introducing formal models to specify distributed 
systems. 
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A distributed system consists of entities called processes which 
communicate only by exchanging messages. Each process has 
a number of local data objects whi ch cannot be di rectly accessed by 
other processes. However, any process P can send messages to any other 
process Q requesting to read or to update the local variables of Q. 
Then, according to the internal state of process Q, these requests can 
be denied or honored. Thus, a process performs two kinds of operations, 
external operations and internal operations. The external operations 
consist of sending (or receiving) messages to (or from) other processes 
in the system. TIle internal operations consist of testing and updating 
the local variables in the process. 

There are abstract machines associated with each process in the 
system. The abstract machines define the data types which can be used 
inside the process. They also define the appropriate operations which 
can be performed on each data types in the machine. Two (or more) 
processes can share the same abstract machine if the processes use the 
same data types which are declared by the machine. Any of the known 
techniques to specify abstract machines (Parnas 72), (L iskov 75), 
(Guttag 77), (Robinson 77), (Boyd 78a), and (Boyd 78b) can be used in 
conjunction with our models of a process to. specify distributed systems. 

In this paper, we present two models for the specification of 
communicating processes in distributed systems; they are called 
global and local models. In the global model, we assume the existence 
of a global controller which can read and update the internal states of 
all the processes in the system. This assumption leads to concise 
and compact specifications. However, since the global controller is 
not an acceptable notion in a distributed system, a global specification 
does not specify a solution, (i.e.,a system design) ,it merely specifies 
the problem (i.e., the system requirements). In order to solve such a 
problem, the global controller should be replaced by subcontrollers 
at the system processes such that the total system behavior is preserved. 
The result of this replacement is a local model specification. 
Therefore, the global specification for a system defines the system 
requirements whereas a local specification for the same system defines 
a .system design. 

The global model is presented in section 2. Then verification 
techniques for global model specifications are discussed in section 3. 
Some examples of global model specifications are given in section 4. 
The local model is presented in section 5; and some examples of local 
model specifications are given in section 6. ' 

2. THE GLOBAL MODEL 

In the global model, a distributed system with K processes is 
specified as follows: 
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system system name; 

process process name 1; 

var list of local variables in process 1; 

process process name K; 

var list of local variables in process K; 

rules 

list of system transition rules 

end system name. 

Data Specification 
Section 

} 

Control Specification 
Section 

Reserved words such as system,· process, ru1 es, and end are underl i ned. 
The specification consi sts of two sectfons, a data specifi cation section 
and a control specification section. In the data specification section, 
the local variables in each process are defined using a PASCAL-like 
notation. 

In the control specification section, a set of transition rules 
are defined. A transition rule has the following syntax: 

condi tion------?<jI> result 

where both the "condi tion" and the IIresul til have the following syntax: 

Simple Bool. Expr. and .•• and Simple Bool. Expr. 

A simple Boolean expression is as follows: 

Expression 1 'relation' Expression 2 

Both "Expression 111 and "Expression 211 are based on the local variables 
of the system processes, and the 'relation' is anyone of the following 
=, t, < , <. After specifying the syntax of transition rul es, we 
discuss their semantic next. 

In the global model, the global state of a distributed system is 
specified by the values (at that state) of all the variables in the 
system. Thus, the initial global state is specified by the initial 
values of the system variables. At the beginning, the system is at 
its initial global state; then its global state changes due to the 
"firing" of its transition rules. For a transition rule to fire at 
some global state, its condition must be true at that state. The 
firing of a transition rule consists of changing the global state such 
that the result of the transition rule is true at the new state. 
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We assume that the firing of different transition rules is mutually 
exclusive; i.e. ,at most one transition rule can fire at a time. 

There are a number of similarities between the global model and 
other proposed model s (Kell er 76) and (Bochmann 78); but there are al so 
some differences. In particular, the global model does not have an 
expl icit control structure for each process in the system. Instead, 
the transition rules in the global model descriQe the control structure 
of a "global controller'l; hence, the name global model. It is assumed 
that the global controller can read and update the internal states of 
all the processes in the system. 

The global controller is a virtual entity; it is not a process 
in the system. HO\'/E;ver, its existence makes the system specification 
more concise and compact. On the other hand, since the global 
controller is not an acceptable notion in a distributed system, a 
global specification does not specify a solution (i.e.,a system design); 
it merely specifies the problem (i.e.,the system requirements). In 
order to solve such a problem, we should get rid of the global 
controller; i.e., replace its transition rules by sets of transition 
rules and assign each set to some process in the system. The result 
is a new system model ,called the local model. The local model is . 
discussed in detail in section 5. 

Now we give some examples of global specifications. 

Bounded Buffer 

The bounded buffer consists of three processes IIprociucerll, 
"consumer", and IIbufprs". The "producer" has two variables IIstll 
(for state), and lIindata" to hold the data which is to be sEmt to the 
"consumerll via the buffering process "bufprs ll • The producer state, 
referred to as "producer.st", can have one of two values' II null " or 
II ready" • If "producer.stll is "null", it means that the producer has 
no new data to store in the buffer. Whenever "producer.stll is IIreadyll, 
it means that the content of the variable "indata" has a new value 
which can be copied in the buffer (provided there is an available space 
in it). Similarly, the IIconsumer" has the two variables "st" and 
"outdata". The buffer process "bufprs" has an array of size N to 
store the received data. It has also two integer variables "in" and 
"out" ,where "in" is the total number of received data items from the 
"producer", and "out" is the total number of data items sent to the 
"consumer". The global specification is as follows: 
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system bounded buffer (N); 

process producer; 

var st: (null ,ready) init null; indata '. real; 

process consumer; 

var st: (null,ready) init null; outdata real; 

process bufprs: 

rules 

var buffer: array O .. N-l of real; 

in, out: integer init 0; 

producer. st = null ) producer. st I =ready and indata"= input; 

consumer.st = null ) consumer.st'=ready and output = outdata; 
in < out + N and producer. st = ready 
---~> in ' = in+l and buffer'(in mod N) = indata and 

producer.st ' = null; 
out < in and consumer.st = ready 
-----:) ... - out'=out+l and outdata '= buffer (out mod N) and 

consumer.st'=null ~ 

end bounded buffer. 

Notes: (i) Because both "produceru and "consumer" have a variable 
named II st", we concatenate the'process name and the variable name to 
distinguish between the two variables. (ii) There are four transition 
rules in this system. The first rule refers to "producer.stU in its 
condition, and to IIproducer.st'tl in its result to distinguish between 
the value of this variable before and after the transition rule firing. 
(iii) The two reserved words inhut and output are used to imply 
reading from and writing into t e outside world. 

Shared Resource 

100 users share a common resource which can be accessed by at most 
one user at a time. The 100 users are defined as a process array of 
size 100. Each of them can be in anyone of three states: 
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"null ll ... means the user does not need (nor use) the resource, 
IIneed ll ... means the user does need the resource, 
"busyll ... means the user does use the resource. 

system shared resource; 

processarray user (0 .. 99); 

rules 

var st: (null, need, busy) int null; 

user(i).st = null-__ +-) user(i).st'=need; 

user(i).st = need and (forall j:0 .. 99)(user(j).st f busy) 

----~)o user(i).st'=busy; 

user( i). st=busy --"':lJc!lw user( i). st I =null 

end shared resource. 

Notes: Each transition rule in this specification is written in 
terms of a free parameter 11;". Since "i" is used as an index of the 
process array "user", its value ranges from 0 to 99. Therefore, 
each transition rule is equivalent to 100 different rules. For example, 
the first rule is equivalent to: 

user{l).st = null. user{l).st~ = need; 
user(O).st =null~iJSer{o).stl = need; 

user(99).st = null' user(99).st' = need. 
But instead of writing all these rules, we adopt the above short-hand 
notation. 
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3. VERIFICATION TECHNIQUES 

In general, there are two classes of theorems which we may want to 
prove about a distributed system. A theorem in the first class has the 
form: 

At any instant P 
or P (for short) 

where P is a first order predicate which contains some variables from 
the system specification. P is called an invariant; and the theorem 
is called an invariance theorem. The theorem implies that P is true in 
all the system states which can be reached from the initial state by 
any possible sequence of transition rule firing. A two-step algorithm 
to prove an invariant theorem (Keller 76) is as follows: 

Algorithm 

step 1: 

step 2: 

Prove that the invariant is true in the system initial 
state' 
for all the transition rules in the system specification 
doProve that if the invariant is true before the rule fires 

- then it is a 1 so true after the .ru 1 e fi res od; 

From these two steps, the invariant is true at all reachable 
states by induction on the length of the firing sequence. An example 
is given later on. 

Another class of theorems which may be of interest has the 
following form: 

P * )Q 
where P and Q are first order predicates which contain some variables 
from the system specification. This theorem means that if the system 
ever reaches a state Sl where P is true, then in a finite period of 
time (starting from Sl ) the system will reach a state S2 where Q is 
true. More specifically; there is an upper bound on the number of 
transitions which can fire after Sl before state S2 is reached. The 
proof of such a theorem consists of finding this upper bound. These 
theorems are called non-starvation theorems since as we will see most 
non-starvation theorems can be written using this form. 

Now we give some examples. ConSlaer tne shared resource system 
in the previous section. There are two theorems whi ch we want to 
prove about this system: 
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Mutual Exclusion 

if user(x).st = busy then (forall y:0 .. 99)(if y t x then us~r(y).sttbusy) 

Non-Starvation 

user(x).st = need * ---+) user(x) .st = busy 

The first theorem states that at any instant at most one user is 
busy using the resource. The second theorem states that if a user 
needs the resource, then it will get it in a finite period of time. 
The first theorem is from the class of invariant theorems, whereas 
the second one is from the class of non-starvation theorems. 

To prove the invariant of the first theorem, we first show that 
it is true at the initial state. Then, we show that if it is true 
before the firing of each transition rule, then it will also be true 
after the rule firing. 

Define S(n) to be the system state in which exactly n users are 
busy. Then, the initial state of the system is S(O); and the three 
transition rules of the system can be defined in terms of S(n) as 
foll ows: 

(1) S(n) ~S(n); 
(2) S(O) -7S(1); 
(3) n.::: 1 and S(n) ~S(n-1); 

The mutual exclusion theorem can now be restated (then proved) as 
follows: 

Mutual Exclusion Theorem 

After the firing of any sequence of transition rules (the empty 
sequence is included), the system can either be in state S(O) or in 
state S( 1). 

Proof: The proof is by induction on the length of the firing sequence. 
Fi rs t tne weorern is true after the E:llljJty fi ri ng sequence since the 
initial state ;s S(O). Assume that the theorem is true after a firing 
sequenge of length n, we w~Ht to show that it will be true after the 
(n+l)1- firing. The (n+l)-- firing can be of rule (1), rule (2), or rule 
(3). If rule (1) is fired, then S(O)~S(O), or S(1)---7 S(1). If 
rule (2) is fired, it means that the system was in state S(O), and it will 
become in state S(l). If rule (3) is fired, it means that the system 
was in state S(1), and it will become in state S(O). In all cases, the 
theorem is true after the (n+l)th firing. Thus, the theorem is true 
after any firing sequence. 
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To 'prove the non-starvation theorem, we need to show that if some 
user, user (x) say, is in a "need" state, then in a finite period of 
time his state will become "busi'. Specifically, we want to show that 
there is an upper bound K such that at most K transition rules will 
fire~ then the state of user(x) becomes "busy". 

Actually, we'cannot prove this theorem because the system 
specification in the previous section does permit starvation. To 
show this, consider the system when user (x).st = need and user 
(y).st = null. Starting from this state, if the transition rules in 
the infinite sequence (1), (2), (3), (1), (2), (3), (1) .•• continue 
to fi re for user (y), then user (x) wi 11 conti nue to 'be ina 
"need" state forever. 

To prevent starvation from the system, we add an integer "count" 
to each user. Initially, a user "count" has the value zero, and it is 
incremented each time the user state is changed from "need" to "busy". 
Thus, at each instant, the "count" value is the total number of times 
the user had an access to the shared resource. Whenever a number of 
users are in "need" states competing for the resource, the one with 
the smallest "count" will win. If there are more than one, one of 
them chosen arbitrarily will win. The system, after these modifications, 
is as fo 11 ows : 

system shared resource without st~rvation; 

processarray user (0 .. 99); 

rules 

var st: (null, need, busy) i ni t null; 

count: integer init 0; 

users (i). st = null ---+> user( i) . st' = need; 

user(i).st = need and 

{forall j:0 .. 99)(user(j).st i busy) and 

(forall j:0 .. 99)(if user(j).st = need then user(i).count ~ 

user(j). count) 
----r~~ user(i).st'=busy and user(i).count'=user(i).count+l; 

user(i).st = busy ____ ~). user(i).st'=null; 

end shared resource without starvation. 
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Now we can prove the non-starvation theorem for this system. 

Non-Starvation Theorem 

user (x}.st = need * ~user (x}.st = busy. 
Proof: Assume user (x}.st = need, we ~nt to show that there is an 
upper bound K such that at most K transition rules will fire before 
user (x) .st = busy. The worst case is when the "states" of every 
other user is "null", and its "count" is zero. Starting from this 
state, each other user can compete for the resource, get it, and 
prevent user (x) from becoming "busy". This can continue until the 
"counts" of all other users exceeds the "count" of user (x) by one. 
Therefore, 

K = 99 x 3 x (user(x}.count+l) + 99 

where 99 is the number of other users in the system, and 3 is the 
number of rules that each user can fire to compete, get, and release 
the resource. 

In this section, the verification of a "simple" shared resource 
system has been discussed. Our intent was to demonstrate the use of 
some general techniques for the verification of distributed systems 
using our global model. Next, we extend the discussion to more 
"elaborate" examples of distributed systems. In .each example, we 
specify some distributed system using the glo~al model, and discuss the 
theorems which need to be proven in the order to verify the 
specification. 

4. EXAMPLES OF GLOBAL MODEL SPECIFICATIONS 

Three examples of global specifications are presented in this 
section. The first example is intended to demonstrate how to use 
abstract data types in conjunction with the global model to specify 
distributed systems in terms of abstract data structures. The next 
two examples are intended to express the model power in specifying a 
variety of distributed systems. 

Bounded Buffer with Abstract Data Types 

A bounded buffer system ;s specified in section 2. Here, we 
specify the same system except that the buffer is declared to be of 
type "queue" (instead of an "array"). The data type "queue" can be 
defined using any technique to specify data types such as (Guttag 77) 
or (Boyd 78b). Assume that the following four operations are defined 
for the data type "Queue": 

length: queue--------)~ integer 
add: queue x element > queue 
remove: queue ..... queue 
top: queue :> el ement 
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S~nce the exact definitions of these operations are of little 
value to the discussion in this paper, we skip these definitions 
assuming that the reader has a reasonable idea about the meaning of 
these operations. These four operations can be used to specify the 
bounded buffer system as follows: 

system bounded buffer (N); 
process producer; 

var st: (null, ready) init null; indata: real; 

process consumer; 
var st: (null, ready) init nUll; outdata: real; 

process bufprs; 

rules 

var buffer: queue init length (buffer) = 0; 

producer.st = null-->.,.producer.st' = ready and indata' = input; 
consumer .st = null > consumer .st' = ready and output = outdata; 

1 ength (buffer) ~ N and producer .st = ready 
---)~ buffer' ::: add (buffer, i ndata) and producer .st' = nUll; 

length (buffer)~ 0 and consumer.st = ready 
--->.,..outdata' ::: top (buffer) and 

buffer' = remove (buffer) and consumer.st' = null; 

end bounded buffer. 

In order to verify this system, we need to prove the following two theorems: 

Invariant Theorem: o ~ 1 ength (buffer) L N 

Non-Starvation Theorem: i ndata = X * :> outdata = X 

The non-starvation theorem states that if the producer ever produces a value 
X then in a finite period of time the consumer will get it. 
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Readers and Writers 

100 users share a corrunon resource. A user can read or write the 
resource such that any number of users can read the resource simulta­
neously, whereas a writer needs a sale access to the resource. 

system readers writers; 
process array user (0 .. 99) 

var st = (null, need, busy) init nUll; rqst = (read, write); 

rules 
user(i).st = null--~~~user(;).st' = need and user(i).rqst l = 

input; 

user(i).st = need and user(i).rqst = read and 
(forall j: 0;.99) (if user(j).rqst = write then user(j).st = null) 
--~>~user(i).st' = busy; 

user(i).st = need and user(i). rqst = write and 
(fol'al-l j: O .• 99) (user(j) .st Ibusy) 
--....;~~user(-i) .st I = busy; 

,user( i). st = busy~used f). sf' = null; 

end readers writers. 

To verify this system, we need to prove the following theorems: 

Mutual Exclusion: There are two theorems to prove: 
Theorem 1: If a user is reading, no user is writing; i.e., 
if user(x) .st = busy. and user(x) .rqst = read 

then (forall y: O .• 99) (H user(y) .rqst = write then 
--user(v) .st ! busy) 

Theorem 2: if a user is writing, no other user is busy; i~e., 
if user(x).st = busy and user(x).rqst = write 

. then (forall y: 0 .. 99) (if y 'I x then user(y) .st ! busy) 



-167-

Non-Starvation 
user(x).st = need and user(x).rqst = write 

* :>user(y) .st = busy and user(y) .rqst = write 

This theorem states that if a user needs to write, then in a 
finite period of time a user (may be another one) will write. This is 
a weak non-starvation theorem. To make it stronger, we need to modify 
the specification as discussed in section 3. 

Five Dining Philosophers 

Five philosophers spend their lives thinking and eating. The 
philosophers sit at a circular table with a bowl of spaghetti in its 
center. The table is laid with five forks. On feeling hungry, a 
philosopher picks up the fork on his left and the fork on his right, 
eats, then puts down both forks. The system specification is as follows: 

system dining philosophers; 
process array for~ (0 .. 4); 

var st = (putdown, pickup) init putdown; 
process array ph (0 .. 4); 

var st: (think, hungry, eat) init think; 
rul es 

ph(i).st = think--->~ph(i).st' = hungry; 

ph( i) .st = hungry and fork( i) .st = putdown and 
fork(i+l) .st = putdown ,>ph(i) .st l = eat and 
fork(i) .stl= pickup and fork (i+l).st ' = pickup; 

ph( i) .st = eat---">7'ph( i) .st I = think and 
fork(i) .st l = putdown and fork(i+l).st ' = putdown; 

end dining philosophers. 
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5. THE LOCAL MODEL 

As. demonstrated by th,e above examples, the global model is a useful 
tool to specify and lI'easily" verify distributed system specifications. 
However, one of the model's problems is the lack of mechanisms to specify 
potential parallel ism within these systems (since' transition rules can 
only fire one ata time). On the other hand, it is this tlnon-parelle1 
behavior" which simpl ifies the verification of distributed system 
specifications. In general, one needs a compromise between these two 
seemingly conflicting needs; i.e., introduce a scheme to specify 
parallelism into the model while retaining most of the features which 
ease verification. In this section, such a compromise is discussed. 

First, we present a scheme to specify parallelism into the global 
model. The resulting model is called the local model. Then we show 
that in a 11arge"number of cases, proving a theorem for the local 
model specification (i.e., with parallelism) is equivalent to proving 
the same theorem for a global model specification (i .e., without 
parallelism). 
, In the local model , each transition rule belongs to one process in 

the system; and each process has one or more transition rules. The 
transition rules in one process, can only fire one at a time. Parallel­
ism is achieved when transition rules in different processes fire 
simultaneously. Therefore, the maximum number of transition rules 
which can fire simultaneously equals the number of processes in the 
system. 

As an example, a local model specification for the bounded buffer 
system defined in section 2 is as follows: 

system bounded buffer (N); 

process producer; 
var st: (null, ready.) init null; indata: real; 
rules 

producer.st = null ____ )~producer. st'= ready and 
indata ' = input; 

end producer; 
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process bufprs; 
var buffer: array 0 •. N~l of real; in, out = integer init 0; 

rules 
in< out + Nand 
producer.st = ready ____ )~inl= in + 1 and 

out < in and 

buffer l (in mod N ) = indata and 
producer.st 1 = null 

consumer.st = ready ____ )~Oue= out + 1 and 

end bufprs; 

process consumer; 
var st: (null, ready) 
rules 

outdata l = buffer (out mod N) and 
consumer.st l = null 

init ready; outdata: real; 

consumer. st = null----)~consumer .st I = ready and output = 
outdata; 

end consumer; 
end bounded buffer. 

For the sake of the local model, we assume a IIdiscrete ll view of time. 
The system state can be only observed at discrete instants of time tl, t2, •• ' 
At any instant, say tt, the system state S. remains fixed, and no 
actlvity (i.e., transltion rule firing) takes·place. However, at the 
next instant, ti+l' the system state Si+l, may be different from Si, 
implying that some transition rules had fired in the unobserved time 
period bebJeen t; and ti+l' As in the global model, a transition rule 
in the local model fires between a pair of observed time instants t; and 
ti+l' only if its condition is true at tie If the rule does fire between 
ti and ti+l then its result is true at ti+l' 

Because of this discrete view of time, the local model allows only 
an lIideal ll type of parallelism. Two transition rules in different 
processes can either fire simultaneously (i.e., between the same pair of 
successive time instants), or in sequence (i.e., they fire between 
different pairs of successive time instants). If the two transition 
rules have disjoint variables then whether the two rules fire simul­
taneously or in sequence, the system still reaches the same global state. 
This means that the introduced parallelism does not introduce II newll 
reachable states to the system. The parallel ism merely IIspeeds-upll 
the reaching to the 1I01dll reachable states. 
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This. property can be used to simpl ify theorem praYing for the local 
model. As an example, assume it is required to prove an invariant P 
for some system S specified in the local model. One needs to show that 
P is true for all the reachable states of S. To do so, one can ignore 
the parallelism (implied by the local model) assuming that all the 
transition rules in the system only fire one at a time (i.e., global 
model). Then, the techniques outlined in sectiori 3 can be used to 
prove P. Hence, P is true if the transition rules are fired one at a 
time. But, because the parallelism does not i:ntroduce new system s.tates, 
P is also true in the local model. Now' that we have establ ished 
the importance of preventinq paral1elism fromtntrodutino new system 
states, we need some way to achieve this property. In particular,we 
need a set of restrictions (i.e., a discipline) to write transition rules 
such that this property is achieved. A discipl ine to write transition 
rules in the local model is discussed next. 

In the local model, the transition rules in a process can only 
test (in their condition parts) and update (in their \'esult parts) two 
classes of variables, namely, the process local variables and sequencers. 
A sequencer is a variable local to some process but it can be tested 
and updated by transition rules in other processes in the system. 
There is no limit on the number of sequencers which are defined in a 
process. A sequencer shoul d satisfy the following condi tions cOIl':erning 
its declaration, testing, updating, and its associated variables. 

Sequencer Declaration 

A sequencer is a variable of an enumerative type. It is declared 
using the reserved word~. For example, the following statement 
declares a sequencer "x"wnich has five values: 

~ x : (xl, x2, x3, x4, x5); 

Sequencer Testing 

A sequencer can be tested in the condition part of any transition 
rule in the system. The test can only be of the for,m: seq name = seq 
value. Moreover, if a transition rule in one process tests for one 
value of a sequencer then no transition rule in any other process can 
test for this same value. This does not exclude the case when two 
(or more) transition rules in- the same process test for the same value. 
As an example, assume that the following three transition rules 
(which test sequencer x) belongtf.) the same process P: 

x = xl_--_____ »v'· = input an.9. x = x2; 
x = x2 and z = 2 >Wl = V 1+ 20 and z I = Z + 2; 
x = x2 and z = 4 ) X I = x4; 
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Then the fol1owtng rule cannot belong to ,any process in the system 
other than P: 

x = xl __ ~ ______ E_?~XI = x2; 

since it tests for value xl which is tested by some rule in P. 

?equencer Updating 

A sequencer can be updated by the result part of any transition 
rule in the system if the rule tests the sequencer in its condition 
part. Because of this condition, each sequencer should have an 
initial value. 

A sequencer' update can only be of the for,m: seq name l = seq value. 
For example, the following transition rule correctly updates the above 
sequencer "x": 

x == x2 and z = 4 ------~~~ \' = x5; 

On the other hand, the next two rules are wrong: 

y = 1 and z = 4· -:" )x l = x5; 
x = x2 ancr z = x5_: __ -n--7~X I = z; 

The fir'st rule updates sequencer x in the result part without testing 
its value in the condition part. The second rule updates sequencer x 
using an inappropriate form. 

~eguencer Associated Variables 

Let x be a sequencer local to some process P. A variable v local 
to P is said to be associated with x if each transition rule in P 
which reads or updates V in its result part also tests x in its condition 
part. If v is associated with sequencer x, then any transition rule 
in the system which tests x in its condition part can test, read, or 
update v in its result part. 

After stating the sequencer conditions, it is useful to discuss 
the motivations behind these conditions. As mentioned earlier, the 
basic motivation is to prevent the parallelism from introducing new 
reachable states to the system specification. Specifically, the 
following theorem is true: 

Theorem 1 

Let S be a distributed system specified in the local model. If S 
is at state Sl where some transition rules (in different processes) can 
fire simultaneously causing S to become in state 52, then if these rules 
fire in any sequence starting from Sl, S will become inS2. 
Proof: Let rl" r , ... , r be the transition rules which can fire 
simultaneously ca6sing S ~o change its state from Sl to S2' To show that 
these rules can fire in any sequence cuasing the same state change, it is 
sufficient to show that no two of these rules share any variables. 



~,17 2-

In other words, it is suffi ci entto show that any two y'ul es ri and 
r· do not test (in their conditio~ parts), read or update (in their 
r~sult parts) any common variables. The conditton parts of ri and 
rj contain local variables and s:quencers. But since they ~an fire 
slmultaneously, they belong to drfferent processes; and thelr local 
variables are different. Moreover, they can only test the same 
sequencer for different values; but since they can fire simultaneously 
and a sequencer (like any variable) can only have one value at a time, 
ri and rj must have different sequencers, if any, in their condition 
parts. , 

The result parts of r1 and rj can have local variables, sequencers, 
and sequencer associated variables. Since they don't test the same 
sequencers in their condition parts, they can neither update the same 
sequencers nor read nor update the same sequencer associated variables 
in their result parts. Thus ri and r' do not have any common 

'variables; and the final state will b~ the same if they fire simulta-
neously or if they fire in sequence. ' c:J 

From the above theorem, it can be shown that proving invariants 
for a local model specification is equivalent to proving these invar­
iants for the same specificat'ion assuming that transition ru1es;n the 
system fire one at a time. 

Theorem 2 

Let P be an invariant for some distributed system specified in the 
local model. If P is true when the transition rules in the system fire 
one at a time, then Pis true for the local model. 
Proof: In the local model, transition rules in different processes can 
fire simultaneously. But from theorem 1 this parallelism does not 
introduce "new" reachable states. Since P is true at all the "old" 

, rea.chable states, then it is also true for the local model. 0 
Another important motivation for defining sequencer conditions 

as they are defined in this section is to ease the checking of whether 
or not a given local specificat"ion satisfies these conditions. 
Actually. these conditions can be verified purely on the basis of the 
specification syntax. Thus, the checking can occur at compile time, 
and it can be easily automated. 

Now, a word of caution. The concept of sequencers is intended to 
specify synchronization in the local model specification. So it is a 
specification tool. It is not intended to be an implementation tool. 
It should not be viewed as a h'int on how synchronization between" . 
communicating processes should be implemented. Our only criterion for 
selecting sequencers in the local model is ease of proofs. 

6. EXAMPLES OF LOCAL MODEL SPECIFICATIONS 

In this section, we present some examples of distributed system 
specifications using the local model. To compare between local and 
global specifications, some examples in this section are for 
distributed systems whose global specifications are introduced earlier. 
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Shared Resource: 
The shared resource problem is discussed in section 2. A local model 
specification for the problem is as follows: 

system shared resource us i ng semaphore; 

process array user (0 .. 99); 

~ st: (null, need, busy) init nUll; 
rul es 

user(i).st = null )user(i).st ' = need; 
user(i).st = busy and sem(i) = one 
---~) user(i) .st l = null and sem(i) = zero; 

end user; 

process semprs; 
~ sem: array 0 .• 991 of (zero, one) init zero; 
rules 

user(i) .st = need and (forall j: 0 .. 99) (sem(j) = zero) 
---~)user(i).stl = busy and sem(i) = one; 

end semprs; 

end shared resource 

Notes: (i) If this specification is compared with the global 
specification in section 2, we note that a new process "semprsll is 
added to the system to provide the required synchronization. (ii) The 
new process contains 100 semaphores (defined as a sequencer array) 
so that each user process can test and update its own semaphore; thus, 
the sequencer conditions are satisfied. (iii) The new process . 
represents a "central" controll er for the system. To show that is not 
a characteristic of the model but it is a characteristic of our chosen 
sol ution, we present another specHi cation for the same probl em. 
In this specification,there is a token which is being passed from one 
user process to another (Lelann 77). If a user process needs the 
resource, it waits until it receives the token, keeps it, then 
accesses the resource. When it is done, it gives the token to the 
next user process: 
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system shared resource using token; 

process array user (0 .. 99); 
~ token: (act, inact) ;nit user(O). token = act and 

(foral'l j:1..99) (user(j).token=inact); 

var st (null, need, busy) i nit null; 

rules 

end user; 

user(i).st = null 
___ ~~:user( i) .st' = need; 

user(;) .st = null and user(;). token = act and 
user(;+l).token=inact 

---~)user(i). token' = ;nact and user (i+1). token' = act; 

user(i) .st = need and user(;). token = act 
---,;;;1)7) user(;) .st' = busy; 

user(i) .st = busy 
--->~user(i) .st' = null; 

end shared resource 

Note: Each of the above local specifications specifies a possible 
solution for the same shared resource problem. The global specification 
of the same problem (in section 2) specifies only the solution require­
ments without suggesting any specific way ,to solve it. 

Minimum Holding Scheduler 

Consider a system with 100 users who share a common resource which 
can be accessed by, at most, one user at a time. The system has a 
scheduler to assign the resource to the user who will hold the resource 
the shortest time., Each user has a local variable called "hldtim" of 
type positive integer. When a user needs the resource, the value of 
its "hldtim" equals the expected holding time of the resource by the 
user. "Hldtim" is chosen to be of type positive integer so that it has 
a minimum value namely one time unit. The system specification is as 
follows: 
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system min hold scheduler; 

process array user (0 .. 99); 
~ st: (null, need, busy) init null; 
var hldtim: positiveinteger; 
rules 

end user; 

user(i).st = null 
___ >~user(i).st' = need and user(i) .hldtim ' = input; 

user(i).st = busy and state(i) = inuse 
--->~user(i).st' = null and state l

(;) = free; 

process scheduler; 
~ state: array O .. 99 of (free, inuse) init free; 
rules 

user(i) .st = need and 
(forall j: 0 .. 9~) (state (j) = free) and 
(forall j: O .. g~) (if user(j).st = need then 
user(i). hldtim ~ user(j) .hldtim) 
--->~user(i).st' = busy and state'(i) = inuse; 

end scheduler; 

end mi n. ho 1 d . 

Note: The scheduler has an array of 100 binary sequencers; one 
sequencer for each user process. This array is introduced (instead of 
a single binary variable) to satisfy the sequencer condition that each 
process can only test a sequencer for some specific value for which no 
other process can test the same sequencer. Local specifications tend 
to increase the number of variables in the system. 

7. CONCLUSIONS 

We presented two formal models to specify distributed systems, a 
global model and a local model. The two models differ only in their 
abil ities to specify parall el ism and in their needs to specify 
synchronization explicitly. 



-176-

In the global model, events are assumed to be effected _ ~ 
one at a time by some global controller. Therefore, potential parallel­
ism cannot be specified. Moreover, synchronization between conflicting 
events is achieved automatically; thus, no explicit synchronization 
mechanism or policy is needed. These characteristics make global 
specifications si'mple and straight- forward. In particular, the 
mechani'sms and/or policies which wi'll be introduced to the system 
(during the design phase) to achieve synchronization need not to be 
present in the system global specification. For this reason, the 
global model can be used to specify the system requirements without 
suggesting how the system should be designed or implemented. 

In the local model, non-conflicting events can occur in parallel, 
and potentially conflicting events are serialized by the aid of 
"sequencers". Therefore, potential parallelism can be specified and 
explicit synchronization policy is required. Notice that "sequencers" 
can be regarded as an explicit synchronizati'on mechanism which is 
built into the local model. For this reason, the local model can be 
used to specify different system designs which achieve the system 
requirements. 

The two models have very similar syntax to ease the use of both 
models during the requirement analysis phase and during the system 
design phase. From our experience, both models seem to provide 
concise specifications for otherwise hard systems. 

In the paper, we also discuss some general techniques to write and 
prove theorems about specifications in both models. So far, these 
techniques have proven very convenient to reason about distributed 
systems. 
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Danny Cohen and Yechiam Yemini 
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Abstract 

This paper is about the process of specifying protocols for computer 
communication. It uses a dating coordination protocol as an example for 
an interprocess communication. Since this problem has some timing 
constraints buil t into it, the resul ting discussion is different than 
most of the more familiar protocols which do not have requirements 
associated with timing. Several protocols are discussed here in order to 
illustrate different aspects of the specification issue. 

1. BACKGROUND 

In the rural area of Oceanview, Kansas, people are too busy to arrange 
their own dates. In order to alleviate this problem a dating center 
(hereafter "C") was founded by the local church. 

The dating center operation is generally simple. When a person 
(hereafter "X") is interested in a date, he writes a letter to the 
center, requesting a date with his sweetheart (hereafter "Y"). It is a 
pity that there are not many phones in this area, isn't it? 

Typically a requested date is blessed unless it is found to be in 
conflict with the center's policy, due for example to the lack of common 
approach to the arts. In the lucky event that the date is blessed a 
time is assigned for X and Y to meet at the center.. Letters are then 
sent to both, notifying them about the particulars of the upcoming 
event. Needless to say, church tradition strictly forbids X and Y from 
being in direct communication before their supervised meeting at the 
center. 

Sections 2 through 7 of this note discuss a protocol for this 
coordination. 
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qui te happy with this dating 
of Oceanview found it hard to 

Due to different cultural 
approach to the arts wi th 

Most of the population of Oceanview is 
service. However, the Japanese community 
take advantage of this dating service. 
background it is very hard to find a common 
the rest of the town people. 

Therefore the local Buddhist ·temple decided to sponsor another dating 
center operating with different rules. 

Section 1 discusses a different dating coordination protocol, geared to 
the needs of the local Japanese community. 

2. THE SPECIFICATION OF THE OBJECTIVES 

The objective of this protocol is to allow X to cause C to dispense the 
same time and place assignment for blessed dates, both to himself (X) 
and to the other party (YL This operation should succeed in spite of 
the postal communication which in that part of the country (unlike 
others) may lose letters, delay them for an arbitrary amount of time 
(hence causing occasional "out of order" delivery) and, believe it or 
not, deliver /several duplicates of the same letter. It is assumed that 
no Y ever declines to accept a blessed date. 

3. THE SPECIFICATION OF THE PROTOCOL 

The protocol employs the following letters: 

[1] X=>C: <DATE-REQUEST>, X, Y, RX 

This letter is used by X to request C to issue the time and place 
assignment to both X and Y. This issuance will have the effect of 
notifying Y that X is interested in dating her. The RX in this letter 
is a reference number that X assigns to this expected date. 

[2] C=>X: <HEARD-YOU>, RX 

This letter is sent by the center to acknowledge the reception of X' s 
letter. It constitutes neither an approval nor a denial of the date. 

[3] C=>X,Y: <BLESSED>, X, Y, T&P, RX, RC 

This is an official notification of the blessed date which is sent to 
both parties. T&P is the specification of the time and place assigned 
for this date, and RC is the reference number assigned to it by C. 

[4] C=>X: <DENIED>, RX, RC 

This is the official denial of the date, which is sent only to X. 
[5] X,Y=>C: (TNX> , RC 

This is the letter that X and Y send to the center upon rece1ving either 
a (BLESSED> or a (DENIED> letter. 
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4. THE OPERATION OF THE X AND Y PROCESSES 

State Condition Action Next 
--------- ---_ ..... State 

1 IDLE: wants to date send <DATE-REQUEST> 
set timers T1 and T2 2 

rec'd <BLESSED> send <TNX> 4 

2 WAIT-FOR-ACK: T1 goes off send <DATE-REQUEST> 
set timer T1 2 

T2 goes off 1 

rec'd <HEARD-YOU> set timer T3 3 

rec'd <BLESSED> send <TNX> 4 

rec'd <DENIED> send <TNX>t expunge RA 1 

3 WAIT-APPROVAL: T3 goes off 

rec'd <BLESSED> send <TNX> 4 

rec'd <DENIED> send <TNX>, expunge RA 1 

4 HAPPY:. date termination 

Any other event is ignored. T1 is presumably very much smaller than T2. 
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5. THE OPERATION OF THE C PROCESS 

State Condition Action Next 
State 

IDLE rec'd <DATE-REQUEST> send <HEARD-YOU> 2 

2 CHECKING date approved 

date denied 

3 WAITXY reo'd <TNX> from X 

rec'd <TNX> from Y 

T4 goes off 

T5 goes off 

4 WAITX reo' d<TNX> from X 

T4 goes off 

T5 goes off 

5 itlAITY rec'd <TNX> from Y 

T4 goes off 

T5 goes off 

6 WAITXX rec'd <TNX> from X 

T4 goes off 

T5 goes off 

send <BLESSED> to X and Y 
set timers T4 and T5 3 

send <DENIED> to X 
set timers T4 and T5 6 

5 

4 

send <BLESSED> to X and Y 
set timer T4 3 

send <BLESSED> to X 
set timer T4 

send <BLESSED> to Y 
set timerT4 

send <DENIED> to X 
set timer T4 

1 

4 

5 

6 

Any other event is ignored. T4 is presumably very much smaller than T5. 
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The above is, obviously, the description of a single instance of C, 
dedicated to handle a specific DATE-REQUEST. It is assumed that C has a 
central process which identifies new requests, and creates new instances 
to handle them. 

6. DISCUSSION 

We believe that this protocol is capable of performing a good job. 

However, it is obvious that the specifications of the objectives, as 
given in section 2, do not cover all the issues which are covered by the 
design and by the implementation specification of this protocol. 

We suggest that the reason is that the real objectives are not fully 
specified. Therefore, the above protocol is an "overkill" for the 
specification, and Simpler protocols which meet the same given 
specifications may be devised. 

6.1 Simpler Protocols 

For example, in order to meet the objectives, as specified 
the <DATE-REQUEST> and the <BLESSED> messages are needed. 
<HEARD-YOU>, nor the <DENIED>, nor the <TNX> are needed. 
neither the timeouts nor the retransmission are needed. 

above, only 
Neither the 

Similarly, 

Hence, a possible Simpler protocol has only the <DATE-REQUEST> and the 
<BLESSED> messages, without the <HEARD-YOU>, the <DENIED>, the <TNX> and 
any of the timeouts. 

It is not hard to verify that this pro~ocol meets the objectives as 
specified in section 2. Obviously it is less robust in respect to 
communic.ation imperfections, but this was not specified .there. 

It is obvious that what we meant is to make sure that the transactions 
are successfully conducted, in spite of the unreliability of the 
supporting communication medium. 

However, the term "sure" above has to be taken with a grain of salt. 
Obviously it 1s impossible to have a perfectly reliable communication on 
top of an unreliable medium. What if the Oceanview post office goes 
suddenly on strike ? I! Even though federal employees are not expected 
to strike, this is still a possibility. 
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In more precise terms, what' is meant is that the success probability, of 
the entire transaction, should be above a certain threshold, in spite of 
a lower (positive) communication success probability. 

The above protocol is probably a pretty good answer for this 
interpretation of the objectives. 

We suggest that in general the problem specification should include, 
quantitatively, the reliability parameters and other relevant 
information about the environment in which the problem is embedded, like 
the performance of the supporting communication system, for example. 

If only the increased success probability is added to the objectives, 
then there is even a simpler protocol which still meets the objectives. 

This protocol, as the previous one, has only the <DATE-REQUEST> and the 
<BLESSED> messages. It does not have the <HEARD-YOU>, the <DENIED>, the 
<TNX> messages and any of the timeouts. It achieved the desired increase 
of reliability by flooding the communication system with multiple copies 
of each message, ad infinitum. One can prove that if the probability of 
a successful delivery of a message is arbitrarily small, but greater 
than zero, then the probability of a successful conclusion of a 
transaction is arbitrarily close to 100$. 

6.2 Efficiency and Cost Considerations 

However this protocol is not considered acceptable since some cost is 
associated with the transmission of messages. It results from both the 
communication cost, and/or processing limitations. In our story the 
transmission cost is paid in postal stamps, and processing limitation 
are reflected by the understanding that if too many copies of the first 
<DATE-REQUEST> reach the center, the center may never have the chance to 
notice another request. 

Therefore, we suggest that in addition to sp~cifying the desired 
performance, the cost parameters must be specified, too. One should be 
able to specify that he is very much interested in having a date, but 
that he is not willing to pay more than so many stamps for it. 

However, there is an even simpler protocol which is based on the center 
continuously telling everyone to be always at the center, just in case 
someone wants to date them. This can guarantee (i.e., with probability 
arbitrarily close to 100$) that if your requested date is blessed (or 
even if it is not) then when you go to the center, your date 1s there. 
It is conceivable that some people may have some objections to this 
procedure. Camping on th-e front lawn of the center for several weeks 
before the data commences, is not that much fun. 
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The problem of missing knowledge in the protocol objectives 
specification causes major difficulties not only to the protocol 
designer community. but also to the protocol verification community. 

6.3 Complete Specification 

There are probably several other possible protocols which meet these 
objectives, and have similar flavor. All of them result from the lack 
of complete specification. 

The missing specification includes typically the "obvious" details, 
which do not require explicit mention, but are implied from our general 
experience in dealing with communication protocols. They include the 
performance parameters, the cost parameters both for the communication 
and the processing resources, the cost associated with omission and 
commission errors, and the like. 

One may argue that this type of speCification does not belong to the 
particular problem at hand ,but to the general domain of message 
communication, and separate the specifications into two parts, the 
particulars of the given problem and the generalities of the domain. 

We suggest that in message communication the domain has to be 
parameterized, where the assignment of the parameters is a part of the 
specification of a particular problem. The model of probabilistic 
delivery, communication and processing costs, omission and commission 
errors and the like belong to the domain. but the value of these 
probabilities and the various costs are parameters which depends on each 
specific problem. 

It is unfortunate that we still do not know how to completely specify 
the objectives of a protocols. These objectives must include the 
parameters of the environment, such as the supporting communication 
medium (below) and the expected traffic (above), the various costs 
associated with usage of resources such as message transmission, 
processing and storage, and with delays, communication errors, and the 
like. 

It is amazing that even though we do not yet possess the ability to 
accurately specify protocol objectives, we have enough "engineering" 
experience to guide us in implementing protocols which do a remarkably 
good job of message communication. 

The nature of these performance and cost related parameters introduce 
the notion of approximations. Protocols are not either correct or 
incorrect, but are more like many numeric problems which have a 
continuous spectrum of accuracy. 



-186-

For some problems the objectives are such that the correctness of 
message delivery is more important than its efficiency: File trans:er 
requires that each bit is reliably received, even lf this implles 
delays. Speech communication requires efficiency and low delays, more 
than perfect accuracy. For speech a certain amount of errors is 
tolerated if this is necessary for delay considerations. Obviously, this 
cannot be carried to the extreme in which a zero delay is achieved by 
compromising (totally?) the accuracy of the signal. 

7. THE JAPANESE DATING COORDINATION PROTOCOL 

The Japanese community in Oceanview is much more permissive than their 
neighbors downtown. Direct communication between the parties is not 
only allowed before the date, it is even encouraged. The center role is 
limited to providing consultation, addresses and other matters of 
importance. 

After choosing his sweetheart, a person writes her directly and invites 
her to meet him, in the temple gardens, at a certain time. Typically 
the recipient responds rather anxiously, and sends a letter of 
confirmation. 

Due to old Japanese tradition one loses face if stood up for a date. 
Losing face, in this community, results always in the tragic act of 
harakiri. 

When the number of these tragic acts soared 9 the temple leaders were 
able to correlate it with the low quality of the local postal service. 

Without delay they set out to design a protocol which would assure the 
safety of all dates,thus eliminating the recurrence of these tragic 
consequences. 

Unfortunately this task proved to be more difficult than first expected. 

The reason for this difficulty is that since losing face is a serious 
matter, in fact a matter of life and death, the required level of safety 
must be 100$, not a bit less. 

It turned out that no protocol could guarantee that absolute 
reliability 9 even with any finite delay. When a young mathematician 
managed to prove that such a protocol could not exist, the wise men at 
the temple were very disappointed. 

For the benefit of the interested reader the proof is;'sketched below. 

Suppose that P(N) is a protocol which under the existing conditions 
could guarantee a safe date, where the probability of a message to be 
successfully delivered is less than 100%. 
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The last message, the Nth one, could not carry information which is 
essential for the safety of the date, since its sender cannot be sure 
that it was received by the other party. Since it carries no essential 
information it could be eliminated, and a stamp can be saved. Since , . . 
peN) is a safe protocol, so is P(N-1), which is the protocol conslstlng 
of the first N-1 messages of peN). 

Therefore a P(N-2) exists, too. So does P(N-3) and so on. Therefore, 
P(O) exists. This means that a safe date can be arranged without any 
exchange of messages. 

Since the dating process is essential for the well being of the 
community, other communication alternatives are under study now. 

8. CONCLUSIONS 

Complete specification of protocols are needed for optimal 
implementation and for verification. 

Even though we, as a community, have gathered an impressive experience 
in implementing protocols, our ability to specify accurately and 
precisely the objectives of protocols still leaves a lot to be desired. 

We suggest that the specifications of message communication protocols 
should include the parameters of the environment, the parameters of the 
performance and cost constraints. The cost should include the effects 
of errors,. of both kinds. It should be kept in mind that absolute 
reliability cannot be guaranteed in environments which are less than 
perfect. 

It is probably possible to divide the specifications into (i) the 
particulars of the specific problem at hand, and (11) the generalities 
of the message communication domain. However, due to the diversity of 
this domain, (ii) may be specified only as a parameterized domain, where 
the specific values of its parameters are part of (i). 

'9. AN IMPORTANT NOTICE 

Throughout the paper pursuers are referred to as belonging to the male 
gender, whereas females are considered always as lovely sweethearts who 
are always anxious to be approached. We would like to emphasize that by 
no means do we intend to suggest that this is a correct reflection of 
the roles of human beings. We are well aware that in real life the 
division between "pursuers" and "pursuees" does not follow the sex lines 
as closely as we used to pretend. 

As a matter of fact, the authors of this paper are quite aware that in 
this day and age liberated women may play the "aggressive" role more 
often than their counterparts. 

We are well aware of it, and regret having been born too early to enjoy 
it. 
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Abstract 

In this paper, the problem of updating a datEbase with 
multiple copies under distributed control is addressed. 

An update synchronization algorithm for databases, 
whose copies are distributed on a store-and-forward synchro­
nous network is presented and its complexity is analyzed. 
The proposed algorithm is shown to be time optimal within an 
add i t i v e con s tan t for net wo r k s 0 far bit r a r y to po I og y • Th e 
algorithm incorporates a simple priority scheme to resolve 
concurrent updates. 

I. INTRODUCTION 

When a single database is accessed by several users 
through a communication network, it may be advantageous to 
store the same data at more than one center in the network. 
For example, consider a database for which the expected 
number of "read" accesses is very large as compared to the 
expected number of "update" accesses. If a copy of the data 
is stored at each center of the network, then "read" 
requests can be serviced locally, reducing the operational 
cost and the response time of the database. 

The advan tag e 0 f a m ul ti pI e copy d i st r fb uted database 
are essentially based on the availability of duplicate data. 
Namely, this redundancy offers an increased reliability, a 
quicker query response, and a potential for upward scal ing 
of database capacity [11]. 

The disadvantages rest on the facts that updates, ori­
ginated at various cente~s, must be reflected in every copy, 
and that transmision delays, as well as the order in which 
updates are applied, must be taken into account to maintain 
internal consistency in the database. 

It could be desirable to centralize the control func­
tion, i.e. to make a single center responsible to maintain 
the consistency and integrity of the database. In such a 
scheme, all other centers will request permission from the 

* On leave from Instituto Scienze Informazione, Univer­
sit Y 0 f Pis a, Co r so I t a I i a 4 0, 561 0 0 Pis a, I t a I y. 



-192-

control center to update the database and the control center 
will deny or grant the request on the basis of current 
locks. If the reque st is granted, then each cOl?Y is 
updated, and acknowledegement is sent to the control center 
that will then release the associated lock. For a more com­
plete discussion and some examples of centralized control 
se e [1, 4 , 12]. 

An interesting alternative is represented by the dis­
tributed control scheme. In this model, the control func­
tion is distributed among all centers in the network. To 
make the control po ss ib 1 e, it is necessa ry fo reach c en te r 
to communicate (exchange messages) with other centers (its 
neighbours); and, in order to maintain the internal con­
sistency in the database, a synchronization technique is 
needed. In the literature several algorithms for distri­
buted control have been presented; they are designed to work 
with networks of a given topology. Namely, the centers of 
the network must form a sequential chain [6, 7], a daisy 
chain [3, 13, 14], or a star [2]; and each center must have 
knowledge of the network topology. 

In this paper we continue the analysis of multiple copy 
databases with distributed control, and present a general 
and efficient update synchronization algorithm for networks 
of arbitrary topology_ In order for the algorithm to work, 
each center needs only to know who are its neighbours, and 
no additional knowledge of the network topology is required. 
Concurrent updates are resolved by a priority mechanism that 
guarantees proper sequencing and avoids race conditions. In 
the next section, the problem is stated formally. In sec­
tion III, a restricted environment is considered, a naive 
algorithm is described, and an improved algorithm is 
pr esented and proved to be opt im al in the restr ic ted con­
text. In section IV we show how to modify the algorithm to 
work ina general environment increasing the time complexity 
only by a small constant, and we describe the proposeQ algo­
rithm formally. 

lIe DEFINITIONS 

Let us formally describe the framework and define some 
terms that will be used throughout the paper. The network 
is composed of n centers, each mantaining a copy of the 
database. Each center repl ies to query and update requests 
which are originated locally or received from some other 
center. At each center, messages are sent to and received 
from its neighbour centers. This situation can be 
represented using a linear graph G=(N,A), where N is a set 
of nodes and A a set of arcs: each node n( i) e N represents 
a center where a copy of the database resides, and. each arc 
a(i,j)e A represents a direct communication link between 
n(i) and n(j) (in our application a(i,j)=a(j,i). If a(i,j) 
e A then n(i) and n(j) are said to be neighbours. Each 
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c en t e r man t a ins ali s t D ( i) 0 fit s n e i g hb 0 U r s , 
D(i) = { n(j) e N I a(i,j) e A}. 

At any given time, each node can be in one of the following 
states 

S = {Ava i 1 ab 1 e, Pr epa red, Co un t i ng, Upd ate} • 

The model is based on the following basic assumptions: 
i) Synchronization. 

The clocks at each center are synchronized. Imperfect 
synchronization could be included in our model by using 
a quantity d(i,t) defined as the difference between the 
clock at center i and the "time" t (see [5]). 

ii) Partial Reliability. 
During an update, the topology of the network will not 
change. Partial reI iabil ity does not imply any other 
assumption, neither on the topology nor on the general 
reliability of the network. 

iii) Conse nsus. 
An update will be performed only if all centers agree 
on the update (see [9]). 

In the next section we will analyze a "naive" algorithm 
for update synchronization. We will then show how to modify 
it in order to speed up the synchronization time, and we 
will prove that the resulting algorithm is time optimal. 

III. RESTRICTED CONTEXT 

In this section we will consider a restricted environ­
ment to simplify the presentation. In section IV we will 
show how to extend the result to the general case. The res­
tricted context is as follows: 

i) the database is on an acyclic network, i.e. G is a 
tree. 

ii) at any given time there is at most one active update 
request. 

iii) to transmit a message across any link takes a single 
un ito f t im e • 

The naive algorithm. 

In a "naive" algorithm for the above environment, a 
node n(O) receives an update request originated locally. It 
enters state "Prepared", sends a "request" message to all 
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its neighbors, and waits for replies from them all. Node 
nCO) at this time, does not have any information on the 
topology of the network, except which centers are its neigh­
bors. In fact, the network topology might have changed 
si nce the 1 a st upd ate, due to brea known or to the reac t i v a­
t ion 0 f a com m un i cat ion 1 ink. Th ere for e , i tis n e c e s sa r y 
for nCO) to obtain from all centers not only the consensus 
to update, but also some information on'the topology of the 
network. Namely, it needs to know the radius, i.e. the time 
requi red fo r a message from n(O) to reach the farthermost 
center in the network. 

Let us now continue the description of the algorithm. 
In a recursive fashion, node n( i), upon receipt of a 
"request" message from n( j) , enters state "Prepared"; sets 
sender(i)=n(j); sends a "request" message to all its neigh­
bors except n(j); and waits for acknowledgement from them 
all. 

If neil is a leaf then, after entering state 
"Prepared", it sends to n(j) an "Ackowledgement" message 
containing a counter T(i) (in the restricted environment 
T(i) will be a variable initially set to zero) and waits for 
the "Update" signal. 

In a recursive manner, node n(j) waits for "Acknowledg­
ment" messages containing the counter T from all its neigh­
bours (except sender( i)). Then, it sends to sender( i) an 
"Acknowledgement" message containing the counter T(j) 
defined as the last received counter T(k) incremented by 
one. 

When nCO) has received "Acknowledgement" messages from 
all its neighbours, it can start the update. 

In fact T(O) = max{T(i) I neil eD(O)} is exactly the 
rad i us. 

The synchronization of the update proceeds as follows: 

i) node nCO) enters state "Counting" and sends to all its 
neighbQurs an "update" message containing the "update 
vector~ [5] and a new counter TP(O)=T(O)+l. 

ii) in a recursive fashion, node n(i), upon receipt of an 
"Update" message from n(j), enters state "Counting"; 
saves the "update vector"; sets TP(i)=TP(j)-lj sends 
the update vector and TP(i) to all its neighbours 
except n(j), and starts the count down of TP(i). When 
the counter reaches zero, then node neil will change 
its state to "Update". 

iii) when in state "Update", node n( i) performs the update 
and, when completed, it enters state "Available". 

A state transition diagram is shown in Figure 1. 
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Figure 1. State transition diagram for the restricted context. 

It is easy to show that all centers will count zero 
simultaneously, and that the time required by the naive 

-algorithm to synchronize the network is 3*T (0). In fact, 
it takes T(O) steps for a "request" to reach the farthermost 
node; the "acknowledgement" message from that node to n(O) 
will also take T(O) steps to arrive; and, finally, it takes 
T (0) steps fo r all nodes to en te r state "Upd ate" sim ul tane­
ousl y. 

The improved algorithm. 

We will now show how to modify the previous algorithm 
to reduce the synchronization time. The previous algorithm 
performs basically two operations: it finds the radius, and 
then it sends the update signal. In order to speed up the 
process, the above operations must be performed as simul­
taneously as possible. We will now describe the algorithm 
for the restricted environment with an example, and analyze 
its complexity. In section IV we will formally present the 
general algorithm. 

Consider the graph in Figure 2(a) where index i 
represents node n(i). 

3 

8 

9 

Figure 2(a). 

Initially, the algorithm works as the naive method. l\t time 
t=O, n(O) receives an update request generated locally. It 



-196-

then enters state "prepared" and sends a "request" message 
to all its neighbours, which in turn enter state "Prepared" 
and se nd a "reque st"messag e to the i r ne ig hbour s., Th i s pr 0-

cess continues recursively. Eventually, a message reaches a 
leaf node. In our example, at time t=2, (Le. after two 
steps), bothn(3) and n(4) receive the "request" message. 
They enter state "Prepared" and send back an "Acknowledge­
ment" message with counter set to zero, (see Figure 2(b». 

8 

9 

Fig ure 2 (b) • 

At a bifurcation node r e.g. node n(2) in Figure 2(b), all 
"Acknowledgement" messages, except the last one to arrive, 
are destroyed. That is, only the last "Acknowledgement" and 
counter are considered. \A..l1en the last "Acknowledgement" 
arrives to a node, for example n(l) at time t=3, this node 
send s to its " father", n (0), an "Ac knowl edgem en t" messag e 
and the counter T(l);:T(3)+1=1. At time t=4, the "Ack­
nowledgement" message has reached n(O). In our example, the 
synchronization process can now start. In general, n(O) 
waits until the message before the last one has arrived. 
Upon receipt of such "Ac)mowledgement", n(O) sends to the 
only unacknowledged neighbour an "Update" message containing 
the " upd ate v ec'to r" and the coun te r 
TP(O)=received counter+l=T(l)+1=2. This situation is shown 
in Fi g ur e 2 (c)-:-
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3 

Figure 2 (c) • 

At time t=5, node n(2) sends the "update vector" ?nd the 
counter TP(2)=TP(O)+1=3 to the unacknowledged neighbour 
n(5) 0 If there is more than one unacknowledged neighbour, 
then the node waits until all neighbours except the last 
have sent an acknowledgment. This process is repeated in a 
recursive fashion until the "Acknowleogement" message trom 
the farthermost node and the incoming "Update" message meet 
in a node, as shown in figure 2 (d) (actually, the two mes­
sages may "jump" over each other; this case is easily solved 
wi tb a single test) • 

3 

Fig ure 2 (d) • 

Node n(6) now knows how distant is the farthermost node. In 
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fact, this quantity is precisely TP(5)+1. Node n(6) enters 
state "Counting", sends the synchronization message and 
TP(6) to its neighbours, and starts the count down of TP(~). 
Analogously, when a node n( i) receives an update message and 
the counter TP(j), it will set TP(i)=TP(j)-I, send the 
update message to all its neighbours, enter state "Count­
ing", and start the count down of TP(i). ~1hen the counter 
reaches zero, the'node changes its state to "Update" and 
performs the required update. When the update has been com­
pleted, the node enters state "Available". 

Analysis of the algorithm. 

Let us now analyze the complexity of the above algo­
rithm. We are interested in evaluating the delay between 
the time an applicable request* is originated and the time 
the update is actually performed. This delay can be 
expressed in terms of the number of steps needed for the 
originating node to reach state "Update" • 

. . In order to arialyze the complexity of the algorithm, 
let us introduce.some terminology. Given a rooted tree T, 
the radius r is the maximum distance from a node in T to the 
root, and the diameter d is the maximum distance between any 
two nodes in 'I'. 

~1hen a node originates an update request, this node can 
b~ regarded as the II root ll of the tree. In Figure B, only 
~he longest and the second longest path from the' root, of 
length a and b respectively, are sholtm. Obvio'usly r=a; it 
can be proved that d=a+b [10]. 

b 

Fig ur e 3. Rad i al pa th (a) and second long est pa th (b) 
from the root. 

* An applicable request is a request that is not going 
. to b~ preempted by a higher priority request. In the 
resticted environment every request is applicable. 



-199-

In our algorithm, after the root generates the update 
reque st, it wi 11 take b steps fo r the "reque st" sig nal to 
reach the leaf in the second longest path; and it will take 
b steps for the "acknowledgement" signal from that node to 
reach the root. The "synchronization" signal (i.e. the 
update message in our algorithm) will then be sent along the 
radial path, and it will eventually meet the acknowledgement 
signal coming from the leaf of that path. The two signals 
will meet (or jump over each other) after a-b steps. At 
this point, the "Counting" signal is originated. 8efo·re the 
update can be performed, this signal must reach all nodes, 
inc 1 ud ing the fa r the rmost ones. It c an be shown that the 
farthermost nodes are not more distant from the "meeting 
node" than a bottom leaf in the second longest path. That 
is, we need other (a-b) +b steps before we can perform the 
update. In total, we need 2b+a-b+ (a-b)+b=a+ (a+b)=r+d steps. 
That is, the algorithm requires d + r steps to synchronize 
an arbitrary tree network of radius r and diameter d.· \.Ire 
can now show that: 

Propo si t ion. 
The proposed algorithm is time optimal for 
tree networks. 

The above result follows from the fact that at least d + r 
steps are needed to synchronize a tree. This lower-bound 
has been proved for a tree of cellular automata [10]. The 
proof relies only on the tree-structure of the network and 
not on the computational power of the nodes. Therefore, it 
holds for our model and proves the above proposition. 

IV. GENERAL ENVIRONMENT 

In the above sections, we have presented a time optimal 
algorithm for the restricted environment. 'Namely, the fol­
lowing restrictions were made: (i) the network has a' tree 
structure; (ii) there are no concurrent updates; and (iii) 
the time to transmit any message from a node to its neigh­
bours is unitary. These assumptions were made only to sim­
plify the description and analysis of the algorithm. In 
fact, a concurrent update resolution mechanism can be easily 
incorporated in the algorithm without increasing its com­
plexity; more operations will be performed at each step, but 
the number of steps will be the same. Analogously, the 
algorithm can be easily modified to \-JOrk on general graphs, 
and with different transmissions times, increasing the time 
complexity only by a small constant. 

In next sections we will informally show how to modify 
the algorithm to work on the general environment and for­
mally describe the resulting algorithm. 
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Collision resolution. 

In this section we show how to incorporate in the algo­
rithm a collision resolution mechanism based on priorities 
without increasing its time complexity. 

The proposed pr iority scheme is as follows: 

- each node is assigned a unique index (e.g. an integer); 
nodes do not need to know everyone else's index, but only 
that the indices are unique. 
- the priority function Q is available to all nodes. 
- when a node is in state "prepared", it will accept an 
update request with higher priority, preempting the 
current one; the preempted request will be savec1 by its 
originator in a queue for future ·processing. 
- when a node is in state "Counting" or "Update", it will 
ignore any update request. 

The priority function can be formally described as a 
mapping 

Q : Z x R -> Z 
where Z is the set of positive integers, and R is the set of 
reals; m(i,t) denotes the priority of an update request ori­
ginated at node n( i) at time t, and is such that: 

(i) y. t' > t 
(ii) y. j < i 

Q(i,t) > m(i,t') 
Q(i,t) > m(j,t) 

that is, ~ is a decreasing function of the time and an 
increasing function of the indices. In other words, if two 
(or more) update requests originate at the same node, the 
second request can proceed only after the completion of the 
first update (this guarantees proper sequencing); if several 
update requests are originating at the same time in dif­
ferent nodes, the request originating at the node with 
highest index will be processed first (this avoids race con­
ditions and the consequent undeterministic behaviour of the 
system). . Let us note that because the requi rement for con­
sensus, the transmission of negative acknowledgements is not 
needed; the arrival of a higher-priority request will per­
form the same function. 

General graphs. 

Throughout the above discussion, we have been dealing 
with tree networks. However, the proposed algorithm can be 
used for a general network. In fact, given a network of 
arbitrary topology and given a starting noc1e (i.e. a node 
originating an update request), we can construct a spanning 
tree rooted in that node and apply the algorithm to the 
obtained tree. Let us note that to construct a spanning 
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tree T of a graph G is equivalent to determine for each node 
n(i) eN the list L(i) of its neighbours in T. Obviously 
L(i) c D (i). In order not to greatly increase the time com­
plexfEy, this "tree reconstruction" must be done while exe­
cuting the algorithm, and the resulting tree must be of 
minimum radius. This can be easily achieved in the follow­
ing manner: If a node nCO) is originating the update, then 
it will send a "reconstruction" message to all its neigh­
bours in the graph and wait for acknowledgment. The set 
L(O) will be formed by all the neighbours sending an ack­
nowledgment. In general, a node n( i) will ignore all 
"reconstruction" signals, except the first, for a given 
update. Let n(j) be the sender of the first received recon­
struction signal for an update. Then, node n( i) will send 
an acknowledgment to n(j); simultaneously send a "recon­
struction" signal to all its neighbours in the graph, except 
n(j); and wait for acknowledgment. The set L(i) for the 
given update will be formed by n(j) and by all nodes n(k) e 
D (i) that have repl ied (always within two time steps). It 
can be shown that this technique constructs the tree of 
mlnImum radius [8] and increases the total time complexity 
by only two steps; i.e. the modified algorithm works in 
d+r+2 steps. 

The last assumption made in the restricted environment 
was on the time required to transmit a message across a 
link. In general, the time to transmit a message x from 
nod e n ( i) ton 0 den ( j) i s t ( i, j, x ) =t 1. To m a k e the a 1 g 0-

rithm work for this general case, where V n(j) e L(i) V x 
t(i, j, x) is known at node n(i), we need only to modify the 
counters and to take into account what kind of message we 
are sending or receiving. All these modifications do not 
involve any mC'ljor change, and for simplicity are not expli­
citly included in the algorithm. 

The algori thm. 

In order to describe the algorithm including the colli­
sion resolution mechanism formally, let us review the four 
possible messages: . 

1) update request - ("Rn ,sender, originator, time> 
2) acknowledgment - ("A" ,sender, priority, counter> 
3) synchronization - ("U",sender,update vector,priority, 

coun ter> 
4) counting - ("C" ,sender, update vector ,counter> 

where the counter is analogous to a time stamp, and sender 
and originator are the indices of the sender node and of the 
originator node of the request, respectively. The algorithm 
is expressed in terms of which operations a node must per­
form, depending on its state and on the received message. 



-202-

We assume that each node n( i) already knows the set L(i). 

is in state "Available". 

<"R", n(k), n(j), time> 
beg in 
if n(i) = n(j) then {locally generated update request} 

beg in 
compute priority P, L(i) and update vector V 
send <"R", n(i), n(i), time> to all n(p) e L(i) 
vec to r ( i )= V; pre pa red ( i) = n ( i) 
sender( i) = n( i); priority( i) = p 
i f I L ( i) I = I the n {i tis a I so a I e a f} 

send <"U",n(i) ,vector(i) ,priority(i) ,O>to n(p)e L(i) 
end 

el se 
beg in 
compute priority P, L(i) 
pr e pa red ( i) = n ( j); send e r ( i) = n ( k); P rio r it Y ( i) = P 
i f L ( i ) - n ( k) = ,s th e n { n ( i) i s a I e a f} 

send <"A", n(i), priority(i), 0> to n(k) 
el se 

send <"R", n(i), n(j), time> to all n(p) e L(i)-n(k) 
end 

state(i) = "Prepared" 
Copy( i) = L (i) - sender( i) 
end 

Ignore other messages 

node .!}(.!) is in state "Prepared" ~ 

<"A", n(k), P, C> 
beg in 
if P < priority(i) then {ignore message} 
el se 

beg in 
Copy( i) =Copy( i) - n( k) 
if prepared(i} = n(i) then {this node isthe originator} 

if I Copy( i)1 = 1 then {start synchronization} 
send <"U",n(i) ,vector(i) ,priority(i) ,C+l> 

to n(p) e Copy( i) 
if holding (i) then {holding synchronization message} 

beg in 
if ICopy(i) I = 1 then {forward synchronization} 

send <"U",n(i) ,vector(i) ,priority(i} ,C+l> 

end 
el se 

to n (p) e Co py ( i) 

if I Copy( i) I = 0 then { send ack to sender (i) } 
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send <"A", n( i) , priority( i), C+l> to sender( i) 
end 

end 

<"U" I n(k) f vector, P, C> 
beg in 
if P ~ priority( i) then {ignore message} 
el se 

beg in 
if I Copy( i) I = 1 then {forward synchronization} 

send ("U", n(i), vector, priority(i), C+1> 
to n(p) e Copy( i) 

el se 

end 
end 

beg in 
if I Copy( i) I > 1 then {holding synchronization} 

ho I ding ( i) = true 
else 

end 

beg in 
send <"C", n( i) , vector, C+1> to n(p) e Lei) 
vector(i) = vector; counter(i) = C+l 
s tat e ( i) = " Co un t i ng " 
while counter( i) =I 0 decrement counter( i) 
state(i) = "Update" 
Perform update as described by vector( i) 
ho 1 ding ( i) = fa I se 
state( i) = "Available" 
end 

< "C", n (k) , vector ,C> 
begin 
Co py ( i) = L ( i) - n ( k) 
vector (i) = vector 
send <"C", n( i) , vector( i) , C-1> to n(p) e Copy( i) 
s tat e ( i) = " Co un t i ng " 
while counter( i) =I 0 decrement counter( i) 
s tat e ( i) = "u pd ate" 
Pe r form upd ate as d esc r ibed by vec tor ( i) 
holding (i) = fal se 
state( i) = "Available" 
end . 

( "RIt
, n (k), n ( j) , tim e> 

beg in 
Compute priority p 
if P < priority(i) then 

if n(j) = neil then {new locally generated 
update temporarily rejected} 

save vector and retry 1 ater 
{priority is higher than previous request} 
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el se 
beg in 
if prepared(i) = neil then forgo of old request 

old update temporarily rejected} 
save vector( i) and retry later 

beg in 
if neil = n(j) then {locally generated update request} 

beg in 
compute priority P, L(i) and update vector V 
send <"R", neil, neil, time> to all n(p) e L{i) 
vector(i) ='V; prepared{i) = neil 
sender( i) = n( i); priority{ i) = P 
i f I L ( i) I = 1 the n {i tis a I so a I e a f} 

end 

send <"U", n{i), vector{i), priority{i), 0) 
to n{p) e L (i) 

el se 

end 
end 

beg in 
compute priority P and L{i) 
pr e pa red ( i) = n ( j); send e r ( i) = n ( k); P rio r i t Y ( i) = P 
if L{i) - n{k) = '/> then { neil is a leaf} 

send <"A", n{ i), priority{ i), 0) to n(k) 
else 

end 

send <"R"', n{i), n{j), time> 
to all n{p) e L (i) -n(k) 

Copy{ i) = L (i) - sender{ i) 
end 

node !:!<1) is in state "Countin~t'. 

Ignore all messages 

nod e !:! <1) i sin s tat e "U pd ate" • 

Ignore all messages 

V. CONCLUSIONS 

In this paper, an update synchronization algorithm for 
databases, whose copies are distributed on a store-and­
forward synchronous network, has been presentep and its com­
plexity analyzed. It has been shown that the algorithm is 
timOe optimal within a small additive constant, for networks 
o far bit r a r y to po I og Y 0 

There are some obvious limitations in the proposed 
method, for example knowledge of the message transmission 
delays is required, and no provision for retransmission of 
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messages is included. 
On the other hand, the algorithm 

knowledge of the general topology of 
changes in topology can occur when 
upd ate reque sts 0 n the netwo r k. 

Ac knowl ed gmen t. 

does not require any 
the network; therefore 
there are no active 
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C<H:URRENCY CCNI'ROL IN A MULTIPLE COPY 
DISTRIBUTED DATABASE SYSTEM 

We~e K. Lin 

Sperry Research Center 

Abstract 

The concurrency control mechanism employed by the System for 
Distributed Databases, SOD-I, avoids both central site control and 
global data locking. This paper proposes modifications to the 
concurrency control mechanism of Soo-1 which eliminate the need for 
timestamps on data items and weaken the constraints of some of the 
read-write protocols. These modifications reduce the amount of 
storage required and allow accommodation of existing databases Which 
may make no provision for stored data item timestamps. A new protocol 
W is introduced Which requires that write actions which participate in 
certain cycles in the class conflict graph be synchronized at certain 
sites. This protocol may reduce the degree of concurrency supported 
by the system. Existing Soo-l protocols are augmented with weaker 
forms of these protocols which allow more flexibility in scheduling 
read and write actions under certain conditions. Timestamps of some 
actions are allowed to be changed in order to reduce the 
synchronization delay experienced by other actions, thereby increasing 
concurrency. A proof of correctness is given. 

Io INTRODUCTION 

Several solutions for concurrent transaction control in a 
multiple-copy distributed data base system have appeared in the 
literature (1) - (4). Most of these solutions involve various degrees 
of global locking, which requires a large mlllber of intersite messages 
and reduces system concurrency. Some require primary sites as control 
centers, which may create bottlenecks in the system. One solution, 
presented in (4), employed by the System for Distributed Qatabases, 
SOD-I, avoids global locking and primary sites, but requires stored 
timestamps on all data items of the data base (or at least on all 
recently updated data items). This paper proposes modifications to 
the concurrency control mechaniSm of SOD-I 'which eliminate the need 
for timestamps on data items and ease some of the synchronization 
protocols between read and write actions. A proof of correctness is 
given. 

2. SUMMARY OF SOD-I COl.«:URRENCY CrnTROL 

A transaction T is the unit of consistency and is modeled as a 
series of read actions followed by write actions 
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T = R (T ,ul) .. oR (T ,un)W(T ,vI) .. ocoW(T ,vm) 
where ul,.v.,un are distinct sites at which these actions are to be 
executed. Similarly for vl, ••• ,vm. Associated with each read action, 
say R(T,ul), is a set of data to be retrieved, called the read set of 
transaction T at site ul, which is also denoted by R(T,ul). Similarly 
W(T,ul) denotes the write set of transaction T at site ule Each 
transaction T belongs to a transaction class T* which has a 
pre-determined set of data to be read from and written into the 
database at each site. These are called the read sets and write sets 
of the transaction class (These read-sets and--write-sets are physical 
sets. For the purpose of this paper the concept of logical sets is 
not needed). The read sets and write sets of each transaction are 
contained in the read sets and write sets of its class respectively. 
We denote the read set and write set of class T* at site u by R (T* ,u) 
and W(T*,u) respectively. R(T*,u) and W(T*,u) also denote the class 
of read and write actions of transaction. class T* sent to site u. A 
class conflict graph is used to show the intersections among read sets 
and write sets for all transaction classes in the system. For 
example, in Figure 1, a transaction class is represented by nodes, one 
for each read and write set connected by a central node. In the 
figure the read set of transaction class T* intersects the write set 
of class S* at site u, and write sets of T* and S* intersect at site 
u. We draw an edge for every such intersection.. We call such an edge 
a heterogeneous edge.· An edge is also drawn between the central 
point, and each read set and each write set of the same class; these 
edges are called homogeneous edges. A path is a sequence of read 
nodes and write nodes (Sl, S2, ••• ,Sn) where (Si,Si+l) is either a 
heterogeneous edge or an adjacent pair of homogeneous edges, and no 
edge appears twice. If Sl=Sn then the path is called a cycle. A 

R(T*,V) R(T*,x) R(T*,u) R(S*,u) R(S*,y) R (T* ,u) 

W(T* ,v) W(T*,u) W(S*,u) W(T* ,v) W(S* ,u) 

Figure 1 Figure 2 

path, or a cycle, is called non-redundant if each class appears in at 
most two heterogeneous edges in the path. By analyzing such conflict 
graphs, protocols are devised that make the system run correctly in 
the sense of serializability and convergence of multiple-copy data 
(4). Serializability means that if the system ceases to take any new 
transactions and lets existing ones run to completion, the final 
database state (which includes all external output) is the same as if 
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all transactions were run serially in some order. Convergence of 
multiple-copy data means that if the system ceases to take any new 
transactions and lets existing ones run to completion, all copies of 
the database will be the samec 

The following assumptions are made in SOD-I: 

I. There is a unique timestamp associated with each transaction. One 
way to ensure uniqueness is to take the originating site number as 
the low order digits and the local clock time as the high order 
digits of the timestamp. 

2. Trans~ctions are grouped into classes characterized by read sets, 
write sets and originating site. 

3. Transactions from the same class are pipelined, i.e., actions from 
the same class designated for the same site are sent, received and 
processed in timestamp order. (This constraint can be relaxed so 
that if the read set and write set of a transaction class do not 
overlap at some site, then actions from the class designated for 
the site can be processed with the following three rules: (1) all 
read actions must be pipelined, (2) all write actions must be 
pipelined, (3) each read action must precede the write action of 
the same transaction). 

4. There is a timestamp associated with each data item in the 
database. (This assumption will be eliminated later). 

5. Write actions of a transaction are sent out only after all its 
read actions have been completed. 

Protocols of SDD-l as described in (4) are summarized in the 
. following: 

Definition: TM(S) denotes the timestamp of the transaction S. 
TM(W(S,u» denotes the timestamp of the action W(S,u) which is 
initially equal to '1M(S), but may be changed as discussed in later 
sections. 

~rotocol R3: Whenever R{T*,u) and W(S*,u) intersect, and there exists 
a non-redundant path in the conflict graph between W(S*,u) and 
some write set of class T* (see Figure 2), then for every pair of 
transactions T,S in classes T*,S* respectively, W(S,u) runs after 
R{T,u) (denoted by R{T,u)->W(S,u», iff the timestamp'lM(S) of S, 
is larger than TM(T). 

Protocol R2: If read sets of T* intersect write sets of S* and Q* (S* 
and Q* are not necessarily distinct) at sites u and v 
respectively, and there is a non-redundant path between these 
write sets (Figure 3), then make sure that T* reads equally 
up-to-date data from S* and Q* at sites u and v. In other \«)rds 

W(S,u)->R{Tl,u) ~R(T2,v)->W(Q,v) implies'lM(S)<TM(Q) 
Where Tl and T2 are from transaction class T*, Tl and T2 are not 
necessarily distinct, A->B means A runs before B, and A<B means 
that the transaction containing action A has a timestamp which is 
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less than or equal to the timestamp of the transaction containing 
action Bo 

Protocol Rl: In R2, if LFV, S*;o*, then make sure that T* reads 
equally up-to-date data from S* and Q* at site u (Figure 4). (In 
fact this is a special case of R2). In other words 

W(S,u)->R (Tl,u) <R (T~,:u)->W(Q,u) implies TM(S)<TM(Q) 
Where TI and T2 are from the class T* and are not necessarily 
distincto 

R (T* ,u) R (T* ,v) R (T* ,u) 

W(S* ,u) W(Q* ,v) W(S*,u) W(Q*,u) 

Figure 3 Figure 4 

In implementing these protocols, SOD-I uses a synchronization 
primitive for coordinating an action A (always a read action in SOD-I) 
with respect to a class of write actions W(S*,u) at a site u. This 
synchronization primitive, called SYNCHI here, is defined as follows: 

Definition: SYNCHl(A,W(S*,u),t) is a synchronization primitive which 
is applied at site u to the action A with respect to the write 
queue W(S*,u) and timestamp t. The primitive says that action A 
be executed if and only if actions from the queue W(S*,u) have 
been executed up to but not beyond timestamp to 

When synchronization primitive SYNCHI is used, some read action 
may wait indefinitely because transactions in the class S* with which 
it synchronizes occur infrequently. In SDD-l, null-write messages are 
used to minimize this kind of delay. 

In SOD-I, timestamps on data items are used to ensure convergence 
of multiple copies of data. Whenever a new data item is to overwrite 
an existing data item, the timestamp of the existing data item is 
retrieved and compared with the timestamp of the new data item. 
Update is carried out only if the timestamp of the new data i tern is 
larger. 

For brevity, protocol p4 for handling unanticipated transactions 
is not described here. The results of this paper remain correct if p4 
is included, however the proof of correctness becomes more tedious. 
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The execution symbol E is also el iminated from the transaction model, 
because it serves no useful purpose as far as this analysis is 
concerned.. A more complete description may be found in (4). In the 
next section we add a protocol to the system Which makes data item 
timestamps unnecessary. 

3. THE WRITE PRorocOL 

The following protocol is added to the three protocols discussed 
in Section 2. Together they make the system run correctly wi thout 
timestamps on data items. Of course a price must be . paid for saving 
storage space. This protocol requires some synchronization of write 
actions at each site, Which reduces concurrency among write actions. 
However, it does not directly increase any inter-site synchronization. 

Protocol W: If write sets of T* and S*intersect at site u, i.e. 
W(T*,u)I\W(S*,u);IO, and W(T*,u), W(S*,u) reside on a non-redundant 
cycle (including cycles involving only write actions) as shown in 
figure 5, then for all transactions T,S in classes T*,S* 
respecbively, W(T,u) runs after W(S,u) if and only if 'IM(T»TM(S). 

W(T*,U) W{S*,u) 

Figure 5 

Implementation: Apply SYNCHl (W(T,u) ,W(S*,u) ,'l'M(T» at site u for every 
transaction T from class T*, Where '1M ('r) is timestamp of T. 
(Similar procedure must be applied to every transaction S from 
class S· against queue W(T*,u) at site u.) 

4.. PROOF CF cmRECTNESS 

Correctness of a system here means the system is serializable and 
all copies of redundant data converge to the same values. A local log 
at site u is defined to be a linear sequence of all actions executed 
at site u \4.bich represents the actual order in \4.bich they are 
executed, if the system obeys the partial order constraints imposed by 
the assumptions and protocols discussed in the last two sections. A 
system log is any merge of all· the local logs \4.bich preserves the the 
order among actions in the local logs. To prove that the system is 
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serializable it must be shown that all the local logs are serializable 
and the serial orders are consistent among all the local logs. It is 
equi valent to prove that any system log composed of these local logs 
is serializable. 

In the following, it will be shown that all system logs are 
serializable in the sense that if the following adjacent interchange 
rules are applied to any system log, the log can be transformed into a 
serial log. A serial log is a log of serial execution of those 
transactions in some order.. The. following table shows when two 
adjacent actions in a log cannot be switched. 

------. . ---------------------------------------------------.----
R (T1,u) , R(T2,u) 

W(T ,u), W(S,u) 

TI and T2 are from the same class (pipe1ining) . ___________ ._._a __ ~. ___ . ____ _ 

The write sets of T* and S* intersect at site u. 
T* and S* may be the same transactions class. ----------.-----------___ --_I.--__ --~I_. __ ---_____ ._~. ____ . ___ . _______ . __ .. _~ _____________ ._ .. _____ _ 

R(T,U), W(S,u) ----.. ----
W(S,u), R(T,u) 

-------. 

The read set of T* intersects the write set of 
of S* at site u, where S* and T* may be the 
same class .. 
T and S are the same transaction. 

The rules in the table above are less restrictive than in (4) in 
that E actions and augmented conflict rules are eliminated. But it is 
more restrictive in that any two write actions cannot, in general, be 
switched. 

In serializing a system log, we would try to move two actions of 
the same transaction adjacent to each other by moving actions between 
them either to the left or to the right. But in doing so adjacent 
action symbols which belong to the same transaction must not be split 
up. The following lemma will be stated without proof. For a detailed 
proof of the lemma see [10] .. 

Lemma T Let L= ••• X(A,u)oooY(B,v)... be a subsequence (not 
necessarily contiguous) of a system log. Let us assume that at most 
two consecutive action symbols between X(A,u) and Y(B,v) can belong to 
the same transaction. Let us also assume that every' action, (or 
action with one of its neighbors, if this neighbor also belongs to the 
same transaction), between X andY is blocked by its (their) left and 
right neighbors (the blocking can be due to protocol conflict or 
pipe1ining rule). If there exists at least one action between X(A,u) 
and Y (B,v) in the system log L, and one of the following conditions is 
true, then TM(X(A,u»<TM(Y(B,v». 
(1) A*=S* 
(2) A*~*, both X(A,u) and Y(B,v) are write actions, and there exists 
a non-redundant path between X(A,u) and Y(B,v) in the conflict graph 
other than the. path shown in the log Lo 
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~ 1: System logs which obey the protocols and coMitions in 
Sections 2 and 3 are serializable. 

Proof: 5uppose, to the contrary, that there exists a system log L 
which cannot be serialized.. 'nlen there are t~ action symbols from 
the same transaction, separated by one or more action symbols from 
other transactions, which cannot be moved adjacent to each other, say 
X and 'I. in the following fragment of l, 

L= ••• X 51 52 ••• 5n 'I. ••• , where X-SO, aM'I.=Sn+l 

where each one of 51,52, ••• ,5n is a group of actions belonging to the 
same transaction, and cannot be moved to the left of X or to the right 
of Y. 'lllen each 5i, where l<i<n, must be blocked from the left and 
right by some 5j and 5k, j<i<ko- Therefore there exists a subsequence 
of the sequence (51,52, ••• ,5n) (not necessarily contiguous) which 
forms a blocking path from X to 'I. in the sense that each 5i on this 
path is blocked by its left and right neighbors. 5ince for each 5i on 
this path at most two action symbols of 5i are needed to have 5i 
blocked by its left and right neighbors, a blocking plth from X to Y 
can be derived which is composed of one or ~ action symbols from 
each group Si. By lenwna T (see Appendix) TM (X) <TM ('I.) • But since X 
and Yare of the same transaction, 'J'tt(X) .. TM('l), a contradiction. 
Therefore, the asslltlption that there exists a system log which is not 
serializable is false. 

(J:D 

5. FURTHER WEAKENING OF PRoroc<xs 

Before we present the modified protocols we define a partition on 
the set of all read nodes and write nodes of a transaction class. 

let P(5*)={51,52, ••• ,5n} be a set consisting of all the read 
nodes and write nodes of the transaction class 5*. We define an 
equivalence relation - on the set P (5·) as follows: 

1. 5i-5i for all 5i in the set P(5·), 
20 5i-5j if there exists an external path between 5i aM 5j. By 

external path, we mean a path that does not inclooe a homogeneous 
edge of the class 5*. 

The equivalence relation - defined above partitions the set P(S*) 
into disjoint blocks. we denote the block containing W(5*,u) by 
BLOCK (W(S· ,u» e 

Definition: A write node W(S·,u) satisfies condition (a), if 
BLOCK (W(5· ,u» consists only of the node W(S* ,u) • 

Definition: A write node W(5*,u) satisfies condition (b), i.f the read 
node R (5* ,u) exists, and BLOCK (W(5* ,u» does not inclooe any read 
node R(5*,v) where v is not equal to u. 
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5e 1 Protocol R3a and R3b 

Under certain coooitions, protocols R3, R2, Rl, and Ware more 
restrictive than necessary.. The following protocols are relaxed 
versions of protocol R3. Protocol RJa applies when W(S*,u) in figure 
2 satisfies condition (a); protocol R3b applies ~en W(S*,u) in figure 
2 satisfies condition (b). 

Protocol R3a: If W(S*,u) in figure 2 satisfies condition (a), then the 
t~ rules as defined below must be followed .. 

(1) For every transaction S from class S*, the timestamp 
'llot(W(S,u» can be changed. But for any pair of transactions S1,S2 
from class S*, TM(S2»TM(Sl) if and only if 
TM(W(S2,u»>TM(W(Sl,u». 

(2) For every pair of transactions T,S 
respectively, W(S,u) runs after R (T ,u) 
".. (W(S,u) »TM (R (T ,u». 

in 
if 

classes T*,S* 
and only if 

I rt!>l ementat ion: Attach the read condition (S*,'llt1(T» to R(T,u) 0 When 
R(T,u) arrives at site u, apply synchronization primitive 
SYNCH2 (R (T ,u) ,W(S* ,u) , '1M (T» or SYNCH3 (R (T ,u) ,W (S '* ,u) , n-1 (T» as 
described in the following two definitions. 

Definition: SYNCH2(R(T,u),W(S*,u),t) is a synchronization primitive 
which is applied at site u to the read action Rfr,u) with respect 
to the queue W(S* ,u) and the timestamp to 
If the last write action executed from queue h'(S* ,u) is W(Sl,u) 
with timestamp TM(Sl) when R(T,u) arrives at site u, and if 
t>TM(Sl), then instead of waiting for actions from queue W(S*,u) 
to be processed up to but not beyond timestamp t as in SYNCH1, 
site u can proceed to execute R (T ,u) irrmediately. But site u must 
also add (t-IJ'M (Sl» to the timestamp of every action from class 
W(S*,u) not yet executed. Or site u can choose a time t' anywhere 
between'll¥1(Sl) and t (inclusive) and execute R(T,u) only after 
actions from class W(S*,u) have been executed up to timestamp tie 
But site u must add (t-t') to the timestamp of every action from 
class W(S*,u) not yet executed. Of course if t<TM(Sl), then 
R(T,u) will be rejected 0 In adding time to the timestamps of 
write actions, care should be taken to ensure that the new 
timestamps are lI'lique, and that the new timestamps will not become 
larger and larger which may delay the execution of these write 
actions indefinitely. The only purpose of adding (t-'l"M(Sl» to 
the timestamp of every action from class W(S* ,u) not yet executed 
is to ensure that these write actions have timestamps larger than 
t, and that their order is preserved. There are implementations 
other than simply adding (t-TM(Sl» to the timestamps, which 
achieve these two effects. Synchronization primitive SYNCH3, 
which follows, is one such implementation. 
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Definition: SYNCH3 (R (T ,u) ,W(S* ,u) ,t) is a synchronization primitive 
'lkaich is applied at site u to the read action R(T,u) with respect 
to the queue W(S* ,u) and the timestanp t. 
At site u, associate with the queue W(S*,u) t\tJO timestamp 
variables LAST (W(S* ,u» and NEXt' (W(S· ,u» ~ich are initially set 
equal to o. The variable LAST (W(S '" ,u» stores the timestanp of 
the last write action executed fran the queue W(S*,u). 'ftle 
variable NEXT (W(S'" ,u» is used to COItl}Xlte the timestanp of the 
next write action to be executed frOOl the queue W(S* ,u) • Let 
W(S,u) be the earliest peooin:J write action, if one exists, fran 
the queue.. Define its (modified) timest~p 'lM(W(S,u» as follows: 

'IM(W(S,u» >: Max(TM(S), NEXl'(W(S*,u»+I) , 

where one should be added to the local clock portion of the 
timestamp. Whenever a write action W(S,u) is executed, 
[AC)T(W(S*,u» and NEXT (W(S*,u» are set equal to TM(W(S,u». When 

. the read action RfI',u) arrives at site u the followin:J occurs. If 
LAST (W(S* ,u) ) <t then R fI' ,u) is executed immediately aoo 
NEXT ew(S· ,u) ) is set equal to Max (t,NexT (W(S* ,u) » • Otherwise 
R (T ,u) is rejected. 

Alternatively, if rAST(W(S*,u) )<t then site u chooses a 
timestamp Tl such that LAST ew(S* ,u» <Tl<t. Site u then delays 
execution of R tr ,u) until actions fran class W(S* ,u) have been 
executed up to but not beyooo timestamp Tl. On execution of 
R (T ,u), NEXT (W(S* ,u» is set equal to Max (t,NEXT (W(S* ,u) » • 

Protocol R3b: If W(S*,u) in figure 2 satisfies coooition (b), then 
protocol R3a, augmented with the followin:J rule, must be follO'ttJled. 

(1) For every transaction S fran class S*, all the actions in 
BLOCK (W(S,u» nust have the same time stamp. 

Implementation: Attach the read condition (S*,TM(T» to Rtr,u). When 
R(T,u) arrives at site u, apply the synchronization rule 
SYNCH4 (R fI' ,u) ,R (S* ,u) ,W(S· ,u) ,'1M (1'», defined below. 

Definition: SYNCH4~fI',u),R(S*,u),W(S*,u),t) is a synchronization 
primitive which applies to the read action R(T,u) with respect to 
the queues R(S*,u) and W(S·,u), and the timestamp t. 
At site u, associate wi th the queue R (S* ,u) of actions fran class 
S*, two timestamp variables LAST (R (S* ,u» and NE>eT (R (S* ,u», and 
associate wi th the queue W(S* ,u) one timestamp variable 
LAST ew(S· ,u» all of which are initially set equal to O. Let 
R(S,u) be the earliest pending read action, if one exists, from 
the R(S*,u) queue. Let us define the timestamp NEW(R(S,u» as 
follows: 

NI.')N (R (S, u» = Max (TM (S), NEXT (R (5· , u) ) + 1) • 

If R(S*,u) is a member of BLOCK(W(S*,u» then 1M(R(S,u» rust be 
changed to NEW(R(S,u». Otherwise 1M(R(S,u» stays unchanged. 
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Whenever the read action R(S,u) is executoo, lAST(R(S*,u» and 
NEXT (R (S* ,u» are set equal to NEW(R (S,u» Q no matter whether 
N(R (S,u» is changed or not, and site u must send a 
read-completion message together with the timestamp NEW(R{S,u» to 
the originating site of action R(S,u)e The originating site must 
use this timest&np to timestamp . all the write actions in 
BLOCK (W(S,u) ). When a write action W(S,u} is executed at site u, 
LAST (W(S* ,u» is set equal to '1M (W(S,u»" Notice that at all 
times lAST (W(S· ,u» ~ LAST (R (S* ,u) ) 0 

When a read action Rtt,u) with read condition (S*,t) arrives 
at site u the following occurs. 
(1) If t<LAST (W(S* ,u» then R (T ,u) would be rejected. 
(2) If t<LAST(R(S*,u» and t>t.AST(W{S*uu» then R(T,u) ITUSt wait 
until actions from the W(S* ,u) queue have been executed up to but 
not beyond timestamp t. 
(3a) if t>UST(R(S*,u» and t>LAST(W(S*,u», then site u must wait 

. lrltil actions from queue W(S* ,u) have been executed up to but not 
beyond timestamp lAST(R(S*,u» before it executes R(T,u). After 
execution of R(T,u), NEXT(R(S*,u» is set equal to 
M,&J( (t,NE>er ('R (S* ,u) ) ). Or, 
(3b) Site u can choose a timestamp t', where LASl'(R(S*,u) )<t'<t, 
aoo wait until actions from both queues R (S* ,u) and W(S* ,u) have 
been executed up to but not beyond timestamp t' before executing 
R (T ,u) • After execution of R (T ,u), NE>er (R (S* ,u» is set equal to 
MAX (t,NEXT (R (S* ,u) » • 

5.2 Protocol R2a,R2ab and.....!l!Q 

Similarly, under certain conditions protocol R2 can be relaxedo 
'n1e followirg protocols are the relaxed variations of protocol R2. 

Protocol R2a: If W(S*gu) and W(Q*,v) in figure 3 both satisfy 
cond i tion (a) then the two rules as defined below must be 
followed. 

(1) For every transaction S from class S*, the timestamp 
'lM(W(S,u» can be modified. But for every pair of transactions 
Sl,S2 from class S* TM(S2»TM(Sl) if and only if 
TM(W(S2,u»>TM(W(Sl,u»0 (Similarly for class Q*.) 

(2) For every transaction S from class S*, Q from class Q*, Tl and 
T2 from class T*, if W(S,u) runs before Rfrl,u), 
'IM(R(rl,u»<TM(R(T2,v», and R(r2,v) runs before W(Q,v) then 
TM(W(S,u»<TM(W(Q,v» .. In other words 

W(S,u)->R trl,u) <R (T2,v)->W(Q,v) 
implies TM(W(S,u)}~(W(Q,v»o 

Implementation: Attach read condition (S*,t) and (Q*,t) to Rrr,u) and 
RCT,v) respectively, where t can be arbitrarily chosen by the 
originating site .. Then apply SYNCH3(R(T,u),W(S*,u),t) and 
SYNCH3 (R er, v) ,W (Q*, v) Q t) ., 
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Protocol R2ab: If W(S*,u) and W(Q*,v) of figure 3 satisfy condition 
(a) and (b) respectively, then protocol R2a, augmented with the 
following rule, must be followed. 

(1) For every transaction Q from class Q*, all the actions in 
BLOCK(W(Q,v» must have the same timestamp. 

Implementation: Attach read condition (S* ,t) and (0* ,t) to R (T ,u) and 
R(T,v) respectively, where t can be arbitrarily chosen by the 
originating site. Then apply SYNCH3 (R (T ,u) ,W(S* ,u) ,t) and 
SYNCH4(R(T,v) ,R(Q*,v) ,W(O*,v) ,t) .. 

Protocol R2b: If both W(S*,u) and W(Q*,v) of figure 3 satisfy 
condition (b), then protocol R2ab, augmented with the following 
rule, must be followed. 

(1) For every transaction S from plass S*, all the actions in 
BLOCK(W(S,u» must have the same timestamp. 

Implementation: Attach read condition (S*,t) and (Q*,t) to R(T,u) and 
R(T,v) respectively, where t can be arbitrarily chosen by the 
originating site. Then apply SYNCH4(R(T,u) ,R(S*,u) ,W(S*,u) ,t) and 
SYNCH4 (R (T,v) ,R (0* ,v) ,W(Q*,v) ,t) • 

5.3 Protocol Rla,Rlab, and RIb 

Similarly, protocol Rl can be relaxed under conditions as 
discussed in the prevous section. 

Protocol RIa: If W(S*,u) and W(Q*,u) in figure 4 satisfy condition 
(a), then the two rules as defined below must be followed. 

(1) For every transaction Sfrom class S*, the timestamp 
'lM(W(S,u» can be modified. But for every pair of transactions 
SI,S2 from class S* TM(S2»TM(Sl) if and only if 
'lM(W(S2,u»>TM(W(SI,u». (Similarly for Class Q*.) 

(2) For every transaction S from class S*, Q from class Q*, Tl and 
T2 from class T*, 

W(S,u)->R (Tl,u) <R (T2,u)->W(Q,u) 
implies TM(W(S,u»~(W(Q,u». 

Implementation: Attach read conditions (S*,t) and (Q*,t) to R(T,u), 
where t will be chosen at site u. Let the timestamp variables 
associated with W(S*,u) and W(Q*,u) as mentioned in 
synchronization rule &YNCH3 be IAST (W(S* ,u» and IAST (W(Q* ,u» 
respectively. Site u then chooses a timestamp for t such that 
t>Max (LAST (W(S* ,u» ,IAST (W(Q* ,u) » , and applies 
SYNCH3 (R (T, u) ,W (S* ,u) , t) and SYNCH3 (R (T, u) ,W (Q* ,u) , t) to 

Protocol Rlab:If W(S*,u) and W(Q*,u) 
respectively, then protocol RIa, 

satisfy condition (a) and (b) 
augmented with the following 
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rule, must be followed. 

(1) For every transaction Q from class Q*, all the actions in 
BLOCK (W(Q,v) ) must have the same timestamp. 

!mpl ementat ion: Site u chooses a timestamp for t as discussed in the 
prevous implementation.. It then applies SYNCH3 (R (T ,u) ,W(S· ,u) ,t) , 
and SYNCH4 (R (T ,u) ,R (Q* ,u) ,W(Q* ,u) , t) • 

Protocol RIb: If W(S*,u) and W(Q*,u) both satisfy condition (b), then 
protocol Rlab, augmented with the following rule, must be 
followed. 

(1) For every transact!on S from class S*, all the actions in 
BLOCK (W(S,u» rm..tst have the same timestamp. 

Implementation: Choose a timestamp for t as discussed in protocol RIa. 
Then apply SYNCH4(R(T,u),R(S*,u),W(S*,u),t) and 
SYNCH4 (R rr, u) ,R (Q* ,u) ,W (Q* ,u) , t) • 

5.4 Protocol Wa and Wb 

Protocol W can be relaxed under certain conditions too. 

protocol Wa: Assuming that W(T* ,u) am W(S* ,u) intersect and both 
reside on a non-redundant cycle as sho\'JI'l in figure 5, and that 
W(S*,u) satisfies condition (a), then the two rules as defined 
below must be followed. 

(1) For every transaction S from class S*, the timestamp 
TM(W(S,u» can be changed. But for any pair of transactions Sl,S2 
from class S*, TM(S2)>TM(Sl) if and only if 
TM(W(S2,u»>TM(W(Sl,u». 

(2) For every transction T from class T* and S from S*, W(T,u) 
runs after W(S,u) if and only if TM(W(T,u»>TM(W(S,u». 

Imelementation: Apply SYNCH3(W(T,u) ,W(S*,u) ,'!M(T» to every 
transaction T from class T*. 

Protocol Wb: If W(T*,u) and W(S*,u) intersect and both reside on a 
non-redundant cycle, and W(S· ,u) satisfies condition (b), then 
protocol Wa, augmented with the following rule, must be followed. 

(1) For every. transaction S from class S*, all the actions in 
BLOCK (W(S,u» nust have the same timestamp. 

Implementation: Apply SYNCH4(R(T,u) ,R(S*,u) ,W(S*,u) ,TM(T» to every 
transaction T from class T*. 

5.5 SUTIIIlary of protocols 
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The following table summarizes all the protocols discussed in 
this paper e An "x" in the table means that the protocol uses the 
corresponding synchronization primitive. 

--""'"'--_--.-._-------- _____ 0_-
R3 R3a R3b R2 R2a R2ab R2b Rl RIa Rlab RIb W Wa Wb 

-----' ------.,.. ... _-------
SYNCHI x x x x 
,---------------- -------------------

SYNCH3 x x x x x x 

----------,------------
SYNCH4 x x x x x x --=-----------------,------------------
6. PROOF OF CORRECTNESS 

In the implementations of the new protocols, described in 
Section 5, timestamps of some read actions and write actions can be 
changed. Therefore the assertion that any two actions from the same 
transaction have the same timestamp as asserted in the proof of 
theorem I and lemma T in section 4 is no longer true. But this 
assertion is needed in the proof of theorem 1 and lemma T only when 
two actions from the same transaction are involv~ in a cycle. But 
for any two actions from the same transaction involved in a cycle, 
either both of their timestamps have been changed to the same value 
(if condition(b) is true), or both of their timestamps have not been 
changed at all (if coridition(b) is not true). Therefore, the proof of 
theorem I and lemma T is still correct for these new protocols. 

7. CONCLUSION 

A new protocol is introduced to eliminate the ne~ for 
timestamps on data i terns. This protocol reduces the concurrency of 
write actions in each site. The degree of loss of concurrency depends 
on the conflict graph structure of each application. For some 
applications, for example, those in which changes to the data base do 
not occur frequently or do not have to be processed immediately, the 
saving of storage Space may outweigh the loss of concurrency. 

Existing read-write protocols are weakened under certain 
conditions to allow some read and write actions to wait less. These 
weaker protocols not only allow more flexible scheduling of some read 
and write actions, but also reduce or even eliminate the requirement 
for null-write messages, and yet improve system performance at the 
same time& Preliminary results from a simulation study have confirmed 
this. A proof of correctness is also giveno 
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ABSTRACT 

A new concurrency control algorithm for distributed database 
systems that spatially extends the idea of "exclusive/share locks" 
is presented. The new algorithm, extended true-copy token 
algorithm, combines a locking mechanism and a "true-copy token" 
mechanism. "True-copy tokens" handle partitioned data that cannot 
be handled efficiently by locks alone. 

1. INTRODUCTION 

A distributed database system is one of the hottest issues 
among many theorists and practitioners. The system must provide 
an integrated interface to its users by hiding partition and 
duplication of some data. Furthermore, although transactions are 
processed concurrently, their effects on the system and the users 
must be as if they were processed in sequence. Without reasonable 
concurrency, most distributed database systems will be 
impractical. 

The concurrency control problem in a distributed database 
system has been studied by many researchers [BADA-78, BERN-78, 
ELLI-77, GARC-78, GELE-78, GRAP-76, LELA-78, ROSE-78, STON-79, 
THOM-78]. However, a satisfactory'solution is yet to come. In 
this paper we present still another algorithm that we hope gives 
some new insights. 

In section 2 we briefly introduce a formal model of a 
distributed database system. Following [LAMP-78], an execution 
history of transactions is defined as a partial ordering on action 
events, so we do not assume the existence of the totally ordered 
global time. Also two operational consistency conditions used so 
far in the literature are discussed. 

In section 3 an "extended true-copy token" algorithm is 
presented. A "true-copy token" is used to designate a "true-copy" 
that provides the current "logical component" value when a logical 
component is represented by multiple "physical components". The 
algorithm efficiently supports "multiple migrating localities". A 
new concept "effective global time" is introduced in section 4, 
and its usefulness is shown in the correctness proof of the 
extended true-copy token algorithm. 
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In section 5 we briefly discuss the new 
related algorithms. Although no discussion 
control problem for a distributed database 
without discussing the resiliency problem, 
in this paper. 

2. DISTRIBUTED DATABASE SYSTEM MODEL 

algorithm and some 
about the concurrency 

system is complete 
this is not addressed 

We assume that a distributed database system 
DDBS = {X, Y, Z, ••• } consists of a set of logical components, 
each of which can be assigned a value independently. A logical 
component X = {xl, x2, x3, ••• } is represented by a set of one or 
more duplicated physical components that are supposed to assume 
the same value except for transitional periods during update 
operations. 

A site H of a distributed database system is a subset of the 
set of all physical components in the system, i.e., 
H < (X + Y + Z +... ). Every two sites must be disjoint, and the 
union of all sites is the set of all physical components. 

Here the terms "logical" and "physical" are used to indicate 
only a relative degree of abstraction. "Physical" does not mean 
direct implementation by hardware; a "physical component" may be. 
a "logical component" at another level of abstraction. 

A transaction T = {A, B , ••• } is a set of actions. An 
action is a group of operations that we find convenient to treat 
as a single group. Operations in the action can be interpreted in 
two ways: "logical" or "physical." A logical operation is 
considered to access logical components, and a physical operation 
is considered to access physical components. More specifically, a 
logical operation read(X) is equivalent to a physical operation 
read(xi), any i, and a logical operation write(Y) is equivalent to 
a set of physical operations {write(yl), write(y2), ••• }. In 
the sequel, we assume that operations are "physical" unless we say 
otherwise. A write operation to a physical component at a remote 
site is informally called an update. 

An action is executed on a single site. Actions belonging to 
the same transaction, however, may be executed on different sites; 
a transaction may migrate around different sites. A transaction 
can even spa~m multiple actions that operate concurrently. Thus 
concurrent processing of actions belonging to the same transaction 
as well as to different transactions may occur. What constitutes 
a single action ,may vary according to the system designer's 
discretion as long as the previous constraints are observed. For 
example, update operations of the same content to duplicated 
physical components at different sites must belong to different 
actions, but different update operations to different components 
at the same site can be grouped into a single action when these 
operations belong to the same transaction. 

Unusual notations used in this paper: "+" for set union; "<" for 
set inclusion; and "/" for negation. 
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The execution of an action A is characterized by the 
occurrences of its initiation event "a" and termination event ".!!", 
which we will call action events. We define the partial ordering 
on the set of action events following [LAMP-78]: 

Definition. An execution history "«" of a set of transactions is 
an irreflexive partial ordering on the set of action events caused 
by the execution of these transactions. For two events a and b, 
a«b iff 

1. Events a and b have taken place at the same site, and event a 
preceded event b; 

2. Event a is the sending of a message and event b is the receipt 
of the same message at another site; and 

3. The pair (a,b) is in the transitive closure of the ordering 
obtained by the abbve two rules, i.e., a«c and c«b for some 
action event c. 

A write operation, especially an update to a duplicated 
component, may be redundant because the value written by 1t is 
overwritten by another write operation without being read by any 
action. These redundant write operations can be omitted. By 
properly ignoring redundant write operations, the inter-site 
traffic can be reduced, thus efficiency of the system operation 
can be enhanced. 

A consistent execution history of transactions is one in 
which the system and the users see the database state as if the 
transactions were processed sequentially. A concurrency control 
algorithm is consistent iff any execution history realized by the 
algorithm is consistent. [PAPA-77] has given the minimum 
condition for consistent transaction processing, which we call 
consistency condition C1, and has shown that the consistency test 
of an execution history is NP-complete. Other authors [ESWA-76, 
MINO-78, SCHL-78, STEA-76] have used a stricter condition that 
allows a polynomial-time consistency test of an execution history. 
The latter condition, which we call consistency condition C2, is 
sufficient but not necessary under the same premise with [PAPA-77, 
BERN-78]. 

In this paper we use informal arguments, but more formal 
treatment can be found in [MINO-79]. We can prove the following 
statements about consistency conditions C1 and C2: 

1. For any execution history of transactions, if C2 is true, then 
C1 is true; and 

2. C1 is equivalent to C2 if the range of A is a subset of the 
domain of A for all actions A. 
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The fact that consistency condition C2 is necessary and 
sufficient when a "read-set" is a subset of a "write-set" for any 
action, has been observed in [ESWA-76, STEA-76]. 

3. EXTENDED TRUE-COPY TOKEN ALGORITHM 

In this section we present a concurrency control algorithm 
that spatially extends the notion of exclusive/share locks. 
"Primary sites" [STON-79, GRAP-76] and a "circulating token" have 
been used as consistency control mechanisms for duplicated data. 
In [LELA-78], a "circulating token" is used for issuing "tickets"; 
a similar technique can be used to designate a "true copy", a 
version of data contained in a physical component whose value is 
current. An "extended true-copy token" mechanism is a 
generalization of these ideas; it uses "exclusive-copy tokens" 
and "share-copy tokens" th~t designate "migrating primary sites". ' 
Locking is performed over these migrating primary sites. 

Two types of copies, namely "share" and "exclusive" copies, 
are important in the following discussion. A true-copy indicator 
Ix as well as lock Lx is associated with each physical component 
x, and Ix can assume one of the three states, namely, "void", 
"share-copy" and "exclusive-copy". Although an update operation 
to a duplicated physical component is formally an action that" 
belongs to some transaction, we may, in some sense, consider that 
it is carried out by the system. A transaction needs to lock only 
one copy of the duplicated physical components that it "directly" 
accesses. A physical component whose true-copy indicator state is 
either "share-copy" or "exclusive-copy" is informally called a 
true ~, i.e., either an exclusive ~ or a share~. A 
"void" copy is in a transient state and whose content cannot be 
trusted. To visualize the transfer of access permission rights by 
the mechanism described below, we assume that a true copy 
possesses a true-copy token, i.e., either an exclusive-copy token 
or a share-copy token. Also two types of locks, namely "share" 
and "exclusive" locks, are assumed in the following discussion. 

We do not explicitly state the algorithm that implements 
these mechanisms. However, it can be easily constructed observing 
the following rules. We call such an algorithm an extended 
true-copy token algorithm A1. Note that the following rules do 
not assume the existence of global time. 

Rules. 

1. At the point of system creation there exists one exclusive 
copy for each logical component. An exclusive-copy token can 
be transferred to another physical component. When the token 
transfer occurs, all updates made so far to the new physical 
component should precede or accompany the token transfer. 
Updates to the new physical component must follow the logical 
execution order. 
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2. An exclusive copy can become a share copy. A share copy can 
spawn mUltiple copies of itself. 

3. When an exclusive copy is required, all share copies must 
shrink into a single share copy that may become an exclusive 
copy. 

4. A transaction ca~ set an exclusive lock of a physical 
component x only when the state of Ix is "exclusive-copy". An 
exclusive copy cannot be revoked until the exclusive lock is 
released. 

5. A transaction can set a share lock only when the state of Ix 
is "share-copy". A share copy cannot be revoked until all 
share locks on it are released. 

6. Locking on true copies by a transaction must be "two-phase". 

In a sense, true-copy tokens .are used to realize logical 
components, and locking is done over these logical components; 
true-copy tokens handle duplicated copies that cannot be 
efficiently handled by;a locking mechanism alone. Although 
two-phase locking (refer to [ESWA~76] for two-phase locking) is 
used, it is nQt a c.omplete loc~ing; not all accesses to physical 
components are done with the physical components being locked. 
Update op~rations to the physical components at remote sites are 
performed without locking; true-copy tokens are used to properly 
sequence these update operations. 

Update operatio.ns .can be performed in the right order either 
by carrying the latest value of a logical component with the 
true-copy token or by letting an exclusive copy token issue 
sequence numbers that are unique relative to the logical component 
and performing updates according to these sequence numbers. Note 
that updates originate only from an exclusive copy, and that they 
can be uniquely ordered by these methods. Redundant updates can 
be discarded to reduce th~ inter-site traffic as we mentioned in 
section 2; if two write operations occur to the same physical 
component at a remote site while an exclusive-copy token is held 
at some site, the preceding write operation is redundant. 

Fig. 2 diagramatically shows 
transactions shown in Fig. 1 can 
"Active" means that by using local 
executed except for remote updates. 

.which combination of 
be processed concurrently. 

data a transaction can be 

In Fig. 2(a), transaction P can proceed because xl is an 
exclusive copy, and y1 is a share copy. Note that P makes 
read/write accesses to logical component X and a read-only access 
to logical component Y. The update to x2 by P can be discarded 
because it is overwritten by the update by transaction Q; it is 
redundant. 
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R 

read(y2) 

I I 
write(yl) write(y2) 

T 

read(x2) 
r ead(y2) 

r I 
write(xl) write(x2) 

logical components: 

x .. {xl, x2} 
Y - {yl, y2} 

sites: 

H .. {xl, yl} 
I ... {x2, y2} 

Fig. 1. Transactions. 
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site H 
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R 

y2 

R 

site I 

** 
y2 

R 

site I 

** 
y2 

T 
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* 
y2 

--... ~ active 
--~ blocked 

Fig. 2. Extended true-copy token algorithm. 



-228-

Also in Fig. 2(a), transaction R tries to make read/write 
accesses to logical component Y; however, physical component y2 
is a share copy and not an exclusive copy, so R cannot exclusively 
lock y2 and is blocked. 

Once P is completed at site H and transaction Q starts its 
execution using only an exclusive copy xl, a share copy token of 
y1 can be released and y2 can become an exclusive copy; R can 
proceed •. ' In Fig. 2(b), both Q and R are running concurrently. 
The update to x2 made by Q must be sent to site I before x2 
becomes an exclusive copy and is accessed by T; in general, only 
the last update made to an exclusive copy needs to be sent to the 
other sites. 

In Fig. 2(d) two share copies, y1 and y2, exist in the system 
at the same time, and both transactions Sand T are active. 

A transaction is two-phase locked iff no lock requests are 
released before all lock requests become active. An immediate 
consequenceo!,the two-phase locking is that all lock requests of 
a transaction are active at some point during the execution of the 
transaction. We define a binary relation "«p" on a set of 
transactions that use two-phase locking. R «p S iff Rp « Sp, 
where Rp and Sp are the times when all lock requests are active in 
transactions Rand S, respectively. Note that Rp and Sp are not 
action events ;we have extended the definition "«" to cover 
them. Note that both "«"and "«p" are acyclic. 

Now we shall prove the correctness of the extended 
token algorithm 'by showing that any execution history 
by the algorithm satisfy consistency condition C2; see 
MINO-78, MINO-79, SCHL-78] for consistency condition C2. 

. . .' , 

true-copy 
realizable 

[ESWA-76, 

Theorem 3.1. Concurrency control algorithm Al is consistent. 

Proof. We show that 
concurrency co~trol 

C2. 

any execution history realizable by the 
algorithm Al satisfies consistency condition 

Assume that action A of transaction R and action B of 
transaction S conflict over physical component xk. First, if xk 
is locked by both transactions Rand S, accesses to xk by actions 
A and B are made in the same order with "«p" on Rand S. Second, 
if xk is accessed by action A without locking but by B with 
locking, A's access must be an update operation. When an update 
by A is completed before xk becomes lockable and is accessed by B, 
i.e., A precedes B, R must have made a write access to some 
exclusive copy xi (xi /= xk) performi~g the same write operation 
with the update by' A. Then S can exclusively or share lock xk 
only after the exclusive lock on xi is released by R, hence 
Rp«Sp. When an update by A occurs after action B, R can make an 
access to some exclusive copy xi (xi /= xk) only after the 
true-copy token is released byxk; Sp«Rp. In both cases, A and 
B are executed in the same order as Rand S are ordered by "«p". 
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Finally, if xk is accessed by both actions ~ and B without 
locking, these accesses are update operations, and the ordering 
mechanism of update operations guarantees that updates are done in 
the same order with "«p" on Rand S. 

We have shown that conflicting operations are performed in 
the same order with ."«p" on the transactions to which they 
belong; consistency condition C2 is satisfied because "«p" is 
acyclic. 

Q.E.D. 

4. EFFECTIVE GLOBAL TIME 

In the previous section we have directly proved that 
algorithm Al maintains consistency condition C2. From a system 
structuring standpoint; however, it is more desirable to 
presuppose that a logical component itself can assume a value. We 
define the value of a logical component as follows: 

Definition. The value of a logical component is specified by the 
value of the physical component xi that is either an "exclusive 
copy" or a "share copy". 

If we can globally pinpoint time, we can assert that· th~ 
value of each logical component is uniquely defined; there is at 
most one exclusive copy, and when there are mUltiple share copies, 
their contents are the same. However, our formalism does not 
allow the use of global time. 

Fortunately, we can define "effective global time" that is 
totally ordered as far as a realizable execution history of 
transactions is concerned. 

Definition (effective global time). An effective global time for 
a given execution history is defined as a "slice" of an execution 
history of transactions. A slice of the execution history is a 
subset El of the set E of action events, such that for all action 
event a in El and action event b in E - El, b « a ·does not hold. 

The above definition is not intuitive, so we informally 
represent an effective global time as a dividing line in the graph 
of an execution history as shown in Fig. 3, which gives a possible 
execution history realizable by the algorithm Al for the 
transactions shown in Fig. 1. For example; the effective global 
time Tl is the set of events to the left of the line labeled Tl. 
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x**,y* x** y* 

site H: ~-~, , 
\ \ / 
\ \ / 
\ X 

\ / , .... x**,y* 

site I: ~ " ......... -1--1: 

~~ exclusive copy 
* share copy 

Tl T3 

Fig. 3. Effective global times. 

T2 

Definition (n:«n). We define the ordering n:«n on the set of 
effective global times as follows: For two effective global times 
T1 and T2, T1 : «T2 iff T1 < T2, i.e., the effective global time 
ordering is equivalent to the set inclusion relation. 

In Fig. 3, we have T1 :« T2. Some effective global times 
are incomparable as T1 and T3 in Fig. 3. Fortunately, however, we 
have the following lemma for a realizable execution history. 

Lemma 4.1. A realizable set of effective global times is totally 
ordered. 

Proof. In a realizable execution history, an action event that 
once took place cannot be revoked; the effective global time 
monotonically increases. 

Q.E.D •. 

For example, in Fig. 3 once the effective global time T1 is 
reached there is no way to reach the effective global time T3; 
the effective global time T2 can be reached after T1. 

Now we shall prove the correctness of the extended true-copy 
token algorithm by showing that in effect logical components are 
accessed under two-phase locking. 

Lemma 4.2. In algorithm A1 we can assume that logical components 
are accessed, i.e., accesses are made only to the physical 
components whose contents are equal to the values of their 
respective logical components. 
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Proof. Accesses are made only to an exclusive copy or a share 
copy that defines the value of the logical component. 

Lemma 4.3. A logical component value is uniquely defined at any 
effective global time when it is accessed. 

Proof. We prove that at any given effective global time there 
exists at most either one exclusive copy or mu~tiple share copies 
of the same content for each logical component. First, assume 
that we have one exclusive copy xi. Another exclusive or share 
copy xj can exists only after xi ceases to be an exclusive copy or 
before xi becomes an exclusive copy. In the first case xj can be 
a true copy only after a true-copy token is transferred from xi to 
xj, and in the second case xi can be an exclusive copy only after 
a true-copy token is transferred from xj to xi. Therefore in 
either case time precedence can be established, and xi and xj 
cannot coexist at the same effective global time; if we have one 
exclusive copy, we cannot have another exclusive copy or share 
copy. 

Second, when a share copy creates another share copy. their 
contents are the same. Furthermore, the values of these share 
copies will not change until a~l share copies are revoked and a 
single exclusive copy is created. Therefore mUltiple share copies 
for any logical component contain the same value at any effective 
global time. 

Consequently a logical component value is uniquely defined at 
any given effective global time. 

Q.E.D. 

At global time T2 in Fig. 3, for example, yi accessed by 
transaction Sand y2 accessed by transaction T have the same 
content. Also notice .that at any realizable global time at most 
one exclusive copy exists for each logical component. 

Lemma 4.4. In algorithm AI, two-phase locking is realized over 
logical components; more precisely, at any given effective global 
time write-write and read-write mutual exclusions are realized 
over logical components. 

Proof. Assume that some logical component has been exclusively 
locked by some transaction; some physical component belonging to 
the logical component must possess the exciusive-copy token, and 
it must have been locked by that transaction. Then there cannot 
be any other true copies, and the only true copy is exclusively 
locked; therefore, other transactions cannot access the logical 
component, i.e., write-write and read-write mutual exclusions are 
realized over the logical component. 

The correct operation of algorithm Al can be 
Lemmas 4.1 - 4.4. Although two-phase locking 
part of the rules for the algorithm AI, it is 

Q.E.D. 

concluded from 
was specified as 

not mandatory; 
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other types of consistent locking may be used. 

In the extended true-copy token algorithm, transactions are 
blocked in two ways: trying to lock a physical component that has 
a tru~-copy token and waiting for a physical component, which the 
transaction wants to access, to get a true-copy token. 

Theorem 4.5. If a locking mechanism over logical components does 
not cause deadlocks, an extended true-copy token algorithm can be 
designed so 'that it may not introduce deadlo~ks. 

Proof. Although we do not describe the details, we can show that 
the "token transfer" mechanism for realizing logical components 
can be designed so that it can not introduce deadlocks. The fact 
that the locking mechanism over'logical components does not cause 
deadlocks means that there are no deadlocks as long as we can 
establish logical components (true copies). In establishing 
logical components, special care must be taken so that the 
different physical components belonging' to the same logical 
component do not block each other by each getting a subset of the 
share-copy tokens; this pro~lem can be resolved by assigning a 
priority to the physical components. 

Q.E.D. 

5. DISCUSSIONS 

The merits of the extended true-copy token algorithm can be 
summarized as follows: 

1. It is intuitive and has a simple structure. 

2. Multiple copies of a file are supported while it is used for 
read-only purposes; also it can be updated by revoking 
mUltiple copies. 

3. An exclusive copy may migrate among different sites. 

Multiple share copies are useful for a file that is mostly 
used in a read-only mode at many sites but needs to be updated 
occasionally at some site, e.g., a directory, a timetable, etc. 

A migrating exclusive copy of a file is useful when more than 
one site actively use it, e.g., an airline seat reservation table 
for a flight from San Francisco to Tokyo; the inter-site traffic 
may be reduced by swapping the file at some interval. 

One way to measure the capability of a concurrency control 
algorithm is to see how various "localities" are supported. We do 
not give a precise definition of the "localities""but it roughly 
means a set of physical components that must be directly accessed 
to execute a transaction. A smaller locality is preferable to 
larger one. "Primary site" mechanism supports "multiple static 
localities" of transaction processing, but fails to support 
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"migrating localities". "Circulating token" mechanism supports a 
"single migrating locality", but fails to support "multiple 
localities". Most of other mechanisms currently proposed do not 
supp(,rt small localities well. The extended true-copy token 
algorithm is intended to support "multiple migrating localities". 

The level of concurrency realized by the algorithms in 
[BERN-78, LAMP-78J that use timestamps can be shown to be 
equivalent to having only one exclusive-copy token in the system. 
The similarity between a timestamp algorithm and a "single token" 
algorithm can be understood if we assume that the site whose local 
clock is the slowest has the token; a token transfer is made in a 
disguised form by sending a message whose timestamp is ahead of a 
local clock of some other site. This is further discussed in 
[MINO-79] • 

6. SUMMARY 

A distributed database system with possible partitioned and 
duplicated data has been formalized with the consequence that the 
same operational consistency conditions for a centralized system 
Were applicable for a distributed database system. 

A new algorithm, extended true-copy token algorithm, was 
presented. The new algorithm supports either mUltiple read-only 
copies or a single read/writ~ copy for each logical component 
without violating the consistency condition. In its correctness 
proof we introduced the new concept of effective global time. 

We hope that the ideas developed in this paper will help in 
the design and analysis of better algorithms. Making a 
concurrency control algorithm resilient is essential in a 
practical environment. We hope to report on the resilient 
extended true-copy token algorithm later. 
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Abstract 

Simulation, particularly of networks of queues, is an 

application with a high degree of inherent parallelism, and 

is of considerable practical interest. We continue the 

analysis of synchronization methods for distributed simula­

tion, defined by the taxonomy in our previous paper. 

Specifically, we develop algorithms for time-driven simula­

tion using a network of processors. For most of the syn­

chronization methods considered, each node k of an n-node 

network simulation cannot proceed directly with its part of 

a si~ulation. Rather, it must compute some function Bk(vl' 

v2' ••• , v n) , where v i is some val ue wh ich must be obtained 
from node i. The value of vi at each node changes as the 

simulation progresses, and must be broadcast to every other 

node for the recomputation of the B-functions. In some 

cases, it is advantageous to compute the B-function in a 

distributed manner. Broadcast algorithms for such 

distributed computation are presented. Since the perfor­

mance of a broadcast algorithm depends on the properties of 

the inter-process commun icat ion fac il i ty, we cha racter i ze 

some particular cases and give algorithms for each of them. 
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INTRODUCTION 

Simulation is a widely used technique for system 

performance evaluation. The conventional approach to 

simulation is to develop a simulation program for a model, 

and then execute this program in a centralized computer 

system G Thi s approach has 1 ed to the development 0 f 

packages such as CSMP (7) for continuous simulation, and 

GPSS (10) and SIMSCRIPT (11) for discrete simulation. 

The recent development of low-cost microprocessors has 

suggested an alternative approach to simulation. In this 

approach the simul ated system is d ecompo sed into components, 

and these components are simulated in a distributed manner 

over a network of processors. This approach is particularly 

attractive for the simu+ation of queueing network models 

(17) because of the inherent parallel ism typically found "in 

these models, and of their wide-spread application to com­

puter systems and communication networks. Such parallelism 

can be exploited in the decomposition to give a potentially 

more cost-effective method of simulation. The distributed 

approach, however, requires the proper synchronization of 

the components before the simulation can be carried out cor­

rectI y. 

In our previous paper (16), a taxonomy which charac­

terizes the different simulation methods was described. A 

slightly modified version of this taxonomy is shown in 

Figure 1. At the first level, we distinguish whether there 

is one or a network of processors available. With a network 

of processors, the simulation is decomposed into components 

and distributed over the processors. No such decomposition 

is assumed in the case of one processor only. The next 

level deals with the event-driven or time-driven nature of 

simulation. In event-driven simulation, the changes in 

system state are simulated when an event occurs, and. the se­

quence of the simulation time (which corresponds to the se-
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quence of event times) is monotonically non-decreasing.. In 

time-driven simul ation q the simul at ion time is incremented 

by a fixed amount which defines a simulation interval. All 

of the changes in system state in the present interval are 

simulated before advancing the simulation time to the next 

interval. 

For the case of a network of processors, we also have a 

third level, depending on 'the value of simulation time at 

each component. The method is tight if the value of simula­

tion time is the same for all components at each instant of 

real time. On the other hand, a loose method allows d i fg· 

ferent components to have different values of simulation 

time at a given instant of real time. Loose simulation 

methods thus allow more exploitation of parallelism o 

Algorithms for event-driven simulation with a network 

of processors have be~n developed by the authors (16), by 

Chandy et ale (2,3,4), and by Bryant (1)0 Examples are the 

virtual ring algorithm for tight event-driven and the link­

time algorithm for loose, event~driven simulation.. In this 

paper, we consider the time-driven methods and present al­

gorithms for the synchronization of the componentso A 

fundamental feature of these algorithms is that a component 

(or a central controller) must broadcast a signal to every 

other component to indicate the end of a simulation inter­

val. This broadcast feature is also observed in distributed 

algorithms for event-driven simulation, as well as other ap­

plications, such as distributed data bases. 

We thus consider a class of algorithms called broad-

cast algorithms which are suitable for distributed simula­

tion using a network of processorso A recent paper by Dalal 

and Metcalfe (8) has dealt \'iith the broadcast of packets 

throughout a packet-awi tching network, where the topology 0 f 

message passing is fixed according to the network structure" 

(By message-passing topology, we mean the structure· chosen 

for messages to follow in a broadcast from a source to all 
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other nodes of the networkG) We shall be more interested in 

exploring cases in which our network allows any message­

passing topology, and we shall look for topologies which 

give the minimum time to complete a broadcast. 

For convenience, we will base our discussion on the 

simulation of a queueing network model with n 

each node corresponds to a component in our 

The general form of our broadcast algorithms 

nodes, where 

decomposi t ion. 

requires that 

each node k must maintain some function Bk (vl,v2,.eo,vn) 

where v i is a val ue obtained from node i. The val ues 0 f the 

Vi'S change as the simulation progresses, and must be broad­

cast to every other node for the recomputation of the 

B-functions. Of particular interest is the case that a node 

k broadcast a request for the computation, in a distributed 

manner, 0 f Bk • Algor i thm's fo r such a d istr ibuted computa­

tion are presented. ,The performance of these algorithms 

under three types of communication facilities are in­

vestigated. 

LOOSE TIME-DRIVEN METHODS 

In distributed simulation using the loose time-driven 

approach, s imul ation time advances by a fixed quantum si ze 

q. Whenever conditions permit, a node simulates its compo­

nent over the time interval from s to s+q (which we call a 

tick), and then advances its simul at ion time to s+q. In the 

case of a queueing network model, these conditions are met 

when the node's immediate predecessors have all advanced 

their simulation time to so In this section, we outl ine two 

algorithms for the loose time-driven method. 

Centralized Algorithm 

The centralized algorithm for loose time-driven'simula­

tion makes use of the interconnection graph of the simulated 
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system .. Each time a node finishes a tick, it sends an "ad-

vance" message to the synchronizer, which increments a clock 

for that node. For each immediate successor of this node q 

the algorithm checks if all of its immediate predecessors 

have advanced at least as far as the new time. If so, the 

synchronizer sends a message to the successor node telling 

it to start' the next tick, including the minimum of its 

predecessors' times in the message.. This node may then 

simulate up to that time.. This algorithm has the desirable 

property that it takes the minimum number of messages to do 

the synchronization, that is, a maximum of two messages per 
tick per nodeo 

Distributed Algorithm 

The distributed algorithm for loose event-driven 

simulation bears a very strong resemblance to the link time 

algorithm for loose event-driven simulation (16). The main 

difference is that the link time is defined as the simula­
tion time at the source node of an empty link, rather than 

as a lower bound on the next arrival, and it gets in­
cremented by one quantum after each ticl( .. 

TIGHT TIME-DRIVEN METHODS 

Synchronization of tight time-driven methods requires a 

method of determining when all nodes have completed the tick 

from s to s+q, and a means to inform all of the nodes that 

they should start simulating the next' tick. 

We expect that the cost-effectiveness of this method is 

heavily dependent on the distribution of processing require­

ments among the components of the simulation.. Let Pi be the 

processor time per tick required at component ie If there 

is a k such that Pk » Pj for all j ¥ k then we would expect 

this time to dominate the time required per quantum inter-
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val. If each processor contains only one component, then we 

would also expect that all processors except the one con­

taining component k would be idle most of the time. If we 

want to make maximum use of processors used or minimize the 

number of processors required, we may want to assign more 

than one component to each processor. If each Pi is known 

and constant, this is a bin packing problem with the 

capacity of the bins set to the maximum Pi. The solution to 

thi,s problem gives optimal performance at the lowest cost, 

neglecting the overhead required for synchronization. 

Centralized Synchronization Algorithm 

This synchronization algor ithm consists of a central 

process which keeps track .of which components have finished 

the cur rent tic k, and wh ich tell s the components when to 

start the next tick. We note that with n components in the 

simulation, we require n messages for all the components to 

signal when done, and n messages to notify them that the 

next tick should be started, for a total of 2n messages per 

tick. 

In designing an algorithm to perform this synchroniza­

tion, we want to make the overhead per tick as low as 

possible. Since the processing time required per tick is 

dominated by the component with the largest Pi' we should 

inform that component first that time should be advanced. 

Extend ing thIs, we adopt the approach that the components 

are notified in the reverse order in which they signal. the 

completion of the previous tick e This approach is based on 

the assumption that the Pi's are correlated, that is, Pi for 

time s+q to s+2q is likely to be approximately equal to Pi 

for time s to s+q. 

We can analyze the performance of this algorithm rela­

tive to the Pi's by considering ri' the number of nodes 

which are sent timer-advance messages before node i. Then 
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a tick is going to be at least 

where m is the time for a messa/yta 

could be larger due to the fact that only 

may be received at a time, so that messages ar­

the same time will suffer additional queueing 

Qistributed ?ollin~ A120rithm 

This algorithm performs a function similar to the cen­

tralized algorithm presented above, but does not keep track 

of the order of completion for each tick.. It works in two 

phases: one phase for keeping track of which components have 

finished the current tick, and the other for notifying all 

components that the next tick may be started., 

In the first phase, a message containing an n-bit field 

and a count of the number of nodes yet to complete the cur­

rent tick is passed from node to node. The i'th bit of the 

n-bit field is 1 if the ilth component has finished the cur­

rent tick and 0 otherwiseo \~en the message arrives at com­

ponent i, the component waits until processing of the cur­

rent tick is complete, and then turns on the i'th bit and 

decrements the countero If the counter is now zero, it is 

changed to n and the second phase is entered 0 Otherwi se, 

the message is sent to a component whose entry in the bit 
vector is O. 

In the second phase, a message containing just a 
counter is sent around a virtual ringo When a node receives 

the message, the counter is decremented, and if it is not 

now zero, the message is passed onto the next node in the 

ringo Once a node has passed on the message, it starts 

processing the next ticko If the counter is 0, then it has 

returned to the node which initiated phase two, and this 

node starts off a phase one message with the bit vector set 

to O's and the counter set to N$ 



-245 .... 

Both this and the centralized algorithm are required to 

broadcast a "start next tick" message to all nodes. In the 

centralized case, the central controller sends the message 

to every node, whereas in the distributed case, the message 

passes around a virtual ring Q Also, the virtual ring al­

gorithm for the case of tight event-driven simulation given 

in our previous paper (16) broadcasts a new next event time 

to all nodes using a virtual ringo Neither of these 

message-passing topolog ies was chosen because of any virtue 

other than simplicity. It seems likely that there exist 

other ways of passing the messages to all the nodes which 

would offer better performance, and so we have developed and 

investigated some other algorithms for performing this 

broadcast. These are presented in the next section, which 

deals with broadcasting ina more general wayo 

BROADCAST ALGORITHMS 

We consider the general case that node k of an n-node 

network simulator maintains some function Bk(vl 1 v2' ••• , 

vn), where v i is some val ue wh ich must be obtained from node 

i. The value of this function is used to determine whether 

node k may proceed with its portion of the simulation or 

not. The value of vi at each node changes as the simulation 

progresses, and hence so does the value of each function Bk -

If each node maintains a copy of each vi' then a change at 

node j from v j to v j' requi res onl y that v j' be broadcast to 

all other nodes in order for the new value Bk' to be com­

puted. On the other hand, if the nodes do not maintain 

copies of the vi's, then a change in Vj could in general re­

quire that every vi be broadcast, since the Bk functions 

would have to be recomputed from scratch. So, there is a 

classical time/space tradeoff to be made here. 

Of spec ial interest to th i s stud yare B-functions 0 f 

the f~rm vI op v2 op 00& op v nl where op is a commutative, 
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asso.ciative o.perato.r., In this case g one co.uld distribute 

the co.mputation o.f the Bk among the entire set of nodese 

Instead o.f bro.adcasting changes in Vjl the no.de would broad­

cast a request to. compute the functio.n Bke We thus have two 
separate kinds o.f broadcast to. co.nsider: simple bro.adcast 

where every no.de eventually gets a message ,co.ntaining the 

new Vj', and broadcast with reply where each node re~eiving 

a broadcast from node k computes some sub-expressio.n o.f Bk 

and replies with the result. The bro.adcast with reply has 

the important pro.perty that it can be used to. implement 

bro.adcast with po.sitive ackno.wledgment, where the B functio.n 

is simply the lcgical functio.n "all no.des have received the 
messag e" ., 

There is no. requirement that alIef the B-functio.ns be 

the same, but this is an interesting sub-case., Tight event­

driven simulatio.n uses the functio.n M ::: Bk ::: mini(neti)' ~nd 
neti is the next event time at no.de i. Besides having the 

same functio.n at all no.des, the minimum is also. a co.mmuta­

tive and asso.ciative binary o.perato.r, so. that we co.uld let a 

designated ncde initiate a brcadcast with reply to. ccmpute M 

in a distributed fashion o Once that no.de received the reply 

wi th the val ue o.f M, it we uld bread cast it to. the o.thers,. 

Ncdes fer which neti ::: M wo.uld 'then be able to. proceed with 

their parts o.f the simulation., 

So.me Bro.adcast Algo.rithms 

We new consider algo.rithms to. acccmplish a bro.adcast 

and relate their perfo.rmance to. pro.perties o.f the inter­

process co.mmunicatio.n facility. Fer the moment, we assume 

that the inter-precess co.mmunication is such that message 

delays between any two. precesses are co.nstant and identical. 

We also. co.nsider the simple case in which o.nly o.ne bro.adcast 
is active at a time. 
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The particular algorithm which takes the minimum time 

depends heavily on the amount of interference there is 

between messages in the message transmission network. with 

heavy interference, as when all processes are assigned to a 

single processor, the minimum time to complete a broadcast 

with reply is proportional to the number of messages. On 
the other hand, with low interference, the number of mes­

sages is less important and the topology of the message 

passing dominates the minimum timeo We consider the fol­

lowing cases: 1) complete interference, where only one mes­

sage can be in transmission at a time; 2) interference at 

each node, where any number of messages are in transmission, 

but only one message per node can be sent or received at a 

time; and 3) broadcast facility, where one node at a time is 

allowed to send the same message to all others. 

Complete Interfere~o An example of complete inter­
ference is the assignment of all processes to a single 

processor. The minimum time solution to this problem is to 

pass the request around a virtual ring. Upon reaching the 

last node, it is sent back to the source. 

To argue that this solution takes the minimum time, we 

first note that the time is proportional to the total number 

of messages required to inform all nodes of the request and 

to collect the replies. Hence, minimizing the number of 

messages is equivalent to minimizing the time. Since each 

node besides the source must receive at least one request, 

and send at I east one repl y, and the source must send at 

least one request, and receive at least one reply, n is a 

lower bound on the total number of messages required, which 

the virtual ring meetso The essential feature of t~e ring 

which makes this possible v is that the request to a node's 

successor is also that node'S reply, so the two functions 

are combined into one message. To see that this is the only 

structure which achieves this lower bound, we consider a 
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topology in which one node sends the request and reply 

separatelyo Since every other node sends at least one mes­

sage, the sum of messages sent is at least n+l e Therefore, 

to use only n messages, each node must receive and send only 

one message. The only topology for which this is possible 

is a ring. 

No Interference Between NodesG An example of this type 

of facility, where there is no interference between nodes to 

send to different destinations is a fixed time-division mul­

tiplexed (TDM) bus.. This case is .treated by having every 

node which has received the broadcast send messages to nodes 

which haven' t. For ex am pI e, the source (say node 0) informs 

node 1. Then nodes 0 and 1 inform nodes 2 and 3, giving 4 

nodes which now have rece.ived the broadcasto Then nodes 0 

through 3 inform nodes 4 through 7, and so on. Thus we see 

that at each stage, we double the number of nodes which have 

received the broadcasto After p message-passing time units, 

the structure of the tree produced outlines a subset of the 

edges of a p-dimensional hypercubeo This is illustrated in 

Figure 2, which shows how a tree with 8 nodes can be mapped 

onto a cubeQ This approach is optimal because no other ap­

proach can broadcast the message to more nodes at each 

stage. 

If this is a broadcast with reply, then when all of the 

nodes have received the message, the reply phase begins. 

The replies are returned in the opPosite direction to the 

broadcast messages e A node does not reply until all of the 

nodes to which it sent a message have repliedu Thus, leaves 

in the tree repl y immed ia tel y wi th the vi reque sted .. As 

each repl y is received at an intermed late node, the resul t 

of the function for the subtree of that node is accumulated, 

and when all replies have been received and processed, the 

result is sent to the requestor of the node. The tree of 

nodes which haven't replied therefore halves in size at each 
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Figure 2. Hypercube Broadcast Representation 

stage, just as it doubled its size during the request phase, 

until eventually only node 0 remains. We see that this 

takes a total of 2n-2 messages, and a time of 2 ceil(lo92n) 
to complete the computation of the function, where ceil(x) 

denotes the smallest integer?. x. Note that for n ~ 6, 2 

ceil(lo92 n) ?. n, so that the virtual ring solution is at 

least as good for these values, and we choose to use it 

since its impl ementation is simpl er. 

This particular reply scheme falls into a class of so­

called "echo algorithms" studied by Chang (6). We notice 

that this approach to the reply is not optimal since it does 

not take advantage of the fact that sub-expressions of Bk 

can be computed as the broadcast is propagated in the for­

ward direction. If this is done, the number of sub­

expressions left to be merged at the end of the broadcast 
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phase is the number of leaves in the tree, rather than the 

number of nodes. It should be possible in most cases to 

combine the smaller number of sub-expressions in less time. 

We have assumed thus far that send ing and receiv ing are 

synchronized, that is, node a in the process of sending a 

message to node b cannot start to send another message until 

the first has been received at node b. It will be useful to 

define the characteristics of message passing more formally 
as follows. Suppose that node a starts to send a message to 

node b at tl and can start another send at t 2, and that node 

b starts to receive the message at t~ and finishes receiving 

it at t4- We can now define S = t2 - tl as the send time and 
D = t4 - tl as the delay time. Thus far, we have considered 

only the case in which S = 0 = constant. We will next 

generalize this to the case in which S # 0, where-S and D 
are still constants. For simplicity, we only consider the 

broadcast without reply case in the remainder of this sec­
tion. 

It will be useful in the subsequent discussion to use 

the broadcast tree, which we now define. An example of such 

a tree for D = S is shown in Figure 3. All nodes on a 

horizontal line receive the broadcast from the same node, 

and that node is connected vertically to the left end of the 

horizontal line" Al so v th~ hor izontal direction is 
calibrated to represent the time at which a node receives 
the broadcast. 

We first consider the case for which 0 > S. An example 

of this is the use of a non-blocking send primitive (15), 
where the sender is free to start another message without 

waiting for completion of those in transit. For ease of 

analysis, we let 0 = kS, k a positive integer, and give an 

example of a broadcast tree in Figure 4 for k = 3. Let N(i) 
be the number of nodes which have received a broadcast at 
time t :: is ... With our optimal strategy, there will thus be 

N (i) nodes starting to send a message at is. These messages 
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are not received until time is + 0 = (i + k)S. Since we 

send to destinations that do not know of the broadcast, N(i) 

new nodes are informed at time (i + k) S, and so we can 

write, replacing i by i-k, N(i) = N (i-I) + N (i-k) • Since 
the first message from the originator of the broadcast is 

received at time kS, we have the initial conditions, N{i) = 

1 for 0 < i < k-l. 

t ... .- .-

f T ... 
... .... 

- .... --. .. .... ... -1 ... -... .... .... .... .... 

r T - .... 
- -

I I I 1 I. 1 I I I I I ....... t = is 
0 1 2 :3 4 5 6 1 8 9 10 11 i 
1 1 1 2 3 4 6 9 13 19 28 41 N(i) 

0 0 1 1 1 2 3 4 6 9 13 DELTA N(i) 

., LEFTMOST NODES 
0 NON - LEFTMOST NODES 

F19ure 4. Broadcast Tree for 0 .. 35 

To find the time taken for a broadcast to n nodes, we 

must find the minimum i such that n ~ N(i). We observe that 

for k = 1, this gives the same result as we obtained from 

our previous analysis of this case, namely that N(i) = 2i 

and hence the broadcast time is ceil(lo92 n). Also, for k > 
n-l, the or ig inating node sends messages to all of the n-l 
remaining nodes. 



-253-

The case D < 8 occurs when blocking primitives (15) are 

used, where the s.ender is not re-activated until an acknow­

ledgment is obtained from the receiver. To ease the 

analysis, we consider the sub-case in which 8 = kD, k a 

posi tive integer. We define N (i) to be the max imum number 

of nodes that can be informed of the broadcast at time IDe 

In this case, N (i) is the number of nodes in the broad­

cast tree at time IDa It will be more convenient to study 

the behav iour of Ll N (i) = N (i) - N (i-I) rather than N (i) , 

since LlN(i) is the number of nodes which receive broadcast 

messages at time iD.. It will be helpful to visualize a 

broadcast tree, as shown in Fig ure 5 for the case k = 3. 

The messages received at time t = iD will be of two types: 

those leftmost on a horizontal branch of a broadcast tree, 

and those not leftmost. The number of messages received 

which are not leftmost is the same as the number received at 

time t 8 = (i - k)D. This follows from the fact that 

every node which sends a message that is received at time t 

8 also sends a message wnich is received at time t. The 

number of messages received which are leftmost is the same 

as the number of nodes which received the broadcast at time 

t - D because each of these nodes immediately sent a message 

which is received at time t. We can thus write LlN(i) = 

LlN(i-l) + LlN(i-k) .. Here we have the initial conditions 

LlN(i) = 1 for 1 < i < k and N(O) = 1. We notice that the 

recurrence for the LlN(i)' s is the same recurrence as we 

found for the case D > 8. In this case, however, if k > 
n-l, the optimum solution is a virtual ring for broadcast 

reply, and a virtual ring without the last edge for the 

simple broadcast. 

We notice that we can also write the recurrence for the 

case D > 8 in the form LlN(i) = LlN(i-l) + LlN(i-k), with 

suitable initial conditions. This suggests that there may 

be a general recurrence relation which covers both cases. 

Let t = iq, where q is a quantum si ze and 1 et D = jq and 8 = 
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kq. Then, by an argument similar to the one for 0 < S, we 

obtain the recurrence ~N(i) =< ~N(i-j) + ~N(i-k). Since 

the first message sent arrives at time 0, we have the ini­

t i a I co nd i t ion s ~ N ( i ) = 0 for i < j, a nd ~ N ( j) = N (0) = 1 .. 

It is useful to consider the generating function for 

the ~N(i) sequence. Using a derivation similar to that in 

Knuth (13) for the Fibonacci sequence, we obtain the 

generating function G (z) = zj / (1 - zj - zk).. One could 

obtain a closed-form solution for ~N(i) by finding the 

roots of the denominator of G (z), obtaining the partial 

fraction expansion, and inverting the result. (In order to 

minimize the order of the denominator, it is best to choose 

q so that the greatest common divisor of j and k is 1.) It 

is rather interesting that the denominator of G (z) is sym­

metric in j and k, since this means that interchangin9 0 and 
S results in a ~N(i) which is the same except for a shift 

along the i-axis of j - k. 

Hardware Broadcast Facility. The final case is one in 

which there is some broadcast facility available which al­

lows a node to send the same message to all other nodes. An 

example of a facility which has the potential to perform 

this type of broadcast is Ethernet (14), even though it 

could also be considered to fall in the class of total 

interference. In this case, the source node sends its re-

quest to all nodes at once, but cannot receive their replies 

all at once, so we could use the same tree structure as the 

previous case, during the reply phase only. If the broad­

cast takes time T, then the total time to do a broadcast 

with reply for the case S = 0 is T + ceil(lo92 n)O. 
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IMPLICATIONS AND FUTURE WORK 

The results of the previous section have given us the 

capability to generate a broadcast tree which provides 

broadcasting in the minimum time, provided that the Sand D 

values can be determined. However, the analysis of these 

broadcast trees assumes that only one request is active at a 

time. If this is not the case, then queueing delays caused 

by com pet ing reque sts wi 11 tend to make the messag e 

switching mechanism behave as one witn higher interference, 

so that the cho ice of optimum message passing topology 

becomes unclear. 

An approach to this problem which we intend to in­

vestigate is the inclusion of queueing delay into the value 

of 00 In general, the larger the number of broadcasts ac­

tive at anyone time, the larger is the queueing delay, and 
the larger will be the 0 value used. On the other hand, if 

the simulation is processor-bound, it may be desirable to 

restrict processor time for broadcasts, so that messages are 

not sent at the maximum rate possible. This corresponds to 
an effective increase in S. 

The analysis of the case with no interference is the 

most general result of the previous section. We note that 

the total interference case is approximated by S» 0, and 

that the hardware broadcast case is approximated by S « o. 
It will be useful to explore the ways in wh ich Sand 0 can 

be traded off against one another, and then look for the 
best val ues. 

The assumption of constant Sand 0 between all node 

pairs of a network may not be real istic for some systems. 

Th us, the ex tension of these resul ts to cases in wh ich the 0 

and S values are not the same for all nodes, and in which 

they are not constant is worthwhile. 

Finally, the generating function for the general recur­

rence, G(z) = zk / (1 - zj - Zk), requires further in-
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vestigatione The denominator of G(z) has one real root 

between 0 and 1, as can be readily seen from the fact that 

G(O) = 1 and G(l) = -1. It is our conjecture that this root 

dominates the asymptotic behaviour of LlN(i), which, if 

true, would allow us to write LlN(i) approximately as Cr i 

for large i. Here, r = l/r', where r' is the value of the 

root between 0 and 1. 
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Abstract 

In May 1978 a new routing algorithm was installed in 
the ARPANET. In this algorithm, each network node makes an 
independent routing decision, based on information about 
delays throughout the network. The delay on a particular 
line is measured at the nodes attached to that line, and 
disseminated to the rest of the network in the form of a 
"routing update." This paper discusses one aspect of the 
routing algorithm, viz. its updating protocol (i.e. the 
protocol used to disseminate the updates). The problem of 
devising a good updating protocol is shown to be a problem 
in the management of a distributed data base. The 
requirements which any such protocol must meet in order to 
be satisfactory are presented and discussed. The protocol 
is then developed so as to meet these requirements. Other 
possible protocols are discussed, and shown not to meet the 
requirements. 

1. INTRODUCTION 

The design of distributed adaptive routing algorithms 
for packet-switching computer networks gives rise to many 
and varied problems. In this paper we discuss one such 
problem, as well as the solution we devised as part of the 
design of a new routing algorithm for the ARPANET. (This 
new algorithm, described in [1J, became operational in May 
1979.) The problem arises from the fact that although each 
packet switch (node) in the network must make an independent 
decision on how to route packets, the data base it needs to 
make these decisions is a distributed data base. That is, 
each node has direct access to only a small portion of the 
data base; to gain access to the rest, the nodes must 
communicate with each other. The messages used to transmit 
the routing data base information are known as "routing 
updates." Choosing a good routing update protocol is a 
problem in distributed data base management; it is this 
problem that will be discussed here. 
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2. THE PROBLEM 

In distributed routing, each node.runs an independent 
"shortest-path computation" which maps certain state 
information about the network into a set of routes from the 
given node to each other node. A routing algorithm may be 
said to be adaptive insofar as the chosen routes adapt 
systematicallY to changes in this state information. If one 
wants to have routing which adapts only to changes in the 
network's topology, then the only state information which is 
necessary is the up/down status of each network line. If, 
on the other hand, one wants the routing to adapt to changes 
in packet delay, then the necessary state information is the 
delay over each network line; this is the approach adopted 
in the ARPANET. This state information is gathered by a 
measurement process which runs in each node. The state of a 
particular line, however, can be directly measured only by 
the node that transmits over that line; there is no way for 
a node to directly measure the delay over a line to which it 
is not connected. Nevertheless, if each node is to make an 
independent routing decision, each node must know the delay 
over each network line. This is what giv~s rise to the 
distributed data base problem. In order for each node to 
perform an independent shortest-path computation, each node 
must have access to a data base which consists of the delay 
over each network line. Since each node is able to measure 
the delay on only a few lines, the data base is distributed 
throughout the network. 

There are two possible approaches to solving the 
problem of the distributed data base. One way is to 
distribute the shortest-path computation itself so that each 
piece of the .computation has direct access to the part of 
the data base that it needs. This is the approach taken by 
the ARPANET's old routing scheme. The alternative approach 
is to develop a quick and reliable updating protocol for 
transmitting changes in the data base to all nodes in the 
network. This makes the entire distributed data base 
locally available to each node. This approach, adopted by 
the ARPANET's new routing algorithm, is the one that shall 
be discussed here. 

3. REQUIREMENTS OF THE UPDATING PROTOCOL 

Protocols for handling process-process communication 
abound in computer networks, and one might think that 
devising an updating protocol for routing offers no special 
problems not found generally in the design of such 
protocols. This is not the case. The role of routing in 
the network places special requirements on the updating 
protocol. If each node is to maintain its own copy of the 
entire data base, and if each node's routing decisions are 
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to be made entirely on the basis of its own copy of the data 
base, then it is essential to ensure that identical copies 
of the data base are kept at all nodes. If this constraint 
is not met, then the nodes may make conflicting routing 
decisions, causing a major network failure. For example, 
suppose A and B are neighboring nodes, and D is a third node 
elsewhere in the network. If A were ever to decide that 
traffic destined for D should be routed via B, while B 
decides that traffic for D should be routed via A, neither A 
nor B would be capable of delivering traffic to D; traffic 
would loop endlessly between A and B. For the shortest-path 
computation used in the ARPANET's new routing scheme, this 
situation can be shown to be impossible, if all the nodes 
have identical copies of the data base. If they do not have 
identical copies of the data base, however, then there is no 
assurance that the routing scheme will be able to deliver 
packets to their destinations. It must be understood though 
that the data base is constantly changing. Whenever the 
average delay over a line changes, or when a line goes down 
or comes up, there is a change in the value of one of the 
entries in the distributed data base. This change must be 
made known to all nodes quickly if the routing algorithm is 
to continue to operate correctly. Our problem is to devise 
a protocol which ensures, to the greatest degree possible, 
that all nodes maintain an identical copy of the data base, 
even though it is under continual change. The requirements 
of such a protocol are the following: 

1. Reliability. The protocol must ensure delivery of 
all updates to all nodes. The ordinary data 
transfer protocol of the ARPANET is not 
sufficiently reliable. Data packets in the ARPANET 
can be lost due to node crashes, network 
partitions, or severe congestion. Loss of data 
packets under these (admittedly low probability) 
circumstances is unfortunate, but it does not have 
any globally deleterious effect. Loss of a routing 
update, on the other hand, will result in 
inconsistent copies of the routing data base, 
possibly crippling routing and bringing down the 
network. A more reliable protocol must be found. 

2. Quickness. Since updates cannot make their way 
across the network instantaneously, there will 
always be some interval of time after a new update 
is generated when the copies of the data base 
throughout the network are not identical. Our goal 
is to keep this interval as small as possible. 
Note that when an ordinary data packet travels 
slowly, the only bad effect is that some user sees 
a long delay. When routing updates travel slowly, 
however, all users can suffer. 
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3. Priority. Whenever routing updates contend with 
other packets for the same resources (such as 
buffer space, line bandwidth, or processor 
bandwidth), the updates must be given priority. To 
put this point another way, the flow of updates 
must not be slowed down when the network is heavily 
loaded. 

4. Sequential delivery. If two updates contain 
information about the same line, then the updates 
must be processed at all nodes in the order in 
which they are generated. If different nodes 
process these updates in different orders, 
inconsistent copies of the data base are sure to 
result. Note, however, that as long as the updates 
contain complete information, so that later updates 
obsolete earlier ones, it is not necessary to have 
guaranteed sequential delivery. When later updates 
arrive before earlier ones, the later ones can be 
processed immediately, and the earlier ones simply 
discarded when they arrive. A policy of guaranteed 
sequential delivery would delay the processing of 
the later update until the earlier one arrives, 
thereby defeating the requirement of quickness. 

5. Efficiency. The routing updates should not place 
such a great demand on network resources that the 
routing scheme does more harm than good. 

4. THE UPDATING PROTOCOL DEVELOPED 

Some of these requirements were easy to handle within 
the structure of the ARPANET nodes. Others were more 
difficult, and required the development of new protocols 
unlike anything previously found in the ARPANET. One of the 
easy ones was priority. The ARPANET already had a priority 
queueing structure which could be easily adapted to allow 
highest priority to routing updates. To handle efficiency 
considerations, we made the update messages small and 
infrequently generated. Each update message from a given 
node contains information on all the lines emanating from 
that node, rather than on just one line. The update 
packets themselves are quite small, about 176 bits on the 
average. Furthermore, each node is constrained to generate 
updates only infrequently. Changes in delay on a line 
cannot cause generation of updates more often than once 
every 10 seconds. Additional updates can be generated if a 
line goes down or comes up. However, when a line goes down 
it cannot come back up for at least 60 seconds, so there is 
no need to worry about excessive updating due to line 
failures. An important consequence of these features of the 
update generation process is that there is no need to exert 
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flow control on the routing updates. They simply cannot be 
generated frequently enough to give rise to the sort of 
problems which flow control is needed to prevent. 

For speed and reliability we decided to use a 
transmission procedure known as flooding. Each update from 
a given node carries a sequence number which identifies it 
uniquely. When a node generates an update, it sends a copy 
of the update to each of its neighbors. Whenever a node 
receives an update which it has not seen before, it sends a 
copy to each neighbor, except the one from which it it was 
received. When a node receives an update which it has seen 
before (or which was generated prior to one it has seen 
before), the update is discarded. The two most salient 
aspects of the transmission procedure are: 

1. The transmission of routing update messages is in 
no way dependent on the performance of the routing 
algorithm. Even if some problem arises with the 
routing algorithm, transmission of routing updates 
is not affected. This independence is an important 
reliability measure. It is also important in 
ensuring quick transmission. In effect, it 
establishes a fixed routing policy for transmission 
of routing updates, allowing the updates to bypass 
many of the normal packet-forwarding procedures. 
This means that the forwarding of updates can be 
done at the highest priority level, with negligible 
processing delay. 

2. Each node receives a copy of each update from each 
of its neighbors. This ensures that updates cannot 
be lost due to node failures or network partitions. 

It must be understood, though, that transmission across the 
network consists of a sequence of point-to-point 
transmissions, or hops. Flooding assures speed and 
reliability only insofar as the individual point-to-point 
transmissions are quick and reliable. Packets transmitted 
from one node to another need to be pI'otected against the 
following problems: 

1. Line errors. Bursts of noise on the telephone line 
connecting two nodes can result in a packet's 
failing to be received correctly. 

2. Buffer shortage at the receiving end. Exhaustion 
of the receiver's buffer pool can cause it to miss 
a packet. 

3. Processor overload at the receiving end. On 
occasion, the nodes have been observed to have such 
a heavy processing load that they sometimes miss 
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packets because they 
interrupts fast enough. 

cannot process their 

So we need some sort of reliable transmission protocol, 
whereby updates get retransmitted until they are known to 
have been correctly received at all nodes. One possibility 
would be to have every node receiving an update send an 
acknowledgement to the source of the update. If the source 
does not receive acknowledgements from all other nodes, it 
retransmits the update, either flooding it again or sending 
it directly to the node (or nodes) which did not receive it 
the first time. However, reliable transmission protocols 
based on retransmissons from the source tend to be 
cumbersome, slow, and inefficient. Such protocols may be 
suitable for transmission of ordinary data, but not for 
transmission of routing updates. The only alternative is to 
have a protocol that requires each update to be acknowledged 
over each line on which it is transmitted, and retransmitted 
on a line-by-line basis whenever necessary. The network 
does have such a reliable point-point transmission protocol, 
known as the IMP-IMP protocol, which it uses in the 

'transmission of ordinary data packets. This protocol 
divides each line (in each direction) into eight logical 
channels. Each logical channel can have only one packet in 
flight at a time. Once a packet has been transmitted on a 
logical channel, no further packets can be transmitt~d on 
that channel until the first one has been acknowledged. A 
packet which is not acknowledged within a certain period of 
time is retransmitted, and the retransmissions will continue 
periodically until an acknowledgement is finally received. 
This protocol, whatever its merits for data packets, is 
unsuitable for routing updates. It has reliability, but not 
quickness. The problem is that the IMP-IMP protocol can 
block transmission on a line, even if the line is idle. 
This will happen if all eight logical channels are filled 
with packets awaiting acknowledgement. While the 
acknowledgements are being awaited, the line may be idle, 
yet no additional transmissions are possible, since there 
are no empty logical channels. (A similar point could be 
made against other link transmi ssion . protocols, such as 
HDLC.) We do not, however, want to delay the transmission 
of a routing update merely because all eight logical 
channels are in use by data packets. 

One way to alleviate the problem is to add additional 
logical channels to be used only for routing updates. For 
instance, if there are NN nodes, one could add NN logical 
channels. A routing update would be sent on the channel 
which corresponds to its source node. Then routing updates 
would compete for logical channel space only with other 
routing updates which originate from the same node. This 
does not totally alleviate the problem of blocking 
transmission on an idle line, since it is possible for 
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several updates from the same node to arrive in rapid 
succession, in which case their transmission would be 
unnecessarily slowed. However, the routing updates have 
three special properties which distinguish them from 
ordinary dat.a packets and enable the logical channel 
protocol to be significantly simplified: 

1. If a routing update from node A is transmitted from 
node B to node C, and then a later update from node 
A is received at node B before the prior update is 
acknowledged, we no longer care whether the prior 
update is correctly received at node C or not. 
Since the later update obsoletes the prior one, 
there is no reason to continue retransmitting the 
prior one, and all resources can be devoted to the 
transmission of the later one. 

2. Each routing update carries a sequence number which 
(together with the number of its source node) can 
be used to identify it uniquely on each link over 
which it is transmitted. (The assignment of 
sequence numbers to routing updates will be 
discussed later.) Ordinarily, data packets do not 
carry any identifier which the link transmission 
protocol can uSe. Therefore, the link transmission 
protocol must maintain its own set of identifiers 
to assign to packets. If the set of identifiers is 
small, then only a small number of packets can be 
in flight at once. The IMP-IMP protocol maintains 
only eight identifiers (one for each logical 
channel) for ordinary packets, which is why only 
eight packets can be in flight at once. If, 
however, the link transmission protocol for routing 
updates identifies the updates by their sequence 
numbers, and if the sequence numbers are 6 b.i ts 
long (as in the ARPANET), up to 64 updates from 
each node could be in flight on a link at any time. 

3. Ordinary data packets must be kept buffered while 
awaiting acknowledgement. One reason why only a 
few data packets can be in flight at once is that 
each in-flight packet uses a buffer, and the 
ARPANET is short on buffer space. Routing updates, 
however, need not be kept buffered while awaiting 
acknowledgement. When a routing update is received 
at a node, the information it contains is copied 
into the node's copy of the data base. If the 
update has to be retransmitted, it can be 
re-created from the information in the node's data 
base tables. Hence there is no need to keep the 
update packet buffered, and buffering shortage does 
not constrain the number of updates in flight at 
once. 
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The second property eliminates the problem of blocking 
transmission on an idle line. The link transmission 
protocol for routing updates need never delay transmission 
when the line is idle, since updates sent on the same 
logical channel are not competing for sequence number space. 
The first property implies that in some cases, it is not 
even necessary to wait for an acknowledgement. The third 
property implies that there is not a large buffering cOBt in 
having many routing updates in flight at once on a single 
line. Therefore, we have adopted the following protocol. 
On (each direction) of each network line there is a separate 
logical channel for each node which may be the source of a 
routing update (i.e. for each node.) After an update is 
transmitted on a line, it is retransmitted periodically over 
that line, until one of the following two events occurs: 

a) It is acknowledged by the node at the other end of 
that line. 

b) A later update from the same source node is 
received over any line. 

This protocol 
reliability. 

meets the desiderata of quickness and 

We have now shown how to meet all the requirements 
except one sequential delivery. One possible way to 
ensure sequential delivery would be to refrain from 
generating a new update until the previous update is known 
to have been received by all nodes. While procedures for 
doing this do exist, they tend to be slow and unresponsive. 
Therefore, we have chosen to ensure sequential delivery by 
the use of sequence numbers. Every time a node generates a 
new update, it assigns it a sequence number one greater than 
that assigned to its previous update. The other nodes in 
the network use this sequence number to determine which of 
two updates (from the same source node) is the more recently 
generated. However, the use of sequence numbers introduces 
a new protocol problem, that of keeping sequence numbers 
synchronized. 

Suppose node A receives an update from node B with 
sequence number 7. At some later time, node A receives an 
update from node B with sequence number 6. Furthermore, no 
update from B arrives at A in the interim. Ordinarily, this 
would imply that node A has received the updates out of 
order. Update number 6 has already been obsoleted by by 
update riumber 7, and should just be discarded. However, 
suppose that node B had crashed after sending update 7. 
When it comes back up, it may not remember that its last 
update was numbered 7; it ~ay start its numbering over 
again. In that case, update 6 may actually be more recent 
than update 7, and node A will do the wrong thing. A 
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similar problem can arise as a result of network partitions. 
Suppose that a series of line failures partitions the 
network, so that there is no path between node A and node B. 
While the partition lasts, node B continues to generate 
updates, giving each one a higher sequence number than the 
last. Node A, however, cannot receive these updates. Since 
the sequence numbers must be represented in a finite number 
of bits, they will eventually wrap around. Suppose that 
node Bls sequence numbers wrap around several times during 
the partition, and that when the partition ends, the next 
update sent by B is numbered 6. Again, node A will make the 
wrong decision. 

It is clear that when communication is re-established 
between two nodes that have been temporarily unable to 
communicate, some explicit procedure must be invoked to 
enable those two nodes to get their sequence numbers 
re-synchronized, so that each knows what sequence number to 
expect next from the other. Most protocols that depend on 
sequence numbers use a handshake procedure to synchronize 
their sequence numbers at the beginning of a communication. 
However, this is not suitable for our purposes. Since every 
node generates updates ·which must go to all other nodes, 
there would have to be a handshake between each pair of 
nodes. In a 100-node network, this is 10,000 handshakes. 
Clearly, it would be desirable to find a synchronization 
procedure which is more efficient. 

It may be thought that the routing data base itself 
contains enough information to enable all nodes to 
re-synchronize their update sequence numbers after a 
partition, without any explicit handshake procedure. After 
all, the routing computation enables each node to know 
whether another node is reachable (i.e. whether a path to 
the other node exists) or not. When a node becomes 
unreachable, all updates from it can be ignored. When it 
Decomes reachable again, the next update received from it 
can be accepted, no matter what its sequence number is. 
This automatically resynchronizes the sequence numbers. 

Although this scheme is superficially attractive, it 
has serious difficulties, as would any scheme which requires 
the nodes to selectively ignore some updates. Recall that 
if there is any long-term discrepancy in the data bases 
maintained by the nodes, the routing calculation may result 
in the formation of routing loops which can make the network 
useless. The proposed scheme enables such discrepancies to 
exist after a partition ends. Suppose (for concreteness) 
that the network is partitioned East-West. When the 
partition ends, the Eastern nodes will initially appear 
unreachable to the Western nodes, and vice versa. Then 
updates will begin to flow across the East-West boundary. 
Eventually, all nodes will have processed updates from all 
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other nodes, and they will all see each other as reachable 
again. The problem arises though because Western nodes 
cannot begin to process updates from Eastern nodes as soon 
as they become reachable. Rather, they must wait until the 
Eastern nodes appear reachable, according to the routing 
computation. Nodes in the East do not appear to be 
reachable to nodes in the West as soon as they actually 
become reachable; the Eastern nodes appear to be reachable 
when updates from the East get processed by the Western 
nodes. The order in which nodes start to appear reachable 
depends on the order in which updates are processed. But as 
updates flow from East to West, different Western nodes will 
process the updates in different orders, and at different 
rates. An eastern node that appears reachable to one 
Western node at time t may not appear reachable to another 
Western node until some later time t', if various updates 
from the east reach the Western nodes in different orders. 
This means that if E is an Eastern node, and W1 and W2 are 
Western nodes, there may be some time interval during which 
W1 can accept updates from E, while W2 must ignore them. If 
W2 ignores an update, it does not forward it. Therefore W2 
(and all nodes beyond it) have no chance to get an update 
from E until some later time, when E generates another 
update. 

The result is that it may be a very long time before 
updates from E are able to reach all the Western nodes (even 
though they are able to reach some Western nodes in a very 
short time). During this time, the nodes' copies of the 
data base are inconsistent. 

It must be understood that the problem is not merely 
that it will take a long time to re-integrate the two 
segments after a partition. Rather, when a partition ends, 
incorrect routing patterns may form which affect 
communication even between nodes in the same segment. For 
example, two Eastern nodes which are communicating with each 
other may begin routing their traffic to each other via a 
series of Western nodes. But if the Western nodes hold 
inconsistent information about the Eastern nodes, the 
traffic may never get through. As a result, some nodes 
which were able to communicate during the partition may not 
be able to communicate after it ends. 

The source of the problem with the proposed scheme is 
that some nodes are forced to ignore certain updates while 
others . are not. It is dangerous to ignore updates 
selectively. Unless all nodes ignore the same updates at 
the same time, their copies of the data base may not be 
identical. One way to avoid this problem is to develop a 
scheme which allows all nodes to process all updates they 
receive, as soon as a partition ends: 
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Let zero serve as a canonical lowest sequence number. 
No update packet ever carres a sequence number of zero. 
However, when a node A is determined by a node B to be 
unreachable, B acts as if the sequence number of A's 
most recent update were zero. Then when B next 
receives an update from A, the new update is 
automatically accepted as a recent update, and 
processed normally. 

The intent of this scheme is that when a partition ends and 
updates begin to flow again between the segments, they can 
be accepted and processed as soon as they are received. 
There is no need to wait until a node appears reachable 
before its updates can be accepted. However, this scheme 
has a different sort of problem which is just as serious. 

Suppose again that the network is partitioned 
East-West. Let M be an Eastern node which is on the border 
of the partition. Let A, B, and C be three other Eastern 
nodes which are connected in a triangle, and let W be a 
Western node. Let m be an update from M which reports the 
partition. That is, the other Eastern nodes detect the 
partition as a result of processing m. (Presumably m 
reports that the line between M and its Western neighbor M' 
has gone down.) Let w be an update from W which reached the 
Eastern segment of the network just before partition, and 
let s(w) be its sequence number. Now it is certainly 
possible that m gets to A before w does, and that w actually 
follows m around the triangle. As update m travels around 
the triangle, IMPs A, B, and C will determine that W is 
unreachahle; henceforth they will act as if W's last update 
had had sequence number zero. Almost immediately 
thereafter, update w will be received. Since zero is the 
canonical lowest sequence number, s(w) > 0, so even though w 
was generated before the partition, it looks like a recent 
update. It is accepted and forwarded. However, the next 
time A, B, or C does a routing computation, they will again 
determine that W is unreachable, and again begin to act as 
if its most recent sequence number were ·zero. (;nce they do 
this, they no longer "remember" that they have seen w 
before. When w comes around the loop again, it again looks 
like a recent update (s(w) > 0), and is again accepted and 
forwarded. There is nothing to stop this process, which may 
continue indefinitely. In fact, w may still be traveling 
around when the partition ends. Once the partition is over, 
W will eventually send out another update, w'. This may 
result in wand w' being in the network at the same time. 
If the partition lasted long enough for the sequence numbers 
to wrap around, then it is meaningless to compare s(w') with 
s(w). As a result, the nodes may incorrectly believe w to 
be more recent than w', and routing will be based on very 
old and out-of-date information. Depending on the exact 
values of s(w) and s(w'), this problem may persist for a 
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very long time, causing extremely bad ~erformance throughout 
the whole network (for instance, if WI reports that one of 
Wls lines has gone down, lots of traffic may be routed to a 
non-existent line). 

We see from this that it is not enough to allow all 
updates to be processed as soon after a partition as they 
are received. In addition, we must be able to ensure that 
if the partition has lasted long enough for sequence number 
wrap-around to have occurred, then no pre-partition updates 
are still extant. One way of ensuring that updates do not 
stay around the system too long is simply to time them out. 
When the last received update from a given node becomes "too 
old", the next update from that node should be automatically 
accepted as the more recent, no matter what sequence number 
it has. This eliminates the problem of an old update 
circulating in the network for an unlimited amount of time. 
In the example above, by the time the partition ended, w 
would be "too old", so WI would be automatically accepted as 
more recent when it is received. 

The most accurate way to determine the age of an update 
would be to maintain a globally synchronized clock. Each 
update packet would carry the time of its creation at its 
source, as well as a sequence number. Then each node would 
know exactly how long ago an update was generated, subject 
to the resolution of the clock and possible inaccuracies of 
synchronization. Use of a globally synchronized clock has 
several problems, however. One problem is simply the 
difficulty of maintaining synchronization. But the most 
serious problem is that of re-synchronizing after a 
partition. When a partition forms, there is no way of 
ensuring that the clocks in the two segments stay 
synchronized. If, when the partition ends, updates flow 
between the two segments before re-synchronization is 
established, the results are unpredictable. So not only 
must there be a method of re-establishing sync, there must 
also be some way for the nodes to determine whether or not 
sync has been re-established, so they know whether or not it 
is safe to pass on updates. While such methods can no doubt 
be developed, they would add a significant amount of 
complexity to the scheme. It is worthwhile therefore to 
develop a means of determining the age of an update which 
does not require globally synchronized clocks. 

Suppose node A transmits update a which is received at 
node B. At any given time, the age of update a (from the 
point of view of B) can be divided into two components 
transit time and holding time. Transit time is the time it 
took the update to travel from A to B. Holding time is the 
time since it arrived at B. If we may assume that, within a 
certain amount of time after an update is initially created, 
its holding time at any giveh node will be very much larger 
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than its transit time to that node, then we may neglect the 
transit time, and equate the update's age to its holding 
time. But the holding time can be computed from a purely 
local clock. No global synchronization is necessary at all. 

In the ARPANET, cross-network transit times are 
generally on the order of 100 milliseconds. Within a 
minute, say, after any update is created, its holding time 
at any node would always dominate its transit time to that 
node by so much that the transit time could be neglected.' 
There is only one exceptional case. If an update has to be 
retransmitted many times, it may age significantly in 
transit. If A has held an update for 59 seconds, 
retransmitting many times before B finally acknowledges it, 
we do not want B to have to wait yet another minute before 
regarding the update as too old. The time the update was 
held at A must be figured in. 

This problem is resolved by having the update packets 
carry around some indication of their age. When an update 
is first generated, its age is zero, and a zero is stored in 
its age field. When an update is received, its age field is 
stored, and periodically incremented. When a packet is 
re-transmitted, the current stored value of the age field is 
placed in the packet. 'Since we know how often any node can 
generate updates, and we know how many bits the sequence 
number is to be stored in, we can compute the minimum time 
needed for the sequence numbers to wrap around. Once an 
update has been held for so long that the sequence numbers 
from its source node may have wrapped around, it is regarded 
as "too old", and the next update received from that source 
is considered to be the more recently generated, no matter 
what its sequence number is. This will only work if the 
minimum time to wrap around is much greater than the transit 
time, but that is easy to ensure. 

Similarly, if a node fails, it must be held off the 
network for enough time to allow its last update to become 
"too old". Once that happens, its first new update will be 
accepted as the most recent, independent of sequence 
numbers. 

5. THE UPDATING PROTOCOL SUMMARIZED 

In this section, we summarize the updating protocol 
developed in the previous section. Each update packet has a 
header in which are stored its age, its sequence number, and 
the identification number of its source node. The sequence 
number is assigned by the source node at the time the update 
packet is created, and is one greater than the sequence 
number of the update packet previously generated by that 
source node (modulo n, of course, where n is the maximum 
sequence number). In the case of the first update packet 
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generated by a node, any sequence number may be assigned. 
An update packet is given an age of zero at the time of its 
creation. The source node then transmits the update packet 
to each of its neighbors. The update packet is 
retransmitted periodically to a given neighbor until that 
neighbor acknowledges it, or until a new update packpt is 
created which obsoletes the first one. 

When a node receives an update packet from one of its 
neighbors (which mayor may not be the original source of 
the update), the node sends an acknowledgement to the 
neighbor. The source node identifier and the update 
sequence number are used to identify the acknowledged packet 
uniquely. Then the receiving node must check to see whether 
any update packet from the same source node has been 
previously received. If not, the age and sequence number of 
the update are stored. (The stored value of the age will be 
incremented periodically, until it reaches some maximum 
value~ after which the update will be considered to be "too 
old".) The update is sent to each neighbor except the one 
from which it was received. It is retransmitted 
periodically to a given neighbor until it is either 
acknowledged by that neighbor, or it becomes "too old", or a 
more recent update packet from the same source node is 
received. When an update needs to be retransmitted, it is 
re-created from tabled information; it is not kept in a 
packet buffer. Note in particular that when the update is 
re-created, its age field is copied from the tabled age 
field. Since the tabled age field is incremented 
periodically, the age field carried by a retransmitted 
update packet is not generally the same as the age field 
carried by the original copy of that update packet. 

If a received update packet is not the first from a 
particular source node, a determination must be made as to 
whether it was generated more recently than the update 
previously received from that source node. (Of course, the 
neighbor which transmitted the packet must be sent an 
acknowledgement, whatever the outcome of this 
determination.) If the stored value of the age field (which 
corresponds to the previous update) is at its maximum value, 
the previous update is too old, and the current one is 
considered to be the more recently generated one. If the 
stored value of the age field is not at its maximum value, 
the current update's sequence number is compared with the 
sequence number of the previous update (i.e. with the tabled 
sequence number) to see which update is the more recently 
generated. If the current update was not more recently 
generated than the one previously received (or if it is a 
duplicate of it), it is simply discarded. Otherwise it is 
forwarded to all the neighbors except the one from which it 
was received, as described in the previous paragraph. Its 
sequence number and age are stored, replacing those of the 
previous update. 
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The parameters of this algorithm must be chosen so that 
it is impossible for the sequence numbers to wrap around in 
less time than it takes for an update to reach its maximum 
age. This ensures that the most recently generated update 
will always be correctly chosen, even in the case of network 
partition. 

When a node fails, it must not be allowed to restart 
until enough time has elapsed so that any extant updates 
that originated from that node will have reached maximum 
age. This ensures that the first update generated by that 
node after restart will always be considered more recent 
than any previous updates, regardless of sequence numbers. 

6. CONCLUSION 

The problem of designing a protocol for transmission of 
routing updates is an example of a problem in the management 
of a distributed data base. This sort of problem is 
different from the problems for which communications 
protocols have traditionally been designed, and it leads to 
a protocol which is significantly different from any of the 
ARPANET's internal protocols. How the issues and solutions 
discussed here may be applied to the management of 
distributed data bases in other applications is a question 
still to be addressed. 
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Abstract 

In this paper a new method for distributing and updating host 
name/address information in large computer networks is described. The 
technique uses datagrams to provide a simple transaction-based 
query/response service. A provisional service is being provided by 
the Arpanet Network Information Center (NIC) and is used by mobile 
packet radio terminals, as well as by several Arpanet DEC-10 hosts. 
Extensions to the service are suggested that would expand the query 
functionality to allow more flexible query formats as well as queries 
for service addresses. Several architectural approaches with 
potential for expansion into a distributed internet environment are 
proposed. This technique may be utilized in support of other 
distributed applications such as user identification and group 
distribution for computer based mail. 

INTRODUCTION 

In large computer networks, such as the Arpanet [1], network-wide 
standard host-addressing information must be maintained and 
distributed. To fulfill that need, the Arpanet Network Information 
Center (NIC) at SRI International has maintained, administered, and 
distributed the host addressing data base to Arpanet hosts since 1972 
[2]. 

The most common method for maintaining an up-to-date copy on each 
host is to bulk-transfer the entire data base to each host 
individually. This technique satisfies most host addressing needs on 
the Arpanet today. However, some hosts maintain neither a complete 
nor a current copy of the data base because of limited memory capacity 
and infrequent processing of updates. In addition, with the expansion 
of the Arpanet into the internet environment [3, 4], a strong need has 
arisen for new techniques to augment the distribution of name/address 
information. 

One method currently being investigated is the dynamic distribution 
of host-address information via a transaction-based, inquiry-response 
process called the Name Server [5, 6]. To support this investigation, 
the NIC has developed a provisional Name Server that is compatible 
with a level of service specified in the Defense Advanced Research 
Projects Agency (DARPA) Internet experiment [5]. The basic Name 
Server is described in this paper and a set of additional functions 
that such a service might be expected to support is proposed. 

The discussion is structured as follows: Section 1 describes the 
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NIC Name Server and how it is derived from the NIC data base service. 
Section 2 describes extensions of the name server which allow a richer 
syntax and queries for service addresses. Section 3 discusses 
architectural issues, and presents some preliminary thoughts on how to 
evolve from the current centralized, hierarchic service to a 
distributed Name Server service. 

THE NIC NAME SERVER 

A Name Server service has been installed on SRI-KA, an Arpanet 
DEC-10. Inquiry-response access is via the Internet Name Server 
protocol [5], which in turn employs the DARPA Internet Protocol, IP4 
[7]. 

To demonstrate the service a simple interactive facility is 
provided to format user input into name server requests--e.g. a query 
of the form IARPANETIFOO-TENEX returns an address such as "10 2 0 9" 
(NET=10, HOST=2, LOGICALHOST=O, IMP=9j for details of host address 
formats see [8]). 

User access to the name server has been implemented on several 
Arpanet DEC-10 TENEX and Packet Radio Network LSI-11 Terminal 
Interface Unit (TIU) hosts [9, 10]. While the TENEX program serv,es 
primarily as a demonstration vehicle, the LSI-11 program provides a 
valuable augmentation of the TIU's host table. A typical scenario is 
that when the packet radio TIU is initiated or initialized, it 
contains only a minimal host table, with the addresses of a few 
candidate name servers. The user queries the name server with a 
simple manual query process, and then uses the address obtained to 
open a TELNET connection to the desired host. 

The information to support the name server originates from the 
NIC's Arpanet host address data base. An optimized version of this 
data base is presented to the name server upon program initiation as 
an input file. 

NAME SERVER ISSUES 

The basic name server provides a simple address-binding service 
[5]. In response to a datagram query [7, 11], the name server returns 
either an address, a list of similar names if a unique match is not 
found, or an error indication. Several useful additional functions 
can be envisioned for the name server such as service queries and 
broader access to host-related information. 

Similar Names 

An important issue to be resolved is that of the interpretation 
given to the "similar names" response. A standard definition should 
be given and not be left to implementors' whims. 

If the "similar names" response is used primarily to provide 
helpful information to a human-interface process, then it may be 
useful to model the behavior of the name server on the behavior of 
other known proce'sses that present host name information on demand. 
An example of this is a common implementation of virtual terminal 
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access on the Arpanet, User TELNET [12], in which three different 
functions occur: 

1. Upon termination of host name input (e.g. <CR», the user 
is warned only with an audible alarm if the name used is not 
unique. If the name is unique, the name is completed, and 
the requested operation is initiated. 

2. In response to <ESC>, either the name will be completed if 
unique or the user will be warned with an audible alarm if 
the name is not unique. 

3. Only in response to "?" will a list of similar names be 
printed. "Similar names", in this case, means all names 
that begin with the same character string. The list is 
alphabetized. 

In support of this style of user interface, it may be appropriate 
to return the "similar names" response only when requested. Two ways 
to achieve this might be either to set an option bit or to use "?" to 
force the similar names response. 

Query Syntax 

A second issue in the provision of name server service is that of 
query syntax. The basic level of service previously described allows 
only a few query functions. With more intelligent name servers, 
complex queries can be supported. 

The current Internet name server requires two fields in the query 
string--a network name field and a host name field. If the network 
field is non-existent, a local network query is assumed. 

Since network independent queries are desirable, an expanded query 
functionality must be specified. One way this might be done is to add 
to the notion of "misSing field", which means "local", the notion of a 
special character like ".", which means "all". 

The semantic range of queries afforded by adopting this convention 
is listed below (Note: - is used to mean "null". If both network and 
host fields are null the representation is ,,- -II "N" means "network" 
and "H" means "host"): 
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local net, local host (validity check?) 

* local net, all hosts 

H local net, named host 

* all nets, local host (inverse search) 

* * all nets, all hosts (probably prohibited) 

* H all nets, named host 

N named net, local host (inverse search) 

N If named net, all hosts 

N H named net, named host 

By combining the on-demand similar-names function, "all" and 
"local", and by allowing "*" to be prefixed or appended to the query 
string as a wild card character, one can query as follows: 

SRI*? All hosts named SRI* on local net 

* SRI*? All hosts named SRI* on all nets 

* *UNIX*? All hosts named *UNIX* on all nets 

Service Queries 

It has been suggested that the name server be generalized into a 
binding function [13, 14]. In this context, allowing service queries 
is a very useful extension. One application of this service, that 
exists within the Packet Radio Project at SRI, is the need to find the 
addresses of Hosts that support the LoaderServer service--a service 
that allows packet radio TIUs to receive executable programs via 
downlirte loading. 

Service querying, unlike host names querying, requires a multiple 
response capability. The querying process would, upon receiving 
multiple service descriptors, attempt to establish access to each 
service, one at a time, until successful. 

Service descriptors consist of an official name, a list of alias 
names, and a network-dependent address. In the case of Arpanet 
Internet services, this address field would consist of the host 
address(32 bits), port(32 bits), and protocol number(8 bits). For 
Arpanet NCP services, the address would consist of a host address(24 
bits) and a socket(32 bits). 

Syntactically, service queries can be derived from host queries by 
the addition of a service name field, as below: 

NET HOST SERVICE 
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A network-independent service query, for example, can be 
represented as: 

* * SERVICE 

Name Server Options 

The concept of options has been introduced in the discussion of the 
"similar names" function. Another group of options may be used to 
specify the format of the reply. At one extreme is the compact, 
binary, style such as exists in the basic level of service. At the 
other extreme is an expanded, textual, style such as is represented by 
a NIC host table record with official and alias names included. 
Options can be envisioned that specify: 

- Binary versus text format 

- Inclusion of each field in the reply 

- Inclusion of official name, per field, in the reply 

- Inclusion of alias names, per field, in the reply 

- Inclusion of other miscellaneous information, such as 
operating system, machine type, access restrictions, and so 
on. 

Other options can be envisioned that specify the scope of the search, 
such as "find SERVER hosts only". An alternate form for specifying 
formats might be to settle on several standard ones, and allow an 
option to select among them. 

Certainly, not all name servers can support all such options, and 
not all options are equally useful. Thus, the proposed list will be 
expanded or contracted to fit the actual needs of processes using the 
name server service. 

MORE DATA Protocol 

It should be noted that some of the proposed name server extensions 
have the potential for generating more than a single datagram's worth 
of reply, since the current DARPA Internet Protocol limits the size 
which all networks must support to 576 octets [15]. In spite of this, 
the size of such replies need not require a full-blown stream 
protocol. Several alternatives exist: 

1. Disallow options that imply large replies. 

2. Truncate the packet for large replies. 

3. Ignore the recommended maximum datagram size. 

4. Utilize an alternate base protocol for such requests. 

5. Develop a MORE DATA protocol. 
If alternative 1 is chosen, the potential for overflow eXists, even 
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with the basic level of service. Alternative 2 implies unpredictable 
behavior to the user of the name server service. Alternative 3 
reduces the availability of the service. Alternative 4 is certainly 
possible, but may be overkill. 

Alternative 5 appears to be a reasonable solution and could be 
implemented very simply. The name server could return, as part of the 
reply, a code of the following form: 

+------+---------+ 
I MORE lID_NEXT I 
+------+---------+ 

where ID~EXT is a name-server-chosen quantity that allows the name 
server to find the next block of reply, the next time it is queried. 
This quantity may bean internal pointer, a block number, or whatever 
the name server chooses. Follow-on queries may be implemented by 
recomputing the entire original query and discarding output until the 
ID_NEXT block is reached, or by efficiently storing the entire reply 
in a cache, fragmented into blocks (with appropriate decay 
algorithms) . ' 

Dynamic Updates 

In the previous discussion, the host name data base was assumed to 
have been a static or slowly changing entity with an administrative 
and manual update authority. This model reflects most of the network 
needs in the Arpanet and Internet communities. However, dynamic 
automated updating of the host table may be needed in the future, 
especially in mobile environments such as the Packet Radio Network. 

In a closed. user group community (such as a local network of 
mutually trusting hosts), dynamic updating becomes simply a technical 
question concerning packet formats. In wider communities, a mechanism 
to authenticate the change request must be developed; however, the 
authentication issue is outside the scope of this paper. 

ARCHITECTURE 

The Name Server concept is invaluable for allowing hosts with 
incomplete knowledge of the network address space to 'obtain full 
access to network services. Whether for reasons of insufficient 
kernel space or of dynamically changing environments, the need for the 
service is little questioned. However, significant design issues 
revolve around the methods for providing the service and for 
administering and updating the data base. 

In the current NIC Name Server, the service is centralized, and is 
supported by a data base administered by a single authority. In the 
long range, other architectures are possible that present more 
flexible ways to distribute host information within and between 
networks and administrative entities. These present opportunities for 
dynamic, automated, approaches to the maintenance and sharing of 
data--particularly host name data. 

From an evolutionary point of view, initial Name Server services 
will likely exist as a centralized service, possibly with one large 
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Name Server that has knowledge of multiple networks. From this 
beginning, an expansion in two orthogonal directions can be 
envisioned. 

- In the direction of internal distribution, the name server 
can be partitioned into multiple, cooperating processes on 
separate hosts. The data base can be replicated exactly or 
managed as a distributed data base. 

- In the direction of administrative distribution, multiple 
autonomous name servers may exist that exchange data in an 
appropriate fashion, on a per network or other 
administrative basis. 

For hosts with small host tables, caching might be used, whereby 
local, temporary copies would be maintained of subsets of the 
addressing data base. Such copies may be obtained either by 
remembering previous queries made of name servers, or by receiving 
automatic distributions of data from name servers. For mobile hosts, 
in which even the home network is unknown, it would be possible to 
maintain a very sparse table with the addresses of only a few name 
servers. 

For hosts lacking even the knowledge of name server addresses, a 
very primitive name server function can be provided by all network 
hosts that would allow real name servers to be located; e.g., a query 
of the form ". • RealNameServer" addressed to an arbitrarily 
selected host could elicit the address of a real Name Server. 

Finally, the possibility exists for multiple name servers to 
communicate dynamically in attempting to resolve queries. If, for 
example, a name server on the Arpanet receives a query for a host on 
the Packet Radio Network, then the Arpanet name server can conceivably 
query the Packet Radio Network Name Server to resolve the reply. 

FUTURE WORK 

The techniques discussed in this paper for providing dynamic access 
to and maintenance of host address information are generally 
applicable to other information-providing services. Two possibilities 
currently under investigation at SRI include user identification 
servers [16] and time servers, which offer people/address and 
time-stamp information, respectively, as datagram driven information 
utilities. 

Further work is needed to refine the implementation of the name 
server and its using query processes. Two items in particular are 
direct system calls into the NIC data base management system for 
general access to host information and process-level query interfaces 
for using processes. The design issues for efficient implementation 
are complex and involve some trade-effs. The most obvious trade-off 
is volume of network traffic versus "freshness" of information. The 
local host table handler can either send a message to the name server 
for every address request, or it can use some type of local cache to 
remember frequently requested names. SRI is exploring both the 
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process-level interface for the LSI-11 TIU and the problems of local 
host table management in small machines operating in a dynamic 
environment. 

Information services such as the Name Server are integral 
components of distributed systems and applications. However, the . 
effective utilization of such services is a relatively unstudied and 
unexplored area. One area in which SRI plans to study their impact on 
distributed architectures is in computer based mail applications. 
Information utilities in this environment can range from the support 
of simple mailbox address queries to complex address list management 
needed for inter-organizational and group resolution. 

CONCLUSION 

A provisional Name Server service, based on the NIC host address 
data base was described in this .paper. In addition, a collection of 
design ideas for an internet Name Server service has been presented. 

Work is continuing on the refinement of the NIC name server 
service. New requirements and opportunities for functional 
distribution are being investigated. Many questions have been raised 
in exploring an expansion of the existing service. Such an expansion 
is expected to result in more useful support of internet (and 
intranet) capability. 
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Abstract 

There are at least two ways to manage the buffer memory of a 
communications node. One technique views the buffer as a single 
resource that is to be reserved and released as a unit for a particular 
communication transaction. A more common approach treats the node's 
buffer space as a collection of resources (e.g., bytes, words, packet 
slots) capable of being allocated among multiple concurrent 
conversations. To achieve buffer space multiplexing, some sor,t of 
negotiation for buffer space must take place between source and sink 
nodes before a transaction can commence. 

Results are presented which indicate that, for an application 
involving a CSMA broadcast network, buffer space multipLexing offers 
better perfo·rmance than buffeT reservation. To achieve this 
improvement, a simple protocol is presented that features flow-control 
information traveling both from source to sink. as well as from sink to 
source. It is argued that this bidirectionality allows the sink to more 
ef fect [ve-ty allocate buf fer space among its act i ve communicat ion paths. 

INTRODUCTION 

Imagine for a moment a bright young engineer who has been assigned 
the task of designing a computer communications network. Being 
conscientious as well as bright, this engineer first looks at the 
current networking literature for some backround into computer 
communications techniques. Almost immediately two philosophies of 
computer network implementation present themselves. The first supports 
a resource-rese'rvation viewpoint whereby a network user requests the use 
of various network facilities, is granted use of those facilities 
(generally at some time later than when they were requested), and 
finally, when they are no longer needed, releases those resources for 
use by others. Opposed to this philosophy is the resource-multiplexing 
school. It SUP20rts the viewpoint that user requests for network 
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resources should be managed in such a way that the user is not logically 
aware that those resources are being used by anyone else. For example. 
those suppor/ling the resource-reservation approach would argue for 
connection-orlented or virtual circuit communications primatives, which 
give the user the responsibility for bringing up and tearing down 
logical connections. On the other hand, those supporting the 
resource-multiplexing philosophy would generally argue for 
message-oriented communications primatives, which relieve the user from 
such responsibilities [1, 2, 3. 4, 5J. 

If our engineer is not only bright and conscientious, but also 
something of an historian, this rivalry will call to mind earlier 
confrontations. All during the late 1-960's a debate raged about whether 
or not demand paging or prepaging (sometimes referred to as swapping) 
provided the better performance in paged virtual memory systems. Even 
earlier, there were debates about which CPU scheduling algorithm should 
be used (e.g., First-In/First-Out, Round-Robin, Prioritized Round-Robin, 
Multilevel Priority) and about whether or not deadlocks could be 
prevented if a job could demand its resources dynamically. 

Unfortunately for this young engineer, the necessary analysis of 
resource-reservation versus resource-multiplexing in computer networks 
does not yet exist. This paper concentrates on one problem whe-re either 
resource-reservation or resource-multiplexing may be used, that of 
message buffer management. It attempts to answer the question of 
whether message buffer space should be reserved and released as'a single 
resource or should be multiplexed over a number of concurrent 
conversations. 

The research reported here was motivated by an earlier simulation 
study [6J that examined a networking facility in which meassage buffer 
reservation was employed. Results of that study suggested that buffer 
mUltiplexing could be utilized to enhance the facility's performance. 
Hence, a project was begun to compare the old simulation results with 
results to be obtained from a new simulation of the facility, modified 
to employ message buffer multiplexing. It soon became clear that there 
were a number of decisions to be made concerning how the message buffer 
was to be multiplexed. In particular, the handling of flow control and 
the management of buffer space emerged as key issues. The first of 
these became a topic of research in itself, and lead to the formulation 
of a flow control protocol in which requests for remote buffer space are 
negotiated. The second issue remains an area for future investigation. 
This pa~er, therefore, not only reports the results obtained by 
comparing buffer reservation with buffer multiplexing, but also 
introduces a protocol for buffer space negotiation which. it will be 
argued. possess~s certain advantages over more traditional flow control 
protocols. 
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MESSAGE BUFFER MANAGEMENT 

Consider the following situation. A set of computing systems are 
connected together by a data switch. This data switch is constructed in 
such a way that data is not lost while in transit between two connected 
computer systems nor is it possible that data will be duplicated in 
transit and the duplicates delivered as if they were independent. 
rurthermore, data is guaranteed to arrive at a destination in the same 
order in which it is sent. Such a facility will be called a lossless, 
sequencing, nonduplicating data switch (Fig. 1). The switch is 
implemented in such a way that a computer system connected to it is 
capable of communicating with any other connected system. How these 
logical connections are managed (i.e., by connection-oriented or 
message-oriented techniques) is immaterial to the following discussion. 

Each system possesses buffer space (which will be called the 
message buffer) where data is staged before going out onto the switch 
and after arriving from the switch. The question arises how message 
buffer space should be managed. The remainder of this paper attempts to 
answer that question. 

MESSAGE BUFFER RESERVATION 

One way to manage the message buffer is to reserve its use on a 
conversation by conversation basis. That is, when system ex wishes to 
deliver data to system~, it first requests the use of the two message 
buffers. Once the message buffers have been obtained {i.e., ex 

sequencing, 
nondupl icating 
data switch 

Fig. 1. Six computing systems connected by a lossless, sequencing, 
nonduplicating data switch. 
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successfully reserves them), no other system will be granted their use 
until a releases them. Such a management scheme views the message 
buffer as a single resource incapable of being shared by many systems 
concurrently. 

As stated, in order for data to pass from a to ~, the message 
buffer of both a and ~ must be reserved. To acheive this, a reservation 
protocol must be provided so that a can request ~ to reserve its message 
buffer. The details of this reservation protocol need not concern us 
here. The major pertinent characteristic of this protocol is its 
ability to (eventually) effect the reservation of two message 
buffers--one on the source machine and one on the sink machine. 

Such a management scheme has one obvious defect. During the time 
when a system has reserved the two message buffers, those message 
buffers cannot be used for any other purpose even though they are not 

being totally utilized. For example, suppose both a and a wish to 
transfer data to~. Also suppose a is capable of delivering data to the 
data switch 10 times faster than a (e.g., its connection runs at 
50 Mbps, while the connection of a runs at 5 Mbps). Furthermore, 
suppose ~ can accept data from the switch as fast as a can supply it 
(i.e., it also has a 50 Mbps connection). Under these circumstances, 
whenever <5 and ~ are conversing, their effective connection runs at the 
lower data rate (e.g., 5 Mbps). If ~ can dispose of the data flowing 
through its message buffer at a faster rate than a can supply it, the 
message buffer of ~ will nQt be in use 100% of the time. Even though 
the message buffer of ~ is not in use, it is reseved and not available 
for some other conversation (e.g., for an a to ~ transfer). This 
results in tRe underutilization of ~ (which is forced for part of the 
time to operate at computing system a's communication rates). 

MESSAGE BUFFER MULTIPLEXING: WINDOWED FLOW CONTROL 

One way to remedy the underutilization effect of the message buffer 
reservation technique is to allow multiple conversations to use a single 
message buffer concurrently. That i~, each time a system wishes to 
transfer data from itself to a destination system, some portion of both 
participating message buffers are allocated for that data transfer. 
This allows another system to also obtain space in the message buffer of 
either system (Fig. 2). 

As with the buffer reservation technique, some protocol must be 
provided so that space in both message buffers can be allocated. A 
common approach is to use windawed flaw control [7J. In this scheme, 
the source system obtains from the sink system a windaw specifying how 
much data the sink is likely to accept. Each time data is sent from the 
source to th~ sink, the sink returns an dck value informing the source 
how much of that data was accepted. In addition a new window value is 
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by a particular source. Second, it does not know how big this parcel 
will be when it does arrive {although it does know that it should be 
smaller than the window that it sent to that source}. Confronted with 
thIs lack oJ information, the sink must effectively guess what these two 

items might be for each source and then allocate its buffer space 
accordingly. Needless to say, if the sink is not good at guessing or if 
the sources are in general unpredictable, this buffer allocation 
technique can result in a great deal of inefficiency. 

For example, suppose the sink guesses that source a will be soon 
sending a large parcel of data and that source ~ will probably not be 
sending any data soon. Furthermore, suppose the sink guesses that when 
~ does send some data it will be a small parcel. According to its 
guess, the sink allocates a large amount of space to a and a small 
amount of space to ~ {Fig. 4a}. It informs both a and ~ of their 
respective window sizes and waits for data to arrive. Now suppose the 
sink guessed badly, i.e., source a has no data to send, while source (3 

has a great deal of data it Wishes to deliver to the sink. In this 
case, source ~ will begin sending its data segmented in the small 
parcels dictated by the small window size it has received from the sink 
{Fig. 4b}. This forces source ~ to use small parcel sizes and 
detrimentally affects data switch performance in two ways. First of 
all, the lossless, sequencing, nonduplibating data switch is very likely 
a combination of switching hardware and communications software. Each 
parcel of data transmitted through it incurs a fixed amount of bandwidth 
overhead due to various low-level header and "packaging" information 
that accompanies the parcel. This implies that the effective data 
switch bandwidth decreases as the number of parcels into which a data 
unit is segmehted increases. Second, extra delays are incurred, since 
the source must wait for a windowing "reply" to be received from the 
sink before the next parcel can be sent. Both of these factors motivate 
both source and sink to keep the window size for that conversation as 
large as possible. 

In our example, the sink will begin to receive many small parcels 
from source~. After a certain amount of time, the sink will probably 
suspect that its guess of expected traffic was quite bad. In reaction 
to that suspicion, the sink can do one of two things. It can simply 
continue giving source ~ a small window size and live with the resulting 
inefficiency, or it can renege on its window commitment to source a and 
allocate some of that space to the source ~ data transfer {Fig. 4c}. 
If, after the sink reneges, source a sends a large parcel of data to the 
sink, some or all of that parcel will not be accepted by the sink since 
buffer space is no longer available for it (Fig. 4d). Thus, reneging on 
a window can itself cause inefficiencies to occur. Needless to say, 
more complicated thrashing-like situations can occur where the sink is 
forced to continually renege on its source windows. 
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D D 

(a) (b) 

o 

I 
(c) (d) 

Fig. 4. Potential inefficiencies using windowed flow control. (a) 
Sink 0 initially assigns a large buffer space and window size 
to ~. and a small space and window size to~. (b) Source ~ 
begins sending its data in correspondingly small parcels. If 
~ has much data to send. inefficiencies result. (c) Sink 0 
reneges on a's large window. It assigns more buffer space to 
~. which can now send larger parcels. (d) If a tries to send 
a parcel as large as its original window. buffer space is no 
longer available. Thus. new inefficiencies arise. 
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MESSAGE BUFFER MULTIPLEXING: GIMME-GIVEYA 

The disadvantage of windowed flow control discussed above can be 
summarized in the following way. Control information flows from the 
sink to the source in the form of a "damping" factor called the window. 
However, no control information flows from the source to the sink. If 
all systems were continuously attempting to transmit data to every other 
system, this deficiency would cause no problems. When the traffic over 
thc data switch is bursty, however, such forward control information is 

desirable. The GIMME-GIVEYA (rhymes with Jimmy-Olivia) protocol 
provides this forward control path. It is first described in its "pure" 
form [9J and then presented in a more efficient "piggyback" form, which 
distinctly resembles windowed flow control. 

The GIMME-GIVEYA protocol is based on the concept of buffer space 
negotiation. The initiator of a data transfer, the source, requests 
space in the message buffer of the sink. Sometime after the request, 
the sink grants space in its buffer, notifying the source of the space 
size. The space allocated will be less than or equal to the space 
requested. The source then sends data to the sink in an amount equal to 
the space granted. When the source has more data to send (which will be 
immediately, if the space granted by the sink was less than the space 
requested by the source), the above sequence is repeated. 

The protocol used to implement this negotiation is equipped with 
three buffer-management messages, which correspond to the three stages 
of the negotiation. When the source wishes to inform the sink of a 
buffer space request, it issues a GIMME message, which contains the size 

. of the space requested. The sink responds with a GIVEYA message, which 
contains the size of the space granted. 'The source then sends a DATA 
message to complete the buffer space transaction. An example of a 
GIMME-GIVEYA message exchange is shown in Fig. 5. 

Pure GIMME-GIVEYA suffers from an overabundance of messages 
transmitted for each parcel of data delivered. While windowed flow 
control delivers a data parcel for every two messages transmitted (the 
ACK/WINDOW message and the DATA message), pure GIMME-GIVEYA requires 
three (a GIMME, a GIVEYA and a DATA message). To reduce this traffic, 
the GIMME message for the next buffer space request can be piggybacked 
onto the DATA message of the current transaction. Doing this reduces 
the messages per data parcel to two (Fig. 6). Notice that piggyback 
GIMME-GIVEYA includes an ACK message (upon which the GIVEYA is 
piggybacked), which allows the sink to accept less than the total amount 
of data encapsulated in the DATA message. While this addition allows 
the sink to renege on promised message buffer space (something that 
should be avoided if at all possible), it in no way encourages that 
practice. In fact, the forward control path was added so that reneging 
on buffer space promises could be avoided. There are situations, 
however, when reneging may still be necessary (e.g., a source system 
crash occuring after space has been allocated by the sink, tying up 
buffer space wastefully). As can be seen by comparing Figs. 3 and 6, 
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Fig. 5. Typical message exchange for the "pure" GIMME-GIVEYA protocol. 

piggyback GIMME-GIVEYA is very similar to windowed flow control. The 
main difference between the two is the accompanying GIMME message 
piggybacked on each DATA message. This GIMME information provides the 
forward control path which has been mentioned previously. This 
similarity remains even if data messages are "pipelined." In that case, 
a GIMME message would be piggybacked onto a DATA message only if itis 
necessary to request more sink buffer space. 

While piggyback GIMME-GIVEYA is more efficient than pure 
GIMME-GIVEYA, it requires a seperate beginning and ending sequence to 
respectively gain an initial space allocation and inform the sink that 
no more message buffer space is needed. Figure 7a illustrates the 
sequence of messages which are exchanged to initially gain sink message 
buffer space. The source first sends an unattached GIMME message, to 
which the s i.nk responds wi th an unat tached GIVEYA message. The source 
then sends a DATA message piggybacking its next GIMME message. 
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Fig. 6. Typical message exchange for the piggybacked GIMME-GIVEYA 
protocol. 

Piggyback GIMME-GIVEYA can now proceed until the source no longer has 
any data to send to the sink. When this condition obtains (Fig. 7b), 
the source piggybacks a GIMME 0, message on its last DATA message 
(informing the sink that it desires no more message buffer space) The 
sink responds by acknowledging receipt of all or part of the data parcel 
and acknowledges the GIMME 0 message by piggybacking a GIVEYA 0 message 
upon the ACK. At this point, the source must in'itiate a new, unattached 
GIMME-GIVEYA sequence (Fig. 7a) when it wishes to transmit more data to 
the sink. 

APPLICATIONS OF THE GIMME-GIVEYA PROTOCOL 

It has been argued that whenever an entity (e.g., a system, a process) 
wishes to multiplex its buffer space among several conversations and 
whenever those conversations involve bursty traffic, then some sort of 
buffer space negotiation is needed to achieve efficient utilization of 
that buffer space. The GIMME-GIVEYA protocol provides a framework for 
negotiation. However, this framework, which includes forward and 
reverse control paths, must be used in conjunction with a suitable 
buffer allocation strategy in order to actually obtain efficient buffer 
space utilization. If the allocation strategy makes no use of the 
forward or reverse control jnformation, the advantages of the 
GIMME-GIVEYA protocol become vacuous. Another way of thinking about 
this is to see the GIMME-GIVEYA protocol as offering a mechanism to 
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Fig. 7. Separate beginning and ending sequences of piggybacked 
GIMME-GIVEYA. (a) The initial exchange. (b) Informing the 
sink that no more buffer space is needed. 

achieve efficient buffer space utilization, while the buffer allocation 
strategy implements a policy which mayor may not allow such efficient 
utilization to be achieved. 

For example, if a process converses with only one other process or 
if a process statically allocates its buffer space for each 
communication path, there is no advantage for it to'use the GIMME-GIVEYA 
protocol. If, however, a process is attempting to dynamically multiplex 
its buffer space among multiple conversations, or if a system is using a 
common buffer area for the purposes of end-to-end communications, 
GIMME-GIVEYA allied with a suitable buffer allocation strategy can be bf 
real benefit. The possibility of using the GIMME-GIVEYA mechanism in 
end-to-end protocols and to aid in the control of congestion in 
store-and-forward networks is under active consideration. 

Application of the GIMME-GIVEYA protocol should be beneficial 
whenever the two conditions stated above (i.e., a desire to multiplex 
buffer space, and bursty traffic) obtain. Different applications may 
require different buffer allocation strategies, but the mechanism of 
buffer space negotiation should remain constant. For this reason, 
investigation of suitable buffer allocation strategies will also be a 
major research effort in the future. 
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COMPARING BUFFER RESERVATION AND BUFFER MULTIPLEXING: A SIMULATION 
STUDY 

A simulation study was undertaken to compare message buffer 
reservation with message buffer multiplexing. The study focused on a 
commercially available procuct [10J which i'mplements a data switch via a 
CSMA (Carrier Sense Multiple Access) broadcast bus. Every host system 
is connected to the bus by one or more communication adapters, which 
handle all bus contention deta~ls. The underlying capacity of the 
broadcast bus is 50 Mbps. An adapter is equipped with buffer storage 
where message data is staged before being transmitted. Message 
transmission proceeds by the host ind.icating to its adapter that it 
wishes to transmit data, the adapter reserving both its own and the 
destination adapter's buffer memory, the data being transferred from 
source to destination host via the two interfacing adapters, and then 
the source adapter releasing both its own and the destination adapter's 
buffer. A more detailed expo~ition of the protocols and algorithms used 
by adapters to effect buffer reservation and data movement can be found 
in Donnelley and Yeh [6J. The simulation results from their work on the 
buffer-reservation approach are used here for comparing buffer 
reservation with buffer multiplexing. 

The s imulat ion of Donne lley and Yeh was modi f ied to imp le'ment a, 
buffer-multiplexing approach utilizing the pure GIMME-GIVEYA 
buffer-management protocol. The bus contention logic as well as the 
report and graphics generation sections were kept intact. The 
possibility of developing a mathematical model of either the 
buffer-reservation or GIMME-G,IVEYA protocol was rejected due to the 
complexity of the analysis. The only way a mathematically tractable 
analysis could be carried out would be to apply unrealistic and 
distorting simplifications to the problem. This did not seem advisable. 

Throughput Comparison 

The first configuration that was studied consists of three hosts, 
each interfaced to the broadcast bus through its own adapter. Each 
adapter was equipped with 8K (K = 1024) bytes of buffer memory. The 
first buffer-allocation scheme studied allocates buffer space in 
exponentially decreasing sizes. That is, one buffer is one-half as 
large as the total buffer memory, anpther is one-fourth as large, etc. 
This strategy will be called exponential buffer allocation. For a 
three-host configuration this scheme partitions buffer memory into four 
blocks: one 4K in length, another 2K, and the final two 1K. Since each 
adapter can only have four "paths" active at one time (two paths 
carrying traffic from the adapter to the other two, and two paths 
carrying traffic to the adapter from the other two), this 
buffer-allocation strategy prevents anomalous conditions from occuring, 
such as store-aud-forward lockup [llJ. The assignment of these blocks 
to each path is dynamic, according to the following rules. A path is 
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allocated the smallest block large enough to satisfy the GIMME request. 
If no block larger than or equal to the GIMME request is available, the 
largest one available is allocated. 

It should be emphasized that partitioning memory into blocks whose 
lengths are a power of 2 can result in very large memory sizes for only 
a moderate number of adapters. That is, since adding an adapter to the 
data switch implies either decreasing the size of the smallest buffer 
space or increasing the minimum buffer size to be twice as large as the 
previous minimum, adapter buffer size will eventually grow exponentially 
with the number of adapters added to the data switch. In a practical 
situation, with a more realistic number of data switch connections, such 
a constraint would be intolerable and so some other buffer-allocation 
scheme would be necessary. Results given below show how performance can 
be significantly affected by the buffer-allocation strategy employed, 
especially at high loads. 

When comparing the simulation results of GIMME-GIVEYA and the 
buffer-reservation protocol, one must consider the accuracy of the 
underlying model. The simulation for the buffer-reservation protocol 
was based on an existing implementation of that protocol, and so its 
results should be realistic. Message length, time to process messages, 
etc., were carefully chosen to accurately reflect the operation of the 
existing system. Since no implementation of GIMME-GIVEYA currently 
exists, it was not possible to achieve this level of accuracy in its 
simulation. Even though the parameters which should affect the 
protocol's performance were carefully chosen to be realistic, the 
results presented below should be viewed with some caution. 

Figure 8 presents the major result of this paper. The horizontal 
axis represents the load placed upon the data switch,· and the vertical 
axis shows the throughput obtained. Load is measured in terms of the 
average waiting time between host requests for data transfer. The 
arrival process waits an exponentially distributed time, requests the 
transfer of data (which may require multiple DATA messages), and, after 
sucessful transmission, cycles back to wait another exponentially 
distributed time. For a detailed explanation of the arrival process, 
see Donne I ley and Yeh [6J. As can be seen from Fig. 8a, buffer 
multiplexing offers a 30% to 50% increase in throughput performance over 
buffer reservation, for a message size of 8K bytes. The performance 
results presented for the buffer-reservation approach are the best 
results obtained by Donne I ley and Yeh using a deadlock prevention scheme 
suggested by Shoshani. At every load, buffer multiplexing offers 
improved performance, but the most dramatic improvement occurs at high 
loads. For a message size of 12 bytes (Fig. 8b), buffer multiplexing 
achieves 10 times the throughput (5 Mbps versus 0.5 Mbps) of buffer 
reservation. The more dramatic improvement for small message sizes is 
probably the result of a 12 byte message fitting into any of the (4K, 
2K, or 1K) message buffers. This decreases the number of DATA messages 

·Por details on measuring load, see [7J. 
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Fig. B. Throughput as a function of load placed upon a data switch. 

Buffer multiplexing is compared with buffer reservation (a) 
for BK-byte messages and (b) for 12-byte messages. For a 
detailed explanation of how load is measured, see [7J. 
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transmitted per host message and thereby reduces the data switch 
overhead, as discussed in the section on windowed flow control. These 
results demonstrate the advantages of buffer multiplexing over buffer 
reservation, at least for the CSMA broadcast faciltiy studied. 

It is fairly difficult to provide a detailed analysis of all the 
factors contributing to the improved performance of buffer multiplexing 
over buffer reservation. However, the improvement is probably caused in 
a large part by the adverse effect on throughput of the 
reservation-release activity centeral to any buffer reservation 
technique, but missing from the buffer mUltiplexing scheme. It is not 
that the reservation class messages (e.g., "reserve your buffer", "my 
buffer is already reserved", "release the reservation on your buffer") 
themselves consume a large amount of bandwidth, but the time spent by 
each system managing the reservation protocol, and in particular the 
time spent taking remedial action if a desired buffer is already 
reserved (e.g., reporting failure to the host, setting up a new 
transfer), is time that could be spent transmitting data. Since the 
reservation scheme also needs some sort of flow control protocol to 
ensure that the data delivery rate matches the receiver consumption 
rate, the extra reserve-release mechanisms of the buffer reservation 
approach tend to decrease its transport efficiency. 

Figure 9 shows the performance obtained by buffer multiplexing for 
various message sizes. As can be seen, the maximum throughput for 
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Fig. 9. Throughput as a function of load placed upon a data switch 
when buffer multiplexing is used. Results are shown for three 
different message lengths. 
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message sizes of 12, 1K, and BK bytes was respectively 5 Mbps, 40 Mbps, 
and 47 Mbps. This family of curves illustrates the stability of buffer 
multiplexing as the load increases. The performance of buffer 
reservation (Fig. Ba), on the other-hand, suffers a slight dip as load 
increases from medium to high. 

Slow Path Interference 

To further illustrate the advantages of buffer multiplexing over 
buffer reservation, the following experiment was performed. Consider a 
configuration consisting of three hosts connected to the broadcast bus 
by three adapters (Fig. 10). Furthermore, suppose hosts a and ~ are 
connected to their adapters by 50 Mbps channels, while host 0 is 
connected to its adapter by a 5 Mbps channel. Two paths will be allowed 
to be active, the a~~ path and the o~~ path. The experiment is designed 
to determine if the slow o~~ path would interfere with the faster a~~ 
path. Figure 11 shows the results of the experiment when buffer 
reservation is used. At high loads the faster path's throughput is 
"pulled down" by the slower path. This occurs because ~'s buffer is 
being reserved by 0 and then held while an BK-byte message is 
transferred from host 0 to host~. Since the buffer-reservation icheme 
employs double buffering in ad'apters, only 4K bytes are trans~erred from 
adapter to adapter at one time. This causes the buffer memory of 
adapter ~ to be reserved while the second 4K bytes of data is being 
transferred from host 0 to adapter 0 (at a rate of 5 Mbps). When the 
load increases, the resulting underutilization of adapter ~'s buffer 
causes the throughput of path a~~ to degrade. Note that this effect is 
not actually caused by the double bufofering scheme employed. Even if 

High-speed 
path 

~--
Low-speed 

~<-jJ 
Fig. 10. Configuration for investigating whether the use of a slow path 

(o~~) between hosts will interfere with the use o~ a faster 
path (a~~). 
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Fig. 11. Throughput as a function of data switch load when buffer 
reservation is used for the configuration in Fig. 10. 

the complete 8K bytes of adapter buffer space were available for such a 
transfer, the same "pull down" effect would occur for host messages 
greater than 8K bytes. 

The path throughput curves for buffer multiplexing are presented in 
Fig. 12. Notice that path a~~ throughput is not degraded by path o~~ 
activity. Throughput for path a~B increases until it reaches a plateau 

of around 20 Mbps. This is still less than the underlying channel 
capacity of 50 Mbps because of the overhead of the GIMME-GIVEYA 
messages, the computation time in the adapters for buffer management, 
bus contention, and the fact that adapter a must share buffer space with 
adapter ~ (Le., it does not obtain all 8K bytes of adapter o's buffer). 
The jump in a~~ throughput and slight dip in the o~~ throughput at the 
highest load is caused by a buffer capture effect of the allocation 
strateg'y. That is, when a message transfer is completed, the buffer 
space allocated to it is released back into the free buffer pool. When 
two paths are simultaneously active, one has a 4K-byte buffer allocated 
to it, while the other has a 2K-byte buffer allocated. At low loads the 
a~~ and o~~ paths get approximately equal use of the 4K-byte buffer space 
because message interarrival time is fairly long. At the highest load, 
however, message interarr ivaI time has almost gone to 0, which resul ts 
in the 4K-byte buffer being reallocated to the 'a~~ path almost as soon as 
it was released by it. This behavior causes "buffer capture" of the 
4K-byte buffer by the a~~ path. 
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Fig. 12. Throughput. as a function of. data switch load when buffer 
multiplexing is used for the configuration in Fig. 10. 

Effect of Allocation Scheme 

To investigate the sensitivity of buffer-multiplexing performance 
to the buffer allocation scheme employed, two changes were made in the 
simulation. First of all, the number of adapters connected to the bus 
was increased from three to five. This was done so that the results 
being obtained did not depend on some idiosyncrasy of a 
three-host/adapter configuration. Second, a different buffer allocation 
scheme was implemented so that its performance could be compared to the 
exponential buffer allocation scheme. The second allocation technique 
assigns constant buffer size to each possible path into and out of an 
adapter. Since there are four other adapters to which or from which and 
adapter can be transferring data, eight coristant size buffers of 
8K bytes each were assigned. This resulted in an adapter buffer size of 
64K bytes. 

Figure 13 presents the results of the buffer allocation scheme 
comparison. Notice that at high loads the throughput of the exponential 
allocation scheme drops slightly. This decline results from the 
scheme's poor utilization of additional adapter buffer space. A 
64K-byte buffer is divided into one 32K-byte buffer space, one 16K-byte 
buffer space, etc. The 32K-byte buffer space is only being utilized by 
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Fig. 13. Throughput as a function of data switch load· for two different 
buffer allocation schemes: constant size and exponential. 

25%, since the message size being simulated was BK-bytes. On the other 
hand, each smaller buffer (say a 512-byte buffer) is not big enough to 
hold a complete host message, so that transmission overhead was 
increased. Constant size buffers, on the other hand, are very suitable 
to the traffic pattern simulated. Throughput for this scheme remained 
constant as load increased from medium to high. 

The results comparing buffer allocation schemes only demonstrate 
the sensitivity of data switch performance to the chosen buffer 
allocation scheme. No claim is being made that constant size buffer 
allocation is superior to exponential buffer allocation. It just so 
happens that for constant message sizes, constant size buffer allocation 
provides superior characteristics (a not too suprising result). It is 
the author's opinion that neither of these buffer allocation schemes 
show very robust performance for all types of traffic characteristics. 

SUMMARY 

GIMME-GIVEYA, a protocol for buffer space negotiation, has been 
introduced. Arguements have been given as to why it is preferable to 
the more traditional windowed flow control mechanism. The GIMME-GIVEYA 
protocol has been used to demonstrate the superiority of buffer 
multiplexing over buffer reservation, at least for the CSMA broadcast 
bus system studied. There seems to be no reason to doubt that these 
results have more general application. 



-304-

ACKNOWLEDGEMENTS 

The work reported in this paper was conducted as part of the Local 
Network Research Project at the Unrvers~ty of California's Lawrence 
Livermore Laboratory. Four other members and former members of that 
project, Jed Donnelley, Bruce Watson, Richard Watson, and Jeffrey Yeh, 
made many valuable comments, suggestions, and criticisms, both during 
the conduct of the research and during the writing of this paper. Bruce 
Watson deserves special mention for producing the results presented in 
Fig. 11. I would like to express my appreciation to them for their 
help. This work was performed under the auspices of the U.S. 
Department of Energy by the Lawrence Livermore Laboratory under contract 
No. W-7405-ENG-48. 

REFERENCES 

1. Walden, D. C., "A system for Interprocess Communication in a 
Resource Sharing Network," CACM, 15 (April 1972),221-230. 

2. Fletcher, J. G. and Watson, R. W., "Mechanisms for a Reliable 
Timer-Based Protocol," Computer Networks, 2 (Sept.jOct. 1978), 
271-290. 

3. Watson, R. W. and Fletcher, J. G., "A Protocol Structure for 
Network Operating System Services," to appear. 

4. Watson, R. W., "Protocol Design Issues for Local Computer 
Networks: Illustrated f'or a Backend Storage Network," to appear. 

5. Pouzin, L., "Virtual Circuits vs. Datagrams--Technical and 
Political Problems," Proc. of AFIPS NCC (1976), pp. 483-494. 

6. Donnelley, J. E. and Yeh, J. W., "Interaction Between Protocol 
Levels in a Prioritized CSMA Broadcast Network." Proc. Third 
Berkeley Workshop on Distributed Data Management and Computer 
Networks (August 1978), pp. 123-i43, reprinted in Computer 
Networks, 3 (Feburary 1979), 9-23. 

7. Pouzin, L., "Flow Control in Data Networks--Methods and Tools," 
Proc. Third Int. Conf. on Computer Communications (Toronto, August 
1976), pp. 467-474. 

8. Geissler, A., et. al., "Free Buffer Allocation--An Investigation by 
Simulation," Computer Networks, 2 (July 1978), 191-208. 

9. Nessett, D. M., "Protocols for Buffer Space' Allocation in CSMA 
Broadcast Networks with Intelligent Interfaces," Proc. Third 
Conference on Local Networking (Universi ty of Minnesota" October 
1978) . 



-305-

10. Thorton, J. E., Christensen, G. S. and Jones, P. D., "A New 

Approach to Network Storage Management," Computer Design, 14 
(1975), 81-85. 

11. Kahn, R; E. and Crowther, W. R., "Flow Control in a 

Resource-Sharing Computer Network," IEEE Trans. on Communications 
COM-20, 3 (1972), 539-546. 





IMPLEMENTATION OF DISTRIBUTED SYSTEMS - II 



;;,.t, 
~ ,.,}. 

,," ft,' 
,;i 



-309-

LABELED SLOT MULTIPLEXING: 
A TECHNIQUE FOR A HIGH SPEED, 

FIBER OPTIC BASED, LOOP NETWORK 

Sheldon Blauman 

TRW Communications Group 
Torrance, California 

Abstract 

A high speed, fiber optic based, ring structured, local 
computer network is described. The TTL based prototype 
system operates at a line rate of 20 mbps. The interface 
logic has been specified to allow implementation in the 
faster ECL components, which could operate at line rates to 
200 mbps. The loop interface mates the high speed fiber 
optic channel to its relatively slow computer elements 
through a technique called Labeled Slot Multiplexing (LSM). 
The byte multiplexed LSM loop is non-hierarchial and 
asynchronous, requiring no host computer or line supervisor. 
Agents on the loop contend for space non-destructively, 
placing byte packets on the line only when space is 
available. Time slots on the loop are not pre-determined, 
and packets may be inserted whenever space exists. Address 
recognition is implemented at the line level, and provides 
for both functional and physical addresses. Up to 63 
devices may share the loop, with a potential for 192 logical 
functions. The loop interface is modular, separated into 
two logical/physical packages, a line interface and a 
processor interface. The line interface contains only the 
logic which must function at line rates, with the slower, 
byte oriented operations performed in the less expensive 
processor interface. 

INTRODUCTION 

Fiber optics, promising high bandwidths and low error 
rates with excellent noise immunity (1,2,3), offers an 
almost ideal communications medium for computer to computer 
links, and makes possible new approaches to local network 
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design. The primary challenge facing a designer is the 
efficient utilization of the medium, which has a much 
greater bandwidth potential than most local networks 
require, or can use. TRW's Communications Group's research 
organization has been experimenting with the application of 
fiber optics to local computer networks. 

The first step in applying fiber optics is deciding on 
a network topology_ Two considerations help to make that 
decision: the high speed of fiber optic links, and their 
greater interface cost over purely electronic communication 
lines. A loop, or ring structure can utilize a high speed 
communications medium, and requires a mihimum number of 
interfaces while providing a path between all its agents 
(4). 

A basic problem in applying fiber optics to a loop 
network is that the medium has much greater bandwidth 
potential than the computing elements it is to couple. If 
the optical channel is run at the relatively slow speed of 
its processors there is little justification, other than 
noise immunity, for the more expensive fiber optics over 

. conventional communication·channels. If the ,channel is run 
at a bandwidth greater than that of its agents, there must 
be a means of gearing the agents to the speed of the loop, 
which may be in the hundreds of megabits/sec. range (5), 
requiring very high speed ECL logic. This effectively 
eliminates most existing loop protocol designs (6,7,8,9), 
which all appear to require interface units too expensive to 
implement in high speed components. The need for costly ECL 
logic at higher bandwidths necessitates a new approach to 
loop protocols; one which minimizes logic at the. line 
level, and in particular does not require large, high speed 
buffers. A network of that type has been developed at the 
University of Cambridge, in England, which proves a Simple 
system may make effective use of a high speed medium (10). 
The following deSign, independently arrived at, is similar 
in concept but very different in approach. 

Before evolving the network design, we will outline our 
reqUirements for a local distributed computer system. It is 
desireable that there ~e no supervisory agent in the 
network, eliminating that potential Single point of failure. 
Address recognition at the line interface level is essential 
to high speed operation, and automatic recognition of 
logical addresses as well as a device's physical address 
would eliminate the need for routing tables or schemes. A 
global address capability is also a desired feature, 
allowing a single message to be sent to multiple logical 
destinations. Because we are dealing with a reliable and a 
high speed communications medium, segmented messages are not 
necessarily required for efficient' line utilization, few 
errors being expected, and when occuring, retransmission 
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being very rapid. This prompts the requirement for a 
continuous message transmission capability. One additional 
feature, which becomes feasible with high speed 
communication channels, is the ability for an agent to 
accept its own messages, allowing a computer to issue a 
request for a function and then accepting the request itself 
if no other agents are capable of processing that function. 

Incorporating all the above mentioned features into a 
local network both aids in system operation and simplifies 
the software requirements. The software simplicity is of 
particular importance if micro-computers are to be the 
agents in the network. We will now proceed with the 
generation of a design which will achieve all these desired 
capabilities. 

LINE PROTOCOL 

The requirement for mimimum line level logic, and in 
particular short line buffers, preordains some form of line 
multiplexing. In returning to basic communications 
engineering, a possible protocol for a high speed loop of 
this design is Time Division Multiplexing (TDM), perhaps 
with byte length slots. TDM requires a marker, which each 
agent counts from to find its assigned slot, or logical 
channel. Two problems are that a supervisor is required to 
generate the marker and clock the loop, and that each slot 
requires a reserved location, even when unused. The 
requirement for a supervisor is the most disturbing of the 
problems, since it presents a single point of failure for 
the network, which otherwise could be non-hierarchical. Of 
course any of the agents on the loop is also a potential 
single point of failure, since the loop is broken at each 
agent, fiber optics not lending themselves to large numbers 
of passive taps. The individual agent problem can be solved 
through a normally closed optical switch, which is only open 
when the associated agent is alive and well; switches of 
this type have been built at TRW. However the supervisor 
cannot be bypassed, and must be functional for the loop to 
operate, making failsoft operation difficult. 

An advantage of fiber optics is that generically it 
provides an almost open ended bandwidth capability, 
currently limited to rates approaching 200 mbps/km (5,11), 
but with potential for much higher rates. It seems 
reasonable to utilize some of this abundance of resource as 
overhead, if doing so can solve some of the problems 
inherent in TDM. The primary need for the supervisor is for 
the generation of the marker which each agent uses to locate 
its slot. An alternative method is to label each slot with 
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the identity, or channel number, of its owner. An agent 
listening on a channel can then watch for its channel I.D., 
rather than count to a slot from a marker. A transmitting 
agent places its labeled data on the line as the data 
becomes available and whenever space exists on the line. As 
in TDM, the packet, including both data and label, must be 
removed or replaced with a new packet by the originator 
after one loop cycle. In addition to eliminating the marker 
requirement, and hence the supervisor, this technique should 
allow better line utilization by not reserving channel space 
and not fixing the transmission rate to that of the slowest 
agent. The disadvantage of this scheme is it requires a 
high overhead for the label relative to the data, 
particularly if the data is only 8 bits in length. However 
the bandwidth of the fiber optic link can always be 
increased to compensate, just by improving the components. 
This allows a designer to freely determine the correct 
bandwidth for a system, knowing that it can be achieved by 
properly specifying the electooptic interface. The real 
bandwidth limitation is the electonics, and not the line 
itself. 

LINE INTERFACE 

The labeling technique described above defines a method 
for identifying data on the line, but does not specify how a 
message may be directed to a destination. Since the network 
is a loop, and a packet 'passes completely around before 
being removed by the originator, all agents will see every 
packet. This allows messages to be addressed functionally, 
without knowlege of the the physical location of a requested 
resource. Of course physical addressing is also required, 
since it is necessary to transmit the response specifically 
to the requesting agent. Transmitting a message on a byte 
by byte basis requires potential receivers t,o identify the 
destination at the very start of the message, so they might 
determine if they should capture subsequent packets from 
that source. This formulates the first rule of our message 
protocol: messages must begin with their destination, which 
may be either a logical or a physical address. To simplify 
the protocol, the destination field is limited to a single 
data field, in this case one byte, allowing 255 destination 
addresses. Since some of these must be physical addresses 
it is necessary to define the number of agents permitted on 
the loop. For our network purposes, 63 is a reasonable 
number of nodes, allowing 192 logical functions in the 
system. This fixes the source I.D. portion of the packet 
label at 6 bits. To distinquish the initial destination, or 
start of message (STX) packet, from a subsequent data 
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packet, a flag is required, adding one bit to the label. It 
is also desireable to acknowlege packets which have been 
accepted and copied, which adds one more control bit, for a 
total label size of,8 bits. In addition to the label and 
data fields, start/stop bits are required for 
synchronization, giving a total packet size of 18 bits 
(longer start/stop "fields" may be required at higher line 
speeds). 

With the packet format described, it is possible to 
define the line interface logic. To be effective, this 
message protocol must be processable at the line level in 
high speed logic. To facilitate this, each packet is fully 
buffered at the line interface, introducing a one packet 
delay, during which time all line operations are performed. 
The most difficult feature to implement is the ability to 
recognize an acceptable, logically addressed request at line 
speeds. This problem is solved through the use of a high 
speed I x 256 bit RAM chip, with each bit location 
corresponding to a destination address. Each function 
processable by an agent is flagged by a bit set in the high 
speed RAM by the agent's software. There is also one bit 
set to indicate the physical address of the agent, since 
some messages, particularly responses, must be sent to a 
specific physical location. In addition, a physical 
address register is required, which is compared to the label 
field to determine which packets have been transmitted by 
that agent and must be removed. The line interface is 
designed to look for acceptable packets independently of 
identifying its own transmissions, allowing it to accept its 
own messages. This eliminates the ,need for the agent's 
operating system to support two separate transaction routing 
schemes, simplifying the overhead software, an important 
consideration in memory limited microprocessors. 

The logic design of the line interface has been kept 
simple in order to minimize hardware and to allow operation 
at line speeds. The optical receiver is always in 
communication with its upline agent to maintain 
syncroni,zation. This eliminates the requirement for a long 
startup header. When data is seen on the line, a clock is 
derived from the signal and passed with the data to the 
receiver logic, which collects the incoming packet in a 
serial to parallel shift register. After the full packet is 
received, the information is passed to a receiver operating 
latch and to an output shift register. The receiver 
immediately checks to determine if the packet was originated 
at its node. If it was, the output is inhibited to prevent 
retransmission of the packet, removing it from the loop. If 
not, retransmission is initiated while the receiver performs 
subsequent checks on the captured information. The transmit 
clock is derived from a local oscillator and is not bit 
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synchronized with the input derived clock. 
If the receiver is not in the process of receiving a 

message, that is, not currently, listening for a specific 
"channel", it checks for the presence of the new message 
flag. If set, the data byte contains the destination for 
the message. The receiver decodes the destination as the 
address to its RAM, and checks the bit at that address to 
determine if it is set. If the bit is set, and the packet 
has not been acknowleged by some upline agent, that node is 
an eligible'receiver. The receiver sets the acknowledgment 
bit in the packet in the output latch, sets an internal busy 
flag for itself, and traps the address of the originator, or 
channel I.D., in a register to be compared with the label on 
all subsequent packets. One exception to the above sequence 
is in the checking of the acknowledgment flag. A class of 
functions is specified as global, and when a destination 
address falls within that range, the presence of the ack bit 
is ignored in the decision to accept the message. This 
allows all eligible receivers to accept a broadcast message 
concurrently. 

Once a receiver has accepted a packet, a virtual link 
has been established between it and the originator. The 
receiver then watches all subsequent packets passing on the 
loop for those with a matching label field. As the packets 
from the prescribed source are found, they are acknowledged 
and the data byte captured and relayed to the processor 
interface. The sequence continues until the receiver sees a 
packet from that source with the message control flag set, 
as in the first packet of the message. This second 
occurarfce of the control flag in conjunction with a reserved 
code indicates the end of transmission, or ETX. This event 
causes the receiver to notify the processor interface, which 
sets a status and interrupts the processor. However, the 
line interface remains busy until signaled by the interrupt 
processor it may proceed to search for a new message. The 
ETX packet looks identical to a start of message (STX) 
packet, except that destination address zero is reserved as 
an ETX code, which no other receiver will confuse as a valid 
starting address. 

PROCESSOR INTERFACE 

The loop interface is not designed for direct computer 
connection; it requires a separate interface (ie: 
controller) between it and the processor. This minimizes 
the amount of hardware which must be redesigned to mate 
other processors to the network. The processor interface is 
byte oriented, operating at the DMA rate of the processor, 
and not at line speed. This allows a design utilizing much 
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lower speed logic than that in the line interface. The 
processor interface is full duplex, with separate input and 
output sections, each with its own DMA channel. When 
eligible for a new message, the input section has a 
preallocated empty buffer available for immediate access. 
When the line interface locates a message and begins to trap 
and relay the data, the processor interface DMA's each byte 
into the assigned buffer. As bytes are received and stored, 
an address register is incremented, and a preset buffer byte 
count decremented. When the byte count goes to zero, the 
processor is interrupted and a new buffer requested. The 
sequence continues until an ETX occurs. The ETX occasions 
an interrupt for message completion processing, however it 
does not automatically reset the line and processor 
interfaces as not busy, both of which wait until made 
available for new messages by the interrupt software. 

The input portion of the interrupt code has three basic 
functions: supplying new buffers, assigning messages to 
their processing routines, and determining resource 
availability. The latter function, though software 
oriented, is pertinent to, the description of th,e loop 
architecture 0 Upon completion of an input sequence, the 
interrupt handler chains the newly received message to its 
destination program, and if the message is a functional 
request, determines if there is capacity for more 
transactions of that function type. If the resources are 
available, the interrupt processor instructs the interface 
hardware to return to non-busy mode, watching for new 
eligible messages. If the resources for that funct10n have 
been saturated, the interr.upt handler clears the the b1t in 
the line interface memory associated with that function 
before making the receiver available for new messages. 

The output section of the interrupt processor operates 
in a similar, though complementary fashion. When called by 
a program to transmit a message, the system presets 
processor interface registers with the address and length of 
the first buffer, then sets a control register to indicate a 
new message is available. If the message is fully contained 
in the one buffer, the control word also indicates that the 
last byte should cause the ETX bit to be set. The writing 
of the control byte starts up the output logic of the 
processor interface hardware. 

The processor interface hardware formats the first 
packet of the message with the flag bit set, passes it to 
the line interface, then waits for the first packet to 
return before issuing the subsequent bytes of the message. 
If the first packet returns un-acked, the output logic 
issues an interrupt to notify the software a receiver was 
not found. The software will decide on subsequent action, 
which will generally be to reissue the request some number 
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of times, assuming potential receivers are momentarily busy. 
After the first packet has been accepted, the bytes will be 
DMA'd from the processor memory at a programmably set rate 
calculated to not overrun the receiver's DMA capablity. If 
any of the returned packets are not acked, the processor 
interface will set an error flag and issue an interrupt to 
force a retry of the entire message. 

The logic in the output section of the line interface 
is simple. If the output latch, or register, is clear; and 
no data is in the input register, the output section gates 
the packet into its output latch, knowing it has sufficient 
time to transmit the entire packet, even if the receiver 
immediately gets incoming data. This provides a 
nondestructive contention scheme, which allows packets to be 
sent as frequently as possible, yet not interfere with other 
messages occupying the loop at the same time. 

ERROR HANDLING 
Possible transmit errors are non-acked returned packets or 
an incorrect number of returned packets. The hardware 
detects "ACK" errors and keeps a returned packet count for 
software detection of lost packets. Possible receive errors 
are incompleted transmissions (underflow) and inability to 
process the next packet in time (overflow). The hardware 
sets an overflow flag when that condition occurs, and the 
software monitors receive cycles to determine if an 
underflow has occured. However there is no way to detect 
garb aged or orphaned packets continually recirculating on 
the loop without the addition of a line monitor, which is 
prohibited under our original design criteria. This is an 
intentional deficiency, since few line errors are expected 
in a fiber optic 'network; however, the condition must be 
provided for in some fashion, because it can happen. 

A simple and effective, though somewhat brusque 
technique, is to periodically halt the loop for a long 
enough time to completely clear it. Unfortunately this will 
also abort any valid messages on the line at the time; 
however, both transmitters and receivers will detect the 
flush generated errors and reset themselves. This loop 
shutdown capability is under software control, and when 
invoked inhibits the transmitter from initiating or 
retransmitting any packets. 

Because a low error rate is an inherent and justifying 
feature of fiber optics, loop flushes may be performed 
periodically on a relatively infrequent basis of minutes or 
even hours, with the option for an operator initiated flush. 
Properly implemented, this capability should cause little if 
any system disruption; however, it is necessary to guard 
against gradual loop degradation from accumulating garbage. 



-317-

Though somewhat basic, the technique appears an excellent 
alternative to a loop monitor or supervisor, particularly in 
the case of a low error rate medium. 

CONCLUSION 

This completes the description of the fiber optic loop 
interface. For ease of development the first prototype 
version is implemented in lower speed TTL logic, functioning 
at 20 mbps.9 which should be adequate for evaluation 
purposes. However, the logic is designed for bandwidths to 
200 mbps, utilizing high speed ECL components at the line 
interface level. The prototype processors are Motorola 6800 
based, and the processor interface exists as a one card 
controller on the bus o The line interface exists as a 
separate package, linked to the processor interface through 
a cablee In theory, only the processor interface board 
would have to be redesigned to allow adaption of other 
processors to the loopo 

Because this paper systematically evolved th& design of 
the loop interface from a hardware viewpoint, little 
attention has been paid to justifying the approach from a 
software viewpoint. However, all hardware features were 
specified with an operating system structure in mind, and a 
good percentage of the code had been generated before the 
final design stage of the hardware was complete, resulting 
in some design changes to arrive at a fully integrated 
hardware/software package. 

SUMMARY 

A distributed local computer network has been described 
which utilizes fiber optics as its communication channel. 
The line and message protocols both depend upon, and take 
advantage of, the high bandwidths and low error rates 
provided by the fiber optic medium. A labeled slot 
multiplexing scheme is used, each slot containing a data 
byte and label. The label on each packet identifies its 
originator, and includes an STX/ETX flag and an 
acknowledgment bit. The originator of a packet watches for 
its return, and removes it from the loop, the acknowledgment 
bit indicating its acceptance by an eligible receiver. The 
first byte of a message, indicated by the presence of the 
STX bit, must contain the destination, which may be logical 
or physical. The 8 bit byte allows 255 addressess, 63 of 
which are reserved as physical unit numbers. Destination 
zero is reserved as an ETX flag, and in conjunction with the 
presence of the ETX bit in the label, indicates the end of a 
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transmission to an active receiver. The line interface 
logic includes a lx256 RAM chip which provides the table of 
acceptable destinations at any processor. This allows the 
dynamic detection and acknowledgment of messages processable 
by that receiver. 

The above structure is intended to bo,th provide a high 
speed, non-hierarchical loop and to minimize operating 
system software requirements, an important feature for 
micro-processor based networks. Messages proceed around the 
loop with only a one packet delay at each agent, and with no 
requlrment for active software intervention. The functional 
destination capability eliminates the need for routing 
tables, and a subset of functions designated as global 
allows a single message to be directed to multiple 
destinations. These features allow concurrency and 
redundancy to be provided.with relatively little software 
effort. The message protocol requirements are simple l only 
specifying that each message begins with an tl bit 
destination code and ends with a zero byte. Though byte 
oriented, the protocol is not ASCII structured nor bit 
patterned. allowing any data format to be used. The 
prototype system depends on a software generated and decode.d 
CRC for error detection. However, this capability could be 
implemented in hardware in the processor interface logic. 

Though the prototype system utilizes micro-computers as 
its processing agents, a mini-computer LSM network would be 
even more practical, better utilizing the bandwidth 
potential of the fiber optic loop. Looking ahead, the next 
generation of 16 bit micro-processors appear to be an 
excellent candidate for agents on an LSM loop. With the 
protocol modified to allow 16 bits of data, this combination 
could prove to be an extremely potent network computer, the 
loosely coupled components functioning as one entity, but 
more failsafe and more easily expanded than a single 
mainframe computer. 
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Abstract 

Since 1976, the Computer Engineering Section at TRW has been using 
Concurrent Pascal (1] 1n its multipl e-minicomputer Signal Processing Facil ity 
for research into the software engineering of special purpose locally distri­
buted systems. In such systems, the particular operating system support 
required at any processor can be quite specific, removing the necessity for 
use of typical vendor-supplied general purpose operating systems. With the 
aid of appropriate Concurrent Pascal code segments, complete operating system 
environments can be easily constructed which exactly match local processing 
requirements. Intercomputer link drivers, file systems, graphics packages, 
and performance monitors are examples of typical services. To these, we have 
added a simple distributed.file manager (DFM) which maintains three possible 
levels of access control for a file distributed redundantly over any number 
of machines. 

The purpose of this paper is to discuss the particular services or 
application code interfaces into the DFM which were decided upon, the opera­
tion of the manager and its representation as a collection of Concurrent 
Pascal system types, and our method of monitoring its performance. 

1.0 INTRODUCTION 

Our work has been conducted with an emphasis on the beneficial effects 
of Concurrent Pascal on distributed systems software engineering for multi­
processor local network architectures .. We believe that two barriers to rapid 
and reHabl e construction of such distri buted systems are the use of vendor­
supplied operating systems, which are usually designed to support general 
purpose timesharing on a single processor, and the use of vendor-supplied 
languages which do not provide the level of software structure necessary for 
simple and effective solutions to problems of parallel execution. We don't 
claim that Concurrent Pascal, or any other language designed to support con­
current programming (e.g. Modula, Ada, etc.) is "the" answer to low risk 
implementation of distributed systems. However, we do feel it is important 
to break the vendor-supplied OS "habit" and these languages provide an 
important and workable means of doing so. 
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Using Concurrent Pascal (or other appropriate language~), application­
tailored operating systems can be created and their performance studied and 
monitored in the space of weeks. Simulation of data distribution protocols, 
for instance, may be unnecessary when actual implementation takes no more 
time. 

In our search for an expedi ent software development base, a Concurrent 
Pascal operating system was developed starting from Per Brinch Hansen's 
or1ginal SOLO system [2]. The resultant Experimental Development System 
(EOS) has now been further modified with the addition of a Distributed File 
Manager (DFM). While the DFM is primarily meant to be available for 1ncor­
porat10n 1nto special-purpose operating systems supporting d1stributed processing 
applications, 1nserting 1t into EDS provided insight into the 1nterface between 
a distributed processing capability and applications code, and allowed us to 
easily test and monitor DFM performance. 

The DFM discussed in this paper is oriented toward maintaining three 
possible levels of access control for a single redundantly distributed file. 
Distributed database protocols are often presented in the context of updates, 
and our particular choice of access levels is an attempt to generalize these 
results in a straightforward fashion to include less expensive types of control 
for read operations. The three levels of access control correspond to the 
following possible characterizations of the local file copy: latest copy; 
consistent copy; and possibly inconsistent copy. Updates may be performed only 
on a latest copy, but reads may be performed under any level of DFM control. 
Responsibility for requesting the appropriate level is left to the application. 

Extensions to this basic capability for handling a single distributed 
file readily suggest themselves. However,since this file is essentially a 
shared array of d1sk pages made available to application code on any number 
of machines, a useful environment for distributed processing applications is 
made available. 

The following presentation is structured in a top-down manner. First an 
overview of EDS is given in order to introduce system access graphs and provide 
a general idea of the software environment into which the DFM was inserted. 
This is followed by a discussion of the application cod.e interfaces to the 
Distributed File Manager and the services which were made available. The struc­
ture of the DFM in terms of Concurrent Pascal system types, and the rationale 
behind its operation are detailed, after which we d1scuss performance monitoring. 
We conclude with a few words concerning the utility of the DFM. 

2.0 THE OPERATING SYSTEM 

Our Experimental Development System (EDS) is written in Concurrent Pascal. 
In addit10n to the usual Pascal data types such as integer, array, record, etc., 
Concurrent Pascal provides the additional system types of "process" and "monitor." 
These are provided in order to facilitate the explicit high-level expression of 
a multiple process environment, and the means by which processes may communicate 
with each other. If a Concurrent Pascal process wishes to do so, it may load 
and_execute a Sequential Pascal program which has been previously compiled. This 
is equivalent to what happens in a timesharing system when a process associated 
with a remote terminal responds to a command by loading and executing a user 
program. 
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The basic structure of EOS is three processes (input, job, and output), 
plus monitors to allow the job process to communicate with the input and 
output processes. Through these monit6rs, the job process first makes its 
I/O requirements known to the input and output processes, and then subsequently 
accepts or sends blocks of information as they are made available. Depending 
on the communicated requirements of the job process, the I/O processes load 
and execute appropriate sequential programs. Unlike the I/O processes, which 
are essentially dependent on the job process for information determining their 
course of action, the job process prompts the user by loading and executing 
a sequential program specifically designed as a user interface. Operating 
system services made available to a sequential program include the ability to 
request that a different sequential program be loaded and run, thus the user 
interface program reads a command line from the console, parses it it determine 
the user's requirements, and then requests that the appropriate program be run. 
When the required program has run to completion, the user interface is continued 
(with the completion status of the requested program made known to it), and 
the cycl e repeats itsel f. Fi gure 1 is an access graph or diagram of the important 
EOS system components. 

The simplicity of EOS is one of its most valuable features, allowing it to 
be rapidly modified to suit its users' requirements. Such simplicity provides an 
excellent basis for distributed processing experiments, and in general helps to 
blur the distinction between appHcation and operating system code. Though we 
feel that this is an asset when creating specially tailored systems (in .which 
the operating system II is II the application code to a great degree), it should be 
noted that Concurrent Pascal can be, and has been used to create larger and more 
sophisticated operating systems. Three worthy of mention are the Interactive 
Graphics Operating System of John Barr [3], the MUSIC Multi-User system of Klaus­
Peter Lohr [4], and the Capabilities Operating System (LINUS) of Mike Ball [5]. 

Typical services provided by the EDS processes which execute sequential 
code (we have already mentioned the ability to run sequential programs) include 
a set of file access services - open, close, get, put, etc. - and a set 1/0 
functions - readregister, writeregister~ awaitinterrupt, etc. - which are useful 
for writing device drivers in Pascal [6J. To these services, an additional set 
has now been made available for experimentation. They provide the ability to 
manipulate a locally disk-resident array of pages which are shared redundantly 
(updates are broadcast and incorporated into exterl1alfile copies) with ,coopera­
ting job process programs on other machines. These newly provided services will 
now be disucssed. 

3.0 DISTRIBUTED FILE SERVICES 

The EOS file system is built around a disk-resident catalog of named files 
and their attributes. One attribute of a file is the disk address of its page 
map. Opening a file ·involves a search of the catalog for a file's attributes, 
followed by read1ng it's page map into memory. Subsequent file I/O requests 
(get,put) are then processed by referencing this page map and performing the 
appropriate disk access. 

: The DFM performs its local operations in a similar manner, making use of 
the catalog to locate a file's page map, etc., with the restriction that only one 
file may be accessed through it. Pages may be read from this file at any time, 
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tailored operating systems can be created and their performance studied and 
monitored in the space of weeks. Simulation of data distribution protocols, 
for instance, may be unnecessary when actual implementation takes no more 
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The DFM discussed in this paper is oriented toward maintaining three 
possible levels of access control for a single redundantly distributed file. 
Distributed database protocols are often presented in the context of updates, 
and our particular choice of access levels is an attempt to generalize these 
results in a straightforward fashion to include less expensive types of control 
for read operations. The three levels of access control correspond to the 
following possible characterizations of the local file copy: latest copy; 
consistent copy; and possi bly inconsi stent copy. Updates may be performed only 
on a latest copy, but reads may be performed under any level of DFM control. 
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Extensions to this basic capability for handling a single distributed 
file readily suggest themselves. However, since this file is essentially a 
shared array of disk pages made available to application code on any number 
of machines, a useful environment for distributed processing applications is 
made avail abl e. 

The following presentation is structured in a top-down manner. First an 
overview of EDS is given in order to introduce system access graphs and provide 
a general idea of the software environment into which the DFM was inserted. 
This is followed by a discussion of the application code interfaces to the 
Distributed File Manager and the services which were made available. The struc­
ture of the DFM in terms of Concurrent Pascal system types, and the rationale 
behind its operation are detailed, after which we discuss performance monitoring. 
We conclude with a few words concerning the utility of the DFM. 

2.0 THE OPERATING SYSTEM 

Our Experimental Development System (EDS) is written in Concurrent Pascal. 
In addition to the usual Pascal data types such as integer, array, record, etc., 
Concurrent Pascal provides the additional system types of "process" and "monitor." 
These are provided in order to facilitate the explicit high-level expression of 
a multiple process environment, and the means by which processes may communicate 
with each other. If a Concurrent Pascal process wishes to do so, it may load 
and_execute a Sequential "Pascal program which has been previously compiled. This 
is equivalent to what happens in a timesharing system when a process associated 
with a remote terminal responds to a command by loading and executing a user 
program. 
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The basic structure of EOS is three processes (input, job, and output) t 

plus monitors to allow. the job process to communicate with the input and 
output processes. Through these monitors, the job process first makes its 
I/O requirements known to the input and output processes, and then subsequently 
accepts or sends blocks of information as they are made available. Depending 
on the communicated requirements of the job process. the I/O processes load 
and execute appr()priate sequential programs. Unlike the I/O processes, which 
are essentially dependent on the job process for in,formation determining their 
course of action, the job process prompts the user by loading and executing 
a sequential program specifically designed as a user interface. Operating 
system services made, available to a sequential program include the ability to 
request that a different sequential program be loaded and run, thus the user 
.interface program reads a corrmand line from the console, parses it it determine 
the user's requirements, and then requests that the appropriate program be run. 
When the required program has run to completion, the user interface is continued 
(with the completion status of the requested program made known to it), and 
the cycle repeats itself. Figure 1 is an access graph or diagram of the important 
EDS system components. 

The simplicity of EOS is one of its most valuable features. allowing it to 
be rapidly modified. to suit its users' requirements. Such simplicity provides an 
excellent basis for distributed processing experiments, and in general helps to 
blur the distinction between appli.cation and operating system code. Though we 
fee1that,.this is an asset when creating specially tailored systems (in .which 
the operating system "is" the application code to a great degree), it should be 

. noted that Concurrent Pascal can be, and has been used to create larger and'more 
sophisticated operating systems. Three worthy of mention are the Interactive 
Graphics Operating System of John Barr [3], the MUSIC Multi-User system of Klaus­
Peter Lohr [4], ancJ the Capabilities Operating System (LINUS) of Mike Ball [5]. 

typi~al services provided by the EDS processes which execute sequential 
code (we have already mentioned the ability to run sequential programs) include 
a set of file access services - open, close. get, put, etc. - and a set 1/0 

. functions - readregister. writeregister" awaitinterrupt, etc. - which are useful 
for writing device drivers in Pascal [6J. To these services. an additional set 
has now been made available for experimentation. They provide the ability to 
manipul ate a locally disk-resident array of pages which are shared redundantly 
(updates are broadcast and incorporated into exter~alfile copies) with coopera­
ting job proces~ programs on other machines. These newly provided services will 
now be disucssed. 

3.0 DISTRIBUTED FILE SERVICES 

The EDS file system is built around a disk-resident catalog of named files 
and their attributes. One attribute of a file is the disk address of its page 
map. Opening a file involves a search of the catalog for a file's attributes, 
followed byread1ng it's page map into memory. Subsequent file I/O requests 
(get,put) are then processed by referencing this page map and performing the 
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: The DFM performs its local operations in a similar manner, making use of 
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file may be accessed through it. Pages may be read from this file at any time, 
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and the application code has the option of requesting that the DFM maintain inter­
page cons1stency during local file access. Th1s is done by allowing the DFM to 
e~ercise a certain amount of access control. 

Updates may only be performed on what is called the "latest" copy of the 
file, access to which is globally exclusive. Th1s file copy contains all previous 
updates, thus the term "latest." 

A non-exclusive "consistent" copy is also available for read-only operations s 
and this consistent copy will reflect all or none of the updates performed on 
any "latest" copy. In practice, this copy will initially be the latest version 
of the file, with new updates from other nodes temporarily locked out. If an­
other node is performing updates on the "latest" copy at the time a "consistent" 
copy is requested, the DFM will wait until these updates are finished before 
locking the local copy and continuing the program which requested a "consistent" 
copy. The use of the word "consistent" here is based on the assumption that 
the file is always left in a consistent state upon completion of updates on any 
"latest" copy. Since access to consistent copies is not globally exclusive, 
efficiency of file access is made possible for code which .doesn't require update 
privileges. 

Programs which don't require inter-page consistency need not request a 
consistent copy, in which case reads will be performed with no fHe locking in 
effect, and without delay even if updates are being currently performed.' Appli­
cations which allow pre-allocation of information to particular file pages would 
be capable of exploiting this. An example would be a mailbox application. 

Actual f1le 10 is supported w1th the usual page update and read services. 
An additional facility whereby an accessing program may wait until one of a set 
of pages is updated before performing a read 1s also available. 

The separate DFM serv1ce calls will now be 11sted, and their meanings dis­
cussed. The semant1cs of these DFM service ca.ll s are I sl!parate concern from 
the underly1ng manClger protocols wh1ch 1mplement them, details of which. are 
disucssed in a later section. For instance, while the particular manager we used 
employs distributed control ,there is no reason why the same services might not 
be provided through the use of a centralized control pr.otocol. 

3.1 DFM Entry Procedures 

The following represents the application code interface to the DFM. For 
those unfamiliar with Pascal-like code, the keyword "var" is used to give a called 
procedure the ability to mod1fy or assign a value to a passed parameter. In the 
following, the passed parameter "OK" is used for the purpose of allowing the DFM 
to explicitly refuse part1cular requests for service. For example, a PUT_COPY 
would be refused (and the value "False" returned in the variable "OK") if the DFM 
was not maintaining a latest copy at the time of the request. 

type 
PAGE = array[l .• 512] of char; 
ID = array [1 .. 12 ] of char; 
FILE CURRENCY • (POSSIBLY INCONSISTENT, 

- CONSISTENT, 
LATEST) ; 



NODE • 1 .• 1 Oi 
NODE SET = set of NODE; 
WAITPAGE = 1 •• 100; 
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WAITPAGE_SET = set of WAITPAGE; 

procedure entry CONNECT(RECEIVE SET: NODE SET; 
FILE NAME: 10; -
var OK: boolean); 

procedure entry DISCONNECT; 

procedure entry REQUEST COPY(LEVEL: FILE CURRENCY; 
- var OK: boolean); 

procedure entry RELEASE COPY; 

procedure entry PUT_COPY(PAGENO: integer; 
. BLOCK: PAGE; 

var OK: boolean); 

procedure entry GET_COPY(PAGENO: integer; 
var BLOCK: PAGE); 

procedure entry GET_NEXT(TiUGGER_SET: WAITPAGE_SET; 
var PAGENO: integer; 
var BLOCK: PAGE); 

3.2 DFM Entry Semantics 

The services available through the above interface are now described. 

3.2.1 Connect 

This service and its counterpart (Disconnect) represent an area not usually 
mentioned in conjunction with DFM protocols. This may be due to the assumption 
that initialization is a minor detail, but we found Connect to be a very interest­
ing problem, requiring its own special protocol (i.e. aggreement among the DFM's) 
for a sol ution. 

We decided to allow the local app1 ication program to specify the nodes from 
which external updates will be. received (as well as the file on which they should 
be processed) in order to avoid bul1din9 this infonnation into the DFM (creating 
potential inhomogeneity in the managers), and to avoid the possibility of unex­
pected updates to a file not explicitly connected via a local request. This last 
possibility might not represent any great danger to a system for which necessary 
synchronization is achieved in some other way, but we nevertheless chose to en­
force synchronization as part of the Connect service. 

Stated briefly, a local Connect service will complete as soon as all nodes 
from which updates will be accepted have themselves requested a Connect service. 
This approach has some interesting implications (not all favorable) and was chosen 
with an eye on code complexity. If all nodes specify the same receive set in the 
Connect request. then the usual redundant copy database results. Disjoint parti­
tioning of the network nodes is also possible. Unfortunately, a non-disjoint 
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partitioning would be vulnerable to lost updates (updates generated by a success­
ful13 connected node before another node issues a connect request specifying 
the desire to accept updates from the first node). This problem 'appears to occur 
outside the range of expected DFM usage, but it points out the fact (as if we 
needed to be reminded) that possi bl1ities for interesting and possibly erroneous 
DAM protocol design decisions exist aside from those associated directly with 
update and access control. 

3.2.2 Disconnect 

This is the counterpart to Connect. A Disconnect service will complete 
as soon as all nodes from which updates can be accepted have themselves requested 
a Disconnect service. 

3.2.3 Request Copy 

This service represents our attempt to generalize global mutual exclusion 
update protocols to include less expensive types of access for r.ead operations 
in a straightforward and easily implemented fashion. In the discussion that 
follows, assume that each ~etwork node has performed a Connect service specifying 
all network nodes as the receive set. Then each node has one local disk file 
(referred to as the local file copy) on which reads and distributed updates will 
be processed. All calls to Request Copy instruct the DFM to maintain a certain 
level of control on local and external access to this file until a corresponding 
Release Copy service is executed. In the interim, any number of permitted accesses 
of the local file copy may be performed. 

External accesses are always updates (in a redundant copy database) and local 
accesses may be either updates or reads. The three possible levels of access 
control for the local file copy are: 

1. external updates allowed, local updates not allowed, and local 
reads allowed 

2. external updates not allowed (but queued for later inclusion 
in the local file copy), local updates not allowed, and local 
reads allowed 

3. external updates not allowed (none can arrive due to the globally 
mutually exclusive nature of the protocol by which this level of 
access is granted), local updates allowed, and local reads .allowed 

In the first case, no guarantee concerning the consistency of the local copy 
can be made by the DFM since a related stream of external updates may only be 
partially completed at the time a series of local read operations are performed. 
In the second case, the DFM is able to guarantee consistency of the local file 
copy because no updates to this copy can occur, and because the Request_Copy 
service for this level of access will not complete until the local copy reaches 
a consistent state. Consistency is assumed to occur at the completion of a 
stream of related updates, which is signalled by an updating· node when it performs 
a Release Copy service. Only in the third case may updates be created for inclu­
sion in the local copy and distribution to \~'connected" external file, copies. 
Use of a global mutual exclusion update protocol (and waiting for the completfon, 
of locally queued external updates before local access is allowed) guarantees 
seriality of update operations. 
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As mentioned previously, three possible characterizations of the local copy 
corresponding to these access levels are: possibly inconsistent; consistent; 
and latest. The default condition is the possibly inconsistent state. 

3.2.4 Release Copy 

This is the counterpart to Request_Copy. The result of performing this 
service is to return it local file copy to the possibly inconsistent state, as 
well as to signal the end of related updates if the local copy was previously 
a latest copy. If the local copy was previously a consistent copy, external 
updates (if any) from nodes having the latest copy will then be processed. 
In all cases external updates are processed in the order in which they are 
ori gi na 11 y performed on a 1 oca 1 copy. 

This service is the means by which an update of "connected" file copies is 
performed. Assuming that the local file copy of the node requesting this service 
is the latest copy, the following actions are taken. First the update is broad­
cast to external nodes. The update protocol we use employs a ring network for 
this purpose. This serves to balance the load of distributing updates to all 
copies. The update is passed from one node to the next, with each DAM examining 
the update to determine its origin. If the origin is eontained in the receive_set 
for a node, then the update is queued for processing at that node. Each node in 
the network sees the update in this way, until the update returns to its origin. 
Here the update is removed from the ring. As soon the update is originally 
released to travel about the ring, the update of the local copy at the originating 
node is performed. Subsequent requests for the Put Copy service are handled as 
soon as they are issued, without waiting for the return of previous updates from 
around the. ring. 

The parti cul ar intercomputer link chosen determines the data transmission 
protocol which is used. In our case, a fairly sophisticated link is used which 
implements CRC checking at the hardware level. The software is designed to recover 
from hardware-detected transmission errors by retransmitting the message. Since 
both sender and receiver are notified by the hardware when transmission errors 
occur, this is fairly easy to do. This is one area in which local networks can 
differ drastically from those more geographically dispersed. 

3.2.6 Get Copy 

This service is the means by which a read access of the local file copy is 
performed. This service is available at any level of access control. 

3.2.7 Get Next 

This service was included to allow an application to receive an externally 
generated page update as soon as it arrives locally. In making the Get_Next 
service request, an application specifies which pages it 1s interested in, and 
the next arriving update for any of these pages causes the call to complete. The 
number of the page which was updated 1s returned along with the new page contents. 
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A request for a consistent copy at this point (as soon as the return from 
Net Next is effected) would complete as soon as all of the related updates .which 
included the "trigger" are processed on the local file copy, and would lock out 
further sets of updates from some other (or the same) external node. This might 
be important if separate sets of updates could arrive faster than they can be 
processed by the application. 

4.0 DISTRIBUTED FILE MANAGER IMPLEMENTATION 

Various aspects of the DFM imp1emention are now discussed. 

4.1 DFM Structure 

The system components which make up the DFM are detailed in the access 
graph of Figure 2. A list of these system types, and a short discussion of 
their respective functions will now be given. The parameters in the following 
type definitions designate the system components which are available for use by 
• component of the type being defined. For instance, I component of type 
RINGOUTPROCESS can make calls to a component designated as ROB (which is of 
type RINGOUTBUFFER). 

type RINGOUTBUFFER = monitor; 

This buffer holds messages destined for transmission to other nodes, via 
the ring-network structure used for inter-machine communication. DRMANAGER 
calls it in order to create ring messages, and RINGOUTPROCESS calls it in order 
to receive them. 

type RINGOUTPROCESS = process(ROB: RINGOUTBUFFER); 

This process contains the PCl-ll communication link transmission driver, 
and implements the ring structure. The process accesses ROB to get a message 
for the ring, transmits the message to the "next" ring node, then cycles back 
to get and transmit the next message, etc. 

type EXTUPDATEBUFFER • monitor; 

This buffer holds messages and updates associated with external node.s from· 
which updates can be received. DRMANAGER writes to it, and EXTUPDATEPROCESS reads 
from it. When the local file copy 1s locked. this is where external updates 
queue up for ultimate delivery when a local Release_Copy is performed. 

type FIlEMANAGER = monitor; 

This monitor performs file I/O, and contains file locks for use in main­
taining required levels of file protection. It is accessed by DRMANAGER to 
request locking, EXrUPDATEPROCESS to perform external updates, and the job 
process to perform local file manipulations. 

type EXTUPDATEPROCESS = process (EUB: EXTUPDATEBUFFER; 
AM: FIlEMANAGER); 
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This process reads updates posted by DRMANAGER to EUB, performs appropriate 
cills to AM, and then cycles back to get another transaction from EUB, etc. 

type DRMANAGER = monitor (AM: FIlEMANAGER; 
ROB: RINGOUTBUFFER; 
EUB: EXTUPDATEBUFFER); 

This monitor mediates requests for DAM services from the local job process, 
and from external managers at other nodes whose requirements are pulled off the 
ring by'RINGINPROCESS. When appropriate, it sends messages to the ring via ROB, 
relays external updates via EUB, and sets locks by calling AM. DRMANAGER is 
called by the local job process, responding to service requests, and RINGINPROCESS, 
responding to ring arrivals. 

type RINGINPROCESS = process(DRM: DRMANAGER); 

This process contains the PCl-'l communication link receiver driver. It 
accesses the PCl-ll bus to receive messages addressed to this node, calls DRM 
to deliver them, then cycles back to receive the next ring message, etc. 

4.2 ' DRMANAGER Operation 

While the collection of system types listed above are responsible for 
performing collectively as the Distributed File Manager, the DRMANAGER monitor 
contains the basic intelligence related to the protocol whose purpose is to provide 
global mutual exclusion of access to latest copies, and perform distribution of 
updates. Aside from the particular services we chose to make available to appli­
cations programs, it is the operation of DRMANAGER which may be of greatest interest 
to others. In what follows, we will provide a short overview of this operation. 

The DRMANAGER Connect protocol has already been discussed. A major influ­
ence on its development was our decision to use a distributed control update 
protocol. If we had used a centralized manager, Connect would have been more 
straightforward. A primary motivation for this work was the question of DFM 
services however, and we decided to make use of a distributed control protocol 
which we previously implemented following a description given by Ellis [7]. As 
discussed in the concluding remarks, a centralized control protocol is now being 
investigated as well. 

Our paper [8] examines Ellis' protocol in some detail. His protocol is 
elegant and requires few ring messages, but only allows one transaction on a file 
copy (each transaction ;s implicitly a Request_Copy and a Release_Copy as well). 
Bringing a database from one consistent state to another usually involves a series 
of related file transactions, so we extended Ellis' update protocol by requiring 
explicit request and release of the file copy, between which any number of file 
transactions might occur. The resulting protocol is used by DRMANAGER in order 
to control access to what we have termed the latest copy, and distributes updates 
which are processed on it. 

Access control and maintenance of what we have termed a consistent copy 
was motivated b1 the desire to allow a series of related reads (for, example, an 
index traversal) without requiring the use of the latest copy, access to which is 
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mutually exclusive. Providing a consistent copy proved to be as interesting as 
the update protocol, and the use of a concurrent programming language significantly 
aided our visualization of the problem. Requests for a consistent copy involve 
no ring traffic since they are handled locally in the FILEMANAGER monitor by 
waiting for the end of the present set of updates (which is signalled by a release 
message), and then locking out further updates until the consistent copy is locally 
released via Release Copy. 

4.2.1 The Distributed Control Update Protocol 

The underlying idea behind the DRMANAGER update protocol is the manner in 
which "simul taneous" requests for a latest copy are handl ed. Each node has a 
unique priority, and messages are sent on a ring-network communication structure 
in order of increasing node priority. A request for the latest copy travels over 
the ring and 1s examined by each local DRMANAGER before being relayed on. If 
such a request arrives at a no'de of higher priority than that of its origin, 
and the higher priority node itsel f has a request in transit (this is the meaning 
of simultaneous in this context) then the lower priority request is delayed and 
saved. Subsequently, the higher priority node will receive its request when it 
returns around the ring. This return indicates that it's request for the latest 
copy is granted. 

After performing the necessary transactions on its file copy (with page 
updates being appropriately broadcast as they occur), the higher priority- node 
perfonns a Release_Copy. A release message is then sent around the ring which 
signifies the end of updates to this particular latest copy. and indicates whether 
or not a lower priority request has been saved. This message is followed imme­
diately by the saved lower priority request. if any. The saved lower priority 
request, if any, then continues around the ring to ultimately return to its origin. 

An additional constraint is used to 1 imit the number of requests which have 
to be saved (i .e. removed from the ring pending grant and release of the latest 
copy) at any node: once a request is relayed, the relaying node may itself make 
no requests until a release message indicating no following saved requests is 
received. With this restriction, no node need ever save more than one request; 
without it, the maximum would be dependent on the total number of nodes in the 
network. The protocol has the nice property that no request is ever denied (thus 
retries are not necessary), and all requests are ultimately granted. Since the 
node priorities are used only to break ties. each node is served fairly. 

4.3 Hardware Configuration 

The actual hardware that is used includes a DEC PCL-ll (Parallel Communica­
tions link) intercomputer link which connects four PDP-l1 machines and one VAX-
11/780. The PCl is a multi-dropped TDM Bus (time division multiplexed - i.e. 
transmission time is time-sliced by node, allowing one 16 bit parallel data transfer 
per slice). Although this link supports a totally connected network, it is used 
here to implement a ring structure, in accordance with the requirements of the 
distributed control update protocol. 

One of the strong points of the PCl link is that is supports reconfiguration 
of a network in case of node failure. The DFM presently implemented does not 
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make use of this capability, however, and is vulnerable to node failure. An inte~ 
resting and effective use of the PCl would be to implement a IIwheel" structured 
network in order to support distribution of updates via a ring structure (to 
balance update broadcast load) and to provide for centralized control of access 
to the latest copy (in efficient method for global access control). 

5.0 PERFORMANCE MONITORING 

In order to monitor the DFM and observe the overhead associated with its 
various operations, we dedicate a separate machine to the function of driving a 
graphics display device (in this case a Tektronix 4014) to report this information. 
At this machine, I process reads data posted to it via inter-computer link, and 
sendS this information to a buffer. Another process reads the contents of this 
buffer at a set frequency, and makes calls into a display utility implementing a 
graphics capability on the Tektronix device in order to display bar graphs for 
each machine which is reporting. 

At the reporting machines a reporting process is included which reads 
performance information posted to a buffer by the job process as it makes calls 
to the DFM, and then sends this information via inter-computer link to the 
display machine. Each call by the job process to the reporting buffer increments 
a count representing the number of times I particular DFM call has been made. 
This count is reset to zero each time the process in charge of relaying this in­
formation to the display machine calls to receive it. Since this is done once 
a second, the information which is ultimately displayed is the number of various 
DFM calls made per second. The particular information we display is (for each 
reporting machine): request of latest copy; request of consistent copy; updates, 
reads, and read_nexts. 

This admittedly simple-minded scheme allows us to easily determine the 
performance of the DFM by writing a simple application program which does nothing 
but make use of DFM services. The overhead associated with requesting the latest 
copy without contention is summarized as follows: 

if network nodes 

1 
2 
3 
4 

overhead (in msecs) 

31 
70 

109 
145 

These results show the expected dependency on the number of machines in the 
network. This dependency could have been simulated, and an estimate of the res­
pective overheads obtained, but the above values reflect actual run-time system 
performance - a fact we f.eel would be important when performaing tradeoff analysis 
for proposed systems. 

Since requests for a consi stent file copy are handl ed locally, thi s over­
head is independent of the number of participating nodes. Consistent requests 
were observed to take about 5 milliseconds. 

These measurements were made using an interpreter based implementation of 
the Concurrent Pascal language [2], running on PDP-ll/40, 11/45, 11/60, and VAX-
11/780 machines. 
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6.0 CONCLUDING REMARKS 

The Distributed File Manager implemented appears to supply a basic and 
useful capability for the control and manipulation of distributed information. 
For instance, typical real-time databases often present the problem of simultane­
ous updating and reading by numerous and loosely related tasks. The DFM supports 
the partitioning of such activity onto separate processors. Implementation of 
data pipeline schemes is another possibility. 

As always, the application should determine the particular software support 
which is required, and with Concurrent Pascal one may confidently advocate this 
~pprpach. The total implementation time required for the DFM, for instance, was 
three weeks. This supports the contention that Concurrent Pascal is an effective 
programming tool for distributed systems. Furthermore, it lends additional cre­
dence to the ideal of the "tailored" or special purpose operating system; for 
although the DFM may not exactly .fit the requirements of a particular application, 
extensions or added capabilities are no great problem. Multiple files, file 
partitioning onto various processors, keeping lists of changed pages, maintaining 
filestn primary storage instead of on disk, utilization of shared memory - these 
are all easily done, and with a minimum of "artificial" (i.e. vendor supplied) 
constraint and difficulty. 

Due to the dependency of latest-copy request overhead on the number of 
machines 1n the network, one might wonder why a centralized control protocol 
was not chosen. Garcia-MoHna has presented results which seem to convin­
cingly indicate the superiority of centralized control protocols over those 
utilizing distributed control 19]. 

In our environment, one of the greatest problems associated with special 
purpose distributed systems is their high risk. For this reason, considerations 
of code complexity are fairly important to us. Garcia-Molina claims centralized 
control is easier to implement, but we believe that consideration of fallback 
in the event of machine failure may turn the tables with respect to code com­
plexity. (In any case, DRMANAGER required only about 200 lines of code to imple­
ment all of the services discussed.) In order to handle node failures in the 
distributed control case ,we see a recovery capability essentially arising out 
of a no-lost-message constraint (with certain embellishments) which would require 
a small additional amount of code at each node. In the centralized control case, 
complete centralized manager code must exist at each node (as opposed to only one 
if node failures are not handled) to recover from arbitrary node failures, and 
switchover must not only worry about lost messages, but also must have been pre~ 
ceded by posting system-wide status information to some delegated secondary. At 
switchover, a new secondary must be chosen and a complete status summary posted 
to it as well. 

Because of such details, we believe that fault tolerant distributed control 
may actually be less complex than centralized alternatives. The DFM discussed 
in this paper is presently being extended to provide immunity to node failure, 
and since we are also implementing a centralized control protocol, a more realistic 
comparison of the relative benefits of the two approaches should soon be available. 
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ABSTRACT 

COCANET is a local comput.er network being developed, in part, to support 
distributed data base system research. A multidestination, or multica5t.. proto­
col is provided to satisfy the communication requirements of the INGRES distri­
buted data base system. These requirements include sending messages to a 
dynamicaUy varying subset of processes. Efficient implementation of the multi­
cast protocol in a local broadcast network is described. In addition, internet­
work support of the protocol is discussed. 

COCANET extends a conventional UNIX2 programming environment across 
multiple processors by supporting transparent resource sharing and message­
oriented interprocess communication mechanisms. 

Keywords: Local computer networks, multidestination addressing, multicast pro,. 
tocols, distributed data base systems, resource sharing. 

1. INTRODUCTION 
COCANET is a local computer network designed and currently being imple­

mented at U.C. Berkeley. It was developed to support research on distributed 
data base systems and to provide shared access to resources available on 
different machines in the Department of Electrical Engineering and Computer 
Science (e.g., a high-resolution graphics output device and the ARPANET). 

The computers which will be connected to the prototype network are DEC 
PDP-11's (an 11/70 and two VAX's) running the UNIX operating system [Ritchie 
78}. The physical architecture of the prototype is a ring. using local network 
interfaces (LNI) developed at U.C. Irvine [Mockapetris 77]. The UNIX program­
ming environment has been extended across the different hosts so that users 
connected to one host can transparently access resources located on the other 
hosts. The network software is organized to allbw local network hardware other 
than LNI's to be used. 

COCANET supports a conventional process-to-process communication proto­
col and a multicast, or multidestination addressing, protocol. While the multi­
cast protocol was primarily motivated by the communication requirements of 
the !NGRES distributed data base system [Epstein 79, Stonebraker 77], it can 
also be used for other distributed applications {e.g .• data base machines [Stone­
braker 79a]). 

1 The first author was supported in part by AFOSR Grlln.t 78-3596 and the second author was sup­
ported in part by DOE contract W-74Q5-ENG-46 

II UNIX ta a trademar"k of Bell Laboratories. 
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Most previous research on distributed data base systems has not directly 
addressed the problem of network communication protocols [Rothnie 7"1]. 
Research on computer networks, on the other hand, has addressed some of the 
communication issues [Dalal 78, Farber 73, McQuillan 76], but not all of them 
(e.g., sending a message to a dynamically varying subset of processes). More­
over, broadcast (send to all hosts) and multicast protocols are not always sup­
ported at the application program interface (e.g., see the ARPANET). 

This paper describes the communication requirements of distributed 
!NGRES, a multicast protocol designed to meet those requirements, and an 
efficient implementation of the protocol in a local broadcast network. The paper 
does not address the problem of security in a distributed environment (the pro­
tection mechanisms implemented in the prototype are described in [Birman 
79]). 

In the next section, the communication requirements of distributed INGRES 
are illustrated by examining several sample queries. Section 3 describes the 
COCANET UNIX interprocess communication protocols. The LNI implementation 
of the multicast protocol and it's extension across network boundaries is 
presented in section 4. 

2. DISTRmUTED INGRES 

This section presents an overview of distributed INGRES, examples of 
queries which motivat.ed the multicast protocol, and the communication archi­
tecture of the system. 

Figure 1 shows the logical organization of distributed INGRES [Stonebraker 
77]. A user is connected to a master INGRES which spawns slave INGRES's at 
sites where a fragment of the data base exists. Master !NGRES processes user 
queries by sending commands to the slaves which access the local data and then 
send the results to other slaves or to the master. A query optimization algo­
rithm produces a sequence of, commands to solve the query [Epstein 78]. In 
addition, master INGRES h lndles updates, crash recovery, and concurrency con­
trol [Stonebraker 79b]. 

A trivial personnel data base is used to illustrate the commands that are 
sent between INGRES processes. Assume that the employee and department 
relations 

EMP( emp#,name,deptH.salary •... } 
DEPT( dept#,name.tioor •... ) 

are distributed according to the criteria 
distribute EMP at 

site-l where EMP.deptH= 93 or EMP.deptH = 122. 
site-2 where EMP.dept# = 47, 
site-3 where EMP.dept# > 0 

distribute DEPT at 
site-l where 10 < DEPT. deptH and DEPT.deptfl < 100, 
site-3 

Distribution criteria restrict a tuple to one unique site [Ries 78]. The distribute 
commands place tuples of employees in departments 93 and 122 at site-I, 
department 47 at site-2. and all other departments at site-3 (assuming that 
department numbers are positive). Department tuples are placed at site-l for 
departments 11 through 99 and at site-3 for all other departments. Thus, 
employee "information is ~tored at three physical locations while department 
information is stored at two. 
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MASTER INGRES 

COMPUTER NETWORK 

Figure 1. Logical Organization of Distributed INGRES 

The first example query is 

retrieve (EMP.name) 
where EMF.salary > 30K 

This query can be processed by sending the query to each site that bas a frag­
ment of the EMP relation. Each site executes the query on its local fragment. 
The result relations are sent back to master INGRES which collects the 
responses and passes them on to the user. Thus, master INGRES must be able 
to broadcast to slave INGRES's and to receive process-to-process messages from 
each slave. Notice that if the query had been on the DEPT relation only a subset 
of slaves (e.g., sites 1 and 3) would have to receive the message. COCANET sup­
ports a multicast protocol that allows messages to be sent to arbitrary subsets 
of a set of processes. 

The second example illustrates another use of the subset addressing 
feature. To reduce the number of sites to which a command must be sent, mas­
ter INGRES uses the distribution criteria to identify what subset of sites might 
have relevant data. For example, suppose the query is 

retrieve (EMP .name ,DEPT .floor) 
where EMP.dept# = DEPT.dept# and EMP.dept# = 93 

which lists names and locations for employees in department 93. Because the 
department tuple and employee tuples for that department are slored only at 
site-l (see the distribution criteria above), the query need be sent only to that 
site. 

A slave INGRES needs to be initiated at a particu1ar site only after the first 
query tbat needs data at that site is processed. A user who submits ad hoc 
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queries intef"act.ively may access only a small part of the data base during a ter­
minal session. For example, assume that the data in the sample data base is 
distributed over 20 sites aod that the terminal user only requests information 
about employees in. one or two departments. If the queries can be solved 
without ever accessing data stored at the other sites, slave INGRES's do not have 
to be initiated at those sites. On tbe other hand, after several queries, the user 
might request information from a site which previously had not been queried. 
The slave could then be initiated and the query processed. To support this 
feature, the multicast protocol must be able to add processes dynamically to a 
connection. S 

The last example shows the use of multidestination file transfer by slaves to 
send relations to other slaves. It also shows how complex queries which involve 
several steps are processed. The query 

retrieve. (EMP .name,DEPT. name) 
wbere EMP.depttl = DEPT.deptH and EMP.salary > 30K 

lists the employees and the department they work in if they make more than 
$30K. One strategy t.o process the request follows. First, at each site which has 
a fragment of the EMP relation run tb,e restriction 

retrieve into TEMP(EMP.name,EMP.dept#) 
where EMP.salary > 30K 

Second, build a complete copy of the TEMP relation at each site which has a 
fragment of the DEPT relation. In this example, site 1 sends a copy of it's TEMP 
fragment to site 3, site 2 sends a copy of it's TEMP fragment to sites 1 and 3, and 
site 3 sends a copy of it's TEMP fragment to site 1. Third, at each site which'has 
a DEPT fragment perform the join 

retrieve (TEMP.name,DEPT.name) 
wbere TEMP.dept# = DEPT.dept# 

Note that the TEMP relation in this join query is the union of all TEMP fragments. 
The results are then sent to master INGRES. Because TEMP is a complete copy 
of all qualifying employee tuples, combining the result of running this query at 
each DEPT fragment gives the answer to the original query. 

These operations are synchronized by master INGRES which initiates each 
step after acknowledgments are received that indicate successful completion of 
the previous step. Slaves must be able to send data to several other slaves (e.g., 
site 2 sent data to sites 1 and 3). When a slave must send data to other slaves, a 
receptor process is initiated at each,destination site, a 90nnection is opened to 
just those receptors. and the data is transmitted to all of them. 

Distributed INGRES does not require guaranteed delivery on multicast 
transmissions, i.e., an explicit acknowledgment from each destination site that 
the message was received. The high-level distributed INGRES protocol has an 
acknowledgment mechanism built in to the pattern of communication (e.g., send 
a command, receive response that the command was compieted and possibly 
data, send the next command, and so forth). Because the application is a data 
base syst.em, the high-level protocol also has an elaborate crash recovery 
mechanism which is invoked if an expected response is not received after a rea­
sonable delay. Consequently, whether communication to one or more slave 
processes is interrupted by a transmission failure or by a hardware or software 
failure at the destination site, the data base system will recover. 

3 Processes might also be dynamically removed from a connection, This capability can be· sup­
ported but no proposal has been made to \lae it. 
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In summary, a multicast protocol is needed which allows messages to be 
sent to multiple destinations and to dynamically varying subsets of those desti­
nations. Moreover, it must be possible to add new processes to the set of desti­
nations. COCANET supports such a protocol as described in the remainder of the 
paper. 

3. INTERPROCESS COMMUNICATION 
Conventional UNIX does not support an IPC protocol that can be easily 

extended to a network environment l Chesson 75, Sunshine 77]. Among other 
problems, the UNIX IPC protocol neitber allows a process to wait for a message 
from more than one process at a time nor allows two unrelated processes to 
communicate (e.g., a process may wish to communicate with a mail daemon 
which is always executing). 

COCANET UNIX supports two message-oriented IPC protocols to solve these 
two problems. The first allows two processes to send messages to each other 
(called process- to- process). The second allows one process to send messages to 
several processes (called multicast). These protocols can be used to implement 
distributed applications. Besides distributed INGRES, they are used to extend 
all conventional UNIX file operations to a network file system. Conse quenUy, 
existing programs can access remote files without modification. The remainder 
of this section describes how these protocols are used. A complete description 
of their integration into UNIX will be available in [Birman 79]. 

COCANET UNIX introduces connections between processes over which mes­
sages can be sent. To the processes, a connection looks similar to a conven­
tional UNIX pipe [Ritchie 78J. A simple example will assist in the explanation. 
Suppose two processes A and B on different hosts are communicating (assume 
for the moment the processes and the connection between them already exists). 
Send and receive operations on the connection provide a full-duplex, message­
oriented communication link, that is. a bi-directional sequence of messages with 
the sender's identity encoded in each message. Because more than one process 
can send on a connection, a process can receive messages from many sources 
and can wait for a message from one of several processes. A status operation is 
also provided so that a process can test whether a message exists or if the con­
nection is in an error state. 

To understand how connections between processes are created, the net­
work file system and network connection name space must be explained. The 
file system in UNIX is organized as a tree structure. "/" refers to the directory 
at the root of the tree so that "/f" refers to the file or directory named f. Under 
COCANET, the file system of each host includes pseudo-directories which contain 
addressing information needed to communicate with hosts on the network. For 
example, in the file system on host-1, "/host-2" refers to the root of the file sys­
tem on host-2. 

Connections are referenced by the pair <destination host, connection 
name>. Suppose process A was on host-I, process B was on host-2. and the con­
nection name was AtoB in the example above. Process A refers to the connec­
tion as "/host-2=AtoB" and process B refers to it as "/host-l=AtoB". /host-l 
and /host-2 are the file system pseudo-directories on hosts 2 and 1. respec­
tively, that specify the destination host. AtoB is a name in the connection name 
space maintained by the network software. 

Now suppose that process A existed on host-l and that it wanted to initiate 
B and to open a connection between the two processes. The steps necessary to 
accomplish this are as follows. First, A creates a process-to-process connection 
"/host-2=AtoB" using the operation create. The create operation makes the 
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connection name AloB defined from /host-l (where A is located) known in host 2. 
Second. A initiates the process B on host 2 using the conventional UNIX ea:ec 
operation on a remote file (e.g .• "/host-2/B"). B is passed the connection refer­
ence "/host-l=AtoB" as a program argument. Process B opens the connection 
reference which has been passed using the open operation. Now. messages can 
be sent back and fort.h over the connection. The state of the system after each 
operation is shCJWn in figure 2. Connections are closed by calling the close opera­
tion. 

process A 

host-l host-2 

After create: 

proce\ A 

( 
/host-2=AtoB /host-l=AtoB 

host-l host-2 

After initiate: 

process A process B 
) 
i 

/host-2=AtoB /host-l=AtoB 

host-l host-2 

After open: 

process A process B 
') ') 

/host!2=AtoB ,. 
, - ~ .. /host-l=AtoB 

host-l host-2 

Figure 2. Connection Establishment 
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Multicast connections are established in the same way except that a mul­
tiCreate operation is called which accepts a list of destinations rather than just 
one. After a destination process opens a multicast connection, messages can be 
received but not sent on that connection by the destination process. Multicast 
connections are inherently one-way. 

Most applications which use a multicast connection will also open a 
process-to-process connection back to the multicast source. The reference for 
the process-to-process connection can be passed to the destination process 
either as a program argument or in a message sent over the multicast connec­
tion. 

Operations are also provided to add a new destination process to an existing 
multicast connection (addMultiDest) and to change the subset of processes 
which are to receive messages sent on the multicast connection (changeMul­
tiSubset). 

4. MULTICAST PRP1'OCOL IMPLEMENTATION 
This section describes the implementation of the multicast protocol. The 

message-oriented IPe protocols described in the previous section which consti­
tute the user programming environment are called the network access protocols. 
These protocols are implemented within a particular network by a lower level 
protocol called an intranet protocol. The first subsection describes an intranet 
implementation of the multicast protocol in a local network composed of LNI's. 
The second subsection discusses some hardware changes to improve the r(:lliabil­
ity of an LNI-based network. The last subsection describes how the multicast 
protocol can be extended across network boundaries. 

Given a multicast connection between a source process and n destination 
processes, how can a message be sent to a subset of those destinations, say, m < 
n destination processes? One approach is to send m separate messages, one to 
each destination in the subset, In a local network this approach is impractical 
for moderate sized m because the communication overhead is high and the 
elapsed time to send that many messages can be long. 

Another approach is to send one message that will be received by all n des­
tinations. Some indication of which m destinations are actuaUy to receive the 
message can be encoded into the message header (e.g .. a variable length 
address field or a fixed length bit string). Then, either network software or each 
destination process can determine whether the message should be accepted or 
discarded. This method can be implemented in a broadcast network such as 
DeS [Farber 73] or Ethernet [Metcalfe 76] assuming that some form of destina­
tion address matching is performed in the network interface. This approach is 
practical in those applications where m / n approaches 1. 

On t.he other hand, if min is small, as might be the case in a distributed 
data base system. other factors may cause this approach to be impractical. 
First. n - m hosts will receive a message which is not addressed to one of their 
processes. These hosts must service an interrupt and scan the message header 
to determine if the message should be discarded (the scan operation will prob­
ably not be in the interrupt routine which means the network control program 
must process the message). Second, as the number of hosts which are to 
receive a multicast increases, the probability that some hosts will fail to receive 
it increases. Thus. the message will have to be retransmitted. 

A better approach to sending a message to a subset of a multicast connec­
tion is to send one message in such a way that only hosts with one of the 
processes in the subset actually receive the message. The associative address 
matching capability of the LNI can be used to implement this approach. A fixed 



-344-

length bit string representation of the multiple destination addresses is encoded 
into the addresses of multicast ch;mnels.4 The LNI address matching can then be 
used to determine whether a particular message is addressed to a process in 
the attached host. 

4.1. Intranet Multicast Implementation 
The LNI provides very flexible message addressing in the hardware. Each 

interface has a table of addresses to which it will respond. 5 The destination 
address in a message is associatively matched with the entries in the name table 
as the message passes the interface. If the message address matches an entry in 
the table, the message is copied into the attached host. Two masks, one in the 
message and one stored with each name table entry, can restrict the matching 
to arbitrary subfields of the addresses. If either mask bit is set. the correspond­
ing bits in the addresses need not match. Several examples are given in figure 
3. The current version of the LNI has 32 bit addresses and 16 name table 
entries. These apparent hardware limitations are discussed in more detail 
below. 

Figure 4 shows the format of multicast addresses. The OHN and CHAN 
fields, taken together, uniquely determine the multicast channel. Each multi­
cast destination corresponds to a bit in the SUB field. The destination's name 
table mask restricts the SUB field comparison to the assigned bit. For example, 
suppose the multicast channel and destinations were as depicted in figure 5 
(only the SUB field is shown and it is limited to 6 bits for simplicity). To send a 
message to destinations at sites 2 and 4, it is addressed to 010100. Only those 
sites will match the address (the mask in the message itself is set to ·zero). 
Thus, only the sites which are supposed to receive the message do receive it. 

Name Table 

entry 
1 
2 
3 
4 

addresses 
00111010 
11010100 
11000010 
00011000 

masks 
00000000 
00000011 
00000101 
00000000 

de st. address 
00111010 
11010011 
11000111 
00001000 

Incoming Message 

dest. mask remarks 
00000000 matches entry 1 
00000000 does not match 
00000000 matches entry 3 
00010111 matches entry 4 

Figure 3. Address Matching Examples 

" A channel is the Intranet analog of a connection. 
5 For historical reasons. this table is called a name table. 
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Field Size (bils) Uile 

TYPE 2 

OHN 6 

CHAN 8 

SUB 18 

Specifies type of message. 
o broadcast 
1 process-to-process 
2 multicast 
3 unassigned 

Originating host number on tbis 
network. 

Data transmission channe~ number. 
OHN and CHAN fields together uni­
quely determine the multicast 
channel in this network. 

Selects subset of processes on 
this network to receive the mess­
age. 

Figure 4. Multicast Channel Address Format 
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SITE-l 

NAME MASK 
100000 

Local network 
interfaces 

011111 ~ 

L..-------I--' '\ 

SITE-2 

I 
NAME MASK 

010000 101111 

SITE-3 

NAME MASK 
001000 110111 

SITE-4 , 
NAME MASK 

000100 111011 

Figure 5. Subset Addressing Example 

New destination processes can be added dynamically to a multicast channel 
by assigning the next available bit in the SUB field to the process and entering 
the name in the destination processes' host LNI. These actions are taken in 
response to the operations acldMuUiDest and open called, respectively, by the 
multicast source and destination processes. 

The LNI and the implementation described in this subsection appear to have 
four limitations: 

1. an LNI name table is limited to 16 entries, 

2. a host is limited to 256 (26) open multicast channels which it originated, 

3. a local network is limited to 64 hosts, and 

4. a multicast channel is limited to 16 destination processes. 6 

These limitations are discussed in the following paragraphs. 

The prototype LNI's have been implemented in TTL medium scale integra­
tion. The design of the interfaces was biased towards a large scale integration 

6 A channel is limited to 15 destinations it the sequence value is moved into the name as sug­
gested in the ne~ subsection. 
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(LSI) implementation and allows variation in the number of bits per address and 
the number of entries in an LNI name table [Mockapetris 78]. Consequently, the 
limited number of name table entries holds only for the interfaces we have 
ordered.7 In a reasonable sized network an LNI implemented in LSI will have 
several hundred name table entries. The second and third limitations are 
caused by the 4- octet (8 bit bytes) address size. These limitations can be 
relaxed by enlarging the address by several octets {e.g., to 6 or B octets}. 

The last limitation, the number of destination processes on a multicast 
channel, can be avoided by using more than one channel to implement a multi­
cast connection, i.e., one multicast connection may have several intranet chan­
nels. To send a message may require that two or more copie!1 of the message be 
transmitted around the ring. B Another approach to avoid this limit is to have 
longer addresses. While this approach works, it is not too practical because the 
number of destinations increases only by one for each additional address bit. 
Nevertheless, for some applications this approach may be optimal. A completely 
different approach to the problem is to allow variable length addresses and to 
have the network interface recognize the more complex fonnat. The point is 
that several low-level implementations exist and it remains to be seen which will 
be cost effective for different applications. 

4.2. LNI liardwftTe Improvements 
This subsection discusses two LNI hardware changes that would improve 

network reliability in the areas of multicast channel message sequencing and 
network robustness in the presence of failures. 

To guarantee that the most recently received message is not a copy of thE! 
previous message, a one bit sequence value is used. The network software in 
each host anticipates the sequence value of the next message to be received. If a 
transmission failure occurs, the source host retransmits the message with the 
same sequence value. By comparing the sequence value in the message with the 
sequence value in the last correctly received message on that channel. a desti­
nation host can determine if the message is a copy.of the last one received. If 
so, it is discarded. Otherwise, the sequence value is updated and the message is 
passed to the destination process. 

This technique works as long as the sequence values for the destinations 
remain synchronized. However, because each host does not receive every mes­
sage on a multicast channel, the values must be synchronized prior to changing 
the addressed subset. For this reason, before any subset change, a sequence bit 
synchronize message is sent to the old subset to clear the sequence value (1.13., 
set to zero). Thus. the sequence value on the first transmission is guaranteed to 
be cleared. 

Another problem with multicast message sequencing arises because hosts 
which are temporarily busy may not accept messages [Rowe 75]. The LNI associ­
ates with each message as it is transmitted around the ring two status bits, 
called the match and accept bits. !fa message is copied into a host a one is 
ORed into the accept bit. If the destination add.ress was matched but the mes­
sage could not be copied, a one is ORed into the match bit. These status bits 
indicate to the transmitting host whether the message was received by all desti­
nations. The possible status bit settings and their meanings are summarized in 
figure 6. 

'7 Three devices have been ordered. We chose 16 entries bec.ause at cost considerations and be­
cause the tlrst experiments with COCANET wUl be small. 

B Dynamic assignment of destinationlJ to channels may reduce the number of transmissioms re­
quired if some subsets account for a high volume of tra:fftc. 
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MATCH ACCEPT MEANING 

0 0 The message was addressed to a non-
existent process; no LNI recognized 
the message. 

0 1 The message was transmitted to one 
'ir more processes; at least one LNI 
copied the message. 

1 0 The message was recognized by one 
or more processes, but no LNI CQuld 
copy the message. 

1 1 The message was transmitted to at 
least one process, but at least one 
LNI recognized the message but 
could not copy it. 

Figure 6. Status Bits Results 

Suppose that a multicast message is to be sent to several sites and that the 
first time the message i~ sent the status bits returned are match-accept. In 
other words, some sites received it and some did not. If subsequ~nt retransmis­
sion also results in match-accept status, the transmitting host is unable to 
determine whether all sites ha~e received the message. For example. a site 
which received the first transmission could fail to receive the second, and a site 
which failed to receive the first transmission may have successfully received the 
second. This problem results from the fact that. two bits are being used to 
describe the status of multiple destinations. 

This problem cau be eliminated by moving the sequence value into t.he 
address in the LNI name table. When a message is accepted, the sequence value 
in the name table is flipped. Now, if the message must be retransmitted. it will 
not tnatch and consequently will not be accepted by hosts which successfully 
received the first transmission. For multicast messages this means that only 
those sites which did not accept the first transmission will match the 
retransmission. Thus. the match bit can be interpreted as indicating continued 
failure to copy the message into some addressed hostCs). 

Although this solution can be implemented with the current LNI hardware, 
it may be impractical because the sequence bit must be flipped by software. 
Redesign of the LNI, however. could lead to efficient support of the multicast 
sequencing mechanism. 

The second problem with the LNI hardware is that all addresses in a name 
table are unusable if a host crashes. As a message passes through the interface 
the address will be matched. a copy will be attempted (if appropriate), and the 
match and accept bits will be set regardless of whether the host operating sys­
tem is functioning normally. Some mechanism is needed to clear the name 
table either from another host on the ring. from a wire center [Saltzer 79], or 
from monitoring hardware at the failed host [Kunzelman 78]. 
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4.3. Internet Support of a Multicast Protocol 

This subsection describes one way to support the multicast protocol across 
several networks. A hierarchical address space for interconnected networks is 
assumed, e.g., hosts have addresses of the form "NET:HOST". It should be noted 
that distributed INGRES m.ust know about the network topology because the 
time required to send messages between the various processes (from the master 
to the individual slaves. between slaves. and from individual slaves to the mas­
ter) influences the query optimization algorithm. 

A multicast message is sent to destinations on a foreign network by sending 
one copy of the message to a gateway process that is responsible for forwarding 
the message to all destination'S which can be reached through the gateway. To 
illustrate this idea, consider the networks in figure 7. Source process S in a 
COCANET wants to send a message to processes Dl and D2 in the same network 
and processes D3 and D4 in another network. One copy of the message is sent to 
P which forwards the message to D3 and D4 using whatever multic ast implemen­
tation is best in the foreign network. Subset addressing can be supported either 
by encoding destinations in a message header or by.having P maintain an active 
destination list. 

Messages propagate across several networks in the saxne way. One copy of 
the message is sent to a gateway which send'S it to the local destinations and to 
the next gateway(s). If any gateway process is unable to deliver the message to 

COCANET 

~ 

Gateway 

Other network 

Figure 7. Internetwork Multicast Example 
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a foreign destination, a control message is sent back to the source host which 
causes the multicast connection status to be set to an error state. Because the 
multicast protocol does not guarantee delivery, this action shoulu be taken only 
when a catastrophic failure occurs. No explicit flow-control mechanism is 
assumed other than that provided to control transmission through the gateway. 

5. SUMMARY 

This paper describes the design of a multicast communication protocol for 
a distributed ~ata base system. The protocol includes a novel subset addressing 
capability and the ability to add new processes to a connection which is already 
open. An efficient implementation of the prototml in a local computer network 
composed of LNI hardware was also presented. In addition to the multicast pro­
tocol, the UNIX programming environment has been extended across multiple 
hosts to support general resource sharing. 

The current status of the prototype COCANET is that the network software 
has been debugged in a single machine environment which simulates the send­
ing and receiving of messages. The prototype should be fully operational ~hortly 
after we receive the network interfaces. 
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Abstract 

We first give a short description of the architec­
ture of the DDBMS-POREL which we are currently implement­
ing at the University of Stuttgart. Afterwards we study 
in some detail the transaction processing control, the 
Execution Monitor, which at runtime is responsible for 
the administration and control of the transaction flow in 
the network. Each transaction in the DBMS is associated 
with a specific Execution Monitor which completely super­
vises its processing and initiates and executes the ne­
cessary synchronisation, resource handling and recovery 
preparation. 

1. INTRODUCTION 

POREL is a decision support and data base management 
system based on a distributed relational data base desig­
ned to run on a heterogeneous nebTork of minicomputers. 
POREL ignores the possible existence of other local data 
base systems and makes no attempt to integrate them into 
the distributed data base. 

Therefore a totally new system had to be designed 
including user interfaces, languages, synchronization 
aspects, network features, authorization mechanisms, in­
tegrity features and the data base machines themselves. 

The word "heterogeneous" in our system therefore 
sterns from the underlying computer network which contains 
different hardware and also different operating systems. 
But upon this inhomogeneity a homogeneous DB system is 
built up. 

We achieve acceptable independency from the base 
systems by choosing the high level language PASCAL as one 
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of the implementation tools. However, PASCAL on one ma­
chine is not PASCAL on another. We therefore take an 
existing, easily portable, PASCAL system and install it 
on every new machine in our network. Of course some 
efforts must be put in for rewriting the code generation 
phase and the runtime routines, but in this way we have 
access to the same language interface everywhere. The 
still necessary assembly written routines are kept 
simple and small in number as they have to be redone on 
every new machine category. Through this approach the 
user sees only a single data base system. In such a 
unified and integrated system he does not need to know 
where data are kept or programs are executed. That is 
the DDBMS presents itself like a centralized system. 

, POREL supports three interfaces for the data base 
user: 
- A Relational Data Base Language - RDBL - a non proce­

dural, algebra oriented interactive language for data 
definition, manipulation and control (see[10]: 78/5); 
A Host Language (PASCAL or FORTRAN) with RDBL as data 
language, whereby RDBL ,has been extended with a cursor 
concept for navigating in a tuple at a time logic 
throuqh relations similar to the solution which is 
found-in SEQUEL 2 (see[10]: 78/8). 
A problem salvina decision support system which pro­
vides the user ",ith an environment adapted to his 
application area (see [15]). 

A detailed discussion of these interfaces is beyond 
the scope of this paper and not necessary for an under­
standing. Actually according to the single system philo­
sophy, the chosen interfaces are quite independent from 
a distributed environment, they could also be found in a 
centralized data base. For further study the interested 
reader is referred to the indicated refer~nces. 

The whole data base system is based on a set of re­
lations stored on the different nodes. If necessary even 
single relations may be distributed over the network, 
however only horizontal splitting is supported. 

As the long distance communication is much slower 
than local access and cOmMunications costs are quite 
significant, the effectiveness of a distributed system 
directly depends on the amount of information inter­
change. This netvmrk traffic carefully has to be mini­
mi zed ([?], [ 6], [ 8] ) • 

To improve data access in retrieval queries, copies 
of relations or parts of it may be kept all looking iden-
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tical for the usero But care has to be taken with update 
sensitive data as update traffic is increased and net­
workwide consistency is more complicated to achieve. 

In our solution one of the copies is selected as 
original and always used for the updates. Other copies 
may be behind in various stages (delayed update). A me­
chanism based on version numbers keeps track of the 
actual state. This eventually may lead to a situation 
where, when a copy is to be used, it is easier to re­
place the copy by the original than to effect all out­
standing updates. 

All this operating information as well as the rela­
tion and database descriptions are kept in several system 
catalogues (see [5J, [10): 78/4). 

The catalogue organization has been adapted to the 
partitioning of the analysis phase into two parts by pro­
viding for a network independent (NUA) phase a so called 
short catalogue and for the neblOrk oriented phase (NOA) 
the long catalogue. For the NUA the (short) catalogue is 
copied onto each site, giving fast local access to avoid 
a possible data transmission bottleneck in such a system. 
In the case of changes in the catalogue this redundancy 
will cause considerable overhead, but the data contained 
in the short catalogue are chosen to be of rather static 
nature. The long catalogue information for the NOA phase 
is associated \,li th the co,rresponding data locations, 1. e. 
stored wherever a part of the described data is located 
(original or copy) and therefore not always locally 
available. 

2. POREL SYSTEM ARCHITECTURE - AN OVERVIEW 

Before we start to explain the functions of the 
Execution Monitor in detail we give a short introduction 
into the different components of POREL and illustrate 
their function. 

Figure 1 shows a process oriented representation of 
the architecture, as it would he seen by a user Vlith 
deeper knowledge of what is going on below him. The figure 
does not show the multi-user, multi-process environment 
which actually exists. That is, more than one dialog pro­
cess, more than one neblOrk independent analyzer etc. may 
run in P?lrallel at the same time. However, each node in 
the nebvork has only one execution moni tor, catalogue 
manager, scheduler and lockhandler. 
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Now let us explain some important modules (for de"bails 
see [3J, [7J, [10J). 

The command and dialog level accepts all inputs from 
the user, gives helping hints in case of troubles, routes 
information to the chosen interfaces and formats the re­
sults on the user .display. 

The Network Independent Analysis NUA (see 10: 10/7) 
is in the conventional sense a compiling system which gets 
as input all RDBL source language statements from the 
user interfaces (RDBL stand alone, host language, decision 
support). It has to do- all work which can be done without 
knowledge of the underlying distributed system, i.e. all 
information is locally available (short catalogues) and 
compiling actions cause no data communication between 
sites. 

NUA's duties are: 
- Syntactical and seman tical analysis 
- Generation of code in the relational machine language 

(RML) without regard to network or distribution aspects 
(RML is an algebra oriented nonprocedural data base 
language) 

- Code optimization 
- Insertion of integrity constraints and trigger functions 

(see [16J) 
Analysis for possibly parallel executable parts in a 
transaction 

- Separation of necessary access rights for later authori­
zation checking 

- Insertion of synchronization and timing control 
- Delivery of program status and user statistical infor-

mation 

The Network Oriented Analysis (NOA) (see [10J: 78/10,6) 
level belongs logically to the compile time actions, but 
was separated from the NUA as it covers nmV' the network 
and distribution aspects of the DBHS and therefore needs 
infornation possibly distributed in the network, so caus­
ing some system data transfer traffic. 

NOA's duties are: 
- Looking for the network locations of data used by the 

transaction 
- Collecting the long catalogue information for each used 

relation and user authorization data 
- Checking authorization staticallY 
- Doing more necessary breaking up" and parallelization of 

object code, inserting more timing, locking and synchro­
nization control commands 
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- Searching for the optimal execution place by minimizing 
data transfer. 

The Runtime Checker (NUA2 and NOA2) fulfills duties 
which are taken from the NUA as well as from NOA. It 
effects its control only in case of a time delay bet'Vleen 
translation and execution (not compile-and-go mode). In 
this case the generated code and information has to be 
compared against the actual state of the DB for any pos­
sible changes affecting the correct execution of the 
code. 

The Execution t-1onitor (see [10]: 78/11) is responsible 
for the timing control, the synchronization and admini­
stration during the execution phase of the different parts 
of a transaction. It also has to provide necessary infor­
mation for recovery purposes. It is the communication 
partner for all other monitors in the network. 

The monitor's duties are: 
- Distribution of the transaction parts according to their 

destination in the net~ork 
- Timing control by interpreting the connecting v.1AIT-sta­

tements 
- Reacting to incoming control messages giving the state 

of an execution, error conditions, rejected requests 
etc. 

- Global lock control with voluntary preemption in case 
of a possible deadlock situation 

- Providing global recovery information 
- Starting recovery analysis in erroneous situations 
- Communicating with other monitors 

The Scheduler distinguishes the different requests 
given to it and routes them to the appropriate modules: 

lock request to the lockhandler 
catalogue request to the catalogue manager 
normal user reauest to one of the n base 
machines the scheduler has under its control. 

System internal requests are thereby treated with higher 
priority to guarantee faster execution. 

The lockhandler controls lock information for a,ll 
local data and grants or rejects incoming requests. 

The Catalogue Manager is responsible for maintaining 
all system catalogues <short and long form) in a consi­
stent state and for providing all required information 
for the system modules. 
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The Base Machines (see 10: 78/12,9, 12) are the 
most important parts in the system as they represent the 
local data management system. They process all requested 
manipulations on the local relations, provide results for 
the user and status messages for system modules and keep 
local recovery information and transaction reset facili­
ties. Abase machine has no data access to the netvlOrk, 
all involved data for the executed partial transaction 
have to reside on the local node. 

The Communication System (see [10J: 78/13) has to 
satisfy all process communication requests in the whole 
database, independently on whether they are local or glo­
bal. It has to transmit data and control information, do 
the necessary conversions of data representation and it 
has to supervise the successful and error free execution 
of the communication protocolse In case of an error 
situation it has. to give control back to the requesting 
process. The communication system uses the planned X.2S 
nehlOrk of the German PTT and some higher protocol levels 
which have been ,,,orked out in cooperation with the PIX 
group. However until X.25 actually becomes available 'tIe 

use a terminal simulation technique for interconnecting 
our computers. 

3. THE EXECUTION MONITOR-STRUCTURE AND ORGANIZAT~ON 

The user transaction on its way through NUA, NOA 
and/or the host language system was up to the moment of 
arrival at the Execution Monitor only analyzed locally 
at the user's node. Of course some networkwide infor­
mation (system catalogues) had already to be used to 
satisfy the needs of some of these modules, but no exe­
cution took place. 

When a transaction enters the monitor its runtime 
phase starts. This monitor, the controlling monitor, now 
is responsible during the total lifetime of the trans­
action for timing control and other organizational events 
connected with this transaction. Lifetime of a trans­
action means all processing from entering the monitor 
module until the final actions following the END-TRANS­
ACTION statement are executed. 

To perform this duty the monitor takes a central 
place in the system architecture where the actual pro­
cessing activity starts. He governs all distribution 
aspects. That is, it distributes with the aid of the 
interprocess communication system the transaction parts 
in the networko and supervises their execution. 
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The distribution processing is based on input data 
coming from different sources~ Most of the processing 
requests originate from the NOA phase of the local node 
in form of transaction parts. Other requests are sent 
from monitors of remote sites. These requests are admi­
nistrated by the local monitor during their local life­
time, but still the remote monitor supervising the ori­
ginal transaction has overall control. 

A second equally importand input stream is represen­
ted by the status control messages coming from other 
monitors as well as from the local base machines for 
guiding the organizational supervision of the trans­
action processing. To allow this control all trans­
action input to the monitor is organized in two parts: 
one part containing monitor control statements and a se­
cond part containing object code for the base level 0 This 
part is not affected by monitor actions, whereas the mo­
nitor control statements will be processed by the monitor 
directly. 

Those transaction parts corning from the local NOA 
are distributed in the network according to the control 
information which has been determined by NOA as an opti­
mal execution strategy. Those transaction parts coming 
from remote monitors are immediately routed to the local 
base ma~chine level. 

The different parts of a transaction have to be pro­
cessed in a predefined sequence to get the requested re-
sults. For that reason all transaction parts have WAIT­
instructions in the control part to identify these syn­
chronization order. The monitor evaluates the WAIT con­
ditions and realizes through them the proper execution 

. sequencing. 

Only if all WAIT conditions of a transaction part 
are fulfilled the executable code is routed to its de­
stination. If the receiver happens to be a remote moni­
tor then the WAIT instruction is substituted by an empty 
WAIT as its execution can start immediately at the de­
stination site as all timing constraints have already 
been removed. 

In the WAIT instruction the timing interconnection 
between transaction parts is established by specifying a 
number of transaction part names whose termination must 
be awaited before the execution of RML code belonging to 
that WAIT part can be started. 
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PT11 
PT11 
PT11 

PTa 
PT9 
PT10 

This means that the actual transaction part named 
PT11 cannot be released by the monitor for execution be­
fore the end signals of the parts PT8, PT9 and PT10 have 
been acknowledged at the controlling monitor. 

Each transaction is a closed unit of consistency and 
integrity and it begins normally with a transaction part 
without WAIT conditions, indicating that the initializa­
tion part can be started immediately. In the initializa­
tion part, according to the transaction building rules, 
the used (sub-)relations and the access modes have to be 
requested. To control and synchronize resource usage we 
have chosen a preclaiming strategy to guarantee simple 
reset handling in case of threatened deadlocks. There­
fore all data (subrelations) used in the transaction are 
requested before execution begins. This happens in the 
LOCK-phase which is always incorporated in the first part 
of a transaction. Its correct execution is controlled by 
the monitor. All single requests in the lockphase are 
sent directly to the local base level or via the remote 
monitors to the lockhandlers of the affected nodes. The 
addressed lockhandler checks the request and depending 
on already existing locks sends back a message to the 
originating monitor: positive if the request can be 
granted, negative if the requested lock mode is not 
compatible with locks already granted for other users. 

Even if only one of the lock requests is rejected, 
the monitor has to release voluntarily all already 
granted requests to avoid possible deadlocks in the net­
work as the result of cyclic waiting requests. Releasing 
of granted locks can still take place without special 
precautions because the actual transaction execution has 
not yet started. Data manipulations can only start after 
all requested data locks are granted. 

Nevertheless a transaction may still have to wait 
very long, without actually being deadlocked, until all 
requests are granted, especially if it requires many data, 
and consequently, in a heavy multiuser environment, always 
one or more requests are rejected. We are aware of this 
problem which can be solved by introducing a priority 
schedule or ordering of lock requests but in the first 
version of POREL this aspect has not been included. The 
monitor simply repeats rejected lock phases from time 
to time until the time all requests are satisfied •. In a 
system not too heavily loaded (experimental phase) this 
strategy should present no actual problem. 
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UNLOCK statements in the closing control component 
of a transaction cause no further coordination, they are 
just routed to the responsible lockhandlers to free the 
datae 

Transaction parts without LOCK/UNLOCK statements are 
within their synchronization restrictions not further 
controlled by the monitor. 

The state of all transaction parts is stored in an 
internal control state table of the monitor, as it has to 
know the execution status of each part to guarantee cor­
rect execution. This internal table provides additional 
information for status requests, for routine error con­
trols (e.g. time out failures) as well as for the initia­
lization of recovery mechanisms in erroneous situations. 

Some requests (catalogue handling) are transferred 
to the monitor as priority messages by setting the prio­
rity flag in the routines of the communication system. 
In the monitor's input queue those requests are therefore 
processed first. But during processing of a non priority 
request an incoming priority message does not deactivate. 
this activity i.e. there is no interrupt facility, it has 
to wait until the input queue is searched for new demandso 

4. STATUS AND CONTROL MESSAGES 

The following group of messages for the monitor con­
tains status and control information coming from the vari­
ous base machines, either local or remote. They are the 
result of state changing actions or illegal requests and 
are used for updating the monitors' internal tables. 

a) Termination Message 

The processing of a transaction part in the base level 
has successfully ended. If it concerns the last part 
of a transaction, i.e. the whole transaction has now 
terminated, all information in the internal tables is 
erased, later status requests result in "transaction 
unknown". A later reset of such a terminated transact­
ion by the monitor is not possible. Only transaction 
recovery during lifetime is supported by the monitor. 
Hore generalized recovery mechanisms using checkpoints 
and log information have to be used for such purposes. 

If merely an internal transaction part is terminated, 
the state description in the internal table is changed 
to FINISHED. 
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b) Zero Message 

This identifies the processed transaction part as 
meaningless, i.e. it has had no effects in the base 
level. This can occur in case that one cannot deter­
mine in advance where to actually process a request 
because of insufficient information. The NOA there­
fore has to distribute the transaction on all nodes 
where data it could possibiy need are stored. 
Example: An employee relation is distributed accor­
ding to the department membership1 all departments 
have their own subrelation. 

DISTRIBUTE PERSON 

SUBSET ADMINISTRATION 
WHERE DEPT = 3 
SUBSET FOOD 
WHERE DEPT = 2 

ON K1 

ON K2 

A user then formulates a request not containing the 
distribution criterion. 

SELECT PLACE, ADDRESS FROM PERSON 
WHERE NAME = 'HENRY MEYER' 

The NOA cannot determine where to process this request 
and must create parallel requests searching all subre­
lations of PERSON in the network. 

Normally only one of these requests ends up success­
fully. The others are for this request meaningless, 
i.e. they end up with a zero message which is treated 
like a termination message. It actually affects only 
recovery situations where such requests need not to 
be recovered or repeated. 

c) Additional Message 

Means that a transaction part has terminated, but 
during processing has realized that due to changes in 
data fields belonging to the distribution criterion 
the actual result tuples no longer can stay on the 
execution node. The executing base machine has no 
possibility to effect control on other nodes directly, 
it can only collect the affected data and give them 
back to the monitor with some transaction code prepared 
by an invocation of proper NOA components. 
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For the monitor this indicates the end of the active, 
partial transaction but the internal tables cannot yet 
be searched for the next fulfilled WAIT-statement. In­
stead the additional code has to be placed in between 
and sent to the proper processing node(s). Only after 
the execution of these additional transaction parts 
has taken place the monitor can continue 'its normal 
sequence of executing the transaction. The processing 
of other transactions however is not affected. 

d) Error Message 

A transaction part has terminated in the base machine 
in an erroneous state (e.g. a violation of integrity 
constraints). Now the whole transaction has to be reset 
and the monitor searches in its tables for all associa­
ted parts and transfers them to the recovery module 
which does the actual work. The monitor forgets this 
transaction and sends an error message to the user. 

e) LOCK/UNLOCK m~ssage 

These are lockhandler ready messages follo\>ling data 
lock or release requests. In case of a LOCK it tells 
whether the request was granted or rejected, in case 
of UNLOCK it is merely an acknowledgement that the 
data is released again. 

There may be some status messages not destined for 
local monitor, these are only routed to the addressed 
monitors. That is we have decided that only monitors 
should communicate control information between diffe­
rent sites (for result handling see section 6.1). 

For control purpose the system modules or the user 
may ask for the processing status of th.eir transaction. 
The controlling monitor then returns as result that 
static information contained in his internal tables, 
i.e. it is not checking whether the transaction pro­
cessing base machine is still alive or has failed. 
That is the duty of a recovery module. 

5. DATA STRUCTURES IN THE r.10NITOR 

We distinguish between incoming and outgoing data 
and the internal tables for keeping track of data flow 
and processing states in the network. 
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5.1 Incoming Data 

After the modifications to the RML statements made 
by the NOA, which adds all network oriented aspects, the 
transaction is given to the monitor for further handling. 

The internal form of a transaction. is essentially 
represented by a sequence of quadruples together with 
additional tables and program control information. 

Another table, the transaction structure description, 
provides hints which object code belongs to which partial 
transaction, where to process (SEND) this code, how the 
timing constraints look like (WAlTh and which data is to 
be acquired or released (LOCK/UNLOCK). The monitor is 
only interested in this structure description from which 
it gains its control information. The object code tables 
are not further investigated here. 

The transaction structure description consists of 
the following elements: 

a) SEND PLACE FROM TO 

SEND ,is the code indicating where (PLACE) the code 
for a part transaction has to be processed. FROM-TO points 
to the RML object code tables. 

b) WAIT mvNNAM WAITNAM 

This instruction specifies that transaction part 
OWNNAM cannot be started before transaction part WAITNAM 
has sign~lled its termination. If more than one transact­
ion part has to be waited for several WAIT statements 
have to be issued. 

c) LOCK MODE SRID NODEID 

For each subrelation SRID which is used in the trans­
action a lock request must exist indicating the necessary 
MODE (tvRITE, weak READ, strong READ) and the location of 
the data in NODEID.. As we have chosen a distributed pre­
claiming strategy all lock requests have to be stated 
before the actual transaction starts. 

d) UNLOCK MODE SRID NODEID 

This instruction releases subrelations at transaction 
termination. The MODE parameter is redundant and serves 
only for control purposes. 
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The transaction structure description therefore 
looks like: 

Transaction start 

SEND 
(WAIT) 

• 
• 
• 

LOCK· 
• 
• 
• 

• ••• 
• ••• 

• • • • 

Internal transaction 
part 

SEND 
WAIT 

• 
• 
• 

Transaction end 

SEND 
WAIT 

• 
• 
• 

UNLOCK 
• 
• 
• 

• ••• 
~ . . . 

• • • • · .... 

• ••• 

where to process 
a WAIT statement only, if the 
transaction is embedded in a 
program consisting of several 
transactions which have to be 
processed sequentially. 
for each used subrelation a 
lock request 

for each predecessing part 
transaction a WAIT statement. 
LOCK's cannot and may not occur 
(preclaiming) 

corresponding to unlock 

As long as all rules for constructing transactions 
are obeyed the monitor accepts processing requests inA 
form of transaction parts from the host language inter­
face, up to whole programs consisting of several trans­
actions to be executed in sequential order. 

Together with the structure description the monitor 
gets the program control block (PCB) containing program­
and user oriented administrative data: user name, input 
location, . data, time, message flow history, file mimes, 
message kind, etc. (see also section 6.1). 
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Figure 2 shows a possible storage map 

Program control block 

Transaction structure 
description 

Statement quadruple table 
and 

Auxiliary tables 

• 
• 

· 
• -....... 

Comprising transaction parts 
forming up ,to several trans­
actions. 
Code for transaction part 1 

transaction part 2 

Depending on the size of such a block it is stored 
, directly in the message buffer of the communication system 
or as files on external devices. But the monitor accesses 
only the PCB and the structure description and therefore a 
good strategy is to store the object code information on 
files and the monitor information in memory. 

5.2 Outgoing data 

They are firstly LOCK/UNLOCK statements destined for 
the responsible lockhandlers guarding the requested data 
and on the other hand complete transaction parts, e.g. 
all tables for transaction part 1 and the PCB, which are 
sent to the executing base machine possibly via other 
monitors. The structure description, except the LOCK/UN­
LOCK statements, remains in the monitor area. 

5.3 Internal data 

For the control of transaction parts 'which are to 
be processed, are in processing, or are already finished 
the monitor needs an internal table to keep track of the 
status changes. 

Origin Stor User PTA Entr Proc Proctime State l"7ai t 
Loc name time loc start tern 

I 
Meaning of the fields: 

Origin 

Stor loc 

is the processname which transmitted the request 
to the monitor, i.e. the immediate predecessor in 
the message flow- historv. 
Where is the actual program code stored. 



User 

PTA name 

Entr time 
Proc loc 
Proc time 

State 

WAIT/LOCK 
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User's process name to which results and error 
messages are sent. 
Name of this transaction part for evaluation of 
WAIT's, status requests and recovery purposes 
Time of entry into the monitor. 
Where is the code executed. 
Start Time of activating the' partial trans­

action on the executing node 
Term Time of receiving an end or error 

message. 
Processing state of transaction part 
Possible contents: 
NEW transaction part is in monitor area 

but not yet started because WAIT is 
still invalid 

IN WORK just under execution 
FINISHED processing. terminated 
BAD processing cancelled in an error 

situation 
LOCK just doing the lock phase 
DELAY:TIME processing reset due to failed 

lock requests 
WAIT condition, which must be fulfilled be­
fore activation. It is represented as a 
pointer to the structure description where 
also LOCK/UNLOCK information is available. 

To control the lock phase the monitor 
transaction the essential information in a 

keeps for each 
lock table. 

Transaction I Lockinfo I Nodeid 

I 
Mark 

Mark indicates here whether the subrelations (lock­
info) are granted or rejected. 

A similar table is used for storing already evaluated 
WAIT conditions. 

transaction true WAIT cond 

All transaction bound information is kept till the 
end of processing. It is erased when the transaction has 
successfully terminated or is given to the recovery module 
in error situations. 
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6. ADDITIONAL REMARKS 

In our first approach all information flow in the 
network was supposed to be controlled by the monitor. But 
this presented a serious bottleneck and we changed the 
approach and made the monitor responsible for only trans­
action control and status/control messages. All other 
information not destinated to these purposes are exchan­
ged immediately between the involved processes (e.g. re­
sults of catalogue requests, query results and error 
messages to user or system modules). 

Direct communication means that only the communica­
tionsystem is engaged in the transfer, the monitor is 
freed from that work. 

For this reason all processes in the network must be 
uniquely identified. In order not to loose control totally 
such immediate interprocess information flow has to be 
successfully finished before the acting process delivers 
any depending status message to the monitor. For example, 
if in a transaction part an output of results to the 
user is made then the base machine may not send a ter­
mination message to the monitor before the result trans­
fer is finished, i.e. has been acknowledged by the user 
process. 

In order to always have all information necessary 
for communication control it must be added to all messa­
ges as a communication control block, and it is contain­
ed in the PCB. This control block is maintained by those 
system modules which are involved in the handling of 
that message on its way from origin to final destination. 
For the communica.tion system these control blocks act 
like normal data and are not treated specially. 

Necessary contents of the communication control 
block: 

ORIG 

ACSEN 

RMON 

MKIND 

Original sender, i.e. the process which 
started the message, normally a user 
I/O process. 
Actual sender, the process which is current­
ly concerned with handling the message 
Monitor responsible for transaction control 
= monitor on user's input node 
Kind of transmitted message 
e.g. termination 

error 
processing request 
status request 
etc. 
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Final destination place, only necessary if 
a direct communication is not possible and 
intermediary services are required 
(e.g. monitor) 

: Figure 4 illustrates the different actions during 
a transaction execution. (The line numbers in the 
figure will be used as reference points in the 
explanation below.) 

Given is a network configuration 

user'~--7t 

incorporating the two nodes N1 and N2. 
A user working with dialog process DIA1 on node N1 is 
starting an RDBL compilation (1). After NUA has done 
the syntactical and semantical processing for a non­
distributed query the user request is passed to the 
NOA to be analyzed in the network environment (2). 
After this work is finished, the created object code 
goes back to the user as immediate execution was not 
identified (3). 

Let us suppose the users' request results in four 
transaction parts A, B, C, D which are dependent as is 
shown here. 

on N2 

on N1 

The associated internal transaction description is shown in 
Figure (3). 

Later the user starts the execution phase for his 
query. As changes in the actual data base environment 
may affect a succe~ul execution the runtime checker 
analyses the RML-code again (4) Let us assume no data 
base reorganization has taken place. Therefore the code 
is given to the monitor (5) which sends transaction part 
A to destination node 2 (6) whose monitor, as an inter­
mediary, starts execution on base machine 2 (6) which 
after termination retransmits the ready message to MON1 
via MON2 (8 + 9). 
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Program control block . 
• 

(T ransaction structure description) 

SEND N2 K L1 
WAIT A -
LOCK WR PERS N1 
LOCK RDE CITY N2 

SEND N2 L M-1 
WAIT B A 

SEND N1 M N-1 
WAIT C A 

SEND N1 N 0-1 
WAIT D B 
WAIT D C 
UNLOCK WR PERS N1 
UNLOCK RDE CITY N2 

K Code for transaction part A 

L Code for transaction part B 

-
M Code for transaction part C 

. 
N Code for transaction part D 

Figure 3 : The transaction description 

Transaction 
part 

A 

B 

C 

D 

Corresponding to the timing constraints the monitor 
after termination of transaction part A can start Band 
C in parallel, B is sent again to node 2 (10), C to the 
local base machine (not further illustrated here). 

The remote monitor routes B to the base machine (.11) 0 

Let us suppose transaction part B sends results directly 
to the user (12), who acknowledges correct reception of 
data. Transaction part B now finishes (like 8 and 9). 
And so on ••• 



1 
1 
1 
1 

1 
2 
3 
4 
5 
6 
7 
8 
9 
0 
1 
2 
3 

ORIG ACSEN 
DIA1 OIA1 
OIA1 NUA1 
OIA1 NOA1 
OIA1 OIA1 
OIA1 RTC 
OIA1 MON1 
DIA1 MON2 
OIA1 BM2 
OIA1 MON2 
OIA1 MON1 
OIA1 MON2 
OIAl BM2 
OIA1 OIA1 
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RMON MKIND DEST 
,.. TRANS -- TRANS -- REAOY -- EXEC -

MON1 EXEC -
MON1 EXEC -
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MON1 REAOY MON1 
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MON1 EXEC -
MON1 RESLT -
MON1 ACK 

Figure 4. Message flow history for the example 

6.2 Erribeddin:gthe rrion'itor 'i'nto 'thesys'tem's'architecture 

When installing the monitor in the system the 
question arises how many of them do we need? There are 
two alternatives: one per given request (either trans­
action or program) created dynamically when a new re­
quest arrives and only responsible for this input alone, 
or one for each site. 

As a consequence of the first alternative many pro­
cesses will run concurrently and for systems like ours, 
which have restrictions on the number of processes, this 
may not be the right way. On the other hand this solu­
tion requires then an additonal site unique module (like 
the scheduler, lockhandler etc.) which coordinates the 
log tape writing activities of the monitors for recovery 
purposes. 

For POREL we have chosen the second way, one monitor 
per node. That is, we have a unique coordination process 
on each node for all inputs of all local users. This 
approach ,.,as found not to cause too much traffic load 
for a single process as the monitor was freed from all 
result handling work as mentioned above. We now \llere able 
to integrate the log tape handler into the monitor as an 
internal routine which needs no further synchronization. 

6.3. Current and future research 

There are two features we intend to incorporate into 
our system. One is the concept of delayed updates. This 
means that, when working with a data subset, we require 
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at least the original to be locked, together with at most 
one copy at the processing site. Updates on the locked 
data are immediately executed. Updates for all other 
copies can be delayed and executed whenever there is 
time for or when a request is made for data for which 
there still exist delayed updates. Using version numbers 
an effective algorithm can be developed for the necessary 
synchronization. ~fuen locking. another copy the lockhand­
ler has to compare its version number with that of the 
original to be sure that the copy is up to date, if not 
the remaining pending updates are executed before grant­
ing the lock requesto The second feature is an alternative 
mode for improving data transfer. Up to now all trans­
action parts are sent to their destination if all pre­
conditions are fulfilled. We can also select a different 
approach:at transaction start all parts for one site 
are collected and sent together to their destination. 
Later on this is followed only by a short activation 
message to start a specific part whenever its wait con­
ditions are satisfied. 

Using this strategy.we even can go further by de­
centralizing the transaction based execution monitor 
scheme somewhat further. Partial trees of the execu­
tion sequence which are to be processed on a single node 
could be given in total to the remote node which then 
also gets control over that tree and sends a status mes­
sage to the original monitor only at the end of its pro­
cessing. These subtrees usuaLly are the result of the 
optimization algorithms in the NOA level which break up 
object code into maximally parallel executable streams 
on concurrently working base machines. But the side 
effects of such a partial decentralization have still 
to be studied in detail, especially with respect to more 
dynamic locking strategies and recovery_ 

7. CONCLUSION 

In this paper we have now presented an overview of 
the execution monitor used in the POREL system. Of course 
much more could be said about this module and many que­
stions have to remain unanswered, in the space available. 
We hope however to have give~ sufficient detail to grasp 
the decentralized execution control mechanisms used in 
POREL and the way this control unit interfaces with the 
other parts of the system. In case of deeper interest 
please consult the technical reports (10), which contain 
the design specifications of the system and o~her publi­
cations about POREL. 
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Abstract 

A distributed data management system on a heterogeneous compute~ 
network is presented. It consists of two components: a front end 
system composed of a number of application specific data base manage­
ment functions and of a general purpose kernel. This architecture 
has been developed (1) to provide for system evolution upon changes 
of user requirements, (2) for simplicity of the system structure, 
and (3) for a high system performance. The paper elaborates on 
the rationale for the approach. It encompasses a description of 
the gross architecture of the system, reflects on the most critical 
design issues for distributed data management systems on hetero­
geneous computer networks and explains the developed solutions • 

• • • • 

1. INTRODUCTION 

Decentralized computing systems seem to be attractive for a great 
number of applications. It is obvious that the existence of some 
kind of Distributed Data Management System (DDMS) is inevitable 
for most applications IWE 78/. 

At present a number of distributed data base management systems 
are under development but none exist as a product on the market. 
Since an agreement on a coherent set of requirements for DDBMS 
has nQt been reached yet, each of the different design experiments 
starts from a particular designer:s perception of the possible 
environment in which the DDBMS would be used. Consequently, a great 
number of obviously different, or sometimes not so different archi­
tectures have been proposed (a comprehensive list of references 
may be found in lAD 78/). 
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The nonexistence of a unique and coherent set of requirements and 
objectives for DDBMS on the one hand, and our customers' demands 
for a maybe simple but soon usable Distributed Data Management 
System on the other hand, are the determining factors for the de­
velopment of an alternate design and implementation strategy. This 
paper elaborates on the rationale of this strategy and presents 
the resulting Evolutionary System Architecture (ESA). 

The system being presented was developed jointly by the Hahn-Meitner­
Instltut for Nuclear Research, and Siemens AG. It was sponsored 
by the German Ministry for Research and Technology (Bt-1FT). This 
effort resulted in a star-shaped computer network -the RHINET-
which has been operating since 1976. The network connects a large 
number of process control computers of ditferen~ manufacturers, 
and three time-sharing mainframes (SIEMENS 7.760, 7.744 and 7.748) 
via a central switching node (SIEMENS 330) using high speed data 
lines (up to 200 kb/s). The process control computers serve as 
data acquisition devices for nuclear physics and radiation chemis­
try experiments. The installation of an interconnecting link from 
the RHINET to an external network in Berlin (BERNET), which will 
connect research institutes and university computing centers is 
planned. The entire network structure may be depicted as follows. 

S330 BERNET 
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The description or the ESA system in this paper is organized in 
the following way. Chapter 2 contains a more elaborate description 
of our motives and goals and relates them to those of other re­
searches. The applied design strategy is then explained in chap-
ter 3. Chapter 4 encompasses a description of the gross architec­
ture of the ESA system, focussing first on a so-called ESA frontend 
system and describing ESA's kernel system in the sequel. This chapter 
reflects on the most critical design issues for distributed data 
management systems on heterogeneous computer networks and explains 
the solutions developed in our project. 

2. RATIONALE 

Our concept of a distributed data base management system is based 
primarily on an analysis of our in-house applications in scientific 
data processing and some application in some other environments: 

(i) The acquisition, storage and pre-processing of large bulks 
of data local to data producing scientific experiments require 
local front end data storage 'and retrieval capabilities. The ar­
chival and large scale evaluation of experimental data requires 
back end data management capabilities on main frame computer systems. 
Thus a DDBMS should provide means for an interactive data analysis 
incorporating both access to local and remote data. 

Similar requirements seem tq determine some other important appli­
cations: 

(ii) Applications in government administration. 
There is a need for data-exchange capabilities among independently 
operating data base systems for different governmental agencies. 
The connection of these systems into a DDBMS is the only economic 
way to exchange 'data. Very often, those networks will encompass 
different types of computer systems and differently structured 
data bases. 

(iii) Applications in business 

• Office automation 
The term stands for a number of efforts with the goal of supporting 
the office work of executive secretaries. This application is con­
sidered to be the most expanding area of computer applications 
in the 1980's. Local office computer systems support document pro­
cessing (dictation, text editing, copying, printing, photo composi­
tion, etc.) message processing (sending, receiving and distributing 
of memoranda, letters, proposals, drawings, etc.) information ar­
chival,andproviding access capabilities to the company's main 
data base on mainframe computer systems •. 
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§ Executive decision making 
Decision making depends on the availability of appropriately pre­
pared data. It is assumed that computer-supported decision-making 
will be one rapidly growing computer application area. It will 
depend on locally and remotely accessible data. 

(iii) Applications in Medicine: Practice Automation 
Besides tasks similar to office activites, like billing and account­
ing, doctors will use systems to support diagnoses. For both activi­
ties, access to local data on small office systems and remote data 
on mainframe systems will be necessary. 

Based on this analysis we have drawn the following conclusions: 

Cl: Computer networks of small dedicated computers and main­
frame computers are most appropriate to support a great number 
of different applications in different environments. 

C2: For most of the considered applications a DDBMS should 
primarily support the rather frequent access to "own" data 
on local computer systems and should allow for the rather 
infrequent access of "common" data on remote computer systems. 

Our concept is also very strongly based on a thorough analysis 
of possible difficulties because of a number of so far unsolved 
problems for the development of DDBMS: 

The differences between centralized and distributed data base systems 
with respect to a number of fundamental technical problems have 
been reported repeatedly in the literature lAD 78, R 77, PM 78/. 
It is obvious that solutions to some of them, like synchronization 
of concurrent updates, query processing, handling of component 
failures, and in particular the conversion of data and operations 
in heterogenous networks will also result in syst~ms of high com­
plexity and cause high internal administration overhead. For its 
expected complexity it does not seem to be clear to us as to whether 
it is yet feasible to design and implement an efficient general 
purpose distributed data base system for all kinds of applications. 
We, in our effort, tend more to the assumption that a suitable 
archite~ture framework encompasses both a general purpose kernel 
system providing a machine-oriented data management facility (simi­
lar to the one usually attributed to an internal schema of a data 
base system) and function units for special applications. Our Evolu­
tionary System Architecture was therefore developed to enable the 
development of the kernel first and of arbitrary application units 
on top. 
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It is still a fact that a great number of applications use the 
operating systems' data management functions only and do not depend 
on a data base system at all. It is therefore our intention to 
devolop with our Evolutionary System Architecture a concept for 
the integration of different data management capabilities into 
a netwide data manager on top of the operating system level. Never­
theless --to avoid any misunderstanding-- it is not our intention 
to develop a distributed operating system. We are much more in­
terested in a system for the administration of large amounts of 
data by rather complex retrieval and update operations. These re­
quirements are - as stated in IRG 771 - fundamentally different 
from those for operating systems. The resulting architecture must 
reflect these differences. We expect the kernel system to provide 
data structuring capabilities and data manipulation capabilities 
comparable to those in contemporary operating systems. Higher order 
structuring and manipulation means are expected to materialize 
in the aforementioned application- oriented function units. 

According to these considerations our system concept is based on 
the following additional oonclusions:," 

C3: A suitable architecture of a DDBMS oonsists of a general 
purpose kernel system and of application specific function 
units. 

C4: A suitable DDBMS shpuld support both a low-level user 
interfaoe providing efficient data base aocess capabilities, 
and higher-level user interfaoes for higher user convenience. 
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3. ESA DESIGN STRATEGY 

Two basic design strategies have been proposed for the design of 
a DDBMS lAD 78/: A uniform integrated system may be built in an 
overall topldown design process (T-systems in lAD 78/) in the one 
case, or a number of different DBMS '·s implemented on different 
host computers will be integrated afterwards in a bottom-up fashion 
(B-systems in lAD 78/) in the other case. 

This of course does not imply that a different software design 
methodology - top down or bottom up - has to be applied in the 
deSign of these systems. To avoid any confusion we would prefer 
to call the resulting systems pre-integrated and post-integrated 
systems respectively. 

The two resulting architectures may be depicted by the following 
graph as proposed in /PM 78/. 

Pre-integrated System Architect~re 

netwide 
r---i DDBMS 

DMS21----I 

netwide 
r---I DDBMS 

Host - Host Communication Network 
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In this concept a user has access to a uniformly designed DDBMS 
which uses local data management services (DMSi ) or provides access 
to remote data management services. 

local 
DBMS l 

Post-integrated System Architecture 

DNS 2 I-----I~ 

local 

DBMS2 

~Integrator userl-----t Integrator 

Host - Host Communication Network 

In the second concept an integrator will be provided on top of 
existing local DBMS's. A user gets access to the uniformly designed 
integrator which uses local DBMS services and provides access capa­
bilities to remote DBMS's. 

Our design strategy represents a position in between the two ex­
tremes. A number of different data management functions in different 
operating,systems will be integrated resulting in a post-integrated 
kernel system. The kernel system uses data management services 
provided by local or r~mote operating system data management 
functions. The kernel provides services to human users or to one 
of the following front end systems: application specific data 
management functions, a netwide general purpose DBMS or different 
local DBMS's. 
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Evolutionary System Architecture 

Kernel DBHS Kerne 1 

Host - Host Cornrnunciation Network 

After the design of its kernel ESA may be extended into one or 
all of the aforementioned directions. A more elaborate discussion 
of the resulting systems will be given in the next section of the 
paper. 
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4. ESA GROSS ARCHITECTURE 

ESA consists of a front end system (or of a number of co-existing 
frontend systems) and of a kernel system. 

ESA's embedding into the entire network system may be depicted 
in the following graphical representation of the network software 
structure. 

As usual, the network is designed in a layered fashion providing 
a number of different functions on each layer. The functions on 
each layer will be performed by using services provided by the 
functions of the next lower layer. Four layers may be identified 
in the current state of development, e.g., the application level, 
the end-to-end level, the transport level and the link level. 
Communication between corresponding functions will be enabled by 
communication protocols associated with each level in the net~ork. 

The two bottom layers - the link level (LL) and the transport 

AL2 

ALI 

EL 

TL 

LL 

level (TL) - provide a datagram service controlled by a SIEMENS NEA2 
protocol. Their function and internal structure is not of particular 
interest for our further discussion. 

The interprocess communication facility (IPC) is provided on the 
end-to-end level (EL). 
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Several basic functions are provided on the appl~cation level 1 
(AL 1), e.g.: 

the system component called EITe (Extended Intertask Communication 
System) facilitates the communication between programs which run 
on different hosts; 

DI! (Dialog) 
permitting accesses from remote terminals (i.e., accesses to any 
timesharing host from all terminals connected to the network); 

MAD (Maintenance, Administration and Demonstration) 
performing control functions like load measurement, network 
administration, and information display; 

DATS (Data Access and Transfer System) 
providing the kernel functions for ESA and some other application 
systems. 

A number of functions on application level 2 (AL2) , like a Remote-Job­
Entry-System (RJE), an electronic mail system (EM), a distributed 
graphics system (G) and last but not least, ESA's front end· system 
(EFE) are all based on services provided by DATS. 

The following discussion will now be restricted to a more elaborate 
description of ESA's front end system and the kernel DATS. 

~.1 ESA Frontend System 

In its current state ESA is meant to support rather simple appli­
cation-specific data base management functions (ASF's) first, which 
may be extended later on into a general purpose DDBMS. The simplifi­
cations introduced in the design of ASF's become apparent in a 
comparison of its characteristics with some interface character­
istics of general purpose DDBMS. 

General purpose DDBMS's provide access to all data stored in the 
distributed data base from any host in the network. This may be 
accomplished by maintaining directories accessible from each host 
in the network. A number of different strategies have been proposed 
for the allocation of data in a computer network, e.g., 

(i) all data may be duplicated and located at each node of the 
computer network (i.e., the fully redundant case); 

(ii) data are stored partially redundant; 

(iii) data may be stored non-redundant; 



-386-

and for the location of directories in a computer network, e.g., 

(i) a directory containing entries for all data in the distributed 
data base is maintained centrally at one host computer; access 
to data is provided through this centrally located directory 
only; 

(ii) a directory containing entries for all data will be duplicated 
and maintained on each of the host computers. 

Any combinations of these alternatives for the placement of direc­
tories and data in the network has a great impact on the solution 
of the concurrent update problem on query processing problems and 
on the handling of component failures. 

ESA materializes a somewhat simpler and restricted concept which 
is based on a somewhat different perception of the requirements 
for many applications. In our conoept the front end system consists 
of a number of rather autonomous application-specific data base 
management functions (ASF's) which share just some data and main­
tainthe major part as "own" data. They form altogether an appli­
cation system. A more sQund definition of an application system 
will be given in the sequel. 

An Applioation System, AS, oonsists of a time variant set P of 
t 

programs Pti and of a time variant set D t of data repositories 

d
ti 

(which altogether form the data base) whioh are used by the 

programs p 
ti 

ASt=(Pt,Dt,Rt) 

One may then write moreabstraotly: 

where Rt ~ Pt x Dt 

with Pu e Pt 

dti e Dt 

Each program Pti may have acoess to a number of data repositories 

dti,ooo,dtj during its exeoution and each data repository 

dti may be used by a number of programs Pti, ••• ,Ptj. Beoause 

of this charaoteristio, the "aooess" relationship Rt is said to 
be n:no 
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This definition of an Application System is in accordance with 
infOrmation processing practice. For example, an enterprise's pay­
roll AFS (index p) uses its own data repositories and some of the 
production department's repositories. And, conversely, the produc­
tion department's data repository is used by the payroll ASF and 
by the inventory control ASF's programs. This sample AS may be 
visualized by the following graph. 

Payroll 

~P_2 __ ~---------~ 

Production ~r----- P3 

Inventory P4 

The foregoing definition captures the very basic fact that appli­
cation programs are not independent of each other, even though 
they have been independently developed. All the programs which 
use a common data repository interfere with one another via the 
common data. 

However, the partial sharing of data among different application 
programs of different AFS's is the-very basic characteristic which 
distinguishes application systems and general purpose data base 
management systems. Each application-specific data base management 
function ASFi provides just a window to the data base offering 

a limited access capability to a part of the data base relevant 
to this application only. The amount of sharing of data among ap­
plication programs determines the degree of autonomy between ASF's: 
a small number of shared items cause high autonomy and vice versa. 
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The placement of indexes and data of an AS in a network may now 
be based on the following assumptions: 

(i) Most of the Application Systems for the kind of applications 
considered in Section 2 of the paper consist of highly autono­
mous ASF's. 

(ii) In most cases a host computer will be provided for each ASF. 

(iii) Most of the data will be stored locally on the host computer 
allocated to the ASF, only a small portion of the data rele­
vant to an ASF will be stored remotely if the data is shared 
and accessed more frequently at the other host. The data 
will be stored in a non-redundant fashion. 

(iv) Directories will be maintained on each host containing entries 
for all data repositories relevant to the ASF allocated to 
this host. Because of the sharing of data between ASF's only 
partially redundant subdirectories of the data base direc­
tory will be maintained at each host. 

Based on these assumptions ESA's entire frontend system may be 
constructed of a number of application programs Pi with a direc­
tory 1i associated with each of them. The,application programs 
and the associated directories may be partitioned according to 
the number of ASF's allocated ,to different hosts in the network. 
For their execution, application programs perform then service 
requests to a local data management system provided in the kernel 
system or to one or more remote application programs. This may 
be depicted for the sample system introduoed above in the following 
graph. 
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I 

Host-host Comm~nication Network 

To enable the communication between application programs and local 
data management systems on the one hand, and between application 
programs on different hosts on the other, ESA's gross archit.ecture 
has been designed as depicted in the following graph. 
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4.2 Provisions for Evolution 

For its evolution ESA provides means for changes of its front end 
system without causing any modifications of the kernel. Changes 
of the front end application system can be facilitated by composing 
it of quasi-standardized modules which are designed according to 
a uniform generic module design concept. The concept provides means 
for AS modifications by adding and removing modules lWE 781 
lWE 79/. According to this concept modules are defined to exhibit 
clear and simple interfaces and internal structures which make 
them function the same way in all possible environments. Thus, 
modules may be connected to other modules and connections may be 
removed without any effect whatsoever on the functioning of any 
other module. 

To guarantee this invariance of a module's functionality, a module 
is defined to exhibit the following characteristics: 

Modules identify a particular type of data and all the operations 
applicable to data of that type. Data and operations defined in 
a module must fit together properly. 

The rather imprecise statement that data and operations have to 
fit together needs some further explanation: Data are representa­
tions of real phenomena. To meet these phenomena, the representing 
data must assume certain characteristics. Data are, on the other 
hand, subject to changes. It is therefore important to distinguish 
two different types of characteristics: the extension, and the 
intension of data. The term extension refers to the time dependent 
aspects of the information contents (e.g., the actual set of tuples 
in a relation at a certain point in time). The term intension refers 
to the time invariant aspects of the information content (e.g., 
two domains of a relation are in a functional dependence at any 
time). Data may then be manipulated (i.e., their extension may 
be changed) according to their time invariant characteristics (i.e., 
according to their intension). It is consequently necessary for 
the design of Application Systems to ensure that all operations 
will be deSigned to be in accordance with the data's intension. 

A module design methodology which imposes .the necessary discipline 
is therefore developed along the folllowing guidelines: 

(i) Each individual type of data object and all the permisSible 
operations on data objects of this type will be defined to­
gether in a module. 
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The data object will be manipulated by those operations only. 
Different users may manipulate the data object by invoking one 
of the predefined operations. This makes the module a self­
contained entity which will display the same time invariant char­
acteristics in all environments. The data are called encapsuled 
by the permissible operations within the module. 

(11) A module definition encompasses the definition of rules for 
the preservation of the semantic integrity of the type of 
data defined in the module. 

Changes of data are constrained by restrictions which are to be 
obeyed in order to preserve the semantic meaning of the data. For 
example: An inventory department's data repository may contain 
data about parts on hand. The order department is consequently 
not allowed to change the data in this repository after an order 
of new parts has been issued, but only after the new parts arrive. 
Thus~ data changes may be tolerated. if the preservation of the 
semantic integrity of the data is guaranteed. 

(iii)A module definition encompasses the definition of rules for 
the execution of concurrent execution requests for its 
operations. 

Changes of data are also constrained by restrictions for the con­
curl~ent execution of operatioz:1s on common da.ta repositories. It 
is necessary in this case to guarantee that the outcome of the 
e,recution of an operation is the same as it would be if the oper­
ation were not inter leafed with any other operation. Thus, con­
currently performed data changes may be tolerated if the preserva­
tion of the consistency of data is guaranteed. 

Application systems when designed with the aforementioned methodolo­
gy allow changes of the system by additions and removals of modules 
as desired. 

The concept is applied in the design of an AS in ESA in the following 
\-lay: 

The AS is constructed in a hierarchic fashion by the composition 
of modules out of other lower level modules. As a consequence, 
an AS is built as a hierarchic composition of indexes (representing 
a hierarchic structuring of data types) and of associated operations 
(representing the hierarchical structuring of application programs). 
~todules in the hierarchy are related to one another by a so-called 
Iluse=relationship" indicating that higher level modules use the 
services of lower level modules to complete their task. This hier­
archic composition may be illustrated with the previously introduced 
sample AS in the following way. 
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DHS
1 

G)I------.....w 

P2 P'2 

I.... __ .....J'I-----I GI------:~_'"_' 

I 

Host-Host Communication NettolOrk 

&.---1 
For system ohanges, arbitrary modules may be added to the hierarohy 
or removed from the hierarohy if the modules are not referenoed 
anymore in any other modules. 
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4.3 ESA Kernel System 

The Kernel System consists of a component called DATS (Data Access 
and Transfer System) and of a SELECTOR component. The DATS component 
has been deSigned to provide general purpose functions for a rather 
great number of services like maintaining distributed data repre­
senting graphic information, facilitating electronic mailing ,of 
information between different hosts in the network, facilitating 
remote-job-entry, maintaining distributed data repositories, etc. 
It was one of the main goals of the design to build DATS on top 
of unchanged existing operating systems of the various host computer 
systems participating in the HMINET. Thus the embedding of DATS 
into the network system may be depicted as follows. 

DNS 1 

S 

E 

L 

E 
DArs 

C 

T 

0 

R 

End to End Communication Network 

Based on this simplified depiction DATS may be considered as 
consisting of two (distributed) communicating processes residing 
on two -maybe different- host computer systems. For its expected 
function the process pair is designed to provide as proposed_ in 
/K 78/: 

- a mechanism for the selection of requested data; 

- a mechanism for the transfer of data; 

- a mechanism for the transformation of data structures according 
to the different data structuring capabilities on the different 
host computers. 
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In order to provide these functions the interacting processes have 
to accomplish tasks as different as data link control, system and 
data resource allocation, addressing, interprocess synchronization, 
error recovery, etc. A more detailed description of these tasks 
will be given in the protocol definition for DATS after some further 
explanation of DATS' internal structure in the following section. 

4.3.1 DATS' Architecture 

The kernel component DATS in turn consists of four components 
with a somewhat overlapping function: Remote File Transfer (RFT), 
Remote Data Access (RDA), Virtual File (VF) and Remote Execution 
Request (RER). All four of them are composed of two processes residing 
on different hosts and they communicate in accordance to a specified 
protocol. The function of these components may be explained as 
follows. 

Remote File Transfer: 

RFT may be initiated by a user process UP and 

- it establishes a connection between a local RFT process called 
FTM (File Transfer Master) and a remote RFT process called FTS 
(File Transfer Slave); 

- it transfers a remote file transfer request; 

- it performs an access to the requested file; 

- it transfers a message containing the requested file to the re­
questing host; 

- it converts data formats of the transferred data into the for­
mats of the requesting host; 

- it stores the transferred copy at the requesting host. 

This communication pattern may be depicted in the following graph. 

G---- FTS 

After the initialization of RFT by UP the two processes may continue 
to execute in an asynchronous fashion. 
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Remote Data Access: 

RDA may be initiated in a user process UP and 

- it establishes a connection between a local RDA process RFA, 
and a remote RDA process AFR; 

- it transfers a remote data access request; 

- it performs an access to the requested record of a remote file; 

- it transfers·a message containing the requested record to the 
requesting host; 

- it converts data formats of the transferred data into the format 
of the requesting host; 

- it provides the transferred copy of the requested record to the 
requesting program. 

The communication pattern may now be depicted as follows. 

UP RFA AFR 

After the initialization of RDA by UP the user process halts until 
the termination of the remote data access. 

Virtual File (not fully designed yet) 

VF may be initiated in a user process UP and 

- it establishes a connection between a local VF process VFL, and 
a remote VF process VFR; 

- it transfers a virtual file request; 

- it maps an access request on a virtual file into an access request 
on a local file; 
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- it performs an access to the requested file or records on the 
remote host; 

- it maps the format of the accessed data into the virtual format; 

- it transfers the requested data to the requesting host; 

- it stores the transferred data in a data repository on the 
requesting host. 

This communication pattern may then be depicted as follows. 

After the initialization of VFby UP the two processes may continue 
to execute in an asynchronous fashion. 

Remote Execution Request (not fully designed yet) 

RER may be initiated in a user process UP and 

- it establishes a connection between a local RER process RERL 
and a remote RER process RERR; 

- it transfers a remote execution request; 

- it performs manipulation on data identified in the remote execution 
request; 

- the results of the remote execution are transferred to the user 
process (UP) 

This RER communication pattern may be depicted as follows. 

lup RERL RERR 
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After the initialization of RER by UP the two prooesses may continue 
to execute in an asynchronous fashion. 

The first three components RFT, RDA and VF may all be used to per­
form similar tasks. The deoision of which component will be used 
in the execution of a certain user transaction will be based on 
performance and availability criteria. These criteria have been 
determined in system modeling, protocol modeling and system simu­
lation studies IPZB 78, CB 77, BB 791 discussed below. A selector 
component of the Kernel System decides during the execution of 
user transactions on the selection of one of the aforementioned 
components. 

The VF component is being developed in the system because the RHINET 
will be connected to the highly heterogeneous BERNET system. In 
that system all data management services will take place in terms 
of a standard virtual data format as the one adopted for VF. 

The RER component is meant to provide a capability for the efficient 
change of remotely stored data. 

The kernel system in its current implementation may then be depicted 
as follows. 

RFT 

End to End Communication Network 
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As mentioned before, the kernel provides services to a number of 
application systems. A user may also gain direct access to the 
DATS system via a simple DATS command language introduced below. 

4.3.2 DATS~ Execution 

Several processes communicate during the execution of DATS. The 
basic communication pattern will be depicted in the following graph. 

s S 
E E 
L L 

UP E UP E 
C C 
T T 
0 0 
R R 

End-to-End Communication Network 

A user process UP requesting the service of DATS issues a request 
to the SELECTOR component of the kernel system. The SELECTOR, after 
deciding which of the DATS components to use, passes the user re­
quest to that component (RDA or RFT in the currently implemented 
version). For the execution of either RDA or RFT a communication 
channel --a so-called "coded connection"-- will be established 
between the RDA/RFT component residing on the calling host (FTM/RFA) 
and the RDA/RFT component residing at the remote host (FTS/AFR). 
This will be accomplished in a two-phase process: 

To initiate the communication the user process issues in the first 
phase --the so-called remote connection phase-- a call of an INIT 
statement (via the selector component) to the local component of 
the RDA or RFT. Together with this call the user process supplies 
the local component of the RDA or RFT with its own identifier, 
with the identifier of the called host, and with the size of a 
resource set (i.e., the maximum number of resources) required (i.e., 
remote files or remote record-oriented devices) as parameters. 
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Based on this information the local component FTM/RFA in executing 
the IN!T statement establishes together with the remote component 
FTS/AFR, a connection between the user process and the requested 
remote resource set. 

In the second phase --the so-called association phase-- the user 
process supplies the local component FTM/RFA via an ROPEN statement 
with the identifier of some particular resources out of the resource 
set as parameters. Based on this information the local component 
FTM/RFA establishes together with the remote component FTS/AFR 
a connection between a user process and a particular resource. 

After this communication connection has been established the user 
process may issue calls on action primitives whose execution results 
in transfers of data from the local to the remote host and vice 
versa. A more complete list of primitives to initialize a connec­
tion and to perform data transfers may be found in Appendix A. 

4.303 Kernel Selector Functions 

As mentioned above, a speoial kernel component, the selector, de­
cides on the selection of one of the DATS components with similar 
functionality for the execution of user transactions. This deci­
sion is primarily based on performance criteria as, for instance, 
response time behaviour, local station throughput and buffer space 
requirements, but is, of course, also dependent on the availabil­
ity of the respective DATS components in the local or remote hosts. 
For the latter case, the selector component holds and updates a 
table of DATS components status and configuration information. 
Whenever one component, RDA for instance, is known to be unavaila­
ble or is known to be not functioning locally or at the remote 
host, another DATS component, RFT for instance, may be selected 
to provide the needed service. 

We call a component selection of that kind an "availability based 
selection" in contrast to the "performance based selection" (which 
shall be described in the following) and the "user intention based 
selection", as, for instance, the selection of the Virtual File 
component in highly heterogeneous networks. 

The Multiclass Concept 

Any host in the network is denoted as "local system". Let there 
be four distinct user classes defined for local systems: CPU bound 
jobs, two types of 1/0 intensive jobs and "normal" jobs. The latter 
are representatives for the average job profile of some scientific 
computing center or other. The two kinds of 1/0 intensive jobs 
are defined in the following manner: 
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I 

Access to a whole file - requiring the record by record transfer 
from device to core - is modelled by the service of a "particular 
abstract IIO device", that is, any file access request of that 
kind (called "bulk access request") will be represented by a request 
to this particular abstract device whose service times are appro­
priately determined as the estimated value of time needed to per­
form the whole access request. Here the files are assumed to exhibit 
constant mean lengths, which has been observed and estimated with 
relative accuraoy. 

The oustomer class of IIO intensive jobs of the first kind is now 
associated with the class of jobs which will set bulk access re­
quests with some significant probability. IIO intensive jobs of 
the second kind are defined as processes exhibiting high acoess 
rates to different storage devices. 

This constitutes the following associations: 

Customer class 1 

Customer class 2 

Customer class 3 

Customer class 4 

... --..... 

... --.... 
4---'" 

.... ---.. 

CPU bound jobs 

normal jobs 

IIO intensive jobs of 1st kind 

IIO intensive jobs of 2nd kind. 

The set of all modules materializing the transport of some message 
through the network is called "network transport system" (NTS). 
The NTS normally is a complex system of its own and can be modelled 
by a special network of queues. In our case,' nevertheless, we de­
cided to model it by one single server station (a detailed descrip­
tion may be found in Appendix B). This station NTS is of paticular 
importance for our investigation of different user class3s, since 
different kinds of net traffic have to be considered. The distinctions 
between the traffic characteristics of the NTS for the RFT, RDA, 
VF and RER are primarily due to the different lengths of messages 
in the respective DATS component. Furthermore, the traffic charac­
teristics for a DATS component are different for different transfer 
directions (i.e. for transfers from the initiating to the exec-
uting process or for transfers in the reverse direction). 
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These differences are captured in properly estimated class specific 
NTS-server rates for each of the DATS components. To be more precise, 
we associate two different customer classes with each traffic type 
indicating the different characteristics of initiating local pro-

k 
cesses at some source system S and of executing processes at 

some destination system sj (j,k: 1, ••• ,h; h the total number 
of hosts in the network). Thus, eight customer classes 

V 11 ' v12 ' v21 ' v22 , v31 ' v32 ' v41 , v42 may be defined in the 

net, each of them being associated with one of the aforementioned 
(local) customer classes at the source and the destination system 
for the execution of the DATS components. 

During the execution phase of one of the DATS components a certain 
customer class v 2 will be associated with that component at the . i 

source and a different one v at the destination system. Thus, a 
11 

customer class change from v into v 
ij ik 

( 1= 1 , ••• ,4; j , k€ {1, 2}) happens in between the execution of the 
DATS component at the source and the destination. This may be il­
lustrated in the following figure. 

f class v 
11 

class change 

k 
Destination System S 

c 

Network Trans 

Source System sj 
c 

(NTS) 

class change 

class 
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An association list for the four possible traffic types and the 
possible associated customer classes may be given as follows. 

associated looal class ohange when 
traffic type customer class in leaving NTS 

S (k=1, ••• ,h) to olass 

1 ( destination) v = 2 
tr = RER 12 

1 2 (source) ~1 = 1 

2 (destination) v :; 4 
tr :; VT 22 

2 2 (source) v = 3 
21 

3 (destination) v :; 6 
tr :; RFT 32 

3 3 (source) v :; 5 
31 

2 (destination) 
" 

v
42 

:; 8 
tr

4 
:; RDA 

4 (source) v :; 7 
41 

The depicted associations may be interpreted as in the following 
example. The list indicates for the RDA system: .the traffic type 
v

41 
of the NTS for the traffic between a source system and the 

destination system is associated with network user class 7, and 
traffic type v of the NTS for the traffic between the destination 

42 
and the source is assooiated with network user olass 8; the associated 
local customer class in the destination system is 2 (i.e. normal 
jobs) and in the source system is 4 (i.e. IIO intensive jobs of 

. nd . " 
the 2 kind). That means, that in its execution the RDA is of 
user class 4 at its source, of user class 7 in NTS on its transfer 
from source to destination, of user class 2 at its destination 
and of user class 8 in NTS on its transfer from destination to 
source. 
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This multiclass concept is used to define customer classes of a 
queueing model which is built up to analyze the dynamic behaviour 
of the communication system. It.yields formulas for the computation 
of relevant performance measures. In our system the kernel selector 
computes on the basis of these formulas approximate values for 

.the following performance measures: response time, local station 
throughput, and needed buffer space (average queue lengths). This 
is done according to some known network status and configuration 
parameters and local load parameters which have to be delivered 
by other modules or are predefined. 

4.3.4 Data Representation and Conversion 

Different representations of data on different hosts in the network 
result in incompatibl1ies in the data access and transfer system. 
Files and records may be internally structured in terms of bit 
strings, character strings, integers, real numbers. 

Their representation is not identical on each machine and usually 
another set of physical data formats is associated with each operating 
system connected to the network. 

These incompatibilities may be resolved in two different ways: 

- by a declaration of a netwide standard format; 
A translation from standard format to the local format has 
to be done on each host in the system. This may lead to 
a loss of precision for the data representation on certain 
systems or may cause on overhead for others; 

- by permitting all kinds of data representations in the net­
wqrk; 
Conversion routines must then exist in every host to convert 
from all existing data representations into·the local repre­
sentation. 

Because of the low heterogeneity of the network and the needed 
precision the second solution has been chosen in our system. 

Another category of inconsistencies results from different oper­
ational capabilities on different hosts. Access methods like se­
quential, indexsequential or different types of random access tech­
niques may exist as standard features of the local DMS or not. 
Furthemore the same access techniques are implemented differently 
on different hosts. For the execution of a data transfer request 
the mapping from one access techniques into another one on a dif­
ferent host with the same effect will be performed in one case. 
A mapping from one implementaion of a given access technique into 
another implementaion with an equivalent effect will be performed 
in the second case. 
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For conversion of formats, access operations and access right 
indicators the system will be supplied with parameters from higher 
level software layers or from a user programm indicating the source 
and destination formats for the conversion. Depending on these 
parameters the conversion will than take place either on the source 
or on the destination host. 

4.3.5 Synchronization of Concurrent Accesses 

Data access requests may be issued concurrently from a number of 
source host computer systems to one destination host. To allow 
shared access to data in the destination host a locking mechanism 
provides means to assure all users get access to consistent data. 
For that purpose user request (i.e., each association phase in 
the DATS protocol) is accompanied by a lock/unlock command (i.e., 
open/close command in the kernel command language) at its start 
and termination. This guarantees an exclusive write access or a 
shared read access to data allocated to the requesting process. 
The coordination of the concurrent accesses may be achieved as 
follows: For each user request a different instantiation of a remote 
data access process AFR/FTS is created on the destination host. 
Each of these instantiations gets the requested data allocated 
exclusively for writes and in a shared mode for reads. If several 
instantiations of remote access processes request accesses to common 
data concurrently they will be served in some priority order (e.g. 
FIFO) as defined in the remote data management system. This may 
be depicted in the following graph: 

RFA/FTHn 

RFA/FTI!3 

AFR/FTSn 

t--______ --i F 

I I----i 

F 
+-------------------i O 
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Instantiations of remote processes AFR/FTSi other than those request~ 
ing common data may be executed in an asynchroneous fashion. All 
of them are dedicated to perform a particular remote (i.e., remote 
to a calling RFA/FTM process) task. For completion of these tasks 
they are never impelled to call upon the service of any other remote 
processes on other hosts. Thus cyclic access may not be created 
and consequently deadlocks may not occur. 

4.3.6 Resiliency Provisions 

A rather great variety of resiliency provisions have been imple­
mented for the back up of the system after failure in one of its 
function units. In principle resiliency will be gained by applying 
an error detection and signalling schema and by a time out mechan­
ism. The implemented resiliency mechanisms are defined to provide 
means for detection of the following kinds of failures: 

~detection of local failures by the RFA/FTM process 
-detection of transmission errors by the end-to-end transport 
system 

-detection of remote failures by the AFR/FTS process. 

A netwide error code has been defined for the detection of the 
failure locality and the signalling of failures between different 
hosts in the network. A failure in the transmission of failure 
Signals will be resolved by the time out mechanism. 
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5. Conclusion 

The concept of a data management facility on a computer communi­
cation network has been introduced. The concept is different from 
others since it is primarily aimed for system evolution over time 
with changing user requirements. The resulting Evolutionary System 
Architecture (ESA) has also been developed for the sake of simpli­
city of the system structure and for high system performance. 

The system is composed of two main components, the ESA front and 
system and the ESA kernel system. The front-end system consists 
of a number of highly autonomous application specific function 
units ASF's. The kernel system encompasses a number of components 
with different but somewhat overlapping functionality. Only one 
of the components will be selected for the execution of a data 
access request in a user program. The selection is based on per­
formance criteria. This decision will be made in the so-called 
selector component of the kernel. 

An evolutionary change of the system will be enabled by the compo­
sition of the front-end of highly autonomous modules. Modules may 
be added and removed from the system for its changes. The module 
concept also incorporates means for the preservation of the consis­
tency of data during its concurrent execution. For the lack of 
space in this paper the required front-end level synchronization 
mechanism has not been described. The concept is to some extent 
similar to the "event count" notion in /KR 79/ and the interested 
reader is referred to a paper in preparation. 

The main emphasis has been placed on the description of the kernel 
system. This is of particular importance since this system component 
has been in operation for some time now and its well-functioning 
has been validated. Performance considerations play an important 
role in the efficient use of data management capabilities on computer 
networks. For that reason the provision for an efficient computation 
of data access services in the kernel system is discussed in some 
detail. This problem is particularly acute for heterogeneous networks 
and their additional intrinsic overhead for the execution of format 
conversions. The kernel has consequently been deSigned to provide 
means for dealing with this problem by offering different options 
for the execution of data access requests with different performance 
characteristics. 

In its continuation the project should lead to some improvements 
of its current version and to its extension by new components. 
The deSign of a well performing system usable in a realistic appli­
cation environment will be our continuous concern. 
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APPENDIX A 

DATS Operations 

A communication connection will be established upon a user request 
in a two-phase process. 

The first phase - the remote connection phase - establishes the 
connection user/remote host. Information about user rights on the 
remote host, about the resources which should be allocated and 
granted to DATS for this user, and the maximal common transmission 
buffer between the two involved processes are the main negotiation 
subjects of this phase. 

In the second phase, Le., the association phase, a connection 
user/remote file is established. User access rights on the remote 
file will be checked in this phase. Several association phases 
are allowed during a remote connection phase. 

After that the requested data are read or written by the remote 
DMS in the data access and transfer phase. 

A user program communicates with the DATS by means of a set of 
language primitives. 

a) Initialization primitives: they are associated to the remote 
connection phase and perform the following function: 

INIT - defines the user access rights on the remote host; 
- allocates a resource set in the RDA system; 
- establishes buffer conventions between RFA and AFR. 

DISCON - terminates remaining association phases; 
- releases the resource set; 
- ends the remote connection phase. 

b) Control primitives: they may be executed in the association 
phase and operate in the following manner: 

RFCB - generates a Remote File Control Bloc, (RFCB) which 
is the information carrier between a user and a remote 
DMS; the parameters of this primitive describe the 
attributes of the remote file. 

ROPEN - establishes a connection user-file; 
- transfers the Remote File Control Block to AFR; 
- prepares the remote file (local open). 

RCLOSE - terminates the remote file handling; 
- returns information about the state of the file; 
- cancels the connection. 
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The status primitive generates a temporary association phase: 

RSTAT - establishes a temporary connection user file; 
- returns information about the remote file; 
- cancels the connection. 

c) Action primitives: they may be executed in the data access and 
transfer phase and perform the following tasks: 

RPUT - writes or reads a data structure in a user; 
ROET - specified format to or from the remote system; 

RCNTR - controls a remote fUe (pointer position, etc.). 

These action primitives are translated locally into DMS specific 
access programs. 
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Appendix B 

The queueing model 

It is well known that an exact analysis of general queueing net~ 
works is either impossible up to now or leads to an unacceptable 
amount of computation. For queueing networks of GORDON-NEWELL type, 
for instance, the necessary amount of computation rises significant­
ly with the number of service stations and circulating customers. 
The authors, therefore, decided to model the real system by a closed 
local balanced queueing network of the above mentioned type and 
to use a decomposition method suggested by Chandy et ale leH 75/. 
It has already been shown for the case of end-to-end level data 
flow that this simplification leads to acceptable results (see 
IBB 79/). The main idea is to represent each local system in the 
network by a central server queueing system with exponentially 
distributed service times (CPU as central server), and to compose 
then each such local system into one Single queue. An equivalent 
exponential central server queueing network is constructed this 
way in which the central server represents the network transport 
system (NTS). The average class dependent service rates of the 
composite queues are calculated as the values of class dependent 
throughput rates of the shortened "rest of the network" queues 
(see leH 751 and IBB 79/). They in fact are dependent on the vector 
M = (m(1), ••• ,m(V» of actual numbers m(v) of customers of class 
v in the very local system under consideration (v=1, ••• ,V, with 
V the total number of customer classes in the network). 

In order to reduce the enormous difficulties in calculating the 
throughput rates for such complex server activities the customer 

k k 
number specific means~c(s) of the service timesl'c(K;S) are used 

k 
inst~ad of the~ c(K;S) itself in further calculations (the error 

seems to be negligible); here K denotes the vector of numbers k(v) 

of net customers of class v viSiting the local system Sk which 
in turn is characterized by an upper index k~1. The upper index 
o denotes the NTS~server. Each key) corresponds to some "fixed" 
number bey) of "background customers" (local programs or tasks 
or requests, etc.) in the local system, such that b(v)+k(v)=m(v). 
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Since k(v) is the only variable number (v=1, ••• ,V), it is allowed 

k k 
to write f'c (K;s) instead of tt c (Mis). The lower index c always 

k 
points towards the fact that composite queues S are considered 

k c 
to represent the actual local system S • Let K(s) be the total 
number of circulating net customers of class s and let 

k k 
P [k(1), ••• ,k(s-1),k(s)=n,k(s+1), ••• ,k(V)] =:p (n) 

s 
denote the probability that there are k(v) customers of class vts 

and n customers of class s in the system Sk (v ~ {1, ... , V}). Then, 

k k 
using~ (n) for~ (k(1), ••• ,k(s)=n, ••• ,k(V);s) , we have 

I cs Ic 

K(s) 

#:(s) = ~ L fA- c:(n) p:(n) 

Q(s) n=1 

(Q(s) is the set of all vectors (k(1), ••• ,k(s)=n, ••• ,k(V» with ° !k(v) = K(v) for vts). 
k 

Moreover, let~ (K;s;n) denote the probability that there are 

k 1jk " it n=k(s) customers of class s in the system S : I (K;s;n)= L: p (n), 

then 

is the 

served 
reader 

K(s) 

i k 
(K ; s ) = L n 1f k (K; s ; n ) 

n=1 

O(s) 

expected number of customers of class s waiting or being 

k 
in queue S. Based on an elaborate analysis (the interested 
is referred to a paper in preparation) this yields 

". 

{ k J -k 1-1' (K;s;O) N (K;s) 
= ..... _---------

V k ~ rr
c 

(v) N (K;v) 

v=1 

for the class dependent throughput through queue Sk. 
c 
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Based on Little's result for the relation between average 
response time, average queue length and average arrival rate in 
steady state we may get 

v 

')-k k L N (K;v)j4 c (v) 

k v=1 
(Kjs) = -------

1- t k(K;SiO) 

. k 
+ f (s) 

c 

for the value of the average response time of class s concerning 

queue Sk 
c 

These results and other formulas (for needed buffer space, average 
server utilization, waiting times etc.) may be used upon selection 
of DATS components: 

k U (K;s) ~k = 1-' (K;s;O) (utilization) , 

" T (K;s) = 
k -k U (K;s)N (K;s) 

(throughput), 
V k k L fc(V) N (K;v) 

v=1 

W"(K;S) = 
k 

N (K; s) 
(waiting time), 

k 
T (K;s) 

k T (K;s) = 
k k 

W(K;s)+ic(s) (response time). 
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Obviously the response time for each trr ffic type also includes 
the service times of the server NTS for the transfers in both direc~ 
tions., i.e. for bothlser classes v I' ld v • Thus, for the execu-

i1 i2 
tion of the RFT component for example, the RFT response time may 
be computed from 

k 0 0 (K;v ) + JA. (v ) + J)., (v ), 
31 (c 31 / c 32 

provided that there are K customers at all travelling through the 
network at that time. 

Example 

In the following example we now restrict our attention to the 
selection of one of the two RFT or RDA in the execution of a user 
transaction. Files to be manipulated from remote are supposed to 
be of fixed average length f, i.e. some constant r shall represent 
the estimated average number of records in a file. Each record 
in turn is assumed to be of, fixed length p equal to the data length 
of one "transport element" in the network; thus, f=r p. For the 
passing of parameters together with each RDA request let us suppose 
furthermore that each such request will also correspond in length 
to one transport element, independent of the type of the requested 
operation in the data access and transfer phase; thus, 

o 0 
rc(v41)=}Ac(v42)· 

Then, RDA and RFT performance can be compared with respect to the 
response times as follows: 

If m 
k 

records of some file residing at system S shall be manipulated, 
c 

k 
the expense of time D (including network delay) for the RDA system 
is 

k D (K;tr ) 
4 

= m [,.k ( K ; v ) + 2 tAl 0 ( v ) J ' o 41 I c 41_ 
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A Concurrency Control Mechanism for Distributed Databases Which 
Uses Centralized Locking Controllers 

H. Garcia-Molina 
Stanford University, Stanford, California 

On Efficient Monitoring of Database Assertions in Distributed 
Database Systems 

D.Z. Badal 
University of California at Los Angeles, Los Angeles, California 

3:30 p.rn - 4:00 p.m. Break 

4:00 p.ni.'- 5:30 p.m. 

PROTOCOL MODELING 
Chairperson, to be announced 

A Study of the CSMA Protocol in Local Networks 
S.S. Lam 
University of Texas, Austin, Texas 

Global and Local Models for the Specification and Verification 
of the Distributed Systems 

M. Gouda, D. Boyd, and W. Wood 
Honeywell, Bloomington, Minnesota 

Protocols for Dating Coordination 
D. Cohen and Y. Yemini 
USC-lSI, Marina del Rey, California 

Wednesday, August 29, 1979 

9:00 a.m. - 10:30 a.m. 

MULTIPLE COpy CONTROL TECHNIQUES 
Session Chairman: Mr. Ed Sirss 

Hewlett Packard, Cupertino, California 

Distributed Control of Opdates in Multiple-Copy Databases: A Time 
Optimal Algorithm 

R.J. Ramirez and N. Santoro 
University of Waterloo, Waterloo, Ontario, Canada 

Concurrency Control in a Multiple CoPy Distributed Database System 
W.K. Lin 
Sperry Research Center, Sudbury, Massachusetts 
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Concurrency Control Algorithm tor Distributed oatabase System 
T. Minoura 
Stanford University, Stanford, California 

10:30 a.m.- 11:00 a.m. Break 

11:00 a.m.- 12:00 m. 

LOCAL NETWORKS PANEL 
Session Chairman: Dr. John Shoch 
Xerox-PARC, Palo Alto, California 

12:00 m. - 1:30 p.m. Lunch 

1:30 p.m. - 3:00 p.m. 

DATABASE MACHINES PANEL 
Session Cha,irwoman: Dr. Paula Hawthorn 

Britton-Lee, Berkeley, California 

The designers of state-of-the-art database machines will discuss 
the roles of their machines in future distributed systems. Also 
discussed will be the major design differences and target applica­
tions for the machines. 

Panel: 

Stewart Schuster, Tandem Computers 
Harvey Freeman, Sperry Research 
Mike Stonebraker, U.C. Berkeley 
David DeWitt, University of Wisconsin 

2:30 p.m. - 3:00 p.m. Break 

3.00 p.m. - 5:00 p.m. 

NETWORK RESOURCE ALLOCATION 
Session Chairman: Dr. Yogen Dalal 

Xerox-SDD, Palo Alto, California 

Synchronization of Distributed Simulation Using Broadcast Algorithms 
J.K. Peacock, E. Manning and J.W. Wong 
University of Waterloo, Waterloo,Ontario, Canada 

The Updating Protocol of the ARPANET'S New Routing Algoritp- A Case 
Study in Maintaining Identical Copies of a Changing Distri ~ed Data 
Base 

E.C. Rosen 
Bolt Beranek and Newman, Cambridge, Massachusetts 

1, 
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The NIC Name ,Server -- A Datagram Based Information Utility 
J.R. Pickens, E.J. Feinler and J.E. Mathis 
SRI International, Menlo Park, California 

A Protocol for Buffer Space Negotiation 
D. Nessett 
Lawrence Livermore Laboratory, Livermore, California 

6:00p.m. -10:00 p.m. Bay Cruise and Dinner 

Thursday, August 30, 1979 

9:00 a.m. - 10:30 a.m. 

IMPLEMENTATIO:N OF DISTRIBUTED S'~STEMS - II 
.session Chairman: Dr. DanielSagalowicz 
SRI International, Menlo Park, California 

Labeled Slot Multiplexing: A Technique for a High Speed, Fiber 
Optic Based, Loop Network 

S. Blauman 
TRW, Redondo Beach, California 

A Distributed File Manager for the TRW Experimental Development 
System 

S. Danforth 
TRW, Torrance, California 

Network Support for a Distributed Data Base System 
L.A. Rowe and K.P. Birman 
University of California at Berkeley, Berkeley, California 

10:30 a.m. - 11:00 a.m. Break 

Transaction Processing in the Distributed DBMS-POREL 
U. Fauser and E. Neuhold 
University of Stuttgart, Stuttgart, W. Germany 

An Evolutionary System Architecture for a Distributed Data Base 
Management System 

H. Weber, D. Bauro and R. Popescu-Zeletin 
Hahn-Meitner Institute, Berlin, W. Germany 

U.S.GPO:1979-692-475/323 
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