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Canonical Projective Embeddings of the

Deligne-Lusztig Curves Associated to 2A2,
2B2

and 2G2

Daniel M. Kane ∗

May 15, 2015

Abstract

The Deligne-Lusztig varieties associated to the Coxeter classes of the
algebraic groups 2A2,

2B2 and 2G2 are affine algebraic curves. We produce
explicit projective models of the closures of these curves. Furthermore for
d the Coxeter number of these groups, we find polynomials for each of
these models that cut out the Fq-points, the Fqd -points and the Fqd+1 -
points, and demonstrate a relation satisfied by these polynomials.

1 Introduction

There are four kinds of finite groups of Lie type of rank 1. The associated
Deligne-Lusztig varieties for the Coxeter classes of these groups all give affine
algebraic curves. The completions of these curves have several applications in-
cluding the representation theory of the associated group ([1, 5]), coding theory
([4]) and the construction of potentially interesting covers of P1 ([3]).

In this paper, we consider these curves associated to the groups G = 2A2,
2B2

and 2G2. The remaining curve is associated to G = A1 and is P1, but we do not
cover this case as it is easy and doesn’t follow many of the patterns found in the
analysis of the other three cases. For each of these curves, we explicitly construct
an embedding C ↪→ P(W ) where W is a representation of G of dimension 3,5,
or 14 respectively, and provide an explicit system of equations cutting out C.
The curve associated to 2A2 is the Fermat curve. The curve associated to
2B2 is also well-known though not immediately isomorphic to our embedding.
Embeddings of the curve associated to 2G2 were not known until recently. In
[6], they constructed an explicit curve with the correct genus, symmetry group
and number of points. Later, in [2], Eid and Duursma use this description to
independently arrive at the embedding we produce in this paper.

∗University of California, San Diego, Department of Mathematics / Department of
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For each case, let d be the Coxeter number of the associated group, namely
d = 3, 4, 6 for 2A2,

2B2,
2G2, respectively. In [3], Gross proved that for each of

these curves C, that C/Gσ ∼= P1, with the corresponding map C → P1 ram-
ified over only three points corresponding to the images of the Fq-points, the
Fqd -points and the Fqd+1-points. In all cases, we write this map explicitly by
finding the homogenous polynomials on C that correspond to the pullbacks of
the degree-1 functions on P1 vanishing at each of these points, and demonstrat-
ing a linear relation between these functions.

In all cases we attempt to make our constructions canonical. We define
the algebraic group G as the group of automorphisms of some vector space
V preserving some additional structure. We define the Frobenius map on G
by picking an isomorphism between V and some other space V ′ constructed
functorially from V (for example, for 2A2, we get the Frobenius map defining
SU(3) by picking a Frobenius-linear map between V and its dual). From V we
construct W , another representation of G, given as a quotient of Λ2V . In each
case we define our map C → P(W ) by sending a Borel, B, of G to the 2-form
corresponding to the line in V that B fixes. The construction of the functions
giving our map from C to P1 are all given by linear algebraic constructions.

There are a number of similarities in our techniques for the three different
cases, suggesting that there may be a more general way to deal with all three
at once, although we were unable to find such a technique. In addition to the
similarity of overall approach, much of the feel of these constructions should be
the same although they differ in the details. Additionally in all three cases we

compute the degree of the embedding and find that it is given by |Gσ|
|Bσ||Tσ| (here

T is a Coxeter torus of G).
In Section 2, we describe some of the basic theory along with an outline of

our general approach. In Section 3, we deal with the case of 2A2; in Section 4,
the case of 2B2; and in Section 5, we deal with 2G2. Much of the exposition
in Section 2 is somewhat abstract and corresponds to relatively simple compu-
tations in Section 3, so if you are having trouble following in Section 2, it is
suggested that you look at Section 3 in parallel to get a concrete example of
what is going on.

2 Preliminaries

Here we provide an overview of the techniques and notation that will be common
to our treatment of all three cases. In Section 2.1, we review the definition
and basic theory of Deligne-Lusztig curves. In Section 2.2, we discuss some
representations ofG which will prove useful in our later constructions. In Section
2.3, we give a more complete overview of the common techniques to our different
cases and describe a general category-theoretic construction that will provide
us with the necessary Frobenius maps in each case. Finally in Section 2.4, we
fix a couple of points of notation for the rest of the paper.
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2.1 Basic Theory of the Deligne-Lusztig Curve

Let G be an algebraic group of type A2, B2 or G2, defined over a finite field
Fq with q equal to q2

0 , 2q
2
0 or 3q2

0 respectively. Let FR be the arithmetic Fq-
Frobenius of G, and let σ be a Frobenius map so that FR = σ2. We pick a an
element w of the Weyl group of G of length 1. The Deligne-Lusztig variety is
then defined to be the subvariety of the flag variety of G consisting of the Borel
subgroups B so that B and σ(B) are in relative position either w or 1 (actually
it is usually defined to be just the B where B and σ(B) are in position w, but
we use this definition, which constructs the completed curve). The resulting
variety has an obvious Gσ action and in all of these cases is a smooth, complete
algebraic curve defined over Fq.

In each of these cases, let B a Borel subgroup of G. Let T be a twisted
Coxeter torus of G, that is a σ-invariant maximal torus such that the action of
σ on T is conjugate to the action of wσ on a split torus. Let d be 3, 4, 6 for
A2, B2, G2 respectively. We will later make use of several facts about the points
on the Deligne-Lusztig curve, C, defined over various fields and their behavior
under the action of Gσ.

Here and throughout the rest of the paper we will use the phrase Fqn -point
to mean a point defined over Fqn but not defined over any smaller extension of
Fq. We make use of the following theorem of Lusztig:

Theorem 2.1.1. If G is of adjoint type we have the following:

1. Gσ acts transitively on the Fq-points of C with stabilizer Bσ.

2. C has no Fqn-points for 1 < n < d.

3. Gσ acts transitively on the Fqd-points of C with stabilizer Tσ.

4. Gσ acts simply transitively on the Fqd+1-points of C.

5. Gσ acts freely on the Fqn-points of C for n > d+ 1.

Recall that C/Gσ ∼= P1 with the points of ramification given by the three
points corresponding to the orbit of Fq-points, the orbit of Fqd -points, and the
orbit of Fqd+1-points.

We also make use of some basic counts (given in [3]). In particular, for A2:

d = 3

|Gσ| = q3
0(q3

0 + 1)(q − 1)

|Bσ| = q3
0(q − 1)

|Tσ| = q − q0 + 1

#{Fq − points of C} = q3
0 + 1

#{Fq3 − points of C} = q3
0(q0 + 1)(q − 1)

#{Fq4 − points of C} = q3
0(q3

0 + 1)(q − 1).
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For B2:

d = 4

|Gσ| = q2(q2 + 1)(q − 1)

|Bσ| = q2(q − 1)

|Tσ| = q − 2q0 + 1

#{Fq − points of C} = q2 + 1

#{Fq4 − points of C} = q2(q + 2q0 + 1)(q − 1)

#{Fq5 − points of C} = q2(q2 + 1)(q − 1).

For G2:

d = 6

|Gσ| = q3(q3 + 1)(q − 1)

|Bσ| = q3(q − 1)

|Tσ| = q − 3q0 + 1

#{Fq − points of C} = q3 + 1

#{Fq6 − points of C} = q3(q + 3q0 + 1)(q2 − 1)

#{Fq7 − points of C} = q3(q3 + 1)(q − 1).

2.2 Representation Theory

Let G be as above. Fix a Borel subgroup B. B is contained in two maximal
parabolic subgroups, P1 and P2, corresponding to the short root and the long
root respectively (or in either order in the case of A2). There exists a represen-
tation V of G so that B fixes the complete flag 0 ⊂ L ⊂M ⊂ S ⊂ . . . ⊂ V and
so that P1 is the subgroup of G fixing L, and P2 the subgroup fixing M . If G
is A2, B2 or G2, the dimension of V is 3, 4 or 7 respectively.

Inside of Λ2V is the representation W of G given by W ⊂ Λ2V is the sub-
representation containing Λ2M . In our three cases, Λ2V/W equals 0, 1 or V
respectively. If we are in any characteristic for A2, characteristic 2 for B2,
or characteristic 3 for G2, W has a quotient representation, V ′ of the same
dimension as V so that the image of G → End(V ′) is isomorphic to G. Pick-
ing an isomorphism between G and its image provides an endomorphism of
G. If G = A2, this is its outer automorphism. For G equal to B2 or G2 in
characteristic 2 or 3 respectively, this endomorphism squares to the Frobenius
endomorphism over the relevant prime field, giving a definition of σ.

2.3 Basic Techniques

Our basic techniques will be similar in all three cases and are as follows. For
p a prime, let q0 = pm, and q = p2m or q = p2m+1 as appropriate. We begin
with a representation V of G defined over F̄q. Then let C be the groupoid where
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an object of C is a representation of an algebraic group abstractly isomorphic
to the representation V of G, and a morphism of C is an isomorphism of such
representations. In each case, we will reinterpret C as a groupoid whose objects
are merely vector spaces with some additional structure (for example in the case
of 2A2 an object of C will be a three dimensional vector space with a volume
form). This reinterpretation will allow us to work more concretely with C in
each individual case, but as these structures are specific to which case we are
in, we will ignore them for now.

In each case there will be two functors of interest from C to itself. The first
is the Frobenius functor, Fr : C → C, corresponding to the geometric Frobenius
map. This functor should be thought of as abstractly applying Fp-Frobenius to
each element. In particular there should be a natural Frobenius-linear trans-
formation from V to Fr(V ). In particular each of our C will have objects that
are vector spaces, perhaps with some extra structure. As a vector space we will
define Fr(V ) as {[v] : v ∈ V } where addition and multiplication are defined by
[v]+[w] = [v+w] and k[v] = [k1/pv]. The morphisms are unchanged by Fr. This
should all be compatible with the extra structure accorded to an object of C,
except for inner products which must also be twisted by Frobenius. Note that
giving a morphism T : V → Frn(W ) is the same as giving a Frobenius−n-linear
map S : V →W that respects the additional C-structure. Note therefore that a
morphism T : V → Fr−n(V ) gives V an Fpn -structure. By abuse of notation, we
will also use Fr to denote that natural Frobenius-linear map V → Fr(V ) defined
by v → [v].

The other functor of importance is ′ : C → C. This is the functor that takes
V and gives V ′ as a subquotient of Λ2V . The exact construction of ′ will vary
from case to case. For 2A2, V ′ will be the dual of V . It will be clear in all cases
that there is a natural equivalence between Fr◦′ and ′ ◦ Fr.

Define a to be 0 or 1 so that q = p2m+a. In each case, we will also find
a natural transformation ρ from Fra to ′′ (again the details vary by case and
we will not go into them here, though for 2A2 it is the obvious isomorphism
between a vector space and the dual of its dual). Lastly, we pick a V ∈ C and
a morphism F : V ′ → Fr−m(V ).

This is enough to give a more explicit definition of σ. We construct a Frobe-
nius map for G = Aut(V ). We note the morphisms Fr−a(ρV ) : V → Fr−a(V ′′),
Fr−a(F ′) : Fr−a(V ′′)→ Fr−m−a(V ′), and Fr−m−a(F ) : Fr−m−a(V ′)→ Fr−2m−a(V ).
The composition

F := Fr−m−a(F ) ◦ (Fr−a(F ′)) ◦ Fr−a(ρV ) : V → Fr−2m−a(V )

defines an Fq-structure on V .
This gives us a Frobenius endomorphism FR : G→ G defined by Fr−2m−a(FR(g))◦
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F = F ◦ g. We define σ : G→ G by Fr−m(σ(g)) ◦ F = F ◦ g′. We have that:

σ(σ(g)) = Frm(F ) ◦ Frm(σ(g′)) ◦ Frm(F−1)

= Frm(F ) ◦ Fr2m(F ′) ◦ Fr2m(g′′) ◦ Fr2m(F ′−1) ◦ Frm(F−1)

= Fr2m+a(F ◦ Fr−a(ρ−1
V ) ◦ Fr−a(g′′) ◦ Fr−a(ρV ) ◦ F−1)

= Fr2m+a(F ◦ Fr−a(ρ−1
V ◦ g

′′ ◦ ρV ) ◦ F−1)

= Fr2m+a(F ◦ Fr−a(Fra(g)) ◦ F−1)

= Fr2m+a(F ◦ g ◦ F−1)

= FR(g).

The third to last step above comes from the fact that ρ is a natural transfor-
mation. This gives us an endomorphism σ : G→ G so that σ2 = FR.

We note that this technique for defining σ works most conveniently when by
“algebraic group” we mean “group object in the category of varieties over Fq”,
since then G can be associated with AutC(V ), and we have an action of σ on
G. On the other hand if you want “algebraic group” to mean “group object in
the category of schemes”, then the same technique should still work as long as
we consider C as a category enriched in schemes.

We may pick our element w so that two Borels of G are in relative position
w or 1 if they fix the same line in V . We then define a projective embedding
C ↪→ P(W ) sending a Borel B to the two-form defined by the plane it fixes in
V . In each case we will provide explicit polynomials that cut out the image of
C. We will compute the degree of this embedding by finding a polynomial that

vanishes exactly at the Fq-points of C. In each case, this degree will be |Gσ|
|Bσ||Tσ| .

In each case for each Fq-point, there is a hyperplane that intersects C only at
that point but with large multiplicity. We also compute polynomials that cut
out the Fqd -points and the Fqd+1-points. Lastly we find a linear relation between
appropriate powers of these polynomials.

2.4 Notes

Throughout this paper, by an Fqn -point of a curve defined over Fq, we will
mean a point defined over Fqn but not over any smaller extension of Fq. Also
throughout this paper, a Frobeniusn-linear map will always refer to the nth

power of the arithmetic Frobenius map over the corresponding prime field.

3 The Curve Associated to 2A2

3.1 The Group A2 and its Representations

One of the groups associated to the Lie Algebra A2 is the group G = SL3. This
group acts naturally on a three dimensional vector space V . The Borels of G are
defined by picking an arbitrary flag 0 ⊂ L ⊂ M ⊂ V . As we range over Borel
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subgroups Λ2M will span all of Λ2V , so our representation W will be given by
W = Λ2V .

3.2 A Canonical Definition of 2A2

The group G associated to A2 is just SL3. The group 2A2 will turn out to
be simply the special unitary group. Although this would be simple to derive
directly, we will attempt to use the same basic technique as we will for the more
complicated groups. Let V3 be the groupoid consisting of all three dimensional
vector spaces over F := Fq with a volume form, Ω. We define Fr : V3 → V3

as above. We define ′ : V3 → V3 by letting V ′ equal Hom(V,F), the dual of
V . Note that V ′ is naturally Λ2V with the pairing (v, ω) = v∧ω

Ω . We use these
definitions interchangeably.

We have the obvious natural transformation ρ : Id ⇒′′ so that ρV (v) is the
functional φ ∈ V ′ → φ(v). Given V ∈ V3 and F : V ′ → Fr−m(V ), we can define
σ by Fr−m(σ(g)) ◦ F = F ◦ g′. It is not hard to see that F defines a hermitian
inner product on the Fq-points of V and that for Fq-rational g ∈ G, σ(g) is
simply the adjoint of g with respect to this hermitian form.

3.3 The Deligne-Lusztig Curve

We claim that the associated Deligne-Lusztig curve and the divisors vanishing
on its Fq,Fq3 , and Fq4 points are as follows:

Theorem 3.3.1. Given F as above, the Deligne-Lusztig curve embeds into
P(V ′) as the set of points, ω satisfying the equation

(ω, F (ω)) = 0.

Giving a curve of degree q0 + 1 in P(V ′).
On this curve define the polynomials

F3 = (ω, F (F(ω))) ,

F5 =
(
ω, F (F2(ω))

)
,

F7 =
(
ω, F (F3(ω))

)
.

Then letting

P1 = F
1/(q0+1)
3 ,

P3 =
F5

F3
,

P4 =
F7

F3P
q0
3

,

each of P1, P3, and P4 are polynomials where the divisor of Pi is the sum of all
of the Fqi points of the curve. Furthermore, given an appropriate root used to
define P1, we have that

P4 − P q−q0+1
3 + P

q30(q−1)
1 = 0.
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Let B be the Borel fixing the line L = 〈v〉 and the planeM = 〈v, w〉 = ker(φ),
where v ∈ V, φ ∈ V ′. Note that we may think of φ as ω := v∧w ∈ Λ2V. Now for
g ∈ B, since g fixes M , g′ must fix the line in V ′ containing ω. Similarly, since
g fixes L, g′ must fix the plane L ∧ V in V ′. Hence if B is defined by L = 〈v〉
and M = 〈v, w〉 and if u is some other linearly independent vector, then σ(B)
is defined by 〈F (v ∧ w)〉 and 〈F (v ∧ w), F (v ∧ u)〉.

Now for B to correspond to a point on the Deligne-Lusztig curve, it must
therefore be the case that L = 〈F (v ∧ w)〉. We define the embedding of the
Deligne-Lusztig curve C to P(Λ2V ) by sending B to the line containing ω =
v ∧ w. We note that this is an embedding since given ω, we know that 〈v〉 =
〈F (ω)〉. This is a smooth embedding since its composition with the map 〈ω〉 →
(〈F (ω)〉, 〈ω〉) yields the identity on our curve. For simplicity of notation we
denote the pairing between V and V ′ as (−,−) (and by abuse of notation also
use it to denote the pairing between V ′ and V ). We note that the image of C
is cut out by the equation:

(ω, F (ω)) = 0.

Thinking of F as defining a hermitian form on V ′, this just says that the norm
of ω with respect to this hermitian form is 0. Hence C is just the Fermat curve
of degree q0 + 1.

3.4 Divisors of Note

We first compute a divisor that vanishes exactly on the Fq-points. We note that
a Borel B corresponds to a point over Fq if and only if σ(σ(B)) = B. We claim
that this holds if and only if σ(B) = B. One direction holds trivially. For the
other direction, if σ(σ(B)) = B, then σ(σ(B)) fixes the same line as B and
σ(B). But the line fixed by σ(B) is determined by the plane fixed by B. Hence,
B and σ(B) fix both the same line and the same plane and hence are equal.
Hence, B corresponds to an Fq-point if and only if F (〈v ∧ w, v ∧ u〉) = 〈v, w〉.
Since F (v ∧ w) ∝ v, this happens exactly when F (v ∧ u) ∈ 〈v, w〉.

Letting u be some vector not in M , we consider

(F (F (ω) ∧ u) ∧ ω)⊗ Ω⊗(q0−1)

(ω ∧ u)⊗q0
. (1)

Note that both numerator and denominator are multiples of Ω⊗q0 so the fraction
makes sense. Note also that numerator and denominator are homogeneous of
degree q0 in u as an element of V/M . Hence the resulting expression is indepen-
dent of u and hence a polynomial of degree q − q0 + 1 in ω. It should be noted
that this polynomial vanishes exactly when (F (F (ω)∧u)∧ω) ∝ F (v∧u)∧v∧w
does, or in other words exactly at the Fq-points. We could show that it vanishes
simply at these points merely be a computation of degrees (knowing that we
have the Fermat curve), but instead we will show it directly as that will be use-
ful in our later examples, thus giving us another way of computing the degree
of C.

8



Considering a formal neighborhood of an Fq-point in C, we may compute
the polynomial in Equation (1) with u held constant. We would like to show
that the derivative is non-zero. This is clearly equivalent to showing that the
derivative of (F (F (ω) ∧ u) ∧ ω) is non-zero. Suppose for sake of contradiction
that it were zero. It is clear that F (ω) ∧ ω is identically 0. Note also that the
derivatives of F (F (ω) ∧ u) and F (ω) are both 0. Hence, this would mean that
F (F (ω) ∧ u) ∧ dω = F (ω) ∧ dω = 0. But since F (ω) and F (F (ω) ∧ u) span M ,
this can only happen if dω is proportional to ω, which means dω = 0 since we
are in a projective space. Hence, the polynomial in (1) vanishes exactly at the
Fq-points of C and with multiplicity 1. This proves that C is of degree q0 + 1.

Recall that the polynomial (ω, F (ω)) is identically 0 on C. Consider the
polynomial (ω, F (F(ω))). This polynomial is clearly Gσ invariant. Since the
divisor it defines has degree (q0 + 1)(q3

0 + 1), the polynomial cannot vanish on
any Gσ orbit other than the orbit of Fq-points. Furthermore, near an Fq-point,
ω0, this divisor agrees with (ω, F (F(ω0))) to order q3

0 . Since the former vanishes
to order at most q0+1, (ω, F (F(ω))) cannot vanish identically, and hence defines
the divisor with multiplicity q0 + 1 on each of the Fq-points. Note also that
since this polynomial agrees with (ω, F (F(ω0))) to order q3

0 , the polynomial
(ω, F (F(ω0))) vanishes only at ω = ω0 and to order q0 + 1 and nowhere else.

Next, consider the polynomial f =
(
ω, F (F2(ω))

)
. Note that if ω is de-

fined over Fq3 , that f(F(ω)) = (F(ω), F (ω)) = (F (ω), ω) = 0. Hence, the divi-
sor defined by f vanishes on the Fq3-points of C. Additionally, f agrees with
(ω, F (F(ω))) to order q3

0 on any Fq-point. Therefore f vanishes to order 1 on
the Fq3 -points, and order q0 +1 on the Fq-points. This accounts for the entirety
of the degree of the divisor so it therefore vanishes nowhere else.

Finally, consider the divisor defined by
(
ω, F (F3(ω))

)
. Similarly to above,

this must vanish on the Fq4 -points of C and to order exactly q0 + 1 on the
Fq-points. The remaining degree unaccounted for is

(q7
0 +1)(q0 +1)−(q3

0 +1)(q0 +1)−q3
0(q3

0 +1)(q0−1)(q0 +1) = q3
0(q0 +1)(q3

0−q0).

Since the remainder of the divisor is Gσ-invariant and cannot vanish on Fq-
points, the only orbit small enough is that of the Fq3-points. Hence, the re-
mainder of the divisor must be q0 times the sum of the Fq3-points. Hence(
ω, F (F3(ω))

)
vanishes to degree q0 + 1 on the Fq-points, to order q0 on the

Fq3-points, to order 1 on the Fq4-points, and nowhere else.
We now introduce several important polynomials. Let F3 = (ω, F (F(ω))) , F5 =(

ω, F (F2(ω))
)
, F7 =

(
ω, F (F3(ω))

)
. Let P1 = F

1/(q0+1)
3 . We know that such

a root exists since the (q0 + 1)st root of the divisor of F3 is the sum of the
Fq-points of C, and we know of polynomials with that divisor. Hence, P1 is a
polynomial whose divisor is the sum of the Fq-points of C. Let P3 = F5

F3
and

let P4 = F7

F3P
q0
3

. We know that these are polynomials (instead of just rational

functions) because their associated divisors are the sum of the Fq3-points and
the sum of the Fq4-points respectively.
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We claim that the following relation holds:

P4 − P q−q0+1
3 + aP

q30(q−1)
1 = 0 (2)

for some (q0 + 1)st root of unity a (in particular, it should be true for a = 1,
but we will not prove this here). We do this by showing that for a properly
chosen the above vanishes on the Fq4 -points of C and the Fq-points of C. Since
this is more points than allowed by the degree of the polynomial, it implies that

P4−P q−q0+1
3 + aP

q30(q0−1)
1 must vanish identically. To show that it vanishes on

the Fq4 -points, we show that for Q ∈ C an Fq4 -point that

P
q30+1
3 (Q) = P

q30(q−1)(q0+1)
1 (Q) = F

q50−q
3
0

3 (Q).

This is obviously equivalent to showing that

F
q30+1
5 (Q) = F

q50+1
3 (Q).

If Q corresponds to a vector ω ∈ V defined over Fq4 , we have that

F
q30+1
5 (Q) =

(
ω, F (F2(ω))

)
·
(
F (F(ω)),F4(ω)

)
=
(
ω, F (F2(ω))

)
· (ω, F (F(ω)))

= (ω, F (F(ω))) ·
(
F (F2(ω)),F4(ω)

)
= F

q50+1
3 (Q).

Next, we consider the Fq-point. We need to show that if Q ∈ C(Fq) that

P4(Q) = P q−q0+1
3 (Q).

Equivalently, we will show that

F7F
q
3 − F

q+1
5

vanishes to degree more than (q + 1)(q0 + 1) at Q. This is easy since if we
use our parameter ω with ω = ω0 at Q (where ω0 = F(ω0)), than up to order
q3
0 + q(q0 + 1) the above is

(ω, F (ω0)) · (ω, F (ω0))
q − (ω, F (ω0))

q+1
= 0.

This completes our proof of Equation (2).

4 The Curve Associated to 2B2

4.1 The Group B2 and its Representations

A form of B2 is Sp4. It has a natural representation on a four-dimensional
symplectic vector space V . The Borels of G correspond to complete flags
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0 ⊂ L ⊂ M ⊂ L⊥ ⊂ V where M is a lagrangian plane. We have another
representation W ⊂ Λ2V given as the kernel of the map Λ2V → F defined by
the alternating form on V . Equivalently, using the symplectic form to identify
Λ2V with Λ2V ∗, W is the subset consisting the 2-forms α so that α ∧ ω = 0,
where ω is the 2-form corresponding to the alternating form on V . In charac-
teristic 2, ω is contained in W , so we can take the quotient V ′ = W/〈ω〉.

4.2 A Canonical Definition of 2B2

We define the groupoid SymSp4 whose objects are symplectic spaces of dimen-
sion 4 over F = F2, and whose morphisms are symplectic linear transformations.
We will write objects of SymSp4 either as V or as (V, ω), where V is underlying
vector space and ω is the 2-form associated to the symplectic form.

To each object (V, ω) in SymSp4, we can pick a symplectic basis e0, e1, f0, f1

of V so that (ei, ej) = (fi, fj) = 0, (ei, fj) = δi,j . We next note that there is a
canonical volume form µ ∈ Λ4V . In any characteristic other than 2, we could
use µ = ω ∧ ω, but here ω ∧ ω = 0. We instead use µ = e0 ∧ e1 ∧ f0 ∧ f1. We
have to prove:

Lemma 4.2.1. µ = e0 ∧ e1 ∧ f0 ∧ f1 is independent of the choice of symplectic
basis.

Proof. Any two symplectic bases can be interchanged by some symplectic trans-
formation A : V → V . We need only show that det(A) = 1. Writing A in the
basis of our first symplectic basis and letting

J =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,
the statement that A is symplectic becomes J = AJAT . Therefore taking
determinants we find det(A)2 = 1, so det(A) = 1 (since we are in characteristic
2).

Next we note that for (V, ω) ∈ SymSp4, that we have a bilinear form on Λ2V
given by (α, β) = α∧β

µ . We note that this pairing is alternating since if eI is a

wedge of two 1-forms then clearly (eI , eI) = 0 and if α =
∑
I cIeI then

(α, α) =
∑
I,J

cIcJ (eI , eJ) =
∑
I

c2I (eI , eI) + 2
∑
I<J

cIcJ (eI , eJ) = 0.

This alternating form is inherited by the subquotient V ′ = ω⊥/〈ω〉 of Λ2V .
Lastly, we note that the pairing on V ′ is non-degenerate. This can be seen by
picking a symplectic basis, ei, fi, and noting that e0∧e1, e0∧f1, f0∧f1, e1∧f1 is a
symplectic basis for V ′. This allows us to define a functor ′ : SymSp4 → SymSp4

by V → V ′ as above.
We also have the functor Fr : SymSp4 → SymSp4 as in Section 2.
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We next define a natural transformation:

ρ : Fr⇒′′ .

To do this we must produce a Frobenius-linear map ρV : V → V ′′ for V ∈
SymSp4. We provide this by producing a (linear,Frobenius-linear), pairing V ′′×
V → F. We define this pairing on (α ∧ β, v) (for α, β ∈ Λ2V, v ∈ V ) by

(α ∧ β, v) = (iv(α), iv(β)) , (3)

where iv(α) comes from using the pairing to identify v with an element of V ∗

and taking the output of the natural map Λ2V × V ∗ → V . We note that the
function in Equation (3) thought of as a map from Λ2V ×Λ2V ×V → F is clearly
linear and anti-symmetric in α and β, and clearly homogeneous of degree 2 in
v. In order to show that it is well defined on V ′′ × V we need to demonstrate
that it vanishes if either α or β is a multiple of ω, that the map on Λ2V ′ × V
vanishes on the symplectic form of V ′, and that it is additive in v. The first of
these is true since

(iv(ω), iv(α)) = (v, iv(α)) = α(v∗, v∗) = 0.

Where v∗ is the dual of v, and the last equation holds since α is alternating.
Let ei, fi be a symplectic basis of V .

Note that we have a basis

{(e0∧e1)∧ (e0∧f1), (e0∧e1)∧ (e1∧f0), (e1∧f0)∧ (f0∧f1), (e0∧f1)∧ (f0∧f1)}

of V ′′. To prove that our function is additive in v, notice that it suffices to check
that

(iu(α), iv(β)) = (iv(α), iu(β))

for all u, v ∈ V . Hence it suffices to check the above for α = a ∧ b, β = a ∧ c for
a, b, c ∈ V and (a, b) = (a, c) = 0. In this case,

(iu(α), iv(β)) = (iu(a ∧ b), iv(a ∧ c))
= ((u, a) b+ (u, b) a, (v, a) c+ (v, c) a)

= (a, u) (a, v) (b, c) .

Since this is symmetric in u and v, the operator is additive.
Hence, we have a (linear,Frobenius − linear) function Λ2V ′ × V → F. To

show that it descends to a function V ′′ × V → F, it suffices to check that our
form vanishes on

(e0 ∧ e1) ∧ (f0 ∧ f1) + (e0 ∧ f1) ∧ (f0 ∧ e1),

which is clear from checking on basis vectors (in fact our form vanishes on each
term in the above sum) and by additivity.
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Finally, we need to show that ρV is symplectic. This can be done by picking
a symplectic basis and noting that by the above:

ρV ((e0 ∧ e1) ∧ (e0 ∧ f1)) = e0

ρV ((e0 ∧ e1) ∧ (e1 ∧ f0)) = e1

ρV ((e1 ∧ f0) ∧ (f0 ∧ f1)) = f0

ρV ((e0 ∧ f1) ∧ (f0 ∧ f1)) = f1.

It is clear that ρ defines a natural transformation.
Now given an F : V ′ → Fr−m(V ), we get an Fq-Frobenius F on V , and we

can now define σ : G→ G as in Section 2 so that σ2 = FR.

4.3 The Deligne-Lusztig Curve

We claim that the associated Deligne-Lusztig curve and the divisors vanishing
on its Fq,Fq4 , and Fq5 points are as follows:

Theorem 4.3.1. Given F as above, the Deligne-Lusztig curve embeds into
P(W ) as the set of points, α satisfying the relations requiring that

• The quadratic relation equivalent to α being a pure wedge of two vectors
(i.e. that it lies on the Grassmannian).

• The span of α, F (α) ∧ V must have dimension at most 3.

Giving a curve of degree q + 2q0 + 1 in P(W ).
On this curve define the polynomials

F2 =
(
α, F (F2(α))

)
,

F3 =
(
α, F (F3(α))

)
,

F4 =
(
α, F (F4(α))

)
.

Then letting

P1 = F
1/(q+2q0+1)
2 ,

P4 =
F3

F2
,

P5 =
F4

F2P
2q0
4

,

each of P1, P4, and P5 are polynomials where the divisor of Pi is the sum of all
of the Fqi points of the curve. Furthermore, given an appropriate root used to
define P1, we have that

P4 + P q−q0+1
3 + P

q30(q−1)
1 = 0.
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For simplicity, from here on out we will think of F as a Frobeniusm-linear
map from V ′ → V rather than a linear one from V ′ → Fr−m(V ).

We recall that for V ∈ SymSp4 that G = Sp4(V ) has Borel subgroups that
correspond to the data of a line L ⊂ V and a Lagrangian subspace M ⊂ V
so that L ⊂ M . The corresponding Borel, B is the set of elements g that fix
both L and M . The Deligne-Lusztig curve can be thought of as the set of Borel
subgroups, B, in the flag variety so that B and σ(B) fix the same line.

Consider the Borel subgroup B fixing the line 〈v〉 and the plane 〈v, w〉 with
(v, w) = 0. Notice that since (v, w) = 0 that ω ∧ v ∧ w = 0, and thus v ∧ w can
be thought of as a (necessarily non-zero) element of V ′. If g fixes 〈v, w〉, then g′

clearly fixes the line of v ∧ w. Hence F (v ∧ w) must be the line fixed by σ(B).
Given V and F as above, we define the Deligne-Lusztig curve C and produce

an embedding C ↪→ P(W ) by sending B to the line containing α = v∧w (recall
W ⊂ Λ2V was the orthogonal compliment of ω). This is an embedding since if
we pick a point in the image we have fixed both the plane fixed by B and the
line fixed by σ(B) (and hence also the line fixed by B since they are the same).
This embedding is smooth since all of the other coordinates of B, σ(B) can be
written as polynomials in α, yielding a polynomial inverse. Furthermore, this
embedding is given by a few simple equations. Namely:

• The quadratic relation equivalent to α being a pure wedge of two vectors
(i.e. that it lies on the Grassmannian).

• The span of α, F (α) ∧ V must have dimension at most 3.

The first condition guarantees that F (α) 6= 0. The second condition implies
that if we set v = F (α) that α = [v ∧ w] for some w. The fact that α ∈ W
implies that (v, w) = 0. Together these imply that we have a point of the image.

These equations also cut out the curve scheme-theoretically. We show this
for m > 0 by showing that the tangent space to the scheme defined by these
equations is one dimensional at every F-point. If we are at some point α,
we note that the derivative of F (α) is 0, so along any tangent line, dα must
lie in F (α) ∧ V . This restricts dα to a three-dimensional subspace of Λ2V .
Additionally, (ω, dα) must be zero, restricting to two dimensions. Finally, we
are reduced to one dimension when we project onto Λ2V/〈α〉, which is the
tangent space to projective space at α.

4.4 Divisors of Note

Let q = 22m+1. Let q0 = 2m. We wish to compute the degree of the above
embedding of C. We do this by producing a polynomial that exactly cuts out
the Fq-points of C and thus must be a divisor of degree q2 + 1. The Fq-points
are the points corresponding to Borel subgroups B so that B = σ(σ(B)). First,
we claim that these are exactly the Borels for which B = σ(B). This is because
B and σ(B) automatically fix the same line 〈v〉. If σ(B) and σ(σ(B)) fix the
same line then the 2-forms corresponding to the planes fixed by B and σ(B)
must by multiples of each-other modulo ω. But since ω cannot be written as
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a pure wedge of v with any vector, this implies that B and σ(B) must fix the
same plane, and hence be equal.

For any Borel B in C, we can pick v, w, u ∈ V so that B fixes the line L = 〈v〉,
the Lagrangian plane M = 〈v, w〉 and the space S = 〈v〉⊥ = 〈v, w, u〉. Notice
that for g ∈ B that g′ fixes the Lagrangian plane 〈v ∧ w, v ∧ u〉. Hence σ(B)
fixes the plane 〈F (v∧w), F (v∧u)〉. Since F (v∧w) is parallel to v, B = σ(B) if
and only if F (v∧u) lies in M . Note that since v∧w ⊥ v∧u in V ′ that F (v∧u)
must lie in S. We can then consider:( α

v ∧ w

)q−2q0+1
(
F (v ∧ u)/M

u/M

)
(u,w)

1−q0
(
F (v ∧ w)

v

)2q0−1

, (4)

where the second term above is the ratio of F (v ∧ u) and u as elements of S
modulo M . Note that the value in Expression (4) is independent of our choice
of v, w, u, is never infinite, is zero exactly when B = σ(B), and is homogenous of
degree q−2q0 +1 in α. Therefore it defines a polynomial of degree q−2q0 +1 in
our embedding that vanishes exactly on the Fq-points. We have left to show that
it vanishes to order 1 at these points. Consider picking a local coordinate around
an Fq-point of C and computing the derivative of Expression (4) with respect
to this local coordinate. Clearly, this derivative is some non-zero multiple of the
derivative of (

F (v ∧ u)/M

u/M

)
.

This can be rewritten as
F (v ∧ u) ∧ α

u ∧ α
.

So in addition to picking a local coordinate, z, for α we can pick local
coordinates for v, u as well. We can let v = F (α), and let u be a fixed vector
perpendicular to both v and dv/dz. Then for m > 0 we have that dF (v∧u)/dz =
0. Note that α must always be a pure wedge of F (α) with some perpendicular
vector. Since dF (α) = 0, dα must lie in 〈v ∧ w, v ∧ u〉. It cannot be parallel
to v ∧ w though since this is parallel to α. But, since F (v ∧ u) is in 〈v, w〉
and not parallel to v, this means that F (v ∧ u) ∧ dα is non-zero. Hence the
derivative of Expression (4) with respect to z at an Fq-point is non-zero, and
hence Expression (4) defines a divisor that is exactly the sum of the Fq-points
of C. Therefore the degree of our embedding must be:

q2 + 1

q − 2q0 + 1
= q + 2q0 + 1.

Note that the polynomial (α, α) is identically 0, where the pairing is as
elements of V ′.

Next, consider the polynomial (α,F(α)). We claim that this function is
identically zero on C. We prove this by contradiction. If it were non-zero it
would define a divisor of degree (q+1)(q+2q0+1) that would be clearly invariant
under the action of Gσ on C. On the other hand, the only orbit small enough to
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be covered by this is the orbit of the Fq-points, whose number does not divide
the necessary degree.

Next, consider the polynomial
(
α,F2(α)

)
. We claim that the divisor of this

polynomial is simply q+ 2q0 + 1 times the sum of the Fq-points of C. Again the
divisor must be Gσ invariant, and again the only orbit of small enough order
is the orbit of Fq-points. Hence, if the polynomial is not identically zero, it
must be the divisor specified. On the other hand, consider a local coordinate
α(z) around an Fq-point. Then this polynomial is equal to (α, α0) + O(zq

2

)
(α0 = α(0)). (α, α0) cannot vanish to degree more than q + 2q0 + 1 since it is
a degree 1 polynomial. Hence

(
α,F2(α)

)
vanishes to degree exactly q + 2q0 + 1

on each Fq-point and nowhere else. Furthermore, if β is the coordinate of an
Fq-point, then the degree 1 polynomial (α, β) vanishes at this point to degree
q + 2q0 + 1 and nowhere else.

Next, consider the polynomial
(
α,F3(α)

)
. This corresponds to a divisor

of degree (q3 + 1)(q + 2q0 + 1). Note that if β is the coordinate vector for
an Fq4-point of C that

(
β,F−1(β)

)
= 0. Since β = F4(β), this implies that(

β,F3(β)
)

= 0. Therefore, this divisor contains each of the Fq4 points. By the
above this divisor vanishes to degree exactly q + 2q0 + 1 on the Fq-points (and
is hence non-zero). We have just accounted for a total degree of

q2(q + 2q0 + 1)(q − 1) + (q2 + 1)(q + 2q0 + 1) = (q + 2q0 + 1)(q3 + 1),

thus accounting for all of the vanishing of the polynomial. Hence this polynomial
defines the divisor given by the sum of the Fq4-points plus (q + 2q0 + 1) times
the sum of the Fq-points.

Lastly, consider the divisor
(
α,F4(α)

)
. By the arguments above it vanishes

on the Fq5 -points and to degree exactly q + 2q0 + 1 on the Fq-points. We have
so far accounted for a divisor of total degree

q2(q2 + 1)(q− 1) + (q+ 2q0 + 1)(q2 + 1) = (q+ 2q0 + 1)(q4 − 2q0q
3 + 2q0q

2 + 1).

We are missing a divisor of degree (q + 2q0 + 1)q2(q − 1)2q0. This divisor must
be Gσ-invariant and cannot contain the orbit of Fq-points. Hence the only orbit
small enough is that of the Fq4-points, which can be taken 2q0 times. Hence
this polynomial defines the divisor equal to the sum of the Fq5-points plus 2q0

times the sum of the Fq4-points, plus q+2q0 +1 times the sum of the Fq-points.
Note that above we demonstrated that there was a polynomial that vanished

to degree 1 exactly on the Fq-points. Call this polynomial P1. Note that we

can choose P1 so that P q+2q0+1
1 =

(
α,F2(α)

)
. We also have polynomials P4 =

(α,F3(α))
(α,F2(α)) that vanishes to degree 1 on the Fq4 points and nowhere else. Finally

we have P5 =
(α,F4(α))

P
2q0
4 (α,F2(α))

that vanishes exactly on the Fq5-points. We claim

that if the correct root P1 is chosen that:

P
q2(q−1)
1 + P q−2q0+1

4 + P5 = 0.

We do this by demonstrating that this polynomial vanishes on all of the Fq5 -
points and all of the Fq-points, which is more than a polynomial of its degree
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should be able to. In fact, if we obtained F by starting with an F̃ : V ′ → V ,
yielding an F2-structure on V and obtaining F = F̃ ◦ (F̃′)m, everything can
actually be defined over F2, and in this case the correct choice of P1 will have
to be the one given in Expression (4).

We begin by showing vanishing on the Fq5-points. We first show that(
α,F2(α)

)q2(q−1)
= P q

2+1
4 on the Fq5 -points. We then note that by taking

P1 to be an appropriate root of
(
α,F2(α)

)
we can cause P

q2(q−1)
1 +P q−2q0+1

4 to
vanish on some Fq5-point. But then we note that P1 is a multiple of the quantity

in Expression (4), which is clearly Gσ invariant, and hence P
q2(q−1)
1 +P q−2q0+1

4

must vanish on all Fq5-points.

Let α be an Fq5-point. We wish to show that
(
α,F2(α)

)q2(q−1)
= P q

2+1
4 (α).

This is equivalent to asking that(
α,F2(α)

)q3+1
=
(
α,F3(α)

)q2+1
.

But this is clear since(
α,F2(α)

)q3+1
=
(
α,F2(α)

)q3 (
α,F2(α)

)
=
(
F3(α),F5(α)

) (
α,F2(α)

)
=
(
α,F3(α)

) (
F5(α),F2(α)

)
=
(
α,F3(α)

) (
α,F3(α)

)q2
=
(
α,F3(α)

)q2+1
.

Next, we need to show that at an Fq-point that P4(α)q−2q0+1 = P5(α). This
is equivalent to showing that((

α,F3(α)
)

(α,F2(α))

)q+1

=

(
α,F4(α)

)
(α,F2(α))

.

Equivalently, we will show that(
α,F3(α)

)q+1
+
(
α,F4(α)

) (
α,F2(α)

)q
vanishes to degree more than (q + 1)(q + 2q0 + 1) on an Fq-point. The above is
equal to (

F(α),F4(α)
) (
α,F3(α)

)
+
(
α,F4(α)

) (
F(α),F3(α)

)
.

Setting α = β + z, where β is defined over Fq,(
F(α),F4(α)

) (
α,F3(α)

)
+
(
α,F4(α)

) (
F(α),F3(α)

)
= (β + zq, β) (β + z, β) + (β + z, β) (β + zq, β) +O(zq

3

)

= (zq, β) (z, β) + (z, β) (zq, β) +O(zq
3

)

=O(zq
3

).

This completes the proof of our identity.
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5 The Curve Associated to 2G2

5.1 Description of 2G2 and its Representations

We begin by describing the group G2. G2 can be thought of as the group of
automorphisms of an octonian algebra. This non-associative algebra can be
given by generators ai for i ∈ Z/7 where the multiplication for ai, ai+1, ai+3

is given by the relations for the quaternions for i, j, k. The octonians have a
natural conjugation which sends ai to −ai and 1 to 1. Instead of thinking of
the automorphisms of the entire octonian algebra, we will think about the auto-
morphisms of the space of pure imaginary octonians (which must be preserved
by any automorphism since they are the non-central elements whose squares
are central). There are two pieces of structure on the pure imaginary octonians
that allow one to reconstruct the full algebra. Firstly, there is a non-degenerate,
symmetric pairing (x, y) given by the real part of x · y. Also there is an anti-
symmetric, bilinear operator x ∗ y which is the imaginary part of x · y. There is
also an anti-symmetric cubic form given by (x, y, z) is the real part of x · (y · z),
or (x, y ∗ z).

These pieces of structure are not unrelated. In particular, since any two
octonians x, y satisfy x(xy) = (xx)y we have for x and y pure imaginary that

(x, x) y = x ∗ (x ∗ y) + x (x, y)

or
x ∗ (x ∗ y) = (x, x) y − (x, y)x.

Therefore (x, x) is the eigenvalue of y → x ∗ (x ∗ y) on a dimension 6 subspace.
Hence (−,−) is determined by ∗.

Hence G has a 7 dimensional representation on V , the pure imaginary oc-
tonians. The Borels of G fix a flag 0 ⊂ L ⊂ M ⊂ S ⊂ S⊥ ⊂ M⊥ ⊂ L⊥ ⊂ V .
Where here we have that (M,M) = 0, M ∗M = 0, S = L⊥ ∗ L. Also Λ2V has
a subrepresentation W of dimension 14 given by the kernel of ∗ : Λ2V → V .
As we shall see, in characteristic 3, W ⊃ W⊥ thus giving a 7 dimensional
representation V ′ = W/W⊥.

5.2 Definition of σ

A property of note is that in characteristic 3, ∗ makes the pure imaginary
octonians into a Lie Algebra. The Jacobi identity is easily checked on generators.
We now let F = F3. We define O to be the groupoid of Lie Algebras isomorphic
to the pure imaginary octonians over F with the operation ∗. We claim that for
V ∈ O that the Lie Algebra of outer derivations of V is another Lie Algebra
in O (this is not too hard to check using the standard basis). This obviously
defines a functor ′ : O→ O.

We will discuss a little bit of the structure of these outer derivations. First
note that since a derivation is the differential of an automorphism, and since an
automorphism must preserve (−,−), that these derivations must be alternating
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linear operators. This means that we can think of the derivations of V as lying
inside of Λ2V . It is not hard to check that a0∧a1 +a2∧a5 defines a derivation.
From symmetry and the fact that the dimension of the space of derivations is the
dimension of G2, which is 14, we find that the space of all derivations must be
W = ker(∗ : Λ2V → V ). It is not hard to see that the space of inner derivations
is equal to W⊥ ⊂ W . Hence V ′ = W/W⊥ is isomorphic to the space of outer
derivations.

We will need to know something about the structure of the operator ad(x) :
V → V when x ∈ V has (x, x) = 0 in characteristic 3. Since ad(x)(ad(x)(y)) =
x (x, y) we know that ad(x)2 has a kernel of dimension 6. Therefore, ad(x) has
a kernel of dimension at least 3. We claim that the dimension of this kernel is
exactly 3. Suppose that x ∗ y = 0. By the above this implies that (x, y) = 0.
Hence, as octonians, it must be the case that x · y = 0. This means that if Nm
is the multiplicative norm on the octonians and if we take lifts x, y of x and y to
the rational octonians, that Nm(x · y) is a multiple of 9. Since we can choose x
so that Nm(x) is not a multiple of 9, Nm(y) is a multiple of 3. Hence (y, y) = 0.
Hence ker(ad(x)) is a null-plane for (−,−), and hence cannot have dimension
more than 3. Notice that this implies that ker(ad(x)) = ad(x)(〈x〉⊥).

As before we have a functor Fr : O→ O.
Once again our definition of 2G2 will depend upon finding a natural trans-

formation between ′′ and Fr. This time, we will find a natural equivalence in
the other direction (since the inverse will be easier to write down). We will find
a natural transformation ρ : Fr⇒′′. This amounts to finding a Frobenius-linear
isomorphism from V to V ′′. The basic idea will be to think of a derivation of V
as the differential of an automorphism. In particular, given a derivation d, we
can find an element 1 + εd+O(ε2) of End(V )[[ε]] that is an automorphism of V .

Let x ∈ V and let d be a derivation of V . We let ex be an automorphism
of the form 1 + εad(x) + ε2/2ad(x)2 + O(ε3), and let ed be an automorphism
of the form 1 + δd + O(δ2). We claim that the commutator of ex and ed is
1 + (inner derivations) + ε3δr + O(ε4δ) where the O assumes that δ � ε and
where r is some derivation of V . We claim that this defines a map (ρV (x))(d) = r
so that ρV (x) gives a well-defined outer automorphism of V ′, and that ρV : V →
V ′′ is Frobenius-linear. We prove this in a number of steps below.

Claim 1. The commutator [ex, ed] is of the form specified, namely

1 + (inner derivations) + ε3δr +O(ε4δ)

for some derivation r.

Proof. We note that any pure ε or pure δ terms must vanish from the commu-
tator, leaving only terms involving both ε and δ. To compute the terms of size
at least ε2δ, we compute

(1 + εad(x) + ε2/2ad2(x))(1 + δd) · (1− εad(x) + ε2/2ad2(x))(1− δd)

=1 + εδad(d(x)) + ε2δ(ad(x ∗ (d(x))/2)) +O(ε3δ).
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So the εδ and ε2δ terms are inner derivations. The ε3δ term must also be a
derivation since if we write this automorphism as 1 + a(ε)δ + O(δ2) it follows
that a(ε) must be a derivation, and in particular that the ε3 term of a is a
derivation.

Claim 2. Given ex and d, r does not depend on the choice of ed. In particular,
given a derivation d of V and an automorphism ex ∈ End(V )[[ε]], we obtain a
well-defined r ∈ V ′.

Proof. d defines ed up to O(δ2), and therefore [ex, ed] is defined up to O(δ2).

Claim 3. For fixed ex ∈ End(V )[[ε]], the corresponding map d→ r descends to
a well defined linear map V ′ → V ′.

Proof. It is clear that this produces a linear map from Der(V )→ V ′. If d is an
inner derivation, ad(y) then the resulting product is

exp(δad(ex(y))) exp(−δad(y)) +O(δ3) = 1 + δad(ex(y)− y) +O(δ2).

So r is an inner derivation. Hence this descends to a map from V ′ to V ′.

Claim 4. Given x ∈ V and two possible automorphisms ex, e
′
x ∈ End(V )[[ε]] of

the form specified, ex and e′x define maps V ′ → V ′ that differ by an inner deriva-
tion of V ′. Hence, we have a well-defined map ρ : V → End(V ′)/InDer(V ′).

Proof. Note that ex − e′x must be of the form ε3f + O(ε4) for some derivation
f . It is then not hard to check that the corresponding maps V ′ → V ′ differ by
the inner derivation d→ [ad(f), d].

Claim 5. Let x ∈ V , ex ∈ End(V )[[ε]] as above, y ∈ V [[ε1/n]] with y = o(ε),
and ey = 1 + ad(y) + ad2(y)/2 + o(ε3) an automorphism. Then if we compute
the above map V ′ → V ′ by taking the commutator of ed with eyex instead of ex,
we obtain the same element of End(V ′).

Proof. This is because

eyexede
−1
x e−1

y e−1
d = (ey(exede

−1
x e−1

d )e−1
y )(eyede

−1
y e−1

d ).

The first term above is 1 + ε3δr+ o(ε3δ) up to inner derivations, and the latter
is 1 + o(ε3δ) up to inner derivations.

Claim 6. The map ρ : V → End(V ′)/InDer(V ′) is Frobenius-linear.

Proof. It is clear that the map x, d → r is homogeneous of degree 3 in x. We
need to show that it is additive in x. By the previous claim, we may substitute
exey for ex+y when computing the image of x+y. Additivity follows immediately
from the identity

eyexede
−1
x e−1

y e−1
d = (ey(exede

−1
x e−1

d )e−1
y )(eyede

−1
y e−1

d ).

20



Claim 7. For x ∈ V with (x, x) = 0, (ρ(x))(d) = ad(x)ad(d(x))ad(x).

Proof. First we claim that we may perform our computation using ex of the
form ex = 1 + εad(x) + ε2/2ad2(x) + O(ε4). To show this, it suffices to check
that this ex in an automorphism modulo ε4. This holds because

(y + εx ∗ y − ε2x ∗ (x ∗ y)) ∗ (z + εx ∗ z − ε2x ∗ (x ∗ z))
=(y + εx ∗ y − ε2 (x, y)x) ∗ (z + εx ∗ z − ε2 (x, z)x)

=(y ∗ z + ε((x ∗ y) ∗ z + y ∗ (x ∗ z))
+ ε2(−(x ∗ (x ∗ y)) ∗ z + (x ∗ y) ∗ (x ∗ z)− y ∗ (x ∗ (x ∗ z)))
+ ε3(− (x, z) (x ∗ y) ∗ x− (x, y)x ∗ (x ∗ z)) +O(ε4))

=(y ∗ z + ε(x ∗ (y ∗ z))− ε2(x ∗ (x ∗ (y ∗ z))) + ε3((x, z) (x, y)x− (x, y) (x, z)x) +O(ε4))

=(y ∗ z + ε(x ∗ (y ∗ z))− ε2(x ∗ (x ∗ (y ∗ z))) +O(ε4)).

Using the ex above, we get that

exede
−1
x e−1

d

=(1 + εad(x)− ε2ad2(x) +O(ε4))(1 + δd+O(δ2))

· (1− εad(x)− ε2ad2(x) +O(ε4))(1− δd+O(δ2))

=1 + εδad(d(x)) + ε2δ(−ad(x ∗ d(x)))

+ ε3δ(−ad(x)dad2(x) + ad2(x)dad(x)) + o(ε3δ).

Hence,

r = −ad(x)dad2(x)+ad2(x)dad(x) = ad(x)[ad(x), d]ad(x) = ad(x)ad(d(x))ad(x).

Claim 8. For x ∈ V with (x, x) = 0, the above map ρ(x) : V ′ → V ′ defined by

d→ ad(x)ad(d(x))ad(x)

is a derivation.

Proof. Note that for d, e ∈ V ′,

[(ρ(x))(d), e] + [d, (ρ(x))(e)]

=− ad(e(x))ad(d(x))ad(x)− ad(x)ad(e(d(x)))ad(x)− ad(x)ad(d(x))ad(e(x))

+ ad(d(x))ad(e(x))ad(x) + ad(x)ad(d(e(x)))ad(x) + ad(x)ad(e(x))ad(d(x))

=ad(x)ad([d, e](x))ad(x) + [ad(d(x)), ad(e(x))]ad(x)− ad(x)[ad(d(x)), ad(e(x))]

=(ρ(x))([d, e]) + [ad([d(x), e(x)]), ad(x)]

=(ρ(x))([d, e]) + ad([[d(x), e(x)], x]).

Which is (ρ(x))([d, e]) up to an inner derivation.
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Claim 9. The map ρ : V → End(V ′)/InDer(V ′) gives a Frobenius linear map
V → V ′′.

Proof. We already have that the map is Frobenius-linear. Furthermore, the
above claim implies that the image is a derivation of V ′ as long as (x, x) = 0.
Since such vectors span V we have by linearity that the image lies entirely in
Der(V ). Hence we have a map V → Der(V ′)/InDer(V ′) = V ′′.

Claim 10. The map ρ : V → V ′′ is a map of Lie Algebras.

Proof. We need to show that ρ(x∗y) = ρ(x)∗ρ(y). We note that by Claim 5 that
we may substitute [ex, ey] (with ε replaced by ε1/2) for ex∗y in our computation
of ρ(x ∗ y). Equivalently, we map compute (ρ(x ∗ y))(d) as the ε6δ term of
[[ex, ey], ed]. We note that

[[ex, ey], ed] = e−1
y e−1

x eyexede
−1
x e−1

y exeye
−1
d

Is conjugate to
eyexede

−1
x e−1

y exeye
−1
d e−1

y e−1
x .

This conjugation by exey should not effect our final output since it should send
inner derivations to inner derivations and not modify our ε6δ term by more than
O(ε7δ). The above equals

ey(x(d))ey(d)ex(d)ede
−1
x(y(d))e

−1
x(d)e

−1
y(d)e

−1
d

where

ex(d) = exede
−1
x e−1

d

ey(d) = eyede
−1
y e−1

d

ex(y(d)) = exey(d)e
−1
x e−1

y(d)

ey(x(d)) = eyex(d)e
−1
y e−1

x(d).

Since these are each 1 +O(δ), they commute modulo δ2, and hence modulo δ2,
the above is

ey(x(d))e
−1
x(y(d)).

Up to inner derivations this is

1 + ε6δ((ρV (y))((ρV (x))(d))− (ρV (x))((ρV (y))(d))) + o(ε6δ).

Hence ρV (x ∗ y) = ρV (x) ∗ ρV (y) as desired.

As in the previous case, if we have a V ∈ O and a Frobeniusm-linear map
F : V ′ → V , we can define F : V → V a Frobenius2m+1-linear map thus
giving V a F32m+1-structure. We can then construct an endomorphism σ of
G2(V ) = Aut(V ) by Fr−m(σ(g)) ◦ F = F ◦ g′, so that σ2 = FR.
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5.3 The Deligne-Lusztig Curve

We claim that the associated Deligne-Lusztig curve and the divisors vanishing
on its Fq,Fq6 , and Fq7 points are as follows:

Theorem 5.3.1. Given F as above, the Deligne-Lusztig curve embeds into
P(W ) as the set of points, ω satisfying the relations requiring that

• The relations that tell us that ω is a rank 2 tensor. Note that these are
the relations used to define the Plucker embedding of a Grassmannian.

• The relation (ω, ω) = 0

• The relations that tell us that 〈ω, F (ω) ∧ V 〉 has dimension at most 6.

Giving a curve of degree (q + 1)(q + 3q0 + 1) in P(W ).
On this curve define the polynomials

F3 =
(
ω, F (F3(ω))

)
,

F4 =
(
ω, F (F4(ω))

)
,

F5 =
(
ω, F (F5(ω))

)
.

Then letting

P1 = F
1/(q+1)(q+3q0+1)
3 ,

P6 =
F4

F3
,

P7 =
F5

F3P
3q0
6

,

each of P1, P6, and P7 are polynomials where the divisor of Pi is the sum of all
of the Fqi points of the curve. Furthermore, given an appropriate root used to
define P1, we have that

P7 − P q−q0+1
6 + P

q30(q−1)
1 = 0.

Before we can construct the Deligne-Lusztig curve we need to understand
the Borel subgroups of G. Given V ∈ O we can consider the algebraic group
G = Aut(V ). We consider B a Borel subgroup of G. B is determined by
a line L = 〈x〉 and a plane M = 〈x, y〉 ⊃ L that are fixed by it. These
have the property that both (−,−) and ∗ are trivial on both L and M . So
(x, x) = (x, y) = (y, y) = 0, x ∗ y = 0. B will also fix a 3 dimensional space
S = 〈x, y, z〉 = ker(ad(x)) ⊃ M . Given a Borel B of G, there should be
a corresponding Borel B′ of G′ = Aut(V ′) by applying ′ to each element of
B. Letting W = ker(∗ : Λ2V → V ), we recall that V ′ = W/W⊥. We note
that if g ∈ B that g′ must fix the line containing x ∧ y ∈ W . Note that
(x ∧ y, x ∧ y) = 0. Furthermore x∧y cannot be an inner automorphism because
ad(a) has rank 6 if (a, a) 6= 0 and rank 4 if (a, a) = 0 while x ∧ y has rank
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2. Therefore g′ fixes the line generated by x ∧ y in V ′. B′ also fixes the plane
〈x∧ y, x∧ z〉. This is of the type described because (x∧ y) ∗ (x∧ z)(a) = 0 since
(x ∧ z)(a) ∈ 〈x, z〉 and both x and y are perpendicular to x and z. This means
that if B is the Borel fixing L and M , then σ(B) is the Borel fixing F (〈x ∧ y〉)
and F (〈x ∧ y, x ∧ z〉).

The Deligne-Lusztig curve C is the set of Borels B so that B and σ(B) fix
the same line. We can produce an explicit embedding C ↪→ P(W ) by sending B
to the line of ω = x ∧ y. We claim that this embedding gives the curve defined
by the following relations:

• The relations that tell us that ω is a rank 2 tensor, and hence a pure wedge
of two elements of V . Note that these are the relations used to define the
Plucker embedding of a Grassmannian.

• The relation (ω, ω) = 0

• The relations that tell us that 〈ω, F (ω) ∧ V 〉 has dimension at most 6.

These are clearly satisfied for points in the image of our embedding. They also
cut them out set-theoretically. The first relation guarantees that ω represents a
non-zero element of V ′. Let x = F (ω) 6= 0. The third relation guarantees that
ω = x∧ y for some y. Since ω ∈W , we have that x ∗ y = 0. The second relation
implies that (x, x) = 0. Hence we have the Borel B that fixes 〈x〉 and 〈x, y〉 the
unique Borel subgroup so that x∧ y is parallel to ω. This embedding is smooth
because the coordinates of the flag variety can all be written as polynomials in
ω for points on C.

These equations also cut out the curve scheme-theoretically. We show this
for m > 0 by showing that the tangent space to the scheme defined by these
equations is one dimensional at every F-point. Suppose that we are at some point
on C with projective coordinate ω. We wish to consider the space of possible
vectors dω in the tangent space. Note that dF (ω) = 0 and that therefore, dω
must lie in the six dimensional space defined by F (ω) ∧ V . We must also have
∗(dω) = 0 so dω must lie in F (ω) ∧ (ker(ad(F (ω)))). Since (F (ω), F (ω)) = 0,
(ker(ad(F (ω)))) is three dimensional. Since (ker(ad(F (ω)))) contains F (ω),
F (ω) ∧ (ker(ad(F (ω)))) is two dimensional. Finally when we project down to
the tangent space to P(Λ2V ) at this point (which is Λ2(V )/〈ω〉), we are left
with a one-dimensional tangent space.

5.4 Divisors of Note

We begin with some preliminaries. Let C be the Deligne-Lusztig curve corre-
sponding to 2G2 defined over the field F32m+1 . Let q0 = 3m. Let q = 3q2

0 =
32m+1. Let q− = q− 3q0 + 1 and q+ = q+ 3q0 + 1. Note that q−q+ = q2− q+ 1.
We let G = G2 with an endomorphism σ. We note that C admits a natural Gσ

action. We will be considering the projective model of C described above with
parameter ω.

We first want to compute the degree of this embedding. We do this by
finding a polynomial that vanishes exactly at the Fq points. We will think of

24



F as a Frobeniusm-linear map V ′ → V . If B is the Borel fixing the line, plane
and space L = 〈x〉, P = 〈x, y〉, S = 〈x, y, z〉, σ(B) fixes the line and plane
〈F (x ∧ y)〉, 〈F (x ∧ y), F (x ∧ z)〉. For B to correspond to a point on C, then
we must have that F (x ∧ y) is a multiple of x. B is defined over Fq if and
only if B = σ(σ(B)). We claim that this happens if and only if B = σ(B).
The if direction is clear. For only if, note that if B = σ(σ(B)), B, σ(B)
and σ(σ(B)) must all fix the same line. Therefore F (x ∧ y) is a multiple of
F (F (x ∧ y) ∧ F (x ∧ z)), which is a multiple of F (x ∧ F (x ∧ z)). This happens
if and only if F (x ∧ z) is in the span of x and y, which in turn implies that
B = σ(B). So in fact, B ∈ C is an Fq-point if and only if F (x ∧ z) is in the
plane of x and y.

Notice that since (x ∧ y) ∗ (x ∧ z) = 0 that 0 = F (x ∧ y) ∗ F (x ∧ z) =
x∗F (x∧ z). Therefore F (x∧ z) is in the span of x, y, z. Therefore we have that
(F (x∧z)∧x)∧(x∧y) is always a multiple of (x∧y)∧(x∧z) in V ′′. Furthermore
this multiple is 0 if and only if the point is defined over Fq. We next claim that
ρV (x) is a (non-zero) multiple of (x ∧ y) ∧ (x ∧ z). This is equivalent to saying
that (ρV (x))(V ′) is in the span of x∧ y and x∧ z. This in turn is equivalent to
saying that the image ((ρV (x))(V ′))(V ) is contained in the span of x, y and z.
But note that 〈x, y, z〉 = ker(ad(x)). Furthermore, by claim 7,

x ∗ ((ρV (x))(d))(a) = x ∗ (x ∗ (d(x) ∗ (x ∗ a))) = (x, d(x) ∗ (x ∗ a))x.

We need to show that (x, d(x) ∗ (x ∗ a)) = 0. This is the cubic form applied
to x, d(x), (x ∗ a). Hence this is − (d(x), x ∗ (x ∗ a)) = − (d(x), (x, a)x) =
− (x, a) (d(x), x) = 0 since d must be an anti-symmetric linear operator. Hence
ρV (x) is a multiple of (x ∧ y) ∧ (x ∧ z).

We now consider the polynomial

[(F (ω) ∧ (F (F (ω) ∧ z))) ∧ ω]⊗ [ρV (F (ω))]⊗(q0−1)

[ω ∧ (F (ω) ∧ z)]⊗q0
. (5)

Both numerator and denominator are elements of the qth0 tensor power of the
space of multiples of (x∧ y)∧ (x∧ z). Note that each of numerator and denom-
inator are proportional to the qth0 power of z as an element of S/M . Therefore
the number produced is independent of the choice of z. The ω-degree of the
above is:

[q0 +q2
0 +1]+(q0−1)[3q0]−q0[q0 +1] = q0 +q2

0 +1+q−3q0−q2
0−q0 = q−3q0 +1.

The polynomial in Equation (5) clearly vanishes exactly when F (x ∧ z) is in
M , or on points defined over Fq. We claim that it vanishes to degree 1 on such
points (at least for m > 0). Consider a local coordinate around such a point.
Since m > 0 the derivative of F (ω) is 0. Hence we can consider the above with
z so that dz = 0. We wish to show that the derivative of the above polynomial
is non-zero at such a point. To do so it suffices to show that the derivative
of (F (ω) ∧ (F (F (ω) ∧ z))) ∧ ω is non-zero. But it should be noted that the
derivative of (F (ω) ∧ (F (F (ω) ∧ z))) is 0. Hence as ω varies, the wedge has
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non-zero derivative. This completes the proof. Therefore this polynomial of
degree q− defines a divisor of degree q3 + 1. Hence our embedding must be of
degree q+(q + 1).

We next consider the divisor defined by the polynomial (ω,F(ω)). This
defines a divisor of degree (q + 1)2q+. This divisor is clearly Gσ-invariant. On
the other hand the degree is too small to contain any orbits except for the orbit
of Fq-points. Unfortunately, the size of this orbit does not divide the degree of
this divisor. Therefore (ω,F(ω)) must vanish on C. Similarly

(
ω,F2(ω)

)
must

vanish on C.
Consider the polynomial

(
ω,F3(ω)

)
. We claim that this vanishes to degree

exactly q+(q + 1) on the Fq-points of C and nowhere else. For the former,
consider an Fq-point ω = ω0. Then near this point

(
ω,F3(ω)

)
agrees with (ω, ω0)

to degree q3. Since the latter cannot vanish to degree more than q+(q+1), being
a degree 1 polynomial, this means that

(
ω,F3(ω)

)
cannot vanish identically.

Since it is Gσ-invariant, but of too small a degree to contain any orbit but that
of the Fq-points, it must vanish to degree n on each Fq-point for some n and
nowhere else. Comparing degrees yields n = q+(q + 1). Note also that this
implies that the polynomial (ω, ω0) vanishes at the point defined by ω0 with
multiplicity q+(q + 1) and nowhere else.

Next, consider the polynomial
(
ω,F4(ω)

)
. This vanishes on the Fq6-points

of C. This is because for such points,

F2(
(
ω,F4(ω)

)
) =

(
F2(ω),F6(ω)

)
=
(
F2(ω), ω

)
= 0.

Furthermore, this polynomial agrees with
(
ω,F3(ω)

)
to order q3 on the Fq-

points. Therefore this polynomial vanishes to degree 1 on the Fq6-points and
degree q+(q+1) on the Fq-points. By degree counting, it vanishes nowhere else.

Lastly, consider the polynomial
(
ω,F5(ω)

)
. Analogously to the above this

vanishes on the Fq7-points and to degree exactly q+(q + 1) on the Fq-points.
The remaining degree is

q+(q + 1)(q5 + 1)− q3(q + 1)q+q−(q − 1)− (q3 + 1)q+(q + 1)

=q+(q + 1)(q5 + 1− q3 − 1− q5 + 3q0q
4 − 3q0q

3 + q3)

=q+(q + 1)(3q0q
4 − 3q0q

3).

Since the remainder of this divisor is Gσ-invariant and the only orbit small
enough to fit is the orbit of Fq6-points, this polynomial must vanish to degree 1
on the Fq7-points, to degree 3q0 on the Fq6-points, and to degree q+(q + 1) on
the Fq-points.

We have several polynomials of interest. F3 :=
(
ω,F3(ω)

)
, F4 :=

(
ω,F4(ω)

)
,

and F5 :=
(
ω,F5(ω)

)
. We also have the polynomials that vanish exactly at the

Fqn -points. P1 := F
1

q+(q+1)

3 , P6 := F4

F3
, P7 := F5

F3P
3q0
6

. We note that these are all

polynomials (P1 as above is defined only up to a q+(q + 1)st root of unity but
could be taken, for example, to be the Polynomial in Equation (5)). We claim
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that if the correct root is taken in the choice of P1, then we have that

P
q3(q−1)
1 + P

q−
6 − P7 = 0. (6)

Or unequivocally,

F
q3(q−1)
3 = (P

q−
6 − P7)q+(q+1).

We prove Equation (6) by showing that for proper choice of P1, that this
polynomial vanishes at all of the Fq7-points and all of the Fq-points. Since
this will be more points than the degree of the polynomial would allow, the
polynomial must vanish on C.

For the Fq7-points, it will suffice to show that F
q3(q−1)
3 (Q) = P

q−q+(q+1)
6 (Q) =(

F4(Q)
F3(Q)

)q3+1

for Q a Fq7-point. For this it suffices to show that F q
4+1

3 (Q) =

F q
3+1

4 (Q). But we have that

F q
4+1

3 (Q) =
(
ω,F3(ω)

)q4 (
ω,F3(ω)

)
=
(
F4(ω),F7(ω)

) (
ω,F3(ω)

)
=
(
F4(ω), ω

) (
F7(ω),F3(ω)

)
=
(
ω,F4(ω)

)q3 (
ω,F4(ω)

)
= F q

3+1
4 (Q).

For the Fq-points we show that P
q−
6 (Q) = P7(Q) = F5(Q)

F3(Q)P
3q0
6 (Q)

for Q and

Fq-point of C. This is equivalent to showing that(
F4(Q)

F3(Q)

)q+1

= P q+1
6 (Q) =

F5(Q)

F3(Q)
.

To do this we will show that the polynomials F q+1
4 and F5F

q
3 agree to order

more than q+(q + 1)2. But this follows immediately from the fact that each of
these polynomials is a product of q + 1 of the Fi which are in turn polynomials
that

• Vanish to order q+(q + 1) at Q

• Agree with F3 to order q3 at Q

This completes our proof of Equation (6).
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