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Cywiński, without whom I would not have the courage to undertake many things

I have completed.

Throughout the course of my graduate studies I was supported by the Center

for Theoretical Biological Physics through National Science Foundation Grants

PHY0216576 and PHY0225630.

The text and data of Chapter 4, in full, has been published in ”Self-regulating

gene: an exact solution” by J. E. M. Hornos, D. Schultz, G. C. P. Innocentini, J.

Wang, A. M. Walczak, J. N. Onuchic and P. G. Wolynes in Phys. Rev. E (72),

051907-1-5, (2005). The dissertation author was a contributing investigator and

author of this article.

The text and data of Chapter 5, in full, has been published in ”Self-Consistent

Proteomic Field Theory of Stochastic Gene Switches” by A. M. Walczak, M. Sasai,

P.G. Wolynes in Biophys. J. (88), 828-850 (2005). The dissertation author was

the primary investigator and author of this article.

The text and data of Chapter 6, in full, has been published in ”Absolute rate

theories of epigenetic stability” by A. M. Walczak, J. N. Onuchic and P. G. Wolynes

in Proc. Natl. Acad. Sci. USA (102), 18926, (2005). The dissertation author was

the primary investigator and author of this article.

xi



VITA

May 22, 1979 Born, Szczecin, Poland

2002 Master of Science in Physics
Warsaw University, Warsaw, Poland

2002-2003 Teaching Assistant, Department of Physics
University of California, San Diego

2003-2007 Research Assistant, Department of Physics
University of California, San Diego

2007 Doctor of Philosophy
University of California, San Diego

PUBLICATIONS

A. M. Walczak, J. N. Onuchic and P. G. Wolynes, ”Absolute rate theories of
epigenetic stability”, Proc. Natl. Acad. Sci. USA (102), 18926, (2005)

J. E. M. Hornos, D. Schultz, G. C. P. Innocentini, J. Wang, A. M. Walczak, J. N.
Onuchic and P. G. Wolynes, ”Self-regulating gene: an exact solution”, Phys. Rev.
E (72), 051907-1-5, (2005)

A. M. Walczak, M. Sasai, P.G. Wolynes, ”Self-Consistent Proteomic Field Theory
of Stochastic Gene Switches”, Biophys. J. (88), 828-850 (2005)

FIELDS OF STUDY

Major Field: Physics
Theoretical studies in biological physics.
Professor Peter G. Wolynes, University of California, San Diego

xii



ABSTRACT OF THE DISSERTATION

Many Body Theory of Stochastic Gene Expression

by

Aleksandra M Walczak

Doctor of Philosophy in Physics

University of California, San Diego, 2007

Professor Peter G Wolynes, Chair

The regulation of expression states of genes in cells is a stochastic process. The

relatively small numbers of protein molecules of a given type present in the cell

and the nonlinear nature of chemical reactions result in behaviours, which are hard

to anticipate without an appropriate mathematical development. In this disser-

tation, I develop theoretical approaches based on methods of statistical physics

and many-body theory, in which protein and operator state dynamics are treated

stochastically and on an equal footing. This development allows me to study the

general principles of how noise arising on different levels of the regulatory system

affects the complex collective characteristics of systems observed experimentally.

I discuss simple models and approximations, which allow for, at least some,

analytical progress in these problems. These have allowed us to understand how the

operator state fluctuations may influence the steady state properties and lifetimes

of attractors of simple gene systems. I show, that for fast binding and unbinding

from the DNA, the operator state may be taken to be in equilibrium for highly

cooperative binding, when predicting steady state properties as is traditionally

done. Nevertheless, if proteins are produced in bursts, the DNA binding state

fluctuations must be taken into account explicitly. Furthermore, even when the

steady state probability distributions are weakly influenced by the operator state

fluctuations, the escape rate in biologically relevant regimes strongly depends on

transcription factor-DNA binding rates.

xiii
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Introduction

The discovery of the double helix structure of the DNA [1] built a base for great

progress in our understanding of genetics. Finally, genes were not just abstract

units, but could be associated with a sequence of base pairs - a functional subunit

of DNA, which coded for a specific protein. The mapping of a sequence of nucleic

acids in the long lived DNA, via a sequence of nucleic acids in the short lived

messanger RNA (mRNA), into a chain of aminoacids, which after modification and

folding could become a functional protein, is summarized in the central dogma of

modern molecular biology (Figure 1.1).

The DNA is the hereditary material of the cell, which is passed on from gener-

ation to generation. DNA is copied into mRNA in a process called transcription.

DNA

mRNA

PROTEIN

TRANSCRIPTION

TRANSLATION

REPLICATION

Figure 1.1: The central dogma of molecular biology. Genetic information stored
in the DNA sequence is transcribed into mRNA, which is translated into proteins.
The information in the DNA is copied onto a second strand in a process called
replication.

1
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The product of transcription, mRNA, undergoes translation, a set of reactions

which convert the information stored in the nucleic acid into an aminoacid se-

quence. In addition, DNA undergoes replication, in which a copy of a chosen

strand is made. As a result of these three reactions: transcription, translation and

replication, the cell is able to make all the molecules necessary to reproduce itself

[2, 3].

Yet knowing the sequence of the genome of a given organism does not give

us all the information for understanding how, even a single cell organism will

work. Not all genes are transcribed in each cell, and typically only a small number

of genes is transcribed simultaneously [4]. The timing of when given genes are

transcribed is crucial and determines processes such as development [5]. The pro-

duction of proteins must not only be timed, but also must result in the production

of the appropriate concentrations needed by the cell. In other words translation,

transcription and replication of the genome must be regulated. The set of pro-

cesses, which control the composing elements of the central dogma is termed gene

regulation.

At any moment, a living organism is thus described not solely by its genome,

but by the set of genes that it actually expresses. Proteins are not expressed inde-

pendently, nor are they expressed at random. Which set of proteins is expressed

depends on the point in the cell cycle, the environment of the cell and other needs

of the organisms. A change of environment often results in the need for a different

set of functional proteins, therefore gene expression patterns must be modified. So

although each cell in a multicellular organism has the same DNA, each may ex-

press a different set of proteins, which results in the individual cells’ specialization

to perform different functions. In higher organisms this leads to the formation

of tissues. In simpler organisms, such as the bacterium Bacillus Subtilis, it can

result in different lifestyles: reproduction or spore formation. We see, therefore

that genetic information is encoded not just in the DNA sequence, but also in the

expression patterns of genes.
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DNA
  mRNA

transcript
  mRNA   mRNA   PROTEIN

 inactive  

PROTEIN

transcription

  regulation

     RNA

processing

   RNA

transport

translation

regulation

post-translation

    regulation

NUCLEUS CYTOPLASM

DNA   mRNA   PROTEIN
 inactive  

PROTEIN

post-translation

    regulation
transcription

  regulation

translation

regulation

EUKARYOTES

PROKARYOTES

Figure 1.2: Gene expression may be regulated on all levels: transcription, transla-
tion and post-translational protein modification. Euakryotes (A) have additional
forms of spatial regulation and mRNA modification. Prokaryotes (B) rely mainly
on transcriptional regulation, although translational and post-translational control
is also present.

Gene regulation occurs in many forms on all levels of gene expression (Figure

1.2). The most common form of gene regulation, present in all organisms from

prokaryotes to many cellular eukaryotes, is transcription regulation [4]. Transcrip-

tion regulation involves the interaction of proteins, themselves products of gene

expression, with certain binding sites on the DNA. These special proteins, which

are called transcription factors (TFs) bind to the DNA upstream of the initiation

site of transcription and either enhance and repress the expression of a given gene.

It is therefore easy to see that genes, their product proteins and in turn genes

these product proteins regulate, form a complicated network of interactions, called

a gene expression network (Figure 1.3) [6].

The great advancement in experimental techniques and their automatization

over the last decades has enabled the identification of protein coding regions in the

organisms DNA, referred to as the mapping of genomes. Currently the interest

lies in mapping regulatory regions and the many interactions between the different

genes [5]. Gene networks are often depicted as resembling other known large scale

circuits, such as electric circuits or neural networks [7, 5]. Yet if we compare even
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GENE OFF

REPRESSION

ACTIVATION

Figure 1.3: A schematic depiction of a genetic network. Genes interact by binding
and unbinding of transcription factor proteins, which can act as activators (arrow)
or repressors (bar). A gene may be regulated by many types of proteins and a given
protein may regulate a couple of genes. As a result of regulation genes are either
found in the on states (red up arrow)- protein production occurs at an enhanced
rate, or off state- protein production occurs at a basal rate (blue down arrow).

two of these examples, we find many differences. Electric circuits are fabricated

by forming hardwired connections between very well separated and characterized

repetitive elements, such as diodes, capacitors and resistors. All interactions be-

tween these well defined elements occur on fast timescales. In gene networks on

the other hand, there exists a diversity elements, each present in small numbers.

The output of these ”nodes” combine using combinational logic to control other

elements, which may function on different timescales. These characteristics alone

make a genetic circuit much more complicated. Furthermore, we as yet do not

completely understand how a single switch functions in a network. So although

great insight can be inferred from the large scale network properties of these ge-

netic systems, in order to understand how these networks of interactions result in

living, adapting and evolving cells, we must first understand gene expression reg-

ulation at the molecular level. It is worth noting at this point, that even the basic

molecular interactions between protein and DNA, as biochemical macromolecules,

remains an active area of research [8, 9]. However understanding the interactions

on the atomic scale is not the purpose of this work. We will use the description
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on the molecular, or often called kinetic rate equation level, and treat molecules

as entities. Each macromolecular species will be described by the number of rep-

resentatives of that species present in the system.

On the molecular level, the elements of a gene network are proteins and

stretches of nucleic acids, which interact by means of chemical reactions. Chemical

reactions are stochastic in nature - they are the emergent outcome of many pro-

cesses and can therefore only be described to occur with a certain probability [10].

On top of this omnipresent source of stochasticity, the number of components of

the chemical reactions involved in gene regulation is small [11]. There is typically

one active copy of DNA per cell, a few copies of mRNA and tens to hundreds copies

of a protein of a given species. As a result, gene expression is an inherently noisy

process [12, 13, 14, 15, 16]. Yet cells function, moreover they often function in a

predictable way. Therefore one of the challenges is to understand the role of noise

in gene expression, which becomes a beautiful example of stochastic processes in

a many-body system out of equilibrium.

Stochastic gene expression is a very broad subject, which may be studied both

experimentally [17, 18, 19, 20, 14, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32] and

theoretically [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]. Of course,

I am not able to discuss all of the related topics in the scope of this thesis. I

will review some of the work done by others in Chapter 3. Most of the attention

on stochasticity in gene expression has focussed on noise originating from small

numbers of mRNA and protein molecules of a given species [48, 25, 29, 28]. But

the binding and unbinding of transcription factor proteins to the DNA may be out

of equilibrium [49, 50, 51]. In most previous studies the binding and unbinding

reactions are assumed to be fast enough to be well described by an equilibrium

constant. However this is assumption is not always correct. In such cases, since

there is only a single copy of the gene, one cannot average over the binding sites

and the additional source of noise must explicitly be taken into account in the

theoretical description. In the present study I theoretically investigate the role of
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fluctuations in the binding of transcription factors to the DNA binding sites [40,

52, 53, 54]. I consider how this kind of noise interacts with noise arising from small

molecule numbers and describe the emergent behaviour of the system. In Chapter 4

I propose a theoretical description which treats both kinds of noise on equal footing.

I present an example of a genetic circuit, the steady state properties of which can

be found exactly within this framework. In Chapter 5 I propose an approximation,

which I call the Self Consistent Proteomic Field Theory (SCPFT). The SCPFT

allows for a computationally efficient and universal treatment of networks. I use

SCPFT to investigate the steady state properties of the simplest possible network-

the toggle switch [55]. Comparison with numerical results is also made. In Chapter

6 I discuss the effects of the two kinds of noise and their interplay on the dynamical

properties of simple gene circuits, namely on the lifetimes of the attractors in the

simplest bistable network. A summary and conclusions are presented in Chapter

7. I start with a brief introduction to gene regulation.
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A Review of the Biological Aspects of Gene Regulation

Gene expression regulation is a term which refers to all the processes that

stand behind the fact that in each cell at a certain time a given group of genes

is expressed, which results in a certain protein pool. All the processes that result

in gene expression may be regulated: transcription, translation, modifications of

mRNAs, post-translational modifications of amino-acid sequences. The number

of levels of regulation typically increases with the complexity of the organism.

However transcription regulation is present in all organisms, even the simplest -

the bacterial infectant, the phage. For this reason I will be primarily concerned

with the topic of transcription regulation. Gene expression does not occur in a

vacuum, or even the experimental paradise of a well isolated system. All these

reactions take place in a living cell, which must survive and reproduce. As a

result, gene expression is also coupled to replication and cell division, but these

topics are outside the scope of the present work.

Eukaryotic gene expression involves many more elements and nuances than

does prokaryotic gene expression [2, 3, 4]. Eukaryotes are organisms that have a cell

nucleus, containing the cell’s DNA. Prokaryotes lack this compartmentalization-

the DNA is in the cytoplasm. So one prominent example of the additional con-

straints, and therefore levels of regulation, which arise in eukaryotes, is the need

to transport the mRNA out from the nucleus to the cytoplasm, where translation

takes place. The models considered in this study will not deal with these addi-

7
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tional constraints. For this reason, in order to introduce the generic elements of

gene expression, I will focus on prokaryotic systems.

The aim of transcription is to produce a strand of mRNA corresponding to the

information encoded in the given strand of DNA. DNA is transcribed in such a way

that the RNA grows from the 5’ to the 3’ end. Transcription is carried out by a

complicated enzymatic protein machinery, which requires the interaction of many

subunits, which together are called RNA polymerase (RNAP). Of course, RNAP

transcribes not only mRNA. There are also other forms of RNA, such as transfer

RNAs (tRNA), ribosomal RNAs (rRNA), recently discovered small RNAs (sRNA),

editing RNAs. Usually only one or a few genes are transcribed simultaneously [4].

RNAP binds to a region called a promoter upstream from the coding region (Figure

2.1 A). The first synthesized RNA base pair corresponds to position +1. The core

RNAP consists of 4 subunits and a number of proteins called sigma factors, which

together form the transcription unit. One of these sigma factors is responsible for

the specific binding to the promoter as opposed to nonspecific binding to other

parts of the DNA. After transcription is initiated the sigma factor dissociates.

The promoter sequences are recognized by the sigma factors and have very few

conservative base pairs (a group of 6 bp around −10 and −35). The strength of

a promoter (that is how effective the transcription will be) can differ by 1000 fold

depending on the complementarity of the promoter sequence and the RNAP-sigma

factor complex (Figure 2.1 B).

Binding of the polymerase to the promoter results in the opening of the double

stranded DNA. Negatively supercoiled structures unwind and open more quickly,

which is referred to as topological activation. As in most cases in biology, there are

exceptions to this rule. One exception, for example, is the gene which encodes the

subunits of gyrase, which is the enzyme responsible for the negative supercoiling of

the DNA. This group of interactions therefore form a topological negative feedback

loop - yet another example of regulation in the process of expression. The average

transcription rate is about 40 nucleotides per second. Transcription of the first 30



9

+1-10-35-60 +20operator

promoter

start of transcription

RNAP
σ GENE ON

RNAP σ

GENE OFF

repressor

repressor

activator
binding
   site

RNAP
GENE ON

activator

σ

ACTIVATION

REPRESSION

BASAL TRANSCRIPTION

A

B

C

D

Figure 2.1: Transcription regulation on the molecular scale. (A) A detailed view
of the promoter. The conserved base pairs recognized by sigma factors are at −10
and −35 bp. +1 is the first transcribed base pair. Transcription is carried out by
an enzyme called RNA polymerase (RNAP) (B). Repressors bind to the operator
and mostly act as roadblocks (C) enabling the RNAP to bind. Activators bind to
the activator binding site (D) and often recruit sigma factors, which enhance the
rate of transcription initiation.
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base pairs, however, is very important, because the more quickly the RNAP leaves

this region, the sooner another RNAP can bind and start transcribing. The first 9

or so base pairs are transcribed without the RNAP moving. The possibility of the

RNAP dissociating and resulting in abortive initiation is very large in this region.

If the initiation is successful the promoter is freed and another RNAP may bind.

The described process of initiation takes about 1-2 seconds which is relatively long

compared to other parts of transcription.

Another interesting point is, that there are very few specific promoters com-

pared to other sites to which the DNA could bind nonspecifically. If the RNAP

were to find these sites by 3D diffusion, which can be estimated to give association

rate constants of the order of k ∼ 108M−1s−1, it would take much longer than

the experimentally observed time, which corresponds to association rate constants

of the order of k ∼ 1010M−1s−1. It is currently believed the RNA performs a

random 3D walk to find any piece of DNA in the cell, or test tube and then it

does a 1D random walk along the DNA [56]. Early experiments second this by

showing that if one elongates the DNA the RNAP finds its target even faster [56].

In recent years there has been a significant experimental revival of interest in these

problems [57, 58], with the advancement of techniques which allow for quantified

measurement of motion in the cytoplasm.

The above elements are essential to initiate transcription. However, on top

of these elements, gene expression is regulated. All of the processes mentioned

above can be controlled: the binding of the RNAP, the opening of the DNA, the

forming of a stable RNAP-DNA complex to name just a few. The most simple

case is that of direct binding and unbinding of a transcription factor, which is a

protein that controls the expression of the gene in question. We can distinguish

activators and repressors. Repressors typically work as roadblocks (Figure 2.1

C). They bind to an operator sequence downstream or directly to some portion

of the promoter sequence enabling the RNAP to bind in that given place. This

blocking results in the repression of transcription. Activation may take on a few
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forms (Figure 2.1 D). Many activators work by increasing the affinity of binding of

the RNAP to the promoter. They recognize specific sites on the RNAP and form

favourable interactions, as for example between acidic and base groups. Binding of

the activator may increase the affinity of the polymerase to the promoter. Activator

binding can also help recruit the polymerase by modifying its configuration with

respect to the activator. An activator can act close to the promoter or further on

downstream. It can also change the conformation of the DNA, by opening it and

result in an enhanced transcription rate. The interactions between the activator

and the polymerase or DNA discussed so far are electrostatic or hydrophobic in

nature. Another possibility is allosteric control, where the binding of an activator

to the polymerase changes its conformation and therefore its affinity to the DNA.

The purpose of an activator is to enhance the rate of transcription and biological

systems utilize whatever the detailed mechanism to obtain this enhancement. The

important thing to remember is that the rate of transcription initiation results from

chemical reactions between the activators or repressors and therefore depends on

the concentration of these transcription factor proteins.

It is worth mentioning some more specialized forms of regulation. DNA looping

results in repression, which seems not be connected to protein concentrations. But

it is usually triggered by binding of a repressor, which enables the polymerase to

bind. Another form of regulation results when an external signal changes the TF

conformation in such a way that it changes from a repressor to an inducer, which

recruits polymerase. An example is that of mercury where the promoter controls

two genes, one of which is situated to the right of the promoter and the other

one to the left. One of the genes is normally transcribed when the activator is

bound. However when mercury is present in the cell, it is highly toxic and needs

to be sequestered. Then the gene to the other side of the promoter needs to be

transcribed to produce the proteins, which export mercury from the cell or convert

the element into a less toxic form. Mercury molecules bind to the activator and

induce a change in the twist of the DNA which disables the transcription of the
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gene to the right, but starts the transcription of the gene to the left.

A common pattern in biological systems is the control of a gene by a few

transcription factors. This allows for combinatoric control. A transcription factor,

or a set of transcription factors can also regulate the expression of a group of genes.

Such a group of genes, the expression of which is controlled together is called an

operon. The most famous and oldest known example of such a form of regulation

is the lac operon discovered by Jacob and Monod [59].

Transcription comes to a halt when the RNAP reaches the stop signal. Tran-

scription termination may also be regulated, but I will not discuss this process in

detail. The stop signal is usually a hairpin that the transcribed RNA forms. Hair-

pins are formed by rich GC (Guanine:Cytosine) regions that interact and bind. A

hairpin is followed by a region of weak DNA-RNAP binding (many Us (uridines))

and such a sequence results in dissociation of the polymerase. Some stop signals

require a protein called ρ, which binds to and releases RNA from a transcribing

elongation complex allowing for termination.

Transcription termination is worth mentioning, because it allows for the exis-

tence of another possibility of control of gene expression called attenuation. The

best known example of this is the TRP operon. Attenuation is a regulatory mech-

anism which couples transcription and translation. The TRP operon is repressed

if the level of tryptophan is high. The operon starts of with a leader sequence, the

mRNA structure of which may form hairpins. There are 4 possible arms:1, 2, 3 ,4.

If the 3 : 4 arms form a hairpin transcription is halted in the attenuator (rich U

region). Transcription is stopped until the leader region is translated. The leader

sequence requires two tryptophans in a row. Tryptophan is a rare aminoacid,

therefore if there is not enough tryptophan in the cell the ribosome will halt in

this position, stopping translation and blocking the first arm. The 2 : 3 arms then

form a hairpin enabling the formation of the 3 : 4 termination hairpin and the

transcription and translation of the structure genes continues. If tryptophan is

present the ribosome continues and stops at 2 (the end of the leader region) and
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Figure 2.2: A schematic depiction of a riboswitch, which terminates transcription.
A small protein binds to the mRNA, which is still being transcribed and changes its
configuration, so it forms an hairpin loop which blocks the RNAP from transcribing
further.

the 2 : 3 hairpin cannot form, but the 3 : 4 does. This terminates transcription.

Another form of transcription regulation uses sigma factors. Sigma factors

regulate the specific binding to the promoter. If the conditions in the cell change,

a different set of sigma factors may be used that recognize different promoter

sequences and transcribe the newly necessary genes. This form of gene expression

is used when a completely new set of genes has to be transcribed: heat shock genes,

before sporulation or by phage to make the host cell express the genes needed by

the intruder.

As was already noted, in this study we will be interested in transcription

regulation, as it has been experimentally shown [18, 60] that translation is the less

noisy step of gene expression. Noise arising in the transcription process simply gets

amplified by close to deterministic translation. However I will briefly mention the

main forms of translation regulation, albeit not as exhaustively as transcription

regulation.

Once an mRNA transcript is produced, the translation process can be regu-

lated in many ways. In eukaryotes this step of regulation is much more developed

and important, since mRNA stability can vary over large timescales. In these

organism mRNA needs to be exported from the nucleus in order for translation

to proceed. Therefore transport of transcripts allows for a simple form of spatial

regulation. Furthermore eukaryotic mRNAs must be capped and polyadenylated,

and the introns must be accurately removed, which can lead to different proteins

produced based on the same gene (alternative splicing). A very interesting feature,
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which is very similar to transcription regulation by transcription factors and exists

also in prokaryotes, is that of regulation by binding of non-coding RNAs (some-

times called small RNAs in bacteria) to the mRNA. This form of regulation can

result in either repression or activation of translation, by enabling or preventing

the binding of the ribosome respectively, and has been shown to have an effect

on the stochastic nature of gene expression [61]. A more complicated form of

RNA-RNA and RNA-protein interaction takes place in riboswitches (Figure 2.2),

which are parts of mRNA that can bind a small target molecule (protein or RNA)

and the binding event affects the translation process. An mRNA that contains

a riboswitch is directly involved in regulating its own activity, depending on the

presence or absence of its target molecule. The interaction of non-coding RNAs

with mRNA is usually based on formation of secondary hair-pin like structures,

which prevents translation. In riboswitches it sometimes involves the formation of

more complicated tertiary structures. The main aim of these types of interactions,

are to change the stability of the mRNA: either increase its lifetime, or tag it to

be recognized by the cells degradation machinery. Once a protein is formed, post-

translational modifications can take place, such as methylation, acetylation of the

aminoacids or disulfide bond. However these events are much more common in

eukaryotes than in prokaryotes.

In summary, transcription regulation is the most important and stochastic form

of gene expression regulation in prokaryotes. Since the models presented in this

work do not take into account many features of eukaryotic gene expression, such

as the compartmentalization of expression processes and chromatin unravelling, I

will associate gene expression regulation with transcription regulation.
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The Physics of Gene Regulation - Background

3.A Experimental approaches to noise in gene expression

Work on the molecular details of gene regulation was pioneered by Jacob and

Monod [59], who were able to discover how proteins can be selectively produced

based to a large extent simply by analyzing the growth curves of E.coli populations

in different media. Recently, great experimental advances in molecular biology

and genetics have made it possible to study gene expression in great detail and

to manipulate the regulatory pathways in vivo. The sequenced genomes allow for

targeting and modification of specific genes, in specific genetic regulatory systems.

Such a detailed map of genes on the chromosomes has been possible thanks to the

invention of high throughput methods such as PCR (polymerase chain reaction)

and CHIP-CHIP experiments. Plasmid techniques allow for insertion of desired

genes into specific sites on the host chromosome. Although the procedures are

far from automatic, they allow for a direct studies of the regulatory interactions

in networks in great detail. With the aid of these techniques, even Jacob and

Monod’s lac operon has been found to have additional regulation pathways [62].

The study of noise expression is based to a large extent on incorporating genes

which code for fluorescent proteins, such as GFP (green fluorescent protein) [63]

and its many variations, downstream of promoter sequences which control the gene

of interest. As a result, GFPs are produced at the same time as the genes’ original

15
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A

B C

no intrinsic noise intrinsic noise

Figure 3.1: A schematic representation of the experimental system used to study
intrinsic and extrinsic noise. Two colours of reporter proteins (red and green) are
fused to two copies of the same gene A. If intrinsic noise is not present each cell
expresses similar amounts of the two genes and the cells fluoresce in yellow B. If
intrinsic noise is present the differences in the expression patterns of the two copies
of the gene are visible as different ratios of red to green reporter proteins C.

product protein and their level, which can be measured using fluorescence counting

under microscopes or in flow cytometers, is a signature of gene expression activity.

These experiments make it possible to look at the expression patterns of genes

in individual cells, as opposed to a population [17, 55]. As a result, cell to cell

variability in the transcripts has been observed: some cells have high levels of gene

expression, while others have low. Thus the stochastic nature of gene expression

has been confirmed experimentally. The coefficient of variation, defined as the

ratio of standard deviation to the mean is a commonly used measure of noise.

These methods, although easy to implement and visually pleasing, do have

certain drawbacks. For example, the type of GFP protein which was used in early

experiments, had a folding timescale on the order of a cell cycle. So the fluorescent

yields did not give an accurate description of the current protein concentration of

the gene transcript of interest. However, the fluorescent protein technique can,
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and often is, supplemented by northern blot assays, which show the concentration

of mRNAs in the cell. Furthermore the use of luciferase as a reporter of gene

expression and more refined GFP proteins is becoming more popular.

One class of experiments considered two equivalent, independent gene re-

porters, with different coloured GFPs, placed in the same cell and controlled by

identical promoters on the same prokaryotic chromosome, equidistantly from the

origin of replication [18, 28, 60, 20, 64] (Figure 3.1). This has lead to the parti-

tioning of noise into intrinsic and extrinsic components [37, 33, 20, 36]. The first

are due to the stochastic nature of expression of a gene and results in differences

between different expression profiles of the same kind of gene in the same cell. Ex-

trinsic effects are due to differences in the environment in each cell, such as local

protein concentrations, and affect the two reporters in the cell equally, but result

in differences between the two cells. Extrinsic noise can be further subdivided

into fluctuations of the rates of reactions that have an effect on the whole cell and

fluctuations in the concentrations of proteins specific to the pathway of interest.

One of the main experimental challenges of the field is to isolate the system one

wants to study and be certain there are no hidden interactions with other parts of

the network. This task is indeed complicated, as even model networks often contain

the possibility of hidden feedback loops in certain experimental conditions, as was

the case with the lac operon [21, 65].

With the experimental techniques presently available we can not only ask

questions, but we can propose new constructions, which will allow us to probe

these issues experimentally [12]. One such example is the toggle switch [55], which

is discussed in detail in Chapter 5.

Genetic regulatory circuits systems are an example of a stochastic interact-

ing nonlinear elements which produce emergent behaviour, which can be studied

experimentally. This is why it is an interesting problem for physicists.
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3.B Modeling gene expression regulation

In order to describe gene switches using a model we need to describe a stochas-

tic nonlinear process. The earliest models of gene networks were the Boolean mod-

els of Kauffman [66, 67], where each gene was assumed to be either on or off with

a network of interactions between them. The experiments described above allowed

for quick quantification of protein concentrations and this opened the doors for

many modeling studies, which described the experimental observations [48, 68].

Most of these studies focussed on kinetic models. The simplest models which

have a molecular description describe the time evolution of each species, protein

numbers (ni), mRNAs (mi) using deterministic kinetic equations of the following

form:

dni

dt
= gimi − kini(t)

dmi

dt
= αif(~n) − δimi(t)

(3.1)

where f(~n) is typically a sigmoidal function of repression or activation, for example

for repression (Figure 3.2) f(~n) = 1
1+Knp

j
, where p is the measure of nonlinearity

called the Hill coefficient and K is the equilibrium binding constant [69, 70]. gi,

ki and αi, δi are respectively the synthesis and degradation rates of protein ni

and mRNA mi. The mRNA equation is often eliminated and its effect is included

through time delay in the protein dynamics:

dni(t)

dt
= f(~n(t − τ)) − kini(t) (3.2)

These equations are relatively straightforward to analyze for fixed points of the

dynamics and stability of the solutions around those points. They offer a lot of

intuition and can be easily expanded to consider combinatoric control [35, 71, 72,

73, 74] and many species [75].

Recent experimental work has created a need for a stochastic description of

genetic networks. The most general procedure when describing a stochastic system
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Figure 3.2: A schematic representation of a self-repressing switch. The gene may
be found in two states: on or off. The state of the gene is regulated by binding
and unbinding of the protein that gene produces.

is to start with an equation for the evolution of the probability distribution [76,

52, 53], which describes the probability of the system having a given numbers of

molecules of a given species at a moment in time ~p({xi}, t), where xi = {ni, mi}
and the vector notation allows for different possible states of the gene.

d~p({xi}, t)
dt

=
∑

j

w(xj → xi)~p({xi}, t) − w(xi → xj)~p({xj}, t) (3.3)

In order to work with these kinds of equations some approximations must be made.

These have typically assumed large protein concentrations and equilibration of the

gene expression state and have lead to Fokker-Planck [41, 77, 78, 79, 76] and

Langevin descriptions [24, 25]. The Langevin approach in this context has only

been pursued via simulations [24, 25], although both multiplicative and additive

noise terms have been considered. The linear noise approximation [34], which

expands the terms in the master equation in the inverse of the cell volume as

opposed to large protein numbers in the Fokker-Planck approach, has also proved

useful when describing experiments which focused on noise [20]. Both of these

expansion methods are quite standard in nonequilibrium statistical mechanics and

I will not describe them in detail. Derivations may be found in textbooks [10,
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80, 81, 82]. All the approaches developed have assumed that the binding and

unbinding of transcription factors to the binding sites may be assumed to be in

equilibrium (Langevin), or close to it (linear noise approximation, Fokker-Planck).

Kepler and Elston [76] included the operator state dynamics explicitly in their

master equations. However they made the assumption that the DNA binding

state is close to equilibrium in their analytical work, by looking at the Fokker-

Planck and deterministic equations. They performed simulation studies in the

regime on large DNA binding site fluctuations, however claimed this regime is of

little biological interest. The generation function [10] has also been used [52, 83]

and this technique is described in detail Chapter 4.

And of course there are simulation approaches [41, 77, 84, 85, 86, 75, 87, 76,

88, 89, 90], which are extremely useful but also pose problems. Most of these

studies use a Monte-Carlo algorithm, adopted for simulations of chemical kinetics

by Gillespie [91], in which one can also randomly choose the time window between

reactions. With the traditional approach based on simulations it is impossible to

exhaustively scan a wide range of parameters and calculate the phase diagram.

Simulations are simply too computationally expensive - especially for slow binding

kinetics: one run can take up to a day. Also a simulation study does directly

not provide intuition about the relevant combination of parameters which act as

control parameters of the problem.

Again we can see, that from a physicists perspective, methods of nonequilib-

rium statistical physics can be widely applied and developed using the example of

gene regulatory systems. In the next chapter and in the whole of the thesis I hope

to demonstrate that these systems are also ideal for studying many body effects

in systems out of equilibrium.
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3.C The formalism

In the present study we develop a formalism, which treats two kinds of noise on

equal footing: noise arising from small protein numbers and noise arising from slow

binding and unbinding of transcription factor proteins to the DNA binding site. For

simplicity, we will refer to the strand of DNA which codes for a protein as a gene.

To describe the state of a single gene, we have to specify the ”state of the gene”

- whether that gene is being transcribed at an enhanced or repressed level, and

the number of proteins that gene produces present in the system at time t. We do

this by introducing a joint probability distribution ~P (n, t) = [Pon(n, t)Poff (n, t)]

[40, 76]. The evolution of this probability distribution in time is governed by

a master equation. For example for a self-repressor, such as that described in

equation 3.1 with ni = nj and neglecting the mRNA step within the described

formalism:

∂Pon(n)

∂t
= gon[Pon(n − 1) − Pon(n)] + k[(n + 1)Pon(n + 1) − nPon(n)] +

+fPon(n − p) − h

p
∏

s=1

(n − s)Poff(n)

∂Poff (n)

∂t
= goff [Poff (n − 1) − Poff (n)] + k[(n + 1)Poff(n + 1) − nPoff(n)] +

−fPon(n − p) + h

p
∏

s=1

(n − s)Poff(n)

where p describes the order of the oligomer which acts as the repressor (p = 2 is

a dimer, p = 3 a trimer), g and k are the synthesis and degradation rates and h

and f describe the binding and unbinding terms. A generalization of this equation

can be written down to account for mRNAs, with ~P (n, m, t) as the probability

distribution.

To describe the state of an N gene system one would have to consider an 2N

state probability vector and the corresponding equations which would be coupled

by the binding and unbinding terms. In section 5 I will describe an approximation

which allows us to overcome this problem and make progress. I will also describe
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a field-theoretical operator formalism proposed independently by Doi [92, 93] and

Zeldovich [94, 95] and further developed by Peliti [96, 97] for diffusion reactions.

The technique was reviewed by Mattis [98]. For each protein concentration a

creation and an annihilation operator are introduced such that a†|n〉 = |n + 1〉
and a|n〉 = |n − 1〉 . These satisfy [a, a†]=1. For a process only involving a single

protein particle number, the state vector is defined as Ψ =
∑

n P(n, t)|n〉, where

P (n, t) is the probability of having precisely n particles. The master equation 3.4

is written as ∂tΨ = ΩΨ using a spinor hamiltonian for the dynamics of the DNA

coupled to the proteins. Ω is a non Hermitian hamiltonian operator. Ω for the

simple self-repressor gene switch is

Ω = (ḡ + δgσz)(a
† − 1) + k(a − a†a) + µ+(σx − 1) + µ−(−iσy − σz) (3.4)

where ḡ =
gon+goff

2
, δg =

gon−goff

2
, µ+ = h(a†a)+f

2
, µ− = h(a†a)−f

2
and σi are just

regular Pauli matrices. In this operator formalism averages are obtained by taking

the scalar product with the bra 〈0|ea. The formulation allows one to easily guess

trial function for the right hand states and perform a non-hermitian variational

calculation [99, 40].

In chapter 6 I turn my attention to the question of the stability of the simplest

gene switch by mapping it onto a bistable system. The theory of escape from a

steady state of a two state system has a long tradition in physics and dates back

to Kramers [100], who considered the formulation of the problem in configuration

space as first proposed by Smoluchowski [101]. In the basic problem one has two

steady states A and B separated by a metastable state at C, called the barrier

(Figure 3.3). If the system finds itself in one of the states, say A, in the absence

of noise it would stay there for ever. However as a result of stochastic motion,

which in traditional problems is associated with temperature, after a certain time

the system will escape and cross the barrier to the new minimum B. The rate of

this process is called the escape rate and is the quantity of interest in the problem.

The probability of finding the system in a given state, defined by the position of

the particle may be described by a probability distribution P (n, t). The evolution
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Figure 3.3: The traditional Kramers problem of escape over a potential barrier in
a two state system. The two states are marked by different values of the reaction
coordinate x, as xA and xB, with a barrier at xC . There is a steady state probability
distribution for the particle in a given well (red distribution in well A). The particle
can escape due to noise.

of this probability is governed by a Fokker-Planck equation:

∂P (x, t)

∂t
=

∂

∂x
[
∂D(x)P (x, t)

∂x
− v(x)P (x, t)] (3.5)

and for potential problems v(x) = −∂U(x)
∂x

, where U(x) is the potential sketched

in Figure 3.3. Also v(x) = Γf(x), such that in equilibrium Γ−1D = kBT =

β−1. This equation is simply a continuity equation for the current of particels

~j(x), such that equation 3.5 may be rewritten as ∂P
∂t

+ ∂~j
∂x

= 0. The steady state

current is simply found from j(x) = −e
R x

x0
dx′v(x′)/D(x′) ∂

∂x
[e

−
R x

x0
dx′v(x′)/D(x′)

Pst(x)]

with boundary conditions in the two wells and Pst(x) is the steady state solution.

Using the boundary conditions we can find the current between the two wells to

be:

j(x) =
1

∫ xB

xA
dxe

−
R x
x0

dx′v(x′)/D(x′)
[e

−
R xA
x0

dx′v(x′)/D(x′)
Pst(xA)−e

−
R xB
x0

dx′v(x′)/D(x′)
Pst(xB)]

(3.6)

In general the integral in the denominator depends on the shape of the bar-

rier. For simplicity we can consider a potential problem with constant diffusion

v(x′)/D(x′) = −β dU(x′)
dx′ , since the purpose of this illustration is to develop intuition.
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Equation 3.6 is the general form of the steady state current and to make progress

we need to make approximations. We can also assume particles are removed upon

reaching well B (Pst(xB) = 0). For a sufficiently narrow and high barrier, we can

approximate it using a harmonic potential U(x) = U(xC) − 1
2σ2

c
(x− xC)2 and per-

form the resulting Gaussian integral to give (after taking the limits of integration

to ±∞):

j = Pst(xA)

√

β

2πσ2
C

exp(−β(U(xC) − U(xA))) (3.7)

Using the steady state distribution Pst(xA) ≈ nA√
2πσ2

A/β
exp(− β

2σ2
A

(x − xA)2) one

obtains the rate of escape to be k(A → B) = Γ
β
jnA:

k(A → B) =
Γ

2πσAσC

e−β(U(xC)−U(xA)) (3.8)

Often, instead of considering escape rates one considers the mean first passage

time defined as < T (x) >=
∫ xC

x0
Pst(x)T (x), where the passage times from the

particular points are given by:

T (x) =

∫ xC

x

dx′ exp(−
∫ x′

x0

v(y)/D(y)dy)

∫ x′

x0

exp(
∫ y

x0
v(y′)/D(y′)dy′)

D(y)
dy (3.9)

We can see the general exponential dependence on the height of the barrier, which

has been exploited when formulating the theory in chapter 6.

Many variations of the escape problem, both classical and quantum have been

the focus of many scientific careers and resulted in a great number of limits and

approximations, such as, for example, the Transition State Theory (TST) (for a

review see [102]). The problem of escape from nonequilibrium attractors in many

dimensions remains unsolved [103]. For the specific example of stability of a gene

expression state, this problem has attracted a lot of attention [38, 104, 105]. We

build on the basic intuition offered by Kramers’ result to include nonadiabatic

effects. Our approach is reminiscent of coupling the escape problem to a two-

state system, often referred to as a spin-boson problem [106], where the two-state

system is a spin, which interacts with other spins by emissions and absorption of

bosons. The analogy between the two problems is clear in the operator formulation
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described earlier (Equation 3.4). Once again, there are many possible approaches

to this problem, for example that proposed in electron-transfer [80, 107, 108].

In summary of this chapter, I have hoped to give the reader some overview of

the used and developed formalism, which is described in detail and with applica-

tions in the following chapters.
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Self-regulating gene: an exact solution

Production of functional biomolecules in the cell is governed by a complex

and diverse genetic network involving an intricate set of biochemical reactions.

The mathematical description of this network is intrinsically nonlinear because

the transcription of DNA is regulated by the binding reactions with the very pro-

tein products of the decoding process itself [109]. This description must also be

stochastic because the genes are single molecules of DNA and their regulatory pro-

teins are also present often in small numbers. The average behavior of a nonlinear,

stochastic system cannot be inferred from macroscopic chemical rate laws alone

[40, 39, 38, 37, 36, 35, 34, 33, 22, 110, 90, 83]. In this paper we examine the sim-

plest model of an element of a gene regulatory network and show that its master

equation admits an exact solution. In regimes where the binding/unbinding pro-

cess is not significantly faster than the synthesis/degradation of the proteins, this

solution is quantitatively different from the deterministic description [69, 111, 14].

In deterministic models of gene expression the concentration of various tran-

scription factors controls the rate of protein production for a particular gene[75, 87,

111]. The stochastic analysis of gene switches treats the numbers of these various

proteins, n1...nN , in a given cell as random variables [76, 88, 23, 18, 105] . If we ig-

nore the mechanistic details of protein biosynthesis with their resulting time delays

and mRNA fluctuations [34, 33], we can model each gene as a two state stochastic

system. A single gene can then be described by a two component master equation

26
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with one probability distribution α(n1, ...) corresponding to situations where the

DNA is free (on state) and a second component β(n1, ...) describing the distribu-

tion when the DNA has a repressing protein bound to it (off state). The dynamics

of these genetic expression probabilities is described by coupled birth-death pro-

cesses. Birth corresponds to protein synthesis while death occurs via degradation.

The rates for protein production gα and gβ are different for the free and bound

states of the DNA. The rate for protein degradation is k, varying linearly with

n. If the binding state of the DNA did not change, the stationary probabilities

α and β would be described by Poisson distributions with mean values at gα/k

and gβ/k. We show that the time evolution from any initial state of this simple

self-repressing switch to the stationary configuration can be written explicitly in

terms of hypergeometric functions as in the theory of the threshold switch [39].

4.A The stochastic formulation

In the present model a single gene produces the same protein that represses

its own activity. While not often found as an isolated entity, the self-regulating

gene is a very common element of biological networks; for example 40% of E. Coli

transcription factors negatively regulate their own transcription [21]. The master

equations for this case are explicitly

dαn

dt
= gα[αn−1 − αn] + k[(n + 1)αn+1 − nαn] − hnαn + fβn and (4.1)

dβn

dt
= gβ[βn−1 − βn] + k[(n + 1)βn+1 − nβn] + hnαn − fβn for n ≥ 2, (4.2)

where αn and βn are the individual probabilities that the DNA is unbound and

bound, respectively, while immersed in n proteins. h is the bimolecular rate de-

scribing the process of repressor binding to the DNA and f is the unimolecular

rate describing release of the repressor protein from the repressor site. More gen-

erally, h can be a more complicated function of n if, for example, proteins bind as
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oligomers [40]. In this case, we consider a mechanism of monomer binding. The

binding/unbinding process does not alter the total number of proteins. Since a

bound protein is still included in n, there is a need to modify the master equation

for the states near n = 0. The gene cannot be in a bound state in which there are

no proteins in the system (β0 = 0). Thus we will use a set of equations in which

a degradation reaction will transform the state where the only existing protein is

bound (β1) into the unbound state α0.

dα0

dt
= −gαα0 + k[α1 + β1] (4.3)

dβ1

dt
= −gββ1 + k[2β2 − β1] + hα1 − fβ1 (4.4)

dα1

dt
= gα[α0 − α1] + k[2α2 − α1] − hα1 + fβ1. (4.5)

4.B An exact solution

The master equations are differential-difference equations for t and n, respec-

tively. The two sets of master equations need to be solved in the appropriate

subspaces of n. The general solution may then be determined using the continuity

condition at n = 2. The solution of equations (4.1) and (4.2) can be described in

terms of the generating functions α(z) =
∑∞

n=0 αnz
n and β(z) =

∑∞
n=0 βnz

n, where

z lies in the complex unitary circle. The original probabilities for n ≥ 2 can be

recovered as derivatives of these generating functions at z=0: α(n) = 1
n!

dn

dzn α(t, z)

and β(n) = 1
n!

dn

dzn β(t, z). The correct probabilities for the states in which n < 2

are calculated by using α2 and β2 derived from the generating functions in the

modified master equations (4.3),(4.4)and(4.5). Various moments of the distribu-

tion, including the average number of proteins can still be expressed in terms of

derivatives of these generating functions ∂
∂z

α(z, t) and ∂
∂z

β(z, t) evaluated at z = 1.

Before taking into account the boundary behavior the generating functions satisfy

the first order partial differential equations:
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∂α(z, t)

∂t
= (z − 1)[gαα(z, t) − k

∂α(z, t)

∂z
] − hz

∂α(z, t)

∂z
+ fβ(z, t) (4.6)

∂β(z, t)

∂t
= (z − 1)[gββ(z, t) − k

∂β(z, t)

∂z
] + hz

∂α(z, t)

∂z
− fβ(z, t) . (4.7)

The stationary solution of this system of equations is easily obtained. From

equation (4.6), we can find β as a function of α and dα(z)/dz. Substituting this

expression for β in (4.7), a second order differential equation is obtained

d2α(z)

dz2
+ p

dα(z)

dz
+ qα(z) = 0 . (4.8)

Where the coefficients p and q are

p =
gα + gβ + f + h + k − z(gβ(1 + h/k) + gα)

(k + h)z − k
(4.9)

q =
gαgβz − gα(gβ + f + k)

k(k + h)z − k2
. (4.10)

Noting that p and q are rational functions of z with a simple pole at z0 =

k/(k + h) and an irregular singularity at z = ∞, we see the structure of this

equation corresponds to the confluent hypergeometric equation.

The dependence on z in the numerator of q can be eliminated by making the

transformation

α(z) = A exp(zgβ/k) M(a, b, η) , (4.11)

which leads to the confluent hypergeometric equation in a canonical form. The

normalization constant A guarantees that the sum of the probabilities is 1. The

solutions are linear combinations of the Kummer functions M and U . The irregular

function U does not satisfies the condition αn → 0 when n → ∞ and therefore

is discarded. The resulting generating function α has the Kummer M(a, b, η)

parameters
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Figure 4.1: The probabilities of the gene expression as a function of the number
of proteins n for the on state, the off state and the total. There are two peaks
for small ω, but they converge to a single peak in the adiabatic regime of large ω.
Xeq = 100 and Xad = 40.

a = 1 +
f

k + h
(1 +

h gα

kgα − (k + h)gβ

) (4.12)

b = 1 +
f

k + h
+

h gα

(k + h)2
, (4.13)

and the argument of the function is

η = −(gβ(1 + h/k) − gα)((k + h)z − k)

(k + h)2
. (4.14)

As described above, αn’s for n ≥ 2 can be calculated from the derivatives at

z = 0. Explicitly these are [112]:
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Figure 4.2: Total probability of the DNA being found in the off state as a function
of the average number of proteins n̄. In the adiabatic limit (large ω) we approach
the behavior given by the equilibrium mass action law as in the treatment of Shea-
Ackers, where Pβ = n

n+Xeq . Xeq = 100. In our model we find Pβ = nα

nα+Xeq exactly.
The average number of proteins present when DNA is in the on state nα is different
from n, which includes the average number of proteins when the gene is off (inset).

αn =
A

n!

n
∑

s=0

(

n

s

)

(gβ)n−sdη

dz

s (a)s

(b)s

M(a + s, b + s, η0) . (4.15)

β(z) can be calculated directly from (4.6) and the probabilities βn for n ≥ 2

are again derivatives at z = 0. It is worth noticing that in the limit where there

is no protein synthesis at all in the off state (gβ = 0), there is only one non-

zero term in the series for αn (s = n). This leads to a simple expression for

αn = A
n!

dη
dz

n (a)n

(b)n
M(a + n, b + n, η0) and βn = A(k+h)

fn!
dη
dz

n
[( hgα

(k+h)2
+ b − 1) (a)n

(b)n
M(a +

n, b + n, η0) − (b − 1) (a−1)n

(b−1)n
M(a − 1 + n, b − 1 + n, η0)].

The normalization constant A is determined by
∑∞

n=0 αn+
∑∞

n=0 βn = 1. These
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sums can be expressed in terms of α(1) and β(1) and appropriate corrections to

account for the states whith n < 2.

α(1) + β(1) − α(0) − d

dz
α(0) − β(0) − d

dz
β(0) + α1 + β1 + α0 = 1. (4.16)

4.C Comparison to the deterministic model

With these analytical solutions in hand, we are now in position to compare this

exactly solved model with the commonly used deterministic mass-action approxi-

mation introduced by Shea and Ackers [69]. To simplify the discussion we introduce

the following parameters: ω = f/k, Xeq = f/h, and Xad = (gα + gβ)/(2k). The

parameter ω measures how rapidly the DNA state can equilibrate in its proteomic

cloud in comparison to the characteristic time for protein degradation, which mea-

sures how fast the cloud itself fluctuates. Xeq is the equilibrium constant of the

binding/unbinding process. Xad is a measure of the protein concentration, indi-

cating the number of proteins when the system is half-inhibited.

The probability distributions for the protein number given the gene state (the

total distribution αn + βn, αn for the on state, and βn for the off state) are

shown in figure 1. The values of the switch characteristics used for the figure are

Xeq = 100 and Xad = 40 and gβ = 0. These are typical values of the equilibrium

switching threshold and mean protein copy number found in a small cell like E.

Coli. For small values of ω the total probability distribution exhibits a two peak

structure, at gβ/k and gα/k, corresponding to repressed protein production, when

the DNA has protein bound at small n, and to the higher production from the free

DNA at large n. In this limit, the on-state behaves almost like an independent

birth and death process since binding/unbinding become the slowest process in

the system. Increasing the value of ω shifts both peaks to intermediate values,

until there is only one peak at large ω. In the large ω limit, protein binding and

unbinding becomes extremely fast. This ”adiabatic” regime should be equivalent
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Figure 4.3: The Fano factor F = σ2

µ
for the self-repressing switch. Along the curve

F = 1, all distributions are Poisson-like. The Total distribution is independent of
DNA state while the on state has the DNA free and the off state has protein bound
to DNA. In the limit of large ω the adiabatic regime is reached, with an almost
Poisson behavior. This regime should be equivalent to the Shea-Ackers model. For
intermediate ω’s the overall fluctuations are large and therefore strongly deviate
from Poisson. In the on state, the distribution tends to Poisson behavior for ω
very small, since the system behaves almost like a birth-death process. Xeq = 50,
gβ = 0.

to the Shea-Ackers model in which the gene itself is taken to have an equilibrated

average probability of being on or off. Most of the characterized genes are known
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to have high values of the adiabaticity parameter (e.g. when calculated from the

transcription initiation rate obtained from [113]). Some systems exist, however,

where ω is of order one (e.g. Cro protein in the λ-phage, parameters obtained from

[104]). Also, the non-adiabatic regime may be important in vivo. For example,

several in vivo mechanisms suggest that some proteins may be slow binders.

A more detailed understanding of the deviations from the Shea-Ackers approx-

imation can be made by noting that in the Shea-Ackers model the probability of

inhibition (Pβ) is given by the equilibrium law of mass action as a function of

the concentration of repressors. This concentration can be calculated using the

first moments of the distribution d
dz

α(z) and d
dz

β(z) at z = 1, again with the cor-

rections from the terms with n < 2. Fig.2 shows how the exact solution for the

master equation finally converges to the equilibrium approximation used by Shea

and Ackers ( Pβ = n
n+Xeq ) in the limit of large ω.

To directly probe the effect of fluctuations, figure 3 shows the probability distri-

butions compared to those that would arise from Poisson statistics: a) independent

of DNA state, b) when the DNA is free (αn), and c) when the DNA has protein

bound (βn). The Fano factor F = σ2

µ
is plotted as a function of ω and Xad, where µ

and σ are the mean and standard deviation of the probability distributions. This

factor would be one if the processes were purely Poisson. Notice that for very

small ω, the Fano factor does limit to one when the DNA is in the on state. As

discussed above, this is expected since, in this limit, the on-state behaves almost

like an independent birth and death process. The overall fluctuations are how-

ever quite large for intermediate ω’s and therefore their contributions cannot be

ignored in the overall mechanism. Indeed the Fano factor remains large even at ω

values large enough for the probability of inhibition to agree with the equilibrium

behavior. This shows DNA binding noise cannot be neglected.

In the large ω regime (tending to the adiabatic limit), the Fano factor for the

three distributions tends to values slightly smaller than one. This indicates an

almost Poisson behavior as one would expect for near-macroscopic kinetics.



35

4.D Discussion

The exact solution presented here for the self-regulated gene in a stationary

regime establish the basis for more complex problems yet to be solved. It provides

an important analytical tool to understand the underlying mechanism governing

these genetic networks. Already for this simple system, we notice that fluctuations

become important for a large region of the parameter space. Figure 3 makes it

clear that fluctuations cannot be ignored unless protein binding and unbinding are

exceedingly faster than any other relevant time scale in the problem. Noise from

binding/unbinding events dominates shot noise of protein synthesis and degrada-

tion up to quite high values of the adiabaticity parameter. Figures 1 and 2 also

demonstrate the effects of fluctuations. For small ω, binding is slow and therefore

the stationary solution for the gene probabilities shown in figure 1 has two well

defined peaks. One peak corresponds to the repressed protein production (DNA

with protein bound) and the other to the higher protein production (free DNA).

As protein binding and unbinding become faster, these two peaks converge towards

each other. Figure 2 shows how in this nonequilibrium system the probability of

DNA being found in the protein-bound state deviates from the equilibrium mass

action result. The self-repressing gene can become strongly anti-cooperative owing

to non-adiabatic effects normally neglected in theories of gene regulation.

Some features of the genetic switch such as mRNA fluctuation and the time

delays resulting from transcription and translation are not explicitly captured by

this model. Although they might be essential in some cases, they may not always

dominate the process of regulation. In prokaryotes, where there is no nucleus,

transcription and translation occur within the same compartment, and mRNA

is almost immediately translated [109]. Also many cases are being discovered

where the regulation is performed by the RNA itself [114]. In cases like these, the

approximation of having the synthesis of the transcription factors as one stochastic

process seems plausible. This formulation of the problem of genetic regulation
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and its analytical solution will help the study of the specific cases where mRNA

fluctuations and time delays play a determinant role.

While an otherwise isolated non-interacting self-regulating gene is a biological

rarity, it would be straightforward to construct in the laboratory. The exact so-

lution presented here would then make such an experiment a beautiful simplified

system for understanding the importance of fluctuations that govern gene networks.
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Self-Consistent Proteomic Field Theory of Stochastic Gene

Switches

5.A Introduction

Genetic switch systems are an elementary means of regulatory control present

in every living organism. Their complexity and details differ, but the general

mechanism of the expression of a given gene being regulated by proteins, is believed

to be universal [115]. They are building blocks of larger regulatory elements:

genetic networks and signaling cascades. The pathways by which these systems

operate is passed on from generation to generation. Understanding their stability

and characteristics is therefore fundamental. A lot of previous work has considered

a deterministic description of genetic switches [69, 14]. The need for a stochastic

treatment of genetic switches due to the single copy of the DNA molecule and

multiple protein molecules in the cell, has been largely recognized [104, 76].

The most general way of accounting for non deterministic processes is to write

down the master equation for a given system. To define the state of the switch one

must specify the DNA binding states of particular genes and the number of proteins

of each type. The probability distribution even of a single switch consisting of two

genes, the product proteins of which act as regulator proteins for the system, may

not be determined exactly and approximations must be considered [38, 25, 104].

Several approaches to account for the probabilistic nature of chemical reac-

37
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tions have been undertaken, ranging from the Langevin description of single genes

[38], and two interacting gene switches [25], to the master equation reduced to a

Fokker-Planck equation considerations [76, 24]. A dynamical action formulation

has also been used [104] to determine the lifetimes of states of the switch. A

popular alternative to purely analytical methods, which often need to make ap-

proximations or are limited to very simple model systems, has been to conduct

stochastic simulations of genetic switches. Two types of simulations are mostly

used. In the first the randomness of the system is introduced by means of a Monte

Carlo algorithm with fixed time step [23]. The second is based on the Gillespie al-

gorithm [91] to predict the probability of a given reaction occurring [75]. For single

gene systems, stochastic simulations have shown that stochasticity in the system is

responsible for the bimodal probability distributions [46], observed experimentally.

These methods prove very useful, as they allow us to test the theoretical predic-

tions on model systems, which might be hard to build experimentally. However

this approach often does not enable us to gain intuition or insight into the mech-

anisms behind the functioning of the system. The aim of the present work is to

gain a better and deeper understanding of the device physics of genetic switches.

We therefore, contrary to many important previous discussions [88, 87, 68] do not

present a specific concrete biological system, but discuss generic behavior and try

to understand its sources. Our approximation also allows for an exact solution of

a broad class of genetic switch systems without any further assumptions and with

little computational effort. Hasty et al [14] present an overview of the existent

theoretical approaches.

A popular approximation, assumes the DNA binding state reaches equilibrium

much faster than the protein number state. Therefore the adiabatic approximation

is often considered [69, 104, 111], allowing for a thermodynamic treatment [69] of

the DNA binding state. The protein number fluctuations are then treated stochas-

tically. Even before the statistical thermodynamics approach of Shea and Ackers

[69] using partition functions, much previous work assumed the DNA binding and
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unbinding can simply be accounted by an equilibrium constant, since the relax-

ation timescales for equilibration of the DNA state are much larger than those of

the protein numbers, which require protein synthesis and degradation to change.

The partition function approach has also been successful at looking at logic gates

build from switches [35]. The adiabatic approximation is believed to hold true in

many cases, judging by the experimental parameters of biological switches [111].

But as the experiments of, for example Becskei et al [22] show, not all switches

need function in the adiabatic limit and the non-adiabatic limit may result in

new phenomena. We therefore consider a wide range of parameter ratios in our

discussion.

In this paper we explore more fully an approximation, previously used by Sasai

and Wolynes [40] for the variational treatment of the problem, the self-consistent

proteomic field (SCPF) approximation. Within this approximation one assumes

the probability of finding the switch in a given state is a product of probabilities of

states of individual genes. One can then solve the steady state master equation for

the probability distribution of many regulatory systems exactly. We discuss the

approximation and present a detailed study of different classes of genetic switches,

some of which have never previously been considered theoretically. We consider

several particular features of such systems, found in known switches, separately

to be able to characterize their contributions to the behavior of the whole system.

To be specific, starting from a symmetric toggle switch, we go on to compare the

effects of multimer binding and of the production of proteins in bursts on the

stability of the switch.

The stochastic effects prove to be modest for symmetric switches without

bursts, especially if the genes have a basal production rate. We find the deter-

ministic and stochastic SCPF solutions to have similar probabilities of particular

genes to be on and mean numbers of proteins of a given species in the cell. How-

ever in the non-adiabatic limit, when the unbinding rate from the DNA is smaller

than the death rate of proteins, the probability distributions have two well defined
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peaks, unlike in the deterministic approximation or adiabatic limit of the stochastic

SCPF solution.

We also show the effect of stochasticity on the observables becomes more ap-

parent when proteins are produced in bursts. In these types of switches, the

definition of the adiabatic limit, which was clear for the switches in which proteins

are produced separately, is no longer simple. Our discussion shows that the prop-

erties of genes often analyzed in the deterministic limit, may be strongly influenced

by stochasticity in this case. Randomness in a biological reaction system leads to

quantitative and in many examples even qualitative changes from predictions of

deterministic models.

We also discuss the differences in the behavior of an asymmetric and symmetric

switch. We point to the mechanisms resulting in different types of bifurcations and

show how they are influenced by noise. Within the SCPF approximation switches

that are regulated by binding and unbinding of monomers, do not have regions of

bistability. This holds true for both symmetric and asymmetric switches. When

proteins are produced individually rather than in bursts, fast unbinding from the

DNA can effectively minimize the destructive effect of protein number fluctuations

on the stability of the DNA binding state. Furthermore a detailed analysis of the

probability distributions show they have long tails and are far from Poissonian

in both the adiabatic and non-adiabatic limit. We discuss the properties of the

system in terms of clouds of proteins buffering the DNA. We show how fast or

slow DNA binding characteristics and protein number fluctuations influence the

stability of the buffering clouds leading to specific emergent behavior of observables.

Throughout the paper a comparison is made between results of the exact stochastic

solution with solutions of deterministic kinetic equations for the system, within the

self-consistent proteomic field approximation.

We establish a base of potential building blocks of more complicated switches

and systems, such as networks and signaling cascades, for which an exact solution

within the present approximation can also be obtained. A detailed discussion of
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these larger systems will be the topic of another paper. We also present limitations

of the present style of analysis where exact solutions are not possible.

There are two aims of this paper. The first is to discuss the self consistent

field approximation and show that it has an exact solution which may be extended

to a large class of systems. This approximation lets one deal in a straightforward

and computationally inexpensive manner with the effect of random processes on

genetic networks. The second is to discuss the many components of biological

switches present in nature and in engineered systems, in the necessary stochastic

framework.

5.B The Self-Consistent Proteomic Field Approximation

The basic mechanism of gene transcription regulation in prokaryotes may be

reduced to the binding and unbinding of regulatory proteins, repressors and ac-

tivators, to the operator site of the DNA. If we use this simplified treatment,

which neglects extra levels of regulation, such as the binding of RNA polymarase,

effectively each gene can be described as being either in an active (on) state,

when the repressor is unbound (activator bound), or in an inactive (off) state,

with the repressor bound (activator unbound). The stochastic system of a single

gene and its product proteins is described by the joint probability distribution

~P (n, t) = (P1(n, t), P2(n, t)) of the number of product proteins in the cell n, and

the DNA binding site state: on (protein not bound)- 1, or off (protein bound) - 2.

To conserve probability
∑

n(P1(n, t) + P2(n, t)) = 1.

If one considers two interacting genes, the description in terms of a joint prob-

ability vector needs to be extended to four states: both genes may be on, or off, or

one of the genes may be on, the other off. If the two genes do not interact, as would

be the case for two self regulatory proteins, the probability of a finding the two gene

system in a given state, defined by both the number of product proteins and the

DNA binding site state, would be the the product of the states of particular genes
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Pjj′(n1, n2; t) = Pj(n1; t)Pj′(n2; t). This is generally not true for two interacting

proteins, as is the case in a genetic switch. However, as a first approximation to

the problem, one can ignore correlations between the spaces of the two genes and

assume the space of the switch is a sum of spaces of the genes that compose it.

Since we are looking for solutions in which the symmetry of the system is broken

and different behaviors of the on and off state of a gene are possible, we must

allow for different probability distribution functions for the on and off states. This

is analogous to the unrestricted Hartree approximation in quantum mechanics,

where allowing different spatial functions for spin up and spin down states results

in breaking of the symmetry of the bound molecular orbital solution to the disso-

ciated solution of two separate hydrogen atoms with opposite spin states for large

internuclear distances. We therefore allow for multiple solutions for a given set of

parameters. The total probability of having a given gene state i and ni proteins

of that type is simply given by Pj(ni, ni′) = Pj,j′=0(ni, ni′) + Pj,j′=1(ni, ni′).

The self-consistent approximation is a crude approximation since in the case of

the genetic switch, the state of a given gene is determined by the number of protein

products of the other gene. However, within this approximation, one can solve

the master equation for the probability distribution exactly without any further

approximations. This yields a powerful computational tool, which simultaneously

gives useful insight.

5.C The Toggle Switch

For clarity of exposition, we show how the problem may be solved exactly

within the self-consistent proteomic field approximation on a well defined system

of the toggle switch. We then expand the method to apply to other systems. The

elementary system we use as an example is composed of two genes, labeled 1 and

2, as presented in Fig. 5.1. Gene 1 produces proteins of type 1 which, act as

regulatory proteins, say repressors, on gene 2. The product of gene 2, proteins of



43

type 2, in turn repress gene 1. In this simplified model, we assume that protein

production occurs instantaneously upon unbinding of the repressor. For now, we

assume that repressor proteins bind as dimers, since that is a common scenario

in biological systems, but we do not treat dimerization kinetics explicitly. For

simplicity the coupling form between the genes responsible for binding will be taken

to be of the form hin
p
3−i, where p is the order of the multimerization of the repressor.

This form is a small approximation to the more exact hin3−i(n3−i−1)...(n3−i−p+1).

We have checked that using the simpler monomial does not influence the results in

any regime discussed. We also do not account for the existence of mRNA molecules

and the consequent time delays owing to their synthesis as intermediates. The

extensions of the model are discussed later.

Within the self-consistent proteomic field approximation the set of master

equations for the corresponding system is of the form:

∂P1(ni)

∂t
= g1(i)[P1(ni − 1) − P1(ni)] + ki[(ni + 1)P1(ni + 1) − niP1(ni)] +

−hin
2
3−iP1(ni) + fiP2(ni)

∂P2(ni)

∂t
= g2(i)[P2(ni − 1) − P2(ni)] + ki[(ni + 1)P2(ni + 1) − niP2(ni)] +

+hin
2
3−iP1(ni) − fiP2(ni)

for n ≥ 1 where the i = 1, 2 refers to the gene label. P1(n1) describes the proba-

bility of gene 1 being in the on state and there being n1 protein molecules of type

1 in the cell. The first term on the right hand side of the equations describes the

production of proteins of type i with a production rate gj(i), where j=1,2, depend-

ing on whether the gene is in the on or off state. The second term accounts for the

destruction of proteins with rate ki. The binding of repressor proteins produced

by the other gene is proportional to the number of dimer molecules present in

the system n3−i with rate hi. We assume unbinding occurs with a constant rate

fi. Binding and unbinding contributes to the kinetics of the DNA binding states,

as described by the last two terms. This set is supplemented by the Pj(ni = 0)

equations to account for boundary conditions.
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∂P1(ni = 0)

∂t
= −g1(i)P1(ni = 0) + kiP1(ni = 1)

−hin
2
3−iP1(ni = 0) + fiP2(ni = 0)

∂P2(ni = 0)

∂t
= −g2(i)P2(ni = 0) + kiP2(ni = 1)

+hin
2
3−iP1(ni = 0) − fiP2(ni = 0)

For convenience, let us define
∑

ni
Pj(ni) = Cj, the probability of finding the

DNA binding site in a given state. One can now sum the Pj(1) equations over

the number states of the 2nd protein with P1(2) + P2(2), and likewise the Pj(2)

equations. Due to the SCPF approximation, the only term affected is the repressor

binding term h1(n2
2), and since

∑

n2
P1(2) + P2(2) = 1, the summation results in

∑

n2
h1(n2

2)(P1(2) + P2(2)) = h1(C1(2) < n2
12 > +C2(2) < n2

22 >) = h1F (2), where

< n2
j2 > is the second moment of the number distributions of type 2 proteins

produced when gene 2 is in the j-th state. The equations of motion of the moments

of the probability distribution are of the form:

∂Cj(i) < nk
ji >

∂t
= gj(i)[< (nji + 1)k > − < nk

ji >]Cj(i) +

+ki[< nji(nji − 1)k > − < nk+1
ji >]Cj(i) +

+(−1)jhiF (3 − i) < nk
1i > C1(i) +

+(−1)j+1fi < nk
2i > C2(i)

The steady state equations for the moments of the distributions that follow are

closed form, the nth
i order moment equation of motion depends only on the lower

moments of the ith gene and n2
3−i.

To analyze the behavior of switches we introduce the following scaled param-

eters: the adiabaticity parameter ωi = fi/ki, which represents the characteristic

rate of change of the DNA state compared to the characteristic rate of change

in protein number, Xeq
i = fi/hi measures the tendency for proteins to be un-

bound from the DNA, Xad
i = (g1(i)+g2(i))/(2ki) the effective production rate and

δXsw
i = (g1(i) − g2(i))/(2ki) distinguishes between the two DNA states in terms
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of protein dynamics. We present a detailed derivation of the moment equations in

Appendix A.

The resulting equations for the zeroth moments couple to the higher mo-

ments by the interaction function F (i). These lower moments can be solved self-

consistently. The resulting solution predetermines all the other moments, which

completely describe the probability distribution. Each gene therefore couples to

the other gene by the influence of the self-consistently generated proteomic field.

One could define the generating function and calculate the probabilities of having

a given DNA binding state j for the ith gene when there are ni proteins of type i

in the cell. In practice, it is easier to go back to the steady state master equation

and solve directly for the probability distributions than sum an infinite number of

moments. Rewriting the steady state master equation one gets:

P1(ni) =
1

Xad
i + δXsw

i + ωi
F (3−i)

Xeq
i

+ n
[(Xad

i + δXsw
i )P1(ni − 1) +

+(ni + 1)P1(ni + 1) + ωiP2(ni)]

P1(ni = 0) =
1

Xad
i + δXsw

i + ωi
F (3−i)

Xeq
i

[P1(ni = 1) + ωiP2(ni = 0)]

P2(ni) =
1

Xad
i − δXsw

i + ωi + n
[(Xad

i − δXsw
i )P2(ni − 1) +

+(ni + 1)P2(ni + 1) + ωi
F (3 − i)

Xeq
i

P1(ni)]

P2(ni = 0) =
1

Xad
i − δXsw

i + ωi

[P2(ni = 1) + ωi
F (3 − i)

Xeq
i

P1(ni = 0)]

These sets of equations give recursion relations for Pj(ni) which one can use to

express Pj(n) as a function of P1(0) and P2(0). The normalization condition
∑

n1
(P1(n1) + P2(n1)) = 1 gives Pj(0) in term of constants and the result is the

probability function Pj(n) as a series. The SCPF approximation reduces the two
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gene problem to a one gene problem parametrized by the moments of the second

gene, which can be worked out independently, as we have already shown and are

represented by F (2), which is a constant in terms of this calculation. To see the

effect of the stochastic nature of the system we compare the exact solutions of the

self consistent field approximation equations to the results that would follow from

deterministic kinetic rate equations for the number of proteins of each type and

the fraction of on/off DNA binding states for each gene:

C1(i) =
Xeq

i

Xeq
i + n2(3 − i)

n(i) = Xad
i + δXsw

i (C1(i) − C2(i))

where n(i) is the number of proteins of type i present in the cell. The exact

SCPF equations reduce to the deterministic kinetic equations in the limit of large

ω and Xad for the case discussed above. The F (3 − i) term in the stochastic

SCPF equations is replaced by the n2(3− i) term in the deterministic kinetic rate

equations. For the toggle switch, where repressors bind as dimers it is easily shown

that the interaction functional may be rewritten in the form:

F (i) = (Xad
i )2 + Xad

i + (δXsw
i )2 + δXsw

i (C1(i) − C2(i))(1 + 2Xad
i ) +

−4ωi(δX
sw
i )2 C1(i)C2(i)

ωi + C1(i)
=< n(i) >2 ωi + 1

ωi + C1(i)
+ < n(i) >

which in the large ω limit reduces to F (i) =< n(i) >2 + < n(i) >. So for large

mean numbers of proteins present in the cell, which corresponds to large effective

production rates Xad, < n(i) > of the order of hundreds is a small correction to

< n(i) >2. We therefore reproduce the deterministic kinetics result. As shown by

Sasai and Wolynes [40] the difference in the probability that gene 1 is active and

that gene 2 is active, ∆C = C1(1) − C1(2), plays the role of an order parameter.

We can now consider a family of switches and discuss their stability, sensitivity of

regions of bistability to control parameters and types of bifurcations.
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5.D The Symmetric Toggle Switch

For pedagogic purposes, we will start by analyzing the single symmetric toggle

switch, such as discussed above in which repressors bind as dimers, with ω1 = ω2 =

ω, Xad
1 = Xad

2 = Xad, δXsw
1 = δXsw

2 = δXsw and Xeq
1 = Xeq

2 = Xeq, as it is the

most intuitive and shows the most generic behavior. It is an academic example, as

even individual genes in switches engineered in the laboratory mostly have different

chemical parameters. Yet a lot can be learned from this simple system.

5.D.1 The general mechanism of the phase transition

Figure 5.2 shows the phase diagrams for the system, |∆C| as a function of

reservoir protein number and the adiabaticity parameter for the exact SCPF equa-

tions for growing values of the parameter describing the tendency that proteins

are unbound from the DNA, Xeq. The deterministic kinetics and exact SCPF

approximations give qualitatively similar results. The analogous deterministic ki-

netic phase diagrams agree with the SCPF solutions in the large ω and Xad limit,

hence they become more similar with growing Xeq, as the bifurcation occurs at

larger effective production rates for larger Xeq. For large fluctuations and a small

unbinding rate, neither gene 1 nor gene 2 is favoured and the probability of a

given gene to be on is determined solely by the effective production rate of the

other gene and decreases in a quadratic manner as the number of repressor pro-

teins grow (Fig. 5.3). Since the switch is symmetric, the system has one stable

state, ∆C = 0, where the probabilities of the genes to be on are equal. As the rel-

ative protein number fluctuations get smaller and the DNA unbinding rate grows,

a proteomic cloud buffers the repressed gene, keeping it repressed. The symme-

try of the system is broken and the solution bifurcates into two separate basins

of attraction. For the stochastic SCPF equations the bifurcation takes place for

larger effective production rates (larger Xad), than for the deterministic equa-

tions, even in the large ω limit, which depicts their sensitivity to fluctuations.
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The critical number of reservoir proteins necessary for the bifurcation of the so-

lution to take place is the same in both approximations and is determined by

< n >c= (Xeq)
1
2 (Fig. 5.3). In the discussed example < n >c= 32 = 1000

1
2 , for

Xeq = 1000. For the deterministic kinetic switch the bifurcation takes place when

C1(i) = (1+ < n(3−i) >2 /Xeq)−1 = 0.5, due to the simple form of the interaction

function equal to < n(3 − i) >2= (2XadC1(3 − i))2. So C1(i) = 0.5 is equivalent

to the < n(3 − i) >2 /Xeq = 1. In a noisy system larger effective production rates

are needed to achieve the critical value of proteins. The interaction function in

this case may be written as F (i) =< n(i) >2 ω+1
ω+C1(i)

+ < n(i) >, and ω+1
ω+C1(i)

≥ 1,

always. So at < n >c, F (3 − i)/Xeq > 1 and the probability of the genes to be on

is smaller than 0.5, therefore Cbiff,SCPF
1 (i) < Cbiff,kin

1 (i). The mechanism of the

bifurcation requires the two genes to be more likely to be unbound than bound

for the phase transition to take place. The curvature of the nullclines presented in

Fig. 5.2 can be simply worked out to be of the form ω = ζ1
ξ1Xad2+ξ2Xad+ζ2

− ξ2, with

ζi, ξi constants determined by the specific value of C1(1), C1(2).

5.D.2 Adiabaticity parameter dependence

As the adiabaticity parameter decreases the area of phase space which cor-

responds to multiple solutions decreases (Fig. 5.2). For very small values of the

adiabaticity parameter, there exists only one solution which corresponds to a state

in which the two genes are off. The value of ω below which only one solution exists

decreases with the tendency for proteins to be bound, but exists for all values of

Xeq. Therefore if the two genes have very high repressor binding affinities, the

critical number of proteins necessary for the phase transition to take place cannot

be formed, even for very high production rates. This region of parameter space

where one solution is possible corresponds to a situation in which a buffering pro-

teomic cloud may not form, due to a very fast destruction rate of proteins or a very

small unbinding rate from the DNA. The critical number of proteins necessary for

the bifurcation to occur grows with the tendency for proteins to be unbound from
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the DNA (Xeq), as the cloud buffering the genes needs to be bigger and exhibit

smaller relative protein number fluctuations, which effectively decrease with the

growth of the adiabaticity parameter. This is further discussed in terms of the

probability distributions. Therefore a monostable solution exists at all values of

the effective growth rate, Xad, for larger values of ω at large Xeq than at smaller

Xeq values. The bifurcation point is a result of competition between the number

of reservoir repressor proteins and the tendency for proteins to be unbound from

the DNA. This is clear from the dependence of the number of proteins present in

the cell at the bifurcation point on the relative values of Xad and Xeq, but not the

adiabaticity parameter ω.

5.D.3 Mean protein numbers

The total number of proteins present in the cell, produced both in the on

and off state, asymptotically away from the bifurcation points is the same for the

deterministic and stochastic approximations, and it is given by < n(i) >= 2Xad,

when C1(1) ≈ 1 the probability of the gene to be on is close to unity. The number

of proteins of a given type present in the cell, when the gene that produces them

is in the on state is always considerably smaller in the noisy system than the

deterministic case (Fig. 5.3 C). Since the production rate in the off state was

assumed zero, in the deterministic case no proteins of a given type are present in

the cell if the gene is in the off state, unlike in the noisy system. Therefore the

number of proteins in the deterministic system is nonzero only if the gene is on.

But interaction of the DNA binding state with the proteins buffering it, results in a

residual number of proteins present in the off state, for all values of ω. The region

of bistability of the switch in parameter space grows as the binding rate increases

with respect to the unbinding rate, stabilizing the DNA binding states. As the

susceptibility of the system to fluctuations increases, the deterministic equations

prove to be a poor approximation to describe the state of the system.
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5.D.4 Gene-buffering proteomic cloud interactions

The stochastic nature of the system manifests itself also at the DNA level (Fig.

5.2). As the tendency for proteins to be unbound from the DNA grows, the area

of parameter space, where multiple solutions are possible decreases, since a larger

number of proteins is needed to reach a state in which two genes are more likely to

be repressed (protein bound state), than at small Xeq. For small unbinding rates

or large binding rates, regardless of the ratio of the rate of unbinding of repres-

sors from the DNA to protein degradation, bistability requires smaller numbers

of proteins, which correspond to larger relative fluctuations, than for large Xeq.

Therefore a larger unbinding rate relative to the binding rate makes the system

more susceptible to protein number noise. Competition between Xeq and < n(i) >

results in Xeq, for a given nullcline, being a parabolic function of Xad, for the

dimer binding case, with coefficients determined by ω and C1(i). This is easily

generalized to higher order functions for higher order (p) oligomers, and results

in p-order dependence. The switching region, by which we mean the region of

parameter space between the bifurcation point and ∆C > 0.9 decreases as the

binding and unbinding rates become comparable (Xeq decreases). As discussed

above, the probability of the genes to be on at the bifurcation point tends to 0.5

as the adiabaticicty parameter grows (Fig. 5.3), therefore the probability to be on

has to increase by a smaller ∆C to reach C1(i) = 1. Therefore the switching region

decreases also as the unbinding rate from the DNA grows, since smaller effective

production rates are needed to reach ∆C = 1, than for small ω. Small values

of ω correspond to large fluctuations in the DNA binding state, as well as the

protein number state and result in destabilizing the gene-buffering protein cloud

interactions. Hence very large effective production rates are needed for ∆C > 0.9.

Therefore the DNA unbinding rate must become considerably faster compared to

the protein degradation rate for the switch to have two stable solutions in a large

region of parameter space.
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5.D.5 The probability distributions

A better understanding of the bifurcation can be gained from examining the

probability distributions. Figures 5.4 A and B and 5.4 C and D show the evolution

of the probability distributions of gene 1 and gene 2, respectively, to be on and off as

functions of Xad. The peak of the distribution decreases and the width spreads out

as the control parameter grows, until it reaches the bifurcation point at Xad = 44.

Then the value of the probability function corresponding to the most probable

number of proteins grows again. The spread of the functions grows as the effective

production rate in the on state increases, however narrows with the increase of the

adiabaticity parameter, as would be expected, since the DNA state fluctuations

become smaller with ω. The average number of proteins in the cell in the on state

(∆C > 0.9) does not show a dependence on ω. Yet as the unbinding rate from the

DNA becomes very fast compared to the protein number fluctuations, the system

switches often between the two states, hence a large number of proteins is present

even in the off state. This results in a two peak - bimodal probability distribution

(Fig. 5.4). If the DNA unbinding rate is small, the protein number characteristics

follow the DNA state having time to reach a steady state within each well, before

the DNA binding site switches into the other state, so the number of proteins in

the off state falls to zero (Fig. 5.5 A and B). If ω is large, random fluctuations

in the DNA state do not change the effective state of the system, since a residual

high mean protein number is present even in the off state. In such a case lower

effective production rates than for small ω result in higher protein yields and what

follows smaller switching regions.

For small ω one might expect Poisson distributions of proteins in each of the

DNA states, since the unbinding rate from the DNA is smaller than the protein

degradation rate, so the proteins may reach a steady state without the DNA state

changing. Hence, effectively proteins would feel only one well and be subject to a

birth death process. However this is not true. The difference between the exact

solution and a solution obtained within a Poissonian approximation to the state
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of the system is surprisingly large, owing to the skewed tails of these distributions.

Figure 5.5 C and D compares these probability distributions with distributions

for the same system if one assumes a Poissonian probability function. The distri-

butions obtained as an exact solution within the SCPF approximation are clearly

not symmetric, but exhibit long tails towards zero. Therefore, although the most

probable values of the two types of distributions are similar, noise has a destruc-

tive impact on the system, resulting in a larger probability of having a smaller

number of proteins in the cell than expected based on a Poissonian distribution,

whose higher moments are equal to the mean. Therefore a larger production rate is

needed for one of the states to be favoured as a result of noise than predicted from

a symmetric probability distribution. The most probable number of proteins in the

on state, if the unbinding from the DNA is slow, is zero, unlike predicted by Pois-

sonian distributions. The influence of noise on protein number fluctuations brings

the protein number means down, as can also be seen from Fig. 5.3 C. Overall the

spread of the probability distributions is large, and their characteristics for small

values of the control parameters are different from those predicted by Poissonian

distributions, let alone by deterministic kinetic equations, therefore the effects of

stochasticity may not be neglected.

5.D.6 The nonzero basal effective production rate case.

The above analysis concerns a switch with a zero basal production rate, so

proteins were not produced in the off state. In a number of biological systems

(Ptashne and Gann, 2002) a non-zero basal production rate exists and we now

turn to consider the effect of this on a symmetric switch. Figure 5.6 B shows

the dependence of the bifurcation curves for different values of the effective basal

production rate g2/(2k). Values smaller than one, when the death rate is larger

than the production rate, show that for the symmetric switch assuming the effective

production rate to be zero in the off state is a reasonable approximation. If the

on state has a positive input to the number of reservoir proteins present due to
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g2/k > 1, the probability of the active gene to be on, even for very large on

state effective production levels Xad is smaller than one. Hence the off state

contributes considerably to the steady state number of proteins. The solution

which corresponds to the more active of the two states may effectively be an off

state, since it has C1(i) < 0.5, although the effective production rate in the on

state in the bifurcated region of parameter space is much larger than in the off

state (for example the g2/(2k) = 20 line in Fig. 5.6 B). As the effective basal

production rate increases, a larger production rate in the on state than for small

g2/(2k) > 1 is required to reach the critical number of proteins for the bifurcation

to take place, which is given by < n(i) >= 2XadC1(i)− g2/k(2C1(i)− 1). For this

reason even for the deterministic approximation at the bifurcation point, the two

genes must be more probable to be off, as can also be seen for the exact SCPF

solutions from the probability distributions (Fig. 5.7 B, C, E, F ). Figure 5.6 A

shows the dependence of the bifurcation curves on the adiabaticity parameter,

which tend to the deterministic case for large ω. A closer analysis of the g2/k > 1

case, since the g2/k < 1 is analogous to the zero basal production rate case which

was already discussed, show that mean properties of the system are in even better

agreement with the deterministic solution than the g2 = 0 case (Fig. 5.7 A and

D). The genes have a non-zero probability of being in the off state, with the

probability distribution of the off gene having a long tail towards higher protein

numbers Fig. 5.7 E and F . In the off state the effective production rate g2/(2k)

is small and the noise input is small, relative to the large protein numbers present

in the system. The small effect of stochasticity results in the observed similar

mean characteristics. Yet the form of the probability distributions for the genes

to be on before the transition is especially broad, with a far smaller probability

than those of the off state (Fig. 5.7 B, C, E, F ). These clearly show that the

two genes are more probable to be in the off state before the bifurcation point.

Therefore although the average observables are similar for the deterministic and

SCPF stochastic solutions, the predicted distributions are unusual.
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5.D.7 Summary

The symmetric switch is based on a competition between the accessibility of

the repressor site and the number of repressor proteins present in the cell. The

bifurcation is solely a result of the nonlinearity of the system and introducing

noise simply affects the region in parameter space where given states occur. The

protein number fluctuations have a destructive role in determining the stability of

the bifurcated solution, however fast DNA unbinding rates can compensate for the

destabilizing effect of protein number fluctuations. In this region the stochastic

solution predicts similar means to the deterministic case, but the form of the

probability distributions which depends on a large number of higher moments

is non-trivial. It is a result of the interplay of the DNA binding and protein

degradation kinetics.

5.E The Asymmetric Toggle Switch

Most switches found in nature are not symmetric. For asymmetric switches,

when proteins bind as dimers, the two genes interact, resulting in probabilities to

be on, different from those imposed purely by the equilibrium between binding and

unbinding. The steady state solution is a compromise between the tendency that

repressors are unbound from the initially off gene (Xeq
1 for the forward transistion,

Xeq
2 for the backward in the following discussion) and the effective production rate

of the initially on gene (Xad
2 - forward, Xad

1 backward transition) (at least for

the deterministic case). This results in the characteristic S-curve bifurcation dia-

gram, as presented in, for example Fig. 5.12, with possible forward and backward

transtions, and what follows hysteresis. We refer to the transition which occurs

with increasing Xad
1 as the forward transition and that with decreasing Xad

1 as

the backwards transition. Since Xad
i is a well defined function of the probabilities

that the genes are on, the simplicity of the deterministic equations allows for a

completely analytic discussion of the asymmetric switch. The more complicated
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form of the exact SCPF equations makes this approach impossible. However the

deterministic rate solution offers valuable insight into the basic mechanism behind

the transition.

5.E.1 The general mechanism

By combining the steady state equations of motion for the probabilities of

the two genes to be on and noting that with a zero basal production rate <

n(i) >= 2Xad
i C1(i), one can derive the following form of the deterministic bifur-

cation curves:

Xad
1 (C1(2)) =

Xeq
2

1
2

2
(1 +

(2Xad
2 C1(2))2

Xeq
1

)(
1

C1(2)
− 1)

1
2 (5.1)

as a function of C1(2) and:

Xad
1 (C1(1)) =

Xeq
2

1
2

2C1(1)
(

2Xad
2

(( 1
C1(1)

− 1)Xeq
1 )

1
2

− 1)
1
2 (5.2)

as a function of C1(1). The transistion points are determined as the extrema of

these functions, which are functions solely of the scaled parameter Xad2
2 /Xeq

1 and

are plotted on the bifurcation graphs. It is worth noticing that the bifurcation

points C1(i) do not depend on the value of Xeq
2 , the parameter describing the gene

binding kinetics of the gene that is on initially. This is not true for the exact

SCPF solution, which cannot be solved analitically, but the bifurcation curve has

the more complex form:

Xad
1 (C1(2)) =

1

2
((((

1

C1(1)
− 1)Xeq

2 )
1
2
ω1 + C1(1)

1 + ω1
+ 1)

1
2 − ω1 + C1(1)

1 + ω1
)

1

2C1(1)
(5.3)

where C1(1) is a function of ω2, X
eq
1 , C1(2) and Xad2 . The bifurcation point is

therefore determined by the protein (Xad
i ) and DNA (Xeq

i ) characteristics and their

mutual interactions (ωi) of the two genes. The deterministic approximation there-

fore greatly simplifies the mathematical mechanism of the transition. This may

lead to large errors when studying more complicated biologically relevant systems,

where one considers asymmetric switches with non-zero basal production rates and
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proteins are produced in bursts. The case of the non-zero basal production rate

within the deterministic approximation also cannot be solved analytically. The

general picture behind the transition is seen from the deterministic approach. The

larger the tendency for proteins to be unbound from the DNA, the larger the effec-

tive production rate Xad
1 must be for the transition from one gene to be active to

the other to be active to take place, since repressor proteins are less likely to bind

to the on gene (i) at large Xeq
i than at small Xeq

i . However, if one considers a noisy

system, it is effectively harder for proteins to stay bound to the initially off gene

due to the destabilizing effect of DNA binding noise (Fig. 5.8). For the stochastic

system, apart from very low values of the adiabaticity parameter (ω < 0.1) (Fig.

5.11), there is a threshold number of reservoir proteins which will cause a rapid

transition. If we start with a small effective production rate for one type of pro-

teins and increase this rate, keeping the production rate of the other gene fixed

at an initially higher value, the proteins produced by the gene with the initially

smaller production rate, repress it gradually and ineffectively, until they reduce

the probability of the gene to be on to one half, for the exact SCPF solution. The

number of proteins present in the on state decreases much more rapidly with the

change of Xad
1 , whether it be increase for the forward transition or decrease for the

backwards in the examples presented, than the number of proteins in the off state

grows (Fig. 5.10). Hence the probability to be on of the initially active gene shows

a larger sensitivity to the change of Xad
1 than the off state probability. This leads

to a rapid transition of the previously active gene to an inactive state (Fig. 5.9).

Such behavior is described by Ptashne [109, 115]in the λ phage switch, who points

out its role as a “buffer against ordinary fluctuations in repressor concentration”.

The observed system switches when the “repression probability” drops to 50%, as

in the solutions of this model. Our analysis seconds Ptashne’s hypothesis, since

the deterministic system lacks this behavior, the transition is rapid and for certain

values of parameters takes place when the probability of the initially on gene drops

to 80% (Fig. 5.8). The buffering capabilities of the stochastic system are clearly
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seen in the long tails towards n = 0 of the probability distibutions of the gene that

is switching from the on to the off state (Fig. 5.9 A and B).

5.E.2 The effect of noise on the bifurcation mechanism

The mean number of proteins at the transition point differs for the deter-

ministic and exact SCPF solution (Fig. 5.10). More repressors are needed to

induce the transition in the deterministic approximation than in the stochas-

tic system, since due to the form of the interaction function for the exact case,

F (i) =< n(i) >2 (ω + 1)/(ω + C1(i))+ < n(i) >>< n(i) >2. A smaller num-

ber of proteins is therefore needed for the inactive gene to become competitive

with the active gene. The mechanism of the transition is different from the sym-

metric gene case, where a critical number of proteins needs to be reached. The

asymmetric switch is based on the competition between the probability that pro-

teins of one kind will repress the opposing genes and the analogous probability

for the other kind of proteins. The repression capability is governed by Xad2
3−i/X

eq
i ,

which might be looked upon as the product of the probability of having a certain

number of repressor proteins (3 − i) in the cell and the tendency for them to be

bound to the opposing gene (i). In fact, the transition point in the determinis-

tic case is purely a function of such ratios, Xad2
3−i/X

eq
i = f(Xad2

i /Xeq
3−i). In both

the stochastic and deterministic cases, the transition points are set by the inter-

action function which regulates the on and off state probabilities of a given gene

F (3 − i)/Xeq
i = C2(i)/C1(i). Inclusion of noise in the system effectively increases

the nonlinearity of the system, which results in the already discussed buffering

capabilities of the system. Stochasticity alters the very simple competitive mech-

anism seen in the deterministic kinetics to allow for more levels of control of the

stability of the state of the system against random fluctuations.
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Figure 5.1: A schematic representation of the toggle switch. Gene 1 produces
proteins of type 1 which repress gene 2 and gene 2 produces proteins of type 2
which repress gene 1.
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Figure 5.2: Phase diagram obtained as an exact solution within the SCPF ap-
proximation for the single symmetric switch when repressors bind as dimers with
Xeq = 1 (A), 100 (B), 1000 (C). Contour lines mark values of ∆C.
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Figure 5.3: Probability that genes are in the active state (A), the mean number
of proteins of each type present in the cell < n(i) > (B) and the mean number
of proteins of each type present in the cell if gene i is in the on state < n1(i) >
(C) as a function of Xad = δXsw for a symmetric switch. Exact solutions of the
SCPF approximation equations compared with deterministic kinetic rate equations
solutions, for a single symmetric switch, Xeq = 1000, ω = 0.5.
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Figure 5.7: Probability of genes to be on (A) and mean number of proteins of a
given type present in the cell (D) for a symmetric switch with an effective base
production rate. Evolution of probability distributions for the probability of the
gene that will be active after the bifurcation to be on (B) and off (C) and the gene
that will be inactive to be on (E) and off (F ) as a function of the order parameter
Xad for the same system. The bifurcation occurs at Xad = 61, g2/(2k) = 5,
ω = 0.5, Xeq = 1000.

Figure 5.8: Dependendce of the probability of genes to be on in an asymmetric
switch as a function of increasing parameters of one gene Xad

1 = δXsw
1 in the

forward (top) and backward (bottom) transition for different values of Xeq
2 : 5, 50,

500. All other parameters fixed at Xeq
1 = 1000, ω1 = ω2 = 0.5, Xad

2 = δXsw
2 = 80.

Comparison of solutions of deterministic and exact SCPF equations.
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Figure 5.11: Bifurcation diagrams for an asymmetric switch, presenting Xad
1 =

δXsw
1 as a function of C1(2) (A–C), and C1(1) (D–F ) for different values of the

adiabaticity parameter: ω1=ω2 (A, D), ω2, with ω1 = 0.001 = const (B, D), ω1,
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1 = 100,Xeq
2 = 50,Xad
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2 = 80.
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the cell when proteins are produced in bursts of N = 10 (C) and N = 100 (D).
Symmetric switch proteins bind as dimers, Xeq = 100, ω = 100. Comparison of
deterministic and stochastic solutions.
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Further comparison of solutions of the deterministic and stochastic equations

leads to the same conclusions as for a symmetric switch. As the tendency for

proteins to be unbound from the DNA grows, the difference in the critical num-

ber of reservoir proteins necessary for the transition to take place increases for

both approximations. The critical number of proteins produced by a given gene

necessary for the transition to take place for both genes is, in most cases (see ω

dependence discussion), smaller for the exact solutions of the SCPF equations and

the difference between the stochastic and deterministic result grows with both Xeq
i

and decreases with ωi (Fig. 5.10). It has a value of 15 for Xeq
2 = 500, ω1 = ω2 = 0.5

and 2 for Xeq
2 = 500, ω1 = ω2 = 10.

Consider the forward transition. The initially inactive gene is buffered by a

cloud of repressor proteins. As one increases the effective production rate of the

proteins produced by the inactive gene (Xad
1 ), the number of proteins which are

able to repress gene 2 grows slowly and linearly < n(i) >= 2Xad
1 C1(1), where

C1(1) ∼ const and forms a buffering proteomic cloud around it. In the results

presented in the figures of this paper the tendency that proteins are unbound from

gene 2, (Xeq
2 ), is smaller than Xeq

1 , so gene 1 is able to produce enough repressors

to form a stable buffering cloud around gene 2 and turn it into the inactive state at

quite modest values of Xad
1 . If Xeq

1 < Xeq
2 , gene 1 produces proteins less effectively,

as the probability of it being repressed is larger than in the previous case, and

larger values of Xad
1 are needed to produce enough repressors to achieve a high

effective probability of binding, Xad2
1 /Xeq

2 . An example of how Xad,crit
1 grows as

Xeq
1 → Xeq

2 , is seen by comparing the Xad
1 ∼ 33 for Xeq

1 = 1000, Xeq
2 = 50 in Fig.

5.8 and Xad
1 ∼ 300 for Xeq

1 = 100, Xeq
2 = 50 (Fig. 5.11).

5.E.3 Adiabaticity parameter dependence

The interaction of the buffering proteomic cloud with the DNA can be altered

when the ratio of the DNA unbinding rate compared to the protein degradation

rate is changed. For small ωi values the unbinding rate of repressors to the DNA



72

is slower than the destruction of the produced proteins. Apart from very small ω

values, as long as there is a critical number of repressor proteins in the buffering

cloud, the off gene is repressed and it responds by turning on, only once the

initially on gene is nearly totally repressed. Large adiabaticity parameters result

in the efficient formation of the buffering proteomic cloud. For the initially off

gene, a small DNA unbinding rate of the off gene, decreases the effectiveness of

the buffering proteomic cloud around it, as the protein number state can reach

a steady state before the DNA state does. The hindered DNA reaction to the

protein number state effectively increases the tendency of repressor proteins to be

unbound from the DNA, for a given Xad
1 . This in turn decreases the probability

of the initially on gene to be on, leading to rapid, switching behavior as an be

seen for gene 2 in the forward, or gene 1 in the backward transition for ω > 0.1 in

Fig. 5.11 A. The initially on gene reacts to the interaction function of the initially

off gene, for which F (i) →< n(i) >2 /C1(i)+ < n(i) > in the small ω limit.

Therefore the interaction function is effectively increased for C1(i) ≈ 0, leading

to the enhanced buffering. The reaction of the initially off gene is unaltered, as

for C1(i) ≈ 1 F (i) =< n(i) >2 + < n(i) >∼ const, if C1(i) remains close to 1.

However if ω is very small (black dash-dot curve in Fig. 5.11 A), the buffering

proteomic cloud is not given a chance to form due to a very high degradation rate

of proteins and gene 2 is simply repressed in a gradual transition. If ω1 is extremely

small and ω2 large, the buffering proteomic cloud around gene 1 cannot form and

the probability of it to be off in the forward transition decreases gradually. A

buffering proteomic cloud exists around gene 2, hence the backward transition is

reminiscent of the deterministic result (Fig. 5.11 B). The most interesting case is

shown in Fig. 5.11 C, where a large ω1 acts as a buffer against fluctuations in the

number of proteins, which repress gene 1. For large production rates of repressors

the probability of gene 2 to be on for the forward transition decreases faster than

in the deterministic solution, however the buffering cloud repressing gene 1 allows

gene 2 to remain in the on state. A buffering proteomic cloud does not form around
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gene 2 and it remains on until the number of proteins produced by gene 1 grows

considerably, as the effective production rate, Xad
1 , is increased. The effective

production rate of gene 1 must be very large to sustain a sufficient steady state

number of proteins to repress gene 2 to the point that C1(1) < 0.5, which leads

to switching. For the backward transition the lack of a buffering proteomic cloud

around gene 2 results in destabilizing gene 1 for larger Xad
1 effective production

rates than for large ω2 values. These examples show how certain combinations

of values of adiabaticity parameters can lead to a system with a larger switching

region than the deterministic model predicts. This property may be useful when

engineering artificial switches. If one has a constraint on the production rates of the

genes, one can use repressors with different binding affinities to achieve switching

in the desired region of parameter space.

In this simple system slow unbinding from the DNA can compensate for the

destabilizing of the DNA state by protein number fluctuations. As the probabil-

ity of the initially active gene to be on gradually decreases, the initially repressed

gene becomes active only once the probability of the other gene to be on has fallen

bellow a certain values α. The susceptibility of the system to protein number

fluctuations may be estimated by the value of α. For small ω, which is still able

to sustain a buffering proteomic cloud, this values tends to 0.5. The incapability

of the system to form a buffering proteomic cloud is much stronger if both adia-

baticity parameters are small, since the reaction of both genes to the change in the

number of proteins is hindered (Fig. 5.11 A). DNA state fluctuations contribute to

effectively faster protein number fluctuations, therefore the exact solution exhibits

the very small ω characteristics, where a buffering proteomic cloud cannot form,

for a slightly wider range of the adiabaticity parameter than one would expect

with a Poissonian distribution (results not shown). Combining these observations

a switch works most effectively if the change of the DNA state compared to the

protein number fluctuations of one gene is sufficiently smaller than that of the

other gene, to allow for effective buffering.



74

5.E.4 The nonzero basal production rate

The asymmetric switch in which both genes have a nonzero basal effective

production rate proves to be susceptible to noise. In Fig. 5.12, we show the de-

pendence of C1(1), with g2(1)/(2k) = g2(2)/(2k) = 5 and C1(2), with g2(1)/(2k) =

g2(2)/(2k) = 0.5 in the small ωi limit. The stochastic solutions converge to the

deterministic solutions for large ω. If gene 2 is initially in the on state, the majority

of proteins are produced with the high fixed rate in the on state, as g1(2) >> g2(2).

The repression of gene 2 is in turn governed by the interaction function of gene 1.

If Xad
1 is small the number of proteins produced in the on and off states by gene

1 are comparable. As the number of proteins produced by gene 1 grows faster the

larger g2 is, gene 2 gets repressed more effectively for smaller Xad
1 values. This

results in a smaller number of repressors produced by gene 2 and the transition

from gene 1 to be on to be off takes place for smaller Xad
1 - effective growth rate

values, than for small g2.

The deterministic solution is much more influenced by the production of pro-

teins in the off state than the stochastic solution. In the exact SCPF solution slow

DNA unbinding rates compared to protein degradation rates are another means of

control of the stability of the DNA state against random protein number fluctua-

tions. The state of the system is far less influenced by the exact protein numbers

than in the deterministic solution. So until the probability of a gene to be on is

larger than that to be off, the fraction of proteins produced with a smaller effective

production rate in the off state is treated as a random fluctuation by the system.

Once again the SCPF system demonstrates its susceptibility to protein number

fluctuations.

The influence of the off state protein production on the total repressor yield

may also be seen in the fast decrease of C1(2) and increase of C1(1) in the forward

transition. If g2 is considerably large its effect can also be seen in the stochastic

solution, hence even when gene 1 is in the on state, it never reaches C1(1) = 1,

although gene 2 is totally repressed (Fig. 5.12 A and results not shown for gene
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2). The magnitude of the probability of gene 1 to be on for very large effective

production parameters strongly depends on the the tendencies of the proteins to

be unbound from gene 1. As Xeq
1 increases the asymptotic Xad

1 limit of C1(1)

becomes smaller, as it is effectively harder for repressors to stay bound to the

DNA. The gene is more likely to be in the off state, which however manages to

sustain the necessary number of proteins produced by gene 1 to repress gene 2.

As g2 increases the region of bistability grows into areas of parameter space, in

which the tendency of proteins to be unbound, Xeq
2 , is larger than for small g2.

For small values of Xeq
2 the number of repressors produced by gene 1 in the off

state is sufficient to repress gene 2 and one observes a smooth and slow transition

in terms of Xad
1 . If g2 is considerably large the transition takes place for larger

values of Xad
1 in the stochastic solution than in the deterministic solution, hence

showing the large buffering region the interplay of DNA and protein number fluctu-

ations provides. This also results in an effective similarity of the deterministic and

stochastic solution. In regions of parameter space, in which the change of DNA

state is rapid, the deterministic and stochastic solutions differ, apart from the large

ω limit. Most experimentally observed proteins have very small basal production

rates, which seconds our analysis, that it is functionally unfavourable for large

basal production to occur. The dependence on other parameters is analogous to

the case without a basal production rate.

5.E.5 The region of bistability

The backward transition, as already discussed, is analogous to the forward

transition. In most cases, the regions of bistability (Fig. 5.11) in parameter space

are reduced in size by noise. When engineering artificial switches, one may be

interested in making sure the forward and backward transition takes place for

considerably different production rates. We therefore consider how the region of

bistability, defined as the difference in the critical effective production rate for the

forward and backward transition, depends on the parameters of the model. For the
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deterministic case the region of bistability depends on the tendencies that proteins

are unbound from the DNA in a quadratic manner, as can easily be seen from the

bifurcation equations 5.1, 5.2 and is demonstrated in Fig. 5.13. The SCPF solution

shows the same behavior. For large values of the adiabaticity parameter the size

of the region of bistability is independent of ω, as is the form of the bifurcation

curve (Fig. 5.13). The approach to this plateau is very rapid and is given by the

ratio of polynomials. However, the size of the region of bistability for the ω1 = ω2

never reaches that of the deterministic solution, as even in the large ω limit the

greater nonlinearity of the interaction function F (i) results in a more complex

SCPF curve which does not reduce to deterministic solution, but Xad
1 (C1(2)) →

((((C−1
1 (1)−1)Xeq

2 )
1
2 +1)

1
2 −1)/(4C1(1)) 6= Xeq

2

1
2 (1+(2Xad

2 C1(2))2/Xeq
1 )(C−1

1 (2)−
1)

1
2 /2. This effect is true for both curves, as the presented graphs show C1(1)

hysteresis and the chosen equations C1(2). The same behavior is observed for

the case with a zero and a nonzero basal production rate. The increase with

Xeq
2 is slightly slower in the g2 6= 0 case as the bifurcation curve is smaller by

|g2/k(C1f(i) − C1in(i)) − ln(C2f (i)/C1in(i))/2|.

5.E.6 Summary

After the transition, the number of proteins produced by the now on gene,

follows a linear dependence on Xad, similarly to the symmetric switch. The num-

ber of proteins in the cell is independent of the DNA dynamical characteristics,

as those remain constant in that region of parameter space. The number of pro-

teins of the off gene, rapidly falls before the transition takes place. Based on the

bifurcation diagram of Fig. 5.12 the phase transition is discontinuous, for a cer-

tain region of the parameter space, where switching may occur. That region may

be roughly estimated by the parameters of the genes which must be competitive,

(Xad
1 /Xad

2 )2 ≈ Xeq
2 /Xeq

1 . This has a major implication for biological systems, such

as the λ phage, where many mechanisms are used to achieve balance between two

genes. The first order phase transition, as opposed to the second order present in
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the symmetric system, is a results of the breaking of symmetry and is clearly seen

in the evolution of probability distributions in phase space (Fig. 5.9). The gene

that is on after the transition rapidly increases its probability of being on, whereas

the off gene decreases with a rapid drop in the number of proteins it produces.

5.F The Case when Proteins bind as Monomers

The equations presented above can easily be augmented to describe the binding

of monomers or higher order oligomers by changing the form of the binding term

to hin
p
3−i, where p = 1 for monomers. The equations remain solvable for any value

of p.

5.F.1 Monomers do not make good repressors/activators

The behavior of the system is quite different if we consider the case when

proteins bind as monomers. For a symmetric switch there is no region of the

parameter space, in which one observes switching. The SCPF equations may be

reduced to a single quadratic equation:

2δXswC1(i)
2 + (Xeq + Xad − δXsw)C1(i) − Xeq = 0 (5.4)

which has at most only one positive solution. Therefore the probability of one

gene to be in the active state is always equal to that of the other to be in the

active state and no switching is observed. The equation (5.4) is independent of

ω, the adiabaticity parameter, therefore it is solely a consequence of the lack of

nonlinearity in the binding of proteins and cannot be influenced by very slow DNA

unbinding rates. By writing down deterministic equations we can also show that

when proteins bind as monomers switching does not occur. A similar equation

to (5.4), also independent of ω, holds for asymmetric switches. It also has one

positive solution, therefore the parameters of the model predetermine the solution

and each gene has a probability to be on determined by its kinetic rates. Since

the rates are different for the two genes, the gene with the larger production rate
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will be in the active state, repressing the weaker gene (Fig. 5.14 A). In naturally

occurring biological switches and those developed experimentally proteins bind as

dimers, or higher order multimers (Ptashne, 1992). We see cooperativity con-

tributes to improving the efficiency of a switch. A switch controlled by monomers

is shown to react ineffectively to changes in the repressor concentration, just as

in the case of the asymmetric switch in our model discussed above. Monomers do

not have the ability to stabilize a broken symmetry state, therefore the solution

is fragile to kinetic rates and inefficient. Effectively monomers do not make good

repressors/activators. Ptashne and Gann [115] explain the cooperativity process

between two monomers by claiming that one monomer bound to the DNA in-

creases the “local concentration” of proteins around the binding site through weak

protein-protein interaction, thus causing the second to bind cooperatively. Our

model lacks spatial dependence, therefore shows this effect need not be thought of

as due to changes in local concentration, but actually is required by the insufficient

nonlinearity for monomers, which cannot produce bistability.

5.F.2 Bimodal probability distribution

Although the probabilities of the two genes to be on are equal for the whole re-

gion of parameter space and the mean number of both types of proteins in the cell

is the same as in the deterministic case, the probability distributions are bimodal

when the DNA unbinding rates are slower than the protein number fluctuations

(Fig. 5.14 B and C). The mechanism of this small ω behavior has already been

discussed on the example of the symmetric switch when proteins bind as dimers.

This is analogous to the case when DNA fluctuations induce a probability distri-

bution with two peaks for the single gene with an external inducer [46]. In fact the

SCPF approximation has reduced this two gene system to an effective one gene

system with an external inducer. A bimodal distribution in the small ω case is

also observed for the asymmetric switch, when proteins bind as monomers.
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5.G The Case when Proteins bind as Higher Order Oligomers

Switches in which effector proteins bind as higher order oligomers are om-

nipresent in nature and have been realized experimentally in artificial switches

[26]. We considered the binding of trimers (hi(n3−i) = hin
3
3−i) and tetramers

(hi(n3−i) = hin
4
3−i) in symmetric switches. The equations of motion have the

same form as before, but the interaction function F (i) accounts for the higher mo-

ments. For proteins binding as kth order oligomers it has the form F (i) = C1(i) <

nk
1(i) > +C2(i) < nk

2(i) >. As shown when discussing the dimer binding switch,

the kth order moments have a simple form in the creation operator representation.

5.G.1 The general mechanism

From Fig. 5.15 one notes that in order for the system to act as a bistable switch

a considerably smaller number of reservoir proteins is needed than in the case of the

dimer binding switch. As the multimericity number grows the area of bistability

of the switch in parameter space grows. Since we assumed only one type of protein

repressed a given gene, binding of higher order multimers is an effective model of

cooperativity. Therefore we expect the system to have a larger region of bistability

the higher the order of the binding multimer. The evolution of the system in

parameter space when trimers bind is qualitatively similar to the dimer binding

scenario (Fig. 5.16 B and C). Fast DNA unbinding rates stabilize the system

and the bifurcation takes place for smaller effective production rates, for large ω

than for small ω (Fig. 5.16 A and D). The critical number of proteins necessary

for the bifurcation to take place is independent of the adiabaticity parameter and

decreases with multimericity: < n >c= 32 for dimers binding, < n >c= 8 for

trimers binding and < n >c= 4 for tetramers binding. This along with the narrow

probability distributions (Fig. 5.16 E and F ), small ω dependence when tetramers

bind (Fig. 5.15), shows that one binding event determines the result, hence DNA

binding rates do not play a role. Once there are < n >c proteins of a given type
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in the cell, a tetramer repressor will bind and stay bound. In the deterministic

case the probability of the genes needs to fall to (p − 1)/p, where p is the order

of multimerization of the repressor, for the bifurcation to take place. That along

with the need for the number of repressors to be comparable with the tendency

for proteins to be unbound from the DNA sets the critical number of proteins

necessary for the bifurcation. Hence the bifurcation occurs when both genes are

more probable to be on than off, for both tetramers and trimers. Therefore for

the tetramer system a large buffering proteomic cloud is not needed to stabilize

the DNA binding state of the switch and the characteristics of the system are

practically independent of the adiabaticity parameter.

5.G.2 Tetramer binding results in nearly deterministic characteristics

In naturally occurring systems the production of the critical number of proteins

is slowed down by relatively high multimerization rates and spatial dependence

arising from the need of a large number of particles to diffuse together. These

elements, which we neglect in our simple model constitute what might be called

the cost of multimerization. This analysis also explains why most repressors and

activators bind as dimers and tetramers, not trimers or pentamers. The effect of

trimers binding is not different from that of dimers: a buffering proteomic cloud

needs to be formed, the state of the system is quite influenced by noise, the switch-

ing region (region in Xad parameter space from the bifurcation point to ∆C > 0.9)

is quite large. Yet in a real system there is an effective cost of trimerization: the en-

ergy of trimer formation and a need for the diffusion of particles. For tetramers the

effect of stochasticity becomes negligible. Effectively one tetramer is sufficient for

the bifurcation to take place. The binding of tetramer repressors may be thought

of as a mechanism for increasing the deterministic nature of the switch.
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5.G.3 Binding of higher order oligomers as a competitve mechanism

This analysis, although it neglects some important features, allows for a more

quantitative formulation of cooperativity. Since most biological switches are asym-

metric, cooperativity is also used as a means of making genes with smaller chemical

rates more competitive. Tetramer binding seems to have a different role than that

of lower order multimers. It may be used by genes which need to react to very

small concentrations of proteins, for example they turn on degradation mechanisms

when even a small number of toxic molecules is present. Or they may act as an

extra mechanism stabilizing the existent state of a gene, as seems to be the case

for the cI gene of the λ phage. It seems tetramers are used as having either a sta-

bilizing role or that of a drastic, all or none response to the protein distributions

in the system. This formulation of the problem is naturally oversimplified, but it

allows for general observations.

5.H The Case when Proteins are Produced in Bursts

Many proteins in biological systems, for example the Cro protein in λ phage

are produced in bursts of N of the order of tens. We consider a symmetric switch,

where proteins bind as dimers and are produced in bursts of N . The derivation of

the moment equations for this case is presented in Appendix B.

5.H.1 The general mechanism

We discuss the effect of bursting phenomena on the example of a symmetric

toggle switch when proteins bind as dimers, as that can offer the most insight, when

compared to previous results. In this case switching takes place for much smaller

values of the effective production rate parameter Xad compared to when proteins

are produced separately. Therefore even in the large ω limit, noise resulting from

large protein number fluctuations plays a role in defining the region of stability of

the switch, as the criterion of large Xad is not reached. The number of proteins in
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the cell when the bifurcation occurs is determined by the tendency that proteins

are unbound from the DNA and does not change when proteins are produced in

bursts. For the rates discussed in Fig. 5.17 the critical mean number of proteins

present in the cell at which the bifurcation occurs is nc = 10 = Xeq = 100
1
2 . If

proteins are produced in bursts of N = 10, as in the left hand figures, this value of

nc is achieved when Xad > 1, that is proteins must get produced at a higher rate

than they are destroyed to be able to sustain the steady state number of 10 proteins

in the cell. In the figures on the right hand side of Fig. 5.17 proteins are produced

in bursts of N = 100. In this case even when the degradation rate is larger than

the production rate, the critical steady state number of proteins necessary for the

bifurcation to take place, can be reached and a bistable switch is possible. A

bistable switch can exist if the degradation rate exceeds the production rate even

for burst sizes present in biology. For Xeq = 100, the order of the tendencies for

proteins to be unbound from the DNA in the λ phage, the value of N for which

Xad
c < 1 is smaller than N = 20, the burst size for Cro proteins in the λ phage.

Xad at the critical point decreases as function of N (Fig. 5.18 A) and depends on

the tendency that proteins are unbound from the DNA Xeq (Fig. 5.18 B) and the

adiabaticity parameter, ω (Fig. 5.19).

If proteins are produced individually the span of the non-adiabatic regime is

clear from Fig. 5.19. It corresponds to ω < 1. The bifurcation curves show small

discrepancies for larger values of the adiabaticity parameter. However for larger

burst sizes there is a continuous change in the form of the bifurcation curves with

ω. All of the solutions differ substantially from the deterministic treatment, as

shown in Fig. 5.17 A.

5.H.2 The influence of the adiabaticity parameter on the bifurcation

mechanism

Contrary to the N = 1 case, the effective production rate at the bifurcation

point Xad
c , grows with the increase of the adiabaticity parameter, for considerably
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large burst sizes, as in the N = 100 example in Fig. 5.19. In this case each gene

produces a large number of repressors at a time. The bifurcation takes place in a

region with Xad < 1, which corresponds to very small effective production rates,

which denote very large death rates. Therefore in the region of parameter space

before the bifurcation takes place both genes remain repressed (C1(i) < 0.5) in

the steady state, as opposed to the previously discussed situations, in which both

genes had equal probabilities to be active (C1(i) > 0.5). For large N bursts, the

bifurcation takes place when one of the genes becomes unrepressed in the steady

state. That is when the repressor cloud buffering the DNA becomes destabilized,

not when the cloud forms as in the smaller N examples. For large N bursts, if

the rate of unbinding from the DNA is fast compared to the protein degradation

rate, larger effective production rates are needed for the buffering proteomic cloud

to stabilize the DNA state, than for small ω (Fig. 5.19 C). The larger Xad is, the

more repressor molecules are present in the system, which corresponds to larger

protein number fluctuations, which are necessary for one of the genes to become

unrepressed. For slower DNA unbinding rates, the buffering proteomic cloud is

smaller, since the protein number reaches a steady state before the DNA state

does. Therefore the buffering proteomic cloud is destabilized at smaller values

of Xad. Hence, in the case of small ω the unrepressing bifurcation takes place

for smaller effective production rates than for large ω. However if the unbinding

rate from the DNA is very small, ω < 0.01, Xad
c as a function of the adiabaticity

parameter grows again, as this corresponds to effectively large death rates, which

need very high production rates to sustain a proteomic cloud buffering the DNA.

If the effective production rate is too small in this case, the steady state number of

proteins is too small to form the buffering proteomic cloud, although the burst size

is enormous. In the very small ω limit the bifurcation cloud needs to be formed

for the bifurcation to be possible, as in the mechanism present in the small N

case. The value of Xad at the bifurcation point in both the large and small ω

limit is strongly governed by protein and DNA binding state fluctuations in the
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system. For this reason the deterministic solution fails. It assumes the incorrect

mechanism, in which the bifurcation is a result of repressing one of the genes.

Such a scenario is possible if the death rate of proteins is slow enough to allow

for the existence of < n(i)c > repressor molecules in the system at very small

production rates (C1(1)biff,kin = 0.5) (Fig. 5.17 A and B). One can see that

the order of taking the adiabatic limits in the steady state for proteins produced

in large bursts is subtle and depends strongly on the parameters of the system,

as the bifurcation is governed mainly by relative protein and DNA fluctuations,

both of which are very large. Furthermore, the deterministic solution is closer to

the small ω limit, which corresponds to slow DNA unbinding rates compared to

protein number fluctuations. Deterministic results may therefore be misleading in

the bursting situation, even for large ω.

The steady state comes about as a result of different mechanisms depending

on the burst number N and the order of reaching the steady state by the protein

and DNA binding site dynamics changes depending on ω. For small burst sizes,

slower DNA unbinding rates require larger effective production rates to reach the

steady state number of proteins necessary to form the buffering proteomic cloud

than for large N . For larger burst sizes, faster DNA unbinding rates destabilize

the buffering cloud of proteins for smaller effective production rates than in the

small N case.

5.H.3 Consequences of bifurcation at smaller Xad values

The divergence from the deterministic solution at the bifurcation point in-

creases with the burst size, as is expected due to the enormous noise effect due to

large N , on a system with a constant and independent of the burst size number of

proteins at the bifurcation point. As already noted the number of proteins in a cell,

is in the range of tens to hundreds, even if they are produced in bursts. This num-

ber is reached for smaller effective production rates for larger burst sizes than for

small N values. Therefore systems where proteins are produced in bursts display
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smaller values of Xad and are more susceptible to noise if the number of proteins

in the cell is to be of the order which is observed experimentally. Furthermore the

noisy burst systems even for very large values of Xad do not converge as closely

to the deterministic solution as they do for the single protein production example.

This can be seen from the form of the steady state moment equations. The inter-

action function F (i) for the N = 1 case in the limit of large ω and Xad converges

to F (i) →< n(i) > + < n(i) >2 whereas the deterministic solution corresponds to

F (i) =< n(i) >2. Therefore for large mean values of proteins the two are equal.

However in the case when N > 1, F (i) →< n(i) > (1 + (N − 1)/2)+ < n(i) >2,

which requires N << 2 < n(i) > for the effect of bursting to be negligible at

very large N. The values of the effective production rate that correspond to values

of the proteins seen experimentally seem to be small. Therefore we can say that

effectively the role of bursting is to enable for the existence of a bistable solution

at lower effective production rates, which determines a region of parameter space

which has been previously unstudied. In this region one cannot make the adia-

batic assumption that the change in the DNA state can be integrated out due to a

separation of timescales. That assumption leads to erroneous results, predicting a

region of bistability where explicit treatment of both timescales suggests monosta-

bility. Furthermore, for very large N , the region of bistability decreases with the

adiabaticity parameter, making the disagreement of the stochastic solutions with

those of the deterministic rate equations larger. The adiabatic approximation and

the full solutions converge only in the regime of large ω and Xad, the second of

which is never fulfilled at the bifurcation point or for biological concentration for

systems in which proteins are produced in large bursts.

5.H.4 Dependence on the DNA Binding Coefficient

Just as increasing the burst size, decreasing the tendency for proteins to not

be bound to the DNA results in a different switching mechanism. The probability

of the genes to be on falls to far smaller values than the 0.5 of the N = 1 case. If
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the burst size is large both genes have a very low probability of being on before the

critical number of proteins necessary for bifurcation is achieved. The same effect is

observed if proteins are more likely to bind to the DNA (small Xeq) (Fig. 5.18 B).

When the genes are more probable to bind a repressor and successful unbinding

events are rare, earlier bifurcations in terms of Xad result. As Xeq increases, the

probability of the genes to be on at the bifurcation point decreases as repressors

have a higher tendency of unbinding.

For very high values of the adiabaticity parameter, corresponding to high un-

binding rates form the DNA binding site, the stable solution which corresponds

to the off state and the unstable state merge and the system is monostable again,

with only the on state present. This limit is also reached by keeping Xad fixed but

taking the burst size N → ∞.

5.H.5 Probability distributions

In the case of the rates used in Fig. 5.20, nc = 32 is the same as for N = 1,

but we note a tenfold decrease in Xad
c compared to when proteins are produced

separately. When proteins are produced in bursts, the probability distributions

have tails towards larger n, as opposed to the distributions for individual protein

production. The mean number of proteins in the system for given states of the

switch is similar to that of the N = 1 case, however the distributions with bursts

are much broader, as could be expected. In this case even very fast unbinding rates

from the DNA cannot correct for the enormous protein number fluctuations and

one must explicitly keep track of the change of the DNA binding state. A system

in which proteins are produced in bursts is very noisy, especially compared to the

nearly deterministic case of proteins binding as tetramers.

5.H.6 Nonzero basal effective production rate

If there is a nonzero basal production rate the difference between the deter-

ministic and stochastic solutions is also qualitative even for relatively small burst
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sizes. In this case proteins are also produced in the off state, so there the number

of repressors produced by the off gene after the bifurcation is nonzero, but equal

to the burst size N , since < n(i) >= N(Xad + δXsw(2C1(i)−1)) →C1(1)→0 Ng2/k.

This number is equal for both the stochastic and deterministic solutions and is

equal to 10 in the examples presented in Fig. 5.21 C and D. So production in

bursts maintains a high level of repressor proteins, even for very small g2/k values

if the burst size is large. When using experimental data one must be very careful to

consider the burst size when assuming the basal production level is zero. Further-

more, the value of the interaction function of the gene in the off state (C1(i) ∼ 0)

for the stochastic case is much larger than for the deterministic case, due to the

multiplication of < n(i) >2 which gives F (i) →< n(i) >2 (1+k/(2g2))+Ng2/(2k),

for large ω, the effect of which is shown in Fig. 5.21 A and B. The number of

repressor proteins produced by the off gene decreases as g2 → 0, as expected and

the probability of the on gene to be active tends to one. The dependence of the

effective production rate at which the bifurcation occurs on the adiabaticity pa-

rameter is analogous to that of g2 = 0 case. The probability distributions for the

gene which is active after the bifurcation in the on and off state are presented in

Fig. 5.22 A and B, for large unbinding rates from the DNA, and Fig. 5.22 C and

D, for small unbinding rates from the DNA. They exhibit maxima around 2Xad for

the on state and 2g2/(2k) for the off state and display behavior analogous to that

of proteins produced separataly, apart from the different curvature of the slopes

for n < N and n > N . For small ω values the protein numbers reach a steady

state before the DNA states, hence we observe bimodal probability distributions.

The mechanism of competition in this noisy burst system is different than in the

single protein production case. If the gene is in the on state, probability states

with higher n values are strongly occupied and there is hardly any probability flux

into the lower n states. In the off state however, a flux pushes the system into the

lower n states, essentially trapping it there, hence the difference in the slopes, as

can be seen in Fig. 5.22 C and D. This is also true for the g2 = 0 system when
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proteins are produced in bursts.

5.I Limitations of the SCPF Treatment

The examples presented above cover a large class of two gene switches, all of

which are exactly solvable within the SCPF approximation. An exact solution

may be obtained within this approximation for systems of genetic networks and

switching cascades. However the SCPF approximation does not allow for an exact

analytical solution of all systems. If we try to model one of the simplest natural

systems where regulation is achieved by means of a switch, that is the λ switch,

we encounter a problem. The genes in the λ switch, apart from having a toggle

like regulation, also exhibit auto-regulation, that is cI proteins can bind to OR3,

repressing the cI gene, and the Cro proteins can bind to OR1 or OR2, enabling

the RNA polymarase from transcribing the Cro gene [109, 115]. If we expand the

master equation to account for self-regulation we add a hin
p
i binding term to the

Pj(ni) equations. Therefore the kth moment equation will display a dependence on

the k + pth moment and the set of equation will not exhibit closure. One can find

the probability distribution for a single self-regulating single gene. However if we

consider as system like the λ phage, where self regulation is also combined with

regulation by another gene, the problem is no longer solvable exactly and demands

a cutoff of the hierarchy or other approximations. We can nevertheless treat these

systems using the variational method, as proposed by Sasai and Wolynes (Sasai

and Wolynes, 2003). The fact that self-regulation renders the system incompletely

solvable within the SCPF approximation, is not surprising, since it corresponds

to the exact solution for such a system. Gene i is influenced only by the number

of proteins it produces. It is independent of the state of the other gene. There-

fore, as one would expect the full solution should depend on all moments of the

distribution of gene i. However for systems such as the λ phage, we can treat all

inter gene regulation effects exactly and truncate the self-regulation equation at
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the highest order of the inter gene interaction, which would be six, corresponding

to, for example, 3 cI proteins binding to the 3 operator sites.

5.J Conclusions

The self-consistent proteomic field approximation for stochastic switches repro-

duces many intuitive notions about their behavior. It proves to be a a very powerful

tool that allows for the consideration, of all but one, of the basic building blocks

of more general switches and networks. A switch with a self-repressing/activating

gene cannot be solved exactly within the SCPF approximation, as in this case

the approximation is equivalent to the full solution. Therefore the probability

distribution is determined by an infinite number of moments. The probability dis-

tributions obtained for the systems considered in this paper are not symmetric and

exhibit long tails. This anticipates problems for using the variational principle for

finding probability distributions when one accounts for correlations between the

two states. The possibility to expand this method to consider networks and cas-

cades will allow for are more realistic treatment of complex systems with emergent

behavior at low computational costs.

One can account for the mRNA step in the system by a adding a deterministic

step which using a deterministic kinetic rate equation translates the number of

mRNA molecules into proteins produced in bursts. This is a valid procedure, as

as separately shown by [36] and [37], transcription noise is just amplified in the

translation process. Therefore treating the mRNA step deterministically simply

introduces another constant into the discussed case of proteins produced in bursts.

Therefore the presented treatment of proteins produced in bursts with a modified

effective production rate is a simple model of including mRNA in the system. Of

course, the effect of mRNA is much more complicated, as it also introduces, for

example time delay, between binding and production. This model in the present

state neglects these effects.
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Our analysis of a large class of switches, shows how particular elements con-

tribute to the emergent behavior of functioning switches. Comparison of the

stochastic and deterministic treatments of a single gene switch shows convergence

in the region of fast rates of unbinding from the DNA compared to protein number

fluctuations and large effective production rates. For symmetric switches when

proteins are produced separately the two solutions converge after the bifurcation,

but often differ when defining the region of parameter space, where the bifurca-

tion occurs. The agreement between the deterministic and stochastic solutions,

is especially good for symmetric switches, with N = 1 and a non-zero basal pro-

duction rate. However even though the mean repressor protein levels in the cell

are similar in both approximations, the probability distributions are broad and

far from Poissonian, i.e. they are not completely characterized by these means.

If the adiabaticity parameter is small (ω < 1) the protein number state reach a

steady state before the DNA binding state and we observe a bimodal probability

distribution. For the symmetric switch noise has a destructive effect on the re-

gion of bistability. Increasing the adiabaticity parameter facilitates the formation

of a buffering proteomic cloud around a gene, which leads to repression at lower

effective production rates than for small ω.

As was already mentioned, the symmetric switch is hard to design and build

experimentally. The asymmetric switch, which is the experimental toy system, is

much more susceptible to noise than the symmetric switch and stochasticity has

not only the destructive effect on the region of stability one might expect, but

also introduces new phenomena and can be utilized to increase the bistable region.

This is of fundamental importance, since experimentally one deals with asymmetric

switches and these offer greater possibilities in artificially engineering new systems.

As can also be learned from the asymmetric switch as well as from the analysis

of binding of different oligomers, the region of bistability of a switch grows with

increasing the interaction function. When creating artificial switches, one may

argue a large region of bistability may be desired, so the switch reacts by the



91

forward or backward transition to very specific concentrations or production levels

of a protein. If the experimental setup constrains the protein production rates,

this can also be achieved by modifying the adiabaticity parameters of the system,

which ensures the transition remains rapid and effective. Asymmetric switches,

exhibit first order phase transitions. This size of the region of phase space, in

which the forward and backward transitions occur grows with the tendency that

proteins are unbound from the DNA of both genes. Large adiabaticity parameters

stabilize the buffering proteomic cloud around the repressed gene and lead to the

formation of an effectively repressing cloud for smaller numbers of repressors, in

the forward transition, than for small ω, for the active gene.

Experimental data available at this point [111], suggest biological switches

function in regions of high adiabaticity parameters from the deterministic point

of view. Nevertheless, even for large values of adiabaticity parameters one must

account for the DNA binding site fluctuations explicitly when proteins are pro-

duced in bursts. The deterministic solutions give qualitatively wrong results in

biologically relevant areas of parameter space. The stochastic solutions for large

burst sizes suggest that the bifurcation of the solution is a result of destabilizing

of the repressor cloud buffering the DNA, not formation of the cloud as for smaller

burst systems. The probability distribution therefore exhibit tails towards large

n values, not as in the small N case towards small n values. The deterministic

kinetics remains unchanged for large burst sized, unlike the stochastic kinetics,

hence presenting results derived from a wrong mechanism. The definition of the

adiabatic limit, when proteins are produced in bursts is not clear as in the N = 1

case, when it corresponds simply to ω < 1. This ambiguity does not allow one to

integrate out the degrees of freedom corresponding to the change in DNA bind-

ing site occupation. Such an approximation leads one to erroneously identify the

regions of bistability. The switch with a nonzero basal production rate when pro-

teins are produced in bursts results in probabilities to be on and mean numbers of

proteins in the cell very different from those of the deterministic solution, even for
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small effective basal production rates. If proteins are produced in bursts assuming

that a small effective basal production rate may be approximated by a zero rate

may be misleading. Binding of proteins produced in bursts results in a bifurcation

transition for smaller values of the effective production rate. It is also a mechanism

for making two genes in an asymmetric switch more competitive.

Binding of higher order oligomers leads to results closer to those of determinis-

tic treatments, with narrower probability distributions. This can be experimentally

used to stabilize DNA binding states. In this simple model tetramers seem to be

the most optimum binders. The close to deterministic all or nothing switching they

offer may be worth the effective cost of the energy of multimerization and diffusion

of particles. Binding of higher order oligomers may be viewed as a simple model

of cooperativity, which increases the competitiveness of genes in an asymmetric

switch. Within the SCPF approximation monomers do not make good switches

due to lack of nonlinearity in protein concentration. They do not exhibit a region

of bistability. This model neglects any structural DNA-protein interactions and

spatial dependence. Hence this conslusion is simply a result of the lack of cooper-

ativity in the system. For small adiabaticity parameters, they do however exhibit

bimodal probability distributions, unlike in the large ω limit.

The thorough investigation of different components of gene regulatory net-

works using the self-consistent proteomic field approximation provides a tool kit

for engineering new switches and networks. Based on our analysis, if one would

want to build a strong component of a switch out of a gene with relatively small

chemical parameters, one could use components that utilize binding of tetramers

and that produce proteins in bursts. This is what the Cro gene in the λ switch

uses.



93

5.K Acknowledgements

The text and data of Chapter 5, in full, has been published in ”Self-Consistent

Proteomic Field Theory of Stochastic Gene Switches” by A. M. Walczak, M. Sasai,

P.G. Wolynes in Biophys. J. (88), 828-850 (2005). The dissertation author was

the primary investigator and author of this article.



94

0 0.2 0.4 0.6 0.8 1

20

40

60

80

C
1
(1)

δ
 X

s
w

=
X

a
d

N=1

0.1
0.2
0.5
1.0
100

ω 

0 0.2 0.4 0.6 0.8 1

2

4

6

8

10

C
1
(1)

δ
 X

s
w

=
X

a
d

N=10

0.1
0.2
0.5
1.0
100

ω 

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

C
1
(1)

δ
 X

s
w

=
X

a
d

N=100

0.1
1
2
5
10
100

ω

A B C

Figure 5.19: Bifurcation curves for proteins produced separately N = 1 (A), in
bursts of N = 10 (B) and N = 100 (C) as a function of Xad = δXsw for different
values of the adiabaticity parameter.
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Figure 5.20: The evolution of the probability distribution of the gene that is active
after the bifurcation, to be on (A) and off (B) and the gene that is inactive to be
on (C) and off (D) as a function of Xad for a switch when proteins are produced
in bursts of N = 10, Xeq = 1000, ω = 100. Bifurcation point at Xad = δXsw = 35.
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Absolute rate theories of epigenetic stability

Information may be passed from one cellular generation to another not just in

the form of the DNA sequence, but also in the long lived expression patterns of

genes. The epigenetic state of the cell i.e. which genes are expressed at a given

time, is determined in part by binding and unbinding of transcription factor pro-

teins to the DNA. The genes with their partner proteins form complex dynamical

systems known as genetic networks, which can have many steady states i.e. an

attractor landscape [6, 40]. The attractors are more stable than the individual

molecular protein-DNA adducts, because the proteomic atmosphere of gene prod-

ucts renews the DNAs binding state, ultimately creating auto-catalytically its own

proteomic atmosphere [59, 109, 40]. The attractors of such a genetic network may

be associated with distinct cell types [6, 5]. Experimental evidence for this view

has recently been presented [116, 19]. The growing experimental interest in this

problem [19], as well as a number of theoretical puzzles involving the stability of

the attractors [104, 117], call for a flexible and intuitive theory of the lifetime of

such genetic network attractors. Some progress has already been made towards

the goal [41, 38, 104, 39, 118], but existing formalisms are cumbersome, certainly

when compared with the theory of activated events in molecular systems based

ultimately on transition state ideas [108, 119]. Our goal here is to present a simple

treatment of the noise induced transitions between two attractors on a landscape

that is parallel to the treatment of simple molecular rate processes, which starts

97
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with Wigner’s absolute rate theory [120]. In chemical kinetics, the ratio of escape

is proportional to the probability of rare configurations equally likely to become

reactant or product. These rare configurations represent a stochastic separatrix of

the motion.

While thermal atomic motions cause the escape from energy minima in molec-

ular physics, the noise in genetic networks comes from the probabilistic nature

of the chemical reactions, since only a small number of proteins and individual

copies of the target DNA are involved. Unlike molecules, genetic systems being

far from equilibrium, cannot strictly be described by thermodynamic free energy

functions. The stochastic separatrix for molecular activated events is a dividing

surface passing through saddle regions of the free energy. We argue that, even

in the absence of a free energy function, the notion of a stochastic separatrix be-

tween basins of attraction remains a good approximation [41, 39, 118] and allows a

treatment of stochastic switching along the lines of a transition state theory with

dynamic corrections involving the rates of elementary processes [121, 108].

The dynamics of gene networks involves two very different processes whose

rates must be compared- protein synthesis and DNA binding. The complexity

and energy consuming nature of protein synthesis, in prokaryotic cells, generally

causes changes in protein number to take longer than the diffusion controlled bind-

ing times of transcription factors, even at their low concentrations. For this reason,

it has been argued that one can describe the binding of the transcription factors

to each DNA binding site as an instantaneously equilibrated process, when con-

sidering protein production. For steady states this approximation appears to be

reasonably accurate. It has, however, also been noted [20, 34, 52, ?], that the DNA

state fluctuations may influence the protein number state fluctuations. Here we

show that the impact of DNA state fluctuations on the escape process, is consid-

erable in a rather wide parameter regime for which the steady states are not much

influenced by the DNA state fluctuations (Figure 6.1). For biologically relevant

parameters, the DNA occupancy fluctuations may significantly increase the spon-
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taneous switching rate from a given attractor. In what we call the nonadiabatic

limit, where DNA state fluctuations dominate the protein number fluctuations,

individual binding and unbinding events of the transcription factors are directly

responsible for the transition. For much of the adiabatic regime, although the

influence of DNA fluctuations on the steady state protein levels is negligible, these

fluctuations still modify the lifetime of a state - we will call these transitions

”weakly adiabatic”. DNA occupancy fluctuations can only be neglected at very

high values of the rate ratios, in what we call the strongly adiabatic limit.

As Sasai and Wolynes [40] have pointed out, the stochastic theory of a simple

genetic switch, can be considered analogous to the physicists’ Kondo problem or

the chemists’ electron transfer process, where DNA occupancy plays the role of

a spin or electronic state variable [108]. In a simple and intuitive way, here we

exploit these analogies to compute the lifetime of a genetic switch, using the idea

of a landscape with a stochastic separatrix [41], much like in the earlier proposed

threshold model [39]. Our treatment is quite analogous to that used for character-

izing adiabatic vs nonadiabatic regimes of quantum rates [108, 119]. The approach,

we present is easily generalizable to a many gene system. In the general case the

present approximation yields the lifetime of a given state of the switch, which is

governed purely by a few local properties of the landscape and does not require

computing complicated trajectories. Global properties, sensed by the most proba-

ble escape paths, generally enter rates for far-from-equilibrium systems [103]. The

present approach must, therefore, be admitted to be approximate. The simplicity

hopefully will make up for some inaccuracy.

Several treatments of the mean first passage time between epigenetic states

have already appeared. Most of these studies assume the DNA state equilibrates

on a much faster time scale than the protein number [76, 122]. We refer to this as

the adiabatic limit. In this limit the protein number states may then be treated as

a continous variable giving an expression for the mean first passage time à la the

Smoluchowski theory of diffusive rates as sketched by Bialek [38]. A more rigorous
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approach finds the rate by constructing the most probable escape path [104] or

by calculating the distribution of paths [41, 77]. These methods are powerful, but

they are hard to visualize, especially for more complex switching systems. While

the usually invoked adiabatic limit seems to be appropriate for simple switches in

prokaryotes, it is not an obviously correct approximation for switches that have

more complex operators, in which multiple protein elements must combinatorically

assemble at a given site, slowing the binding [35]. Nonadiabatic effects should

also play a significant role in eukaryotic systems where chromosome restructur-

ing, which may be quite slow, dominates the epigenetic transition. Artificially

engineered switches [65] may be constructed with parameters spanning the entire

phase diagram.

6.A The Simplest Switch

For illustration we will present our ideas using the simplest example of a system

in which we can consider the escape from one minimum to another - a bistable

self-activating switch [?]. We emphasize the approach is more generally applicable.

The self-activating switch consists of a single gene, which may be found in one of

two states: on or off. In the off state proteins are produced at a basal level, but in

the on state proteins are produced at an enhanced level, leading to a number, n,

of proteins in the cell at any moment. The proteins act as activators by binding

to the same operator site as the gene governing their production. We assume they

bind as dimers with a rate h(n) = hn(n−1)/2. The unbinding of the transcription

factors is described by a rate f . We neglect time delays due to mRNA synthesis

etc. (which admittedly may play a key role), so that protein population dynamics

is governed by a birth death process. Protein degradation occurs with a rate

k, production with the activated rate g↑ in the on state and the basal rate g↓

in the off state. The system is characterized by a two state joint probability

distribution ~P (n), describing the probability of having n proteins in the system
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and the DNA binding site being in the bound (on-↑) or unbound (off-↓) state.

A recent combined experimental and theoretical study [65] has brought attention

to the bistability of a switch in previously unexplored limits, when the degree of

operon repression is small. Our discussion will turn also to the nonadiabatic limit.

Here the equilibration of the DNA and changes in the protein number occur on

comparable time scales.

To compute escape rates from the steady state attractors one must determine

the stochastic separatrix [41]. In the adiabatic limit, the position n†
A of the mini-

mum of the total probability distribution P (n) = P↑(n)+P↓(n) is given by the con-

dition of zero mean protein flow dn/dt||
n=n

†
A

= (fg↓+h(n)g↑)/(f+h(n))−kn|n=n†
A

=

0. For a bistable switch, this equation is satisfied by three values of n; - one solution

gives the separatrix, the other two the positions of the high and low protein number

stable steady state attractors, n↓
A and n↑

A. In the nonadiabatic limit the stochastic

separatrix refers both to the DNA and protein number state. This results in a

different value of the critical separatrix numbers n†
N in the nonadiabatic, and n†

A

in the adiabatic limits. The direction of flow changes when the DNA state changes.

Therefore the position of n†
N corresponds to that number of proteins needed for the

system to have comparable probability to be in the on or the off state. For simplic-

ity we can approximate in the large n limit h(n) = h/2n(n−1) ≈ hn2/2 and deter-

mine the position of the nonadiabatic separatrix by means of mass action, using the

chemical equilibrium constant Keq: n†
N = V

√
Keq, where Keq = 2f/(hV 2), where

V is the cell volume. The steady state attractors in the nonadiabatic limit are

determined by the birth-death processes in the particular DNA states: n↓ = g↓/k

in the off state and n↑ = g↑/k in the on state. To function as a switch n↓ must

be less than n†
N and n↑ must be greater than n†

N . We can rewrite the adiabatic

separatrix positions in terms of the volume scaled equilibrium constant KeqV 2,

which scales with n†2
N , as n†

A = Keq/n↑ and n↓ < n↓
A < n†

A < n†
N < n↑

A < n↑.
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6.B Nonadiabatic Rate Theory

Here we compute the rate of escape of the system from the low protein number

attractor to the high protein number attractor (kon) and vice versa (koff). Since

in the nonadiabatic limit the low protein number attractor corresponds to the off

DNA occupancy state and the high protein number state corresponds to the on

DNA occupancy state, the transition from the low protein number state to the

high protein number state is requires the binding of an activator. Without the

possibility of binding and unbinding, the dynamics in each attractor would be

described by stochastic destruction and production of proteins alone, resulting in

fluctuations of the mean protein number around each steady state. Consider a

system maintained in the off DNA binding state and that now has n↓ proteins.

The initial probability of being in the off DNA state, with precisely n↓ proteins

present is poff (n↓) = P↓(n
↓)/(P↑(n

↓) + P↓(n
↓)). n↓ may be generally assumed

to be close to the mean number of proteins in the off state (n↓ = g↓/k). If a

binding event now occurs at time t = 0, the gene spontaneously flips into the on

state and proteins are now produced at an enhanced rate. The protein number

increases towards the mean number in the high protein state (n↑ = g↑/k). If the

activator does not unbind before the number of proteins becomes characteristic of

the on state attractor a successful switching event will have taken place and the

protein number will now fluctuate around the on steady state value. However,

since, we are in the nonadiabatic limit, the timescales to reach the steady state for

both the DNA binding state and protein synthesis and degradation are assumed

comparable, so an activator may in fact unbind before reaching the separatrix at

n†
N . If an activator does unbind during that time, the gene returns to an off state,

albeit with a slightly higher number of proteins than initially. Another binding

event will repeat the above scenario, until the protein number safely crosses the

separatrix at n†
N and the steady state corresponding to an activated gene is reached

(Figure 6.2 a). The average time needed to cross the barrier from an initial point
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n↓, which is also the time allowed for a unbinding event to occur, is the mean

time to reach n†
N for the enhanced production rate. The initial rate of binding an

activator h(n↓) = h/2n↓(n↓ − 1) must be modified to account for the possibility

of unbinding again before the system crosses the separatrix. Summing of these

attempted crossings, results in an expression for the rate of escape from the off

state minimum (n↓) to the on state (n > n†
N ) in the nonadiabatic regime given by:

kon(n↓) = poff (n↓)h(n↓)e
−

R t(n
†
N

)

t(n↓)
fdt

(6.1)

The exponential term gives the successful fraction of attempts to reach the pro-

tein number based separatrix, launched from the steady state n↓. The total time

to reach the separatrix is given by t(n†
N ) − t(n↓), as determined by the average

flows in the initial DNA state and the mean time for an unbinding event to oc-

cur is f−1. Explicitly, the escape rate from the off state, becomes kon(n↓) =

poff (n↓)h(n↓)((g↑ − kn↓)/(g↑ − kn†
N ))−f/k. The power-law term describes the mo-

tion on the surface with enhanced production after binding of the activator. In

the nonadiabatic limit, the probability distributions for the on and off states are

unimodal. Therefore it is unlikely for the gene to be in the on state is the number

of proteins is small, thus poff (n↓) ≈ 1. If the protein number is large and the

unbinding rate is comparable to the death rate this expression yields:

kon(n↓) ∼ h(n↓)e−
f
k
(n†

N−n↓) ∼ h(n↓)e
−κ

√
(KeqV 2)3

n↑2 (6.2)

where κ = hg2
↑/(2k3). In the extreme nonadiabatic limit κ → 0, the first attempt

may be successful hence the result simplifies to kon(n↓) ∼ h(n↓).

A similar calculation can be carried out starting from the other steady state.

The escape rate from the on state, with n↑ > n†
N proteins, is given by the rate

of binding of an activator at time t = 0, providing the system is in the on state

pon(n↑) = P↑(n
↑)/(P↑(n

↑) + P↓(n
↑)), reduced by the probability that an activator

rebinds before the protein number decreases to numbers characteristic of in the off

state (n < n†
N). The time available to rebind is calculated using protein production
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at a basal level. The koff rate is therefore:

koff(n↑) = pon(n↑)fe
−

R t(n
†
N

)

t(n↑)
h[n(t)]dt

(6.3)

For the off rate the mean free path before a rebinding event depends on the mean

number of proteins in the system n. The argument of the exponential still describes

the number of rebinding events. In the strongly nonadiabatic case, pon(n↑) ≈ 1,

and for very large mean protein numbers the escape rate tends to:

koff(n↑) ∼ fe−
h
4k

(n↑2−n†
N

2
) ∼ fe

−κ
2

n↑2
−KeqV 2

n↑2 (6.4)

Due to the timescale separation in the nonadiabatic limit the system may be

approximated as a two state system. The ratio of the escape rates, therefore yields

the ratio of the probabilities to be in the individual steady states. The equilibrium

constant for the ”dressed” genetic states in the nonadiabatic limit KGS = koff/kon

therefore becomes KGS ≈ (n†
N/n↓)2exp(−κ/2) = KeqV 2/n↓2

exp(−κ/2). When

κ = 0 the proteomic atmosphere has no effect on the relative stability of the DNA

occupancy, which follows the ordinary mass action law.

The formulae described above provide quite intuitive representations of specific

escape mechanisms. These results may also be formally obtained via the path

integral solution of the master equation by using the method described by Wang,

Onuchic and Wolynes [123] for kinetic protein folding. This result also coincides

with the heuristic approach of Ninio [124].

6.C Adiabatic Rate Theories: Weak and Strong Regimes

In the nonadiabatic limit the switch reaches the separatrix within the time for

a few binding events, as schematically portrayed in panel a of Figure 6.2. In what

we call the weakly adiabatic regime, the escape process proceeds differently. The

DNA occupancy responds quickly to the changing proteomic atmosphere reaching

a local steady state before the protein number changes by a large amount. The
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average occupancy then determines the average local rate of protein synthesis and

degradation. A few binding and unbinding events are required in the nonadiabatic

limit, but in the adiabatic limit those events are much too common to allow the

direct mechanism. One is tempted to equate the local diffusion rate to that com-

ing from synthesis and degradation. But this temptation can only be rigorously

indulged at an extraordinary high binding rate. Instead a random, but cyclic pro-

cess of binding, growth and unbinding churns the protein number like a turbulent

surf. The cyclic motions of eddies in an ocean wave, if interrupted contribute to

a diffusive transport of flotsam to the shore. In the same way, in most of the

weak adiabatic regime, protein numbers fluctuate from the mean flow through this

”churning mechanism”. The protein number, changes slightly with each cycle of

binding/growth/unbinding and eventually reaches the separatrix point due to the

resulting diffusive motion. One can show the system acts as if it were diffusing

along an effective potential, whose gradient gives the mean flow expected from the

average occupancy V (n) = geff(n)−kn (panel b in Figure 6.2). The diffusion rate

in this outwardly adiabatic regime though depends on the nonadiabatic events.

Only at very high adiabaticity is diffusion ascribable to birth-death alone.
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Figure 6.1: The sum of the escape rates k = kon + koff as a function of the

adiabiaticity parameter κ =
hg2

↑

2k3 for a self-activating switch with g↑ = 100, g↓ =

8, k = 1, n†
N = 53.4. Comparison of the exact discrete n numerical calculation

based on the mean free passage time (black solid line), with approximate methods:
in the nonadiabatic limit (small κ) (gray dashed line, Eqs 6.1 and 6.3), in the
weakly adiabatic regime (black dashed line, Eqs 6.5 and 6.C) and mixed crossover
regime (gray solid line). The adiabatic results tend asymptotically to the strictly
adiabatic limit (large κ-flat escape rate) (light gray dashed line, Eqs 6.6 and 6.C).
In the strictly adiabatic limit the binding of transcription factors to the DNA
binding site is equilibrated. In the nonadiabatic and weakly adiabatic limits the
escape rates show a dependence on the adiabaticity parameter- the process in
influenced by the DNA binding state fluctuations.
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It is helpful to understand the ”eddy-induced” diffusion in an intuitive way.

The effective production rate geff(n) = (fg↓ + h(n)g↑)/(f + h(n)) is the produc-

tion rate averaged over the binding and unbinding states, if they were in equilib-

rium. The diffusion expected solely from the birth-death processes would just be

DBD(n) = geff(n) + kn. This fluctuation mechanism is augmented by diffusion

in the orthogonal two state ”binding-space”, that is the eddy motion. The differ-

ence in the mean distance in protein number that would be travelled in the two

DNA states during a typical eddy cycle will be ∆n = (g↑ − g↓)/(f + h(n)). It is

the typical difference in protein number expected after a full cycle of an eddy has

been traversed. It is given by the difference in velocity in protein number space

in a given binding state, ∆v = |g↑ − g↓|, times the mean time before the binding

state changes ∆t = (f + h(n))−1, such that ∆n = ∆v∆t. The mean free time, or

the eddy mixing time, is given by the sum of the characteristic times for binding

and unbinding, both of which must occur to return to the original binding state,

τ = f−1 + (h(n))−1. The rate which describes the eddy cycling thus becomes

τ−1 = fh(n)/(f + h(n)). The diffusion coefficient D = ∆n2/τ is the square of the

mean change in protein number divided by the characteristic time spent within a

given eddy. The latter depends on both binding and unbinding events. One thus

finds Dbinding(n) = fh(n)(g↑ − g↓)
2/(f + h(n))3.

The mean number of proteins of a given type produced in the active state

is of the order of g↑/k ∼ 102. The degradation rate of proteins gives lifetimes

of the order of a bacterial generation k ∼ 10−3s−1. Dissociation rates from

the DNA vary from f ∼ 1 − 10−3s−1 and typical equilibrium constants may be

taken to be KeqV 2 ∼ 102 − 104, which results in association constants h/2 =

f/(KeqV 2) ∼ 10−2 − 10−7s−1 (based on λ phage data as assembled in [87] and ref-

erences therein). We therefore see that typical adiabaticity parameters scan a wide

range: κ = hg2
↑/(2k3) ∼ 100 − 105. The diffusion coefficient from churning, which

depends on the DNA occupancy dynamics, typically influences the escape rate

over four orders of magnitude of the adiabaticity parameter κ ∈ (100−104), nearly
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covering the biologically relevant regime. For escape processes the DNA binding

dynamics cannot be neglected until the adiabaticity parameter becomes extremely

large ultimately yielding the strongly adiabatic regime. As shown in Figure 6.2,

the eddies due to the influence of the DNA binding state become smaller with

faster binding, until the motion becomes dominated by simple birth-death diffu-

sion along the effective potential, giving the steady state probabilities, averaged

over the DNA binding states (panel c of Figure 6.2).

In the adiabatic limit, the escape rate is governed largely by the fraction of

systems at the separatrix N †
A compared to the fraction residing near the original

attractor Nattr: N †
A/Nattr = P (n†

A)/ps
<(n†

A), where ps
<(n†

A) =
∑

n<n†
A

P (n) and

P (n) is the steady state probability density for a state with n proteins. Clearly

ps
<(n†

A) = P (nin)δnin, where δnin is the width of the attractor. It is important

to understand the spatial variation of P (n), described by the ”potentials” in Fig.

6.2. The spatial variation depends on the balance of the local mean flow against

the flow due to diffusion. We can understand this balance by considering the

motion pictured in Figure 6.2 b. The mean local velocity by which the protein

number changes is v̄ = geff − kn. In addition to this drift the protein number

changes by diffusive motion from places of low to high probability, with a velocity

of vdiffusion = Di(n)/(2lc), where lc is a characteristic ”lengthscale” over which

the steady state probability changes by roughly one e-fold. Di(n) refers to the

diffusion coefficient, which governs the motion in a particular regime. It is equal to

Dbinding(n) in the weakly adiabatic regime, DBD(n) in the strictly adiabatic regime

and is roughly DBD(n) + Dbinding(n) in the small crossover region in between. To

traverse this scale the local velocity has to be at least as large as the velocity of

the diffusive motion v̄ ≥ vdiffusion. The equality v̄ = vdiffusion sets a characteristic

length scale of the problem lc = Di(n)/|2v̄(n)|, over which locally the probability

in a steady state should change by a factor of e. This relation is valid both in

the adiabatic and nonadiabatic regimes. The quantity lc is analogous to the ”scale

height” in the equilibrium barometric problem. How many of these characteristic
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steps of length lc are needed in order for the system to reach n†
A from its steady

state value? Bearing in mind that the length of each step, depends on n, we must

concatenate these steps to give the probability to be at the separatrix relative to

being near the initial state. The probability exponentially depends on the number

of scale heights of varying length lc needed to reach the improbable separatrix

starting from the most probable situation at the basin center, exp [−
∫ n†

A

n↓
A

dnl−1
c ].

To find the rate, we finally need the width δnin. The size of the attractor δnin

is analogous to lc at the bottom of the basin, but quadratic order effects must be

included. To compare the velocities of the motion near the basin center due to

drift and diffusion, the drift velocity must be computed as the ”drift frequency”

in the initial state ω(nin) = (∂v(n)/∂n)|nin
= fhnin(g↑ − g↓)/(f + h(nin))2 − k

times the distance from the stationary point. Comparing drift and diffusion veloc-

ities in the same region ω(nin)δnin = Di(nin)/δnin, gives the size of the attractor

δnin =
√

|Di(nin)/ω(nin)|. The exponential term counts the paths from all pos-

sible position within the attractor. We must therefore divide the by the width of

the attractor.

To determine the epigenetic escape rate we need also the transmission factor.

In the adiabatic limit, reaching the separatrix does not yet guarantee a successful

escape. Once the protein number reaches the vicinity of the stochastic separa-

trix the system may directly cross the separatrix, or recross it many times before

committing to the new attractor. The number of escapes per unit time rate is

thus proportional to the velocity with which the system moves over the separatrix,

divided by the number of attempts before it successfully commits to the new at-

tractor k = δv/NP (nin → n ∼ peak). The velocity around the peak is determined

by a mean free path for number fluctuations lmfp and a mean free time τ relevant

to that region, δv = lmfp/τ . Only in the crossover region is it necessary to take

all processes into account on equal footing when evaluating the mean free path

lmfp and the associated mean free time τ . In the weakly and strongly adiabatic

limits the results simplify. In the weakly adiabatic region, the mean free path
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is dominated by the DNA churning cycles and is given by the typical eddy size

lmfp ≈ (g↑ − g↓)/(f + h(n)) and τ = f−1 + (h(n))−1. In the strictly adiabatic

limit, the motion is determined by the birth and death of proteins. Effectively,

the protein number changes by lmfp equal to one protein in the mean free time

τ = (geff(n) +k)−1. Once the mean free path has been determined, the number of

crossings is then the number of steps of the size of the mean free path needed to

cross the transition state region lTST . Like the basin size, the size of the transition

state region is lTST =
√

Di(n†
A)/ω(n†

A). The escape rate from the left attractor,

n↓
A, is kon(n↓

A) = l2mfp/(lTST τ)(δn↓
A)−1e

−
R n

†
A

n
↓
A

dnl−1
c

, where l2mfp/τ = Di(n
†
A) and i

indicates BD, binding and mixed in the appropriate regimes. This gives the rate

of the escape from the low protein number state in the weakly adiabatic regime:

kon(n↓
A) =

1

2π
Di(n†

A)

√

|ω(n↓
A)ω(n†

A)|
Di(n†

A)Di(n↓
A)

e
−

R n
†
A

n
↓
A

dnl−1
c

(6.5)

where n†
A is the number of proteins corresponding to the minimum of the total

steady state probability distribution. In the adiabatic regime the separatrix is

given as the fixed point of the average flow: geff(n†
A) = kn†

A.

In the strictly adiabatic limit, the eddy motion may be neglected. So lκ→∞
c is

determined solely by the equilibrated diffusion in protein number space lκ→∞
c ≈

(geff + kn)/(2(geff − kn)) . All the components in Eq 6.5 can be obtained using

quadrature, in this case, yielding a complex expansion. A more simplified result,

explicit in terms of chemical rate constants, follows if we linearize l−1
c in the region,

which contributes most to the result of the integral. In this situation equation 6.5

becomes:

kon(n↓
A) = f̃1(Keq)e

− |l−1
c (nmin)|

4(n
†
A

−nmin)
(n†

A−n↓
A)2

(6.6)

where nmin number of proteins for which l−1
c has the largest value. The largest value

of l−1
c corresponds to the the smallest characteristic length scale in the region of in-

tegration. The value of l−1
c (nmin) scales as nmin ∼ V

√

Keq/2. The pre-exponential

factor has the form f̃1(Keq) = kV/(2π)
√

Keq/(a0n↑6)(n↑4 − (KeqV 2)2 − 2KeqV 2(n↑)2),
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where a0 = g↓/g↑. The escape rate decreases with the equilibrium constant

and system size. Using the dependence of the minimum of the integrand as a

function of the equilibrium constant KeqV 2, one finds the escape rate scales as

e−α1n↑−2
(KeqV 2−3a0n↑2

)3/2
, where α1 is a numerical factor of the order of 1/2. The

rate of escaping from the off state attractor exponentially decreases with increasing

of the equilibrium constant.

How the escape rate depends on the molecular parameters, can be seen by

assuming, for simplicity, a highly cooperative variation of the equilibrium DNA

occupancy with protein concentration. In this case the effective production rate

can be approximated by the production rate in the off state attractor, geff(n) ≈ g↓.

Now, the protein dynamics will be determined by the rates characteristic of the

attractors, until the system reaches the separatrix. This approximation is like the

threshold picture of Metzler and Wolynes [39]. In this approximation one finds:

kon(n↓
A) = f̃1(K

eq)e
− 1

2

k(n
†
A

−n
↓
A

)2

kn
†
A

+g↓ (6.7)

When the cell is sufficiently small the separatrix merges with both attractors.

In such a regime, this simple formula correctly predicts the functional depen-

dence of the escape rate on the equilibrium constant and the protein production

rates. When the separatrix begins to merge the attractor, the exponential term

approaches unity. Thus stability is compromised. When the attractors merge

with the separatrix the pre-exponential factor becomes important for quantitative

analysis [122, 104].

In the κ dependent weakly adiabatic region, the probability distributions look

qualitatively similar to those in the strictly adiabatic limit: the extrema do not

change as κ increases. In the escape rate calculation, however, one compares the

ratios of the probabilities near the minimum and the saddle regions. This ratio is

significantly different in the weak and strong adiabatic regimes and strongly affects

the spontaneous switching rates, as seen in Figure 6.1. In the weak adiabatic regime

one finds the escape rates depend exponentially on the adiabaticity parameter κ.
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The escape rate therefore is approximately dominated by

kV/(2π)Keqn↑3
/a0

√

n↑2 − 2KeqV 2/(n↑2
+ KeqV 2)3 ·

exp(−f/kKeqV 2a0/n
↑(n†

A − n↓
A)/(n↓

An†
A))

In the weakly adiabatic regime, the effective growth rate can be well approximated

as that with a fixed DNA occupancy, as in the Metzler-Wolynes threshhold model

[39].

The transition can be treated from the high protein number state to the low

protein number state much as above in the adiabatic limit. The rate of escape from

high protein number to the low protein number depends on the relative probability

that the system is to the right of the separatrix, characterized by a mean protein

number n↑ compared to the steady state probability of being at the separatrix n†
A,

k(n↑ → n ∼ peak) = P (n†
A)/ps

>(n†
A). ps

>(x) =
∑n=∞

n=x P (n). The escape rate turns

out to be:

koff(n↑) =
1

2π
Di(n†

A)

√

|ω(n↑)ω(n†
A)|

Di(n†
A)Di(n↑)

e
−

R n↑

n
†
A

dnl−1
c

We can approximate l−1
c in the strictly adiabatic limit as for the kon calculation.

Then the strictly adiabatic escape rate becomes:

koff (n↑) = f̃2(K
eq)e

− l−1
c (nmax)

4(nmax−n
†
A

)
(n↑

A−n†
A)2

(6.8)

where nmax is the number of proteins at the maximum of l−1
c , which scales as

nmax ∼= V
√

Keq. The pre-exponential fatcor has the form

f̃2(K
eq) ≈ kV/(2π)(n↑4 − (KeqV 2)2 − 2KeqV 2n↑2

)
√

Keq/n↑5

More explicitly the escape rate from the on state scales as ∼ e−α2n↑−2
√

(ζn↑2−KeqV 2)
3

,

where α2 ≈ 2 and ζ ≈ 1/4 + a0/2 are constant numerical factors. The escape rate

from the on state attractor exponentially increases with the increase of the equi-

librium constant. A simple result is also obtained by replacing the effective pro-

duction rate by the value of the effective production rate in the on state attractor
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geff(n) ≈ geff(n↑
A):

koff(n↑
A) = f̃2(Keq)e

− 1
2

k(n
↑
A

−n
†
A

)2

kn
†
A

+geff (n
↑
A

) (6.9)

The equilibrium constant for the dressed genetic switch state in the strongly adi-

abatic limit is

K̄GS = koff/kon ∼ fr(K
eq)e−n↑−3

(β1(
√

(ζn↑2−KeqV 2)
3
−β2

√
(KeqV 2−3a0n↑2)

3
)

which sharply depends on the proteomic atmosphere.

fr(K
eq) =

√

a0(n↑4 − (KeqV 2)2 − 2KeqV 2n↑2)/n↑4 (6.10)

β1 ≈ 2, β2 ≈ 1/4 are numerical factors.

In the weakly adiabatic regime the exponential term in the off escape rate be-

comes exp(−h/(2k)n↑−2
/(KeqV 2)(1/6(n†

A)6−(n↑
A)6−geff (n↑

A)/(5k)((n†
A)5−(n↑

A)5))).

So in the weakly adiabatic limit the equilibrium coefficient for the dressed genetic

switch states K̄GS = koff/kon scales as

K̄GS ∼ a0n
↑3

/
√

KeqV 2
3
e−h/(2k)ξ1(n↑)−2/(KeqV 2)((n↑)6−ξ2(KeqV 2)3) (6.11)

where the coefficients are determined by the positions of the on and off state

attractors and are of the order of ξ1 ≈ 0.01 and ξ2 ≈ 100.

Whether the switch is nonadiabatic or adiabatic can be determined by com-

paring the mean free path to the size of the transition region. If lTST/lmfp > 1

many crossings are required and the transition is adiabatic. If lTST /lmfp < 1 the

system commits to the new attractor once it reaches the separatrix, hence the

transition is nonadiabatic. In the strictly adiabatic regime the diffusion of the

system is governed by protein diffusion induced by the birth-death process, as op-

posed to the weakly adiabatic regime, where diffusion due to churns dominates.

A phase diagram showing the different escape mechanisms in parameter space for

fixed KeqV 2 is shown in Figure 6.3.
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6.D Comparison with Numerically Exact Results

While the mechanism of spontaneous switching or epigenetic escape is different

in the various regimes, we understand the rates in all regimes using the notion of

a stochastic separatrix. We can compare these approximations with numerical

calculations due to Kepler and Elston [76, 81] and our own full numerical results.

In the nonadiabatic limit (small κ = hg2
↑/(2k3)) the escape process is deter-

mined by the rate of DNA state fluctuations. In this regime the rates are given

by equations 6.1 and 6.3 (gray dashed line) (Figure 6.1). These agree with the

discrete numerical calculation of the mean free passage time from each basin. Our

numerical calculations confirm that only in the extremely adiabatic limit (large

κ - flat escape rate) can the DNA fluctuations safely be neglected. Only for this

extreme limit does the lifetime become determined by protein synthesis/ degrada-

tion fluctuations alone (light gray dashed line). Estimates of the input parameter

would suggest that the weakly adiabatic regime is common for biological switches.

In the weakly adiabatic regime the escape rate does not just depend on occupancy

averaged growth rates, but still depends on the adiabaticity parameter, as shown

in Figure 6.1. Neglecting the influence of DNA fluctuations in this limit, as many

treatments have done would give the extreme adiabatic asymptotic value of the

escape rate also pictured on the graph. Both the strictly and weakly adiabatic

regimes can be obtained from the more general calculation using the full diffusion

coefficient. The full treatment is only required in a small crossover regime (gray

solid line).

6.E Summary

Spontaneous transitions between attractors of genetic systems are caused by

coupled stochastic fluctuations in the DNA state and protein number. Even in

parameter regimes where the DNA state locally would appear to reach a steady

state much more rapidly than the protein number state, the fluctuations due to
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binding and unbinding of transcription factors greatly influence the protein num-

ber fluctuations and hence modify the rate of spontaneous transitions between

epigenetic states. We call such a regime the weakly adiabatic by contrast to the

strongly adiabatic limit, where the DNA binding state may be taken to be in equi-

librium. The mechanism of spontaneous switching between stable attractors in

the weakly adiabatic regime is graphically explained by a churning process, which

causes protein numbers to fluctuate from the mean flow. How the escape rates kon

and koff depend on molecular parameters in the nonadiabatic, weakly and strongly

adiabatic should allow one to understand the evolutionary constraints necessary to

achieve stable yet responsive switches, a topic we hope to return to. By considering

both the DNA and protein degrees of freedom, the rate theories we have presented

provide an intuitive description of spontaneous switching events, in terms of the

molecular parameters that determine the functioning of a genetic switch.
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6.5 and 6.C. The dark gray line marks the effective potential for protein number
change. The horizontal arrows signify binding and unbinding events.
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Conclusions

Gene expression regulation networks are examples of systems of nonlinear units

coupled together, which result in emergent steady states. A gene network may

therefore be studied as a many-body system, which may function out of equilib-

rium. In this thesis I have tried to present how methods of theoretical many-body

and nonequilibrium physics may be used to gain a better understanding of the

interactions between genes and proteins which are the building blocks of these

circuits. These methods have proven fruitful.

I set out to investigate the effect of the DNA operator occupancy fluctuations

in genetic switches. I found that for amplified signals, such as when proteins are

produced in bursts the mean number of proteins is influenced by the DNA binding

state fluctuations. Furthermore, if we consider dynamical systems, even if the

steady state probability distributions are weakly dependent on the DNA state,

the escape rate in a large part of parameter space depends on DNA fluctuations.

Recent experimental work by Juan Pedraza and Alexander van Oudenaarden [20]

shows how noise generated in the expression of one gene is propagated to other

genes, by binding of the product proteins of upstream genes. The fluctuations in

the number of proteins produced in turn by these downstream genes are larger:

noise in the expression of downstream genes is amplified. I therefore conclude that

DNA state fluctuations could play a significant role in large networks. However

our findings also lead to a lot of new questions.
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The results presented here touch only upon a few problems and do not exploit

all analogies to the maximum of their capacities. There are many ways to continue

the research which is described in this thesis. From the biological perspective, it

seems that questions of separation of timescales on which the gene expression state

degrees of freedom and protein number state change, are more relevant in eukary-

otes. Therefore incorporating spatial elements into gene regulation models, which

would account for compartmentalization of processes and more complicated trans-

port effects seems to be important [125, 126]. The spatially constrained expression

of certain genes in development in eukaryotic systems is a fascinating example of

how such models could be used to shed new light on experiments. Other elements

of eukaryotic gene expression are also of interest in light of slow and fast timescales,

such as chromatin unravelling [127, 128].

This is not to say that these effects are not important for prokaryotes. More

and more experimental indications show [49] show slow binding kinetics of tran-

scription factors in these organisms. Yet a question, which remains unanswered is

why so many prokaryotes have evolved to function in the regime of fast binding

and unbinding of transcription factors to the DNA.

Methods of theoretical physics can also be used to propose better approxima-

tions for the interaction of small genetic circuits in large networks. These questions,

especially in the context of temporal expressions of genes, should help us develop

a language needed when looking at large scale interactions. Especially if these in-

teractions cannot be predicted from the behaviour of the particular circuits. The

behaviour of the large network may also not have a mean field character. Thinking

about such systems may result in new ways of describing other nonlinear coupled

systems.

To conclude I would like to state that the integration of molecular systems

biology and theoretical nonequilibrium many-body physics will continue to bring

new ideas to both fields and should be pursued further.
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A.A Appendix A

In this appendix we derive the explicit form of the moment equations for the

switch discussed in the section ”The Toggle switch” of Chapter 5. In the operator

formalism developed for classical diffusion by Doi (Doi, 1976) and Zeldovich’ and

Ovchinikov (Zeldovich and Ovchinikov, 1978), the number operator may be written

in terms of number state creation a† and annihilation a operators, as n = a†a. It

is then particularly easy to write down the equations for the a moments instead

of the n moments. Setting the left hand side to zero one obtains the steady state

equations:

0 = −ωi[
F (3 − i)

Xeq
i

C1(i) − C2(i)]

0 = k[(Xad
i + (−1)jδXsw

i ) < ak−1
ji > − < ak

ji >]Cj(i) +

+(−1)jωi[
F (3 − i)

Xeq
i

< ak
1i > C1(i)− < ak

2i > C2(i)]

Using the probability conservation relation C1(i) + C2(i) = 1, the zeroth order

equations become:

C1(i) =
Xeq

i

Xeq
i + F (3 − i)

C2(i) =
F (3 − i)

Xeq
i + F (3 − i)

(A.1)
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Dividing the higher order aj(i) moment equations by Cj(i) and using the relation

C1(i)/C2(i) = F (3 − i)/Xeq
i from the zeroth order equations one can calculate

< ak
1i − ak

2i > =
(Xad

i + δXsw
i ) < ak−1

1i > −(Xad
i − δXsw

i ) < ak−1
2i >

ωi + kCj(i)
kCj(i)

which depends only on a moments of lower order than the kth moment. This allows

one to obtain the following form for the higher order a moments

< ak
1i > = (Xad

i + δXsw
i )(1 − ωiC2(i)

ωi + kC1(i)
) < ak−1

1 > +

+(Xad
i − δXsw

i )
ωiC2(i)

ωi + kC1(i)
< ak−1

2 >

< ak
2i > = (Xad

i − δXsw
i )(1 − ωiC1(i)

ωi + kC1(i)
) < ak−1

2 > +

+(Xad
i + δXsw

i )
ωiC1(i)

ωi + kC1(i)
< ak−1

1 >
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Going back and forth between the two types of moments is straightforward. The

n-moment equations have however more complicated forms:

< nk
1i > =

1

k

[

k−1
∑

s=0

[ k!

s!(k − s)!
(Xad

i + δXsw
i )(1 − ωiC2(i)

ωi + C1(i)k
) < ns

1i > +

+(Xad
i − δXsw

i )
ωiC2(i)

ωi + C1(i)k
< ns

2i >
]

+

+

k−2
∑

s=0

k!

s!(k − s)!
(−1)k−s

[

(1 − ωiC2(i)

ωi + C1(i)k
) < ns+1

1i > +

+
ωiC2(i)

ωi + C1(i)k
< ns+1

2i >
]

]

< nk
2i > =

1

k

[

k−1
∑

s=0

[ k!

s!(k − s)!
(Xad

i − δXsw
i )(1 − ωiC1(i)

ωi + C1(i)k
) < ns

2i > +

+(Xad
i + δXsw

i )
ωiC1(i)

ωi + C1(i)k
< ns

1i >
]

+

+
k−2
∑

s=0

k!

s!(k − s)!
(−1)k−s

[

(1 − ωiC2(i)

ωi + C1(i)k
) < ns+1

2i > +

+
ωiC2(i)

ωi + C1(i)k
< ns+1

1i >
]

]
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A.B Appendix B

In the case when proteins are produced in bursts of N and repressors bind as

dimers the master equation has the form:

∂P1(ni)

∂t
= g1(i)[P1(ni − N) − P1(ni)] + ki[(ni + 1)P1(ni + 1) − niP1(ni)] +

−hin
2
3−iP1(ni) + fiP2(ni)

∂P2(ni)

∂t
= g2(i)[P2(ni − N) − P2(ni)] + ki[(ni + 1)P2(ni + 1) − niP2(ni)] +

+hin
2
3−iP1(ni) − fiP2(ni)

for n ≥ N . For n < N the equations have the form.

∂P1(ni)

∂t
= −g1(i)P1(ni) + ki[(ni + 1)P1(ni + 1) − niP1(ni)] +

−hin
2
3−iP1(ni) + fiP2(ni)

∂P2(ni)

∂t
= −g2(i)P2(ni) + ki[(ni + 1)P2(ni + 1) − niP2(ni)] +

+hin
2
3−iP1(ni) − fiP2(ni)
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Following the same procedure as for the the single protein production case, we get

the following equations of motion for the first three moments:

∂C1(i)

∂t
= −hiF (3 − i)C1(i) + fiC2(i)

∂C2(i)

∂t
= hiF (3 − i)C1(i) − fiC1(i)

∂C1(i) < n1(i) >

∂t
= [Ng1(i) − ki < n1(i) >]C1(i) +

−hiF (3 − i) < n1(i) > C1(i) + fi < n2(i) > C2(i)

∂C2(i) < n2(i) >

∂t
= [Ng2(i) − ki < n2(i) >]C2(i) +

+hiF (3 − i) < n1(i) > C1(i) − fi < n2(i) > C2(i)

∂C1(i) < n2
1(i) >

∂t
= g1(i)[2N < n1(i) > +N2]C1(i) +

+ki[−2 < n2
1(i) > + < n1(i) >]C1(i)

−hiF (3 − i) < n2
1(i) > C1(i) + fi < n2

2(i) > C2(i)

∂C2(i) < n2
2(i) >

∂t
= g2(i)[2N < n2(i) > +N2]C2(i) +

+ki[−2 < n2
2(i) > + < n2(i) >]C1(i)

+hiF (3 − i) < n2
1(i) > C1(i) − fi < n2

2(i) > C2(i)

where F (i) = C1(i) < n2
1(i) > +C2(i) < n2

2(i) > as before. Writing out N2 =

N(N − 1) + N and subtracting the < nj(i) > equations from < n2
j(i) > we get the

equations of motion for the previously defined creation operators a. Due to the

form of F (i) for the dimer binding case only the first three moments are relevent.

However generally this procedure can be carried out for higher moments, yielding
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an expression for the mth creation operator moment in the steady state of the form:

< am
1i > = (NXad

i + NδXsw
i )(1 − ωiC2(i)

ωi + mC1(i)
) < am−1

1 > +

+(NXad
i − NδXsw

i )
ωiC2(i)

ωi + mC1(i)
< am−1

2 > +

+
Nm−1 − 1

2
(NXad

i − NδXsw
i (1 − ωiC2(i)

ωi + mC1(i)
))

< am
2i > = (Xad

i − δXsw
i )(1 − ωiC1(i)

ωi + mC1(i)
) < am−1

2 > +

+(Xad
i + δXsw

i )
ωiC1(i)

ωi + mC1(i)
< am−1

1 > +

+
Nm−1 − 1

2
(NXad

i − NδXsw
i (1 − ωiC1(i)

ωi + mC1(i)
))

To consider the binding of higher order oligomers when proteins are produced in

bursts one simply accounts for the changed form of F (i) as discussed in the ”The

Case when Proteins bind as Higher Order Oligomers” section.
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