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Abstract 
 
The Lawrence Berkeley National Laboratory (LBNL), the University of California Merced 
(UCM), and the United Technologies Research Center (UTRC) conducted field studies 
and modeling analyses in the Classroom and Office Building (COB) and the Science 
and Engineering Building (S&E) at the University of California, Merced.  In the first year, 
of a planned multiyear project, our goal was to study the feasibility and efficacy of 
occupancy-based energy management.  The first-year research goals were twofold.  
The first was to explore the likely energy savings if we know the number and location of 
building occupants in a typical commercial building.  The second was to model and 
estimate people movement in a building.  Our findings suggest that a 10-14% reduction 
in HVAC energy consumption is possible over typical HVAC operating conditions when 
we know occupancy throughout the building.  With the conclusion of the first-year tasks, 
we plan to review these results further before this group pursues follow-on funding. 
 

1. Background 
 
Heating, ventilating, and air conditioning (HVAC) systems account for 50% of the total 
energy budget in buildings (Payne, 1984).   Prior research has shown that energy 
savings are achievable by regulating fresh air ventilation based on the total number of 
occupants in a building.  This procedure, called demand-controlled ventilation, allows 10 
to 15% reduction of HVAC energy compared to setting ventilation rates by assuming 
maximum occupancy (see e.g., Brandemuehl and Braun, 1999).  In many buildings, 
some rooms are empty during at least part of the day, so there appears the possibility 
that occupancy-based HVAC controls – supplying HVAC only to occupied rooms – may 
further reduce energy costs. 
 
Reliable spatially resolved occupancy data are not available in most buildings.  Many 
modern buildings include motion detectors, and temperature and CO2 sensors for light 
and air flow management, but these sensors present some limitations.  Motion detectors 
do not indicate the number of people present, and temperature and CO2 sensors 
provide indirect measures that lag in time.  If occupancy-based energy management is 
feasible, a faster distributed sensor network may be needed to give accurate and rapid 
occupancy estimates or measurements. 
 
The lack of reliable data to estimate energy savings potential, or to test the feasibility of 
determining local-scale occupancy, is a clear roadblock to further exploration.  We 
therefore proposed to investigate occupancy-based energy control strategies on two 
simultaneous fronts.  One is to benchmark the energy savings potential of occupancy-
based HVAC controls for various levels of occupancy knowledge.  The second is to 
determine the level of occupancy knowledge obtainable.  For the first, we developed 
models of energy consumption and control strategies.  For the second, we installed a 
40-node “smart camera” network in a portion of the Science and Engineering Laboratory 
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(S&E) building at UC Merced and developed coarse-scale models of occupancy 
dynamics. 

This project was planned in three phases: 
Phase 1: Feasibility and efficacy study (12 months) 
Phase 2: Refine hardware and software tools, and link with other DOE programs (12 

months) 
Phase 3: Prototype implementation and testing (12 months) 
 
We report on our findings from Phase 1.  We are reviewing our results, and have not 
planned follow-up proposals for Phases 2 and 3. 
 

2. Description of Phase 1 Tasks 
 
The purpose of Phase 1 was to conduct various order-of-magnitude calculations to 
estimate the feasibility of occupancy-based estimation and the potential energy savings.  
We also conducted research to determine technology limits.  In this report, we 
summarize our work on five tasks: 
1. Describe energy usage in the UC Merced Classroom and Office Building (COB); 
2. Develop an energy model of the COB; 
3. Deploy a sensor network in the S&E; 
4. Develop energy controls for the COB; and 
5. Develop a people dynamics model for occupants in the S&E. 
 
We describe our results for each task in the following section. 
 

3. Project Results 
	
  

Task 1: Describe Energy Usage in the COB (LBNL Lead Author) 
 
This task gathered data to support this project, and a complementary project for the 
DOE and the California Energy Commission titled “Real-Time Visualization of Energy 
Performance in Buildings (Piette et al., 2010).”   Data include 15-minute electric power 
for the building as a whole and for four specific circuits; heating and cooling power 
provided in the form of hot and chilled water from a “district” system that serves the 
entire campus; HVAC fan energy; and indoor temperature at every thermostat.  
Additionally, hourly weather data were compiled using a combination of sources, as 
discussed below.  The dashed lines in figures T2-5 through T2-12 show examples of 
some of the building data. 
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Figure T1-1: The classroom and office building at UC Merced. 
 
 

Task 2: Develop Energy Model of the COB (LBNL Lead Author) 
 
We developed an energy model of the UC Merced COB using data from Task 1 and 
EnergyPlus version 3.1.  The building model will support future energy analyses of the 
COB, and tasks for a complementary project for the DOE and the California Energy 
Commission called “Real-Time Visualization of Energy Performance in Buildings (Piette 
et al., 2010).”  A description of the building, the model, and efforts to calibrate the model 
to data follow. 
 
Model Description 
 
Figure T2-1 shows a model representation of the COB.  The building shell is tilt-up 
concrete panels or curtain-wall frame construction.  The concrete panels consist of 12 
inches of concrete, interior insulation and a layer of gypsum board.  The curtain walls 
consist of steel siding, exterior gypsum board, insulation, and interior gypsum board.  
Nearly all interior walls consist of gypsum board sandwiching a sound attenuation 
blanket.  Some interior walls have two layers of gypsum board on one or both sides.  
Windows consist of an outside layer of LowEnergy Tint 6 mm, a 13 mm air gap, and an 
inside layer of Clear 6 mm.  Parameters for each layer are available in the materials 
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library in EnergyPlus.  The overhangs are three feet deep and made of aluminum 
grating.  We depicted them in EnergyPlus as equivalent two-foot solid overhangs.	
  
 
Figures T2-2 through T2-4 show the building floorplans.  Approximately one-third of the 
building consists of office space, and the remaining is classrooms.  The building model 
consists of 86 conditioned zones (13, 48, and 25 zones for the first, second, and third 
floors, respectively).  Fifty-five of the zones represent a physical room in the building 
and the remaining zones represent multiple, adjacent, rooms operating under similar 
energy usage/requirements.  Each model zone includes an “internal mass” that 
represents the thermal storage capacity of the room(s) (e.g., interior walls, furnishings, 
paper, books, etc.). 
 
Cooling and heating energy are delivered from campus chilled water and boiler plants.  
The building HVAC is a dual-fan, dual-duct, variable air-volume system with an 
economizer.  Dual-fan refers to separate cooling fans (two 35,000 CFM fans in parallel) 
and heating fan (one 25,000 CFM fan).  The two cooling fans are represented in 
EnergyPlus as a single 75,000 CFM fan in EnergyPlus.  Dual-duct VAV mixing boxes 
supplies the room zone. 

Nighttime air infiltration is 0.2 air changes per hour.  Daytime air infiltration is negligible 
because ventilation/conditioning pressurizes the building.  All classrooms, conference 
rooms, and auditorium have CO2 sensors for outside air (OA) control (Figures T2-2, T2-
3, and T2-4). 
 
Weather data for 2008 and 2009 consisted of hourly dry-bulb temperature, measured on 
the roof of the COB, wind speed and direction, recorded at the campus central plant, 
direct normal radiation, measured 30 miles southwest of the campus at the California 
Department of Water San Luis Reservoir, and relative humidity, measured at the Fresno 
International Airport for 2008 and at the Merced Municipal Airport for 2009. 
 
Building Loads 
 
The primary internal requirements are people, lighting, and plug-load equipment.  The 
Classroom zones have three load schedules to reflect typical use patterns on (1) 
Mondays, Wednesdays, and Fridays; (2) Tuesdays and Thursdays, and (3) weekends 
and holidays.  Office and all other zones have two load schedules to depict usage on 
weekdays, and weekends and holidays.  Schedules were initially set according to data 
on building occupancy and operation from John Elliott, the campus energy manager.  
We later adjusted the schedules to calibrate the model to data. 
 
Model Calibration 
 
Fifteen-minute sub-meter energy loads have been recorded for several years.  The 
availability of such high temporal resolution meant that we had the opportunity to 



8 

calibrate the model at a substantially greater standard than typically reported in the 
literature.  The data consisted of: 

• Whole building cooling and heating power, derived from the flow rate and 
temperature change in cold and hot water from the district cooling and heating plant. 

• HVAC fan power. 
• Four energy sub-meters: (1) 4HA – lighting for sections of the 1st, 2nd, and 3rd 

floors and the exterior, (2) 4HB – lighting for other sections of the 1st, 2nd, and 3rd 
floors, (3) 4LA – plug loads for sections of the 2nd and 3rd floor offices, and (4) 4LB 
– some auditorium lighting and some receptacles in the 1st, 2nd, and 3rd floor 
classrooms, and 3rd floor offices. 

• Internal temperatures.  

We predicted electrical loads for lighting, equipment, and fans at 15-minute intervals 
and compared them to the data.  We calibrated electric load by adjusting lighting and 
equipment schedules. Model parameters were also adjusted to improve the prediction of 
indoor temperatures.  Many parameters affect indoor temperature predictions: the 
thermal mass of the building and its contents, the heat generated by occupants (each 
person generates over 100W), the thermal conductivity of the exterior walls, and so on.  
 
Figures T2-5 through T2-10 show model predictions and measured data for electric 
loads for the whole building, HVAC fans alone, and sub-meters 4HB and 4LB for a 
winter week (Feb 1-7, 2009) and a summer week (Sep 6-12, 2009).  There is good 
agreement between predictions and measurements for whole building electric demand 
during occupied periods, but further adjustments to lighting and equipment load 
schedules are needed to improve agreement during unoccupied periods. 
 
There is good agreement for HVAC fans, with the exception of early morning during 
cooling season (Sep) and during weekend days.  There is somewhat poor agreement 
for the primary lighting sub-meters 4HA (not shown) and 4HB during occupied periods 
indicating that more lights are used during the day than are scheduled in the model.  
There is very good agreement for the primary receptacle sub-meters 4LA (not shown) 
and 4LB.  We believe the 4HA submetering problems are due to model misspecification: 
the model assumes that the equipment and lights that are served by this circuit are 
correctly identified in the building blueprints, but it seems increasingly likely that this is 
not the case.  It is not unusual for plans to differ from actual practice --- even “as-built” 
plans that supposedly indicate the way the building was assembled.  
 
The model also predicts total heating and cooling energy transferred from the heating 
and cooling coils, respectively.  Model predictions were compared to actual heating and 
cooling energy (from Task 1), which was calculated from logged measurements of 
supply and return water temperatures and water loop flow rates for both heated and 
chilled water: 
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where E represents energy transferred in kW, Q represents water loop flow rate in 
gal/min, and delta T represents the absolute difference between the supply and return 
water temperatures.	
  
 
There is poor agreement for heating energy transfer with some under-prediction in 
winter (Figure T2-9) and less significant over-prediction in summer (Figure T2-10).  
Cooling energy is greatly over-predicted in winter, somewhat over-predicted during 
summer weekdays and under-predicted for summer weekend days.  Internal loads such 
as lights, equipment plugged into receptacles, and people affect heating and cooling 
energy.  It appears that, since heating is under-predicted and cooling is over-predicted, 
internal loads are over-predicted by the model.  However, electric loads are fairly well 
predicted, and even under-predicted in the case of lighting.  The number of people in 
the model has been reduced, but that did not result in significantly improved predictions 
of heating and cooling energy.  Further investigation is needed of the relationship of 
predicted heating and cooling energy and the modelʼs HVAC control configuration and 
thermal parameters such as those related to internal mass and exterior surfaces.  We 
are now using newly developed software to adjust model parameters so as to better fit 
the data, and we hope that this procedure will result in a model that more accurately 
predicts heating and cooling energy use.  However, the improved model is not yet 
available as the present report is being written.  
 
Model predictions of zone temperatures agree fairly well for summer and less well for 
winter (Figures T2-11 and T2-12).  Zone temperatures decrease and increase during 
unoccupied periods in the real building much more in the winter and to a lesser extent in 
the summer as compared to model predictions.  Also, the rate at which zone 
temperatures increase at the beginning of an unoccupied period in summer is greatly 
over-predicted by the model.  Thermal properties of internal mass and exterior surfaces 
need to be adjusted to improve zone temperature predictions.  We believe the 
automated model tuning discussed above will resolve most of these problems.  
 
Overall, model performance is fairly good, but further improvements in thermal 
predictions such as zone temperatures and heating and cooling energy are needed.  
Work in this area is focusing on the modelʼs estimates of thermal mass, the heat 
transfer characteristics of the buildingʼs envelope, and the configuration and control of 
the HVAC system. 
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Table T2-1: Building configuration and areas 

  Total Building 
area 

Office 
area 

Classroom/Conf/Aud 
area 

CO2 
sensors 

  ft2 ft2 ft2 Number 

1st Floor 33833 - 33833 11 

2nd Floor 32350 6600 25750 25 

3rd Floor 27423 25932 1491 3 

Total 93606 32532 61074 39 

% Area - 35% 65% - 

 



11 

 

 
Figure T2-1: Model representation of the COB. 
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Figure T2-2: Floor plan of 1st floor, and locations of CO2 sensors. 

 

 

Figure T2-3: Floor plan of 2nd floor, and locations of CO2 sensors. 
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Figure T2-4: Floor plan of 3rd floor, and locations of CO2 sensors.
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Figure T2-5: Model predictions (solid) compared to measurements (dashed) for whole-
building loads for a winter (upper) and summer (lower) week. 
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Figure T2-6: Model predictions (solid) compared to measurements (dashed) for HVAC 
fan loads for the HVAC fans for a winter (upper) and summer (lower) week. 
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Figure T2-7: Model predictions (solid) compared to measurements (dashed) for sub-
meter 4HB for a winter (upper) and summer (lower) week. 
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Figure T2-8: Model predictions (solid) compared to measurements (dashed) for sub-
meter 4LB for a winter (upper) and summer (lower) week. 
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Figure T2-9: Model predictions (solid) compared to measurements (dashed) for heating 
(upper) and cooling (lower) in February. 
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Figure T2-10: Model predictions (solid) compared to measurements (dashed) for 
heating (upper) and cooling (lower) in September. 
 



20 

	
  

	
  

 
Figure T2-11: Model predictions (solid) compared to measurements (dashed) of zone 
temperatures for Classroom 209 for Feb 1-7, 2009 and Sep 6-12, 2009. 
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Figure T2-12: Model predictions (solid) compared to measurements (dashed) of zone 
temperature for Office 317 for Feb 1-7, 2009 and Sep 6-12, 2009. 
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Task 3: Deploy Sensor Network in the S&E (UC Merced Lead Author) 
 
In this section, we describe the equipment and experiments conducted with the Smart 
Cameras Object Position Estimation System (SCOPES) (Kamthe et al., 2009), which is 
a wireless camera sensor network for gathering traces of human mobility patterns in 
buildings. 
 
The SCOPES system for the S&E is comprised of 16 sensor nodes on the ceiling of the 
corridors.  The nodes were deployed in groups of three at transition points of the main 
floor. Each sensor node is comprised of a Cyclops camera interfaced with a Moteiv 
Tmote Sky module via an intermediate adapter board.  The Cyclops is a very low power 
camera with an on-board 4MHz ATmega128L micro-controller (MCU) and 512KB of 
external SRAM.  Due to the limitation of the total addressable memory, the external 
SRAM is divided into eight, 64KB memory banks.  The Cyclops captures 10 64x64 pixel 
grayscale images per bank (i.e., 80 total). In each group, multiple nodes sense the 
same area with coordination to minimize overlap between the image capture periods of 
the cameras. Whenever a person crosses any one of these transition points, the 
cameras capture and process the image data. 
 
We execute lightweight processing algorithms on the Cyclops before data transmission 
to reduce computational-power use.  The object detection algorithm running on the 
Cyclops determines the presence of an object in the image foreground, if any, and 
updates the background.  We developed a modified background subtraction algorithm 
that labels the pixels in the captured images as an object, a shadow, or background 
depending upon a preset threshold.  Next, we use a connected components algorithm to 
merge all pixels labeled as an object into a “blob”. For each blob, information regarding 
the centroid (x and y coordinates) and the number of pixels is recorded.  We track the 
movement of the blob across images.  After processing all the images in the current 
bank, an array of data structures containing information on a maximum of four objects 
per bank is transferred to the Tmote using serial communication.  The Tmote routes the 
information to the base station using multihop communication.  Both the Cyclops and 
the Tmote run the TinyOS operating system. 
 
We collected data using the SCOPES system for a period of 24 hours and compared 
them to ground-truth data.  To record ground truth data, we installed three Philips SPC-
900NC web cameras to record the movement of people.  The camera captured 
approximately three images every two seconds.  This frequency is high enough to 
record transitions accurate to the second.  We collected data from the ground truth 
system for the entire 24 hours that the SCOPES system was operated and then for an 
additional 24 hours.  
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Overall, SCOPES detected 80% of all recorded transitions.  However, the system has 
false positives of 25%.  False positives refer to the ratio of number of transitions 
detected by SCOPES when the ground truth shows none to the total number of 
transitions detected by SCOPES.  False positives result, mainly, due to background 
noise, and difficulties with hardware calibration. 
 
The data from the resulting network were used to test and evaluate the performance of 
occupancy estimation and people dynamics (Tasks 4 and 5). 
 
Further details of the SCOPES system are available in Erickson et al., 2009 and a 
report by A. Cerpa to CEC (in preparation). 
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Figure T3-1: In the photo, the red and green lines indicate the locations of the transition 
boundaries. In the graphic, the arrows show the sign associated with each transition 
direction. In the graphic, the gray areas indicate the area occupancies that can be 
derived from the transition data. 
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Task 4: Develop Energy Controls for the COB (UTRC Lead Author) 
 
Traditionally, lighting, temperature, and ventilation (outside air - OA) controls are based 
on schedules, and set according to expected, or assumed, room usage.  However, 
control is often based on maximum capacity, which frequently overestimates actual use.  
In this task, we conduct an order-of-magnitude estimation of energy-savings potential if 
we know occupancy using the COB as a study example. 

We employed a model-based order-of-magnitude estimation: we first generated a suite 
of typical building occupancy patterns; set building controls, such as setpoints, based on 
the occupancy; and estimated energy savings using an eQuest model of the COB. 

Lastly, we tested the feasibility of estimating real-time occupancy in the Science & 
Engineering building at UC Merced campus, since the building was instrumented with a 
network of wireless cameras that is able to collect people traffic data. 

Energy Model 

We used an existing eQuest model of the COB because the EnergyPlus model (Task 2) 
was not yet available.  The model was developed by Taylor engineering for the design 
and construction of the COB.  The model has less temporal resolution than the 
EnergyPlus model, 1 hour vs. 15 minutes, but we felt it was suitable for the order-of-
magnitude calculation.  We planned to use the EnergyPlus model in future phases of 
the project. 

Occupancy Schedules 

EQuest uses the occupancy to specify outside air quantities.  In the for-building-design 
model, building occupancy for classrooms and offices uses one class or office schedule, 
respectively, for all seasons. 

We updated the schedules that better describe actual classroom and office use: each 
classroom has a unique schedule, which is based on the UC Merced schedule of 
classes for each week, including summer and holiday periods, and each office zone 
(group of offices) has its own occupancy schedule, which we generate based on an 
occupancy movement model (Task 5).  Minimum flow in spaces where occupancy is not 
known is 40% in classrooms, auditoriums, and conference rooms and 30% in offices.  
Figures T4-1 and T4-2 show classroom and office occupancy schedules. 

Control Strategies 

We simulated three ventilation control strategies: – base, current, and new.  In the base 
case the OA quantity is based on maximum design occupancy, and is fixed, irrespective 
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of actual occupancy in individual zones/rooms.  This control strategy is found in many 
buildings.  The second control strategy, which we call current, emulates the actual 
strategy used in the COB presently.  It is based on information from CO2 sensors in 
classrooms, conference rooms, and auditoriums (spaces with high variability in 
occupancy), which account for two-thirds of the building space.  If CO2 readings in any 
zone are beyond the acceptable limit, the sensor triggers a request for more OA from 
the air handling unit (AHU).  The remaining zones (primarily office spaces) in the 
building are not instrumented with sensors that can be used to discern actual occupancy 
levels, and the control strategy therefore defaults to assuming maximum occupancy 
level in these zones.  The simulation of the “current” strategy was set up to reflect 
dynamic knowledge of the occupancy levels only in the spaces instrumented with CO2 
sensors.  Essentially this assumes CO2 level measurements are reasonably accurate 
surrogates for actual occupancy level in indoor spaces (Stanke, 2006).  Lastly, the third 
control strategy, which we call new, adjusts OA in all zones (except restrooms, 
hallways, and service spaces) according to actual (predicted) occupancy in the 
respective zones.  This scenario is equivalent to the current strategy plus knowing 
occupancy in the unmonitored zones.  The HVAC control is therefore based on 
knowledge of actual occupancy throughout the building, e.g. from CO2 sensors in all 
offices, classrooms, conference rooms and auditoriums (except restrooms, hallways, 
and service spaces).  Control strategies account for building code requirements (both 
Title 24 and ASHRAE 62.1 2007). 

Results 

Any method to reduce fresh air ventilation from the base case, while meeting air quality 
standards, will result in significant energy savings. Tables T4-1 and T4-2 show 
aggregate energy savings for each control strategy.  As compared to the base control 
strategy, the occupancy-based control strategies results in a total building energy 
consumption reduction of approximately 3-5% depending on the applicable ventilation 
code requirements (AHRAE 62.1 2007 and Title 24).  Energy savings from HVAC 
operation ranges between 10-14% from the base case.  The results are similar to 
estimates reported in the published literature, for example Brandemuehl MJ and Braun, 
1999.  We see most of the energy savings from reducing the heating of unoccupied 
spaces.  As expected, knowing the occupancy levels in classrooms, conference rooms 
and auditorium spaces results in the majority of the savings (as reflected in the figures 
quoted for the “current control strategy” which utilizes CO2 sensors in the COB for zonal 
occupancy level estimation in a portion of the building).  This is because the number of 
occupants in such zones is much more than in the office area and there is significant 
amount of variability in this area's occupancy (Figure T4-1, T4-2). 

There are incremental savings that result from knowledge of occupancy levels in COB 
zones that are currently not instrumented with relevant sensors (e.g. CO2 or other 
occupancy level sensors).  The tables show that incremental savings of 4% (beyond the 
“current control strategy” case) are possible if dynamic knowledge of actual occupancy 
levels in all the zones in the building is available.  This could be accomplished simply by 
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instrumenting all the zones in the building with CO2 sensors or using more cost effective 
sensors with comparable accuracy (e.g., cameras).  If full instrumentation is cost 
prohibitive, advanced estimation algorithms can be used (such as evaluated in the 
Science and Engineering Building) that can exploit prior knowledge of occupancy 
patterns in the building (via models or schedule knowledge) and infer occupancy levels 
in zones where no sensors or poor quality sensors are available.  We explore these 
options in Task 5 and in future phases of the project. 
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Table T4-1: Saving calculations based on ASHRAE 62.1 2007 ventilation code 

 
 
Table T4-2: Saving calculations based on Title 24 ventilation code 
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Figure T4-1: Classroom schedules – design stage assumption versus schedules based 
on actual UC Merced class schedules.  The x-axis is hours and the y-axis are number of 
people. 
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Figure T4-2: Office schedules – design stage assumption versus schedule derived from 
occupancy movement model (Task 5).  The x-axis is hours and the y-axis are number of 
people. 
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Figure T4-3: Percent energy savings of new (occupancy-based) control strategy 
compared to current COB control strategy. 
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Task 5: Develop People Dynamics Model for Building Occupants (UTRC 
Lead Author) 

 
The goal of this task is to study the feasibility of estimating occupancy and people 
dynamics.  This task complements Task 4 by providing the level of occupancy 
knowledge obtainable in a typical building system.  We use existing technology at UTRC 
(occupancy modeling) and UC Merced (camera-based occupancy estimation and 
sensor-network hardware in the S&E Building) to calculate rough-order-of-magnitude 
calculations. 
 
Approach 
 
The overall framework is shown in Figure T5-1.  For this task, we focused on applying 
an occupant-movement model and the SUN (Sensor Utility Network) estimator to the 
UC Merced buildings.  

The occupant movement model is a high resolution simulation model which simulates 
each individualʼs movement at fine spatial and temporal scales. The model is able to 
provide quantitative output such as occupancy and congestion levels at any location 
and at any desired time period (Lin 2007).  The simulation model generated occupancy 
levels of the office area in the Classroom and Office Building.  Model parameters were 
computed from the wireless camera sensor network data collected in the S&E Building 
(Task 3).  The resulting occupancy predictions were used for the energy savings 
analysis (Task 4).  

For occupancy-based energy management and control, real time occupancy estimation 
is required at a somewhat coarse spatial scale (e.g., HVAC zone level).  UTRC 
developed the SUN estimation framework (Meyn et al. 2009) for this purpose.  Based on 
inputs from a variety of sensor measurements and sensor characteristics, along with 
historical data regarding building utilization, the SUN estimator produces occupancy 
estimates through a solution of a receding-horizon convex optimization problem. 

Details of the occupant estimation model are published in (Meyn et al. 2009).  The 
general approach generates occupancy estimates based on a combination of sensor 
data, information regarding prior knowledge of building utilization, and the network 
structure of the building.  Sensors may include CO2 sensors, passive infrared (PIR), 
video, sound, and badge counters.  The utilization of the building, and the zones, is 
estimated based on historical data for the building or a building of similar characteristics, 
forecast preferences based on room schedules, typical walking speeds in hallways, and 
hard constraints on occupancy in each room.  Finally, the network structure is specified 
by decomposing the total building into zones, typically based on individual rooms or 
groups of rooms.  The choice of zones will depend on the primary goal (e.g., ventilation 
control vs. evacuation), and on the number, location, type and accuracy of the sensors.  
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Estimation is then based on solution of an optimization problem with hard and soft 
constraints, and taking into account the inherent bias and variance of the various 
sources of information.  The output of the model is the occupancy and flow level 
estimation. 

Results 
 
We show an implementation of the estimator for a portion of the 2nd floor S&E building 
(Figure T5-2).  UC Merced collected 11 hours of sensor data. The sensors estimate the 
number and time when people pass under a low-resolution camera (see Task 3).  For 
the 11-hour sequence of data, the sensors were on average 80% accurate, as 
compared to corresponding ground truth data from a high-resolution video camera.  The 
occupancy estimator processes the sensor data to estimate occupancy for the 11 hours 
at 10-minute intervals.  For the first run of the model, initial occupancy and flow level are 
set to zero.  For each of the next runs, initial conditions for the preceding optimization is 
derived from the estimate from the previous optimization. 

Figure T5-2 shows the occupancy variation for the area.  The red curve denotes the 
ground truth occupancy, black curve is the estimate, cyan curve is an estimate derived 
directly from sensor data by simple flow balance, and the green curve is also an 
estimate based on flow balance but with the additional constraints on non-negativity of 
occupancy.  We show that the SUN estimator is able to provide occupancy estimates 
with significantly improved accuracy compared to estimates derived from simply people-
flow balancing from the sensor data.  The zone-level error from the SUN estimator is 
35%.  

In addition to the sensor data provided by the UC Merced team, simulated sensor data 
was generated for a larger area of the S&E building using a calibrated occupant 
movement model (Lin 2007).  Figure T5-3 shows improved accuracy (by almost 80%) 
compared with the estimates derived directly from sensor data.  

Additional tests were conducted to evaluate the effect of passive infrared (PIR) sensors 
on the performance of the SUN estimator.  Specifically, in addition to the existing sensor 
data provided by cameras, we evaluated the benefit of using additional PIR sensors in 
the estimation.  The PIR sensor data was generated from ground truth data with no 
noise in the PIR output.  The overall estimation improves by approximately 35% with the 
addition of PIR sensors. 
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  Figure T5-1: Overview of Occupancy Modeling and its applications 
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Figure T5-2: Area (defined in black box) in the short bar of 2nd floor S&E building used 
for estimation. Ground truth (in red) vs. estimated occupancy using different 
approaches. 
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Figure T5-3: Estimated occupancy for the area contained within the black box.  The 
ground truth (in red) vs. estimated occupancy using different  approaches every 10 
minutes for 24 hours.  
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4. Discussion and Concluding Remark 
 
We report on the findings of the first year of a planned multi-year project.  In the first 
year, our goal was to benchmark the likely energy benefits of knowing the number and 
location of occupants in a typical commercial building, and the feasibility of estimating 
occupancy.  To do so, we conducted five tasks: 
1. Describe energy usage in the COB; 
2. Develop an energy model of the COB; 
3. Deploy a sensor network in the S&E; 
4. Develop energy controls for the COB; and 
5. Develop a people dynamics model for occupants in the S&E. 
 
As proof of concept, we studied a model of the COB and found that knowing the number 
of building occupants in each zone can result in HVAC energy consumption reduction of 
nearly 15%, when compared to a HVAC control strategy that assumes full building 
occupancy at all times in all the zones.  It was not possible to distinguish the savings 
that result from real time knowledge of the zonal occupancy levels from those due to 
knowledge of occupant location, and is a subject of future research.  A 16-node wireless 
camera sensor network was deployed in a multi-function building to determine the 
occupancy resolution one can conceive of obtaining in a typical building.  Finally, we 
developed an EnergyPlus model of the COB to support the above tasks and tasks on a 
related project (Real-Time Visualization of Energy Performance in Buildings (Piette et 
al., 2010)). 
 
Subsequent tasks and funding for Phases 2 and 3 will be sought after further study of 
the results from Phase 1.  There are several challenges both from implementation and 
theoretical perspectives that need to be addressed.  For instance, the heuristic 
approach to learn traffic patterns from a building area and using it for another building 
area of similar usage needs to be experimentally validated.  In addition, the real time 
feasibility of occupancy based adaptive energy management and control remains to be 
evaluated in a test-bed.   On the theoretical side, one needs to address issues such as: 
adaptive techniques for learning building usage and associated utility functions, 
sensitivity of utility functions for spaces and buildings of similar type, and optimal sensor 
placement (numbers, types and locations) for occupancy estimation.  Finally, 
decentralized algorithms are required to make the occupancy estimation scalable and 
reliable in large buildings. 
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Abstract
Current climate control systems often rely on building

regulation maximum occupancy numbers for maintaining
proper temperatures. However, in many situations, there
are rooms that are used infrequently, and may be heated or
cooled needlessly. Having knowledge regarding occupancy
and being able to accurately predict usage patterns may al-
low significant energy-savings by intelligent control of the
L-HVAC systems. In this paper, we report on the deploy-
ment of a wireless camera sensor network for collecting data
regarding occupancy in a large multi-function building. The
system estimates occupancy with an accuracy of 80%. Using
data collected from this system, we construct multivariate
Gaussian and agent based models for predicting user mobil-
ity patterns in buildings. Using these models, we can predict
room usage thereby enabling us to control the HVAC systems
in an adaptive manner. Our simulations indicate a 14% re-
duction in HVAC energy usage by having an optimal control
strategy based on occupancy estimates and usage patterns.

1 Introduction
Heating ventilating and air conditioning (HVAC) systems ac-
count for 50% of the total energy budget in buildings [5].
Prior research has shown that energy savings are achievable
by regulating fresh air ventilation based on the total num-
ber of occupants in a building. This procedure is referred to
as demand-controlled ventilation, and studies suggest 10 to
15% of HVAC energy can be reduced in buildings that set
ventilation rates based on maximum occupancy [2].

In general, the approach used is to assume that all rooms
are occupied during working hours and not being used during
the night. However, it is obvious that this does not maximize
energy savings. Rooms are often left empty during part of
the day or perhaps are only used semi regularly, e.g. con-

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ference rooms. It would be more efficient to only condition
rooms during the times that are actually occupied. Using an
L-HVAC system (lighting, heating, venting, and air condi-
tioning system), various environmental aspects of room can
be controlled for energy savings. Thus, knowledge of occu-
pancy is crucial in order to maximize efficiency of a system.

If a room is known to be occupied, then specific strate-
gies can be used to condition a room optimally. The lack
of reliable data (both real time and model) for the move-
ment of people inside buildings may make many of these
aspects difficult to control efficiently. Although many mod-
ern buildings include motion detectors and temperature and
CO2 sensors for light and air flow management, these sen-
sors present some limitations. Motion detectors provide an
efficient way to detect occupancy, but they provide no in-
formation about the quantity of people using the space since
their output is a binary process. While temperature and CO2
sensors may provide better indirect measures of actual oc-
cupancy, the physical phenomena being measured responds
to different time scales and these sensors may be more suit-
able for understanding general trends at large time scales.A
faster new distributed sensor network may be needed to re-
spond quickly to ever changing occupancy. Therefore, con-
ditioning of the room must begin prior to when the room is
actually utilized. Thus, having the capability to predict user
movement or room usage patterns prove to be helpful for
demand-control ventilation; they may also provide enough
information for even substantial local-scale controls. Occu-
pancy prediction can be achieved by modeling long traces
of occupancy data captured by a sensing system [6], help-
ing modify L-HVAC control strategies as building usage and
occupancy patterns change with time.

In this paper, we describe the experiments conducted with
SCOPES [4], a wireless camera sensor network for gather-
ing traces of human mobility patterns in buildings. With this
data and knowledge of the building floorplan, we created two
prediction models for describing occupancy and movement
behavior. The first model comprises of fitting a Multivariate
Gaussian distribution to the sensed data and using it to pre-
dict mobility patterns for the environment in which the data
was collected. The second model is an Agent Based Model
(ABM) that can be used for simulating mobility patterns for
developing HVAC control strategies for buildings that lack
an occupancy sensing infrastructure. We integrate the sim-



ulation information to compute energy saving for a building
where we can adjust L-HVAC controls based on occupancy
estimates from a sensor network.

The paper is organized as follows: Section 2 describes the
wireless camera sensor network used for occupancy estima-
tion. Section 3 describes how occupancy data is used to de-
velop models for user mobility prediction and energy saving
estimation and Section 4 compares the performance of these
models. Section 5 discusses the L-HVAC control strategies
and energy savings. Section 6 summarizes our paper and
discusses future work.

2 Occupancy Sensing
2.1 Hardware and Software Infrastructure
We deployed the SCOPES system [4] comprising of 16 sen-
sor nodes on the ceiling of the corridors in the University of
California - Merced Science and Engineering building. The
nodes were deployed in groups of three at transition points
of the floorplan. Each sensor node is comprised of a Cy-
clops camera interfaced with a Moteiv Tmote Sky module
via an intermediate adapter board. The Cyclops is a very
low power camera with an on-board 4MHz ATmega128L
micro-controller (MCU) and 512KB of external SRAM. Due
to the limitation of the total addressable memory, the exter-
nal SRAM is divided into eight, 64KB memory banks. The
Cyclops captures 10 64x64 pixel grayscale images per bank
(i.e., 80 total). In each group, multiple nodes sense the same
area with coordination such that there is minimal overlap be-
tween the image capture periods of the cameras. Whenever
a person crosses any one of these transition points, the cam-
eras capture and process the image data and, thus indicating
whether the transition was recorded or not.

Due to the severe limitations on the available computa-
tional power, we execute lightweight processing algorithms
on the Cyclops. The object detection algorithm running on
the Cyclops determines the presence of an object in the im-
age foreground, if any, and updates the background. This is
done using a modified background subtraction algorithm that
labels the pixels in the captured images as object, shadow or
background depending upon a preset threshold. Next, we
use a connected components algorithm to merge all pixels
labelled as object into a blob. For each blob, information re-
garding the centroid (x and y coordinates) and the number of
pixels is recorded. We track the movement of the blob across
images based on displacement with respect to the previous
image. After processing all the images in the current bank,
an array of data structures containing information on a max-
imum of four objects per bank is transferred to the Tmote
using serial communication. The Tmote routes the informa-
tion to the base station using multihop communication. Both
the Cyclops and the Tmote run the TinyOS operating system.

2.2 System Evaluation and Data Verification
We collected data using the SCOPES system for a period
of 24 hours. This was done to evaluate the performance of
the system with respect to the ground truth. Overall, the
SCOPES system would detect 80% of all recorded transi-
tions over a period of 24 hours. The system has a false posi-
tive rate of 40% which was higher than the one encountered
in the 2-hour experiments conducted in [4].

For collecting the ground truth to compare the perfor-
mance of SCOPES, we installed three Philips SPC-900NC
web cameras to record the movement of people. The cam-
era captured approximately three images every two seconds.
This frequency is high enough to record transitions across
areas of interest to the accuracy of seconds. The ground
truth data was processed using Perlmagick which annotates
images with people in them. We manually corrected the
Perlmagick output for the false positives and false negatives
in the processed ground truth. We collected data from the
ground truth system for the entire 24 hours that the SCOPES
system was operated and then for a further 24 hours. Our
goal was to use the SCOPES dataset to characterize the sen-
sor error and the ground truth data for creating models of
user mobility patterns.

From the ground truth data, we defined transition points
in the floorplan (refer Figure 1). The time, direction, and
number of people transitioning were recorded for each tran-
sition. The sign of the transition is used to indicate direction
of travel. The transitions points are strategically placedat en-
trances/exits to capture the occupancy changes of each area.

(a) Occupancy Areas

(b) Sample Camera Image

Figure 1. The red and green lines indicate the locations
of the transition boundaries. The arrows show the sign
associated with each transition direction. The gray areas
indicate the area occupancies that can be derived from
the transition data.

3 Occupancy Models
Understanding the dynamics of occupancy patterns is cen-
tral to the approach of occupancy-based building energy



management. Multi-scale spatiotemporal dynamics of oc-
cupancy with high variability makes this a challenging task.
In this paper, we developed two dynamic models of occu-
pancy distributions, the Multivariate Gaussian Model and the
Agent-Based simulation Model (ABM). These models en-
able simulations at an individual level and are useful for off-
line studies, such as: 1) learning occupancy patterns from
sensor data and generating variations of those patterns which
can be used for evaluating different energy management op-
tions, 2) optimal sensor placement for accurate estimationof
occupant traffic, and 3) learning statistical patterns in occu-
pant traffic in one building and applying it to other buildings
of similar types to simulate occupancy dynamics.
3.1 Multivariate Gaussian Model
In this section we discuss a simple occupancy model that
utilizes multiple gaussian fits over the data. In particular,
we focus on constructing a model that can simulate the oc-
cupancy for two specific areas that are represented by the
ground truth data. Given its simplicity, this model serves as
a coarse baseline model for other occupancy simulation and
prediction approaches.
3.1.1 Training
On an intuitive level, over the course of a day we expect oc-
cupancy to increase in the morning when people arrive for
work, decrease when people go to lunch, increase when peo-
ple return from lunch, and then eventually drop to zero when
people leave for the day. These are the general increases
and decreases of occupancy we can expect based on our real
world experiences. The strategy behind this approach is to
model each of the increases and decreases separately.

However, as the occupancy data suggests in Figure 2,
there may be other regular phenomenon affecting occupancy
other than those based on intuition. In order to ensure that
the majority of occupancy dynamics is captured, the data is
partitioned into hourly blocks.

Let Oh denote all occupancies that occur per second dur-
ing hourh where 1≤ h ≤ 24,

Oh =
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HB, HM, L, andO f refers to the Hallwayback, Hallwaymiddle,
Lab, and Office areas occupancies respectively (refer Fig-
ure 1). n represents the number of observations that occur
during hourh within the training set.

Using the dataOh, we derive a vector of meansmh and
covariance matrixσh that fit the data to a multivariate normal
distributionXh:

Xh = N(mh,σh)

For hours 8:00:00 to 22:00:00, we computeXh. These are
the hours that have the most occupancy dynamics. For hours
23:00:00 to 7:00:00, we assume that the occupancy for all
areas is zero. This assumption is based on our observation
of the 48 hours ground truth and intuition. For simulation
we can randomly draw occupancies fromXh. We are also
able to use the probability density function (pdf) ofXh to
estimate the probability of an occupancy occurring within a
given hourh.

3.1.2 Simulation Generation
However, randomly drawing occupancies fromXh does not
represent certain constraints. For example, suppose we ran-
domly sample from the distribution and obtain{0 0 0 0} for
time t (all areas are empty) and{0 0 0 1} for t + 1 (one
person in the office). This situation is impossible since a per-
son must first pass through the hallway to reach the office.
Thus, if we sample randomly from the fit distributions with-
out restrictions, the simulation will produce many occupancy
transitions that are impossible.

In order to solve this problem, rather than sample from
the entire distribution, we instead randomly sample from a
subset of the distribution. We only sample occupancies that
are actually possible given the current occupancy state. The
following is algorithm we follow to generate simulations:

• CurrentOcc = Specify starting occupancies

• StartHr = Specify starting hour

• pd f (X ,occ) = Probability of an occupancyocc given a
multivariate normal distributionX .

• For each simulated timestept
• CurrentHr = Current hour based ont andStartHr

• If 8 ≤CurrentHr ≤ 22
• ValidOcc = All valid occupancies given

CurrentOcc

• P = pd f (XCurrentHr,ValidOcc)

• PNorm = P normalized

• CurrentOcc = Randomly draw an occupancy
from ValidOcc using probabilitiesPNorm

• Otherwise
• CurrentOcc = All rooms are empty

3.1.3 Assumptions
There are several assumptions that are made to increase effi-
ciency and to account for physical restrictions. When deter-
mining valid occupancies, the list of possible occupanciesis
not exhaustive. We assume that a maximum of two people
can move through the lab, office, and elevator doorways. For
slightly larger hallway entrances, we assume a maximum of
three people can pass over a transition boundary. These as-
sumptions are based on the maximum transitions observed
in the ground truth data. The last assumption made is that
people are not moving through multiple doorways concur-
rently. This is done to reduce the total number of possible
occupancies that need to be examined and the time required
to run simulations. The data shows that transitions rarely oc-
cur concurrently. Out of the 48 hours of ground truth data,
only 4.68% of transitions occurred concurrently.

3.2 Agent Based Model
An agent-based model of part of the 2nd floor of the Science
and Engineering building at UC Merced has been developed
to simulate people dynamics. The simulation model we have
employed is analogous to the cellular automata models [7].
The model takes into account the building geometry and sim-
ulates each individual’s movement, and is able to provide
quantitative output such as occupancy and congestion lev-



els at any location and at any time period. In order to sim-
ulate each individual’s movement, agent decisions must be
modeled on several levels, such as itinerary, path choice,and
walking behavior [1]. Itinerary decision determines the time
of arrival and entrance, the number of stops, and the loca-
tion and dwell time of each stop, for each individual. Path
choice is the decision on which path to follow,given the indi-
vidual’s destination and a set of alternatives. Walking behav-
ior is determined by factors such as average speed, average
space taken by each individual, and conflict resolution rules
at times when conflicts between agents arise.

In our current implementation, the spatial grid size has
been set to be 2 by 2 feet cell (with discrete time step of 0.5
sec) and an agent follows a shortest path. Occupant itinerary
has been calibrated using arrival time and entrance, number
of stops, and location and dwell time of each stop from traf-
fic data collected from web cameras located along the corri-
dors of the S&E building. Preliminary results indicate that
the calibrated model-based predictions are reasonable when
compared to raw measurements. The calibration procedure
is described as follows.

In the first step, individual camera data were combined
based on camera location, direction and sensor event time
stamps, converting raw measurements into meaningful tra-
jectories. Each trajectory has a time stamp indicating its ini-
tiating time, and zone identification numbers indicating its
start and end location in the building. For example, if the
camera data indicates that boundary 1 has an event at time t,
boundary 2 has an event at time t+∆, and∆ is within the typ-
ical time range used to go from boundary 1 to boundary 2,
then a trajectory can be formed by combining the two events
indicating at time t, a person moves from zone i to zone j
through boundary 1 and 2. In the second step, a heuristic
procedure was followed to assign trajectories to agents, from
which agent itineraries were formed.
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Figure 2. 48 hour ground truth occupancy data.

4 Model Comparison
In this section, we compare the performance of the MVGM
and ABM, and examine the merits of each approach. The
main statistics used for comparison are root mean squared
error (RMSE) and normalized root mean squared error

(NRMSE). The RMSE is the average difference in occu-
pancy for a given simulation.

4.1 Initial Exploration
As expected, regular patterns in the occupancy data are ob-
servable (refer Figure 2). The office plot shows the occu-
pancy steadily increasing until just after noon. At around
14:00:00, people in the office leave for lunch and then re-
turn shortly after. By 18:00:00, the entire office is empty.
One noticeable discrepancy can be observed when compar-
ing peak office occupancy of each day. The first day shows
a maximum office occupancy of 18 whereas the second day
shows a maximum occupancy of only 13. This is due to
a large lunch meeting of six people on the first day. Typi-
cally the office staff is around 12 people. The lab plot shows
a slightly different patterns but still is consistent with intu-
ition. Students arrive in the morning, go to lunch, and then
stay until late evening. Unlike the office staff, many students
arrive mid-afternoon and leave much later.

4.2 Multivariate Gaussian Model Results
The MVGM was trained using the first 24 hours of data from
the ground truth. The second 24 hours of ground truth was
used as a testing set. For each model, 20 simulations were
generated. Figures 3 shows a sample simulation generated
by this model. From the plots, we can see that the simula-
tion seems to capture the major events that occur during the
day such as arriving for work and going to lunch. One no-
ticeable difference is that simulations contain a fair amount
of noise. This is most likely caused by the random sam-
pling. Though each occupancy sampled is possible under
the sampling rules, the rules do not prevent certain types of
unlikely events. For example, it is possible under our current
scheme for a person to enter the hallway through a particular
door and then with fairly high probability immediately exit
out of the same door. This “pacing” behavior seems to be
the cause of this noise. This could potentially be corrected
with additional sampling rules. On average, simulated lab
occupancy differs from the test set occupancy by 3.462 peo-
ple (RMSE) which is an average error of 28.8% (NRMSE).
The simulationed office occupancy shows an average differ-
ence of 7.453 (NRMSE of 46.5%). If we examine the com-
bined total occupancy of both rooms, we find that the simu-
lated total occupancy differs from the training set by 10.214
(NRMSE of 42.6%).

4.3 Agent Model Results
The ABM was trained using the same 24 hour data set as the
MVGM. To generate occupancy profile for lab and office, a
day is divided into six time periods taking into account dif-
ferent behavior during different time of the day, e.g., early
morning, lunch time and late afternoon. For each time pe-
riod, empirical distributions of arrival time and durationin
the lab/office were collected from the agent-based model.
Based on the distributions, 20 simulation runs of the ABM
were generated representing a variety of possible occupancy
patterns of the lab and office. Figure 3 shows a sample sim-
ulation produced by the ABM. Like the MVGM, the ABM
also seems to generate plausible simulations that capture the
major shifts in occupancy. The simulated lab occupancy dif-
fers from the test set occupancy by 3.774 people (RMSE)
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Figure 3. (a) Comparison of ground truth traces for lab and office areas with MVGM and ABM simulation traces. (b)
Variation in RMSE along with 95% confidence interval for MVGM si mulation traces.

MVGM ABM
RMSE NRMSE RMSE NRMSE

Lab 3.462 0.2885 3.774 0.3145
Office 7.453 0.4658 7.577 0.4736
Total 10.214 0.4256 10.395 0.4331

Table 1. This table shows the average RMSE and
NRMSE for simulations generated by the MVGM and
the ABM.

RMSE NRMSE
Lab 3.370 19.4%

Office 3.107 28.1%
Total 5.688 23.7%

Table 2. This table shows the RMSE and NRMSE when
comparing the 24 hour testing and training datasets.

which is an average error of 31.5% (NRMSE). The simu-
lationed office occupancy shows an average difference of
7.577 (NRMSE of 47.4%). The simulated total occupancy
differs from the testing set by 10.214 (NRMSE of 43.3%).

4.4 Comparison of Models
With respect to RMSE and NRMSE, both models seem to
have similar performance. Though both models seem to have
a large amount of error, this error is actually reflecting the
amount of occupancy variation that is possible between dif-
ferent days. If we compare the 24 hours testing set to the
24 hours training set, we find that the NRMSE for the lab,
office and total occupancies are 28.1%, 19.4%, and 23.4%
respectively (refer Table 2). This shows that a significant
amount of occupancy variation can be occur between days.
One noticable difference between the simulations is the ab-
sence of noise in the ABM simulations. Since the ABM re-
quires agents to follow a predefined path, this prevents peo-
ple pacing between areas. In this respect, the ABM seems to
capture the subtle occupancy variablility better than MVGM.

While both models seem to produce plausible simula-
tions, each has its advantages and disadvantages. The ABM
can be applied to other structures where an occupancy sens-
ing infrastructure does not exist by training the ABM with
data from another building with similar dynamics. This is not
possible with the MVGM. The ABM is useful for building
designers looking to maximize energy savings. The MVGM
is more useful for real time prediction. Unlike the ABM
which simulates occupancies offline, the MVGM can pre-
dict occupancy given the time of day and current occupancy
by calculating the posterior probability given the currentoc-
cupancy on all or part of the building.

5 Optimal L-HVAC Strategies
Traditionally, lighting, temperature, and ventilation (outside
air - OA) control are based on schedules which rely on room
usage assumptions. However, this assumption frequently
overestimates the occupancy of spaces. On the other hand,
if occupancy information is known, one could control lights,
temperature, and ventilation levels to the appropriate level
required, and set them back to minimum or off conditions
when no occupancy is detected, resulting in energy savings.
In this paper we illustrate the impact of ventilation control
strategy on energy savings. Ventilation air is introduced into
the building to avoid poor indoor air quality and is a func-
tion of the number of people in the building and the square
footage. In absence of real-time occupancy information, OA
amount is fixed based on maximum design occupancy as-
sumption. Excess outdoor air has significant penalty on heat-
ing energy and depending on the outside temperature, even
cooling energy. Thus varying the amount of air during non-
free cooling times to the minimum required to maintain ac-
ceptable indoor air quality has potential for saving energy.

An existing eQuest model [3] of Classroom and Office
building (COB) on the UC Merced campus, developed dur-
ing the building design stage, was used to understand the
energy savings potential of using occupancy estimation for



ventilation control. EQuest is an hourly whole building en-
ergy simulation tool used widely by the building community.
It uses information on building configuration, schedules of
building usage including people, lighting, plug loads, HVAC
system configuration, expected cooling, heating and ventila-
tion levels, and weather conditions to calculate the building
energy consumption.

Two ventilation control strategies were simulated: base
and new. In the base case, the OA quantity is based on max-
imum design occupancy, available during the occupied time
(8 am 10 pm). This quantity is fixed during the occupied
time, irrespective of occupancy. The new ventilation strat-
egy has OA quantities in all zones following the occupancy
in the respective zones. All the strategies simulated con-
sider the applicable codes. The daily actual occupancy lev-
els over time for various HVAC zones in COB is estimated
from available information on schedules for classrooms and
an ABM for people movement in offices.

5.1 Occupancy schedule for part of COB
The S&E building has multitude of HVAC systems deployed
for a variety of purposes including office spaces as well as
clean room or laboratories. Due to the simplicity of the
HVAC configuration in the COB building, and its primary
usage for offices and classrooms with variable occupancies,
the COB building was chosen for the energy savings estima-
tion. Also, since energy models had previously been devel-
oped for the COB building, the goal was to take advantage of
these models and examine potential energy savings for this
building using simulated occupancy schdedules. Currentlyit
is not possible to measure occupancies directly in the COB
building. However, since the S&E building has similar traf-
fic patterns to the COB, an ABM trained using data from
the S&E building was developed to construct occupancies
schedules for some portions of the COB building.

The occupancy modeling work for the UC Merced COB
has been focused on the office section of second floor. Sta-
tistical distributions of parameters which define occupant
itinerary; arrival time, dwell time, and number of stops, are
extracted from the ABM from the S&E building which is ex-
pected to have similar traffic. The information regarding dif-
ferent types of occupants that use the building (and their rel-
ative proportions) and occupancy level for whole office sec-
tion, is derived from different types of rooms in the section
and maximum occupancy expected in each room. Finally, by
Monte Carlo sampling of the occupant itinerary parameters
and averaging over different realizations of traffic patterns
obtained from simulating the model, occupancy profile over
the course of the day for each room is generated. This helps
us assess the impact of using the time resolved occupancy
distribution on energy savings.

5.2 Energy Savings via Optimal Control of L-
HVAC

Results show that 5% of HVAC energy savings is possible
compared to the current outside ventilation air control strat-
egy and about 14% HVAC energy savings is possible when
compared with base-case outside air control strategy. Sen-
sitivity calculations of energy savings to occupancy estima-
tion errors and sensor bias were conducted. Results show

that 20% occupancy estimation errors have negligible im-
pact (0.28%) on HVAC energy savings estimation of 14%.
A sensor bias of 20% results in 3% change in energy savings
estimation.

6 Conclusions
In this work, we present the first steps in understanding dy-
namic occupancy levels and patterns in buildings, means
by which they can be estimated, and the energy efficiency
gains possible by utilizing actual facility usage information
for building controls. As proof of concept, we deployed an
16-node wireless camera sensor network in a multi-function
building to determine the occupancy resolution one can con-
ceive of obtaining in a typical building. These results in turn
were used to demonstrate an example of an occupancy-based
energy control. The results suggest that, in many buildings
and for many building uses, we will find that knowing the oc-
cupancy and usage patterns will result in significantly higher
energy savings compared to strategies assuming fixed occu-
pancy and usage patterns. Our future research directions in-
volve doing online L-HVAC control using only a wireless
camera sensor network to provide occupancy estimates for
longer durations (days, months).
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ABSTRACT  

This paper reviews findings from research conducted at a university campus to develop a 

robust systems approach to monitor and continually optimize building energy performance. The 

field analysis, comprising three projects, included detailed monitoring, model-based analysis of 

system energy performance, and implementation of optimized control strategies for both district- 

and building-scale systems. One project used models of the central cooling plant and campus 

building loads, and weather forecasts to analyze and optimize the energy performance of a 

district cooling system, comprising chillers, pumps and a thermal energy storage system. Full-

scale implementation of policies devised with a model predictive control approach produced 

energy savings of about 5%, while demonstrating that the heuristic policies implemented by the 

operators were close to optimal during peak cooling season and loads. Research was also 

conducted to evaluate whole building monitoring and control methods. A second project 

performed in a campus building combined sub-metered end-use data, performance benchmarks, 

energy simulations and thermal load estimators to create a web-based energy performance 

visualization tool prototype. This tool provides actionable energy usage information to aid in 

facility operation and to enable performance improvement. In a third project, an alternative to 

demand controlled ventilation enabled by direct measurements of building occupancy levels was 

assessed. Simulations were used to show 5-15% reduction in building HVAC system energy 

usage when using estimates of actual occupancy levels. 

 

Introduction 
 

One of the problems that contribute to higher than expected energy use in commercial 

buildings is the lack of actionable data and analysis tools to link control strategies, operations 

and energy use in the built environment. Conventional building operations are subject to several 

problems. Monitoring and diagnostics systems rely on a variety of measured data sources to gain 

insights to the actual building performance, with limited understanding of the information 

uncertainty and lacking a simple and actionable operator interface. Such limitations result in the 

inability to diagnose and have corrective actions when the building or its systems are not 

behaving as expected. Use of fixed schedules and equipment set points (based on equipment 

performance optimization) limit the ability to achieve overall energy use reduction. The projects 

described here aimed to address such problems and assess approaches to minimize energy waste 

and optimize operations in commercial buildings. The following describes three closely linked 

projects conducted at the University of California, Merced (UC Merced) to implement and 

evaluate technologies at a district and building scale for enhanced facility operations and energy 

performance through use of improved control and visualization tools, enabled by data and 

system-level models. The efforts take advantage of the state-of-the-art monitoring systems 

deployed at the UC Merced campus. A strong commitment to energy efficient building design 



 

and operation as well as sustainability have resulted in deployment of a program to design 

buildings that consume half the energy and peak demand of other university buildings in 

California (Brown 2002) and numerous LEED new construction green building certifications (6 

LEED Gold and 1 LEED Silver to date). The campus uses an energy management and control 

system (EMCS) through which energy and equipment performance data can be remotely 

accessed. This includes a comprehensive monitoring and metering system in which over 10,000 

points are tracked across 900,000 ft
2
 of built space (see Granderson et al. 2009). 

 

Research and Development Goals and Objectives 

 
Model Predictive Control of Chilled Water Plant System. The overall goal was to assess the 

feasibility and energy performance benefits of optimal control of the central cooling plant. The 

objective was to evaluate the feasibility of and to demonstrate the energy savings potential of 

model predictive control (MPC) for set-point optimization and scheduling of a district cooling 

system with thermal storage serving the UC Merced campus.  Energy savings for the 

demonstration were expected to be around 10% based on published simulation and experimental 

studies of MPC applied to chilled water plant with storage (Flake 1998; Henze et al. 2005).  

 

Energy Performance Visualization System. The project objective was to demonstrate real-time 

energy performance visualization capability for the UC Merced Classroom and Office Building 

(COB). An approach which combined sensor data with building thermal and energy performance 

models was developed. The project aimed to demonstrate the following advances: (i) techniques 

to process data sources of loads and environmental variables with quality metrics for comparison 

with performance benchmarks; (ii) whole building energy simulations suitable for real-time use; 

and (iii) a prototype of a real-time performance monitoring system that integrates these elements 

to visualize actionable information. When implemented with the full capability, this technology 

will enable building data to be easily accessible by a broader community for research and 

provide operators with a sufficiently detailed and transparent understanding of facility operation 

to track energy usage against performance benchmarks and diagnose operational issues.  

 

Occupancy-Based Energy Management System. The objective of this project was to 

investigate opportunities to reduce energy use in a UC Merced building by adjusting the HVAC 

system operation, based on real-time knowledge of actual building occupancy and contrast with 

traditional CO2 sensor-based demand controlled ventilation strategies. The research focused on 

the Science and Engineering (SE) building and COB and included analyses to: (1) determine the 

building control options and associated energy benefits for a given level of detail about 

occupancy (e.g., spatial distribution and temporal resolution), and (2) characterize the sensor 

hardware and assess models needed to directly estimate building occupancy. 

 

Technical Approach and Methodologies  
 

Model Predictive Control. MPC offers energy saving potential in large buildings and systems 

for which response to external disturbances or control inputs is slow, i.e. on the order of hours. 

MPC effectively provides a means to optimize systems dynamically to take advantage of 

building utilization, weather patterns, and utility rate structures. An MPC scheme was developed 

and tested for the UC Merced campus chilled water system. The control algorithms were 

implemented in MATLAB, with readily available tool boxes for rapid development and 



 

performance assessment. Dynamic models of the chilled water piping system and of the 

buildings were developed in the Modelica language (Wetter 2009) and used as the basis of the 

MATLAB models and lookup tables for use in the control policy design. 

The main components of the campus chilled water system are schematically depicted in 

Figure 1. The chilled water plant consists of three 1,200 ton chillers, a cooling tower, a 2,000,000 

gallon thermal energy storage (TES) tank, a primary chilled water distribution system and 

secondary distribution loops serving each building, managed by a single building automation 

system. The existing controls maintain 39°F leaving water temperature and the chillers are 

sequenced manually to maintain each chiller as close to full load as possible while producing 

sufficient stored chilled water for the following day. 

Detailed descriptions of the individual components comprising the chilled water plant are 

presented in Haves et al. (2010) and in Ma et al. (2009, 2010). Two TES tank models were 

developed to predict the total stored cooling capacity, the temperature of the water supplied to 

the campus, and the temperature of the water returned to the chiller. In the more detailed model, 

the temperature profile in the tank is modeled by discretizing the tank into a number of layers. 

For online optimization, a low-order model was developed in which the cool and warm water are 

treated as lumped masses  and the thermocline between the warm and cool water is treated as a 

moving boundary, thus requiring only three dynamic states, i.e. the position of the thermocline 

and the temperature of each lumped mass. The control design includes a simple, lumped 

parameter model that predicts the total campus cooling load based on the ambient temperature, 

the cloud cover, the time of day and the day of the year.  

 

Figure 1: Schematic diagram of UC Merced chilled water system.  

 

The aggregate campus chilled water flow rate and return temperature are predicted by a 

single cooling coil model that represents the combined effect of all the cooling coils on the 

campus. The model parameters are identified from measured data. Figure 2 shows a comparison 

of the predicted and measured cooling load and return water temperature. Based on building load 

and weather forecasts, optimal control policies were created to adjust chilled water plant set-

points including leaving water temperature, cooling tower return temperature, chiller staging, and 

the volume of chilled water stored in the tank. A cost function that includes energy consumption 

and peak electrical demand over a 24-72 hour prediction horizon was formulated and solved 



 

using a one hour time-step (Haves et al. 2010, Ma et al. 2009, 2010). 

 

Figure 2: Fall 2009 (a) Campus cooling load, (b) Campus return temperature versus load. 

 
 

Energy Performance Visualization System. The visualization system aimed to provide concise 

information on building system conditions, utilization, operation, and energy performance 

broken down by end use. A prototype was developed and evaluated for the COB at UC Merced. 

The main components of the visualization prototype are depicted in Figure 3. 

 

Figure 3: Performance visualization tool framework and key elements. 

 
 

Building management system database. Data is recorded by the building management system 

(BMS) for control, stored locally for a short period of time, and is then archived to a database.  

The trending data is transferred to a dedicated server that is queried from the visualization tool. 

 

Data miner. The data miner was developed with a web-based GUI that processes the archived 

data for use by the visualization tool and to make it easy for users to access and manipulate both 

the archived data and the outputs of the building model (described later). The website serves as 

the interface through which users query the SQL database. Through this site users have the 

ability to plot and download datasets of their choosing, i.e. the specific operational variables and 



 

energy use information and required time intervals (daily, monthly or annual). The ability to 

modify basic plotting features, such as the choice of daily averages and edge plots, allows for 

customized visualization of the data. Importantly, as the pre-processing tool for trend data, the 

data miner serves as an inspection point for data quality.  

 

Performance metrics. Performance metrics consolidate the vast amount of energy data, usually 

trended as part of the BMS, into standardized quantities for easier and quicker understanding of 

the building operation. Performance metrics based on prior work (e.g., Gillespie et. al. 2007), for 

three categories were developed – whole-building (e.g., total energy consumption, cost, carbon 

emissions), end-use energy, and operational efficiency (e.g. cooling plant, heating, fan 

efficiencies). The metrics were calculated from the UC Merced metered trending data, and were 

tailored based on the campus facility manager’s feedback. Table 1 outlines the data needed for 

each of the metrics at the whole building level and the procedure for calculating the metric (for 

details see Apte et al. 2010). The performance metric value depends on the demand indicators 

including heating and cooling degree-days and percent of hours the HVAC system is in the 

occupied mode. Comfort indicators to be implemented will include the space heating and cooling 

set points. There are usually several periods when the data is either not logged or logged 

incorrectly. Decisions on whether data is incorrect are made based on domain expertise using 

standard imputation techniques. For all metrics, the percent of missing values is reported, giving 

the user a confidence rating, and providing transparency that is lacking in typical EMCS.  

 

Table 1: Data requirement and calculation procedures for building performance metrics
1 

Metric Unit Data Calculation
2
 

Total 

electricity 

consumption 

kWh/yr/gsf  kW data at every time step, for a 

whole year 

 Total gross sq.ft. (incl. the wall) 

Sum (kW data at every time step) 

Electricity 

demand 

kW/gsf Same as above Max (kW data at every time step) 

Total gas 

consumption 

therms/gsf-yr  Therms/hr hot water data at 

every time step, for a whole year 

 Total gross sq.ft. (incl. the wall) 

 Central boiler plant efficiency  

Sum (therms/hr gas consumption data at 

every time step) 

Gas demand therms/hr-gsf-yr Same as above Max (therms/hr gas consumption at every 

time step) 

 

The points to trend in a BMS are typically decided based on operational requirements, 

and not from energy performance standpoint. For the COB, the trended dataset is rich and maps 

almost one-to-one to the performance metrics outlined here. The one case where it does not map 

directly is for interior lighting power consumption because other electric circuits (e.g. outdoor 

lighting, certain pumps) are mixed into the lighting power metering panel.  

 

Performance benchmarks. Historic baseline data and whole-building reference models allow for 

comparison of current performance with benchmarks at system, sub-system, component (e.g., fan 

coil), and component parameter level (e.g., fan coil temperature, water flows). For this project, 

benchmarks for annual consumption based on comparable buildings (Brown 2002) are used (see 

                                                 
1
 See Apte et al. 2010 for more details on measurements and on end use energy metrics 

2
 Calculated quantities have the product of (the number of time steps in one hour) x (building gsf) in the denominator 



 

Table 2). For some metrics, design intent/standards are used as benchmarks. Benchmarks can 

also be derived from whole-building and end-use stock models such as LBNL’s EnergyIQ 

(http://energyiq.lbl.gov/SupportPages/EIQ-about.html), drawing upon analysis of the California 

End Use Survey (Mathew et al. 2008). For COB, historic data are available to generate same 

building historic baseline data for every metric and at any time interval. The comparable building 

benchmarks are based on 1999 UC/CSU campus benchmarks (Brown 2002), and are calculated 

using regression models, accounting for space usage (e.g., percent office or laboratory space) and 

climate. Another set of benchmarks are goals used in energy efficient designs. For example, 1 

cfm/ft
2
 is a typical metric for installed fan flows. This number tends to be lower (~ 0.8 cfm/sq.ft.) 

for more efficient designs. A careful presentation of COB benchmarks, targets, and actual 

performance can also be found in a New Buildings Institute study
3
. 

 

Table 2: Comparable building benchmarks used for COB  

 

EnergyPlus simulation model. With the advent of the LEED rating system the use of whole 

building energy simulations for design is becoming common. These models (appropriately 

calibrated) can be used during operation, to track expected performance, and to understand sub-

system behavior to isolate operational problems and identify means to improve building energy 

performance. A simulation model for the COB was created using EnergyPlus version 4.0.0.024 

(see Figure 4). Details of the model are provided in Apte et al. (2010), and its calibration is still 

in progress. Models for the building surfaces (i.e. walls, insulation, overhangs and glazing) were 

incorporated. Key internal loads modeled were people, lights, and plug-load equipment and were 

specified for each model zone by a maximum value (people and lights) or a per floor area value 

(equipment). Occupancy level and lighting power information was obtained from architectural 

drawings. Weather files for the years 2008 and 2009 were compiled from several sources (UC 

Merced: air temperature and wind speed; direct normal radiation: California Department of 

Water, San Luis Reservoir site; relative humidity for 2008 Fresno International and Merced 

Municipal Airports). Electrical consumption by lighting, equipment, and fans was disaggregated 

into categories corresponding to the electric sub-meters installed in the COB. Figure 5 shows 

preliminary comparisons of simulation results and sub-metered data, showing discrepancies from 

factors such as improperly matched schedules (Apte et al. 2010).  

 

Indoor thermal load estimation. Insights into the dynamics of building loads can help understand 

and optimize building energy performance. When available, sensors within the terminal units and 

indoor environment can provide useful information, but they can be grossly inaccurate when 

estimating loads over extended periods of time because of accumulating errors. An approach to 

estimate internal loads combining simple thermal network models (3R2C) with real-time data 

                                                 
3
 http://www.newbuildings.org/sites/default/files/Case_Study_UCM-COB.pdf 

 Units  Target  Comment  

Max Electric Demand  W/gsf  3.65  Includes allocated cooling plant, building 

exterior lights, and allocated campus road lights Annual Electric Use  kWh/yr/gsf  15.1  

Max Gas Demand  Th/hr/kgsf  0.12  
Includes hot water and heating  

Annual Gas Use  Th/yr/gsf  0.2  

Max Cooling  Tons/kgfs  2.03   

http://www.newbuildings.org/sites/default/files/Case_Study_UCM-COB.pdf


 

from the BMS was implemented. The estimated internal loads were compared to measured data 

from the COB to ensure consistency (O’Neill et al. 2010). The internal load was estimated in a 

lumped form including internal lighting, equipment, people, infiltration and inter-zone mixing. 

The estimation captures the daily (daytime vs. nighttime) and weekly (weekday vs. weekend) 

variation for the loads and can shed light on anomalies in energy performance or operations.  

 

Performance visualizer. The performance visualizer provides an integrated environment and 

interface to display the metric values for the measured data and their historic values, the 

benchmarks, zonal loads where appropriate, and the reference EnergyPlus model side by side. 

The metrics can be visualized at yearly, monthly, weekly as well as daily intervals. In addition, 

for a given metric, the individual data points and demand indicators can also be displayed. 

 

Occupancy-Based Energy Management System. The experiments to determine the feasibility 

of directly measuring or estimating the number and location of occupants in a building using a 

wireless network of low-power, low-resolution cameras were conducted in the SE building. The 

energy-savings potential from knowing the distribution of occupants was evaluated for the COB. 

An existing eQUEST model of COB, developed during building design (Taylor engineering 

2002), was analyzed to evaluate the energy savings potential of using direct occupancy 

estimation for ventilation control. The details of deploying a network of wireless camera sensors 

in the SE building are discussed in Erickson et al. 2009. When an occupant crosses key transition 

points (see Figure 6), the cameras capture and process the images to determine actual occupancy 

count. The resulting traces (see Figure 6) were used to train occupancy models (see Erickson et 

al., 2009). A combination of prior knowledge on building usage and models of traffic patterns in 

SE building faculty and graduate student offices and public areas were used to generate 

occupancy patterns for the COB in similar areas (where occupancy sensors were not available). 

Available schedules for different days were used for classrooms, simulating the use of error-free 

CO2 sensors in the COB. The approach was as follows: (i) generate occupancy schedules for use 

in simulation environment; (ii) adjust control setpoints (temperature and ventilation levels in 

individual zones) based on occupancy level; (iii) use eQUEST model to predict energy 

consumption with control strategies. For design, occupancy was described by one class schedule 

and one office schedule for all seasons and classroom and office zones, respectively. To estimate 

the savings due to control based on direct measurement of occupancy, schedules are updated – 

each classroom has a unique schedule. The classroom schedule varies, based on the day of the 

Figure 4: Model representation of COB 

showing glazing and overhangs. 

 

  

Figure 5: EnergyPlus predictions (solid) 

compared to measured (dashed) building 

electric consumption for Sep. 2009. 

 



 

week, season, and vacation. Each office zone has a unique schedule, generated from the 

occupancy movement model (Erickson et al. 2009). The occupied time is assumed to be from 

7AM to 9PM. The minimum flow ensured in spaces is 40% in classrooms, auditoriums, and 

conference rooms and 30% in offices. Literature-based estimates on demand controlled 

ventilation (employing CO2 sensors in every zone) suggested the potential for reducing HVAC 

energy consumption by 10-20% in a typical office building (Emmerich and Persily 2001). 

 

Figure 6: Wireless camera sensor network deployed in second floor of SE building (top). 

Typically observed occupancy patterns in lab and office spaces in SE building (bottom). 

 

 
 

Summary of Results 

 
MPC for Chilled Water Plant. Opportunities to optimize the chilled water plant runtimes were 

identified to take advantage of ambient conditions and eliminate overcharging of the chilled 

water tank. Two MPC experiments were carried out with the central cooling plant. The first was 

a week-long test in June 2009 during the summer/peak cooling season. Various algorithm and 

modeling bugs were found during this test, and performance improvements from the MPC 

implementation were not evident (Haves et al. 2010). Suboptimal choice of charging window 

length for the algorithm affected the overall COP adversely. However, an increase in system 

COP by increasing the standard condenser water set-point (CWS) range from 57-60
o
F to 65-66

o
F 

was learned as a useful policy modification. Regression analysis suggests the COP improvement 

potential for the CWS change is approximately 1.5%, although this was difficult to confirm due 

to the multiple changes that occurred simultaneously. A second MPC experiment was conducted 

in October 2009; the cooling load was much lower than during the summer. The incremental 

energy savings relative to the original manually implemented policy were 4.6%±2.4%. A 

simplified tool with rules derived from the above experiments is now being implemented at the 

UC Merced central plant. The campus load and plant models developed have also proved to be a 

useful commissioning tool for facility operation. For instance, it was determined that the CHWS 



 

set-point and the chilled water flow rate can be used to limit the chiller loading to prevent chiller 

surging. Inconsistencies in central and buildings-level return temperature data for campus load 

modeling led to the identification of a malfunctioning flow rate sensor in one of the buildings, 

which caused higher demands for chilled water and reduced chilled water return temperatures. 

The testing process also led to identification of simple modifications to the heuristic control 

policy currently used by the operators. It was found that operating the chillers near full load was 

a key factor in maximizing system efficiency, leading to the recommendation to operate a single 

chiller (at near peak load) in off-peak regimes (e.g. transition/shoulder seasons).  

 

Figure 7: Comparison of benchmark, measured data, and reference model for whole 

building fuel usage and end-use performance metrics. 

   
 

 



 

Energy Performance Visualization for COB. The performance visualizer displays metrics for 

measured data (including historic values), benchmarks, and a reference model side by side. For a 

given metric, the individual data points and demand indicators can also be visualized. 

Screenshots from the prototype are shown in Figure 7. The prototype supports performance 

tracking, and to some extent, the localization of performance degradation and faults to a sub-

system/parameter level. This is enabled by time-series charts for the metrics that compare 

measured performance with benchmarks, historical same-building data, and metrics from a 

calibrated, reference whole building EnergyPlus model. The visualizer enables correlation 

between variances in energy performance measurements or dynamic indoor load estimates and 

relevant equipment operational variables. In one instance, a problem with secondary pump 

control for COB hot water delivery that was responsible for a temporary 36% increase in whole 

building heating energy use was identified and repaired. 

 

The Occupancy-Based Energy Management System. Energy savings analysis from the use of 

occupancy-based controls was conducted for the COB. Three ventilation control strategies were 

simulated. In the base case, the outside air (OA) quantity is set based on maximum design 

occupancy. This quantity is fixed during occupied times, irrespective of the occupancy level, and 

commonly implemented. The COB eQUEST model was used to establish baseline energy 

consumption. A 4-5% reduction of the annual whole building energy consumption was estimated 

compared to the base control strategy and only a marginal improvement of ~1% from the current 

control strategy was observed (which utilizes CO2 sensor-based demand controlled ventilation 

for two-third’s of the space); applicable ventilation code requirements (ASHRAE 62.1 2007 and 

Title 24) were ensured. This translates to an HVAC annual energy consumption reduction of 

about 14% using actual occupancy estimates and a 4% energy use reduction when compared to 

current control strategy (Table 3). Note that the current demand controlled ventilation strategy 

simulated is assumed to be free of sensor uncertainties, which can be up to 20% for CO2 sensors.  

 

Table 3: Saving calculations based on ASHRAE 62.1 2007 ventilation requirements 

Values in MMBtu Heating Cooling

Heat 

Reject Pumps Fan HVAC

% 

Savings 

HVAC Total

% 

Savings 

Total

Base Control Strategy 335 252 5 150 128 870 - 2578 -

Current Control Strategy 327 214 4 141 101 786 10% 2494 3.3%

New Control Strategy 293 212 4 140 101 750 14% 2457 4.7%  
 

Concluding Remarks 
 

The UC Merced research projects explored new methods to combine measurements, 

simulation models, control strategies, and information feedback to improve facility operation and 

reduce energy consumption in buildings. The cooling plant optimization project showed that 

dynamic system models could be used to identify critical control variables (from an energy 

performance standpoint), guide facility operation, and produce a predictive controller that 

reduces energy use. Full-scale implementation of control policies based on model predictive 

control demonstrated that the heuristic policies implemented by the operators were quite close to 

optimal; policies based on model predictive control produced energy savings of 5%. The 

methodology is extensible to air-side HVAC systems and to building hydronic systems where 

variable speed technologies are becoming prevalent and robust, multivariable control methods 



 

are lacking. The projects extended the use of data into new analysis platforms for direct use by 

facility operators. The flexible and transparent web-based visualization prototype illustrates that 

comparative performance metrics are an effective way to understand the energy and operational 

performance of the building compared to current methods of data trending. With the 

visualization prototype providing comparison of performance metrics to previous years, building 

models, and benchmarks, the facility manager can assess the energy and cost savings of a 

particular action with relative certainty; a traditional BMS may not store data for the length of 

time necessary to provide such insight, nor does it provide relevant benchmarks or models to 

show how the building is expected to perform. The prototype comprising measured data and 

benchmarks is now being updated with new metrics and implemented operationally at UC 

Merced. It is anticipated that the value of this tool will become more apparent as various building 

systems age and require commissioning. It has been recognized that building energy 

consumption and electricity demand can be reduced by 10-15% when actionable energy usage 

information is provided to facility managers and operators (Mills and Mathew 2009) and the 

visualization prototype developed here is the first step in enabling this. Preliminary results from 

the occupancy-based energy management study revealed incremental benefits over conventional 

demand controlled ventilation strategies, indicating energy-savings potential arising from setting 

outside air ventilation based on measurements of the actual number of building occupants. 

Savings are anticipated to be higher in buildings where an extensive CO2 sensor network (such 

as in the COB) may not be available. 
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