
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
INTERFACING AUTOCAD WITH MAGNETIC DESIGN

Permalink
https://escholarship.org/uc/item/0g41m1jt

Author
Sorin, M.

Publication Date
1988-02-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0g41m1jt
https://escholarship.org
http://www.cdlib.org/

LBL-24862

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Accelerator & Fusion
Research Division

Interfacing AutoCAD with Magnetic Design

M. Sorin and S. Caspi

February 1988

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

SSC-MAG-187
LBL-24862

C. Taylor

INTERFACING AUTO CAD WITH MAGNETIC DESIGN*

Mendel Sorin

ADA-Rafael
Haifa, Israel

Shlomo Caspi

Lawrence Berkeley Laboratory
University of California

Berkeley, CA 94720

February 19, 1988

*This work was supported by the Director, Office of Energy Research, Office of High
Energy and Nuclear Physics, High Energy Physics Division, U.S. Dept. of Energy,
under Contract No. DE-AC03-76SF00098.

SSC-MAG-18?
LBL-24862

INTERFACING AUTOCAD WITH MAGNETIC DESIGN*

Mendel Sorin and Shlomo Caspi

February 19, 1988

ABSTRACT

This report is a summary of work done towards developing an AutoCAD based
system for design and analysis of magnets.

The computer programs that have been developed are an attempt to integrate the
new SUN computer based system with existing software on the old HPI000 System.
We believe this is a good start for the further development of the whole system.

The programming languages used are AutoLISP for the programs used by
AutoCAD, and Fortran (Microsoft Fortran) for all others.

The entire work has been done on IBM-AT, with the well known limits of the
memory, speed of execution and operating system, therefore, some adjustment may
be needed for the more powerful SUN system.

1. Introduction

The idea behind the development of the programs presented in this report, is to
use a CAD system for design and analysis of magnets. The whole system is expected to
provide tools for interactive design and analysis, at different levels of development.
Furthermore, visualizing the magnet geometry and the possibility of changing it
interactively, substantially reduces the time needed to arrive at different configura
tions, therefore, the process of decision making (at the research group level) will
improve considerably.

So far, by using these programs, we are able to dra w a magnet cross section for a
"cos 8" configuration [such as NC9 for the Superconducting Supercollider (SSC)],
including an iron boundary. Based on such an outlay, we can interactively calculate

, ,

the magnetic field at any desired point (except inside the conductors) and evaluate the
multipoles. By using AutoCAD commands, the shape of the magnet cross section (as
well as the iron radius) can be changed very easily, and the magnetic field and/or the
harmonics are calculated for the new shape. The files which have been compiled are
listed below.

- magnet.mnu - init2.dwg

- poly.lsp - inlay.dwg

- field.lsp - outly.dwg

- inspt.lsp - rec4-jin.dwg

- dxout.for - rec4-jout.dwg

- mgfld.for - box4-jin.dwg

- harm.for - box4-out.dwg

- init1.dwg

Additional files, as listed below, are supplied by the existing system or are created
during the processing.

- insrt.ang - data.fil

- cor1.res - turns. cor

- cor2.res - poi.dxf

- point.cad - poidx.res

2. VVorking Procedure

After loading a new drawing (working in acad.dir) the first step is to load the
specially designed menu "magnet":

Command: menu Prompt: magnet

(There is no need for loading this menu for an old drawing.) Loading the magnet
menu can be done automatically by AutoCAD by adding it into AutoCAD menus.

The main magnet menu consists of six submenus, namely:

- magnet - fields

- cond-typ - save

- assembly - bye

2

2.1 magnet

This submenu sets up the environment for the entire drawing, and loads the
special files to be used.

2.2 cond-typ

This submenu will contain a library of different conductor types. It is possible that
the best thing to use will be the features of the "Icon Menu" of AutoCAD. A drawing
will appear on the screen for each type of conductor listed in the library. So far, this
submenu is a regular screen menu that contains the three submenus listed below.

- rec4-j

- rec4-i

- box-typ

2.3 assembly

The trapezoidal-type for constant current density

Empty

The conductor is represented by a little box in the trapezoid

center.

This is the drawing menu, and contains four submenus.

- cos-teta

- window

- others

last

2.4 Fields

Draws the turns, the inner and outer layer boundaries, and

the iron shell for "cos e" type, magnet based on output from

the program PK.

An empty submenu - for further developments.

As above.

Returns the previous menu to the screen.

This is the submenu used for magnetic field and harmonic computations, and it
contains four submenus.

- save-geo

- calc-b

- harmonics

This submenu "freezes" the actual drawing and

.computes the turn's coordinates and iron radius.

Computes the magnetic field, at any desired point

{which may be entered either numerically or by means

of the pointing cursor.

- Computes the transfer function and the harmonics for

the actual shape.

3

- last

- save

- bye

Returns the previous menu to the screen.

Saves the drawing, without quitting.

Quits AutoCAD, after asking the user to either save or

discard the drawing.

3. The Basic Blocks For Drawing

The drawing procedure (which is explained later) uses two drawing files in order
to draw the magnet cross section: inlay.dwg and outly.dwg. These drawings contain a
geometry of a typical turn of the inner layer and the outer layer, respectively. After
such drawings have been made, a dxfile is written from which data is extracted for the
cross section construction. Inlay.dwg and outly.dwg must always have the same
drawing form. Following is an explanation of how this is accomplished:

Step 1.

Step 2.

Step 3.
Step 4.

y

Inner Layer

- Draw the outline of a single conductor on the inner layer. (4
vertices going CW), use x y coordinates for any turn from the
program PK.

- Make a block by the name initI which contains the drawing in Step
1, and choose the insertion point as the inner layer 0.0. (point B).

- Make a drawing file init1.dwg through the command wblock.
- Make a new drawing using the command "Insert initI." The

rotation angle for insertion will be the angle which brings the line
A-B parallel to the X-Axis.

2r--___________ --,3

AI---------------IB

1'-----------------' 4

x

4

Step 5.

Step 6.

- Make a block which contains the drawing from Step 4, and name
it by a proper name (which will represent the conductor type on
the inner layer).

- Like Step 3, with the name from Step 5.

Outer Layer

- Repeat Steps 1 through 6 for the outer layer conductor, but
instead of initl, the name will be init2, and the name of the final
block will be representative for the outer layer.

During the work with the magnet Menu, choosing a conductor type, the program
will automatically load the appropriate drawing files and load them into inlay.dwg
and outly.dwg.

4. The Files

4.1 Magnet Menu

This file contains special commands which have been designed for drawing and
computations. As explained earlier, one must load this file in order that the menu
will appear on the screen. In the future, this file should be added to the AutoCAD
Menu in order to make it one of the Main Menu submenus. The main features of
this menu are listed below.

setvar "cmdecho" 0

vmon

setvar "mennecho" 1

[rec4-j]

[box-type]

[save-geo]

[calc-b]

Inputs and prompts are not echoed.

Is used to save heap and should be removed when
used with Unix operating system.

Menu input is not echoed.

Once this submenu is chosen, the old working files
inlay.dwg and outly.dwg are overwritten by the
working files for the current choice of conductor.

As above.

A dxfile, by the name of poLdxf is nested (using
dxfout command), and a procedure "dxout" is
activated (through the shell command) .

The special design getz command allows the user to
choose any desired point for field computation.

5

[harmonic]

[new-Rad]

4.2 poly.lsp

After the operation has been completed, the x,y
coordinates of the chosen point are written on the
"point. cad" file, and the procedure "mag.fld" is
activated (through the shell command).

The procedure "harm" is activated (through the
shell command).

The radius can be changed through the following
steps. First, the entire drawing is brought to the
screen by the "zoom extent" command. This is
required so that the present iron boundary will be
shown on the screen. The second step is to activate
the procedure "ironchg", which allows the
computer to find out the present iron radius.

The next step is to change the iron radi us, either
numerically or by the cursor. That is done using the
change command, when pointing on the existing
iron boundary as the entity to be changed. After the
change has been made, a dxfile is created (through
the dxfout command) and the procedure dxout is
activated (through the shell command).

This file contains the procedures (in AutoLISP language) used to draw the turns.
The procedures are listed below.

4.2.1 drawp

This procedure is defined through drawp, allowing the AutoCAD to recognize
drawp as a usual command of the system. The procedure opens the file
"insrt.ang" for reading the insertion and the rotation angle, respectively, and
then draws the turns by inserting the blocks inlay.dwg and outly.dwg. The
insertion point for each turn is defined, in polar terms, by the radius of the
inner layer or the outer layer and the insertion angle. The procedure always
checks whether the rotation angle in use is greater than the previous one. If
so, the insertion point is computed using the inner layer radius (pradin) and
the inlay block. If the above condition is not true, the outer layer radius
(pradout) and the outly block are used instead.

6

4.2.2 arcbound

The procedure arcbound is used for drawing either the inner and outer layer
boundaries, or the iron shell boundary. The input for this procedure is the
radius of the desired layer.

4.2.3 The Additional Files

The file contains five more procedures, namely, fbI, fbll, eatblank, car4str, and
cdr4str, which have been written by Michael Helm.

fbI finds the next blank in the string, using the recursive procedure fbll.
eatblank cancels the blanks in a string, until a nonblank character is found.
car4str returns the first nonblank characters of a string. cdr4str returns the last
nonblank characters of a string. car4str and cdr4str are similar to the AutoLISP
functions car and cdr, which apply to elements of list (instead of strings).

4.3 field.lsp

This file contains three procedures which are involved in the process of drawing
and computing, and are written in terms of AutoLISP.

4.3.1 getz

By activating this procedure, the user is asked to choose the desired point at
which the magnetic field should be computed. After the point is chosen
(either by entering x,y coordinates or by pointing), the coordinates are written
on file "point.cad", which is the output of this procedure. "point.cad" is the
input for the procedure "mgfld.for" explained later.

4.3.2 getr

The procedure getr allows the user to choose the desired iron radius and,
accordingly, the iron boundary is drawn (by means of the arcbound procedure).
In addition, an output file "iron.rad" is created, containing the iron radius.

4.3.3 ironchg

This procedure opens the file "iron.rad", reads the actual iron radius, and
allows the computer to locate the entity to be changed (namely, the iron
boundary).

4.4 insp t.lsp

This file contains the procedure anglist and the auxiliary procedures car4str,
cdr4str, fbI, fbll, and eatblank (which have been explained in section 4.2.3).

7

4.4.1 anglist

This procedure computes the polar angle ptang of the insertion points, and the
rotation angle rotang of each inserted turn. While the polar angle is in
radians (as required by the polar point definition in AutoLISP), the rotation
angle is in degrees, as required by the insert command of AutoCAD. The
input for the computations is the file turns. cor, which contains the x,y
coordinates of the turns' corners .

.--________ ----, x3Y3

I

ptang = tan-l

The angles are written (as strings, through the AutoLISP function angtos) on
the file "insrt.ang", which is the input for "poly.lsp". The language used is
AutoLISP.

4.5 dxout.for

This file contains the procedure "polygon." After the drawing has been
completed, and a dxfile has been created, this procedure is used in order to find out
the new coordinates of the turns' corners (if any change has been made) and the
iron radius.

The program searches the file poi.dxf (the output of dxfout command) until the
first insert line. Then, the parameters of the insertion points (coordinates and
angle) of the basic blocks are written on a temporary file "ins.res" by means of the
subroutine par finder. The process is terminated when the string entiti is reached.
Then, the writing is done on the temporary file corl.res for the corners (coordinates
and rotation angle) for the inner layer, until the string outly is reached. Then, the
writing is continued on the temporary file "cor2.res for the outer layer until the
string circle is reached. When that happens, the next data is the iron radius which is
transferred to the file "iron.rad." As mentioned above, the searching and writing is
done by the subroutine par finder.

8

After the process of searching was completed, the temporary files ins, corl, and
cor2 are used as input for computing the new coordinates of the corners. This is
done by the subroutines dxcalc and corner calc, and the functions delta x calc, delta y
calc. dxcalc computes the dx and dy for the corners of each basic block, and transfers
them to a coordinate system rotated by the rotation angle.

corner calc computes the corners' coordinates of each inserted turn by adding
the adjusted dx, dy (for each corner) to the insertion point of the turn.

delta x calc and delta y calc compute the dx and dy, respectively, which are
rotated by the rotation angle. The new coordinates are written (each turn on a line)
on file "poidx.res," which is the input for mgfld and harm.

4.6 mgfld.for

This file contains the procedure "magnet field" which calculates the magnetic
field B*, B*image and (B* + B*image), at any desired point Z. The files listed below
are the input files for this procedure:

poidx.res

point.cad

data.fil

iron.rad

4.7 harm.for

Contains the corner coordinates.

Contains the Z coordinates.

Contains the permeability end current values for a specific
design.

Contains the iron radius.

This file contains the procedure for calculating the harmonics and the transfer
junction for a certain design. The original procedure was developed by L. J. Laslett,
and the present one is a slightly modified version, adapted to the input procedure
the entire system is using. In addition, the procedure calculates and prints the
transfer function.

The input files for this procedure are poidx.res, data.fil, and iron.rad, which
have been presented in the preceding section.

4.8 Drawing Files

The drawing files, which are listed below, are used either for drawing the
magnet cut (through the poly.lsp procedure) or for constructing the basic elements
of the drawing (namely, the conductor shape).

9

initl.dwg - A temporary file, used to store the basic element for each new
conductor-type constructed (on the inner layer).

init2.dwg - As above, for the outer layer.

inlay.dwg - the file is used to store the inner layer conductor, when the
drawing and the analysis is performed.

outly.dwg - As above, for the outer layer.

rec4-jin.dwg - Represents the inner layer conductor of the NC-9.

rec4-jout.dwg Represents the outer layer conductor of the NC-9.

box4.jin.dwg - Represents a small box around the middle of the inner layer
conductor of the NC-9. This type is used when analyzing the
behavior of the magnetic field as the current is concentrated
in the middle of the conductor, instead of being spread over
the entire area.

box4-jout.dwg - As above, for the outer layer conductor.

4.9 By-Product Files

The files listed below are created by some of the procedures mentioned earlier
and are used as input by the others. In spite of the fact that these files have been
explained in connection with the creation files, we will review them briefly.

insrt.ang

ins.res

corl.res

cor2.res

point.cad

data.fil

Contains the insertion and rotation angle for the turns.

A temporary file, storing the insertion parameters of the
elementary blocks.

A temporary file, storing the corner coordinates and the
insertion angle of the inner layer turns.

As above, for the outer layer turns.

Stores the coordinates of the desired point at which the
magnetic field should be computed.

Stores the permeability and the current values for a specific
design.

10

turns.corr Stores the turns corners coordinates.

poidx.res Stores the new turns corners coordinates.

5. Data Flow

For a better (and easier) understanding of the whole system, we show the data
flow, as has been built thus far:

1 turns.cor 1 ~ IInSPt.lSP 1 ~

IllllaY.dwg 1 ~ Drawing
poly.Jsp name.dwg ~

1 outly.dwg 1 ~
Ins. res

~ corl.res
II cor2.res

~ dxout.for
~ name.dxf ~

~

1 poldx.res 1 ~
harm. for

EJ ~
~ EJ ~ mgfld.for

field.lsp

=> I . poinLcad 1

1 1

6. Summary and Conclusions

As we have pointed out at the beginning of this report, this work represents only a
start in the building of an entire drawing and analysis system. We now realize the power
and capabilities of the system and have new ideas about a better use of the system.
Without taking in to account further developments, which may require a lot of work
(and time), there are some points which can be improved upon with very little effort.

Actually, the only data needed as input by the system is the file insrt.ang. A simple
procedure can be developed, which should translate the corners coordinates (this is an
output of the existing magnet analysis program PK) into the required angles.

The radius of the inner and outer layer should be supplied to the AutoCAD system
through an external file, and this will make the poly.lsp file more general.

I , The conductor-type submenu has to be an icon menu type, to allow visual selection of
the chosen conductor shape.

The special designed menu must be a submenu of the AutoCAD; there was no reason
to do that now, but when this submenu is close to the final format, it will be necessary.

As we have already mentioned, the work with AutoCAD on SUN will be much easier,
much faster, and more practical. For example, on the SUN, it will be easy to show, in a
window, parameters of the magnet, such as the current density, the iron radius, the
permeability, the magnetic field at any desired point, and so on. This will be accomplish
ed by creating a file with these features and showing it in a window along side of the
magnet drawing.

12

APPENDIX A

List of Magnet Cross Section Drawing With Computed Fields and Harmonics

13

x

Fig. 1. Cross section of the NC-9 SSC dipole magnet.

14

Main Field and Harmonics for Fig. 1 Configuration .

R = 5.558 FOR IRON SHIELD

FIELD AT X = 1.000 Y = 1.000

DIRECT(GAUSS)
IMAGE (GAUSS)
TOTAL(GAUSS)

Bx
3.61232.65 8D+0 1

-6.06418666D+01
-2.45186007D+01

By
-5.07179841D+04
-1.54123318D+04
-6.613031590+04

ABS-B
5.071799700+04
1.541245110+04
6.613032040+04

NON-SKEW FIELO HARMONICS OF QUAORILATERAL BLOCK

DIPOLE

R = 5.558000 FOR IRON

TRANSFER FUNCTION = -1.033413250+01(G/A)

HARMONIC
1
3
5
7
9

DIRECT(GAUSS)
-5.07281687D+04

2 . 286789380+01 .
-3.302003560-01

2.047785310-02
9.541382340-02

IMAGE(GAUSS)
-1.541027950+04
-3.030791520+01

5.127947380-01
3.251638880-03

-6.584065020-05

15

TOTAL(GAUSS)
-6.613844820+04
-7.440021410+00

1.825943820-01
2.372949200-02
9 . 534798280-02

UNITS
1.000000000+04
1.124916230+00

-2.760790240-02
-3 . 58785133D-03
-1.441642270-02

*** ENO OF RUN ***

•
•
• ,

+

• I •

\
D

X

Fig. 2. Cross section for the NC-9 ; the conductor is replaced by a little box in
the trapezoid center.

16

Main Field and Harmonics for Fig. 2 Configuration.

R = 5.558 FOR IRON SHIELD

FIELD AT X = 1.000 Y = 1.000

DIRECT(GAUSS)
IMAGE(GAUSS)
TOTAL(GAUSS)

Bx
-2.93683094D+Ol
-5.91262923D+Ol
-8.84946017D+01

By
-5.05291545D+04
-1.53511568D+04
-6.58803113D+04

ABS-B
5.05291630D+04
1.53512707D+04
6.58803707D+04

NON-SKEW FIELD HARMONICS OF QUADRILATERAL BLOCK

DIPOLE

R = 5.558000 FOR IRON

TRANSFER FUNCTION = -1.02941693D+01(G/A)

HARMONIC
1
3
5
7
9

DIRECT(GAUSS)
-5.05334041D+04
-1.57409258D+01 -
-1.05139106D+00
-1.15998766D+00
-2.26021715D-01

IMAGE(GAUSS)
-1.53492791D+04
-2.95525293D+01

4.69228171D-01
2.65256650D-03

-5.00643035D-05 ,

17

TOTAL(GAUSS)
-6.58826832D+04
-4.52934551D+01
-5.82162886D-01
-1.15733509D+00
-2.26071779D-01

UNITS
1.00000000D+04
6.87486497D+00
8.83635665D-02
1.75666053D-01
3.43142944D-02

*** END OF RUN ***

----------.-..

~--.~-----.. -----.. ,-.. ,-.-

"' ... '-.

Fig. 3. Modified cross sec 1 NC-9 configuration. fon for

18

x

Main Field and Harmonics for Fig. 3 Configuration.

R = 5.558 FOR IRON SHIELD

FIELD AT X = 1.000 Y = 1.000

DIRECT(GAUSS)
IMAGE(GAUSS)
TOTAL(GAUSS)

Bx
-2.45640~71D+03

-5.02320984D+00
-2.46142692D+03

By
-4.89612508D+04
-1.57426666D+04
-6.47039174D+04

ABS-B
4.90228314D+04
1.57426674D+04
6 . 47507185D+04

NON-SKEW FIELD HARMONICS OF QUADRILATERAL BLOCK

DIPOLE

R = 5.558000 FOR IRON

TRANSFER FUNCTION = -1.00485725D+Ol(G/A)

HARMONIC
1
3
5
7
9

DIRECT(GAUSS)
-4.85688692D+04
-1.14527642D+03

8 . 89368701D+01
1.73471945D+01

-2.28653775D+00

IMAGE (GAUSS)
-1.57419945D+04
-2.50046595D+00

1.67972201D-01
2.77986544D-03

-1.07157719D-0 5

19

TOTAL(GAUSS)
-6.43108637D+04
-1.14777688D+03

8.91048423D+Ol
1.73499744D+Ol

-2.28654847D+00

UNITS
1.00000000D+04
1.78473250D+0 2

-1.38553 329D+01
-2.697 82948D+00

3.55546222D-Ol

*** END OF RUN ***

APPENDIXB

List of Program Sources

20

Main Field and Harmonics for Fig. 3 Configuration.

R = 5.558 FOR IRON SHIELD

FIELD AT X = 1 . 000 Y = 1 . 000

DIRECT(GAUSS)
IMAGE(GAUSS)
TOTAL(GAUSS)

Bx
-2.45640371D+03
-5.02320984D+00
-2.461426920+03

By
-4.896125080+04
-1.57426666D+04
-6.47039174D+04

ABS-B
4.902283140+04
1.574266740+04
6.47507185D+04

NON-SKEW FIELD HARMONICS OF QUAORILATERAL BLOCK

OIPOLE

R = 5.558000 FOR IRON

TRANSFER FUNCTION = -1.004857250+01(G/A)

HARMONIC
1
3
5
7
9

DIRECT(GAUSS)
-4.856886920+04 .
-1.14527642D+03

8.893687010+01
1.7 3 4719450+01

-2.286537750+00

HIAGE (GAUSS)
-1.574199450+04
-2.50046595D+00

1.679722010-01
2.779865440-03

-1.071577190-05

19

TOTAL(GAUSS)
-6.431086370+04
-1.147776880+03

8.910484230+01
1.734997440+01

-2.286548470+00

UNITS
1.000000000+04
1.784732500+02

-1.385533290+01
-2.697829480+00

3.555462220-01

*** ENO OF RUN ***

File "Poly.LSP"

(defun C:DRAWP () ; Draw polygons
(setq a (open "insrt.ang" Or"~»~

(setq stringbag (read-line a»

)

(setq pradin 2,9692) ; inner layer radius
(setq pradout 4.010580) ; outer layer radius
(setq prad pradin)
(se.tq layercheck 0.0)
(setq refpt (list 0.0 0.0» ; set origin
(command "color" "green")
(while stringbag ; while not EOF

(setq rotang (atof (cdr4str stringbag») ; set angle of rot
(cond

)

«< rotang layercheck) (setq prad pradout)
(setq layercheck 0.0)
(command "color" "yellow"»

t (setq layercheck rotang»

(setq plpt (polar refpt (ato f stringbag) prad » ; insert pnt
(cond

«= prad pradout)
(command "insert" "outly" plpt 1 1 rotang»

(t
(command "insert" "inlay" plpt 1 1 rotang»
)
(setq stringbag (read-line a»

(command "color" "whi te")
(close a)

(defun fbI (stringbag) find next blank in string
(ocond

)

«null stringbag) nil)
(t (fbl1 stringbag 1»
)

Dead string
string needs work

(defun fbl1 (stringbag start

)

(setq intblank (chr 32» int repr of blank
(cond

«null stringbag) nil) ;End of string
«= intblank (substr stringbag 1 1» start) Found it
«= (strlen stringbag) 0) nil) Check dead string
(t (fbf1 (substr stringbag 2) (1+ start») ; else recurse
) ; substr. blank & check

(de fun eatblank (stringbag)
(setq repblank (chr 32 <)
(cond .

«null stringbag) nil) Dead string
«null (substr stringbag 1 1» nil) Nothing string
«/= (substr stringbag 11) repblank) stringbag) ; Done
(t (eatblank (substr stringbag 2») ; eat rest of string
)

; CDR for string-type.Returns rest of string
(defun cdr4str (str ingbag)

21

;chop off prefixed blanks
(setq intstring (eatblank stringbag))
(setq count (fbI intstring)) ; find next blank
(cond

«null count) nil) ; Nothing there
«zerop count) nil) ; still nothing
«< count 0) nil)
(t (~atblank (substr intstring count)))

) ; return a fresh string

;CAR for string-type. Returns unevaluated ATOM
(de fun car4str (stringbag)

; chop off prefixed blanks
(setq intstring (eatblank stringbag))
(setq count (fbI intstring)) ; find the next blank
(cond

((null count) nil) ; Nothing there
«< count 0) nil)
«zerop count) (substr intstring 1))
(t (substr intstring 1 (- count 1)))

return a string

(defun arcbound (pradin refpt)
(command "circle'!

(setq p refpt)
(setq p pradin)

22

layer boundary

whole string
chop this string

File "Mgfld.For"

C This program calculates the magnetic field
C B*,B*image & (B* + B*image),at a given point 2

Program MAGNETField
$NOTRUNCATE

IMPLICIT REAL*8 (A-H,O-2)
dimension corner(8),2(5),2C(5),B(4) ,Bimage(4)
complex*16 2pnt,B,Bimage,calcb,calcbimage
complex*16 Btotal,BimageTotal
complex*16 2,2C,BT(3)
CHARACTER*13PNAME(3)
COMMON / VALS / Z,ZC

C File "POIDX.RES" contains the x-y coordinates of
C the turns' corners,as they are computed by the
C "POLYGON" program(file "DXOUT.FOR").
C File "POINT.CAD" contains the x-y coordinates of
C the points magnetic field should be computed. This
C file should b e created by the " DXFOUT " command of
C AUTOCAD, after pointing at th e requested point.
C File" DATA.FIL " contains the values of
C permeability and current,as they (should) appear on
C the drawing, and are computed by" POLYGON " program.

open (l,file='poidx.res')
open (2,FILE='point.cad')
open (3,FILE='data.fil')
open (5,FILE=' Iron.Rad')
read (3,*) PERMAB,CURRENT
read (5,*) RADIUS
PNAME(I) = 'DIRECT(GAUSS),
PNAME(2) = ' IMAGE(GAUSS),
PNAME(3) = ' TOTAL(GAUSS),
NVT = 4
do · 30 1=1,4

C Initialize the complex vectors B , Bimage
B(i)=dcmplx(O.ODO)
Bimage(i)=dcmplx(D.ODO)

30 continue
read (2,*) x,y
a = PERMAB*CURRENT
Zpnt=dcmplx(x,y)
2Cpnt=DCONJG(2pnt)
R2P = RADIUS**.2

C Read the coord of the corners
do 20 i=I,36
read (1, '(8(FID.6»') (corner(j),j= 1, 8)
do 10 j = 1 , NVT
2(j)=dcmplx(corner (2*j-lJ,corner(2*j»
ZC(j)=DCONJG(2(j»

10 cont'inue
C Compute th e area of each turn

area = CalcArea(Z,NVT)
C This DO-LOOP assigns to 2 the proper value,according
C to the quadrant th e magnetic field should be computed:
C 1st quadrant 2=Z
C 2nd quadrant 2= - 2*
C 3rd quadrant Z= -2

23

C 4th quadrant Z= z*
do 40 nq=I,4
if (nq.eq.l) then
do 50 j=I,4
z(j)=z(j)
zc(j)=DCONJG(z(j»

50 continue
else
do 50 j=I,4
z(j)=(-l)**(nq+l)*DCONJG(z(j»
zc(j)=DCONJG(z(j»

50 continue
endif
z (NVT+ 1) = z (1)
zc(NVT+l)=zc(l)
B(nq)=B(nq)+a*CalcB(z,zc,zpnt,NVT)/area
If (radius.GT.(10.0E-5»

+Bimage(nq)=Bimage(nq)+a*CalcBimage(z,zc,zpnt,NVT,R2P) larea
40 continue
20 continue
70 continue

C The summation of the magnetic fields takes in account
C the sign of integration & current in each quadrant
C 1st quadr: integration(-) x current(+) = (-)
C 2nd quadr: integration(+) x current(-) = (-)
C 3rd quadr: integration(-) x current(-) = (+)
C 4th quadr: integration(+) x current(+) = (+)

Btotal=-B(I)-B(2)+B(3)+B(4)
BimageTotal=-Bimage(I)-Bimage(2)+Bimage(3)+Bimage(4)

C Initilize BT for printing
BT (1) = Btotal
BT (2) = BimageTotal
BT (3) = Btotal + BimageTotal
if (radius.GT.(10.0E-5» then
write (*,1001) RADIUS
else
write (*,1005)
endif
write (*,1002) X,Y
wr i t e (*, 1 003)
write (*,1004) (PNAME(i),DREAL(BT(i»,-DIMAG(BT(i»,

+CDABS(BT (i», i = 1,3)
write (*,1005)
close(l)
close(2)
close (3)
close (5)
stop

1001 FORMAT (IH ,I,' R = ',F6 .3 ,' FOR IRON SHIELD')
1002 FORMAT (lH ,I,' FIELD AT X = ',F6.3,' Y = ',F5.3)
100 3 FORMAT (IH , I,22X, 'Bx' ,16X,'B y ' ,15 X, 'ABS-B')
1004 FORMAT (IH ,AI3 ,3X, lP,DI5.8,4X,DI5.8,4 X,D 15 .8)
1005 FORMAT (/,1,/)
1006 FORMAT (IH " NO IRON')

end
24

· .

,-:

C This function calculates the magnetic field B*
complex*16 function CaleB (Z,ZC,zpnt,N)

dimension Z(5),ZC(5)
complex*16 Z,ZC
complex*16 DeltaZ,DeltaZC
complex*16 zpnt,sum
sum=dcmplx(O.ODO)
do 100 k=l,N
DeltaZ=Z(k+1)-Z(k)
DeltaZC=DCONjG(DeltaZ)
sum =sum+«Z(k)-zpnt)*DeltaZC/DeltaZ-ZC(k»*

+CDLOG«Z(k)-zpnt)/(Z(k+1)-zpnt»
100 continue

CalcB=sum
return
end

C this function calc the magnetic field B*image
complex*16 function CalcBimage (Z,ZC,zpnt,N,R2P)

dimension Z(5),ZC(5)
REAL*8 R2P
compl e x*16 Z,ZC
complex*16 DeltaZ,DeltaZC
complex*16 zpnt,sum
sum=dcmplx(O.ODO)
do 200 k=l,N
DeltaZ=Z(k+1)-Z(k)
DeltaZC=DCONJG{DeltaZ)
sum = sum+0.5*(Z{k)+Z(k+1»/zpnt*DeltaZC+

+R2P/{zpnt**2)*«ZC(k)-R2P/zpnt)*DeltaZ/DeltaZC-Z(k»
+*CDLOG«R2P-ZC(k)*zpnt)/(R2P-ZC(k+1)*zpnt»

200 continue
CalcBimage=sum
return
end

C This function computes the area (abs value) of a polygon
C with 4 complex corners

REAL*8 Function CalcArea{Z,N)
complex*16 Z(5),sum
sum=dcmplx(O.ODO)
Z{N+l) = Z(l)
do 300 k=l,N
sum = sum +(Z(k+1)+Z(k»*DCONJG(Z(k+1)-Z(k»

300 continue
CalcAr e a= (2.5D-1)*DIHAG(sum)
return
end

25

File "Magnet.Mnu"

***SCREEN
[MAGNET] (setvar "CMDECHO" O);(VMON);(load "FIELD");+
(load "POLY"); (setvar "MENUECHO" 1); $S=~IAIN_MENU

**MAIN_MENU
[MAGNET]$S=

[COND_TYP]$S=CONDUCTOR_TYFE

[ASSEMBLY]$S=MAGNET GEOMETRY

[FIELDS]SS=MAGNET_CHARACT

[SAVE)save

[BYE)quit
**CONDUCTOR_TYPE 3
[REC4-J)sh del inlay.dwg;sh del outly.dwg;+
sh copy Rec4-JIn . dwg inlay.dwg;sh copy Rec4-JOut.dwg outly.dwg;+·
graphscr;

[REC4-I)

[BOX-TYPE)sh del inlay.dwg;sh del outly.dwg;+
sh copy Box4-JIn.dwg inlay.dwg;sh copy Box4-JOut.dwg outly.dwg;+
graphscr;

[LAST)$S=
**MAGNET_GEOMETRY 3
[COS-TETA)DRAWP;GETR;

[WINDOW J

[OTHER)

[LAST)$S=
**MAGNET_CHARACT 3
[SAVE-GEO]dxfout poi 6;shell dxout;graphscr;

[calc-B)GETZ;\shell mgfld;

[HARMONIC)shell harm;

[NEW-RAD) z otim extent;IRONCHG;change;+
(setq po int (list 0.0 IRONRAD));;;+
\dxfout p o i 6;shell dxout;graphscr;

[LAST)$S=

26

File "Field.LSP"

(defun C:GETZ ()
(setq a (open "POINT.CAD" "w"»
(setq b (getpoint "Choose point for comp
(setq c (rev~rse b»
(setq bl (car b»
(setq b2 (car c»

"))

(setq string (strcat (rtos bl I 8)" "(rtos b2 1 8»)
(write-line string a)
(close a)
)
(defun C:GETR ()
(setq radius (getreal "Enter Iron Shell Rad (default: no iron) :"»
(cond

((not radius) (setq radius 10.OE-6)

((not (null
(t radius)

(setq string (strcat "10.OE+32"»)
radius» (setq string (rtos radius I j»)

)
(setq a (open "IRON.RAD" "w"»
(write-line string a)
(close a)
(setq refpt (list 0.0 0.0»
(arcbound radius refpt)
(command "color" tired")
(arcbound pradin refpt)
(arcbound pradout refpt)
(command !'color'! "white")
)
(defun C:IRONCHG ()
(setq a (open "IRON.RAD" "r"»
(setq string (read-line a»
(setq IRONRAD (atof string»
(close a)
)

27

PROGRAM BLOCK File "Harm .For"
$NOTRUNCATE

C

IMPLICIT REAL*8(A-H,0-Z)
COMPLEX*16 EYE,Z,DZ,DZR
CHARACTER*9 L
COMMON / VALS / Z(5),DZ(4),DZR(4)
COMMON / PARS / NVT,NHP,NH

C Add to orig

*

**
C
C

C 10
C
C add

'" C 20
C
C 22
C
C
C
C
C24
C add

99

101

DIMENSION TotalDirect(5),TotalImage(5),Total(5)
DIMENSION CORNER(8) .
open (l,FILE :: 'POIDX.RES')
open (2 , FILE ':: 'DATA.FIL')
open (3,FILE :: ' IRON.RAD')
read (2,*) PERMAB , CURRENT
read (3,*) RFE ' .

NVT :: 4
PI :: (2.0DO)*DACOS(0.ODO)

ROD :: PI/(1.8D2)
EYE :: (0.ODO,1.0DO)

CALL DATE(L)
WRITE(*,9001) L
WRITE(*,9005)

WRITE(*,9010)
READ(*,*) NHP
to orig
NHP::1
NP :: 2*NHP
write (*,9040)
if (RFE . GT.(10.0E-5))
write (*,9043) RFE
ELSE
write (*,9042)
ENDIF

RMAX :: O. ODO
DO 24 NV::1,NVT

WRITE(*,9020) NV
READ(*,*) R, DEG

then

IF (NHP*DEG .GT . 9 . 0D1) GO TO 22
RMAX :: DMAX1(R,RMAX)
Z(NV) :: RlCDEXP(EYE*ROD*DEG)

CONTINUE
to orig
do 99 m :: 1,5
TotalDirect(m) :: O. ODO
TotalImage(m) :: O.ODO
Total(m) :: O.ODO
continue
do 100 NumBlock :: 1,36
read (1, l) (cor n e r (j) ,j :: 1, 8)
do 101 NV = 1,NVT
Z(NV) = cmplx(corner(2lNV-l),corner(2*NV))
continue

28

* Z (NVT + 1) = Z (1)
DO 26 NV=l,NVT

DZ(NV) = Z(NV+1) - Z(NV)
DZR(NV) = DCONJG(DZ(NV))/DZ(NV)

26 CONTINUE
C Add to orig

* C30
C
C
C
C
C
C
C4'0
C
C
C
C

C

60
C
C Add

* 70
C add
100

102
*
C80
C
C
C
C
C
C

area = CalcArea(Z,NVT)

IMAGE = 0
WRITE(*,9025)
READ(*,*) IMAGE
IF (IMAGE .EQ . 0) GO TO 40
WRITE(*,9030)
READ(*,*) RFE
IF (RFE .LT. RMAX) GO TO 30

NP = 2*NHP
WRITE(*,9040) NHP, NP
IF (IMAGE .EQ . 0) WRITE(*,9042)
IF (IMAGE .NE . 0) WRITE(*,9043) RFE
WRITE(*,9060)
DO 70 M=l,5
NH = NHP*(2*M - 1)
IF (NH .EQ. 1) CALL DIR1(HARD)
IF (NH .EQ. 2) CALL DIR2(HARD)
IF (NH .GT. 2) CALL DIRN(HARD)
HARI = O.ODO
IF (IMAGE .EQ. 0) GO TO 60
IF (RFE.GT.(10.0E-5))

+CALL DIRI(HARI,RFE)
HART = HARD + HARI
WRITE(*,9070) NH, HARD, HARI, HART
to orig
TotalDirect(m) = TotalDirect(m) + (current/area)*HARD
Totallmage(m) = Totallmage(m) + (current/area)*HARI
Total(m) = Total(m) + (current/area)*HART

CONTINUE
to orig
continue
wri te (*,9850). (Total (1) /Current)
write (*,9060)
do 102 m = 1,5
NH = NHP*(2*M-1)
B = Total(m)/Total(1)*1.0D+4
write (*,9070) NH, Total.Direct(m) ,Totallmage(m) ,Total(m) ,b
continue

WRITE(*,9800)
READ(*,*) JUMP
IF (JUNP .EQ . 1) GO TO 10
IF (JU~jP .EQ. 2) GO TO 20
IF (JU~IP .EQ. 3) GO TO 30
IF (JUMP .EQ. 9) GO TO 90
GO TO 80

29

90 WRITE(*,9900)
C Add to orig

close(l)
close(2)
close (3)
STOP

* 9000
9001
9005

9010
9020
9025

FOR~lAT (IH
FORMAT(lH ,/,lH ,27X,A9,//)
FORMAT(lH ,'NON-SKEW FIELD HARMONICS',

$' OF QUADRILATERAL BLOCK',//)
FORMAT(lH ,/,' TYPE N TO DESCRIBE A 2N POLE ASSEMBLY')
FORMAT(lH ,I,' TYPE R & DEG FOR VERTEX',I2)
FORMAT(lH ,/,' TYPE 0 (ZERO) IF NO IRON',

$' -- OTHERWISE 1')
9030 FORMAT(lH ,/,' TYPE R OF IRON')
C9040 FORMAT(lH ,I,' N =',12,' FOR',I3,' POLE' ,I)

9042 FORMAT(lH ,/,' NO IRON')
C9043 FORMAT(lH ,/,' R =' ,F5.2,' FOR IRON')
C9060 FORMAT(lH ,//,' HARMONIC' ,7X, 'DIRECT',llX, 'IMAGE',
C $13X, 'TOTAL' ,7X, 'FOR G/J' ,I)
C9070 FORMAT(3H ,I3,lPD20.8,D17.8,D18.8)
C Add to orig
9040 FORMAT(lH ,/,' DIPOLE ',I)
9043 FORMAT(lH ,I,' R =',FIO.6,' FOR IRON')
9060 FORMAT(lH ,//,' HARMONIC',4X,'DIRECT(GAUSS)' ,5X,

+'IMAGE(GAUSS)',6X,'TOTAL(GAUSS) ',13X,'UNITS')
9070 FORMAT{3H ,I3,lPD20.8,D17.8,D18.8,D18.8)

* 9800 FORMAT{IH ,//,' NEW 2N-POLE, VERTICES, IMAGE,',
$' OR TERMINATE -- 1, 2, 3, OR 9' ,I)

9850 FORMAT{IH ,/,' TRANSFER FUNCTION =' ,IPD17.8, '(G/A)')
9900 FORMAT(IH ,/,IH ,5IX,'*** END OF RUN ***' ,/)

END
SUBROUTINE DIRI(HARD)
IMPLICIT REAL*8{A-H,O-Z)
COMPLEX*16 Z,DZ,DZR
COMMON / VALS / Z(5),DZ{4),DZR{4)
COMMON / PARS / NVT,NHP,NH
HARD = O.ODO
DO 10 NV=I, NVT
HARD = HARD + DIMAG

S{{{Z{NV+I)*DCONJG{Z{NV))-Z(NV)*DCONJG(Z{NV+l)))/DZ{NV))
S*CDLOG(Z{NV+l)/Z{NV)))

10 CONTINUE
HARD = (4.0D-I)*HARD
RETURN
END
SUBROUTINE DIR2(HARD)
IMPLICIT REAL*8{A-H,O-Z)
COMPLEX*16 Z,DZ,DZR
COMMON / VALS / Z(5),DZ{4),DZR(4)
CO~lMON / PARS / NVT, NHP, NH
HARD = O.ODO
DO IO NV = 1 , NVT

30

· .
HARD = HARD + DIMAG

$(DZR(NV)*CDLOG(Z(NV+l)/Z(NV»)
10 CONTINUE

HARD = (8.0D-I)*HARD
RETURN
END
SUBROUTINE DIRN(HARD)
IMPLICIT REAL*8(A-H,O-Z)
COMPLEX*16 Z.DZ,DZR
COMMON / VALS / Z(5),DZ(4),DZR(4)
COMMON / PARS / NVT,NHP,NH

COF = ((4.0D-I)*NHP)/((NH-I.ODO)*(2.0DO-NH»
HARD = O.ODO
DO 10 NV=I,NVT
HARD = HARD + DIMAG

$(DZR(NV)*(Z(NV+I)**(2-NH) Z(NV)**(2-NH»)
10 CONTINUE

HARD = COF*HARD
RETURN
END
SUBROUTI NE DIRI(HARI,RFE)
IMPLICIT REAL*8(A-H,O-Z)
COMPLEX*16 Z,DZ,DZR
COMMON / VALS / Z(5),DZ(4),DZR(4)
COMMON / PARS / NVT,NHP,NH

COF = ((4.0D-l)*NHP)/((NH+I.ODO)*(NH+2.0DO)*(RFE**(NH-2»)
HARI = O.ODO
DO 10 NV=I,NVT
HARI = HARI + DIMAG

$(DZR(NV)*((Z(NV)/RFE)**(NH+2) - (Z(NV+1)/RFE)**(NH+2»)
10 CONTINUE

HARI = COF*HARI
RETURN
END

C Addto orig
REAL*8 Function CalcArea(Z,N)
COMPLEX* 16 Z (5) ,SUtI
SUM = DCMPLX(O.ODO)
DO 300 k = 1,N
SUM = SUM + (Z(k+l) + Z(k»*DCONJG(Z(k+I)-Z(k»

300 continue

*

CalcArea = (2.5D-I)*DIMAG(SUM)
RETUR N
end

31

File "Inspt.LSP"

This program computes the polar angle PTANG of the insertion
points, and the rotation angle ROTANG of each insert block.

T&e angles are writen on file ·'INSRT.ANG" , the input file for
; POLY.LSP,
(defun C:ANGLIST ()

(setq car4str nil)
open file "TURNS.COR" which contents the coordinates of
the corners, and read one line at a time

{setq a (open "turns.cor'l Ilr'I»
(setq stringbag ·(read-line a»

(setq b (open "insrt.ang" "w"})
(while (not (null stringbag)} ;do the next while not eof

read x,y 4 all corners(4}
(setq xl (atof stringbag)}
(setq yl (atof (cdr4str stringbag»}
(setq stringbag (cdr4str (cdr4str stringbag)}}
(setq x2 (atof stringbag»
(setq y2 (atof (cdr4str stringbag»}
(setq stringbag (cdr4str (cdr4str stringbag}»
(setq x3 (atof stringbag})
(setq y3 (atof (cdr4str stringbag}»
(setq stringbag (cdr4str (cdr4str stringbag)}}
(setq x4 (atof stringbag)}
(setq y4 (atof (cdr4str stringbag})}
(setq xa (/ (+ xl x2) 2}}
(setq xb (/ (+ x3 x4) 2}}
(setq ya (/ (+ yl y2) 2}}
(setq yb (/ (+ y3 y4) 2)}
(setq ptang (angtos (atan yb xb) 3 6)} ;computes ptang in rad

computes rotang in degrees
(setq rotang (angtos (atan (- yb
(setq ang4block (strcat ptang "
(write-line ang4block b) ; write
(setq stringbag (read-line a)} ;

(close b)
(close a)

ya) (- x b xa)} a 6)}
.. rotang)} ; make a string
this string on "INSRT.ANG"
next string

The next subr are explained in "POLY. LSP"
(defun fbI (stringbag)

(cond

}

((null stringbag) nil }
(t (fbll stringbag I)}
}

(defun fbll (stringbag start
(setq intblank (chr 32 })
(c ond

}

((null stringbag) nil)
((= intblank (subst r stringbag 1 I}) start}
((= (strlen stringbag) a } nil}
(t (fbll (substr stringbag 2) (1+ start)}}
}

(defun eatblank (stringbag)

32

)

(setq repblank (chr 32 »
(cond

((null stringbag) nil)
((null (substr stringbag 1 1» nil)
((/= (substr stringbag ' 1 1) repblank) stringbag)
(t (eatblank (substr stringbag 2»)
)

(defun cdr4str (stringbag)
(setq intstring (eatblank stringbag»
(setq count (fbI intstring»
(cond

((null count) nil)
((zerop count) nil)
((< count 0) nil)
(t (eatblank (substr intstring count »)

d e fun car4str (stringbag)
(setq intstring (eatblank stringbag »
(setq count (fbl intstring»
(cond

((null count) nil)
((< count 0) nil)
((zerop count) (substr intstring 1 »
(t (substr intstring 1 (- count 1»)

33

File "Dxout.For"

C This program searches the file "POI .DXF'· which was generated
C by the AUTOCAD "DXFOUT" command,and generates 5 new files:
C "INS.RES·' - Temporary file storing the parameters of the
C inserted entities
C "CORl.RES·' - Temporary file storing the coord & angle of the
C ins points for the inner turns
C "COR2.RES·· Temporary file storing the coord & angle of the
C ins points for the outer turns
C "POIDX.RES"- Output file which contains the coord of the corners
C for all turns
C "IRON.RAD" - Output file storing the iron radius
C the program should generate (also) "DATA.FIL",containing the
C attributes associated with the drawing(permeability
C and current intensity),

Program POLYGON
$NOTRUNCATE
. dimension delta (4,2)

character findname *6
character*(*) checkl,check2
integer unit,plabel,pend
parameter (checkl = 'ENTITI', check2 = 'OUTLY')
open (l,FILE='ins.res' ,Status='Old')
OPEN (2,FILE='corl.res' ,STATUS='Old')
Open (3,FILE='cor2.res' ,Status='Old')
Open (4,FILE = 'iron,rad' ,Status ='Old')
Open (lO,File='POI.DXF')
Open (20,File='POIDX.RES',Status='Old')

101 Do 100 Nline=l,lOO
C Search the file "POI.DXF" (associated with the drawing)
C for the begining of INSERT SECT

Read (10, '(A6)') FindName
If (FindName.Eq.'INSERT') goto 102

100 Continue
GOTO 101

102 plabel=O
202 Do .200 Nline=1,100

incheck=O
if (findname.eq. 'INSERT') incheck=l
if (findname.eq.'VERTEX') incheck=l
if (incheck.eq.1) then

212 do 222 i=l,lO
plabel=O

C write on temp file ·'INS.RES·· coord & angle of ins pnt &
C corners of ins blks (inner,outer)

Call ParFinder (10,1,plabel,1000,FindName,check1)
if (plabe l.eq.1) goto 232

222 continue .
GOTO 212
endif

232 if (findname.eq. 'ENTITI') goto 103
Read (10, '(A6) ') FindName

200 Continue
GOTO 202

103 unit=2
plabe l=O

34

": \

301 DO 300 Nline=l,100
C writes on temp file "COR1.RES" & "CORZ.RES· coord & angle
C of ins pnt of inner,outer blks

Call ParFinder (10,unit,plabel,1000,FindName,check2)
if (plabel.eq.l) go to 104

300 Continue
GOTO 301

104 if (unit.eq.3) goto 105
plabel=O
unit=3
GOTO 301

105 Continue
close(10)
Rewind 1
Rewind 2
Rewind 3
plabel=l

C Compute the increments dx & dy 4 each corner of the inner block
call dxcalc (l,delta,plabel)
unit=2
plabel=l

106 do 400 Nline=l,16
if (.not.eof(unit»

C Calculate the coord of the corners 4 the inner turns (first
C compute the rotated dx & dy 4 each inserted block)

+call CornerCalc (unit,20,plabel,de1ta)
400 continue

if (.not.eof(unit» goto 106
107 plabel=l

C Compute the increments dx & dy 4 each corner of the outer block
call dxcalc (l,delta,plabel)

108 unit=3
plabel=l

109 do 500 nline=1,16
if (.not.eof(unit»

C Calculate the coord of the corners 4 the outer turns (first
C bompute the rotated dx & dy 4 each corner of inserted block

+call CornerCalc (unit,20,p1abe1,de1ta)
500 continue

if (.not,eof(unit» go to 109
c10se(20)
close(l)
close(2)
close(3)

close (4)
1000 stop

end
C Compute dx & dy 4 coord system rotated by RotAng

Fun c tion d e ltaxcalc (deltax,deltay,rotang)
d e ltaxcal c = DeltaX*cos(RotAng) - DeltaY*sin(RotAng)
Return
end
Function deltaycalc (deltax,deltay,rotang)
deltaycalc = DeltaX*sin(RotAng) + DeltaY*cos(RotAng)
Return

35

end
C This subr searches 4 the block definition entities &
C the drawing entities

Subroutine ParFinder (UnitR,UnitW,plabel,pend,FindName,CheckChar)
integer UnitR,UnitW,plabel,pend
character FindName *6,CheckChar *(*)

C Read a string; if 10 ,the next string is x-coord
C if 20 ,the next string is y-coord
C if 50 ,the next string is angle

read (unitR, '(A6)' ,iostat=pend) FindName
if (FindName.eq.' 10 ') then

read (unitR, '(F10.6)' ,iostat=pend) point
write (unitW,'(F10.6)') point

endif
if (FindName.eq.' 20 ') then

read (unitR,'(F10.6) ', iostat=pend) point
write (unitW,'(F10.6)') point

endif
if (FindName . e q.' 50 ') then

read (unitR, '(F10.6)' ,iostat=pend) point
write (unitW,'(FIO.6)') point

endif
C If string=ENDBLK ,next is a new blk entiti or new section

if (FindName.eq . 'ENDBLK') plabel=l
C if string=ENTITI,write on "COR1.RES" 4 inner turns
C if string=OUTLY ,write on "COR2.RES" 4 outer turns

if (FindName.eq.checkchar) plabel=l
if (unitW .eq.3) then

C Do the loop again, 4 outer inserted blks
plabel=O
if (FindName . eq.'CIRCLE') then

C If string = CIRCLE ,write on "IRON.RAD" the iron radius
do 5 1 = 1,20
read (unitR,' (A6)' ,iostat = pend) FindName
if (FindName .eq.' 40 ') then
read (uni tR,' (FlO. 6) , ,iostat = plabel) point
write (4,'(F10.6)') point
plabel = 1
GOTO 10
endif

5 continue
10 continue

endif
C You just finished the searching job

endif
return
end

C This subr computes dx & dy 4 th e corners of each inserted block,
C & rotates them b y angle

Subroutine DxCalc(unitR,delta,plabel)
dimensi on InsPnt (3),de lta(4,2)
integer unitR,plabel
real InsPnt

C Convert angle to Rad
RadConv=174.5 32925E-4

36

do 5 i=1,3
C Read x,y,angle of insertion pnt

read (unitR, '(F10.6)' ,iostat=plabel) InsPnt(i)
5 continue

do 10 i=1,4
C Read x,y 4 each corner

read (unitR,' (F10.6)' ,iostat=plabel) cornerX
read (unitR, '(F10.6)' ,iostat=plabel) cornerY

C Compute dx,dy 4 each corner
dx= InsPnt (l)-cornerX
dy= InsPnt (2)-cornerY

C Rotate dx & dxy 4 all corners by RotAng[InsPnt(3)]
delta(i,l) = deltaxcalc(dx,dy,InsPnt(3)*RadConv)
delta(i,2) = deltaycalc(dx,dy,InsPnt(3)*RadConv)

10 continue
return
end

C This subr computes the coord of the turns
Subroutine CornerCalc (unitR,unitW,plabel,delta)
dimension delta(4,2),InsPnt(3),corner(8)
integer unitR,unitW,plabel
real newx,newy,newdeltax,newdeltay,InsPnt
RadConv:174.532925E-4
do 5 i=1,3

C Read x,y & angle of inserted turns
read (unitR, '(F10.6)' ,iostat=plabel) InsPnt(i)

5 continue
do 10 i=1,4

C Rotates dx & dy by angle
newdeltax = deltaxcalc (delta(i,l) ,delta(i,2) ,InsPnt(3)*RadConv)
newdeltay = deltaycalc (delta(i,1),delta(i,2),InsPnt(3)*RadConv)
newx = InsPnt(l)-newdeltax
newy = InsPnt(2)-newdeltay

C Computes x & y of all corners & fills the corner vector
corner(2*i-1)=newx
corner(2*i)=newy

. 10 continue
write (unitW,' (8(FIO.6))') (corner(i),i=1,8)
return
end

37

