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Abstract

Nuclear Resonance Fluorescence for Nuclear Materials Assay

by

Brian Joseph Quiter

Doctor of Philosophy in Engineering - Nuclear Engineering

University of California, Berkeley

Stanley Prussin, Chair

This dissertation examines the measurement of nuclear resonance fluorescence

γ-rays as a technique to non-destructively determine isotopic compositions of target

materials that are of interest for nuclear security applications. The physical pro-

cesses that can result in non-resonant background to nuclear resonance fluorescence

measurements are described and investigated using a radiation transport computer

code that relies on the Monte Carlo technique, MCNPX. The phenomenon of nuclear

resonance fluorescence is discussed with consideration of the angular distributions

of resonance emissions, the effects of nuclear recoil, and the influence of thermal

motion.

Models describing two ways of measuring nuclear resonance fluorescence rates

in materials are considered. First the measurement of back-scattered photons is

considered. In this type of measurement, the portion of the interrogating photon

beam that is scattered into large relative angles is measured. When the radioactivity

of the target can be overcome by shielding or by use of intense photon sources, direct

measurement of γ-rays, emitted during nuclear resonance fluorescence can provide

quantitative signatures that appear to be useful for applications such as forensic age-

dating of large radiological sources. However, if the target radioactivity is too intense,

as in the case for most spent nuclear fuel, a second measurement type, where indirect

measurement of transmitted resonant-energy photons can also provide quantitative

information. This method allows radiation detectors to be better-shielded from
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target radioactivity, but suffers from a slower accrual rate of statistical confidence.

The models described herein indicate that very intense photon sources and large

high-resolution detector arrays would be needed to measure 239Pu content in spent

fuel to precisions desired by nuclear safeguards organizations. However, the rates at

which statistics accrue are strongly proportional to the strengths of the resonances,

and measurement of a plutonium isotope with stronger resonances may provide more

practical measurement rates.

The model for predicting relative detection rates of nuclear resonance fluores-

cence γ-rays in the transmission measurement was experimentally tested using the

238U in a mixture of depleted uranium and lead as a surrogate for 239Pu in spent

fuel. The experiment indicated that the model was approximately correct, but that

the process of notch refilling, which was excluded from the initial model, appears

to be visible. Data files of the computer code, MCNPX, were modified to allow for

nuclear resonance fluorescence to be simulated and a bug in the code was repaired to

allow the code to more accurately simulate non-resonant elastic photon scattering.

Simulations using this modified version of MCNPX have indicated that the magni-

tude of the notch refill process is comparable to that of the difference between the

analytical model and the experimental data.
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Chapter 1

Introduction

After the end of the Cold War, the United States perceived a dramatic down-
turn in the severity of national security threats. More recently, increased concern
for international terrorism has changed this perception. President Obama recently
stated that terrorists acquiring a nuclear weapon is “the most immediate and extreme
threat to global security.” (1)

Nuclear terrorism can take many forms. Fission devices may be stolen by terror-
ist groups or provided to terrorist groups by rogue nations, or they may be produced
by terrorist groups that have obtained fissile material. Large quantities of radioac-
tive material may also be mixed into conventional explosives to create a radiological
dispersal device, which, when detonated, could spread radioactive material over a
large area.

Efforts toward preventing nuclear terrorism take three primary approaches. One
approach is to ensure that terrorist organizations do not obtain the necessary nuclear
materials. If such materials are obtained, border and port security is intended to
make it difficult to deliver the material into the United States or allied countries.
And if material is recovered by law enforcement agencies, the capability to identify
the source of the material through forensics measurements may help law-enforcement
activities to disrupt channels by which terrorists may obtain other nuclear material.
Reliable forensics may also provide an incentive for nations and industrial concerns
to secure their nuclear material. This dissertation examines the potential use of the
phenomenon of nuclear resonance fluorescence (NRF) to perform measurements on
nuclear materials that may contribute to preventing nuclear terrorism.

1.1 Nuclear Safeguards

1.1.1 Worldwide Weapons Material Production Capacity

Operation of nuclear reactors for power generation has supplied the world with
about 2 × 106 GW·d of electricity since 1980(2). Official projections indicate that
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both domestic and world-wide nuclear power generation will increase in the future(3).
Operation of nuclear power plants results in the production of plutonium through
the absorption of neutrons by 238U atoms, followed by two radioactive decays occur-
ring by β−-particle emission1. Although the exact quantity depends upon reactor
type and operation conditions, approximately 300 g of Pu are produced per GW·d
of electrical energy produced by the operation of nuclear reactors. Therefore, ap-
proximately 6× 105 kg of Pu have been produced world-wide since 1980 as a result
of nuclear power generation(4)(5).

As little as 4.4 kg of 239Pu can be used to make a nuclear weapon, although
with plutonium isotopic compositions of typical spent fuel, this mass increases to ap-
proximately 10 kg(5). Thus, the amount of plutonium generated by civilian power
production in the past 30 years is sufficient to make approximately 6× 104 nuclear
weapons and the current plutonium production rate is sufficient to produce approx-
imately 3× 103 plutonium weapons annually.

Enrichment of uranium is necessary to make fuel for light water reactors (LWRs).
Typical nuclear reactor fuel is currently enriched from natural composition (0.72%
235U) to around 5% 235U. Further enrichment to around 80% 235U results in weapons-
grade uranium. The world has enough enrichment capacity to produce 3 × 106

kg of weapons-grade uranium, or enough for approximately 104 uranium bombs
annually(6).

The capacity of the civilian nuclear power infrastructure to produce nuclear
weapons is what motivates the implementation of measures to safeguard nuclear
material. The primary safeguards activities include security and accountancy of
plutonium and enriched uranium at nuclear facilities that are declared civilian in
nature, as well as ensuring that clandestine nuclear materials activities do not occur
at un-declared facilities.

1.1.2 Safeguarding Enrichment Facilities

The primary safeguards concern for an enrichment facility that is that it is
able to enrich uranium to levels needed for use in nuclear weapons construction.
The ability to measure relative concentrations of uranium isotopes in materials at
enrichment facilities is therefore of prime interest for safeguards purposes. Presently,
uranium enrichments are measured by one of two methods. Either gaseous samples
(i.e., UF6) are collected and later analyzed via mass spectrometry, or passive counting
of the 185.7-keV γ-ray, emitted in the decay of 235U is conducted.

Facility operators strongly oppose sampling because the fear that sampling itself
may introduce impurities into sensitive enrichment equipment. Mass spectrometry
is also costly and therefore is performed irregularly. Passive counting measurements

1The described sequence generates 239Pu, which may undergo additional neutron reactions
to produce other plutonium isotopes. More circuitous pathways can also result in plutonium
production.
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rely on calibrations to relate count rates to 235U content and therefore enrichment.
These measurements are prone to inaccuracy because the calibration is sensitive to
container thicknesses, which may vary because of erosion or deposition of solid UF6

on the container surface. In principle, a measurement of fluorescent γ-rays could be
conducted continuously on UF6 at selected locations at an enrichment facility and
thus, non-intrusively measure relative concentrations of 235U and 238U. Furthermore,
if the pressure and volume of the UF6 is known, then enrichment measurements allow
for independent checks on the mass balance of uranium material entering, leaving,
and present at the enrichment facility.

1.1.3 Safeguarding Spent Fuel Reprocessing Facilities

Spent nuclear fuel is another example where measurement of fissile material
content is of interest for safeguards purposes. Reprocessing involves chemical sepa-
ration of actinides from fission products, as well as possible separation of different
elemental actinides from each other. A reprocessing system such as UP3 operat-
ing at the La Hague site in France is capable of reprocessing about 8 × 105 kg of
spent fuel annually(8). This corresponds to approximately three 3.5 m tall, 15x15
fuel assemblies per day, indicating an approximate scale to the time permitted for
safeguards measurements that will not disrupt the reprocessing rate.

Presently, the quantities of plutonium and 235U are not directly measured in
spent fuel before reprocessing. Rather, surrogate signatures such as the γ-rays emit-
ted in the decay of 134Cs, 137Cs, and 154Eu may be measured as an indicator of
burn-up, which can be correlated to the plutonium and 235U content through reac-
tor model calculations. These measurements, however, do not provide independent
information regarding fissile material content and are prone to systematic inaccura-
cies due to dependence on reactor operating conditions(4).

To overcome the shortcomings of indirect plutonium and 235U measurement,
these constituents are directly measured during the aqueous reprocessing process.
After fuel dissolution, the solution is transferred to a tank of well-known volume,
called the input accountability tank, and a sample is taken for analysis. Concen-
trations of plutonium and 235U in the sample are determined to nominally 0.3%
uncertainties through analytical radiochemistry methods. Because the volume of
the input accountability tank is well-known, measured concentrations in the sample
can be related to quantities of uranium and plutonium in the entire reprocessed as-
sembly. However, because the sampling process occurs after dissolution, there is the
potential for material to be diverted before it reaches the input accountability tank.
Furthermore, many non-aqueous reprocessing techniques are under consideration for
new fuel cycle systems. Some of these techniques do not allow for the method of
aqueous dissolution and sampling to quantify fissile material content.

The precision to which fissile actinide content in spent fuel must be measured
varies by application. Currently, the International Atomic Energy Agency (IAEA),
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which is the primary international safeguarding agency, has a goal of “no material
unaccounted for” (MUF). The MUF is defined as the difference between the amount
of material that has entered a facility and the sum of the material leaving and
present at the facility. For example, if more 239Pu has entered a facility than is
found to be present and has left, the MUF would be positive, indicating there is
material unaccounted for. Because every measurement is associated with a degree
uncertainty MUF must also have an associated uncertainty. A goal of improving
safeguards technology is to reduce the uncertainty in MUF to as low as possible.

In principle, and in the absence of systematic uncertainty, measurements of fis-
sile material in spent fuel should vary from the true value by a Gaussian distribution
whose width is described by the standard deviation of the measurement uncertainty.
Current spent fuel reprocessing systems process about three PWR assemblies per
day, each containing about 3 kg of 239Pu. If, before dissolution of each assembly,
measurements of 239Pu content were conducted at 10% precision, the system would
yield an expected monthly 239Pu MUF uncertainty of about 2.5 kg due to statistical
errors alone, and excluding any systematic errors. Over the course of a year, the
mass uncertainty would be about 8.7 kg. This implies that continuous deviations of
small amounts of 239Pu could go un-noticed by materials accountancy methods based
on 10% measurements, and that over the course of one or two years, the quantity of
Pu necessary to create a weapon could be stolen while the facility satisfies safeguards
regulations.

Reprocessing facilities presently use destructive analysis of an aqueous sample
taken from the input accountability tank to provide the fissile material measurement
at a nominal accuracy of ±1%. This implies that uncertainties in input 239Pu quan-
tities are one-tenth as large as those assumed above, and that continuous deviations
would need to occur over the course of approximately 100 years, (or at multiple
reprocessing facilities) to go un-detected.

However, diversion of dissolved spent fuel that circumvents the input account-
ability tank could dramatically increase the rate of un-detected 239Pu diversion. This
has motivated research into measuring the content of intact spent fuel assemblies.

Indirect measurements of plutonium content in spent fuel assemblies can re-
sult in impressive precision when well-known reactor conditions are compared to
reactor models. However, without knowledge of reactor operating conditions (such
as power level variations with time), these models tend to be accurate to only ±
10-20%. Because operators may intentionally or unintentionally supply inaccurate
information regarding the irradiation history of a fuel, the most robust safeguards
measurement would be direct measurement of fissile material content We therefore
conclude that any technique capable of directly measuring, with moderate precision
and high accuracy, plutonium or 235U content in intact spent nuclear fuel would be
a technological improvement. Studies into several methods to conduct such mea-
surements are underway(9), and it is from this perspective that nuclear resonance
fluorescence is considered as a technology to assay isotopic content of spent nuclear
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fuel.

1.2 Nuclear Forensics

Nuclear forensics is an endeavor devoted to identifying the origin of nuclear
materials by measuring the composition and structure of a material, which may
help to indicate its source. Typical forensics analyses usually involve sample separa-
tion through physical structure studies, wet chemical processes, and a combination
of mass spectrometry and γ-ray counting to identify isotopic compositions. Such
methods normally represent the most effective way to perform nuclear forensics mea-
surements. However, for certain types of samples, these methods have shortcomings.

Forensics analyses require that the analytical chemical processes be conducted
on a representative sample or its entirety and thus the sample must be opened, pro-
cessed, and in the sense of changing its form, destroyed. If a significant fraction of
the initial radioactive material has undergone decay, chemical fractionation may also
have occurred due to stoichiometric changes resulting from radioactive decay. Like-
wise, highly radioactive sources may produce sufficient heat to accelerate chemical
diffusion that can cause spatial segregation of elements and thus make it difficult to
select a ”representative” sample of the whole.

For relatively weak sources, dissolution and analysis is fairly straightforward.
However, sampling or sources of more than 102 Ci in such a manner is a daunting
task. Examples that consider the use of NRF to perform non-destructive forensics
assays for very large radiological sources are considered in Section 3.1.3.

1.3 Potential of Nuclear Resonance Fluorescence

While a detailed description of the physics of nuclear resonance fluorescence is
provided in Section 2.11, it is worthwhile here to provide a qualitative description
of the main features of NRF that make its measurement very attractive as a non-
destructive assay signature. NRF is the process by which a nucleus is excited by the
absorption of a specific quantum of energy, followed by de-excitation of the excited
nucleus via the emission of one or more γ-rays. The energies of the excited state, as
well as the emitted γ-rays, are specific to a given nucleus. By measuring the resonant
absorption and/or the emitted γ-rays, the quantity of an isotope undergoing NRF
may be ascertained. Correlating the rates at which NRF processes are measured
to the quantity of the isotope within a target is the subject of Chapter 3. Unfortu-
nately, the isotope-specific signatures of NRF can be difficult to measure because the
intensities of these signals are often small compared to background signals induced
either by interactions of the interrogating photon beam or by radioactivity in the as-
say geometry. Photon scattering processes that can result in significant background
limitations is the primary subject of Chapter 2.
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The potential of using nuclear resonance fluorescence to non-destructively mea-
sure the isotopic composition of a target has been previously applied to measure-
ments of 13C content in synthetic diamonds as part of studies on the mechanism of
diamond formation(10). With the exception of H (whose isotopes have no nuclear
structure), all measured isotopes have demonstrated a NRF signature(67). In recent
years, the NRF responses of 235U and 239Pu were measured for the purpose of using
NRF signatures to identify nuclear weapons material in cargo(123). These measure-
ments also enable studies of the use of nuclear resonance fluorescence signatures to
measure 235U and 239Pu in other applications.

1.4 Dissertation Outline

This dissertation discusses the measurement NRF signatures by inducing reso-
nance excitation in an assay target. It subsequently relates the strengths of these
signatures to the quantity of the resonant material within the assay target. The
intensity of these NRF signatures is generally very small compared to the intensities
of photons that leave the assay target due to all other processes. Through consider-
ation of the cross sections for NRF and other processes that induce photon emission
from an assay target, the relative intensity of NRF signals and background signals
are compared. This comparison of signal and background intensities is then used to
relate the uncertainty in counting of NRF γ-rays to the statistical uncertainty of the
measured concentration of the resonating isotope.

Chapter 2 begins by describing the processes that contribute to the photon
background. These processes include elastic and inelastic photon scattering, as well
as more complicated processes such as those that yield bremsstrahlung emitted from
photo-electrons. Because of the complexities of these processes the Monte Carlo
radiation transport code, MCNPX was used to simulate processes that contribute to
the background.2 Photon scattering physics dictate that for 1.5 to 4 MeV incident-
energy photons, the scattered photons will be mostly forwards-directed and, at large
relative angles, will be reduced in intensity and energy. This trend indicates that
the detection of 1.5 to 4 MeV NRF γ-rays may be achieved by measuring the photon
spectrum from a target at back angles with respect to the direction on the interro-

2Surprisingly, it was found in this work that MCNPX had been inadvertently coded to neglect
a significant portion of the elastic photon scattering process. Repair of this problem is described in
Appendix A, and all MCNPX calculations described herein either use this modified version of MC-
NPX, or explicitly do not include elastic scattering in the calculation, the latter being implemented
when the contribution to the scattered spectrum is desired to be known more accurately. In this
case, the spectrum due to elastic scattering cross sections is calculated from angle-differentiated
elastic scattering cross sections that include contributions due to photo-nuclear and S-Matrix atomic
Rayleigh scattering amplitudes. This spectrum is subsequently added to the MCNPX results that
exclude elastic photon scattering. See Reference(45) for a description of the changes to MCNPX
that will be implemented in the next release of the code and Section 2.10 for a description of
formulating elastic scattering cross sections.
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gating photon beam.
After descriptions of non-resonant photon scattering, the physics of nuclear

resonance fluorescence, descriptions of models describing NRF states, angular de-
pendences of emitted NRF γ-rays, and the effect of the medium on the energy of
the emitted γ-rays are presented. Chapter 2 concludes with a brief discussion of
radiation detector responses, focusing on energy resolution and how relative rates of
signal and background events relate to the statistical uncertainty in the measured
signal. This relationship proves to be important because it is infrequent that NRF
signal detection can be considered separately from the background.

Chapter 3 describes model approaches to predicting the effectiveness of NRF
assay measurements. These predictions are made by comparing expected rates at
which high-purity germanium detectors would measure NRF γ-rays and background
photons. For most predictions, it is assumed that bremsstrahlung-spectrum photons
are used to induce NRF. However, estimates are also made for a hypothetical quasi-
monoenergetic photon source. Two assay methods are outlined and are followed by
more detailed descriptions of models examining how each method would perform in
an assay measurement of nuclear material.

The first assay method considered is one where NRF γ-rays are observed by
measuring the intensity of photons leaving the assay target at large angles, relative
to the incident interrogating radiation. Assaying spent fuel for nuclear safeguards
purposes and radiological sources for nuclear forensics purposes are specifically con-
sidered in Section 3.1. Section 3.2 presents model predictions for a more complicated
assay method in which the transmitted photon spectrum is measured, and the rela-
tive reduction in resonant-energy photon intensities indicates the concentration of an
isotope in the assay target. Chapter 4 describes a series of measurements designed
to test the model predictions of the transmission assay method.

Appendices A and B are also included to document modifications to the Monte
Carlo radiation transport code, MCNPX, and the nuclear data files used by the
code to enable it to more-accurately simulate physical processes relevant to nuclear
resonance fluorescence. Appendix C documents MCNPX simulations conducted in
support of this work.
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Chapter 2

Photon Scattering Physics

The physics that defines photon scattering is central to applying nuclear reso-
nance fluorescence for materials assay. The physics processes can be divided as either
photon scattering due to interactions with atomic electrons or with nuclear material.
In this chapter, this physics is discussed in the context of non-destructive assay mea-
surements using NRF. The chapter begins by describing photo-atomic scattering and
pair production before discussing Monte Carlo simulation results to describe more
complex photon scattering processes. Thereafter, photonuclear scattering processes
and NRF are discussed.

Although a detailed description of the physics and phenomena of NRF is in-
cluded later in the chapter, it is instructive to give an overview of NRF to provide
context for the discussions of other scattering processes.

Nuclear resonance fluorescence is the process by which a nucleus absorbs energy
in the form of electromagnetic radiation, is excited to a nuclear state, and then
subsequently de-excites to the ground state by the emission of one or more γ-rays.
As will be discussed later, the angular distribution of re-emitted photons is governed
by the angular momenta of the states involved in the process, however, to zeroth-
order, the emitted photons can be considered isotropic, and of energy equal to the
NRF-inducing photon.

The energies of the photon that induced the initial excitation, and the energy
of the re-emitted photon(s) are characteristic of the specific state that underwent
NRF and therefore, are also characteristic of the isotope. Photons produced during
de-excitation of a NRF state are referred to herein as NRF γ-rays. Because the NRF
states are simply excited nuclear states, the energies possible for NRF γ-rays range
from 10’s of keV up to many MeV. However, for the purpose of using NRF to assay
materials, photons of energy between 1.5 and 4 MeV are most useful.

Both the elastic and inelastic scattering of photons may provide background for
the detection of characteristic NRF γ-rays. However, physical properties of these
scattering mechanisms cause the background intensity for the detection of NRF γ-
rays to be a function of both the interrogating beam’s energy spectrum and the
geometry of the detection setup. In this chapter, it will be demonstrated that mea-
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surement of NRF γ-rays at backwards angles – relative to the interrogating beam
direction – yields backgrounds that are significantly reduced relative to a comparable
setup with measurement of forward-directed photons.

2.1 Thomson Scattering

2.1.1 Polarized Incident Beam

Thomson scattering is the classically-predicted way in which a charged particle
interacts with an electromagnetic plane wave. Thompson scattering can also be
predicted quantum mechanically and forms the basis for Rayleigh and incoherent
scattering, as well as nuclear Thomson scattering. Thomson scattering of a photon
incident upon an electron defines the unit re, the classical electron radius, which is
often seen in photo-atomic scattering formulas.

An ensemble of photons traveling through space can be described by a plane
wave whose electric field is:

E = ε̂E0ei(k·r−ωt) (2.1)

Where E0 is the amplitude of the incident plane wave, ε̂ is the polarization of the
plane wave, k is the wave vector (which is normal to ε̂), and ω is the angular frequency
of the plane wave.

The Poynting vector defines the power per unit area carried by an electromag-
netic wave.

S = ε0c
2(E×B) (2.2)

where ε0 is the permeability of free space, c is the speed of light, and B is the magnetic
field vector. Because for a plane wave the magnetic field is normal to the electric field
(and also normal to ε̂) and |B| = |E|/c, we can express the time-averaged Poynting
vector as

< S > = ε0c < |E|2 > (2.3)

= ε0c
E2

0

2

A free electron subjected to the oscillating electromagnetic field will likewise
oscillate. The equation of motion for this oscillation is given by

F = qE = m
d2x

dt2
ε̂ (2.4)

where q and m are the charge and mass of the stationary charged particle, re-
spectively, and x is the distance from the equilibrium position of the particle. An
oscillating electric charge produces an oscillating electromagnetic field, which emits
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power in a distribution that is approximated as a dipole distribution. This approxi-
mation is valid when the position at which F and mathbfE are evaluated, r, is large
and the magnitude of the oscillations is smaller than the wavelength of the radiation.

dP

dΩ
=

(
q2

4πε0mc2

)2
ε0cE

2
0

2
sin2φ. (2.5)

Here, φ is the angle of emitted radiation relative to the polarization vector and also
defines the direction of oscillation of the charged particle.

The differential scattering cross section is given by

dσ

dΩ
=
dP/dΩ

<S>
(2.6)

which by substitution, yields

dσTh
dΩ polarized

(φ) =
q4

16π2ε20m
2c4

sin2 φ (2.7)

2.1.2 Unpolarized Incident Radiation

To this point only polarized incident radiation has been considered. To extend
the derivation to unpolarized incident radiation, we must average the result from
equation 2.7 over all polarizations. We define an orthogonal coordinate system,
shown in Figure 2.1, spanned by ε̂, k̂, and ε̂′. (Note, ε̂ has been previously defined,
k̂ = k/|k| and ε̂′ = ε̂ × k̂.) An arbitrary polarization vector, n̂, is located in this
space, and can be described in terms of the orthonormal basis vectors as

n̂ = sin θ sinψ ε̂+ sin θ cosψ ε̂′ + cos θ k̂ (2.8)

We now must determine the quantity sin2 φ averaged over all polarizations. This
is equivalent to averaging over all values of ψ, since ε̂ must always be normal to k̂.
This is done by noting

ε̂ · n̂ = cosφ = sin θ sinψ (2.9)

and using sin2 φ+ cos2 φ = 1, to obtain

sin2 φ = 1− sin2 θ sin2 ψ (2.10)

Averaging equation 2.10 over all possible values of ψ yields

sin2 θ = 1− sin2 θ sin2 ψ = 1− sin2 θ

2
=

1 + cos2 θ

2
(2.11)

Replacing sin2 θ in equation 2.7 with sin2 θ, we have the classical Thomson differential
scattering cross section for unpolarized radiation.

dσTh
dΩ

(θ) =
q4

16π2ε20m
2c4

(
1 + cos2 θ

2

)
(2.12)
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Figure 2.1 Geometric orientation of axes and vectors for calculation of differential
Thomson scattering cross section for unpolarized radiation.

If the charged particle is an electron of mass m = me and charge q = qe, this is
further simplified by the relation

re = q2
e/4πε0mec

2 (2.13)

to yield

σTh(θ) =
dσTh
dΩ e−

(θ) =
r2
e

2
(1 + cos2 θ) (2.14)

The differential Thomson scattering cross section is independent of the energy
of the incident radiation, and contributes significant intensity to all directions. We
will later note that these observations hold true for Thomson scattering of pho-
tons incident upon nuclei, but that the influence of the binding of atomic electrons
significantly alters these findings for Rayleigh scattering.

2.2 Compton Scattering

Compton scattering involves the inelastic scatter of a photon due to interaction
with an electron. The kinematics of the collision can be derived using conservation of
kinetic energy and momentum. The differential cross section for Compton scattering
was derived by Klein and Nishina(11) in 1929 using second-order perturbation theory
in quantum electrodynamics.

2.2.1 Compton Scattering Kinematics

The derivation of the kinematics of Compton scattering requires that the pho-
ton’s momentum must be explicitly considered. This implies that the derivation
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must be done with considerations of special relativity.
We start by stating kinetic energy and momentum conservation, for a photon

of initial energy and momentum E and p, that interacts with an electron at rest,
giving the electron energy, Ee, and momentum, pe, and leaving with energy and
momentum E ′ and p′.

E = E ′ + Te (2.15)

p = p′ + pe (2.16)

The total electron energyl, Ee is related to momentum and its rest-mass by,

E2
e = p2

ec
2 +m2

ec
4 (2.17)

By substituting Te = Ee −mec
2 (where Ee is the total energy of the e-) into equa-

tion 2.15 and squaring, we find

E2
e = (E − E ′)2 +m2

ec
4 + 2mec

2(E − E ′) (2.18)

Squaring the vector difference, pe = p− p′, we obtain

p2
e = p2 + p′2 − 2pp′ cos θ (2.19)

where θ is the angle between the incident and scattered photons, and p indicates the
magnitude of the momentum vector, p.

We multiply equation 2.19 by c2, and note that for photons, E = pc, to yield

p2
ec

2 = E2 + E ′2 − 2EE ′ cos θ (2.20)

Using equation 2.17, and rearranging, we have

E2
e = E2 + E ′2 − 2EE ′ cos θ +m2

ec
4 (2.21)

We can equate this to equation 2.18 and cancel like terms to find

−2EE ′ + 2mec
2(E − E ′) = 2EE ′ cos θ (2.22)

Collecting all E ′ terms, we find

E ′ =
2mec

2E

2mec2 + 2E(1− cos θ)
(2.23)

which is further simplified to

E ′ =
E

1 + α(1− cos θ)
(2.24)
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by use of the common definition, α = E0/mec
2. α is often referred to as the reduced

photon energy. Re-expressing equation 2.24 for the kinetic energy of the electron,
we have

Te = E − E ′ = E
α(1− cos θ)

1 + α(1− cos θ)
(2.25)

By conserving the parallel and perpendicular components of momentum, one
can also derive an expression for the angle at which the electron is ejected, φ.

cotφ = (1 + α) tan
θ

2
(2.26)

The relations derived above assume that the electron is free. The real description
of the kinematics of inelastic scattering of a photon due to interaction with an atomic
electron would necessarily include the binding energy of the electron. However,
given that we are most interested in MeV-energy photons, the binding of outer-
shell electrons to atoms is typically several eV, and even the K-shell electrons of
uranium have a binding energy of only 116 keV(12), we conclude that the real
kinematics experienced by MeV photons when undergoing inelastic scattering due to
atomic electrons can be considered very similar to those described by equations 2.24
through 2.26.

The energy of emitted photons is plotted as a function of angle and various
reduced energies as the black curves in Figure 2.2. For a photon of α = 10, or
E = 5.1 MeV, the energy of a scattered photon drops below 1 MeV at an angle
φ ≥ 53.9 degrees. Even for Compton-scattering of a 50-MeV photon, the energy of
the scattered photon drops below 1 MeV at 60 degrees. This indicates that Compton
scattering cannot produce high-energy photons in large angles relative to the initial
photon trajectory.

The gray curves in Figure 2.2 correspond to energies of electrons emitted dur-
ing the Compton scattering of a photon of initial reduced energy α scattered into
the angle θ. These curves indicate that while Compton scattering cannot produce
high-energy secondary photons in large scattering angles, the energies of Compton
electrons can remain quite high. However, equation 2.26 indicates that the Compton
electron is always emitted in relatively forward directions and that the emission is
symmetric about φ = 0. Figure 2.3 presents the same Compton electron energies as
those shown in Figure 2.2, but as a function of the Compton electron angle, φ. From
this we can see that energetic Compton electrons are only emitted in small angles
relative to the direction of the incident photon.

2.2.2 Klein-Nishina Formula

The derivation of the Compton differential scattering cross section is based on
a second-order perturbation of the relativistic Dirac equation. This formulation is
capable of reproducing the Thomson scattering cross sections, however there is no
classical analogue for the Klein-Nishina formula (KN).
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Figure 2.2 Energies of Compton-scattered photons (black) and Compton electrons
(gray) as a function of photon scattering angle, θ for various initial reduced photon
energies, α = 0.5, 1, 2, 3, 5, and 10.

Figure 2.3 Energies of Compton electrons as a function of angle relative to the
incident photon trajectory for various incident reduced photon energies, α = 0.5, 1,
2, 3, 5, and 10.
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In perturbation theory, differential scattering cross sections for photon interac-
tions can be calculated as

dσ

dΩ
=

V 2

(2π)3ct

∫ ∞
0

k′2|Mfi|2dk′ (2.27)

where V is an arbitrary volume over which the calculation is normalized, k′ is the
wave vector of the scattered photon, the integral over all k′ corresponds to the density
of final states, andMfi is the interaction matrix element linking the initial and final
states.

For Compton scattering, the matrix element, or transition amplitude is obtained
by evaluation the second-order perturbation expansion of the electromagnetic field
operator linking the initial and final states1

Mfi =
∑
n

<f|H1|n><n|H1|i>
En − Ei

(2.28)

Derivation involves assuming that a virtual positron is created and propagates be-
tween two interaction points. The Compton interaction may be defined in two
topologies, one where the virtual positron propagates between the point in space-
time where the initial electron and photon interact and the point where the scattered
photon and Compton electron are produced. The alternative topology assumes that
the incident electron and scattered photon are located at one point and connected
by the virtual positron to the point in space-time where the incident photon and
Compton electron converge.

By analyzing the matrix elements described by these two topologies, averaging
over all polarization in a fashion similar to that described in Section 2.1.2, and
taking the phase-space of the products into account, one may arrive at the KN

1The Hamiltonian of matter with charge, q, and magnetic moment, µ, in an electromagnetic

field containing photons is often written as H =
∑
λ

~ωka+
λ aλ + 1

2m

(
p− q

cA
)2

+ µ · B, where

the vector potential is given by A =
√

2π2

V

∑
λ

1√
ωk

[
ελaλ exp(ik · r) + ε∗λa

+
λ exp(−ik · r)

]
, and the

magnetic field is given by B =
√

2π2

V

∑
λ

1√
ωk

[
i(k× ελ)aλ exp(ik · r)− i(k× ε∗λ)a+

λ exp(−ik · r)
]
. In

these expressions, the sum over λ implies all possible polarizations, denoted by ελ, and all possible
photon wave vectors, k. aλ and a+

λ are the photon annihilation and creation operators respectively,
and V is an arbitrary volume over which the spatial wave functions that the Hamiltonian acts

upon must be normalized. Re-writing H to apply perturbation theory; H0 = p2

2m +
∑
λ

~ωka+
λ aλ

is the un-perturbed Hamiltonian, which corresponds to a state containing an arbitrary number

of photons and a particle, with kinetic energy, p2

2m . To first-order, the perturbing Hamiltonian is

H1 = q
mcp ·A+µ ·B. At second-order the Hamiltonian, H2 = q2

2mc2A
2 must be considered as well

as second-order perturbation element of H1.
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Figure 2.4 Compton scattering cross section vs. incident photon energy for photons
incident upon a single free electron.

formula describing the angle-differentiated Compton scattering cross section.

σKN(Ω) =
r2
e

2
[1+α(1−cos θ)]−3[−α cos3 θ+(α2 +α+1)(1+cos2 θ)−α(2α+1) cos θ]

(2.29)
Integrating equation 2.29 over all angles yields the total Compton scattering cross
section, which is a function only of the incident photon’s energy.

σCompton(E) = 2πr2
e

(
1 + α

α2

[
2 + 2α

1 + 2α
− 1

α
ln(1 + 2α)

]
+

1

2α
ln(1 + 2α)− 1 + 3α

(1 + 2α)2

)
(2.30)

This is plotted for a wide range of E in Figure 2.4. We will note in the following
sections how the processes of Compton scattering differs when the scattering material
is comprised of atoms containing bound electrons.

Equation 2.29 can be integrated over the azimuthal angle to yield a cross section
proportional to the probability of scattering a photon into the angle θ + dθ.

σKN(θ) =

∫ 2π

0

σKN(Ω) sin θdφ (2.31)

= 2π sin θσKN(Ω) (2.32)

because σKN(Ω) is independent of φ. This angle-differentiated cross section is plotted
versus θ for a range of incident photon energies, E, in Figure 2.5. Clearly, for
E & 1 MeV incident photons, Compton scattering predominantly produces scattered
photons in forward directions.
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Figure 2.5 The KN differential scattering cross section for photon scattering of angle
θ for incident photons of energy α=0.5, 1, 2, 3, 5, and 10.

To further examine the forward-directed nature of Compton scattering, we eval-
uate the fraction ∫ π

θmin
σKN(θ)∫ π

0
σKN(θ)

(2.33)

This expression is calculated for the case of backwards-scattering, i.e. θmin = 90o,
and plotted as a function of incident photon energy, E, in Figure 2.6. For E → 0,
this fraction is 1/2, which corresponds to the fact that as E → 0, Compton scat-
tering approaches the symmetrical distribution predicted in the Thomson scattering
limit. However, at E = 1 MeV, the fraction of Compton-scattered photons emit-
ted into the backwards hemisphere is only 0.268, and drops to 0.165 at E = 10
MeV. Thus, while Compton scattering is predominantly forward-directed there is
a non-negligible probability of scattering photons into the backwards direction. It
should be remembered, however, that in Figure 2.2 indicates the energy of Compton
backscattered photons is below 500 keV for incident photon energies of interest.

2.3 Rayleigh Scattering

Rayleigh scattering is the process where the electronic cloud of an atomic elas-
tically scatters an incident photon. It is the dominant elastic photon scattering
mechanism for the majority of incident photon energies considered here. Because
of this dominance, the term coherent scattering – which refers to the coherent sum
of all elastic scattering processes – is often used in place of Rayleigh scattering to
describe this process. However, in the case of backscattering of 1.5 - 4 MeV pho-
tons, Rayleigh scattering is not particularly dominant, and the distinction between
different scattering mechanisms must be made.
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Figure 2.6 The fraction of Compton-scattered photons that scatter into the direction
θ ≥ 90o.

When expanding the concept of Thomson scattering from an isolated electron
to an atomic electron, the primary effect is that the electron is no longer a point
particle at rest. Instead, the electron is bound, and therefore is described by a
distributed atomic orbital wave function. Because of this, we must now take a
quantum electrodynamics approach to the interaction of the incident photon with
the atom in its ground state. Symbolically, the initial state is written as, |Ψ0, k >
and the final state, |Ψ0, k

′ >, where k and k′ are the wave vectors of the incident
and scattered photon, respectively and Ψ0 is the ground state wave function of the
atom.

The operator connecting these two states is that of the electromagnetic field,
described in Section 2.2.2, but equation 2.27 must also contain the wave functions
of the atomic electron that causes the scatter. We will first discuss the simplest
approach to describe cross sections for Rayleigh scattering in Section 2.3.1. This
will be followed by a brief outline of a more thorough description of the scattering
process, a comparison of results from the two approaches, and the effects of the
approximation for background calculations for NRF measurements in Section 2.3.2

2.3.1 Form Factor Approximation

The form factor approximation is the simplest method to theoretically include
considerations of the wave function of the atomic electron. The form factor results
from modifying the matrix element (equation 2.28) to take electron-atom binding
into account. This is done by assuming that electrons in the scattering atom can
each be described by a single-particle wave function, |Ψ0> and that the electron wave
functions are estimated in a self-consistent manner. By assuming that the electro-
magnetic field of the incident photon may be considered as a small perturbation
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to the atomic electron wave functions, one may obtain from equation 2.28 a factor
by which free electron Thomson scattering cross sections are multiplied to obtain
Rayleigh scattering cross sections:

F (q, Z) =
Z∑
n=1

<Ψ0| exp(iq · rn)|Ψ0> (2.34)

F (q, Z) is known as the coherent scattering form factor. Here, rn is the radial
coordinate of the nth electron, relative to the nucleus, Z is the total number of
electrons in the neutral atom, q is the vector momentum transferred to the electron
during the interaction whose amplitude is given by

q = 2~k sin(θ/2) (2.35)

and the term exp(iq ·rn) represents the momentum transfer between the photon and
electron. It should be noted that q is frequently tabulated in units of Å−1, which is
the wave number corresponding to the electron’s momentum. (Conversion between
photon energy and momentum units is discussed in Appendix A.)

By making the first-order approximation that the momentum transfer action
commutes with |Ψ>, 2 one can simplify equation 2.34 to

F (q, Z) =

∫
ρ(r) exp(iq · rn)d3r (2.38)

where it is assumed that <Ψ∗0|Ψ0>= ρ(r) and
∫
ρ(r)d3r = Z.

With the assumption that ρ(r) is spherically symmetric, we can express equa-
tion 2.38 as

F (q, Z) = 4π

∫ ∞
0

ρ(r)
sin(qr)

qr
r2dr (2.39)

which is the expression evaluated using theoretically predicted electron density dis-
tributions to tabulate F (q, Z).

The result of this formulation,

σRay(θ) = σTh(θ) [F (q, Z)]2 (2.40)

2It can be seen that this is not strictly correct, since

exp(iq · rn) = 1 + iq · rn +
(iq · rn)2

2!
+

(iq · rn)3

3!
+ · · · (2.36)

and by representing q = p/~ = −i∇, generally∫
d3rΨ∗∇ · (rnΨ) 6=

∫
d3r∇ · (rnΨ∗Ψ) (2.37)

Therefore the linear approximation of exp(iq · rn) does commute with |Ψ>, and this remains true
for further expansions.
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Figure 2.7 Coherent scattering form factors from EPDL97 for uranium, cesium, iron,
aluminum and carbon, divided by respective atomic numbers.

is the form factor approximation of the angle-differentiated Rayleigh scattering cross
section for an atom of atomic number Z.

As q → 0, the term sin(qr)
qr
→ 1, therefore for very low momentum transfer inter-

actions, F (q, Z) = Z. Conversely, as q →∞, the term sin(qr)
qr
→ 0, and F (q, Z)→ 0,

and we expect σRay → 0 as well. This, however, is where the distinction between
coherent and Rayleigh scattering becomes important, and where the approxima-
tion that resulted in equation 2.38 becomes problematic. Coherent scattering form
factors taken from the evaluated photon data library EPDL97(19) are shown in Fig-
ure 2.7, where they are divided by Z and plotted versus q. The curves indicate that
higher atomic numbers result in slower decreases of form factor values with increas-
ing q. In the following section, we will see that angle-differentiated cross sections of
Rayleigh scattering cannot simply be defined by the form factor approximation. In
Section 2.10 it will be observed that at MeV-range energies, other elastic scattering
processes render the form factor approximation completely invalid for description of
coherent scattering.

2.3.2 S-Matrix Rayleigh Scattering Formulation and Com-
parison with the Form Factor Approximation

If, instead of neglecting the non-commutation of |Ψ0 > and exp(ikr) in equa-
tion 2.34, the full relativistic quantum-electrodynamic calculation is performed start-
ing with equation 2.28, the result is the so-called S-Matrix evaluation of the Rayleigh
scattering cross section.

For the case of S-Matrix calculations of Rayleigh scattering, formulations of
each electron’s wave function, computed via self-consistent field method where each
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electron is assumed to interact with the mean field, are explicitly used for the state,
|Ψ0 >. Using these wave functions and the momentum transfer action, matrix ele-
ments are calculated numerically for the inner-shell electrons, and in a few test cases
all atomic electrons. The inner shell S-Matrix calculations were combined with form
factor approximations of outer shell electrons for all atoms, but only for a limited
number of energies. The results are tabulated in the Rayleigh scattering database
known as RTAB(15).

The S-Matrix calculations generally agree with experiment where photonuclear
interactions are insignificant. Reference (16) demonstrates this agreement to within
experimental uncertainties, for theoretical uncertainties (due to atomic structure
calculations) of 2% for a wide variety of experiments with the following paramters:
59 keV ≤ E ≤ 1332 keV, for Al, Zn, Mo, Sn, Nd, Ta, Pb, and U, and 10o ≤ θ ≤ 150o.

Figure 2.8 presents the Rayleigh scattering differential cross sections for photons
incident upon uranium, as retrieved form the S-Matrix tabulation of reference(17)
as well as cross sections based on the form factor approximation, calculated using
equation 2.40 and form factors tabulated in the evaluated nuclear data files ENDF/B-
VII(18). The form factor data contained in the ENDF/B-VII files are from the eval-
uations of the evaluated photon data library EPDL97(19). These tabulations also
include terms called anomalous scattering factors. These are theoretical corrections
to the form factor approximation in which the impulsive nature of the momentum
transfer between the photon and an atomic electron is defined by a relativistic dis-
persion relation rather than assuming a δ-function in the reaction coordinate. The
comparison made here excludes anomalous scattering factors because derivations of
the latter were obtained with the assumption of low-energy photons (< 100 keV),
and the resulting angular dependence in the differential scattering cross sections
become very inaccurate above these energies(20).

In Figure 2.8, we can see that the results from the two calculational methods
agree up to approximately 30o for E = 0.344 MeV, 14o for E = 1.173 MeV, and 7o for
E = 2.754 MeV. The disagreement between the two calculational methods increases
with increasing angles. Since the majority of the total Rayleigh scattering cross sec-
tion is due to small-angle scattering, this fact also indicates a degree of agreement
in the total Rayleigh cross section between the methods. However, at higher ener-
gies, the angle at which deviation becomes significant becomes progressively smaller.
Further, the relative disagreement between the two formulations becomes larger at
higher energies. The S-Matrix value for the 2.754-MeV cross sections at θ = 135o is
3.3 times that of the form factor result, whereas for 0.344-MeV photons the S-Matrix
calculation gives a differential cross section that is 1.3 times that of the form factor
result.

Another important quality of the S-Matrix approach to Rayleigh scattering is
that the matrix elements in the transition amplitude expression, equation 2.28, are
complex quantities. This is important because the coherent photon scattering cross
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Figure 2.8 S-Matrix and form factor-calculated Rayleigh scattering differential cross
sections for photons of E = 2.754, 1.173, and 0.344 MeV incident upon uranium.

section is defined as

σCoh =
∣∣∣∑ ai

∣∣∣2 (2.41)

Therefore scattering amplitudes can destructively interfere. This will be discussed
in further detail in Section 2.9.

Because of the differences between the form factor and S-Matrix cross sections,
calculated intensities of scattered photons will depend upon the method used to
predict them. The most commonly used Monte Carlo radiation transport codes,
Geant4(21), Cog(22), MCNP5(25), and MCNPX(23) all use the form factor approx-
imation with the EPDL97 as the data source. However, by explicitly excluding
elastic scattering processes from simulations and subsequently adding the expected
spectrum from elastic scattering, many results shown in Chapter 3 contain S-Matrix
Rayleigh scattering cross sections.

2.4 Incoherent Scattering

Incoherent scattering is the process of Compton scattering by electrons bound
to an atom. The theoretical treatment of incoherent scattering is very similar to
that of Rayleigh scattering with the exception that the cross section is given by

σInc(θ) = σKN(θ)S(q, Z) (2.42)

where S(q, Z) is called the incoherent scattering function.
The incoherent scattering function can be derived on a similar basis to that used

to define the coherent scattering form factor, with the exception that the final atomic
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state includes all excited atomic states, explicitly including all unbound states. With
this, equation 2.34 for a single excited state becomes

Fε(q, Z) =
Z∑
n=1

<Ψε| exp(iq · rn)|Ψ0> (2.43)

where |Ψε> corresponds to an excited single electron state.
The incoherent scattering function is then related to equation 2.43 by

S(q, Z) =
∑
ε>0

|Fε(q, Z)|2 (2.44)

Using the completeness identity:∑
ε

|Ψε><Ψε| = 1 (2.45)

we have,

S(q, Z) =
Z∑

m=1

Z∑
n=1

<Ψ0| exp[iq · (rm − rn)]|Ψ0> −|F (q, Z)|2 (2.46)

Which implies that the computation if uncoherent scattering functions only requires
analytical descriptions of ground state wave functions(27).

The momentum transfer quantity, q in incoherent scattering functions is, like
q for Rayleigh scattering, the momentum transferred to the electron during the
scattering interaction. However, because the scattered photon loses energy, it is
given by

q =
υE√

2

√
1 +

(
E ′

E

)2

− 2
E ′

E
cos(θ) (2.47)

where υ = 1
hc

3.
Figure 2.9 presents q as a function of scattering angle for inelastic scattering of

photons with incident energies 0.5, 1, and 2 MeV. Figure 2.10 presents S(q, Z) for
aluminum (Z = 13) and uranium (Z = 92). The functions approach their maxima,
Z, above q ≈ 3 and 20 Å−1, respectively. In general, incoherent scattering func-
tions will behave similarly to the two examples shown, with normalized scattering
functions for intermediate Z falling between the two examples shown in Figure 2.10.
Since the momentum transfer for inelastic scattering of photons above 0.5 MeV and
θ ≥ 90, is always greater than 30 Å−1, the differential cross section for incoherent
photon scattering, for the purpose of considering photon backscattering in the 1.5 -
4 MeV energy range can be taken as Z · σKN(θ).

3When υ is expressed as υ = mec
h = 41.21655 (MeVÅ)−1, q is then in reduced wave vector form

and in the units for which S(q, Z) is most commonly tabulated(26).
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Figure 2.9 Momentum transfer, q, versus angle of scattering, θ, for various incident
photon energies, E. Momentum transfer values are in units of reduced reduced wave
vector (Å−1).

Figure 2.10 Incoherent scattering functions S(q, Z) normalized to their maxima, Z,
for uranium and aluminum. Note the logarithmic scale of the abscissa.
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Figure 2.11 Spectrum of photons scattered that have been scattered by uranium
based on the Klein-Nishina cross section (dotted) and using incoherent scattering
function modifications (solid) for incident photon energies of 1.5, 2, 2.5, and 3 MeV.

Figure 2.11 displays scattered photon spectra as predicted by the Klein-Nishina
differential scattering cross section, and spectra calculated using the incoherent scat-
tering function of uranium is applied to the KN result. The Klein-Nishina spectra
use the relation

NKN(E ′) =
dθ

dE ′
σKN(θ) (2.48)

whereas the incoherent spectra use the relation

NInc(E
′) =

dθ

dE ′
σInc(θ) (2.49)

For most scattered photon energies, E ′, the Klein-Nishina and incoherent scatter-
ing function spectra are nearly identical. However, for scattered photons that re-
main near the incident energy, E, the scattering functions significantly suppress such
events. From equation 2.25, we know that this also corresponds to photons scattered
into the smallest scattering angles, θ.

Figure 2.12 shows the ratio of the differential cross section predicted by KN
to that of incoherent scattering as a function of angle, for photons incident upon
uranium. The ratio approaches ∞ as θ → 0, but at θ = 2 degrees, KN only over
predicts the scattering of photons into that angle by a factor of . 3, and above
θ = 10 degrees, KN is quite accurate.

We conclude the discussion of incoherent scattering by presenting the angular
distribution of the electrons emitted during the scattering process. The angular
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Figure 2.12 Factor by which the Klein-Nishina distribution over predicts scattered
photon intensity versus scattering angle for photons of energy 1.5, 2, 2.5, and 3 MeV
incident upon uranium.

distribution can be derived from the incoherent scattering cross section and the
relationship between the emitted photon angle, θ and the electron angle, φ, given by
equation 2.26.

Ne−(φ) =

∣∣∣∣dθdφ
∣∣∣∣NInc(θ) =

2 + 2(1− α)2 tan2 θ/2

(1 + α)(1 + tan2 θ/2)
NInc(θ) (2.50)

We divide by 2π sinφ to yield the differential cross section for electron emission.
Both this quantity, and 92 times the corresponding Klein-Nishina cross section are
plotted in Figure 2.13 for electrons emitted during incoherent and Compton scat-
tering of photons in uranium. The electron is always emitted into the forward 2π,
and becomes increasingly more forward-biased with increasing photon energy. The
effects of the incoherent scattering function are relatively small, decrease with higher
photon energy, and only manifest themselves to reduce the probability of electron
emission at angles near φ = 90o.

As discussed later, Compton electrons can become a photon source due to brems-
strahlung emission. Recalling Figure 2.3, we note that electron emission at small φ
results in the highest electron energies. Thus forward-directed, high-energy electron
emission is a significant part of the incoherent scattering process.

2.5 Photoelectric Absorption

Photoelectric absorption is the process by which a photon incident upon an
atom is absorbed, resulting in the ejection of an atomic electron.
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Figure 2.13 Angular distribution of electrons emitted during incoherent (solid) and
Compton (dotted) scattering of photons off of uranium for incident photon energies
of 1.5, 2, 2.5, and 3 MeV.

Energy conservation requires that the atomic electron receive an amount of
kinetic energy equal to

Ee = E − Φ (2.51)

where Φ is known as the work function, equal to the binding energy of the ejected
electron to the atom.

Perturbation theory predicts that the cross section for photoelectric absorption
can be written as

dσ

dΩPA
=

V 2

(2π)3ct

∫ ∞
0

k2
e |Mfi|2dke (2.52)

which is completely analogous to equation 2.27, except that now the phase space
is determined by integrating over all electron momenta. Photoelectric absorption is
also a first-order process, so the equation analogous to equation 2.28 is

Mfi =<Ψ∗ke|H1|Ψ0> (2.53)

Where H1 is again the first-order electromagnetic field operator (and only the term
that annihilates a photon contributes), e

mc
p · A, |Ψ0 > is the ground state wave

function of energy E0, and |Ψ∗ke> is the wave function of both the excited ion after
emission of the electron and the now free electron with momentum pe = ~ke.

These wave functions are generally only calculated for the case where the in-
cident photon energy, E � E0. Also by considering photoelectric absorption by
hydrogen or hydrogen-like atoms, the wave function of the ion can be neglected
because there are no remaining atomic electrons. With these approximations, the
differential cross section for photoelectric absorption by K-shell electrons, accompa-
nied by electron emission into the angle, θ, relative to the incident photon is found
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Figure 2.14 The angular portion of equation 2.54 plotted for photoelectrons emitted
with kinetic energies of 80 keV and 2 MeV.

to be(28)
dσ

dΩPA
=

16Z5

k(kea0)5

q2
e

mc2

sin2 θ

[1− (ve/c) cos(θ)]4
(2.54)

The angular dependence of equation 2.54 is plotted in Figure 2.14 for emitted elec-
tron velocities, ve/c = 0.5 and 0.9791, corresponding to electron energies of Ee = 80
keV, and 2 MeV, respectively. For relativistic photoelectrons, the tendency is to be
emitted in a direction close to the initial photon trajectory, whereas non-relativistic
photoelectrons approaching the limit ve/c → 0, tend toward a symmetric emission
distribution peaked at θ = 90o. However, at lower photoelectron energies, the as-
sumption Ee � E0 is no longer valid.

By integrating equation 2.54 over all solid angles, and assuming that E = Ee,
one arrives at the total photoelectric absorption cross section for K-shell electrons.

σPA(E) ≈
16π
√

(2)

3
α8
fZ

5a2
0

(
mc2

E

)7/2

(2.55)

Where αf is the fine structure constant, αf = q2
e

4πε0~c ≈ 1/137, and a0 is the Bohr

radius, a0 = 4πε0~2

meq2
e

= 0.53Å.

σPA(E) are taken from the database XCOM(29) and plotted as a function of
incident photon energy, E, for four different elements in Figure 2.15. The cross
sections vary between 106 and 5× 104 b at E = 1 keV, and between 2× 10−3 b and
2×10−7 b, at E = 10 GeV for uranium, and aluminum, respectively. In the range of
1-4 MeV, photoelectric absorption cross sections for lower-Z materials such as iron
and aluminum have already dropped below a tenth of a barn, whereas for uranium
the cross section remains above one barn. This implies that photoelectric absorption
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Figure 2.15 Photoelectric absorption cross sections as reported in XCOM,(29) ver-
sus incident photon energy, E for photons incident upon uranium, lead, iron, and
aluminum. The inset shows the uranium and lead cross sections in energy range of
1 - 4 MeV on linear scales.

remains a significant photon interaction process, and that energetic photoelectrons
(i.e. electrons ejected due to photoelectric absorption) are also created with non-
negligible probability.

2.6 Bremsstrahlung from Photon Scattering

Although bremsstrahlung is not directly produced by photon scattering, it is
often produced as secondary radiation by the electrons emitted during photoelectric
absorption or incoherent scattering. The process of bremsstrahlung production has
been theoretically examined,(30),(32),(33) yielding closed expressions for the differ-
ential bremsstrahlung cross section, but with approximations that either assume the
electron is non-relativistic, or highly-relativistic. In the intermediate electron energy
range (including 1.5 - 4 MeV), interpolation between the two limits has yielded the
most widely accepted bremsstrahlung cross sections(32). These cross sections are
included in Monte Carlo codes such as Penelope(31) and the MCNP codes(23),(25).

2.6.1 Bremsstrahlung Cross Sections

In the limit that the electron is considered to be non-relativistic, the Bethe-
Heitler bremsstrahlung cross section, differentiated with respect to the bremsstrah-
lung photon energy and direction, k and Ωk, respectively, and electron deflection,
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Ωp2 , is given by

d3σB
dkdΩkdΩp2

=
αZ2r2

e

4π2

p2

kp1q4

[
(4ε22− q2)

p2
1 sin2 θ1

(ε1 − p1 cos θ1)2
+ (4ε21− q2)

p2
2 sin2 θ2

(ε2 − p2 cos θ2)2
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2p1p2 sin θ1 sin θ2 cosφ

(ε1 − p1 cos θ1)(ε2 − p2 cos θ2)

+ 2k2 p2
1 sin2 θ1 + p2

2 sin2 θ2

(ε1 − p1 cos θ1)(ε2 − p2 cos θ2)

]
(2.56)

where

q2 = 2k[(ε1 − p1 cos θ1)− (ε2 − p2 cos θ2)]

+ 2[ε1ε2 − p1p2(cos θ1 cos θ2 + sin θ1 sin θ2 cosφ)− 1] (2.57)

ε1 and p1 are the energy and momentum of the electron before bremsstrahlung
emission, and ε2 and p2 after emission. θ1 and θ2 are the angles between the emitted
photon and the electron before and after emission, respectively, and φ defines the
angle between the initial and final electron trajectories, θ12 through the following
relation:

cos θ12 = sin θ1 sin θ2 cosφ+ cos θ1 cos θ2 (2.58)

Also, Z is the atomic number of the stopping material, and can be set to unity for
consideration of bremsstrahlung emitted during the slowing of a single electron due to
the electric field of a single atomic electron. The cross sections for bremsstrahlung
emission from the energetic electron’s interaction with each atomic electron and
each nucleus can be summed to give a total bremsstrahlung emission cross section,
however screening and nuclear recoil corrections are also commonly implemented.

The form of equation 2.56 is valid for a pure Z
r

electromagnetic potential when
ε1 � mec

2, which is not valid for most NRF problems. Equation 2.56 was derived
using the first-order Born approximation. Bremsstrahlung cross sections extending
up to 2 MeV electron energies were accomplished by Pratt and Tseng by numerically
solving higher-order terms of the Born series(34).

2.6.2 Bremsstrahlung Spectrum from Monoenergetic Elec-
trons

Figure 2.16 shows bremsstrahlung cross sections differentiated with respect to
emitted photon energy, dσB

dk
(k) for electrons in uranium. The values shown are taken

from the MCNP el03 library(38),(40), which follows the Seltzer and Berger method
of interpolating between the Pratt and Tseng low-energy cross sections and the
Sommerfeld cross sections at highly relativistic energies. Clearly, the cross section
for bremsstrahlung emission is large compared to photon cross sections, however,
the range of an electron is much shorter than that of a photon, and in the energy
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Figure 2.16 Differentiated bremsstrahlung emission cross section, dσB
dk

(k), for elec-
trons of energies 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, and 5.0 MeV in uranium. Values are
taken from MCNP el03 datafile.

ranges of interest the cross section for emission of bremsstrahlung near the electron’s
energy is much lower than the cross section for photon emission to energies of . 200
keV.

To provide an example of bremsstrahlung emission from energetic electrons in-
teracting in a very thin target, Figures 2.17 and 2.18 demonstrate the angular depen-
dence of bremsstrahlung emitted from 2.5-MeV electrons. The values shown in the
plots were obtained from simulations with MCNPX by impinging 2.5-MeV electrons
normally upon a uranium foil of thickness 1 µm. For a single electron, the average
number of bremsstrahlung photons emitted was estimated to be 2.6 × 10−3. Fig-
ure 2.17 presents the spectra of the bremsstrahlung photons as a function of energy,
for selected angular ranges. Estimated ±1σ statistical errors from the Monte Carlo
calculation are shown for each bin. They are generally small, with the exception of
the highest emission angles, in which case the uncertainties reach 22% in the highest-
energy bins. Seltzer and Berger also reported that uncertainties in their evaluation
should be considered to be approximately 10%.

The shape of the histograms in Figure 2.17 is, as expected, quite similar to the
cross section curves in Figure 2.16, with about a factor of 10−2 decrease in intensity
between the 0.1 ≤ k ≤ 0.2 MeV bin and the highest bin.

The results of the same calculation are also plotted as a function of the angle
between the bremsstrahlung-inducing electron and the photon, θ1, in Figure 2.18.
This demonstrates that at all energies bremsstrahlung photons are predominantly
forward-directed, but the angular distribution becomes progressively more strongly
forward-directed as they approach the electron’s energy.
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Figure 2.17 MCNPX-computed bremsstrahlung spectra from 2.5-MeV electrons in-
cident upon 1 µm uranium for various angular ranges of bremsstrahlung photon
production. ±1σ errors are shown when they are wider than the width of the line.
An average 0.0026 bremsstrahlung photons were computed to be emitted per elec-
tron.

Figure 2.18 Angular dependence of the bremsstrahlung spectrum shown in Fig-
ure 2.17 for various photon energy ranges, k. The abscissa is the angle between
the bremsstrahlung photon and the electron before emission, θ1. Statistical errors
from the Monte Carlo computation are negligible.
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Figure 2.19 Angular deflection of 0.5 and 2.5 MeV-electrons after they traverse 1 µm
(solid lines), or 10 µm (dotted lines) of uranium. Statistical errors from the Monte
Carlo computation are negligible.

2.6.3 Bremsstrahlung Spectra from Thick Targets

The previous discussion involved only the first 1 µm of a 2.5-MeV electron’s
track. However, bremsstrahlung is emitted through an electron’s entire trajectory,
which is very non-linear due to of the high probability of electron scattering through
large angles. This in turn, results in a much larger angular distribution of emit-
ted bremsstrahlung from the initial trajectory vector. Figure 2.19 demonstrates the
deflection of energetic electrons as they pass through both 1 µm (solid lines) and
10 µm (dotted lines) of uranium. After 1 µm, higher-energy electrons remain pre-
dominantly forward-directed, but after only 10 µm, 500-keV electrons have already
experienced significant deflection.

To demonstrate bremsstrahlung spectra emitted from energetic electrons, spec-
tra from MCNPX simulations, binned as a function of angle are presented in Fig-
ures 2.20 and 2.21. In Figure 2.20, the bremsstrahlung spectrum is for 4-MeV elec-
trons incident upon a 0.75 cm-thick slab of tungsten. For Figure 2.21, the spectrum
was simulated 2.5-MeV electrons incident upon a uranium cube with sides of length
10 µm. Both spectra indicate that even with thicker targets, bremsstrahlung is
forward-directed. However, Figure 2.22 is a plot of the angular dependence of the
1.9 - 2 MeV energy bin shown in Figure 2.21. Comparing this with Figure 2.18, we
can see that between the forward and 40 degree angular bins, the spectrum from
2.5-MeV electrons incident upon 10 µm of uranium shows a decrease in intensity by a
factor of four compared to a factor of over 100 for the 1 µm uranium target. Thus in
general, we can observe that thicker targets increase the intensity of bremsstrahlung
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Figure 2.20 MCNPX-computed bremsstrahlung spectra from 4-MeV electrons in-
cident upon 7.5 mm-thick tungsten for various angular ranges of bremsstrahlung
photon production. An average of 0.373 bremsstrahlung photons were computed to
be emitted per electron.

emission into larger angles, relative to the initial electron direction.
For thick targets and energetic electrons, a significant fraction of the electron

energy is converted into photons, with photons being emitted in directions that are
significantly different from the electron’s initial trajectory. The average fraction of an
electron’s energy emitted as electromagnetic radiation during the complete stopping
of an electron is called the radiation yield. Radiation yields are plotted for uranium,
gold and iron as a function of electron energy in Figure 2.23. The radiation yield
increases with energy and Z.

From the phenomena of electron stopping and bremsstrahlung emission, we
conclude this section by observing that upon creation of energetic electrons in ma-
terials, radiation in the form of bremsstrahlung is often emitted. Further, although
the process is less probable, the emission of energetic photons in directions signifi-
cantly different from the initial trajectory of the electron can occur. This process
can contribute significantly to the effective flux of scattered radiation in NRF-related
measurements. When appropriately used, it has been documented that MCNP can
simulate this to an accuracy of approximately 10%(41).

2.7 Pair Production and Positron Annihilation

At this point we have discussed all relevant photo-atomic scattering mecha-
nisms, electron transport, and bremsstrahlung which includes photon production due
to electron interaction with both atomic electrons and nuclei. The process of pair
production produces an energetic electron and positron pair. These subsequently



Section 2.7. Pair Production and Positron Annihilation 35

Figure 2.21 MCNPX-computed bremsstrahlung spectra from 2.5-MeV electrons in-
cident upon a cube of uranium with 10 µm sides, for various angular ranges of
bremsstrahlung photon production. A total of 0.112 bremsstrahlung photons were
computed to be emitted per electron.

Figure 2.22 Angular dependence of the 1.9 - 2 MeV bin from the bremsstrahlung
spectrum shown in Figure 2.21. The abscissa is the angle between the bremsstrahlung
photon and the initial electron before direction.
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Figure 2.23 Radiation yield versus energy for electrons stopping in uranium, gold,
and iron.

produce additional photons, effectively resulting scattered photons. Like brems-
strahlung, the process of pair production results from photon interaction with an
electromagnetic field, and therefore can result from photon interactions of both the
atomic and nuclear Coulomb fields. Likewise, the theoretical framework predicting
the cross section for pair production follows a similar form as that for bremsstrah-
lung, except that it is the final state is represented as a series of Born waves in a
Coulomb field(42).

Pair production is the process by which a photon interacts with an electromag-
netic field and produces an electron-positron pair. The energetics of the process are
defined by conservation of energy.

Ee− + Ee+ = Eγ − 2mec
2 (2.59)

The energetic electron and positron subsequently slow down and can emit brems-
strahlung as described in Section 2.6 (despite their charge, positrons slowing is nearly
identical to that of electrons). As a positron slows, it becomes more likely to form
a state known as positronium, an electron and positron orbiting each other, which
quickly (∼ 10−10s) annihilates resulting in the emission of two anti-parallel photons
with total energy equal to the sum of the rest masses of the electron and positron
(plus any kinetic energy possessed by the positronium). The axis of these γ-rays is
isotropic and uncorrelated to the direction of the photon that underwent pair pro-
duction. These γ-rays almost always have an energy EAn ≈ mec

2, and are the highest
intensity photons (per unit energy) created and measured in NRF experiments.
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2.8 MCNPX Simulations of Photon Scattering

With the physical processes described, we now turn to a discussion of MCNPX
computations of the combination of these processes and the effective scattered spec-
trum that results, acknowledging that most photonuclear processes are not included
in the simulations. Documentation of a bug relating to Rayleigh scattering treat-
ment in MCNP is presented in Appendix A as well as modifications to MCNPX and
NJOY which fix the error. The bug is only important when coherently-scattered
photons can be distinguished from incoherently-scattered and annihilation photons.

2.8.1 Scattering of Monoenergetic Photons as Simulated by
MCNPX

The photon scattering physics described in the proceeding sections is imple-
mented for photon transport in MCNP. In this section, scattered photon spectra,
as calculated by MCNPX, are presented and their features are analyzed. In many
regards this section is a continuation and elaboration on work previously done by
Hagmann and Pruet(46), with additional accuracy due to the inclusion of Rayleigh
scattering, which had previously been omitted due to legacy MCNP coding. Fig-
ures 2.24 and C.3 show spectra computed by MCNPX, where monoenergetic photons
interact in various targets and are scattered into solid angles defined by an angle rel-
ative to the incident photon trajectory. The spectra have 5 general features;

• A peak in the highest energy bin, corresponding to elastic scattering. As dis-
cussed in Appendix A, the intensity of this peak is due primarily to Rayleigh
scattering – as is described in EPDL97 – and is missing nuclear elastic scat-
tering contributions. The integrated area of the elastic scattering peak is very
small compared to the remainder of the photon spectrum, which illustrates the
relative unimportance of the elastic backscattering of photons for applications
less sensitive to backscattered photon spectra than NRF.

• A peak at 511 keV due to annihilation of positrons produced during pair pro-
duction. The 511-keV photons are emitted isototropically.

• An incoherent photon peak. The energy of this peak is defined by equa-
tion 2.24. It ranges from near the incident photon energy for small-angle

scattering to
(

E
1+2E/mec2

)
in backwards directions.

• x-rays. Photoabsorption results in the isotropic emission of x-rays. For ura-
nium, these extend up to 109 keV. The x-ray emission is essentially isotropic.

• The continuum. The spectral continuum is primarily due to bremsstrahlung
produced by electron and positron slowing in the targets. Energetic electrons
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bremsstrahlung e− energy e−
normalization

source (MeV) direction

primary photoelectrons 1.7 forward RµPE

µtot

Compton electrons 1.48 forward 0.4RµInc

µtot

pair production leptons 0.339 isotropic 2RµPP

µtot

Table 2.1 Treatment of electrons for bremsstrahlung spectra normalization for Fig-
ure 2.24.

and positrons are produced by pair production, incoherent scattering, and
photoelectric absorption.

While the bremsstrahlung process producing the continuum is fairly complex, a
simple model that sums constituent parts of the continuum can provide significant
insight. The angular distribution of electrons emitted from photoelectric absorp-
tion is very forward-directed as given by equation 2.54. As discussed in Section 2.4,
Compton electrons with energies close to incident γ-ray energy are also forward-
directed. Thus we consider bremsstrahlung from incoherent scattering and photo-
electric absorption to be represented approximately by simulation of monoenergetic
forward-directed electrons emitted uniformly along the incident photon’s trajectory.

In a simple approximation, we consider bremsstrahlung from three contribu-
tions: photoelectric absorption of 1.7-MeV electrons, forward-emitted Compton elec-
trons, and pair production leptons. To determine the proper normalization for each
contribution, we must determine the number of electrons (or positrons) produced
per 1.7 MeV-photon incident upon the target. These values are shown in Table 2.1,
along with the directionality and energies of the electrons. The value, R, corre-
sponds to the total number of photon interactions within the target based on simple
attenuation.

R = 1− exp(−µTotx) (2.60)

where µTot is the total photon attenuation coefficient at 1.7 MeV and x the thick-
ness of the target. The rate of electron creation is determined by multiplying R by
the fraction of the photon cross section that corresponds to the given reaction type,
times the number of electrons (or leptons) produced for a reaction; thus pair pro-
duction produces two leptons per interaction, photoelectric absorption one, and for
the case of Compton electrons we make an additional simplification. By integrating
the spectrum of Compton electrons derived in equation 2.50, we find that 40% of
electrons are emitted into the forward 20o. Roughly applying this result, we reduce
the Compton electron-induced bremsstrahlung spectrum by an additional factor of
0.4.
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The bremsstrahlung spectra due to these three electron sources have been in-
cluded in Figure 2.24. The similarity of the distributions indicates that the simple
model describes the continuum fairly well. With the exception of the energy range
1.4 - 1.55 MeV, the model provides good agreement with the overall spectrum at
higher energies. Between 1.4 and 1.55 MeV, the assumption that all electrons are
forward-directed, along with the neglect of electrons from multiple-scattered photons
is rather inaccurate. At lower energies, many more processes appear to contribute to
the photon spectrum, including multiple scattering of photons and bremsstrahlung
from lower-energy Compton electrons.

From these scattered photon spectra, we can conclude that the most probable
processes resulting in backscattered photons are incoherent scattering, pair produc-
tion, and x-ray emission. However, the energies of these photons are quite low.
MCNPX predicts that backscattered, energetic photons are primarily due to brems-
strahlung from energetic photo-excited electrons, but the contribution due to Ray-
leigh scattering is not negligible, and dominates near the initial photon energy. This
implies that the accuracy with which MCNPX calculates bremsstrahlung spectra is
important for predicting backscattered photon spectra and that the omission of other
elastic scattering physics processes may be very problematic for making conclusions
based on MCNPX-predicted spectra.

Figure 2.24 MCNPX-simulated differential cross section for scattering of 1.7-MeV
photons from 100 µm-thick uranium to the 100o − 110o angular range with electron
induced bremsstrahlung spectra overlain.

2.9 Photonuclear Interactions

The physics of photon interactions with the nucleus is generally quite similar to
that of photo-atomic interactions, with the exceptions that the nuclear force is more
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complex, stronger, and shorter-range than the electromagnetic force, which is solely
responsible for the potential field experienced by atomic electrons. These facts cause
the nuclear potential to be much deeper, the nucleus to be much smaller, and the
energy separation between nuclear states to be much larger. For the photon energies
considered here, the nuclear potential well is sufficiently deep that photon-induced
particle emission cannot occur for most isotopes. Because of this, no processes
analogous to incoherent scattering will be considered. The excitation energies of
nuclear states are such that both photon scattering via intermediate nuclear states
and elastic scattering due to the electromagnetic field are of interest.

It is instructive to consider a photon as a particle whose energy is stored in
oscillating electric and magnetic fields and that the transverse nature of the oscil-
lations require the photon to have at least one unit of angular momentum. When
light interacts with nuclear states, the oscillating fields are capable of inducing exci-
tation, as well as transferring angular momentum. Even when photon energies are
far different from nuclear transition energies, photons can still scatter in the nuclear
electromagnetic field. Nuclear Thomson and Delbrück scattering are two examples
of elastic scattering in the structureless field of the nucleus. Pair production, dis-
cussed in Section 2.7, also involves photons interacting with the nuclear field, except
the resulting particles are leptons instead of photons.

An additional complication that must be discussed before we delve into nuclear
elastic scattering cross sections is the effects of wave function phase shifts on total
elastic scattering cross sections. To this point, we have determined cross sections
as quantities proportional to the square of the amplitude of a transition’s matrix
element. However for elastic photon scattering, the scattering amplitudes of each
mechanism must be summed before the total scattering cross section is obtained by
squaring the summed amplitude. This can cause interference due to differences in
the complex phases of amplitudes resulting from different scattering mechanisms.

2.9.1 Nuclear Thomson Scattering

Nuclear Thomson scattering involves identical physics as that of Thomson scat-
tering described in Section 2.1 with the mass and charge of the charged particle in
equation 2.12 being replaced by m = AMN and q = Zqe, where A, Z, and MN are
the atomic number, mass number, and average nucleon mass, respectively. Since the
nucleus is much smaller than the wavelength of photons of interest (λ1MeV = 1.24
pm, whereas rn . 80 fm), the individual nucleons do not influence nuclear Thomson
scattering in a similar way as electronic structure does Rayleigh scattering. There-
fore, the typical nuclear Thomson scattering cross section is independent of photon
energy and is given by

σNT (θ) =
r2
e

2

(
Z2me

AMn

)2

(1 + cos2 θ) (2.61)
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Figure 2.25 Ratio of Thomson scattering cross sections for a photon incident upon a
nucleus of charge Zqe and mass AMn to that for a photon incident upon a free elec-
tron. The ordinate is the square of the constants in the parentheses in equation 2.61.

Figure 2.25 shows the ratio of the constants in the parentheses in equation 2.61
plotted for every element. Although the cross section is isotope-specific, in this case
each element’s mass was taken to be the weighted mean mass for a natural isotopic
concentration. For man-made elements, the mass was assumed to be the average of
the known isotopes’ masses. Thomson scattering cross sections for nuclei vary from
3 × 10−7 to almost 4 × 10−4 those of a single electron as Z increases from 1 to 92.
While this seems to indicate that nuclear Thomson scattering would never be of any
significance, it is important to note that for large-angle scattering, the momentum
transfer, q increases with scattering angle and energy as given by equation 2.35. The
form factor decreases dramatically with increasing q, and the Rayleigh scattering
cross section is proportional to the square of the form factor.

In Table 2.2, values of q and the corresponding Rayleigh scattering form fac-
tors, F (Z, q), for which the Rayleigh scattering cross section is equal to the nuclear
Thomson scattering cross section, i.e

Z2me

AMn

= F (Z, q) (2.62)

are tabulated. Also tabulated are photon energies through which scattering at indi-
cated angles yield indicated momentum transfer values.

As indicated in Table 2.2, the energy at which a nuclear Thomson cross section
is equal to a Rayleigh scattering cross section increases with increasing Z. However,
with larger scattering angles, the form-factor predictions of σRay(θ) become increas-
ingly inaccurate(20). Thus, the energies given in Table 2.2 may be inaccurate, but
the general trends remain correct. Furthermore, when photons of energy 1.5 - 4
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MeV are backscattered, nuclear Thomson scattering is always of some practical im-
portance.

q E(45o) E(90o) E(135o) E(180o)

element (Å−1) F (Z, q) (MeV) (MeV) (MeV) (MeV)

Carbon 10.4 1.64× 10−3 0.337 0.182 0.140 0.129

Aluminum 19.2 3.34× 10−3 0.622 0.337 0.258 0.238

Iron 33.1 6.64× 10−3 1.07 0.580 0.444 0.410

Cesium 68.1 1.25× 10−2 2.21 1.19 0.914 0.844

Uranium 152.9 1.95× 10−2 4.95 2.68 2.05 1.90

Table 2.2 Elastic scattering momentum transfer, q, and form factors, F (Z, q), (from
EPDL97(19)) where σNT (θ) = σRay(θ) for different elements. Also tabulated are
photon energies, given by equation 2.35 that result in the given momentum transfers
when scattering occurs at the indicated angles.

2.9.2 Delbrück Scattering

Delbrück scattering is the process by which a photon undergoes pair production
within the Coulomb field of a nucleus, and the electron-positron pair promptly anni-
hilates to create another photon whose energy is equal to the initial energy. Whereas
Thomson scattering and pair production are considered to be second-order effects,
Delbrück scattering is a fourth-order effect.

The matrix element for Delbrück scattering is given by(47)

Afi =2iα

∫
dr1

∫
dr2 exp[i(k1 · r1 − k2 · r2)] (2.63)

×
∫
dE1

∫
dE2δ(ω − E1 + E2)Tr[ê1G(r1, r2|E2)ê∗2G(r2, r1|E1)]

where Tr signifies the trace of the indicated matrix, êµ = εµγ
µ, γµ are Dirac matri-

ces, and G(ra, rb|E) are Green’s functions in the Coulomb field. Calculations have
exactly evaluated matrix elements in the limits E � mec

2 and E � mec
2 and by

using the Born approximation at intermediate energies.
Matrix elements have been numerically integrated in the limit that ~ω �

mec
2(48). Resulting scattering amplitudes are proportional to (Zα)2, and therefore

cross sections are generally proportional to (Zα)4. Empirical evaluations indicate
that the Born-series calculations remain quite accurate up to a few MeV if Z . 50.
At higher Z, stronger fields make the lowest-order Born approximation inaccurate.
Numerical calculations of higher-order terms in the Born series have only partially
been accomplished for very few angles and energies(49),(51), but semi-empirical
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Figure 2.26 Calculated differential Delbrück scattering cross sections for various pho-
ton energies. The values ignore destructive interferences that reduce the summed
cross section. Values are from references(53) except for the two highest energy curves,
which are from(54).

Coulomb correction factors have been published(50),(47),(52). For uranium, these
corrections can be a large fraction of the Delbrück differential scattering cross sec-
tion, which, in turn can result in significant changes to the total theoretical elastic
scattering cross section.

Figure 2.26 shows the sum of Delbrück scattering amplitudes squared for various
photon energies. These would correspond to the Delbrück cross sections were they
directly measurable. However, the addition of elastic scattering amplitudes from
other processes can induce interferences that cause total scattering cross sections to
differ from those predicted by summing cross sections of individual processes. The
cross sections shown were calculated by high-precision numerical integration of the
first-order Born series results(53),(54).

2.9.3 Giant Dipole Resonance Scattering

Although the process of photon absorption and re-emission by nuclear states is
nuclear resonance fluorescence, for assay purposes, we are concerned with specific
excited states of relatively low energy, whereas the primary strength of resonance
photon scattering involves the Giant Dipole Resonance (GDR). Here, scattering due
to the GDR is discussed, and a more detailed description of the NRF process is saved
for Section 2.11.

The GDR is described as a collection of excited nuclear states that all express a
collective nuclear motion where all nuclear protons oscillate relative to the neutrons.
The large number of such states effectively yields a broad resonance whose cross
section is well-described as a Lorentzian distribution. For spheroidal nuclei, the
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Figure 2.27 Giant Dipole Resonance Lorentzian distribution centroid energies, Ei,
as taken from the RIPL-2 database (blue)(58). For deformed nuclei, the GDR is de-
scribed by two Lorentzian functions and the centroid energy of the upper Lorentzian
is shown in red. The curve corresponds to a fluid-dynamics theoretical prediction of
the centroid energies for spherical nuclei, and is given by equation 2.64.

energy associated with GDR oscillations depends on the mode of oscillation, resulting
in two broad Lorentzian functions. The centroid energies of these resonances are
approximately given by the following relation, which assumes the nuclear excitation
energy of the GDR is due to increased surface area in a liquid-drop model of the
nucleus(55),(56),(57).

EGDR ≈ 77[MeV]A−1/3 (2.64)

GDR centroid energies are plotted as a function of mass number, A in Fig-
ure 2.27 along with the trend-line from equation 2.64. The trend-line holds well
for spherical higher-A nuclei, whereas GDR centroid energies for spheroidal nuclei
bifurcate into two bands. These bands can be explained as the symmetry breaking
of the spheroidal nucleus, where vibrations along the axis of symmetry of prolate
(oblate) spheroids are decreased (increased) in excitation energy relative to a sphere.

The total cross section for photo-excitation of the GDR collection of states, and
subsequent de-excitation is most commonly given by the single- or double-Lorentzian
form

σGDR =
n∑
i=1

σi
E2
i Γ

2
i

E2
i Γ

2
i + (E2 − E2

I )
2

(2.65)

where n is the number of Lorentzian modes, 1 for spherical nuclei and 2 for spheroidal
nuclei, Γi is the effective width of the mode, σi is the maximum cross section of the
mode, and Ei is the centroid energy of the mode.

The total cross section for photo-excitation of the GDR is then probabilistically
subdivided into partial cross sections for each de-excitation mode that is energetically
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Figure 2.28 Photon cross sections due to lower-energy tails of GDRs as taken from
the RIPL-2 database(58).

allowed. Charged particle emission, although often energetically allowed, does not
significantly contribute to cross sections due to the Coulomb barrier for emission.
The GDR centroid energies of all nuclei are greater than neutron separation energies,
and the majority of the GDR cross section is due to neutron emission and fission,
where possible. Neutron emission and fission can be accompanied by γ-ray emission
to return the daughter nucleus or nuclei to their ground states. At lower energies,
γ-ray emission is the most probable de-excitation mode. The large energy range
over which the GDR extends causes the photon interaction cross section to remain
non-negligible at these energies.

Figure 2.28 presents cross sections for elastic scattering of 1.5, 2.25, 3, and 5-
MeV photons from GDR Lorentzians described in the RIPL-2 database(58). GDR
resonance profiles are also shown in Figure 2.29. The neutron-emission thresholds
are indicated as the vertical lines.

Two important points arise from Figure 2.29. The first is that by increasing
photon energy in the 1.5 to 4 MeV energy range and above, GDR cross sections
increase. Thus, with increasing NRF lines energies, the photon background due to
GDR scattering increases. Secondly, increasing photon energies yields more (γ,n) re-
actions as more neutron emission thresholds are exceeded. Thermal neutron-capture
γ-rays can be a major source of discrete background for NRF assay of materials.

2.10 Scattering Amplitudes and Cross Sections

To this point, all elastic photon scattering processes have been presented with
the assumption that each may be considered independently of the others. This
however, is not the case. The amplitudes of all scattering processes that leave the
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Figure 2.29 Giant Dipole Resonance Lorentzian Distributions for various
isotopes(58). The vertical lines indicate (γ,n) threshold energies, which correspond
to dramatically decreased elastic scattering cross sections as the majority of GDR
de-excitations begin to occur via neutron emission .

state of the scattering atom unaltered and do not change the energy of the scattered
photon must be summed to yield a total elastic scattering amplitude. Thus we write

ACoh = ARay + ADel + ANT + AGDR (2.66)

Likewise, scattering amplitudes are often derived assuming a given photon po-
larization. Thus, for linearly polarized photons with polarization perpendicular or
parallel to the plane of scattering, A⊥ and A‖, respectively, the total scattering cross
section is given by

dσ

dΩ
=

1

2

[
|A⊥|2 + |A‖|2

]
(2.67)

Amplitudes are often tabulated in units of the reduced electron radius, in which case
the cross section would be given by

dσ

dΩ
=
r2
e

2

[
|A⊥|2 + |A‖|2

]
(2.68)

When amplitudes are derived for circularly polarized light, they can be related
to linearly polarized amplitudes by the following expressions

A‖ = A++ + A+− (2.69)

A⊥ = A++ − A+− (2.70)

where A+− and A++ indicate the photon polarization does, or does not change sign,
respectively.
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Data Reference Quoted Accuracy
Rayleigh Kissel(15) < 5%
Delbrück Falkenberg(53) ≈ 20%
Nuclear Thomson Ericson, Hufner(59) ≈ 1%
GDR RIPL2(58), Berman(61) < 30%

Table 2.3 Sources and accuracy of elastic scattering amplitude data and calculations.

Thus for a given set of calculated amplitudes, the total elastic scattering cross
section for unpolarized incident radiation is calculated by summing each complex
amplitude for a given polarization; squaring the magnitude of the summed ampli-
tudes to yield a cross section for incident polarized photons; and averaging the cross
sections resulting from both polarizations.

Figures 2.30 through 2.33 present real and imaginary parts of calculated complex
scattering amplitudes for elastic scattering of photons incident upon uranium at a
scattering angle of 120o due to the mechanisms discussed previously in this chapter.
Dotted lines indicate that the amplitude is negative at the corresponding energy. In
the phase convention used in the derivations, Nuclear Thomson scattering amplitudes
are always purely real, and GDR amplitudes are real below the (n,γ) threshold
energy. The data from these figures come from the references indicated in Table 2.3
and approximate accuracies are also included.

The quoted accuracies come with many caveats. The Rayleigh scattering cal-
culations are thought to be very accurate, but were only performed for K-shell elec-
trons. Corrections due to L-shell electrons have indicated that the errors are less
than 5%(50), however the errors were initially estimated for high-Z atoms to be up
to 20%(60). Delbrück scattering amplitudes are likewise calculated to high precision
(< 3%), but only for first-order terms in the Born series. Higher-order corrections
have been estimated to be of the same magnitude as the first-order term for high Z
and small scattering angles. At higher angles, the higher-order terms, or Coulomb
corrections, appear to be approximately 20%. The nuclear Thomson cross section
appears to be well-understood for spherical nuclei. Second-order corrections due to
the polarizability of the nucleus and its finite size increase quadratically with energy
and are approximately 1% at 4.5 MeV. Additional corrections for nuclei of non-zero
spin increase linearly with energy but these corrections are generally small(62). GDR
amplitudes are derived from reported cross sections(61). For spin-0 ground states,
the GDR amplitudes are related by

AGDR
‖ = AGDR

⊥ cos θ (2.71)

With this, we can relate the amplitude to the total cross section by using equa-
tion 2.68.

σGDR =

∫
dΩ

dσGDR

dΩ
= 2π

r2
e

2
|A⊥|2

∫ π

0

(1 + cos θ) sin θdθ =
8πr2

e

3
|A⊥|2 (2.72)
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Figure 2.30 The real portion of elastic scattering amplitudes due to mechanisms
of Rayleigh, Delbrück, nuclear Thomson, and GDR scattering at 120o for photons
polarized parallel to the plane of scattering incident upon 238U, A‖. Dotted lines
indicate a negative amplitude.

Solving for |A⊥|, we find

|A⊥| =

√
3σGDR

8πr2
e

(2.73)

Finally, errors reported for GDR scattering are due to differences between Lorentzian
fits of experimental data for photon cross sections in the GDR energy range. These
different shapes result in quite different GDR scattering cross sections at lower en-
ergies, however at the energies of interest, the GDR remains a minor contributor to
the total elastic scattering cross section.

The amplitudes shown in Figures 2.30 - 2.33, are summed and squared to obtain
contributions to the total photo-elastic scattering cross section due to each polar-
ization. The real and imaginary parts of these amplitudes are shown in Figure 2.34
along with their sum, which is the total differential elastic scattering cross section for
120o scattering of photons incident upon 238U. The same total differential scattering
cross section is also plotted in Figure 2.35, however in this figure, the sum of the
squared amplitudes for each individual elastic scattering process are also shown. The
effect of coherence is prominent near Eγ = 2 MeV, where the sums of the individual
scattering cross sections are significantly less than the total cross section. Likewise,
Figure 2.36 shows the cross sections of the individual elastic scattering processes and
the total differential cross section for 30o scattering of photons incident upon 238U.
In this case, destructive interference results in a smaller total cross section near 2.5
MeV than would be expected from the individual contributions of both Delbrück
and Rayleigh scattering. Finally, Figure 2.37 shows the total differential elastic scat-
tering cross section for 120o scattering of photons incident upon 138Ba. At 120o, the
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Figure 2.31 The real portion of elastic scattering amplitudes due to mechanisms
of Rayleigh, Delbrück, nuclear Thomson, and GDR scattering at 120o for photons
polarized perpendicular to the plane of scattering incident upon 238U, A‖. Dotted
lines indicate a negative amplitude.

Figure 2.32 The imaginary portion of elastic scattering amplitudes due to mecha-
nisms of Rayleigh, and Delbrück scattering at 120o for photons polarized parallel
to the plane of scattering incident upon 238U, A‖. Dotted lines indicate a negative
amplitude.
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Figure 2.33 The imaginary portion of elastic scattering amplitudes due to mecha-
nisms of Rayleigh, and Delbrück scattering at 120o for photons polarized perpen-
dicular to the plane of scattering incident upon 238U, A‖. Dotted lines indicate a
negative amplitude.

138Ba cross section is approximately a factor of 5 smaller than the cross section for
238U in the region of energy of interest for NRF, owing primarily to the decreased
Rayleigh scattering cross section.

Data collected from the elastic scattering of 2.754-MeV photons on various iso-
topes are shown in Figures 2.38 and 2.39. These figures contain data and predictions
from reference(50) and the experiments performed are described both there and in
references (60),(63), and(64). The photon source is 24Na which decays by β− emis-
sion to excited states of 24Mg, resulting in the emission of a 2.754-MeV γ-ray with
an absolute intensity of 99.944%(65). A lithium-drifted germanium detector was
used to detect elastically scattered photons. Targets consisted of 65Zn, 92Nb, Ce,
141Pr, Nd, Ta, Pb and U. The figures include statistical counting errors. The an-
gular acceptance of the detector was reported to be 0.7o. The dashed lines in the
figures indicate the coherent sum of elastic scattering cross sections as described in
this section. The difference between the data point and the dotted lines has been
attributed to the Coulomb correction. Incomplete integration of the Coulomb cor-
rection has moved theoretical elastic scattering cross sections closer to the measured
data. In 1995 it was noted that computational power was limiting more complete
computations(49). This suggests that current computer technology may be able to
satisfactorily tabulate Coulomb corrections to Delbrück scattering amplitudes for
use in photon transport Monte Carlo codes and elsewhere.
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Figure 2.34 Calculated elastic scattering amplitudes and the total differential scat-
tering cross section for 120o scattering of photons incident upon 238U. The sources
of the plotted values are discussed in the text

Figure 2.35 Calculated elastic scattering cross sections for individual scattering pro-
cesses and the total differential scattering cross section for 120o scattering of photons
incident upon 238U. Individual cross sections are non-physical because they cannot
be separately measured from the total cross section. The sources of the plotted
values are discussed in the text.
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Figure 2.36 Same as Figure 2.35 but for 30o scattering.

Figure 2.37 Same as Figure 2.35 but for 138Ba.
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Figure 2.38 Measured and predicted elastic scattering cross sections for 2.754-MeV
photons and scattering angles 30o - 60o incident upon 65Zn, 92Nb, Ce, 141Pr, Nd, Ta,
Pb and U. Dashed lines are theoretical predictions including summed amplitudes
of Rayleigh, nuclear Thomson, GDR, and Delbrück scattering without Coulomb
correction terms. The data for this figure are taken from reference(50).

Figure 2.39 Same as Figure 2.38 but for scattering angles of 75o - 150o. The data
for this figure are taken from reference(50).

2.11 Nuclear Resonance Fluorescence

Nuclear resonance fluorescence (NRF) is the process by which an excited nuclear
state emits γ-rays of specific energies to de-excite to its ground state. Herein these
photons are referred to as NRF γ-rays. In the context of assaying materials, NRF is
usually induced by exciting nuclear states with a beam of photons. The subsequent
NRF γ-rays are measured using photon detectors such as high-purity germanium
(HPGe) or scintillation detectors. Because NRF states correspond to excited nuclear
levels, the photo-absorption and NRF γ-ray energies identify the nucleus that has
undergone NRF. The identification is analogous to passive γ-ray spectroscopy used
to identify decaying radioactive nuclides.

If the assay geometry and NRF cross section is known, measuring the rate at
which NRF occurs allows the number of atoms of the corresponding isotope to be
determined. The rate at which a nuclide undergoes NRF is given in thin targets by

R =

∫
NΦ(E)σ(E)dE (2.74)

Thicker targets require geometrical corrections due to the fact that the energy-
dependent photon flux, Φ(E) may change as it traverses the target. This will be
discussed in Section 3.1.1.

The cross section for photo-excitation of a nuclear state is given by the Breit-
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Wigner distribution:

σ(E) = πg
(~c)2

E2

ΓΓ0

(E − Ec)2 + (Γ/2)2
(2.75)

where Γ is the full-width at half maximum (FWHM) of the state and is related to
the state’s mean lifetime, τ , by

Γ =
~
τ

(2.76)

Γ0 is the partial width of the state for decay by γ-ray emission to the ground state,
Ec is the centroid energy of the resonance, and g is a statistical factor equal to the
ratio of the number of spin states available for the excitation to the number of initial
spin states. For NRF events where the initial nuclear state is the ground state,

g =
2J + 1

2(2J0 + 1)
(2.77)

where J and J0 are the angular momentum quantum numbers of the excited and
ground states, respectively. There are 2J+1 magnetic substates for a state of angular
momentum J , and the additional factor or 2 in the denominator is due to the fact
that the photons inducing excitation can have two possible helicities. We will also
refer herein to the ∆J of a transition as the difference between the two angular
momentum quantum numbers of transitioning states(67).

The probability for de-excitation of a state by a specific mode (i.e. neutron
emission, γ-ray emission, etc.) yielding a lower-energy state can be defined by the
state’s partial width for that mode,

pi =
Γi∑
j

Γj
=

Γi
Γ

(2.78)

where we have used
Γ =

∑
j

Γj (2.79)

implying that the summation over j includes all possible de-excitation modes. Com-
bining equation 2.78 and 2.75, we note that the cross section for NRF to occur via
emission of a single γ-ray, resulting in the ground state is given by

σGS(E) =
Γ0

Γ
σ(E) = πg

(~c)2

E2

Γ2
0

(E − Ec)2 + (Γ/2)2
(2.80)

The partial width of a transition, Γj is related to the matrix element of the
transition by

Γj
2

=<Ψf |H|Ψi> (2.81)
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Nuclear dimensions increase with mass number, A, by the following approximate
relation; rn = r0A

1/3, where r0 = 1.25 fm is the hard sphere radius of a nucleon.
Photon wavelengths are given by λγ = hc/Eγ. When Eγ = 5 MeV, λ = 250 fm and
the corresponding wave number is k = 1/2πλ = 6.4 × 10−4 fm−1. A photon plane
wave can be described as a linear combination of products of spherical harmonics,
Yl,m(θ, φ), and spherical Bessel functions, jL(kr) of angular momentum, L ≥ 1.
Spherical Bessel functions with L ≥ 1 all have the limiting value of j → 0 as
kr → 0, however the rate at which the functions approach zero differ with angular
momentum. The asymptotic form of the spherical Bessel functions is given by:

jL(kr)|kr→0 =
(kr)L

(2L+ 1)!!
(2.82)

In the rest-frame of the nucleus, photon wave functions within its vicinity become
successively smaller with increasing angular momentum. Because of this, the prob-
ability for interaction with the nucleus similarly decreases with increasing angular
momentum, and photonuclear interactions will preferentially occur via the lowest
angular momentum transfer possible(66).

2.11.1 NRF γ-ray Angular Distributions

NRF is generally considered to only occur between states that differ by 2 or
fewer units of angular momentum. The angular distribution of NRF γ-rays, relative
to the NRF-inducing radiation can be described by the same spin algebra that is
used to define angular correlations in γ-ray cascades(68).

The cross section for NRF γ-ray emission at a direction, θ, relative to the
incident photon beam is given by

σ(θ) = W (θ)σ (2.83)

where the function, W (θ), is called the angular correlation function. It is a normal-
ized function, i.e. ∫ 2π

0

dφ

∫ π

0

sin(θ)dθW (θ) = 4π (2.84)

and (un-normalized) values for W (θ) were derived for absorption of un-polarized
dipole or quadrupole radiation followed by emission of dipole or quadrupole radiation
in reference(68).

For transitions where only a single photon multipolarity is allowed, W (θ) has
simple forms. For 0→ 1→ 0 transitions, the normalized angular correlation function
is

W (θ) =
3

4
(1 + cos2 θ) (2.85)

and for 0→ 2→ 0 transitions, it is

W (θ) =
5

4
(1− 3 cos2 θ + 4 cos4 θ) (2.86)
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Figure 2.40 The angular correlation functions, W (θ) for photon transitions between
states of spin 0, 1, and 0 (blue), and 0, 2, and 0 (red). This corresponds to the angu-
lar distribution of NRF γ-rays, relative to the un-polarized NRF-inducing photon’s
trajectory, if the NRF state has spin 1 (blue) or 2 (red), and the initial and final
states are spin 0.

These functions are shown in Figure 2.40. The 0→ 2→ 0 transition exhibits a very
large angular dependence.

For transitions between states that exclude spin 0 states, the description of
W (θ) becomes more complicated. This is because the transition may include more
than one multipolarity. Take for example, a spin-1/2 state. Transitions of the form
1/2 → 1/2 → 1/2, 1/2 → 3/2 → 1/2, and 1/2 → 5/2 → 1/2, are all expected to
be possible in NRF (∆J ≤ 2). Furthermore, the multipolarity of the 1/2 → 3/2
excitation may be either dipole or quadrupole (due to vector spin addition rules),
and likewise for the 3/2→ 1/2 de-excitation. The angular distributions predicted for
purely dipole-dipole and purely quadrupole-quadrupole transitions happen to be the
same, but if one the excitation occurs via quadrupole and the de-excitation via dipole
(or vice-versa) the expected W (θ) differs significantly. Because the actual intensities
of quadrupole versus dipole transitions (commonly referred to as the mixing ratio, δ)
can vary from state to state, any possible W (θ) distribution combination is allowed.

The cases of ground-state to ground-state NRF on spin 1/2 nuclei is presented
in Figure 2.41. The red curve indicates a 1/2 → 3/2 → 1/2 transition where
both the photon multipolarities were both either dipole or quadrupole, whereas
the green curve indicates a transition where one photon was dipole, and the other
quadrupole. The area between the curves has been shaded gray to indicate that
any possible angular correlation function between these two extremes is physically
possible. Finally, the sequence 1/2 → 5/2 → 1/2 (assuming octupole radiation is
negligible) is only described by quadrupole transitions. The shape of this W (θ) curve
is similar to that for the 0→ 2→ 0 transition, however, the degree of variations with
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Figure 2.41 The angular correlation functions, W (θ) for NRF between states of
initial and final spin 1/2 allowed by dipole and quadrupole radiation. The red curve
indicates a 1/2→ 3/2→ 1/2 transition where both the photon multipolarities were
both either dipole or quadrupole, whereas the green curve indicates a transition
where one photon was dipole, and the other quadrupole. The area between the
curves has been shaded gray to indicate that any possible angular correlation function
between these two extremes is physically possible.

angle is about one-half as strong. The method of comparing angular distributions of
NRF photons emitted from spin-1/2 ground-state nuclei has successfully identified
spins of 113Cd NRF states(69).

For completion, we consider two more examples. The first example demonstrates
other probable spin-state combinations that may be seen during NRF induced on a
spin-0 nucleus. If a spin-1 NRF state de-excites to a spin-2 level, the de-excitation
process can occur via emission of either dipole or quadrupole radiation, resulting in
different correlation functions. Thus, similar to the 1/2→ 3/2→ 1/2 example, the
0→ 1→ 2 sequence does not yield a theoretically well-defined angular distribution,
but a range of distributions, that includes isotropy. The 0 → 2 → 1 sequence
has similar characteristics, although both idealized cases – where the de-excitation
photon is either always dipole, or always quadrupole – yield suppressed emissions in
the forwards and backwards directions relative to 45o emission.

The case of a 0→ 2→ 2 sequence is also interesting because it may be observed
in the case of quadrupole excitation of a ground state, followed by de-excitation to a
the rotational or vibrational low-lying 2+ state. These angular correlation functions
are shown in Figure 2.43 for the cases where the de-excitation occurs by emission
of a dipole or quadrupole photon. The actual angular distribution for this sequence
may lie between the two extreme cases.

Finally, to introduce the possible emission spectra for 235U (ground state spin-
7/2), possible angular distributions for the processes 7/2 → 7/2 → 7/2 and 7/2 →
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Figure 2.42 The angular correlation functions, W (θ) for NRF between states of initial
spin-0 that do not return to a spin-0 state. Although not shown, the distributions
for the sequence, 0 → 1 → 1 are nearly identical to the shown distributions for
0→ 1→ 2.

Figure 2.43 The angular correlation functions, W (θ) for NRF between states of initial
spin-0 absorbing a quadrupole photon and subsequently de-exciting to a spin-2 state.
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Figure 2.44 The angular correlation functions, W (θ) for NRF between states of initial
spin-7/2 going through intermediate states of spin-7/2 (black) and 9/2 (red) for three
hypothetical multipolarity combinations: only dipole (solid lines), only quadrupole
(dashed lines), and one transition dipole, the other quadrupole, (dot-dashed lines).

9/2→ 7/2 are shown in Figure 2.44. Here, the theoretical function, W (θ) is plotted
as a solid line for the case of only dipole transitions, a dotted line for the case of only
quadrupole transitions, and a dot-dash line for the case where one transition occurs
via dipole and the other via quadrupole radiation. Again, the distribution functions
show less directional dependence than the most severe case of 0→ 2→ 0, but some
non-isotropy may exist.

2.11.2 NRF States

States whose angular momentum differ from that of the ground state by one or
two units of angular momentum can be physically described in several ways. The
simplest such idealized description is that of a state where a single nucleon is excited
into a higher level. States with approximately this character are easiest to identify
near closed nuclear shells, and nuclear structure indicates that generally these states
will have the same parity as the ground state. The majority of all nuclear states
however, require considerably more complex descriptions. This section provides a
simple framework for understanding NRF states and does not claim to contain an
exhaustive list of all possible modes describing states that may undergo NRF(70).

The most common NRF states make up the GDR. As discussed in Section 2.9.3,
the GDR is considered to be a collection of states in which the nuclear protons and
neutrons collectively oscillate with respect to on another. Translation through the
origin would swap the neutron-rich and proton-rich regions, which explains why the
GDR is a parity-odd excitation mode. The angular momentum of GDR excitations
is unity, which contributes to their large cross sections and effective widths. Large
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Figure 2.45 Schematic drawings of nuclei undergoing GDR, scissors-mode and PDR
excitations. Where the ellipses are filled with white space indicates proton-rich space,
dark-gray indicates neutron-rich space, and light-gray indicates comparable nucleon
densities. The arrows indicate the direction of nucleon oscillation.

GDR widths limit the isotopic-specificity that could be derived from measurement of
GDR-scattered photons because all nuclides have a GDR, and the resonances overlap
in energy. Therefore measurement does not yield nucleus-specific information that
can be used for identification. The trend for neutron emission following GDR excita-
tions further limits the potential of measuring the GDR for NRF assay applications
because of increased backgrounds induced by subsequent neutron capture.

Discrete resonances narrower than the GDR have been measured and have been
attributed to more complex collective excitation models. The scissors-mode excita-
tion model attributes nuclear states to the collective rotational oscillation of neutrons
and protons with respect to one-another (as opposed to the GDR’s translational oscil-
lation). Simple consideration of the mean relative separation between neutrons and
protons would imply that the scissors mode excitation would be lower in energy than
the GDR and that such an excitation mode is only available to non-spherical nuclei.
Translation through the origin for scissors mode oscillations is parity-symmetric, and
thus scissors mode excitation is ∆Jπ = 1+ and therefore M1(67).

Neutron-rich nuclei have been measured to undergo lower-energy E1 excitations
that have been described as pygmy dipole resonances. The model for these ex-
citations is that the excess neutron skin oscillates with respect to the proton and
neutron core and have been studied in tin isotopes(71). Like the GDR, pygmy dipole
resonances are excited from the ground state via E1 transitions.

Another model describing collective nuclear states is that where an entire non-
spherical nucleus rotates around an axis normal to the symmetry axis of the nucleus.
For even, even nuclei, the spins and parities of rotational states follow the following
pattern: 2+, 4+, 6+, 8+, · · · , whereas for odd-A nuclei, odd-angular momentum exci-
tations are also possible. Quantum mechanically, the rotational excitation energy of
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a rigid body is given by

Erot =
~2

2I
I(I + 1) (2.87)

where I is the rotational quantum number, and I is the rotational inertia of the
nucleus. The rotational inertia of an ellipsoid of mass, M , is classically given by
Iclass = M

5
(a2 + b2), where a and b are the lengths of the semi-major and semi-

minor axes. With increasing atomic number, M , a, and b will generally increase,
and therefore the rotational excitation energies dramatically decrease. For 12C, the
lowest excited state is a 2+ state at 4.439 MeV(72). The pattern of this and the 4+

state at 14.083 MeV indicate that they represent a rotational spectrum. The first
four excited states in 238U follow the spectrum predicted by the rigid rotor model
quite closely; however, the excitation energies of these states are only 44.92, 148.38,
307.18, and 518.1 keV for the 2+, 4+, 6+, and 8+ states, respectively. Thus, we
can see that rotational excitation provides potential ∆J = 2 NRF states for low-Z
nuclei with even numbers of protons and neutrons, but the energies of rotational
states become too low to be of use for applying an assay method that uses NRF to
observe these types of states in higher-Z nuclides.

For nuclei with non-zero ground-state angular momentum, the rotational model
becomes more complex. The angular momentum due to a purely rotational excita-
tion may couple to the intrinsic angular momentum of the nuclear state, resulting in
a series of excited states obeying rotational energy systematics for a single nucleus.
Despite the more complicated spectra, the energy scales of the excitations are ex-
pected to remain the same(14). Therefore, pure rotationally excited states are only
of interest for use of an NRF assay method of low-Z materials.

Nuclear vibration is an additional collective excitation model in which the shape
of the nuclear matter oscillates around the ground-state shape. The restorative force
that tends to return deformed nuclear shapes to the ground state is proportional to
the magnitude of deformation. Therefore, simple nuclear vibrations may be described
as a form of the harmonic oscillator problem. The nuclear shape may be described
as a sum of spherical harmonic functions each with a given amplitude (αλµ). Each
spherical harmonic (Yλµ) corresponds to a state of specific angular momentum.

R(θ, φ) = R0

[
1 +

∑
λµ

αλµYλµ(θ, φ)
]

(2.88)

All integer values of λ > 1 are possible. λ = 1 is prohibited because it would
correspond to a translation of the entire nucleus, which is impossible without an
external restorative force. The vibrational excitation model yields specific energy
spectra, wherein the energy separation between successive states of a vibration mode
is constant. The excitation between vibrational levels is generally considered to be
due to a single phonon in analogue to vibrational modes in solid crystal lattices. The
parity of the phonon mode follows the rule π = (−1)λ(14). The excitation energy
of quadrupole vibrational states tends to decrease with atomic number, however the
decrease is less dramatic than for rotational excitations(73).
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Another model describing collective ∆J = 1 states is the coupling of nuclear oc-
tupole (∆Jπ = 3−) vibrations with vibrational or rotational excitations of ∆Jπ = 2+.
For even, even nuclei, this coupling results in states of spin and parity 1−, 2−, 3−, 4−,
and 5− whose energies are near the sum of the octupole phonon and quadrupole
state energies. The theoretical description of this coupling, the state ordering, and
the influence of the GDR are discussed in reference(74). In short, the presence of
the GDR can increase the transition strength for the 1− state, resulting in strong
E1 NRF resonances often with energies between ∼ 2 and 4 MeV(67),(55).

The description of NRF levels becomes further complicated by the fact that
the relatively simple forms described in this section can couple with one-another,
yielding states that would be described by much more complex models. For example
reference(75) discusses 2+ NRF states of even mass Sn isotopes. The lowest one-
phonon quadrupole vibrational states in the Sn isotopes lie between 1.1 and 1.3 MeV.
More 2+ NRF states were measured between 2 and 4 MeV that were identified as
weakly collective states coupled to single particle states. The same experiment also
identified strong E1 excitations for all isotopes between 3.2 and 3.5 MeV that were
identified as two phonon octupole-quadrupole coupling(76). Another complicating
factor is that interacting nucleons within a nucleus can yield an exchange current
which results in more complex descriptions of nuclear states and transitions.

Despite the complexities in describing ∆J ≤ 2 excited nuclear states, the most
important characteristics are their energies, and the strength by which they are
coupled to the ground state. For a state to be considered important for an NRF assay
techniques, its energy must be sufficiently high such that resonant γ-rays emitted
by the state may be observed above inelastic and non-resonant elastic scattered
background photons. The state’s excitation energy must also be sufficiently low
such that it is observable as a discrete state as opposed to higher-energy states that
contain very large admixtures of the GDR and may overlap in energy.

2.11.3 NRF Transition Strengths

The strength of an NRF transition is most commonly referred to as its integrated
cross section, with units of eV·barns. Integration of equation 2.75 over all energies
E ≥ 0 does not converge on account of the singularity at E = 0. However, E = 0
photons are non-physical, and for a small lower energy integration limit, ε, the
integral converges.∫ ∞

ε

σ(E)dE ≈
∫ ∞

0

πg
(~c)2

E2
0

ΓΓ0

(E − Ec)2 + (Γ/2)2
dE

= 2π2gΓ0
(~c)2

E2
0

(2.89)

= 7684[b ·MeV2]
Γ0

E2
0

g (2.90)
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For nuclear states, Γ can range from almost zero to several MeV. A state with
Γ ≈ 0 implies it has a very long lifetime, such as the 3167 keV excited state of 91Zr,
which has a lifetime of 5.28µs, corresponding to a width, Γ = 1.5 × 10−10 eV(77).
Long-lived states typically have spins that differ significantly from the ground state,
which makes them unlikely to be produced through photon excitation. The 3167 keV
state in 91Zr is suspected of having a spin of 21/2, compared with the 91Zr ground
state spin of 5/2.

Large values of Γ imply that the state is short-lived. The lowest exited state in
9Be has a width, Γ = 217 keV and an energy of 1684 keV, relative to the ground
state(78). The neutron separation energy of 9Be is 1.67 MeV(79), which implies that
the 1684 keV state can de-excite via neutron emission. When energetically allowed,
de-excitation via neutron emission is very common and dramatically reduces level
lifetimes, thereby increasing Γ.

For a state to be useful for NRF assay, it must be able to be excited via ground
state photo-absorption and de-excite by γ-ray emission with significant probability.
Neither level described in the preceding paragraph meets these requirements. Un-
hindered photon emission rates have been estimated by Weisskopf(13) based on
single-particle models for various multipolarity transitions. Although the model
tends to over-estimate the rates of E1 transitions, it provides an estimate as to the
shortest lifetimes expected for levels that de-excite via γ-ray emission.

t1/2s.p.(E1) =
6.76× 10−6

E3A2/3
(2.91)

Where E is the excitation energy of the state in keV, and the half-life is in seconds.
For the 4842 keV level in 208Pb, the E1 transition to the ground state, the Weisskopf
estimate results in a half-life of t1/2s.p. = 1.7× 10−18 s and a width, Γ = 270 eV. The
actual width of this level has been measured to be 4.78 eV(80), which corresponds
to a half-life of 9.5× 10−17 s. This state is a relatively large NRF state. Most states
that have been measured to undergo NRF have widths between of 5 meV and 10 eV,
and although they are expected to exist, smaller resonances are difficult to measure
via the detection of the NRF γ-rays above background levels.

Equation 2.91 indicates that for E1 transitions, Γ values tend to increase as E3,
whereas equation 2.75 showed that NRF cross sections are proportional to ΓΓ0/E

2.
This implies that neglecting hindrance, NRF resonances would increase in overall
intensity linearly with energy. However, the formalism defining equation 2.91 as-
sumes single particle levels undergoing transitions, whereas Section 2.11.2 reported
that many states excited during NRF are distinctly collective and therefore their
transition rates may exhibit hindrance due to structure effects.

Weisskopf state lifetime estimates are not only subject to overestimation. Elec-
tric quadrupole (E2) transitions for deformed nuclei are frequently observed at rates
faster than anticipated by the Weisskopf E2 estimate,

t1/2s.p.(E2) =
9.52× 106

E5A4/3
(2.92)



Section 2.11. Nuclear Resonance Fluorescence 64

The explanation for this is that the ground state and essentially all excited states of
the deformed nucleus have large intrinsic electric quadrupole moments and therefore
the matrix element, < Ψ∗|E2|Ψ0 >, can become large when the state, |Ψ0 >, has
a large collective component due to a quadrupole phonon. The 2+ states of Sn are
an example where the lowest states – thought to be predominantly vibrational –
have transition rates approximately 10 times those predicted by equation 2.92. The
higher-energy observed 2+ NRF states were theoretically predicted to have a more
complicated particle-phonon coupling and have transition rates that are slightly
hindered relative to the Weisskopf single particle model.

NRF states may emit γ-rays that result in de-excitation to any state that is
allowed by energetics and spin conservation. The Weisskopf estimates indicate that
highest-energy γ-rays are most favored, however nuclear structure may play an im-
portant role for certain NRF states. The spins of highly deformed nuclei may be
described by an additional quantum number, K which relates the total spin, J to
its projection upon the nuclear symmetry axis. For even, even nuclei with low-lying
rotational states, theory indicates that the de-excitation of a J = 1, K = 1 state
is twice as probable to occur to the ground state as to the first rotational state,
whereas for a J = 1, K = 0 state the de-excitation is twice as probable to occur to
the first rotational state(81)(82).

2.11.4 Thermal Motion and Nuclear Recoil

To this point, we have only discussed the process of NRF in the context of
nuclear states being excited and de-excited. The process, however, is connected to
the environment of the nucleus before photon absorption as well as after re-emission.
First we consider the fact that nuclei, as part of atoms, are not stationary, but are
always in thermal motion. In the case where NRF is induced on a nucleus comprising
a gaseous atom or part of a gaseous molecule, the velocity distribution of the nucleus
is defined by a Maxwell-Boltzmann probability distribution.

P (v) =

√
M

2πkBT
exp(−Mv2/2kBT ) (2.93)

where M is the mass of the atom or molecule, kB is Boltzmann’s constant,
(1.3806503× 10−23m2kg s−2K−1), and T is the absolute temperature of the gas.

For a photon of energy E, a nucleus moving at velocity v will experience a
photon of shifted energy, E ′ due to the Doppler effect.

E ′ = E

(
1 + v/c√
1− (v/c)2

)
≈ E

(
1 +

v

c

)
(2.94)

where we have assumed that the velocity of the gaseous nucleus is very small com-
pared to the speed of light.
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Substituting, we find that the effective energy distribution is given by

P (E ′)dE ′ =
1

∆
√

2π
exp(−(E ′ − E)2/2∆2)dE ′ (2.95)

where we have used dE ′ ≈ E′

c
dv and

∆ = E

√
kBT

Mc2
(2.96)

is the standard deviation of the distribution. We commonly refer to the Doppler
width of an broadened resonance as

ΓD ≡ 2
√

2 ln 2∆ = 2.3548∆ (2.97)

because it describes the FWHM of the distribution in equation 2.954.
The effective photo-absorption cross section that a photon incident upon a col-

lection of nuclei that have a velocity distribution given by equation 2.93 is then found
by averaging the Doppler-shifted energy probability distribution with the absorption
cross section(83).

σD(E) =

∫ ∞
0

dE ′σ(E ′)P (E ′) (2.98)

Substituting equations 2.75 and 2.95, we have the Doppler-broadened Lorentzian
profile (DBLP):

σD(E) =

√
πg(~c)2ΓΓ0√

2∆

∫ ∞
0

dE ′
1

(E ′ − Ec)2 + (Γ/2)2

exp(−(E ′ − E)2/2∆2)

E ′ 2
(2.99)

As an illustrative example, Figure 2.46 demonstrates the effect that a Maxwell
- Boltzmann energy distribution can have on the effective resonance shape that an
incident photon experiences. This idealized case involves a 2 MeV-centroid energy
(Ec) resonance with a width Γ = 0.5 eV and that always de-excites by photon
emission to the ground state (Γ0 = Γ). The states were assumed to have the same
spin so that g = 1/2. This distribution is also broadened due to the motion of
the atoms, which have been arbitrarily described by a Maxwell-Boltzmann velocity
distribution with Doppler width, ΓD = 1 eV. The corresponding energy probability
distribution was multiplied by

∫
σ(E)dE, and is shown as the green line in the

figure. Equation 2.99 was numerically integrated for these parameters for an array
of incident photon energies and the resulting effective cross sections are shown as
the dots on the red line in Figure 2.46. Although this example is not very realistic,
it does demonstrate that the width of the effective cross section distribution will be
broader than that of the energy distribution and that of the natural cross section.
Before discussing more realistic examples we consider how binding in solid materials
affects the energy distribution of nuclei.

4It should be noted that another common definition of the Doppler width is
√

2∆. This definition
is not used in this document.
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Figure 2.46 The natural cross section distribution for a hypothetical 2-MeV centroid
energy resonance with Γ = Γ0 = 0.5 eV (blue), the results of numerical integration
of equation 2.99: the DBLP for ΓD = 1 eV (red points), and the Maxwell-Boltzmann
distribution that was used for broadening, multiplied by the integrated cross section
for visualization purposes (green).

Non-amorphous solids are composed of crystalline arrangements of constituent
atoms. These atoms vibrate with thermal energy about their equilibrium positions
in the lattice. The momentum of an interacting may be converted into vibrational
energy through the creation (or destruction) of one or more phonons – here the term
phonon is used to describe vibrational excitations of crystalline atoms rather than
nucleons. The effects of phonons are most evident when the nuclear recoil energy is
not significantly greater than typical phonon energies. However, above ∼ 1.5 MeV,
the influence of crystalline phonons on the energy distribution of the nuclei continues
to have measurable effects. In particular, the binding energy of the crystal and
the phonon-induced motion causes crystalline atoms to vibrate faster than gaseous
atoms at the same temperature. By ignoring the details of the phonon bands, Lamb
was able to derive an expression for the effective temperature at which a crystal’s
atoms oscillate for the purpose of calculating Doppler broadening. In the limit that
∆/
√

2 + Γ >> 2kBθ, i.e. the effect of the width of the state is much larger than
the thermal energy of the atom, crystalline binding does not significantly influence
the atom’s recoil and the effective temperature at which equation 2.99 should be
evaluated(83),(86) is

Teff
T

= 3

(
T

θ

)3 ∫ θ/T

0

t3
(

1

exp(t)− 1
+

1

2

)
dt (2.100)

Here, θ is the Debye temperature of the crystal, which is a physical property of a
material that is related to the theoretical maximum energy a single phonon can carry
in the material. For elementals in their natural state, values of θ range from 38 K
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Figure 2.47 Predicted ratio of effective temperature to actual temperature for apply-
ing Maxwell-Boltzmann statistics to crystalline materials with a Debye temperature,
θ versus temperature relative to θ.

for cesium to 2230 K for carbon (diamond), with most metals between 200 and 500
K(88).

We further investigate the loose binding limit, ∆ + Γ >> 2kBθ by using equa-
tion 2.96 and assuming that Γ is smaller than ∆ to re-write this limit. It becomes

E

θ

√
T

A
>> 285[eV/

√
K] (2.101)

where A is the mass number of the atom in question. This indicates that for the
losse binding approximation to be valid at T = 300K, E must be significantly greater
than 52 keV for uranium, and 127 keV for diamond. All NRF resonances considered
herein fall within this limit.

The results from equation 2.100 are shown in Figure 2.47. This helps explain
the effects that phonons have on the effective temperature of a crystalline atom.
At high temperatures, atoms oscillate with a similar energy spectrum as a gas of
the same temperature. But at low temperatures, the binding energy of the crystal
causes ion oscillations at higher velocities, corresponding to a Maxwell-Boltzmann
distribution of a higher temperature.

Metallic uranium has a Debye temperature of 207 K(88). The resulting Teff
from equation 2.100 for a temperature of 300 K is 311.8 K. For the Ec = 2175 keV,
Γ = 54 meV resonance of 238U, this results in a Doppler width of 1.78 eV, or about
2% larger than for hypothetical gaseous uranium. Calculated natural and Doppler-
broadened cross sections for this resonance, along with the energy distribution of the
crystalline uranium atoms (as predicted by Lamb’s application of the Debye model)
are shown in Figure 2.48.
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Figure 2.48 Same as Figure 2.46, except for the 2175-keV resonance of 238U at 300
K. For this resonance, Γ = 54 meV, Γ0 = 37 meV, and g = 3/2.

The same calculations were performed for the 4026-keV NRF line of 138Ba. Bar-
ium has a Debye temperature of 110 K(88), which yields an effective temperature
of 306.6K for an ambient temperature of 300 K. The Doppler width for metal-
lic 138Ba atoms is then 4.28 eV, and the 4026-keV state has a width, Γ = Γ0 =
297meV(89). The same natural resonance shape, the DBLP and a renormalized
Maxwell-Boltzmann distribution are shown in Figure 2.49. Compared with the 238U
resonance, this peak is much wider due to the higher resonance energy and lower
mass, but otherwise the two are qualitatively very similar.

From the proceeding examples, we observe the following:

• Both natural and DBLP cross section profiles are nearly symmetric functions
peaked at the centroid energy.

• Doppler-broadening does not alter the integrated cross section, i.e.∫
σD(E)dE =

∫
σ(E)dE.

• Doppler-broadened widths will always be larger than natural widths, widening
the effective cross section distribution near the resonance’s centroid energy and
correspondingly reducing its the maximum value.

• At photon energies far from the centroid energy, the cross section profile will
closely follow the natural (Lorentzian) profile, even if Γ << ΓD.

Finally, we consider the influence of momentum conservation on NRF physics,
first for NRF of gaseous atoms, then in the context of crystalline solids. Conservation
of momentum requires that when a nucleus of mass, M absorbs a γ-ray of energy
Eγ and momentum Eγ/c, it will recoil with the γ-ray’s momentum, which translates
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Figure 2.49 Same as Figure 2.48, except for the 4026-keV resonance of 138Ba at 300
K. For this resonance, Γ = Γ0 = 297 meV, and g = 3/2.

to an energy

Erecoil =
E2
γ

2Mc2
(2.102)

For the example resonances discussed above, this corresponds to a recoil energy of
10.6 eV and 64.5 eV for the 238U and 138Ba resonances, respectively. Of particular
importance is the nuclear recoil energy for both resonances are significantly larger
than the Doppler-broadened widths of the resonances.

We can equate the expressions for recoil energy and Doppler widths (assum-
ing ΓD >> Γ). With the simplifying assumption that M ≈ Amn, one finds the
approximate result that recoil energies equal Doppler widths when

E = 11.4 keV ×
√
A (2.103)

Assuming that the Doppler width of a resonance is larger than the natural line width,
as long as the centroid energy is much greater than this limit, the NRF recoil energy
is larger than the width of a resonance.

The conservation of momentum applies to the re-emission of NRF γ-rays as well.
Upon resonance absorption, a nucleus will recoil with energy given by equation 2.102.
NRF state lifetimes tend to be on the order of 10−17 to 10−12 s, implying that the
nucleus will re-emit an NRF γ-ray before slowing down to thermal velocities. In
the event that the γ-ray is emitted in precisely the same direction as the incident
exciting photon, the nucleus would recoil back to its initial velocity. If the γ-ray
is emitted in a different direction, the nucleus will again recoil from γ-ray emission
and the resulting NRF γ-ray will be lower in energy than the initial photon. Most
probably this energy difference will be larger than the Doppler-broadened width of
the NRF resonance, and thus the emitted NRF γ-ray will no longer be resonant.
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The presence of phonons in crystalline materials can alter these conclusions
substantially. The most dramatic example is the phenomenon called the Mössbauer
effect(84). In this case, rather than causing the absorbing nucleus to recoil, the
absorbed photon’s momentum annihilates a phonon in the crystal, resulting in recoil-
less NRF. However, this process is more common for lower energy photo-absorption
processes, with the highest energies for which it has ever been observed being about
150 keV(85). At higher energies, the recoiling atom will either remain bound in its
lattice position or recoil and be displaced, most probably to an interstitial position.
If the atom remains in its lattice position, it will, on average, undergo damped
harmonic oscillation until it has re-equilibrated. The frequency of oscillation and
rate of damping depend upon the crystal properties.

The velocity of a recoiling nucleus undergoing damped oscillation has been de-
scribed as

v(t) = f(t)vmax (2.104)

where the initial recoil velocity vmax = Eγ/mc and f(t) is given by the real part of
the Fourier transform of the phonon frequency spectrum of the material. Where the
phonon frequency spectrum has not been measured, the Debye approximation has
proved qualitatively useful.

f(t) ∼
∫ ωD

0

ω2 cosωt (2.105)

The frequency, ωD = kBθ/~ is called the Debye frequency. Additional complexity
may be added to the model by including the Einstein-predicted acoustic modes
and/or taking crystalline asymmetry into account. However, with this simple model,
we can reach several conclusions that appear to be valid for our purposes.

The function f(t) is shown for recoiling nuclei in the Debye approximation in
Figure 2.50 for two materials, one with θ = 207 K and the other with θ = 630
K, corresponding to uranium metal (blue) and chromium metal (red), respectively.
After resonant absorption, atoms oscillate with a frequency slightly larger than the
Debye frequency that is damped with a characteristic time on the order of 100’s of
ps, until it equilibrates to low-magnitude Debye frequency oscillations. Given that
most NRF states of interest have lifetimes shorter than 50 fs, we see that the recoiling
atom will most probably be in the first period of oscillation when it re-emits an NRF
γ-ray. So long as the natural width of the resonance is smaller than the energy loss
indicated by the damping, re-emitted γ-rays will have less energy than required to
be resonantly re-absorbed by another atom(90),(91),(92),(93).

The difference between f(t), computed by the Debye approximation, and for
actual phonon spectra has been considered for lanthanum(90). As is the case for U
metal and UO2,(94),(95) the maximum phonon frequency measured is near the Debye
frequency, but phonon densities are higher at lower frequencies than predicted by the
Debye model. In this case, f(t) predicted from the phonon density of states differed
from the Debye prediction at longer times, but for the first period of oscillation,
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Figure 2.50 Recoiling atom relative velocities in the Debye approximation for two
materials, θ = 207 K and θ = 630 K, corresponding to uranium metal (blue) and
chromium metal (red), respectively. The box is a close-up of the curves for the first
250 fs after resonant excitation.

the difference was negligible. Thus, the assumption that re-emitted NRF γ-rays
are below resonance energy should be satisfactory for examining NRF for materials
assay purposes.

2.12 Detector Responses

In this chapter the physics governing photon scattering has been presented.
However, in order to use NRF to assay a material, the resonantly scattered photons
must be measured. The best energy resolution for detectors widely used today is
found with high-purity germanium crystals (HPGe). Photons that interact within
the crystals produce energetic electrons that thermalize by creation of secondary
electron-ion pairs. These electron-ion pairs are collected by an applied voltage,
resulting in an electric signal. The number of electron-ion pairs produced varies
statistically, but the low average energy required to produce a particle-hole pair in
Ge (w = 2.96 eV) along with good charge collection properties give HPGe excellent
detector characteristics(96). Research on superconducting transition edge sensors
has created devices with better energy resolution, but to date, they have only been
successful in measuring low-energy photons (. 200 keV) and at very low count rates
(. 1c s−1)(97)(98). Thus we consider use of HPGe detectors to be the state-of-the-
art for measuring NRF. The energy resolution of an HPGe detector is approximately
given by

∆EFWHM =
√

5.55FEw + Γ2
e (2.106)
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The first term in equation 2.106 is the square of the FWHM due to intrinsic charge
production in the crystal, where F is a value between 0 and 1 known as the Fano
factor. It accounts for the statistical correlation between ion-pair production events,
resulting in a narrower ion-pair number distribution than would be anticipated by
Poisson statistics. The second term, Γe is the FWHM due to all electronic noise.
Typically, Γe ≈ 1 keV. Fano factor values are usually near 0.16 for HPGe and
thus, we find detector resolutions vary as ∆EFWHM ≈

√
0.0026E + 1 when E and

∆EFWHM are in units of keV. At 2 MeV, we find detector resolutions near 2.5 keV.
Actual resolutions depend on the exact geometry of the Ge crystal, the bias voltage
and the electronics used to readout the signal, but this discussion presents the scale
of HPGe detector resolution.

To relate the relative intensities of NRF signals and backgrounds to the precision
with which a measurement may be made, we present a simple statistical model.
Suppose the signal of interest is detected at a rate, S. The background rate, B,
is estimated by examining the count rate in adjacent channels (where it is assumed
that no full-energy peaks are located). The total signal rate is, T = S+B. We define
the signal-to-background ratio as S/B = ξ. After a counting period of t, we expect
t(S+B) total counts within the area of interest (presumably where an NRF peak is
expected). The total number of counts from the signal is NS = tS, with fractional
uncertainty of ϑ = σS

NS
. Assuming Poisson statistics, the standard deviation of the

expected number of total counts, N , is
√
N , and we have

ϑ =

√
t(T +B)

tS
=

√
S + 2B√
tS

=

√
1 + 2/ξ√
NS

≡ f(ξ)√
NS

(2.107)

The function, f(ξ), that expresses the reduction in statistical quality of a measure-
ment of NS signal counts varies as f ∼

√
2/ξ for small values of ξ, whereas for large

ξ, f → 1. f(ξ) is shown in Figure 2.51 along with the limiting functions. This ob-
servation leads us to conclude that the NRF count rate must be almost as intense as
the background signal rate within the detector’s energy resolution to obtain counts
with reasonable statistical quality.

Background signals due to processes such as elastic and inelastic scattering will
vary slowly for photon sources that are broad in energy resolution compared to
those of detectors. Therefore, using a HPGe detector, it is necessary that the NRF
interaction rate to be approximately 1000 (≈ ∆E/ΓD) times the scattering rate of
non-resonant photons to accrue NRF count rate statistics in an efficient manner.
This ratio will increase proportionally with detector resolution. As an example, a
detector made of LaCl3 scintillator has a resolution that is about 20 times worse
than a HPGe detector(99). This implies that the background count rate within the
detector’s resolution will be about 20 times higher than it would be for an HPGe
detector, and if ξHPGe = 1, the statistical value of a LaCl3 count would be 3.75 times
less than that of an HPGe count. However, LaCl3 operates at much higher count
rates than HPGe, which may result in its utility in high count-rate measurement
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Figure 2.51 The relative increase in the fractional uncertainty of a measurement,
f(ξ) as a function of the signal-to-background ratio, ξ along with the functions (red)
that describe f(ξ) as ξ → 0 and ξ → inf.

scenarios.

2.13 Photon Scattering Physics Implications

For very low energy photons, interaction with matter is dominated by the pro-
cesses of Rayleigh scatter and photoelectric absorption, resulting in nearly isotrop-
ically scattered photons. As photon energies increase toward the pair production
threshold, incoherent scatter becomes the most probable interaction mechanism,
and Rayleigh scatter becomes more forwards-directed. Above the pair production
threshold, pair production becomes increasingly important, as do photonuclear reac-
tions. The processes that can produce large-angle scattered photons are coherent and
incoherent scatter, pair production, bremsstrahlung emission by photoelectrons, and
photonuclear reactions such as photon-induced neutron emission. Coherent scatter
strongly favors forwards-directed scattering, but large angle events can occur. Inco-
herent scatter also favors forwards-directed scattering, photoelectrons emitted due to
photoelectric absorption or incoherent scatter are predominantly forwards-directed,
and the bremsstrahlung emitted during electron slowing also tends to be forwards-
directed. γ-rays emitted by nuclear resonance fluorescence are either isotropic or
nearly so, which implies that the measurement of NRF γ-rays is best accomplished
by measuring the scattered photon intensity at large angles, relative to the interro-
gating beam.

Energetically, it is easiest to detect NRF γ-rays if the energy of the photon beam
does not extend significantly beyond the energy of the resonances. Photons produced
at large angles due to incoherent scatter are low energy, and the intensity of brems-
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strahlung decreases approximately exponentially with energy. The pair production
cross section increases with energy, resulting in more isotropically-emitted 511-keV
photons as beam energy increases. These photons may not directly interfere with
detection of high-energy NRF γ-rays, but they will produce a significant portion of
the overall count rate registered by a radiation detector, which will in turn limit the
intensity of the source photon beam that may be used.

While γ-rays emitted due to fluorescence of low-energy states may be difficult
to identify because of the relatively large non-resonant photon back-scatter cross
section, measurement of high-energy states also presents difficulties. Photoneutron
emission threshold energies are as low as 1.67 and 2.22 MeV for 9Be and 2H, respec-
tively, many isotopes have ∼8 MeV thresholds, and 73Ge has a 6.78 MeV threshold.
This threshold energy indicates that HPGe detectors become a neutron source when
subjected to large intensities of photons above this energy. Neutrons thermalize and
are subsequently captured, producing additional γ-rays that add to the background.
Finally, with increasing energies, the giant dipole resonance increases elastic scatter
cross sections and the density of nuclear states that can undergo resonance fluores-
cence increases. This begins to limit the isotopic-specificity that measurement of a
γ-ray near a resonant energy can provide, since they may be attributed to more than
one resonance. For these reasons, we consider the energy range between 1.5 and 5
MeV to be preferred for measurement of NRF as a non-destructive assay signature.
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Chapter 3

Model Approaches to Nuclear
Resonance Fluorescence Assay

In this chapter the development and use of models to predict expected nuclear
resonance fluorescence detection rates for non-destructive materials assay studies are
discussed. These models assume that NRF is detected by a single radiation detec-
tor, and that use of multiple detectors would proportionally increase the calculated
count rates. The two assay methods considered here are termed backscatter and
transmission assay. They differ in how photons undergoing NRF in the assay target
are observed. Both assay methods use a photon source to induce NRF in the tar-
get material. In backscatter assay, a radiation detector is positioned at backwards
angles relative to the incident photon beam trajectory. Transmission assay uses a
detection system down-stream of the assay target to measure the excess attenua-
tion of resonant-energy photons in the target. Both methods have advantages and
disadvantages; they will be discussed in the following sections along with examples
of measurements that have been modeled by a combination of computational and
analytical methods.

3.1 Backscatter NRF Assay

A schematic drawing of a backscatter NRF assay geometry is shown in Fig-
ure 3.1. A source of energetic photons illuminates the target material and one or
more radiation detectors measure the photon flux backscattered from the target.
Section 2.12 indicates that improved detector energy resolution increases the sta-
tistical value of registered NRF counts. Because of this, high-purity germanium
detectors (HPGe) are most commonly used for NRF experiments. The photon flux
at the detector, Φ(r), E) (which is proportional to the measured count rate) can be
written as,

Φ(r, E) = Φtarget(r, E) + Φradioactivity(r, E) + Φbeam(r, E) (3.1)
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Figure 3.1 Schematic drawing of a bremsstrahlung-induced backscatter NRF assay
setup. Lines indicating collimator acceptance have been extended to assay target
region.

where Φtarget(r, E) is the flux due to interrogating photons that were scattered toward
the detector after interacting in the assay target, which includes the contribution due
to NRF. Φradioactivity(r, E) is due to photons that were emitted due to radioactive
decay of materials within the interrogation geometry, and Φbeam(r, E) is due to in-
terrogating beam photons that have reached the detector without interacting within
the target material. The photons contributing to Phibeam generally penetrate large
quantities of shielding and will be discussed along with bremsstrahlung beam shield-
ing requirements in Section 3.1.2.

Figure 3.1 illustrates several design features of a backscatter NRF assay system.
First, the radiation detectors are generally positioned at a scattering angle of≥ 90o to
take advantage of the decreasing intensity of non-resonantly backscattered radiation
discussed in Chapter 2. Second, the interrogating photon beam is shown to be
bremsstrahlung. A nearly monoenergetic interrogating photon spectrum would have
advantages, but such sources do not appear to be currently practical1. A third
feature is the shielding directly between the detector and the target, labeled as
‘filter’. The purpose of the filter is to shield the detector from the low-energy portions
of Φtarget(r, E) and Φradioactivity(r, E). Filters may consist of up to ∼200 g/cm2 of
high-Z material, depending on photon beam characteristics and detector count rate
limitations. They are application-specific and will be discussed in specific assay
examples in Sections 3.1.3 and 3.1.4.

1References(100),(101),(102),(103),(104), and(105) describe quasi-monoenergetic photon sources
that are in use or under development. Cost and low photon intensities tend to be the short-comings
of these technologies. The potential to develop compact high-gradient electron accelerators(106)
provides further hope that such sources may become practical
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3.1.1 NRF Count Rates in Backscatter Assay

For the contributions to Φtarget(r, E), we consider the effects of resonant and non-
resonant scattering separately. Resonant scattering produces NRF signals, whereas
non-resonant scattering produces only background.

The rate at which NRF signals due to photons of energy, E, are detected by a
radiation detector from a location, r, within the target volume, V , is given by:

d2RNRF

dV dE
= NΦ(E, r)σNRF(E)We(θ) exp[−µ(Eγ)ro]

[
ε(Eγ)

Ω(r)

4π
Pf (Eγ)

]
(3.2)

Where N is the number density of atoms in the target that undergo NRF with cross
section σNRF(E), Φ(E, r) is the energy-differentiated photon flux at the point r,
We(θ) is the effective angular correlation function taking into account the finite solid
angle of the detector, Eγ is the energy of the emitted NRF γ-ray, which interacts
within the target material with an attenuation coefficient, µ(Eγ) that results in a
total attenuation of the NRF γ-ray of exp[−µ(Eγ)ro], ε(Eγ) is the probability that

the radiation detector measures the full energy of the NRF γ-ray, Ω(r)
4π

is the fraction
of the solid angle subtended by the radiation detector from the point where the γ-ray
is emitted, and Pf (Eγ) is the probability that the NRF γ-ray penetrates through the
radiation filter un-attenuated.

NRF γ-ray emission corresponding to de-excitation to the nuclear ground state
occurs with a probability Γ0/Γ. Likewise emission to a different excited state, labeled
i would occur with a probability Γi/Γ. The resulting γ-ray energy is Eγ = E−Erecoil

where Erecoil is given by equation 2.102. Generally, the energy taken by the recoiling
nucleus is sufficient to reduce the energy of the NRF γ-ray such that it is no longer
resonant. Because of this energy shift, attenuation of NRF γ-rays is only due to
nonresonant interactions.

Slab Geometry

The simplest geometry to consider is a slab target of thickness, t, irradiated
with a uniform parallel beam of intensity, Φi, that is normally incident upon the
slab. A radiation detector is assumed to be located sufficiently far from the target
that the beam diameter and t are negligibly small compared to the detector distance,
rd. A schematic rendering of this geometry is shown in Figure 3.2. Although not
indicated, the detector geometry may include a filter that NRF-energy photons have
a probability, Pf (Eγ), to penetrate without being attenuated.

For simplicity, we assume the photon flux is not a function of energy and that we
may neglect photon down-scatter. Then Φ(E, r) only varies due to the attenuation
of photons:

Φ(E, x) = Φi exp[−µ(E)x] (3.3)

and µ(E) now contains both resonant and non-resonant contributions:

µ(E) = µnr +NσNRF(E) (3.4)
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Figure 3.2 Schematic drawing of an NRF interrogation of a target slab.

Considering only photon energies near an NRF resonance, we may neglect the energy-
dependence of the non-resonant attenuation coefficient, µnr. Likewise, the attenu-
ation coefficient for NRF γ-rays, µ(Eγ) = µnr, because recoil has made them non-
resonant.

The length the photon must traverse to leave the target is given by ro =
x/cos(θ), where θ is the angle between the interrogating photon trajectory and the
direction of the detector’s location. The detector’s surface area is assumed to be
given by A.

Substituting, the rate of detection of full-energy NRF γ-rays can be written as:

d2RNRF

dxdE
≈ exp [− (µnr[1 + 1/cos(θ)] +NσNRF(E))x]NΦiσNRF(E)We(θ)

AεPfEγ
4πr2

d

(3.5)
We define

α = µnr[1 + 1/ cos(θ)] (3.6)

and µNRF(E) = NσNRF(E) and obtain:

dRNRF

dE
=

∫ t

0

d2RNRF

dxdE
dx ≈ 1− exp[−(α + µNRF(E))t]

α + µNRF(E)
NΦiσNRF(E)We(θ)

AεPfEγ
4πr2

d
(3.7)

If we further approximate that

σNRF(E) ≈


0, if E < EC − ΓD/2;

σCNRF, if EC − ΓD/2 ≤ E ≤ EC + ΓD/2;

0, if E > EC + ΓD/2.

(3.8)

where

σCNRF =

∫
σNRF(E)dE

ΓD
(3.9)
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EC is the centroid energy of the resonance, and ΓD is given by equation 2.97. We
may integrate equation 3.7 to obtain:

RNRF ≈
1− exp[−(α +NσCNRF)t]

α +NσCNRF

[NΦiσ
C
NRF]

We(θ)AεPfEγ
4πr2

d

(3.10)

Equation 3.10 is arranged such that the expected rate at which NRF γ-rays
are detected is divided into contributions due to three phenomena, the first term
is due to the effective geometric attenuation of photons before and after NRF, the
second term, NΦiσ

C
NRF is the rate (per unit thickness) at which NRF would occur

in the target without any attenuation, and the final term is due to the probability
of detection of NRF γ-rays emitted from the target.

The assumption that the target is an infinite slab geometry, indicates that as
θ → 90o, α→∞ due to the increasing amount of material NRF γ-rays would need
to traverse to leave the target.

For thin targets, exp[−(α + NσCNRF)t] ≈ 1 − (α + NσCNRF)t and equation 3.10
becomes

RNRF ≈ tNΦiσ
C
NRF

We(θ)Aε

4πr2
d

(3.11)

which is identical to the result for no photon attenuation within the target.
Although the constant cross section approximation of equation 3.8 will prove

to be very flawed in analysis of transmission assay, the assumption that the solid
angle subtended by the detector is independent of the interaction location within
the target proves to be a largest approximation in many backscatter NRF assay
geometries.

Finite Element Treatment of Target Geometry

The effective geometric attenuation can be easily computed for more compli-
cated geometries using a finite element method. Returning to equation 3.2, and
assuming that photon down-scatter can be neglected, we observe that Φ(E, r) is
given by a combination of beam divergence and exponential attenuation of the inci-
dent flux over the length a photon must travel before interaction at the finite element
point, ri. Therefore, we find

Φ(E, r) ≈ Φi(E) exp[−µ(E)ri]

[
ds

ds + ri

]2

(3.12)

where ds is the distance between the photon source and the front of the target. The
quantity [ds/(ds + ri)]

2 represents the divergence of the interrogating beam. The
dimension ro and rd are easily determined for each finite element point. For an
element grid point (i, j, k), values of ri, ro, θ, and rd are calculated and substituted
into the geometric attenuation expression to obtain an energy-differentiated NRF
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γ-ray count rate:

dR

dE
=
∑
i

∑
j

∑
k

NσNRF(E)Φi(E)Pf (E)Aε(E) exp[−µ(E)ri,j,ki ] exp[−µnrri,j,ko ]

(
ds

ds + ri,j,ki

)2

W (θi,j,k)
f i,j,k

4π(ri,j,kd )2
∆i∆j∆k (3.13)

where ∆i, ∆j and ∆k refer to spatial dimensions of each finite element and f i,j,k

indicates the volume fraction of the element that is contained within the target
object. When a constant cross section approximation is assumed, and Pf (E) and
ε(E) are evaluated at the resonance energy, we obtain

R =
∑
i

∑
j

∑
k

NσCNRFΓDΦiPfAε exp[−NσCNRFr
i,j,k
i ] exp[−µnr(ri,j,ki + ri,j,ko )]

(
ds

ds + ri,j,ki

)2

W (θi,j,k)
f i,j,k

4π(ri,j,kd )2
∆i∆j∆k

(3.14)

≡ NσCNRFΓDΦiAε×G (3.15)

where G includes the sum of the products of all terms that contain a parameter that
varies with between finite elements.

An example of the geometric correction, G as a function of spatial coordinate
is shown in Figure 3.3. In this example, we assume that a 1 cm-radius sphere of
UO2 is irradiated by a uniform beam of photons incident along the x-axis. The 235U
abundance of the uranium is assumed to be 0.05 and the energy of the photon beam
is assumed to be that of the centroid of the 1.733-MeV resonance in 235U, which
has an effective natural width, gΓ0 = 34 meV. The detector is positioned in the x-y
plane, 30 cm from the center of the sphere and at an angle of θ = 135o, relative
to the interrogating beam direction. The calculation was performed for one half of
the z-dimension coordinates because of symmetry. The sphere was divided into a
30 x 30 x 15 grid, and the values plotted are the grid-point-dependent quantities of
equation 3.14 for the plane i = 15, assuming Pf = 1, and W (θ) = 1. The f i,j,k were
assumed to be unity if the center of the corresponding finite element was within the
sphere, and zero otherwise. The summed geometric factor is G = 0.0579 cm, yielding
an expression for the expected NRF count rate of 0.0579 cm×NσCNRFΓDΦiAε. This
NRF γ-ray detection rate is the same as would be expected from irradiation of 1 cm2

of a 0.0579 cm-thick pure 235U slab, neglecting photon attenuation in the target. It is
also 0.276 times the rate that would be estimated if attenuation due to non-resonant
interactions in the target sphere were ignored.
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Figure 3.3 Grid-point dependent quantities, Gi,j,k of equation 3.14 for i = 15. See
text for details.

3.1.2 Background Contributions

γ-ray interactions counted by radiation detectors that are not due to NRF are
considered background. These events may be due to scatter of the interrogating
photon beam or radioactive decay of material in the assay geometry. It is also
important to differentiate between background events at and near resonant energies
and those at other energies.

Active Background Contributions – Interrogation Photons Scattered in
Target

Detected background photons due to the interrogating beam may either di-
rectly reach the detector or do so via scattering in the assay geometry. The physical
processes that result into photons being emitted in backwards angles relative to
the incident photon direction have been discussed in Chapter 2. To summarize,
incoherent scattering produces only low-energy backscattered photons and pair pro-
duction results in 511 keV photons in all directions. Coherent scattering produces
energetic photons, and while the coherent scattering processes are predominantly
forward-directed, they do result in some energetic backscattered radiation. Similarly,
multi-step processes such as multiple incoherent scattering events or bremsstrahlung
emission from energetic photoelectrons can result in energetic backscattered radia-
tion.

Spectra calculated with MCNPX provide significant information about the in-
tensity and energy-dependence of the photon flux near radiation detectors that re-
sults from interrogating beam interactions in the assay target. Example spectra
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(where photon intensities have been converted to effective differential cross sections)
are presented for incident monoenergetic beams in Figures 2.24 and C.3. However,
MCNPX does not include photonuclear elastic scattering processes and therefore,
photon intensities due to these processes must also be added. In order to include
these processes in a simple manner, the updated Rayleigh scattering form factor
arrays discussed in Appendix A were not used in MCNPX calculations. Instead, in-
tensities due to all elastic scattering processes were separately calculated and added
to the simulation results.

As a first example, we consider the assay of a 1.75 cm-radius sphere of CsCl2/Ba
mixture with an assumed stoichiometry of Cs:Ba:2Cl, and density of 2 g/cm3, en-
cased in a 3 mm-thick 316L stainless steel shell (107). This target geometry approx-
imates a 1-kCi 137Cs industrial irradiator source circa 19702(108),(109). A beam of
4-MeV electrons incident upon a 7.5 mm-thick slab of tungsten was used to model a
bremsstrahlung source. The tungsten converter was located 60 cm from the target.
The bremsstrahlung beam was heavily shielded except for a collimator opening with
a radius of 1.75 cm. The fluence of photons scattering toward a detector located at
an angle of 120o from the initial electron direction and a distance of 30 cm from the
target center was simulated.

To estimate the coherent scattering contribution to the photon fluence, the
finite element approach described by equation 3.13 was used with slight modifica-
tions. First, the value of σCNRFΓD preceding the exponents was replaced with the
angle-differentiated coherent scattering cross section, dσCoh/dΩ, shown for Ba in
Figure 2.37. The value of σCNRF in the exponent was taken as zero because there
is no additional attenuation due to resonant-energy photons. The term, W (θ) was
omitted because the angular dependence of the scattered photons has been accounted
by including dσcoh

dΩ
instead of the total cross section for scattering. Finally, an ad-

ditional attenuation factor due to penetration through the stainless steel shell was
also included in the calculation. These changes lead to the following expression for
the coherently scattered photon flux:

dΦ

dE
= N

dσcoh
dΩ

(E)Φi(E)Pf (E)
∑
i

∑
j

∑
k

exp[−µsteel(E)ri,j,kshell]

exp[−µnr(ri,j,ki + ri,j,ko )]

(
ds

ds + ri,j,ki

)2
f i,j,k

(ri,j,kd )2
∆i∆j∆k (3.16)

where µsteel(E) is the energy-dependent attenuation coefficient of the stainless steel
and ri,j,kshell corresponds to the combined distances through the spherical steel shell a
photon must pass to reach the finite element grid point, and after scattering to leave
the target in the direction of the detector location (rshell is analogous to ri + ro in
equation 3.14).

2Newer radiological sources tend to have the radio-isotope dissolved in boro-silicate glass(110)
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Figure 3.4 Calculated backscattered photon flux for assay of a 1-kCi Cs irradiator at
a position un-shielded from the assay target, 30 cm from the target center, at 120o

relative to initial electron beam direction. The flux is normalized per mC of 4-MeV
electrons incident upon bremsstrahlung converter.

Equation 3.16 was evaluated for the 1-kCi 137Cs target geometry at energies
between 100 keV and 4 MeV in 100 keV intervals, using the MCNPX-calculated
bremsstrahlung beam intensity and assuming that Pf (E) = 1. The intensity of
this beam as well as the backscattered photon flux spectrum were both normalized
per mC of electron beam current incident upon the bremsstrahlung converter and
are shown along with their summed spectrum in Figure 3.4. For this geometry,
the coherently scattered photons represent a significant contribution to the energy-
differentiated flux for energies above 2.2 MeV and are the most important contributor
of photons above 2.5 MeV.

A second example, the backscattered photon intensity was calculated for a 5
mm-diameter UO2 cylinder. This geometry represents a simplified fuel pin. For this
case the interrogating radiation was generated with 2-MeV electrons incident upon a
102-µm Au foil on a 1 cm-thick Cu backing. The resulting bremsstrahlung emanating
from a 5 mm-diameter cylindrical hole in the shielding irradiated the UO2 cylinder
60 cm downstream. The resulting backscattered fluence was calculated 60 cm from
the target in a viewing window located at an angle of 120o relative to the direction of
the electron beam and is shown in Figure 3.5. Compared to Figure 3.4, coherently
scattered photons are an even more important contribution to the backscattered
photon intensity.

The total fluences for the spectra shown in Figures 3.4 and 3.5 are approximately
3× 107 and 1.6× 105 photons/cm2/s, respectively. Given that the front surface area
of a large HPGe detector is ∼ 60 cm2, and that photons with energies below 4 MeV,
when incident upon the front face of such a detector will have a large probability to
interact with it, these fluences would result in exceedingly high detector signal rates.
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Figure 3.5 Calculated backscattered photon flux for assay of a UO2 cylinder of 5
mm-diameter at a position un-shielded from the assay target, 60 cm from the target,
at 120o relative to initial electron beam direction. The flux is normalized per mC of
2-MeV electrons incident upon bremsstrahlung converter.

This effect can be mitigated by the addition of a filter, as discussed in Section 3.1.3.

Active Background Contributions – Direct Detection of Interrogation
Photons

To reduce direct detection of interrogation photons, large quantities of shielding
are generally placed between the photon source and the radiation detectors. High-Z
materials such as tungsten and lead have high densities and relative to lower-Z ma-
terials, have larger pair production and photoelectric absorption cross sections, com-
pared to their incoherent scattering cross sections. However, incoherent scattering is
still frequently the dominant process for multi-MeV photons. Incoherent scattering
tends to produce forward-scattered photons with energies near the un-scattered pho-
ton energy, which implies that incoherent scatter is a relatively ineffective process
for shielding, relative to other photon interactions. Therefore, simple exponential
attenuation using the total interaction cross section, can significantly underestimate
the transmitted photon flux.

Using the methods described in Section C.2, MCNPX simulations were per-
formed to determine the transmission of bremsstrahlung-spectrum photons through
large quantities of shielding. The simulated geometry was assumed to be a slab of
tungsten whose thickness was varied between simulations. The photon spectrum
incident upon the shielding slab was taken from a the results of a previous MCNPX
simulation in which 2.5-MeV electrons irradiated a 1 mm-thick sheet of uranium.
Photons emitted from the uranium converter within a bin of 40o− 50o from the ini-
tial electron trajectory were used as the photon source for the shielding penetration
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Figure 3.6 MCNPX-calculated photon intensities transmitted through a tungsten
slab of varying thickness. The open and closed circles indicate calculation results
and the solid line indicates exponential fits to the calculated results. The photon
spectrum incident upon the shield is that of the 40o−50o angular bin bremsstrahlung
beam created by impinging 2.5-MeV electrons upon a 1 mm-thick slab of uranium.
Statistical errors are not shown, but the largest error fraction is 5.3% of the calculated
value for the 2 - 2.1 MeV bin penetrating through 40 cm of tungsten.

simulation. Of interest are both total photon intensities and the intensity of pho-
tons with near-resonant energies that would provide background to observing NRF
γ-rays. Figure 3.6 presents intensities of photons after the bremsstrahlung-spectrum
photons penetrate through tungsten shielding. As an example of near-resonant pho-
tons, the photon intensity for energies between 2 and 2.1 MeV is shown along with
the full energy-integrated spectrum. The spectra have been normalized to number of
photons per steradian per mC of electron charge incident upon the bremsstrahlung
converter.

The rates at which 2 - 2.1 MeV photons and the entire spectrum are attenuated
both appear to follow exponential forms for thicker shields. Linear least-squares
routines were applied to the logarithms of the attenuation values, yielding a function
of the form (I/I0)fit = a exp(−bx). The results of these routines are shown in
Table 3.1. When fitting the attenuation of the entire spectrum, the least-squares
fitting routine was only applied to simulated values of photon transmission for W
shielding thicknesses greater than 5 cm. The fits are compared to the calculated
attenuations in Figure 3.7, where values of (I/I0)MCNPX−(I/I0)fit

(I/I0)MCNPX
are plotted versus

tungsten slab thicknesses.
In an ideal NRF geometry, the bremsstrahlung flux intensity, dΦ/dE, incident

upon a detector that has penetrated the bremsstrahlung shielding is significantly
lower than that due to NRF. Likewise, the energy-integrated flux must be sufficiently
small to permit detector operation at low dead-time.



Section 3.1. Backscatter NRF Assay 86

energy range a b (cm−1)

entire spectrum 0.3275± 6.4× 10−4 0.845± 0.0004

2 - 2.1 MeV 4.737× 10−3 ± 4× 10−8 0.7898± 0.0001

Table 3.1 Fit parameters for representing bremsstrahlung-spectrum photon intensi-
ties as (I/I0)fit = a exp(−bx) after attenuation through a thickness, x of shielding.

Figure 3.7 Fractional deviation between the calculated values of the transmitted
photon intensity and those estimated by a linear least-squares fitting-routine. The
error bars indicate ±1σ errors from the MCNPX computation. The entire spectrum
value is not shown for zero slab thickness, it is 0.72.



Section 3.1. Backscatter NRF Assay 87

Radioactive Background Contributions

γ-rays due to radioactive decay of isotopes within the assay geometry are an
additional source of background for NRF assay counting. Lead is contaminated with
nuclides from primordial sources, including the 238U and 232Th decay chains. The
radioactive decay of 208Tl, present in the 232Th decay chain, produces a 2.615-MeV
γ-ray that is the highest-energy γ-ray from terrestrial sources, although cosmically-
induced photons and charged particles will contribute higher energy radiations that
must also be considered. The low-background facility at Lawrence Berkeley National
Laboratory has lead-shielded germanium detectors that detect approximately 5 ×
10−4 full-energy 2.615-MeV γ-rays per second, which corresponds to a 2.615-MeV
γ-ray flux of ∼ 1× 10−4 cm−2s−1. This represents probably the lowest rate that can
be expected from this source due to the fact that the lead and concrete shielding at
the facility were selected for their low activity.

Additionally, targets for NRF-based assay measurements may contain significant
quantities of radioactive materials. In the examples considered here, the targets are
highly radioactive. When employing a transmission-based assay method, where ra-
diation detectors are oriented to measure backscattered photons from a transmission
detector (TD) foil, the TD itself may contain radioactive materials. In the experi-
mental measurements summarized in Chapter 4, the 2.615-MeV γ-ray detection rate
was 100 times that at the LBF. When a 1/2” lead filter was placed between the TD
and the detectors, the 2.615 MeV count rate dropped proportionally to the expected
attenuation of 2.615 MeV γ-rays through lead, indicating that the high count rate
was due to radioactivity beyond the lead shielding (presumably the TD), rather than
within the lead itself.

Filter thickness and target radioactivity are the design constraints that are first
addressed in the following examples of the backscatter assay method.

3.1.3 NRF Assay of Radiological Sources

The motivation for assaying radioisotopes is simple. The possible use of large
radioactive sources in radiation dispersal devices is of considerable national and
international concern(109)(112). Of particular interest are the longer-lived fission
product isotopes 90Sr and 137Cs that exist in sources whose activities can exceed 104

Ci. The age of such sources, i.e. the time since discharge of a sample from a reactor
or the time since chemical isolation of a radioisotope from the fission products, have
been identified as important parameters for forensic purposes, especially if other
identifying characteristics are missing or uncertain(113). Sources used in the public
and private domains may be as old as 60 y.

Although age-dating can, in principle, be accomplished with high precision and
accuracy by careful use of radiochemical and mass spectrometric methodologies,
there are significant shortcomings in practice. Of primary importance is that essen-
tially all quantitative radiochemical methods require wet chemical manipulations on
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Cumulative Fission Yield (%)

Fission 233U 233U 235U 235U 238U 239Pu 239Pu

Product Thermal Fast Thermal Fast Fast Thermal Fast
133Cs 5.95 6.04 6.70 6.72 6.76 7.02 6.58
135Cs 6.27 6.42 6.54 6.60 6.97 7.62 7.55
137Cs 6.75 6.75 6.19 6.22 6.05 6.61 6.97

90Sr 6.79 6.39 5.78 5.47 3.25 2.10 2.05
89Sr 6.34 5.75 4.73 4.37 2.76 1.72 1.76
88Sr 5.47 5.07 3.58 3.49 2.03 1.33 1.33

Table 3.2 Cumulative fission yield for common radiological sources as well as other
isotopes produced in significant quantities via fission. Data are from reference (114),
‘Thermal’ indicates fission was induced by thermal spectrum neutrons and ‘Fast’
that fission was induced by a spectrum of neutrons from a fast pool reactor.

a representative sample of the entire source, and thus, the source must be opened
and processed. For sources that have decayed for a time greater than one half-life,
stoichiometric changes coupled with thermal effects can cause significant segregation
of elements, making isolation of a representative sample difficult absent dissolution
and homogenization of the entire source. For example, a 137Cs source will undergo
the following chemical process:

137CsCl→137 BaCl→ 1

2
137BaCl2 + Ba (3.17)

BaCl is chemically unstable, and CsCl and BaCl2 are mutually insoluble. This
provides the chemical potential for segregation.

While dissolution and homogenization of an entire radiological source is straight-
forward for small sources, sampling of more than 102 Ci in such a manner is a daunt-
ing task. Second, there are only few facilities that can handle such large sources and
the disposal of the predominant bulk of the radioactivity from an opened source and
decontamination of equipment are both difficult and expensive.

Radiological sources come in a variety of forms. 137Cs and 90Sr sources are
produced by chemically separating Cs and Sr produced through fission from the
other fission products and actinides. Chain yields of isotopes commonly found in
radiological sources obtained from fission products are shown in Table 3.2.

Isotopic ratios are normally measured by chemically separating the elements of
interest (such as Cs and Ba), and performing mass spectrometry to determine the
relative concentrations of the Cs and Ba isotopes. When the initial isotopic content
of the radiological source is known (or inferred), the ratio of the quantity of the
radioactive isotope to its stable daughter is used to determine the time period over
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which the stable daughter has been produced by radioactive decay3.
In principle, relative concentration measurements can be accomplished by mea-

suring the rate at which each isotope undergoes NRF. However, NRF has not yet
been measured in isotopes of 137Cs or 90Sr. This is due to the fact that performing
measurements on gram-quantities of these isotopes is a difficult undertaking because
of the associated radioactivity. Regardless, by measuring the radioactivity of the
parent isotope in a well-calibrated counting geometry, the activity (and therefore
number) of parent isotopes in the sample should be measured with an uncertainty
≤ 3%. Therefore, it is the number of stable daughter atoms that must be measured
in order to non-destructively and non-intrusively age-date a radiological sample.

Radiological Source Shielding

In the discussion that follows, we present the possible signal rates and expected
measurement precision for the assay of a spherical 137Cs radiological sources in CsCl
chemical form that have initial source activities ranging from 10 Ci to 10 kCi. It
is assumed that the 137Cs was obtained from chemically-separated fission product
cesium from thermal fission of 235U. Assuming this, we estimate the rate at which
137Ba NRF γ-rays are measured, along with background count rates.

The physics that allows a relatively weak NRF response to be measured from
a highly radioactive material is the fact that nuclear resonances can occur at higher
energies than the γ-rays emitted due to radioactive decay of the source. The NRF
γ-rays are therefore more penetrating, and subsequently are more likely be detected
atop a background that remains very intense at lower energies, but is quite weak
near resonance energies.

To enable a detector to function without significant pile-up, we assume that
the rate limit for operation of large HPGe detectors is approximately 2× 104 c s−1.
The NRF γ-rays and non-resonantly scattered bremsstrahlung radiation contributes
to the detection rate, therefore we estimate that the detector must be sufficiently
shielded such that the rate at which the detector responds due radiological source
activity is below ∼ 104 c s−1. Assuming a detector with a sensitive surface area of
60 cm2, this implies a photon flux of less than ∼ 170 cm−2s−1. For HPGe detectors
located 60 cm from the target center, the shielding necessary to achieve this flux
is shown for varying source intensities in Table 3.3. The table also includes the
expected attenuation through the corresponding shielding thickness of 3.761 MeV
photons, which are produced by de-excitation of the largest 137Ba resonance. To
operate an HPGe detector 60 cm from a 1-kCi 137Cs source, approximately 13.2 cm
of Pb must surround the source, resulting in a decrease in photon flux of ∼ 2×10−7.
This amount shielding however, will only decrease the intensity of NRF γ-rays by
2× 10−3, indicating that the shielding has attenuated 661 keV γ-rays by a factor of
104 relative to the NRF γ-rays. That the shielding can attenuate radiological source

3See for example equation 3.21.
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Source Shield # of Photons Leaving Fraction of NRF γ-rays

Activity (Ci) Thickness (cm) Shielding per 661 keV γ-ray Penetrating Shielding

25 10.2 8.15×10−6 7.89×10−3

75 11.05 2.72×10−6 5.27×10−3

350 12.4 5.82×10−7 2.78×10−3

1000 13.2 2.04×10−7 1.90×10−3

Table 3.3 Lead shielding requirements to operate a 60 cm2 detector at 60 cm from
a 137Cs source at a count rate of 104 c s−1. Calculated fractions of un-attenuated
3.761-MeV NRF γ-rays penetrating corresponding amounts of Pb are also shown.

photons while still allowing some penetration of energetic NRF γ-rays is the physical
reason why this assay method is feasible.

Backscattered NRF Intensities

The rate at which the NRF signal is detected was derived via a modification
of equation 3.14. The assay target includes a steel spherical shell, and therefore the
effect of attenuation within this shell, analogous to that resulting in equation 3.16,
was also applied. This results in the following expressions for NRF count rates,
RNRF.

RNRF =
∑
i

∑
j

∑
k

NσCNRFΓDΦiPfAε exp[−NσCNRFr
i,j,k
i ] exp[−µsteel(E)ri,j,kshell]

exp[−µnr(ri,j,ki + ri,j,ko )]

(
ds

ds + ri,j,ki

)2

W (θi,j,k)
f i,j,k

4π(ri,j,kd )2
∆i∆j∆k

(3.18)

The expected NRF γ-ray fluence is

Φ =
RNRF

Aε
(3.19)

NRF count rates were estimated for the 3.761-MeV resonance of 137Ba. This
resonance has a measured value of gΓ0 = 61.6 meV, corresponding to an integrated
cross section of 33.5 eV·b(115). Applying equation 3.18, we calculate an unattenu-
ated NRF photon fluence emanating from the interrogated target at a distance of 60
cm to be ΦNRF = 0.98 photons/cm2 per mC of 4-MeV electrons incident upon the
bremsstrahlung converter. The energy of these photons is assumed uniform across
the Doppler width of the resonance, ΓD = 3.97 eV. An HPGe detector has an energy
resolution Γdet ≈ 4 keV at 3.7 MeV, and therefore we may multiply the calculated
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non-resonantly scattered fluence (shown in Figure 3.4) by Γdet to compare the in-
tensity of an NRF signal to that of the background spectrum. This indicates that
for a 137Cs radiological source that has entirely decayed to 137Ba, we would expect
the fluence due to NRF to be ∼40 times as intense as that due to non-resonant
scattering of interrogating photons.

Large amounts of shielding are necessary to reduce the source intensity at the de-
tector location. The down-scatter and attenuation of both NRF and non-resonantly
scattered photons in the shielding, as well as HPGe detector responses were consid-
ered through further MCNPX simulations, which are described in Section C.4. The
shield thicknesses in front of the simulated detector are those indicated in Table 3.3.

The detector response simulations provided the energy deposited within the
germanium crystal for each photon incident upon the modeled shielded detector
system, resulting in pulse-height spectra for monoenergetic photons incident upon
the system. Simulated pulse-height spectra for 3.761 and-4 MeV photons incident
upon the shielded detector are shown in Figure 3.8 for 13.2 cm-thick Pb shield.
The simulation for 3.761-MeV photons indicates that the expected full-energy peak
efficiency of the shielded detector is ε ≈ 3.1×10−5. The pulse-height spectrum for 4-
MeV photons is similar to that for 3.761-MeV photons, except that the annihilation
photon escape peaks and the Compton edge are at higher energies. The Compton
edge for a 4-MeV photon is 3.760 MeV, and the probability that a 4-MeV photon
deposits 3.760 MeV ±2 keV is ≈ 5.5× 10−7.

The probability of ∼3.761 MeV energy deposition events was computed for all
higher-energy photons that resulted from 4-MeV electrons incident upon the brems-
strahlung converter, resulting in the expected number of 3.761-MeV depositions per
unit electron beam intensity. This value is the contribution to the expected back-
ground due to higher-energy backscattered interrogating beam photons depositing
less than their full energy into the HPGe detector.

The detector response to 4-MeV photons shown in Figure 3.8 indicates the im-
portance of using a bremsstrahlung spectrum with an endpoint energy near that of
the resonance energy to measure NRF transitions. Increasing the endpoint energy
increases the intensity of non-resonantly backscattered photons. These can subse-
quently interact within the shielding or detector producing an increased background
over which the NRF signal must be measured. Spectral features such as Compton
edges, and single and double escape peaks are all important features that result in
significant increase of background at their respective energies. If the endpoint energy
is very much greater than the energy of the NRF transition, increasing the amount
of shielding between the assay target and the detector also increases the probabil-
ity for down-scattering of photons and results in ever-increasing background at the
NRF energy. We shall see shortly however, that even when ∼13 cm of lead shielding
is used, the effect of down-scattering in the shielding appears to contribute less to
the background at NRF energies than the non-resonant backscatter of interrogation
photons.
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Figure 3.8 MCNPX-calculated pulse-height spectra for monoenergetic 3.761 and 4-
MeV photons incident upon a HPGe detector with 13.2 cm-thick Pb shield. The
simulations are discussed in Section C.4.1 and the geometry simulated is shown in
Figure C.2. Bin-widths were 15 keV for energies above 2.5 MeV and 69 keV below.
Statistical errors are up to 5% in narrow energy bins with low probabilities.

Assuming that the detector was located 60 cm from the assay target, the rate at
which full-energy depositions from 3.761-MeV photons are detected when all 137Cs
has decayed is estimated as RNRF = 0.013 counts per mC of 4-MeV electrons incident
upon the bremsstrahlung converter. If the HPGe detector resolution at 3.761 MeV
is 4 keV, the NRF signal is then ∼40 times as intense as the signal due to full-energy
deposition of non-resonantly backscattered photons, and ∼30 times the signal due
higher energy backscattered photons depositing 3.761 ±0.002 MeV into the detector.
Summing these background contributions, we find that the maximum NRF signal
intensity is estimated as 17 times that of the expected background. The ratio of the
NRF signal intensity to that of the detected background is shown in Figure 3.9 as a
function of the time, t, since separation of cesium from the fission products.

Figure 3.9 indicates that the signal from the 3.761-MeV resonance of 137Ba will
be as intense as the background approximately 2.5 years after chemical separation.
The NRF signal will be approximately 4 times as intense as the background after 10
years. From equation 2.107, we conclude that the statistical precision to which the
NRF transition rate can be measured 10 years after separation is only 20% worse
than if the background were negligible.

These calculations may be scaled to other 137Cs sources. For sources of similar
composition and shielding, the intensity of NRF signals will remain unchanged,
relative to the non-resonantly backscattered photon intensity near NRF energies.

The quantity of lead necessary to shield the detector against the 661 keV photon
from decay of 137Cs will increase with source intensity. For initial source intensities
large compared to 1 Ci, the thickness of lead required is given approximately by the
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Figure 3.9 Calculated ratios of the expected NRF signal from 137Ba to background as
a function of time, t, since separation of cesium from the fission products. The assay
target is assumed to be 1 kCi 137Cs (initial activity), and the detector resolution is
assumed to be 4 keV at the 137Ba resonance energy of 3.761 MeV.

expression,

x =
1

1.28cm−1
ln

[
A[Ci]

4.55× 10−5Ci

]
(3.20)

The NRF γ-rays with energies of ∼ 3.761 MeV are attenuated in lead with
an attenuation coefficient of 0.47 cm−1 at 3.761 MeV(29). Thus, the rate at which
the NRF signal is attenuated is always smaller than the increased NRF signal rate
due to increased source strength. To a reasonable approximation, the method should
then be applicable to the largest radiological sources. However, the backscatter NRF
assay technique becomes subsequently less sensitive to the volume as a whole, and
relatively more sensitive to that portion of the volume nearest the detector.

Using scaling and a re-calculated geometric factor, G from equation 3.14, we
expect that the rate at which NRF γ-rays are counted for a target that was originally
a 75-Ci source will be about 25% that of a 1-kCi source of the same age, and a 25-Ci
initial activity source would accrue NRF counts at a rate 12% that of the 1-kCi
source.

Newer, smaller radiological sources often contain their 137Cs within boro-silicate
glass(116)(109). These sources contain approximately 1% (atomic fraction) elemen-
tal cesium, compared to 50% for older sources. This decrease in cesium concentra-
tion, along with a tendency to produce lower-activity sources reduces the potential
use of the backscatter NRF method for assay of newer radiological sources. Chem-
ical segregation is also less likely to occur in borosilicate glasses, so obtaining a
representative sample for destructive analysis techniques is less problematic.
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Counting Statistics and Expected Measurement Timescales

To assess how accurately the NRF backscatter assay technique can measure the
time since separation of a 1-kCi 137Cs source, we assume an 8-hour (detector live
time) measurement using a 20-mA 4-MeV source of electrons as can be generated
by modern electron accelerators such as the Rhodotron(120). This results in a total
beam charge of 570 C. For this beam current, the total count rate due to scattered
interrogating photons in the shielded HPGe detector is estimated to be ∼104 c s−1.

The time since separation of cesium from the fission products is given by the
expression,

tsep =
ln
(
NBa

NCs
+ 1
)

λ
(3.21)

where NBa and NCs are the number of 137Ba and 137Cs atoms present in the source
at the time of the measurement, respectively, and λ is the decay constant for 137Cs,
given by λ = ln 2/t1/2. This assumes that initially there were no 137Ba atoms present
within the sample. This assumption may be confirmed by the absence of NRF
response due to other barium fission product isotopes, or quantitatively corrected if
these isotopes are observed.

The uncertainty in the measured value of tsep is given by

σtsep =

√(
dtsep

dNBa

)2

σ2
Ba +

(
dtsep

dNCs

)2

σ2
Cs ≡

√
Σ2

Ba + Σ2
Cs (3.22)

where σBa and σCs are the standard deviations of the measured values of NBa and
NCs, respectively and ΣBa and ΣCs likewise refer to the contributions to the total
uncertainty from the uncertainties in the measurements of 137Ba and 137Cs content.
In equation 3.22, the contribution due to uncertainty in the 137Cs decay constant
has been neglected because it is very small (0.1%)(117), and has no effect on the
conclusions drawn below.

The explicit forms of the differentials in equation 3.22 are

dt

dNBa

=
1

NCs(1 +NBa/NCs)λ
=

f

(1 + f)λ

1

NBa

(3.23)

dt

dNCs

=
NBa/NCs

NCs(1 +NBa/NCs)λ
=

f

(1 + f)λ

1

NCs

(3.24)

where

f ≡ NBa

NCs

=
1− exp[−λt]

exp[−λt]
(3.25)

Thus,

ΣBa =
f

(1 + f)λ

σBa

NBa

(3.26)
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Figure 3.10 Calculated contributions to the uncertainty in the time since separation
due to uncertainty in the measurement of the number of 137Cs atoms, ΣCs(t). The
values adjacent to each curve indicates the assumed fractional uncertainty in NCs.

ΣCs =
f

(1 + f)λ

σCs

NCs

(3.27)

Due to lack of data, we are unable to make estimates for potential NRF γ-rays
from 137Cs. However, the rate at which the 661-keV γ-ray is emitted from the sample
is proportional to the amount of 137Cs present. Therefore, NCs can be determined by
calibrated measurement of the 661-keV full-energy peak or by calorimetric methods.
In a well-calibrated situation, these measurements can provide uncertainties as small
as 1%, and should easily be able to provide uncertainties less than 10%. Figure 3.10
presents ΣCS for a range of the uncertainty at which the 137Cs content in the assay
sample is measured.

Using the relationship between fractional uncertainty and signal-to-background
ratios given in equation 2.107, we are able to evaluate ΣBa(t). Using equation 3.22
and the values for ΣCs(t) shown in Figure 3.10, we obtain estimates of σt(t). These
are plotted as a function of t for a 137Cs source having an initial activity of 1 kCi
(black) and 25 Ci (gray) in Figure 3.11.

These results indicate that non-destructive age-dating of radioisotope sources
is possible using backscatter nuclear resonance fluoresce assay. The expected uncer-
tainties for a 1 kCi initial activity source are such that measured values of the time
since separation would be useful information for investigators and decision makers.
Smaller radiological sources accrue statistics at slower rates, however measurement
of a source of A0 = 25 Ci still appears to provide very useful information within an
8-hour irradiation using an intense photon source.

The outlook for using a similar method to measure the time since chemical
separation of 90Sr radiological sources appears similar. 90Sr has a 28.79-y half-life
and undergoes β− decay to 90Y, which has a 64 h half-life before decaying to 90Zr.
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Figure 3.11 Calculated uncertainties (σt) in the time since separation, t, assuming
the number of 137Ba atoms was measured by nuclear resonance fluorescence via
a bremsstrahlung beam generated by 570 C of 4-MeV electrons incident upon a
bremsstrahlung converter. The number of 137Cs atoms present in the assay material
may be measured by NRF or by passive counting of the 661-keV γ-ray, and this
uncertainty was assumed to be 3%. The black line indicates the age uncertainty for
a target with an initial source activity, A0 = 1 kCi, and the gray line indicates the
age uncertainty for a target with initial activity, A0 = 25 Ci.

The NRF response of 90Zr has been measured, and it has a resonance of very similar
intensity and energy to that of 137Ba (30 eV·b at 3842 keV), therefore measurement
of the number of 90Zr atoms present in a sample should be a similar undertaking to
that of measuring 137Ba. However, there are two complicating factors pertinent to
measuring the age of a 90Sr source. First, the β−-decay of 90Sr is not accompanied
by any characteristic γ-rays. This indicates that the number of 90Sr atoms cannot
be directly measured from its activity. However, 90Y will be in secular equilibrium
with 90Sr, and a 2186-keV γ-ray is emitted following 90Y decay with a probability of
(1.4± 0.3)× 10−6. Although it is quite low in intensity, this γ-ray may be useful to
measure the 90Sr activity. β−-particles emitted from 90Y can have energies up to 2186
keV. These will produce bremsstrahlung as they lose energy. The sources of higher-
energy photons are much weaker than the 661-keV γ-ray that accompanies 137Cs
decay, but the resulting photons must be sufficiently shielded in order to perform a
forensics measurement by counting induced NRF γ-rays.

Additional Forensics Information Available to NRF Assay Technique

The technique of measuring nuclear resonance fluorescence transitions to assay
large radiological sources has the potential to provide additional auxiliary informa-
tion that may be of use for nuclear forensics. The NRF responses of all stable barium
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isotopes have been measured and resonances with stronger, or similar, intensities to
that of the 3.761-MeV resonance were observed for 138Ba (4026 keV, 211 eV·b)(89)
and 136Ba (3436 keV, 74.5 eV·b)(118) . This implies that significant quantities of
these isotopes present in a 137Cs source could be detected by measurement of their
NRF signatures. If barium isotopes other than 137Ba are detected, they would in-
dicate poor chemical separation, which implies 137Ba was also likely to be present
after the separation. These measurements could provide the basis for a quantitative
correction to the age of the radiological source estimated by equation 3.21.

Another interesting potential application of this assay technique is that it may
provide information about the nuclear reactor that generated the constituents of the
source. 135Cs production is strongly suppressed by the large neutron absorption cross
section of its decay parent, 135Xe. Thus, measurements of the 135Cs/137Cs ratios that
are lower than those indicated from Table 3.2 would indicate the source was generated
in a high-flux reactor(119). Similarly, the rate of 133Cs production compared to
137Cs production can indicate which isotopes primarily underwent fission to produce
the source. The accuracies with which these methods could be applied cannot be
stated at this point, however, because the NRF responses of the cesium isotopes are
unknown.

3.1.4 NRF Assay of Spent Fuel Pins

Measuring the content of actinides in intact spent fuel pins increases the dif-
ficulty of subverting nuclear safeguards and diverting special nuclear material. To
ascertain the likelihood that NRF could be used to assay spent fuel, the backscatter
measurement technique is examined. The modeled geometry for the assay is sim-
ilar to that shown in Figure 3.1, except that the circular target indicated in the
drawing is now the cross section of a cylindrical fuel pin. The pin was assumed to
be 9.36 mm-diameter UO2 pellets contained within 0.67 mm-thick Zr fuel cladding.
For simulational purposes, photon fluences from fuel activity and from scattering
of the interrogating beam were calculated at a point 60 cm from the pin inside a 1
cm-diameter cylindrical void within a large lead block. This is roughly equivalent to
a detector viewing 1 cm of fuel while the remainder of the pin is heavily shielded by
Pb.

Radioactivity of Spent Fuel

The first consideration for assay of spent fuel is the radioactivity of the fuel pin
itself. Tanskanen et al. used the nuclide inventory code, ORIGEN-S(121) to calculate
expected concentrations of actinides and fission products in boiling water reactor fuel
that had undergone a burnup of 37.8 MWd/kgU. The actinide and fission product
concentrations were tabulated at times of 0, 818.3, 1636.7, 2455.0, 3273.3, 4091.7,
and 4910.0 days after discharge(122). Using these fission product concentrations,
photon fluxes due to γ-ray emission and bremsstrahlung from slowing of β-particles
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Figure 3.12 Calculated photon flux within a 1 cm-diameter collimator viewing a
single spent fuel pin at a location 60 cm from the pin, immediately after fuel discharge
from a reactor. The red lines indicate the flux contribution due to γ-ray emission
in the spent fuel. Additional photons are due to bremsstrahlung emitted during
slowing of emitted β-particles.

emitted from the spent fuel were calculated at the position 60 cm from the pin
center, and are shown in Figures 3.12 and 3.13 directly after discharge, and ∼9 years
after discharge, respectively. The spectra due to γ-ray emission are shown in red
and the total spectra are shown in black. These spectra are dominated by relatively
intense discrete γ-rays, whereas the difference between the total spectrum and that
due to γ-ray emission is due to bremsstrahlung emitted from the slowing down of
β-particles.

Comparing these figures, we note that the total intensity 9 years after discharge
is smaller by a factor of ∼30 and the intensity above 1.6 MeV is smaller by a factor
of ∼500 compared to the intensities immediately upon discharge of the fuel. The
peak at 1596 keV is due to 154Eu, which has an 8.5-y half-life. Higher-energy photons
are primarily due to the decays of 144Pr and 106Rh, both of which are short-lived
daughters of isotopes that decay with half-lives of about 1 y. These isotopes may
also emit energetic β-particles during radioactive decay. These β-particles account
for a large fraction of the bremsstrahlung emitted from the spent fuel.

The production of many important background-inducing fission products will
vary with reactor operating conditions and types. For example, assuming a thermal
neutron spectrum induces fission, the cumulative yield of 106Rh from 239Pu fission is
approximately 10 times larger than from 235U fission. Therefore longer irradiations
or use of fuel that has high initial plutonium content will result in larger photon
intensities between the energies of 1.6 and 3.6 MeV. Because of this variability, the
fuel radioactivity values described in this section are for the purposes of describing
an approximate scale to provide reference, rather than precise quantities.
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Figure 3.13 Calculated photon flux within a 1 cm-diameter collimator viewing a
single spent fuel pin at a location 60 cm from the pin, 3273.3 days after fuel discharge
from a reactor. The red lines indicate the flux contribution due to γ-ray emission
in the spent fuel. Additional photons are due to bremsstrahlung emitted during
slowing of emitted β-particles.

The calculated photon flux distributions in Figures 3.12 and 3.13 indicate one
reason directly measuring the NRF response of 239Pu or 235U would be difficult.
Even after 9 years of cooling, the radioactivity in the spent fuel results in a photon
flux of approximately 106 cm−2s−1 at the assumed detector location, 60 cm from the
spent fuel center. Such a strong flux would result in almost complete pulse-summing
in a HPGe detector, and therefore a filter between the fuel and detector will be
necessary. Filters however, also down-scatter higher-energy photons. This can add
to the energy continuum of background photons upon which NRF peaks must be
measured.

A filter consisting of several inches of lead will increase the likelihood that γ-
rays will not deposit their full energy into a detector, which increases the intensity
of the spectral continuum relative to the intensity of full-energy peaks. For a single
fuel pin, 9 y after removal from the reference reactor, approximately 8 cm of lead is
needed directly between the detector and 1 cm of exposed fuel in order to operate a
detector at a distance of 60 cm from the pin. This shielding dramatically alters the
effective response of the radiation detector due to down-scattering of higher-energy
photons within the filter. Folding shielded detector responses with the calculated
fluence shown in Figures 3.12 and 3.13 results in the spectra shown in Figure 3.14.

Estimates of the background count rates in the vicinity of resonance energies
are tabulated as Rfuel in Table 3.5. The values are from the spectrum shown in
Figure 3.14 for spent fuel after a 9-year decay time that does no include γ-ray full-
energy deposition. The decay time not only decreases the overall count rate to a
reasonable level, but it also lowers the fraction of background that is due to higher-
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Figure 3.14 Calculated photon energy deposition spectra due to spent fuel radioac-
tivity at discharge (black) and ∼9 years after discharge (red). The spectra are
calculated for a 100% relative efficiency HPGe detector behind 8 cm of lead located
60 cm from the spent fuel pin. It is assumed that the space between the pin and
detector is filled with lead, with the exception of a hole that allows the shielded
detector to view 1 linear cm of the fuel. The contribution to the red spectrum that
is due to full-energy deposition of discrete γ-rays was also subtracted, resulting in
the blue spectrum. This spectrum is indicative of the expected counting continuum.

energy photons. In particular, a factor of 10 decrease in count rate is expected above
the 1596-keV 154Eu peak.

The Rfuel values indicated in Table 3.5 should quite accurately represent count
rates due to radioactive emissions from a reference fuel pin that had undergone
a continuous irradiation of 37.8 MWd/kgU and subsequently cooled for 9 years.
However, given the variety irradiation conditions that produce spent fuel, they should
only be taken as approximate values with the tacit acknowledgment that a wide
variety of spent fuel exists and that spent fuel radioactivity will vary.

NRF Count Rates from Backscatter Assay of Spent Fuel Pin

The NRF responses of 235U and 239Pu were measured in 2006 and 2007(123), and
the results from these experiments are presented in Tables 3.4 and 3.7. Several pairs
of observed NRF γ-rays were found to have energy differences equal to the excitation
energy of low-lying excited states (7.9 ± 0.002 keV for 239Pu and 46.21 ± 0.01 keV
for 235U)(126). In these cases the sum of the measured cross sections is shown in the
table, and the tabulated value of Γ0/Γ differs from unity. Subsequent experiments
attempting to measure higher-energy NRF resonances in these isotopes have not
yielded new transitions(124),(125).

Equation 3.14 was evaluated for the assay geometry of a single UO2 fuel pin
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235U

Centroid
∫
σNRFdE gΓ0

Γ0/Γ
Energy (keV) (b·eV) (meV)

1656.23±.80 4.1±1.3 1.47±0.46 1

1733.60±.22 35.9±4.1 14.11±1.61 0.83

1815.31±.22 14.1±1.7 6.05±0.73 0.69

1827.54±.23 6.7±1.2 2.91±0.52 1

1862.31±.20 9.6±1.7 4.33±0.77 1

2003.32±.25 9.7±1.7 5.07±0.89 1

2006.19±.31 4.7±1.6 2.46±0.84 1

Table 3.4 Characteristics of measured NRF states in 235U as reported in
reference(123). Values of gΓ0 were obtained by application of equation 2.89. States
where Γ0/Γ 6= 1 indicate that a γ-ray of energy, Eγ = EC − 46.2 keV was observed.
These lines are assumed to correspond to de-excitation of the NRF state via emission
of a γ-ray populating the low-lying 9/2− excited state of 235U. Values of

∫
σNRF dE

shown here are the sum of the reported values.

where 235U comprises 1% of the actinide mass. The interrogating beam was a 2
MeV endpoint-energy bremsstrahlung beam. The detector response was modeled as
described in Section C.4 and was assumed to be shielded in the configuration shown
in Figure C.2, with a filter thickness, xf = 8 cm.

Resulting expected count rates of NRF γ-rays from 235U are tabulated in Ta-
ble 3.5. The values are reported in units of counts/mC/keV, indicating that rates are
proportional to the intensity of the electron beam that generates the bremsstrahlung
beam, and that the intensity of the NRF γ-rays are spread out over the detector’s
energy resolution, which is assumed to be 3 keV. The expected uncertainties in the
rate at which NRF γ-rays would be counted are primarily due to experimental un-
certainties in the measured strengths of the NRF resonances. These values are up
to 33% for the smaller resonances. Likewise, effects due to detector dead-time will
proportionally decrease all rates listed in Table 3.5.

Referring to the results shown in Table 3.5, we observe that a beam current of
approximately 400 mA would be necessary for the intensity of NRF γ-ray from the
1733-keV 235U resonance to be equal that due to the radioactivity of spent fuel, 9
years after reactor discharge. With this beam intensity in mind, we now consider
the intensity of non-resonantly backscattered photons, which also scales with the
intensity of the interrogating beam.
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Centroid
∫
σNRF dE RNRF Rbkg Rfuel

Energy (keV) (b·eV) (1/mC/keV) (1/mC/keV) (1/s/keV)

1656.23 4.1 9.2×10−6 2.5×10−2 3.6×10−2

1733.60 35.9 6.6 ×10−5 1.7×10−2 2.8×10−2

1815.31 14.1 2.0×10−5 1.1×10−2 2.4×10−2

1827.54 6.7 9.6×10−6 9.9×10−3 2.3×10−2

1862.31 9.6 1.2×10−5 7.9×10−3 2.1×10−2

totals (energy-integrated) 3.8×10−4 4.2×102 1.2×104

Table 3.5 Expected rates at which 235U NRF γ-rays (RNRF), non-resonantly backscat-
tered interrogation photons (Rfuel), and photons emitted via radioactive decay spent
fuel that has cooled for 9 years (Rbkg), are detected at energies corresponding to 235U
resonance γ-rays. The detector was assumed to be a 100% relative efficiency HPGe
shielded behind 8 cm lead, with assumed energy resolution of 3 keV. The NRF γ-
ray intensities have been uniformly spread over this resolution. Values in the last
row represent total rates expected over the entire spectrum, and therefore, are not
energy-differentiated.

Non-Resonantly Backscattered Photon Spectrum

The expected background photon spectrum due to detection of non-resonantly
scattered interrogation photons is determined by summing the intensity of non-
elastically scattered photons computed via MCNPX and the expected intensity due
to elastic scattering processes that are not simulated in MCNPX. These spectra are
shown in Figure 3.5 and values at resonant energies are tabulated as ‘R′bkg in Ta-
ble 3.5. The total intensity is given by integrating the energy-differentiated spectrum
over all energies. This results in 4.2×102 counts/mC. Using a 25 mA electron beam
to produce the bremsstrahlung beam would then result in approximately 104 c s−1

in the counting geometry, which when summed with a background counting rate of
104 c s−1, yields a total count rate of ∼ 2× 104 c s−1.

Uncertainties in the energy-integrated value of Rbkg are primarily due to inac-
curacies in the Monte Carlo calculation, which has been demonstrated to be quite
small for total count rates. However, a large fraction of the counts above ∼1.5 MeV
are due to elastic scattering, which had been neglected in benchmarking experi-
ments. As discussed in Chapter 2, the elastic scattering cross sections now used in
the Monte Carlo calculations are based on the form factor approximation, and may
remain inaccurate by up to a factor of ∼10. Because of this, elastic scattered has
been separately considered, but the cross sections used in this calculation may be
inaccurate by a factor of ∼2 4.

The significantly larger intensity of the non-resonantly scattered photons relative

4See Section 2.10 for a discussion of these cross sections and their associated uncertainties.
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to the NRF photons indicates the difficulty in measuring backscattered NRF γ-rays
to determine spent fuel content. Since longer cooling times can reduce the photon
intensity due to radioactive decay in spent fuel, the fundamental limit is defined by
the fact that the intensity of NRF γ-rays, relative to those non-resonantly scattered,
is fixed and small. This indicates that very large numbers of photon counts would
be required to precisely measure the quantity of 235U or 239Pu in spent fuel.

The rate at which statistics accrue is given in equation 2.107. For, the 1733-
keV resonance of 235U, using a 2 MeV endpoint-energy beam and neglecting the
background due to radioactive decay within spent fuel, ξ ≈ 4 × 10−3. Thus ∼20
times more NRF counts are necessary than would be expected from standard 1/

√
N

statistics. To make a measurement with 1% statistical uncertainty, 2 × 105 NRF
counts would be needed. Such a measurement would take about 2 y using a 25 mA
beam and a single 100% relative efficiency HPGe detector. Higher beam energies
will increase the NRF rate, but will also decrease ξ.

Quasi-monoenergetic Photon Sources and Backscattered NRF

The prospect of using an intense quasi-monoenergetic photon beam to induce
NRF changes the conclusions given above because the down-scattering of higher-
energy photons is significantly reduced. The signal-to-background ratio limit is then
defined by two factors: the elastic scattering cross section relative to the NRF cross
section, and the energy resolution of the photon detector. Assuming a 3 keV de-
tector resolution and considering the 1733-keV 235U resonance, ξ ≈ 0.1. With this,
counting statistics would accrue at a rate 4.5 times slower than would be expected
from the 1/

√
N limit. However, the total non-resonant backscattered photon de-

tection rate would be reduced by an amount proportional to the energy width of
the beam, relative to that of the bremsstrahlung spectrum. In principal, this en-
ables a system to detect far more NRF events in a given time period. However,
the largest operating quasi-monoenergetic photon source, the High Intensity γ-ray
Source (HIγS) is capable of producing ∼ 250 γ/s/eV with a 20 mm-radius colli-
mation (the beam is nearly mono-directional)(100), which is roughly equivalent to
the number of resonant-energy photons from a bremsstrahlung beam produced by
2-µA 2-MeV electron beam in the interrogation geometry assumed here. Thus, the
most intense quasi-monoenergetic photon source now available is much too weak for
the present application. Significant technological advances need to be made if this
method is to be considered further.

3.2 Transmission NRF Assay

The measurement of NRF γ-rays at backward angles suffers from the disadvan-
tage that radioactivity emitted by the assay target can necessitate large amounts of
shielding, which subsequently reduces the NRF γ-ray detection rate. The method
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Figure 3.15 Schematic description of a geometry used for a transmission assay mea-
surement.

is also more sensitive to radiation backscattered from the front of the target rather
than from the target as a whole, resulting in potentially biased results for non-
homogeneous targets. The following method mitigates these disadvantages at the
expense of a more complicated assay system and the need for even stronger interro-
gating photon beams.

The concept of an NRF assay using the transmitted spectrum emanating from
the assay target is as follows: an interrogating beam impinges upon the assay target
and the spectrum transmitted through the target is then incident upon a thin sheet
of material called the transmission detector (TD). The TD is (ideally) composed of
the isotope that is to be assayed, which will be referred to as the isotope of interest
(IOI). Resonant-energy photons that impinge upon the TD may induce NRF. The
NRF γ-rays emanating from the TD are then detected by radiation detectors located
at backward angles, relative to the incident bremsstrahlung beam. A schematic
diagram of this assay type is shown in Figure 3.15.

The sensitive volume of the assay target is defined as the region though which
interrogating photons can penetrate and subsequently reach the TD without scatter.
The reduced rate at which the TD undergoes NRF is proportional to the intensity
of preferential attenuation undergone by resonant-energy photons while traversing
the sensitive volume of the target. This intensity is directly correlated to the areal
density of the IOI within the sensitive volume of the target. Larger IOI areal densities
decrease the relative rate at which NRF occurs in the TD, effectively producing a
larger signal for the transmission measurement. Because the detectors are arranged
to observe NRF in the TD, increasing the quantity of material in the assay target does
not directly increase the rate at which the detectors measure radioactive decay in the
target. Therefore, creating larger effective signals without increasing the background
implies that thicker assay targets are advantageous for transmission measurements.
For these reasons, measurements of plutonium content in spent fuel assemblies is
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considered rather than in a single fuel pin.5

In Section 3.2.1, photon transport through a fuel assembly assay target is con-
sidered when no IOI atoms are present in the assay target. From this, the expected
rates for detecting non-resonantly scattered photons and NRF γ-rays are estimated.
The details of the process by which NRF γ-ray counts rates decrease from this max-
imum rate, called resonant attenuation are considered in Section 3.2.2. The use of
approximating models for the form of NRF resonances is also considered in Sec-
tion 3.2.3. Section 3.2.4 develops the means by which measured NRF γ-rays are
related to the precision with which the IOI may be measured, and expected preci-
sions for an assay of spent fuel assemblies is presented. Section 3.2.5 discusses the
effects of down-scattering on the effective NRF signal.

3.2.1 Transmission Assay: NRF and Background Signal Rates

Photons penetrating the sensitive volume in the assay target undergo attenua-
tion given by

Φ(E) = Φ0(E) exp[−µ(E)x] (3.30)

Where x is the thickness of the assay target, and µ(E) is the energy-dependent at-
tenuation coefficient of the target, given by µ(E) =

∑
ij Niσij(E), where Ni is the

number density of a given isotope, i, and σij(E) is the partial cross section for a
photon interaction event of type j for that isotope (i.e., incoherent scattering, pair
production, NRF, ...). There is also the potential for higher-energy photons to be
down-scattered to the energy, E, resulting in higher photon fluences than indicated
by equation 3.30. The phenomenon where a down-scattered photon becomes reso-
nant in energy is discussed in more detail in Section 3.2.5, however for the case where
the energy of an NRF resonance is near the maximum energy of the interrogating

5An estimate of the statistical uncertainty of the IOI areal density due to a transmission mea-
surement of a resonance is given in equation 3.50. Likewise, the fractional uncertainty is given
by

u ≡ σNx

Nx
=

√
1 + 2/ξ

Nxα
√
C

(3.28)

Assume the limiting factor in NRF measurements is the rate at which radiation detectors can
operate, and that this value is held constant between measurements (presumably by adjusting
the beam intensity). For measurements of actinide areal densities, Nxassembly and Nxpin, Nx
in equation 3.28 significantly changes, whereas ξ and C only differ between measurements by an
amount approximately proportional to A(Nxassembly)/A(Nxpin). Nxassembly ≈ 0.25 g/cm2 and
Nxpin ≈ 20 mg/cm2, therefore A(Nxassembly)/A(Nxpin) ≈ 1 (see Figure 3.28), and for a fixed
total count rate,

uassembly

upin
≈ Nxpin

Nxassembly
(3.29)

Assuming sufficiently intense photon sources, the transmission assay of an entire fuel assembly yields
equivalent statistical uncertainties, and therefore dramatically reduced fractional uncertainties,
compared to assay of a single fuel pin.



Section 3.2. Transmission NRF Assay 106

Figure 3.16 MCNPX-computed bremsstrahlung photons spectrum for photons leav-
ing within 3.57o of the initial electron trajectory, for 2.6-MeV electrons normally
incident upon 102 µm-thick Au foil backed by 1 cm-thick Cu.

photon spectrum, this occurrence is relatively rare. However, down-scattering sig-
nificantly increases the photon flux for the low-energy portion of the transmitted
spectrum, relative to that predicted by equation 3.30.

The processes by which non-resonant photons leaving the TD result in detected
background events has essentially been discussed in Section 3.1.2, with the following
differences: the assay target described in Section 3.1.2 is now the TD, the trans-
mission target hardens the spectrum of the interrogating beam, and the shielding
configuration for the radiation detectors are differently constrained.

We consider non-resonant photon transport through the a target composed of
UO2, Zr, and small quantities of other actinides and fission products. The target
geometry is a homogenized mixture of these constituents at 4 g/cm3 density and
21.8-cm square. This target is the homogenized equivalent of a 15 pin by 15 pin (15
x 15) spent fuel assembly. Expected photon intensities are estimated with MCNPX
calculations, where the effects of resonant absorption are explicitly excluded these
calculations. Resonant absorption will be calculated separately using the formalisms
developed in Section 3.2.2.

First, the bremsstrahlung converter is assumed to be 102 µm-thick Au foil
backed by 1 cm-thick Cu. These are the actual dimensions of the converter used
in the experiment described in Chapter 4. The calculated photon spectrum emitted
from the bremsstrahlung converter within 3.57o of the incident electron direction is
shown in Figure 3.16. The electrons were assumed to have an energy of 2.6 MeV and
to be normally incident upon the Au surface. For this calculation, source electrons
were all assumed to strike the center of the Au surface.

In a second simulation, the bremsstrahlung spectrum shown in Figure 3.16 was
assumed to be produced 150 cm from the side face of the 15 x 15 homogenized fuel



Section 3.2. Transmission NRF Assay 107

Figure 3.17 MCNPX-computed photon spectrum directed toward TD after penetra-
tion of bremsstrahlung spectrum through a homogenized fuel assembly.

assembly target and was used to irradiate the target. The geometry is such that
the diameter of the un-scattered beam is 21.8 cm at the back plane of the target.
The spectrum of photons leaving the target’s back plane in the direction of the TD
is shown in Figure 3.17. The entire spectrum is attenuated by a factor of ∼400,
however, photons above 2 MeV are only attenuated by a factor of 40− 50.

A third computation simulated the transport of photons with the spectrum
shown in Figure 3.17 as they impinge upon the TD. The energy-differentiated photon
flux was calculated at a point 100 cm from the TD at an angle of 120o, relative to the
initial beam direction. This photon energy distribution is then taken as the source
spectrum for a final series of simulations in which the shielded detector response is
examined. In these simulations, the thickness of the Pb filter was varied, and the
backscattered photon spectrum was transported through a shielded HPGe detector
geometry as described in Section C.4. For each incident photon, the energy deposited
within the germanium was calculated, resulting in the expected photon spectrum as
measured by a shielded HPGe detector.

The thicknesses of the Pb filters were 1.27, 2.54, 4, 6, and 8 cm for these
simulations. With 8 cm of shielding, total count rate in the detector (100% relative
efficiency HPGe) decreases from 4.4 × 107 to 1.2 × 105 counts per Coulomb of 2.6-
MeV electrons incident upon the bremsstrahlung converter, compared to a shielding
thickness of 1.27 cm. In general, an HPGe detector should operate at a maximum
of between 2×104 and 8×104 Hz(139). Using 2×104 as a nominal maximum count
rate, this defines the maximum allowable beam intensity for a given filter thickness.
These values are summarized in Table 3.6.

Increasing the filter thickness results in more attenuation of the NRF γ-rays.
This decreases the probability that a NRF γ-ray will deposit its full-energy in the
HPGe detector. This attenuation is estimated with the expression I = IO exp(−µxf ),
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xf counts per Imax
Iγ/Iγ0

RNRF

(cm) 2.6-MeV e− (mA) (1/C)

1.27 7.0× 10−12 0.46 0.53 49

2.54 1.8× 10−12 1.8 0.28 27

4.0 4.1× 10−13 7.8 0.14 13

6.0 7.6× 10−14 42 0.051 4.9

8.0 1.9× 10−14 170 0.019 1.8

Table 3.6 Effects of the photon filter on the photon spectrum that is calculated to be
measured by a 100% relative efficiency HPGe detector. xf indicates the thickness of
the Pb filter. The values corresponding to ‘counts per 2.6-MeV e−’ indicate the total
number of expected counts per 2.6-MeV electron incident upon the bremsstrahlung
converter, and from these values, the electron beam intensity resulting in 2 × 104

counts per second, Imax, is calculated. Values labeled as Iγ/Iγ0 indicate the attenua-
tion of a 2.25-MeV γ-ray as it penetrates through the corresponding filter thickness
and RNRF indicates the expected number of NRF γ-rays that would be counted by
a detector per Coulomb of electrons impinging upon the bremsstrahlung converter.

where µ is the attenuation coefficient (without coherent scattering) taken from
reference(29). The attenuation in the filter, Iγ/Iγ0 is also shown in Table 3.6 for
a 2.25-MeV γ-ray. Attenuation coefficients are not a strong function of energy in
the range between 2 and 2.5 MeV, and therefore we can consider these values to
be fairly representative of the behavior NRF γ-rays that would be induced by a 2.6
MeV endpoint-energy bremsstrahlung beam.

Neglecting the excess attenuation of resonant-energy photons (which will be
explicitly examined in detail in Section 3.2.2), the rate at which NRF γ-rays are
detected can be estimated using equation 3.10, where Φi now refers to the photon
spectrum incident upon the TD (Figure 3.17), and ε must take into account the
effect of the filter. With these modifications, we show in the last column of Ta-
ble 3.6 expected count rates of a hypothetical 20 eV·b resonance at 2.25 MeV for a
100% relative efficiency HPGe detector located 100 cm from the TD per Coulomb
of electrons incident upon the bremsstrahlung converter.

We now must examine how the expected rate at which NRF γ-rays are measured
decreases due to resonant absorption of photons in the assay target. This creates
the signal from which a measurement of the intensity of transmitted resonant-energy
photons can be used to determine the areal density of the IOI in the target.

3.2.2 Analytical Considerations

In this section we consider the relative attenuation of photons at, and near,
resonant-energies through materials containing varying amounts of an isotope of in-
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terest. As discussed in Section 2.11.4, the energy-dependent cross section that pho-
tons experience while traversing a material is given to an excellent approximation by
the Doppler-broadened Lorentzian profile (DBLP) described in equation 2.99. The
relative probability that a photon at or near resonant-energy traverses the assay tar-
get and then subsequently undergoes NRF in the TD is considered. In Section 3.2.3
the expected NRF probabilities are compared to alternate predictions that would
result if approximate models of the energy-dependent cross section were used.

First, we assert that within a few eV of a resonance, it is valid to approximate
all non-resonant cross sections as constants. Given that resonances of interest have
centroid energies between 1.5 and 5 MeV, we consider for this energy range the at-
tenuation coefficients given in the XCOM database(29). In this energy range, the
fastest-varying partial photon cross section for all elements is that for pair produc-
tion. Pair production cross sections increase smoothly by a factor of approximately
10 for high-Z and up to 33 for low-Z over the energy range of 1.5 to 5 MeV. Ap-
proximating the increase as a linear function, we observe that the average fractional
increase over the range of 10 eV is less than 10−4, which is negligibly small. While
the true non-linear shape of the pair production cross section may result in up to
a factor of about five larger fractional increase over the energy range of 1 eV, it
remains valid to approximate the effects of all non-resonant photon scattering pro-
cesses as energy-independent over the width of a typical resonance. Likewise, across
the width of a resonance, the intensity of a bremsstrahlung spectrum changes by

Φ(EC)− Φ(EC + 4ΓD)

Φ(EC)
≈ 3× 10−6 (3.31)

This too may be considered as energy independent for an energy range encompassing
a resonance.

From these arguments, the energy-differentiated photon flux, Φi(E), incident
upon the assay target is assumed constant and effects due to non-resonant photon
attenuation are separated. Neglecting down-scattering, the effective photon flux
leaving a target is approximately

Φo(E) ≈ Φi exp[−NσNRF(E)x] exp [−µatomx] (3.32)

where N is the atom density of the IOI (in units of atoms/cm3) in the target, x
is the target thickness, σNRF(E) is the cross section due to NRF, and µatom is the
attenuation coefficient for photons in the assay target due to non-resonant processes
(assumed to be constant over the energy range of interest).

The rate at which NRF γ-rays emitted into backward angles relative to the
direction of the NRF-inducing incident beam are counted in a geometry consisting
of a slab target was considered in Section 3.1.1. The only difference here is that the
photon flux incident upon the slab is now Φo(E).

dRNRF

dE
≈ 1− exp[−(α + µNRF(E))tTD]

α + µNRF(E)
NTDΦo(E)σNRF(E)We(θ)

Aε

4πr2
d

(3.33)
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where tTD refers to the TD thickness and α is defined in equation 3.6.
Equation 3.33 may be re-written as follows:

dRNRF

dE
= λ(E)

[
exp[−NσNRF(E)x]σNRF(E)

] [
NTDΦi exp(−µx)We(θ)

Aε

4πr2
d

]
(3.34)

The first term,

λ(E, tTD) =
1− exp[−(α + µNRF(E))tTD]

α + µNRF(E)
(3.35)

is an effective thickness that a photon experiences as it traverses the slab. If the
quantity α+ µNRF(E) is small, the exponent may be re-written as a linear function:

λ(E, tTD) ≈ 1− [1− (α + µNRF(E))tTD]

α + µNRF(E)
= tTD (3.36)

Indicating that the rate of NRF γ-ray detection would be directly proportional to
the TD thickness. However, for geometries containing a thick TD or if larger photon
interaction probabilities are present, the rate at which NRF is induced in the slab is
less than NTDσNRFtTD because λ(E) ≤ tTD.

We define the first two terms of equation 3.34 as Λ(E, tTD, Nx),

Λ(E, tTD, Nx) ≡ λ(E)
(

exp[−NσNRF(E)x]σNRF(E)
)

(3.37)

This function contains all the parameters that can significantly vary over an energy
range comparable to the Doppler-broadened width of an NRF resonance. The en-
ergy resolutions of all commonly used γ-ray detectors are much wider than the width
of an NRF resonance. Therefore energy-dependent variations in Λ will not be di-
rectly observed in the detected photon energy spectrum and the quantity

∫
Λ(E)dE

provides a quantity that is proportional to the rate at which NRF counts will be
measured.

The measured quantity that provides information on the areal density of the
IOI in the sensitive volume of the assay target is the reduced rate of NRF γ-ray
counts, relative to those expected for a comparable assay target with no IOI present.
This quantity is called the effective attenuation and is given by:

A(tTD, Nx) ≡
∫

Λ(E, tTD, Nx)dE∫
Λ(E, tTD, 0)dE

(3.38)

The effective attenuation is dependent upon the parameters of the resonance it de-
scribes. Effective attenuation functions are shown for different 238U resonances when
tTD = 8 g/cm2 in Figure 3.18. The parameters of the known 238U NRF resonances
between 2 and 3 MeV are shown in Table 4.5. Figure 3.18 indicates that for a target
of constant total areal density, but increasing IOI areal density, NRF γ-ray count
rates decrease. The rate at which they decrease is proportional to the width of the
resonance.
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Figure 3.18 The effective attenuation of photons given by equation 3.38 due to se-
lected 238U NRF resonances with tTD = 8 g/cm2. The resonances are indicated by
their centroid energies shown in the legend.

We examine how Λ(E, tTD, Nx) varies for the 2176-keV 238U resonance. Fig-
ure 3.19 shows Λ(E, tTD, Nx) for different TD thicknesses with Nx = 2 g/cm2. Here,
it is seen that increasing tTD produces an increase in the NRF detection rate, as ex-
pected. However, the rate of increase is relatively small for tTD larger than about 1
cm.

The shape of the function, Λ(E, tTD, Nx) also varies somewhat with the magni-
tude of tTD. This is demonstrated in Figures 3.20 and 3.21, where for Nx = 2 and 40
g/cm2, respectively, functions of Λ(E, tTD, Nx) are divided by their maximum value
and plotted for tTD = 102 and 10−3 cm. Thicker TDs result in slightly increased
contributions to the total NRF count rate from photons with energies further from
the resonance centroid.

In Figure 3.21, both distributions demonstrate a pronounced decrease at the
centroid energy. This decrease is due to the fact that the 238U in the assay target
has absorbed the majority of photons near the centroid energy. Photons with ener-
gies further from the centroid energy experience smaller resonance absorption cross
sections and are less strongly absorbed. Targets with larger resonances or higher IOI
areal densities will demonstrate a further shift of the detected intensity toward the
tails of the resonance.

The change in the shape of Λ(E) for varying tTD also has a significant effect on
the effective attenuation, A(Nx). Figure 3.22 demonstrates this effect as it relates
to detection of NRF γ-rays emitted from the 2176-keV 238U for Nx = 8 g/cm2.
A(Nx), increases approximately exponentially with increasing tTD while tTD is small,
but it approaches a constant in the limit of large tTD. At sufficiently large tTD all
incident resonant-energy photons will have undergone NRF, or been attenuated by
non-resonant processes.
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Figure 3.19 Values of Λ(E, tTD, Nx) for the 2176-keV 238U resonance and different
TD thicknesses. The abscissa is the difference between the incident photon energy,
E, and the centroid energy of the resonance, EC . The areal density of the IOI in the
assay target was Nx = 2 g/cm2.

Figure 3.20 Λ(E, tTD, Nx)/Λ(E, tTD, Nx)max for the 2176-keV 238U resonance. The
abscissa is the difference between the incident photon energy, E, and the centroid
energy of the resonance, EC . The areal density of the IOI in the assay target was
Nx = 2 g/cm2.
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Figure 3.21 Same as Figure 3.20, but for Nx = 40 g/cm2.

Figure 3.22 The effective attenuation, A(tTD, Nx), measured by NRF in the TD of
the 2176-keV 238U resonance transition for a target with Nx = 8 g/cm2 plotted as
a function tTD.
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Figure 3.23 Ratios of effective attenuations for the limits of a thin TD to that of a
thick TD, χ(ρx) for three 238U resonance as a function of 238U areal density in the
assay target. The data point from the A(Nx) curve shown in Figure 3.22 is indicated
by the arrow.

The attenuation of resonant-energy photons measured by a thin TD is expected
to be smaller than that measured by a thick TD and the difference between these
increases for higher areal densities of the IOI in the assay target. It is also more
significant for larger resonances than for smaller resonances. A thicker TD is more
sensitive to photon energies corresponding to the tails of a resonance. Hence, photons
with these energies are less attenuated while penetrating through the assay target,
resulting in larger effective attenuation values.

The effects of the TD thickness, related to the observed value of A(Nx), is
examined by comparing between very thin and thick TDs in somewhat more detail.
We define the ratio of A(tTD, Nx) for a thin TD to that for a thick TD as:

χ(Nx) =
limtTD→0 A(tTD, Nx)

limtTD→∞A(tTD, Nx)
(3.39)

χ(Nx) is plotted for three resonances as a function of assay target 238U areal densities
in Figure 3.23. Also in this figure is an arrow indicating the data point from the
A(Nx) curve shown in Figure 3.22.

Figure 3.23 provides insight into the validity of the thin-TD approximation
represented in equation 3.36. The quantity, χ, is the amount by which the thin-
TD approximation would underestimate, A(Nx) for a given resonance. Chapter 4
describes a transmission assay experiment in which the TD and assay target were
238U. The areal density of the TD was ∼8 g/cm3, and the 238U content in the target
was varied up to ∼8 g/cm3. For the analysis of this experiment, use of the thin-TD
approximation would have resulted in predictions of A(Nx) that are inaccurate by
up to 5%.
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The discussion above indicates the importance of accurately modeling or cal-
ibrating an assay system that uses transmitted resonant-energy photons. This is
especially true for assay targets with large IOI areal densities or when very strong
resonances must be dealt with. It should also be clear that the shape of the reso-
nance must be modeled with rather high quality in order that the transmitted NRF
signal be predicted reasonably well. This point is examined in further detail in the
Section 3.2.3 for common approximate cross section profiles.

3.2.3 Approximate NRF Cross Section Models

Measurement of the effective attenuation of transmitted resonant-energy pho-
tons in the previous section tacitly assumed that all resonances take the Doppler-
Broadened Lorentzian Profile (DBLP) given in equation 2.99. However, approximate
forms of the DBLP are often assumed. This may be due to format limitations, as
described in Section B.1.5. Also, approximating a resonance as a constant may ap-
pear to be an attractive simplification, but in this section, it shall be demonstrated
that this approximation is too broad for practical use in modeling NRF transmission
measurements and experiments.

The forms considered for resonance shapes are:

• a Maxwell-Boltzmann profile of equation 2.95 with width, ∆, given by equa-
tion 2.96;

• a point-wise evaluation of the preceding form with linear interpolation between
points. The energies at which the Maxwell-Boltzmann distribution was evalu-
ated are the centroid energy, EC and EC ± 2 eV and EC ± 4 eV; and

• a step increase and decrease as defined in equation 3.8.

The cross section from each model is normalized such that the integrated cross section
is the same as that of the natural cross section. These functional forms with shape
parameters due to the 2209-keV resonance of 238U(87) are shown in Figure 3.24.

The flux transmitted from the target impinges upon a transmission detector
made of the IOI. The rate at which a detector viewing the TD registers NRF counts
will be given by equation 3.34. As discussed in Section 3.2.2, when determining the
effective attenuation of resonant-energy photons in the assay target, the non-resonant
portions of equation 3.34 will cancel when comparing NRF rates with those due to a
reference assay target. The quantity, A is the expected effective attenuation for pho-
tons with energies close to that of a specific NRF resonance during the transmission
measurement. It is given by

A(Nx) =

∫
Λ(E, tTD, Nx)dE∫

Λ(E, tTD, Nx = 0)dE
(3.40)



Section 3.2. Transmission NRF Assay 116

Figure 3.24 Model forms of the resonance cross section profile. Width and total cross
section values are from the 2209 keV resonance of 238U. Red = Maxwell-Boltzmann,
Blue = point-wise, and Black = step function.

The results from this expression, for the different model approximations of the
cross section profile for the 2176-keV resonance of 238U are shown in Figure 3.25.
The ratio calculated using the step function distribution quickly becomes very inac-
curate, whereas that calculated using the Maxwell-Boltzmann profile and the point-
wise evaluation of the Gaussian follow that of the DBLP more closely. The errors
associated with these models, relative to the profile given by a DBLP, are shown
in Figure 3.26. Use of the Maxwell-Boltzmann profile tends to underestimate the
effective NRF response of the TD, relative to the most precise model, whereas the
point-wise evaluation of the Maxwell-Boltzmann profile with linear interpolation be-
tween the points results in an over-estimation.

Clearly, the assumed shape of the resonance cross section profile has a significant
effect on the calculated effective attenuation of resonant-energy photons. The shape
becomes more important as the areal density of the IOI increases in the target.
We conclude that in the context of transmission-based assay of material, a cross
section profile model should be used cautiously and that a step function model is
intrinsically inaccurate. It is relevant to note here that the NRF datafiles discussed
in Appendix B are based on the point-wise evaluation model.

3.2.4 Expected Precision for Measurement of Actinides in
Spent Fuel

In this section, we examine the precision at which the actinide content may be
measured in spent by way of a transmission NRF measurement. First, the range at
which Pu concentrations are expected in spent fuel will be discussed, followed by a
statistical argument to relate counting statistics to the areal density of the IOI in the
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Figure 3.25 The effective attenuation, A of NRF photons due four models of the
2176-keV 238U NRF resonance profile. The curves correspond to the following cross
section profile models: green = DBLP, red = Gaussian, blue = point-wise evaluation
of Gaussian with linear interpolation, and black = step-function.

Figure 3.26 Errors resulting from simplified model calculations of the effective NRF
attenuation of photons near the 2176-keV 238U NRF resonance relative to that of
the DBLP given by equation 2.99.
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sensitive volume. Following this, the relationship between statistical uncertainties in
the effective attenuation of resonant photons and the uncertainty of the areal density
will be derived with an example to estimating the expected precision with which
239Pu content may be measured using a bremsstrahlung spectrum. Next, although
the NRF response of 240Pu has not been measured, known NRF resonances of 238U
are used to estimate the precision with which a transmission measurement might
quantify 240Pu content in spent fuel assemblies. Finally, a generalization between
the strength of a resonance and the relative statistical uncertainty a measurement
of this resonance would provide is made for low-attenuating assay targets.

Pu Content in Spent Fuel

In reference(4), Phillips presents calculations of the concentrations of Pu iso-
topes in spent fuel as a function of fuel burn-up. These values were calculated using
the computer code CINDER(128) and are shown in Figure 3.27. Phillips indicates
that Pu concentrations are expected to be accurate to ± 10% when the reactor
spectrum is well-known, and up to ± 25%, if only the type of reactor is known.
Because the Pu concentrations are a function of the reactor type, the plutonium
concentration values are used to estimate a region of relevant target areal densities.
For a typical 15 x 15 fuel assembly, the average areal densities of 239Pu and 240Pu
traversed by photons normally incident upon the side of an assembly are Nx ≈ 0.25
g/cm2 and ≈ 0.15 g/cm2, respectively.

Figure 3.27 Example of computed Pu concentrations in spent fuel as a function of
LWR reactor burn-up(4). The figure is reproduced this reference. The ordinate is
percentage of Pu atoms to the initial uranium atoms present in the fuel.

Expected Precisions of Areal Density Measurement

Assume there exists a function for each NRF resonance, f(Nx) ≡ C that relates
the number of full-energy NRF γ-ray counts, C to the areal density of the IOI in the
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target, Nx. Nx is then given by,

Nx = f−1(C) (3.41)

Likewise, uncertainty in Nx can be written as

σNx =

∣∣∣∣df−1

dC

∣∣∣∣σC (3.42)

Neglecting down-scatter of photons while they penetrate the assay target and
the TD, the expected number of γ-ray counts, C, due to NRF in the TD may be
expressed as

C ≡ f(Nx) = ctΦ0 exp(−µatomx)A(Nx)NTDσNRF
Pfε∆Ω

r2
det

(3.43)

where ct is the duration of the measurement, and all remaining terms have been
defined previously. Only A(Nx) in equation 3.43 is dependent upon N , the density
of the IOI in the assay target. We re-express f(Nx) as,

f(Nx) = χA(Nx) (3.44)

where

χ ≡ ctΦ0 exp(−µatomx)NTDσNRF
Pfε∆Ω

r2
det

(3.45)

This is the number of NRF γ-ray counts that are expected to be measured from the
TD in the absence of IOI atoms in the assay target.

The function, f(Nx) is therefore directly proportional to A(Nx), the effective
attenuation. Unfortunately, the functional form of A(Nx) is somewhat complex, and
it cannot be analytically differentiated.

A(Nx) has been shown for many 238U resonances in Figure 3.18 in the case that
the TD is 8 g/cm2 of 238U. Figure 3.28 shows A(Nx) for 239Pu resonances and a TD
thickness of 8 g/cm2 of 239Pu. The stronger resonances of 238U result in functions of
A(Nx) that more rapidly approach zero at lower areal densities and then flatten for
higher values of Nx.

To obtain an analytically differentiable function that approximates f−1(C), We
consider a fit to A(Nx) of the form

A(Nx)fit = exp(−αfNx) (3.46)

for the range Nx ≤ 0.5 g/cm2, which is approximately the range of areal densities of
interest for spent fuel assemblies6. Comparisons between fits of this form and A(Nx)
are shown for 239Pu resonances in Figure 3.29. The fit is quite good over the fitted
range, but becomes quite poor for higher Nx. Best-fit values of αf for each 239Pu
resonance are shown in Table 3.7 along with measured resonance parameters from
reference(123).
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Figure 3.28 The effective attenuation of photons given by equation 3.38 due to 239Pu
NRF resonances with tTD = 8 g/cm2. Data for the resonances are shown in Table 3.7
and are from reference (123). Each resonances is indicated by its centroid energy in
the legend.

Figure 3.29 Fraction deviation between calculated values of A(Nx) and those result-
ing from the best-fit of the form shown in equation 3.46.
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Elevel gΓ gΓ0

∫
σNRFdE αf

(MeV) (meV) (meV) (eV·b) (mg/cm2)
2.040 4.3 ± 1.1 4.3 ± 1.1 8 ± 2 8.1 ± 2.1
2.144 13.4 ± 2.2 10.2 ± 1.7 17 ± 3 16.4 ± 2.7
2.289 5.4 ± 1.4 5.4 ± 1.4 8 ± 2 7.2 ± 1.9
2.432 30.8 ± 5.8 14.6 ± 2.8 19 ± 4 16.0 ± 3.0
2.454 7.1 ± 2.4 7.1 ± 2.4 9 ± 3 7.7 ± 2.6
2.464 6.3 ± 3.2 6.3 ± 3.2 8 ± 4 6.8 ± 3.4

Table 3.7 239Pu NRF data. The values of
∫
σNRFdE were taken from Reference (123).

Where gΓ0 6= gΓ, two NRF γ-rays were measured at energies that differ by the
excitation energy of the first excited state of 239Pu. It has been assumed that these γ-
rays correspond to de-excitation of a single NRF state. Values of gΓ0 were calculated
from from equation 2.89. The meaning of αf is explained in the text.

Considering only the cases where Nx ≤ 0.5 g/cm2 and using

f(C) ≈ χ exp(−αNx) (3.47)

we can write

f−1(C) ≈ lnχ− lnC

α
(3.48)

and
df−1

dC
=
−1

Cα
(3.49)

Using equation 2.107, which relates the statistical precision of a γ-ray counting
measurement to the ratio of signal and background intensities, ξ, and substituting
equation 3.49 into equation 3.42, we have

σNx =

√
1 + 2/ξ

α
√
C

(3.50)

This relates the precision with which Nx is measured to both counting statistics
and the quantity α, which is the magnitude of the slope of the effective attenuation
curve at the corresponding areal density.

From equation 3.50, we can infer that large resonances will provide the smallest
statistical errors when the IOI areal density in the target is small, but when mea-
suring larger values of Nx, weaker resonances may exhibit more rapidly changing
effective attenuation functions, which correspond to larger values of α and resultingly
smaller measurement uncertainties.

6A fit of the form A(Nx)fit = a1 exp(a2Nx) +a3 exp(a4Nx) provides quite good agreement over
a much larger range of areal densities (≤ 2 × 10−6 error fraction for Nx ≤ 30 g/cm2), but it also
does not provide an analytical form for df−1(C)/dC.
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Elevel A C ξ
σNx

(MeV) (%)

2.040 0.998 7.6× 106 0.87 32.5

2.144∗ 0.996 3.4× 106 0.59 18.9

2.144 0.996 1.1× 107 1.91 15.4

2.289 0.998 5.5× 106 1.91 34.0

2.432∗ 0.996 5.0× 106 2.44 15.1

2.432 0.996 4.5× 106 2.72 15.6

2.454 0.998 4.2× 106 2.60 33.9

2.464 0.998 3.6× 106 2.34 42.3

total 4.5× 107 7.3

Table 3.8 Expected effective attenuation values, A, numbers of counted NRF γ-rays
due to 239Pu resonances, C, signal-background ratios of the NRF γ-rays, ξ, and
statistical relative uncertainties, σρ for the simulated assay described in the text.
The assay assumes a 24-hour measurement of a fuel assembly using 170-mA of 2.6-
MeV electrons to induce the interrogating bremsstrahlung spectrum and 400 HPGe
detectors 100 cm away from the TD. An * indicates that the corresponding NRF
γ-ray is due to de-excitation of the NRF state to the first-excited state of 239Pu.

Estimates of Transmission Measurement Precision for Spent Fuel

In the assay of 239Pu in a typical spent fuel assembly), the rate at which a
particular resonance undergoes NRF in the TD is proportional to the product of the
integrated cross section of that resonance, A(Nx), and the photon intensity incident
upon the TD at the resonance centroid energy. Using Table 3.7 and the photon
spectrum given in Figure 3.17, we estimate relative count rates for each of the 239Pu
resonances, and use equation 3.50 to estimate the expected experimental uncertainty
in a 239Pu areal density measurement. As an example, the uncertainties expected
from a 24-hour measurement of a spent fuel assembly using a 170-mA beam of 2.6-
MeV electrons are shown in Table 3.8. The estimates assume that 400 100% relative
efficiency HPGe detectors are located behind an 8 cm-thick lead filter and 100 cm
from a 4 mm-thick TD. In this geometry, 1/3 of the total available backward solid
angle is subtendended by the detectors.

To estimate the total uncertainty of the areal density of 239Pu, we assume that
the areal density value is determined from a weighted mean of the measured areal
densities from each resonance. The weighted mean is given by

mw =

∑n
i=1 wixi∑n
i=1wi

(3.51)

where n is the number of NRF γ-rays considered (eight for Table 3.8) and the weights
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are
wi = 1/σ2

i (3.52)

The standard deviation for the weighted mean is given by

σmw =

√√√√ n∑
i=1

(
σi
dmw

dxi

)2

(3.53)

where
dmw

dxi
=

1

σ2
i

1∑n
i=1wi

(3.54)

This estimate, based solely on counting statistics is given in the last row of Table 3.8.
The NRF responses of 240Pu and 238Pu have not been been reported in the open

literature. However, nuclides with even numbers of neutrons and protons generally
have stronger NRF resonances than those with at least one un-paired nucleon (such
as 239Pu)7. With this in mind, we estimate the accuracy to which a measurement
of the 240Pu content in a spent fuel assembly might be obtained. For an expected
areal density of 0.15 g/cm2, and assuming the 238U NRF state characteristics shown
in Table 4.5, we estimate a total statistical uncertainty of the areal density of 240Pu
of ∼ 1%. This demonstrates the importance of the natural widths of measured NRF
states.

Resonance Strength and Relative Precisions

To illustrate the importance of the resonance strength for providing precise
measurements of target areal densities, we consider a case where Nx is still assumed
to be small (i.e. where equation 3.46 remains valid), and compare two hypothetical
resonances, a and b. Assume these resonances have widths, Γa and Γb, respectively,
and that Γa > Γb. The relative uncertainties in areal density that transmission
measurements made using resonance a will be reduced by at least

σa
σb
≈
(

Γb
Γa

)1.5−2

(3.55)

relative to an identical measurement using resonance b. This is the combination
of three factors. First, stronger resonances result in proportionally higher NRF

count rates, which, reduces the uncertainty by a factor of
(

Γb

Γa

)1/2

. Also, stronger

resonances increase the slope of the effective attenuation function, α, which result in a

relative decrease in uncertainty of approximately
(

Γb

Γa

)
. Finally, for NRF signals not

significantly stronger than background intensity, the term
√

1 + 2/ξ in equation 3.50

can contribute an additional factor of up to
(

Γb

Γa

)1/2

.

7See for example, references(69),(115), and(127)
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3.2.5 Notch Refilling and Transmission Assay Complica-
tions

In transmission measurements, the attenuation of resonant-energy photons in
the target provides the signal that relates to areal density of the IOI in the target.
The attenuation results in a decrease in the flux intensity at energies in the imme-
diate vicinity of the resonance centroid. The transmitted spectrum will then display
a reduction in intensity whose shape is directly related to the excess attenuation
produced by the resonance. This is often referred to as a notch. Notch refilling is
the process by which interrogating photons are down-scattered into the notch during
transport through the assay target and TD. The down-scattering of photons results
in more resonant-energy photons leaving the assay target than would be predicted
by the model described in Section 3.2.2. In this section, the relative intensity of the
notch-refilling effect is considered.

The extent of notch filling will be dependent on the details of the experimental
geometry. The smaller the solid angle subtended by the TD, the more restricted is
the geometry for notch refilling. Likewise, increasing the number of photons that
have more energy than the excitation energy of a resonance increases the likelihood
that some of these photons will down-scatter into the notch created by resonant
absorption.

The processes that result in notch refilling are incoherent scattering and brems-
strahlung emitted from photo-electrons. As demonstrated in Chapter 2, both pro-
cesses predominantly produce down-scattered photons predominantly in forwards
angles. Those photons that are down-scattered into a resonant energy and toward
the TD effectively refill the notch.

To examine this effect, we first consider a Monte Carlo simulation of 2.3-MeV
photons incident upon an assay target. The target consisted of 7 cm-thick slab of
Pb behind a 4.4 mm-thick slab of uranium, which is comparable to the average areal
density of a fuel assembly8. The energy spectrum of photons leaving the assay target
within 4.4o of the initial direction were calculated. The results of this simulation are
shown in Figure 3.30. Full-energy photons and those that have undergone a single
incoherent scattering are the most probable sources of emitted photons. The photons
that undergo a single incoherent scattering produce a continuum of energies. Pair
production and subsequent positron annihilation, multiple-scattering events, and
secondary electron bremsstrahlung produce the events indicated below the Compton
continuum.

A 2.3 MeV initial energy photon undergoing incoherent scattering with θ ≤
4.4o results in a scattered photon with energy E ′ ≥ 2.27 MeV. This energy is the
lower energy of the Compton continuum. The probability per 2.3-MeV incident
photon for an emitted photon to be down-scattered into the Compton continuum is
approximately 2 × 10−8 per eV. Doppler-broadened NRF resonances tend to have

8It is also very similar to the geometry of the experiments described in Chapter 4



Section 3.2. Transmission NRF Assay 125

Figure 3.30 Calculated spectrum of photons leaving a target of areal density similar
to a homogenized fuel assembly within 4.4o of the initial photon direction. The
incident photon energy was 2.3-MeV. The inset shows a larger view of the energy
range of 2.25 - 2.3 MeV. The probability that an incident photon leaves the target
un-attenuated is 2.1%.

Γ ≈ 1.5 eV, thus we can assume 3 × 10−8 per eV is a reasonable probability for
down-scattering of 2.3-MeV photons into its Compton continuum for assay targets
of similar areal densities as fuel assemblies.

To consider the potential for refill of a given resonant notch, only photons inci-
dent upon the assay target whose Compton continuum includes the resonance energy
are of importance. If the TD only subtends a polar angle of 4.4o only photons with
E −Eres . 35 keV need be considered. From Figure 3.16, we expect ∼ 2× 108 pho-
tons/eV/Coulomb to impinge upon the assay target in the energy range of 2 - 2.4
MeV. Combining this source photon rate with the notch-refill probability (∼ 2×10−8

per eV) and the range of energies of interest, we expect ∼ 1.4 × 105 notch refill
events per Coulomb of electrons incident upon the Bremsstrahlung converter. From
Figure 3.17, we also expect in the absence of resonant attenuation, ∼4.5 ×106 pho-
tons/eV/C to be incident upon the TD between 2 and 2.4 MeV. Thus, photons
that arrive at the TD, after down-scattering, represent 2-5% of the total flux in this
energy range.

From these estimates, we expect that notch refilling will result in a slight de-
crease in the slopes of the effective attenuation curves, A(ρx) compared to those pre-
dicted by neglecting notch refill. This, in turn, would slightly increase the statistical
uncertainties estimated in Table 3.8 and the surrounding discussion. Nevertheless,
notch refilling would change the statistical uncertainty estimates for a measurement
of a Pu isotope in spent fuel significantly less than the contributions from uncertain-
ties in the measured NRF cross sections. We therefore conclude that while notch
refilling is likely to be an important factor in achieving an absolute areal density
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measurement with precision near 1%, the NRF cross sections must be known to far
better precision before this level of uncertainty can be reached.

3.2.6 Transmission Assay using Quasi-monoenergetic Pho-
ton Sources

We consider using a quasimonoenergetic photon source to interrogate the 2431-
keV resonance in 239Pu in an identical transmission assay geometry as previously
discussed in this chapter. For simplicity, we assume the intensity of source photons
is uniform over an energy range of 25 keV. Thus for every ∆Ebeam/ΓD ≈ 2×104 pho-
tons produced by this quasi-monoenergetic source a single resonant-energy photon is
produced. For the sake of argument, we assume that the intensity of a monoenergetic
photon source is unlimited9.

Probabilities that source photons penetrate the assay target (assumed to be a
15x15 homogenized fuel assembly), impinge upon the TD, and are detected in a
shielded detector, located 100 cm from the TD, were calculated for photons that
undergo NRF (pNRF), and for photons that undergo non-resonant backscattering in
the TD (pbkg). These probabilities were calculated for selected thicknesses of the
filter, xf . Because non-resonantly backscattered photons are predominantly lower-
energy, pbkg decreases more rapidly with xf than pNRF, and until xf becomes quite
large, thicker filters result in a larger fraction of detected photons being due to
resonant interactions in the TD.

The precision with which the areal density of an IOI in the target is measured is
given by equation 3.50, which may be inverted to define the number of NRF counts,
C, necessary to conduct a measurement at a given statistical precision. For an
interrogation to be accomplished with this precision, the number of resonant-energy
photons that must irradiate the assay target in the direction of the TD is then
Nres = C/pNRF, and likewise the total number of photons that must be produced to
make Nres resonant photons is

Ntot ≈
C

pNRF

∆Ebeam
ΓD

(3.56)

If we limit the total count rate at which a detector operates to 2× 104 c s−1, we can
estimate how long a measurement would take to obtain a given statistical uncertainty
from a single detector. A summary of estimates of the times and the beam intensities
required to provide a statistical uncertainty of 5% on a fuel assembly with a 239Pu
content of 0.25 g/cm2 are shown in Figure 3.31. In this regime, counting statistics
scale with

√
C, and therefore a measurement that provides a statistical uncertainty

of 1% would take 25 times as long or need 25 times as many detectors.

9This assumption is not currently practical. HIγS(100) claims to be able to generate 107γ/s,
and other quasimonoenergetic photon sources are under development, see(101) and (105).



Section 3.2. Transmission NRF Assay 127

Figure 3.31 Estimated measurement times and necessary photon fluences incident
upon assay target to make a 5% relative statistical uncertainty measurement of 239Pu
content in a spent fuel assembly assuming its areal density is 0.25 g/cm2 using a single
100% relative efficiency HPGe detector. Both quantities are inversely proportional
to the number of detectors used.

Finally, if we restrict the duration of a measurement, we can determine the
number of detectors that would be necessary to obtain a given statistical uncertainty.
This value is a function of beam intensity and filter thickness. In Table 3.9, we
assume a filter thickness, xf , and assume the beam is sufficiently strong to induce
2 × 104 c s−1 in the shielded 100% relative efficiency HPGe detectors. We then
determine the number of such detectors that would be needed to obtain 5% and
1% statistical uncertainties in a 24 h measurement. These values are tabulated
for varying filter thicknesses and assume that the 2431-keV resonance of 239Pu was
excited to measure 0.25 g/cm2 of 239Pu in a fuel assembly or that a hypothetical
90-eV·b 240Pu resonance near 2.3 MeV was excited to measure 0.15 g/cm2 of 240Pu.
The hemisphere corresponding to backward scattering angle has a surface area of
∼ 6× 104 cm2, which implies that the assumed geometry which could not physically
accommodate more than 1× 103 100% relative efficiency HPGe detectors.

We conclude by noting that the photon source intensity necessary to induce
2× 104 c s−1 from the TD in a detector with no filter is ∼6 times as intense as that
of HIγS, and increases to ∼2 ×103, 105, and 2 × 106 times as large for xf = 2.54,
8, and 13.2 cm, respectively. Source intensities several orders of magnitude stronger
than HIγS could make high-precision measurements of plutonium content in a spent
fuel assembly using a nuclear resonance fluorescence technique practical.
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Number of HPGe Number of HPGe

xf for 5% measurement for 1% measurement

(cm) 239Pu 240Pu 239Pu 240Pu

0.25 g/cm2 0.15 g/cm2 0.25 g/cm2 0.15 g/cm2

0 3102 93.7 77555 2342

1.27 105 3.2 2627 79.4

2.54 25.3 0.76 631 19.1

4 12.7 0.38 318 9.6

6 7.9 0.24 198 6.0

8 5.9 0.18 148 4.5

Table 3.9 Estimated numbers of 100% relative efficiency HPGe detectors necessary
to make indicated measurement in 24 h versus filter thickness, xf . Numbers in bold
indicate that the solid angle subtended by this number of detectors is larger than
2π and therefore the measurement cannot be made in this geometry in 24 hours.
Values smaller than unity indicate that the measurement could be accomplished
with a smaller detector or a shorter measurement time. The detectors are assumed
to operate at 2× 104 c s−1 in all cases.
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Chapter 4

Experimental Measurement of
Resonant-Energy Transmission
Assay for Nuclear Fuel Assemblies

In order to test the validity of the transmission assay modeling performed in
Section 3.2.2, an experiment was conducted in collaboration with Passport Systems
Ltd. at the High Voltage Research Laboratory at Massachusetts Institute of Tech-
nology. The experiment involved a series of irradiations in which 2.6 MeV electrons
were impinged upon a bremsstrahlung converter. The bremsstrahlung emitted from
the converter was collimated toward an assay target – composed of varying amounts
of Pb and depleted uranium (DU). These targets acted as surrogates for real spent
fuel assemblies, which are more difficult to obtain and handle. Behind the target,
a stack of DU plates functioned as the transmission detector (TD) material. Four
HPGe detectors, heavily shielded from direct bremsstrahlung and photons scattered
from the target, were placed facing the TD material behind 0.5 inches of Pb, at an
angle of 118o from the centroid direction of the bremsstrahlung collimator opening.
A schematic drawing of the experimental setup is shown as Figure 4.1.

The assay target material attenuates the interrogating bremsstrahlung beam.
When 238U is present, the beam is additionally attenuated at energies corresponding
to 238U resonances, producing spectral notches. The transmission detector material is
composed of DU and the 238U it contains will undergo NRF at a rate proportional to
the quantity of resonant-energy photons incident upon the TD. The HPGe detectors
are positioned to measure the backscattered radiation from the TD, and therefore the
rate at which constituent 238U atoms undergo NRF. The reduction in the measured
NRF rate, relative to that when there is no DU in the assay target, is proportional
to the areal density of 238U that photons encounter while they traverse the target.
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Figure 4.1 Schematic drawing of experimental setup. See text in Section 4.2 for
detailed description.

4.1 Experimental Motivation

The experimental goals included the following:

1. test whether notches produced by resonant absorption would remain after beam
penetration through a material of comparable attenuation characteristics as
that of a spent fuel assembly;

2. demonstrate the applicability of the transmission foil measurement method
to measure a percent-level isotopic abundance using a bremsstrahlung photon
source; and

3. test beam-current normalization schemes.

The first goal is of utmost importance for the purpose of assaying spent fuel
assemblies with NRF. If, while the interrogating beam is transmitted through the
assembly, the spectral notches are refilled through photon down-scattering, they will
be smaller or non-existent when the beam reaches the TD material. This would limit
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the thickness of material for which resonant-energy transmission assay would be use-
ful. Measurements using nearly monoenergetic photon sources have indicated that
notch refilling is not measurable for thick targets (129), however this measurement
is the first such experiment testing whether notch refilling is problematic for thick
target resonant-energy transmission assay using a bremsstrahlung photon source.

Typical fuel assemblies contain fuel pin arrays ranging from 10x10 to 17x17(130).
As examples, relevant assembly dimensions are given for the decommissioned Rancho
Seco reactor, formerly located in Clay Station, CA and the operable Diablo Canyon
2 reactor located in Avila Beach, CA in Table 4.1. Zr-4 indicates Zircalloy-4, a zirco-
nium alloy of density, ρZr−4 = 6.55g/cm3, containing 1.2-1.7 weight percent (wt.%)
Sn, 0.18-0.24 wt.% Fe, and 0.07-0.13 wt.% Cr(131). Using ρUO2 = 10.97g/cm3, we
calculate the average areal density experienced by a particle normally incident upon
the side of a typical fuel assembly to be approximately 85 g/cm2.

The second goal is tested by varying the composition of the assay target dur-
ing the experiment. Table 4.2 summarizes target geometries assayed during the
experiment, with the x used to indicate thicknesses and ρx, the areal density. The
238U atom fraction assayed varied from 8.5% to 1.7% in targets of approximately 85
g/cm2. The total attenuation (µx, the quantity µ/ρ is given by XCOM(29)) of the
mock-up assemblies differed from a homogenized Rancho Seco assembly by no more
than 1.2% for photon energies between 2 and 2.5 MeV. Likewise, between 2 and 2.5
MeV, the fraction of the attenuation coefficient due to incoherent scattering was no
more than 2% smaller than that for the Rancho Seco homogenized assembly. Thus,
we conclude that the assembly mock-up targets have very similar photon transport
characteristics to those of homogenized fuel assemblies. The question of whether a
homogenized assembly would behave similarly to a real assembly in resonant-energy
transmission assay is of interest, and is the topic of ongoing research.

Because we compare the attenuation of resonant-energy photons through an as-
say target to the attenuation of photons through a target blank (Run# 1), we must
also be able to compare the intensity of resonant-energy photons that reached the
targets between runs. This proved more complicated than one might think. The
beam-current monitoring system was nominally accurate to 5%, which is insufficient
for this experiment. Materials (11B and 55Mn) were placed behind the TD to un-
dergo NRF and function as beam monitors, but the rate at which their NRF photons
were measured was too low to provide statistically valuable information. However,
photons reaching the TD at near-resonant energies (in this case 2 - 2.4 MeV) fre-
quently undergo pair-production. The subsequent annihilation of positrons results in
511-keV γ-rays, which are the most prominent feature in the HPGe detector spectra.
Therefore, the statistical uncertainty with which spectral normalization occurs via
the intensity of annihilation photons is extremely small. The possibility of systematic
errors associated with this normalization method is discussed in Section 4.5.6.
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Rancho Diablo

Seco Canyon #2

pellet diameter (mm) 9.36 7.844

fuel material UO2 UO2

clad thickness (mm) 0.67 0.57

cladding material Zr-4 Zr-4

pin outside diameter (mm) 10.9 9.1

fuel rod pitch (cm) 1.44 1.26

geometry 15x15 17x17

fuel rods per assembly 208 264

homogenized areal density (g/cm2) 86.28 77.67

Table 4.1 Relevant fuel assembly geometric information for the Rancho Seco and
Diablo Canyon 2 nuclear reactors. Data were taken from International Nuclear Safety
Center (INSC) website(130). Homogenized areal density values were calculated from
preceding data.

Run nominal measured nominal measured total ρx 238U 238U

# xDU (mm) mDU (g) xPb (in) xPb (cm) (g/cm2) atom% wt.%

1 0 0 3 7.607 86.260 0 0

2 4 3310.0 2 3/4 7.001 87.862 8.48 9.62

3 0.8 659.2 2 15/16 7.505 86.796 1.69 1.94

4 1.6 1306.9 2 7/8 7.336 86.537 3.37 3.86

Table 4.2 Assay target compositions used in resonant-energy transmission assay ex-
perimental test. Pb density assumed to be 11.34 g/cm3, DU plates were measured
to be square with 19.752 cm length, and assumed to be 99.799% 238U by mass.
Uncertainties in DU target masses are approximately 1%.
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4.2 Experimental Arrangement

A schematic drawing of the experiment viewed from above is shown in Figure 4.1.
Measured distances used to construct this drawing follow:

• Pb collimator to transmission detector material: 56” (z-direction);

• HPGe detectors all faced the intersecting line of the beam center vertical axis
and the horizontal center of TD material. Their distances from this line are:

– top-right HPGe 103/4”;

– bottom-right HPGe 101/2”;

– top-left HPGe 103/4”;

– bottom-left 107/8”;

• each HPGe detector was facing the center of TD at an angle of 118o relative
to the beam centroid direction;

• bottom-right corner of left Pb shielding block:

– 19” (z-direction) from collimator;

– 31/8” (x-direction) from beam center axis;

• bottom-left corner of right Pb shielding block: 181/2” (z-direction) from colli-
mator;

• Fe detector housings outer measurement: 5” square;

• detector housing Fe thickness: 1/4”;

• Fe detector housing depth: 8”

• maximum distance between left and right Fe detector housings: 197/8” (x-
direction);

• minimum distance between left Fe detector housing and beam center axis: 57/8”
(x-direction);

• down-beam diameter of collimator hole: 1”;

• up-beam diameter of collimator hole: 1 cm;

• Pb collimator: 8”-thick (z-direction);

• collimator Pb block width: 20” (x-direction);

• collimator Pb block height: 18” (y-direction);
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Figure 4.2 Schematic drawing of detector housing arrangement.

• heights (y-direction) of left and right Pb shielding blocks increase in height from
12” to 20” in regular intervals as the Pb block neared the detector housing;

• base plane on which Pb was stacked: 7” below horizontal beam center.

A drawing of the HPGe detector housing is shown as Figure 4.2. The dimension
x’ is rotated ±62o around the y axis, relative to x indicated in Figure 4.1 (+62o for
the left-hand detector housings and −62o for the right-hand housings). The housings
were entirely enclosed in Pb, 4”-thick in the down-stream direction (± x’), 7”-thick
in the (+y)-direction, 3”-thick in the (-y)-direction and abutting the large Pb blocks
in the up-stream direction. One 6” x 12” x 1/2” sheet of Pb was placed in front
of each detector housing to function as a low-energy γ-ray filter. Behind the de-
tector housing, irregularly shaped Pb blocks were positioned to allow through the
detector readout, bias wiring, and the mechanical cooling connector, while main-
taining approximately 2” of Pb, where possible. Each detector was connected to a
mechanical cooling system by a 2” diameter hose. 8” x 4” x 2” lead blocks with 2”
diameter semicircular cutouts were placed around the cooling hose. This shielding
configuration constrained where the detector faces could be located in the housing
and resulted in differing distances between the TD and the front faces of the HPGe
detectors.

The bremsstrahlung converter was reported to be 102 µm of Au deposited on
a 1 cm-thick Cu backing. It was water cooled and ∼3 mm of flowing water passed
downstream of the Cu backing.

The electron beam was brought into the experiment hall via a 4” diameter steel
beam-pipe entering from the room above. The floor separating the rooms was ap-
proximately 18” of concrete and was located ∼44” above the horizontal beam center.
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The electron beam (and beam-pipe) bent 90o 18” upstream of the bremsstrahlung
converter. The beam-pipe was held at 1× 10−5 torr, except during Run #2 where a
turbo pump was malfunctioning and the beam-pipe was held at 8× 10−6 torr. The
concrete floor was located 44” below the horizontal beam center. The Pb shielding
and detector blocks were located on 80/20 R© aluminum tables. The left tabletop
was 3” below the beam center and the right tabletop was 61/2” below beam center.
The extra space was filled with Pb directly below the detectors and a combination
of cement blocks and plywood sheets beneath the large Pb shielding block.

The electron source was a 3 MV Van de Graaff accelerator. The accelerator was
operated at a voltage of 2.60± 0.03 MV and a current of 65± 7 µA. The dimension
of the electron beam spot could not be directly measured, but was smaller than
the 1 cm dimensions of the bremsstrahlung converter when beam operation was
stable. After approximately four hours of running, the accelerator would become
unstable and require re-conditioning for approximately one hour. A small ionization
chamber was located directly outside of the collimator hole to monitor the beam.
Also an x-ray imager was located ∼2’ downstream of TD assembly. The current
deposited within the bremsstrahlung converter was also measured. Unfortunately,
beam focusing and alignment were not stable, thus the current deposited within the
bremsstrahlung converter was not closely correlated with the dose rate measured by
the ionization chamber beyond the collimator. When beam irregularities occurred,
they resulted in visible distortions on the x-ray imager. The accelerator operator
would then adjust beam focusing. Most irregularities lasted for less than 5 s.

The TD consisted of five 8” x 8” DU plates that were nominally 0.8 mm-thick.
Each plate was contained in two plastic bags. The 8” side dimensions of the plates
were confirmed by measurement. The total mass of the five plates plus the contain-
ment bags was measured to be 3341.7± 3.3 g. Two of the outer bags were measured
to weigh 10.1± 0.1 and 9.9± 0.1 g respectively. The inner bags were slightly heav-
ier and have been assumed to weigh 15± 5 g. Thus the DU mass is expected to be
3226.7±28 g. A 222±1 g Mn disc was taped to the back of the DU plates in the cen-
ter of the bremsstrahlung beam to function as a NRF beam-flux monitor. The rate
of Mn NRF counts was found to be insufficient and a petri dish containing 82.3±0.5
g of 99.52% enriched 11B was also added directly behind the Mn during Run #1.
Before Run #3, an additional 102.8 ± 0.5 g of enriched 11B was placed behind the
Mn disc, at which point the discs were arranged as indicated in Figure 4.3.

The DU in the assay target was also comprised of 8” x 8”, nominally 0.8 mm-
thick plates packaged in two plastic bags. The masses of these plates were only
measured while they were within two plastic bags. These masses, the runs in which
the plate was used, and the estimated DU masses after subtraction of the masses of
the bags are shown in Table 4.3

Data were collected over the course of four days during 8 - 12 hour daily shifts.
Each run consisted of approximately 6.5 hours beam live time. Three overnight
radioactive background counts were conducted during the nights between shifts. The
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Run # mass in bags (g) mass (g)
2,3,4 684.2 ± 0.7 659.2 ± 6
2,4 672.7 ± 0.7 647.7 ± 6
2 726.1 ± 0.7 701.1 ± 6
2 679.7 ± 0.7 654.7 ± 6
2 673.3 ± 0.7 648.3 ± 6

Table 4.3 Masses of DU plates used in assay targets of Runs #2-4. Plates were
measured to be square with 19.75 cm length.

Figure 4.3 Front- and side-view schematic drawings of the disc arrangement behind
DU transmission detector.

geometry of overnight background counting was identical to that of the runs with
the only difference being that the electron beam was absent. An additional overnight
background count was conducted before the experiment. In this measurement, the
filter thickness was 1”, rather than 1/2”. Comparisons between overnight background
spectra allow for an estimate of the contribution to the background due to the lead
shielding.

The detectors and electronics were manufactured by Ortec and provided by
Passport Systems Inc. The detectors were all reported to be approximately 8 cm
(diameter) by 8 cm (thickness) cylindrical high-purity germanium (HPGe) crystals.
Passport Systems Inc. was able to provide the specification sheet for the detec-
tor named G2. The specifications are ‘private’ information to Ortec, however the
geometry of G2 is very similar to that shown in Figure C.2 with dimensions indi-
cated in Table C.1. Each detector was connected to an Ortec DSPEC ProTM digital
γ-ray spectrometer and biasing source. The analogue-to-digital converter (ADC)
of the DSPEC Pros had 16384 channels. The parameters at which each detector
was operated are included in Table 4.4. Looking down the beam axis, the detector
arrangement in clock-wise order, starting at top-right was G5, G2, G3, and G4.

4.3 NRF Levels of Experiment Materials

For the purposes of this experiment, the most important NRF properties are
those of the TD material, and those materials behind it. The NRF response of Pb
and Al are also of interest because of the quantity of these materials present.

Uranium: No history was available for the DU used in this experiment, however
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Detector Name G2 G3 G4 G5
bias (V) 4880 1940 4040 3040
rise time (µs) 4 4 4 4
flat top (µs) 1.2 1.2 1.2 1.2
pole zero 2585 2697 2845 2805
ADC gain (keV/channel) 0.432 0.458 0.427 0.465
calibration energy resolution (keV) 2.43 2.43 3.58 2.00
beam-on ADC dead time (%) 11.7 16.7 12.6 10.8
beam-on energy resolution (keV) 2.97 2.40 3.40 2.19

Table 4.4 Operating parameters for each DSPEC Pro-HPGe detector combination.
Calibration energy resolution is taken from a calibration run and is for the 1332.5
keV peak of 60Co when the accelerator was not running. ’beam-on’ dead time and
energy resolution are taken from Run #3. ’beam-on’ energy resolution is calculated
at 1332.5 keV from a best-fit resolution curve of the form Eres = a

√
E + b. Quoted

energy resolutions are FWHM.

Figure 4.4 A photograph of the experimental setup.
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Figure 4.5 Looking up the experimental setup from the TD location toward the beam
collimator exit.

Elevel Γ2
0/Γ Γ1/Γ0

Γ0

∫
σdE

(MeV) (meV) (meV) (eV·b)
2.176 23.7 ± 1.4 0.52 ± 0.02 36.0 ± 2.2 87.7
2.209 22.6 ± 1.4 0.55 ± 0.03 35.0 ± 2.3 82.7
2.245 13.4 ± 0.9 0.47 ± 0.03 19.7 ± 1.4 45.0
2.295 5.3 ± 0.5 0.59 ± 0.10 8.4 ± 1.0 14.4
2.410 11.0 ± 0.7 0.54 ± 0.05 16.9 ± 1.2 33.6
2.468 13.4 ± 1.0 0.50 ± 0.05 20.1 ± 1.6 38.0

Table 4.5 Relevant 238U NRF data. Values of Γ2
0/Γ and Γ1/Γ0 were taken from

reference(87) where γ-ray emission to the first excited state of 238U (Jπ = 2+) at
44.92 keV were also measured. Here, it is assumed that this probability is 1−Γ0/Γ.
The final column is calculated from equation 2.89, it has a fractional uncertainty
equal to that of Γ0.

it is probable that the material is predominantly 238U, with less than 0.3% 235U and
less 234U than occurs naturally. The NRF response of 238U has been measured several
times, including two measurements of resonances between 1.5 and 2.5 MeV(87),(132).
The data from reference(87) are shown in Table 4.51. The three levels identified in
reference(132) are between 1.7 and 1.85 MeV and were not observed because they
were obscured by stronger γ-rays due to radioactive material in the experimental
area.

Boron: The B powder that was used in the experiment was enriched to 99.52%
11B. The 11B ground state has spin and parity of Jπ = 3/2

−. The first excited 11B
state is assigned as Jπ = 1/2

− state at 2124.7 keV. This state has a half-life of 3.8 fs,

1The authors of reference(87) assumed that the intensity of non-measured decays to states other
than the ground and first-excited were 5%± 5% of the intensity of decay to the ground state. This
assumption has not been used with the data shown.
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Elevel Γ0/Γ
W (θ)gΓ2

γ0/Γ gΓγ0

∫
σdE

(keV) (meV) (meV) (eV·b)
1527 0.9 5.2 ± 1.3 5.3 ± 2.1 17.5
1884 0.82 41 ± 10 55 ± 6 119
2197 0.8 17 ± 4 17 ± 3 27.1
2252 0.9 17 ± 4 13 ± 3 25.8
2265
2365 1 3.5 ± 1.3
2564 50 ± 13 61 ± 12 71.5

Table 4.6 55Mn NRF data taken from ENDSF(133) and reference(135). γ-ray emis-
sion to the first excited state of 55Mn (Jπ = 7/2

−) at 125.95 keV were also measured
with probabilities of 1 − Γ0/Γ. The final column is calculated from equation 2.89
with a corresponding fractional uncertainty equal to that for gΓγ0. Blank entries
indicate value was not reported.

corresponding to Γ = Γ0 = 0.12± .009eV and
∫
σNRF(E) dE = 51.1 eV·b(72),(133).

10B has two excited states within the energy range of this experiment, at 1740.1
keV and 2154.3 keV. However neither state has been observed to undergo NRF, and
neither have been measured to decay directly to the ground state, instead de-exciting
via the Jπ = 1+ state at 718.4 keV (134).

Manganese: Mn has only one naturally occurring isotope, 55Mn. The NRF
properties of this isotope have been measured in reference(135) and are summarized
in Table 4.6. The 2197-keV and 2249-keV full-energy resonance γ-rays both appear
in spectra as parts of multiplets. Neither the 2071-keV nor 2123-keV γ-rays, which
are due to de-excitation of NRF states to the first excited state of 55Mn, were resolved
in this experiment. Presence of the 2365-keV resonance cannot be confirmed because
of a 2363-keV peak, which is due to the de-excitation of the 2410-keV 238U state to
the first excited state. The energy of the 2561-keV resonance was very near the
bremsstrahlung endpoint energy and no evidence of a peak could be found.

Lead: Pb has four natural isotopes, 204Pb, 206Pb, 207Pb, and 208Pb with iso-
topic abundances of 1.4%, 24.1%, 22.1% and 52.4%, respectively. The lowest known
excited state of 208Pb is at 2614.5 keV, and therefore 208Pb nuclei is not expected
to be excited by the bremsstrahlung beam. 207Pb has two known levels between 1.5
and 2.6 MeV, but both of them differ in spin from the ground state (1/2) by three or
more units of angular momentum, and have never been observed to undergo NRF.
206Pb has four known levels of spin 1+ or 2+ between 1.5 and 2.6 MeV. None of the
γ-rays corresponding to these levels were observed in this experiment. 204Pb has 39
known levels between 1.5 and 2.6 MeV, 13 of which have spins of 1 or 2. One state
in this energy range, the 2311.6-keV level. It has been observed to undergo NRF,
but is not included in the ENDF database. Its mean lifetime was measured to be
28 ± 6 fs, which corresponds to Γ0 = 23+6

−4 meV, and an integrated cross section of
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Elevel Run #2 Run #3 Run #4
(MeV) Run #1 Run #1 Run #1

2.176 0.545 ± .018 0.880 ± .006 0.779 ± .011
2.209 0.567 ± .019 0.888 ± .006 0.792 ± .011
2.245 0.722 ± .016 0.936 ± .004 0.877 ± .008
2.295 0.870 ± .014 0.972 ± .003 0.946 ± .006
2.410 0.790 ± .013 0.953 ± .003 0.911 ± .006
2.468 0.772 ± .016 0.949 ± .004 0.902 ± .007

Table 4.7 Expected intensities of 238U NRF γ-rays for different runs ratioed to the
corresponding NRF γ-ray intensity of Run #1.

50+14
−8 eV·b (80). If this line is present in the data, it is very weak.

Aluminum: The aluminum table on which shielding and detectors were located
introduced several kg of Al into the periphery of the experiment. Most of the tables
were heavily shielded from the bremsstrahlung beam, however the corners of the
left table were not well-shielded from view of the right-side detectors. 27Al has one
known level whose excitation energy is within the energy range of interest, and it is
well-known to undergo NRF. The level is at 2212.0 keV and has a half-life of 26.3±
0.7 fs, which corresponds to an integrated cross section of 18.0 ± 0.3 eV·b(137). A
small peak at 2212 keV was observed as part of a multiplet in the right-hand side
detectors. It did not appear to be present in the spectra measured by the bottom-left
(G3) or top-left (G4) detectors. However, the poorer energy resolution of G4 makes
it difficult to conclude whether or not 2212-keV γ-rays contributed to the observed
multiplet.

4.4 Predicted TD Response

Photon attenuation is the key to resonant-energy transmission assay. Resonant-
energy photons will be more attenuated than photons of similar, but non-resonant
energies. The relative rate at which NRF is induced in the TD reflect the rate of
resonant-energy photon attenuation by the target material, which is correlated to the
amount of DU in the target. Table 4.7 presents the effective attenuation due to NRF
in the target, based on the properties of 238U resonances, shown in Table 4.5. The
energy-dependent cross section functions are all based on the Doppler-broadened
Lorentzian profile (DBLP) given by equation 2.99. Each value is the expected ratio,
A(Nx), computed by equation 3.38 for the areal density of 238U in the target of each
run.
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4.5 Data Analysis

Data analysis was performed in the following steps:

1. energy calibration for each detector;

2. re-bin pulse-height spectra onto common energy grid;

3. sum re-binned spectra;

4. fit energy resolution of the summed spectrum;

5. identify and fit peaks in NRF energy regions;

6. normalize each peak to corresponding integral of the 511-keV peak;

7. ratio normalized NRF peak integrals of Runs #2-4 to Run #1;

8. extract expected 238U areal density from each peak ratio; and

9. take weighted average of each peaks’ expected areal density to obtain final
areal density.

Steps 8 and 9 were also re-done using a correction to the model relating areal
densities to peak ratios based on MCNPX simulations of the process of notch refilling.

4.5.1 Energy Calibration

The gain initially set on the ADC was done rather crudely due to a shortage of
calibration sources available. After collection of overnight background data, peaks
with energies up to 2.615 MeV were easily identified using data from the Table of
Radioactive Isotopes(138). The peaks shown in Table 4.8 were identified in overnight
background runs and used to calibrate each detector’s ADC gain.

234mPa and 214Bi are isotopes present in the 238U decay series, 208Tl is in the
thorium decay series, and 40K is a common radioisotope that is often present in
concrete. Comparing between the overnight background runs with 1/2” and 1”-thick
filters indicates that the detected γ-rays are produced outside of the detector shield-
ing. This is because the additional lead reduces the background count rates for each
γ-ray by amounts proportional to exp[−µ(E) ·1/2 ′′], where µ(E) is the corresponding
attenuation coefficient in lead at each γ-ray energy.

Each night’s background run was analyzed and the energy calibration was fit to a
polynomial of the form, Efit = aE2+bE+c, using a linear least-squares fitting routine.
Between each night’s runs, there was no significant variation between detectors’ best-
fit energy calibrations, and thus it is assumed that ADC gains remained stable during
the experiment.



Section 4.5. Data Analysis 142

Eline (keV) Isotope
766.36 234mPa

1001.03 234mPa
1193.77 234mPa
1460.83 40K
1737.73 234mPa
1911.17 234mPa
2204.21 214Bi
2614.49 208Tl

Table 4.8 γ-ray lines identified in overnight background spectra used to calibrate
ADC gains(138).

Figure 4.6 Schematic example of re-binning a single bin onto a 100 eV-wide bin grid.

4.5.2 Re-binning and Summing of Pulse-Height Spectra

Because the energy gains of the four detectors varied, they were re-binned to
an identical energy grid and then summed. The grid was selected to be 100 eV wide
for convenience. Counts within an initial energy bin were separated according to
the fraction of bin overlap between the initial energy bin and bins in the new 100
eV-wide grid. Figure 4.6 provides a schematic example of the rebinning process. If a
bin initially had a lower boundary of 1915.146 keV, an upper boundary of 1915.611
keV, and contained 800 counts, these counts would be separated into 100 eV-wide
bins, with upper energies 1915.2, 1915.3, 1915.4, 1915.5, 1915.6 and 1915.7 keV. The
width of the initial bin was 465 eV, thus 800 · 100/465 = 172.043 counts would be
assigned to each of the four bins that were entirely overlapped by the original bin.
The lower and upper 100 eV-wide bins receive a fraction of counts corresponding to
their respective overlap with the initial bin, which in this case, are 92.903 and 18.925
counts, respectively.

After each detector’s pulse-height spectra are re-binned to the common energy
grid, they are summed. Example pulse-height spectra are shown before and after
summing in Figure 4.7. Before analysis, the summed spectra were convolved by
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Figure 4.7 Spectra from all four detectors taken during Run #1, before (lower) and
after (upper) summing.

400 eV-wide step-wise functions, resulting in a 400 eV running average of the pulse-
height spectrum. This was done to reduce statistical fluctuations without degrading
the intrinsic energy resolution, which is limited by initial ADC bin widths. By ana-
lyzing these smoothed, summed spectra it is easier to identify peaks above statistical
fluctuations.

4.5.3 Energy Resolution Calibration

After detector spectra summing, large isolated peaks in the spectrum were iden-
tified for use in detector resolution calibration. The peaks selected are a sub-set of
the peaks used for energy calibration listed in Table 4.8. The energies of the selected
peaks are 1001.03 keV, 1193.77 keV, 1737.73 keV, 1911.17 keV and 2614.49 keV.
These peaks were found to be large enough and sufficiently isolated in the summed
spectra of Runs #1-4 to be fit to a single Gaussian distribution function atop a
linearly varying background with relatively little fitting uncertainty. For a given
run’s summed spectrum, each of the five peaks were fit, and the standard deviation,
σi, and fitting error, εi, of the fitted Gaussian distributions were used as input to a
weighted least-squares fitting routine where the weight of each point was defined as
wi = 1/εi. The functional form to which the peak standard deviations were fit to is
given by

σ(E) = aEb + C (4.1)

The best-fit functions of peak-widths versus peak energy are shown in Figure 4.8.
The fit values of b for all of the runs are within one standard deviation uncertainty
bounds of the value expected value of 1/2. This value is expected due to the sta-
tistical nature of the population of charge carriers in a HPGe detector (96). Also,
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Figure 4.8 Summed HPGe detectors best-fit peak widths, σ and weighted best-fit
function of the form σ(E) = aEb + C. Points correspond to measured values of σ
and the error bars to one standard deviation fitting errors.

between the four runs, the peak-width versus energy fits did not vary beyond the
one standard deviation uncertainty of a fit.

4.5.4 Peak Identification and Fitting

To identify which peaks in the obtained spectra were due to the bremsstrahlung
beam irradiating the experimental setup, overnight background spectra were nor-
malized to each detector’s live-time and subtracted from corresponding detector’s
live-time normalized spectrum collected during Runs #1-4. Two regions of a spec-
trum undergoing background subtraction are shown in Figures 4.9 and 4.10. The
data are directly from detector G2. The ‘beam-on’ data were collected during Run
#2 and the background data were collected the preceding night.

In Figure 4.9 several peaks clearly visible in the ‘beam-on’ spectrum are not
in the overnight background spectrum. The energy resolutions of the HPGe detec-
tors were found to increase (worsen) when spectra were collected with the brems-
strahlung beam on. With beam on, ADC dead times increased from ∼ 3% to
∼ 15%. The worsening of digital spectrometer system resolutions with increasing
count rates has been previously observed(139). Worsened resolution causes artifacts
in the background-subtracted spectrum, as are visible in Figure 4.10. Because of
this, as well as statistical considerations, overnight background spectra were only
subtracted from ‘beam-on’ data for peak identification. Overnight background spec-
tra were not subtracted from ‘beam-on’ spectra for the purpose of peak fitting,
integration, and analysis.

When spectra are summed, statistics on candidate NRF peaks improve. All
peaks above 2 MeV that appear above the counting continuum have been identified as
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Figure 4.9 The NRF energy region of the live-time normalized gross and background
counts in the G2 detector. Gross count spectrum is taken with beam on during Run
#2. The background spectrum was collected the preceding night.

Figure 4.10 Background subtraction of spectra from the G2 detector for energies
between 1.7 and 1.85 MeV. Gross count spectrum is taken with beam on during
Run #2. The background spectrum was collected the preceding night. The net
counts spectrum appears to have dips at peak centroid energies because the energy
resolution of the detector systems increased when operating at high count rates.
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either candidate NRF γ-rays or are present in overnight background spectra. Peaks
identified as candidate NRF γ-rays, as well as nearby peaks forming multiplets, have
been fit and integrated. These peaks, their integrated areas, the associated statistical
error of the integration, and the identified source of each peak are listed in Tables 4.9
and 4.10.

Peaks whose source is identified as ‘bkg’ were detected in the overnight back-
ground. The peak near 511 keV, labeled ‘e+e−’ is due to annihilation of positrons
primarily in the TD. Use of this phenomenon will be discussed in Section 4.5.5. Peaks
whose source is identified as ‘U’ are due to NRF γ-rays emitted after excitation of
known states identified in Table 4.5. The γ-ray energies are either indistinguishable
from, or are 45 keV less than the excitation energy of the known state. Those γ-rays
of 45 keV less energy are due to de-excitation of the state to the first excited state
in 238U, which lies 44.916 keV above the ground state and has a spin and parity of
2+.

Four candidate NRF lines have been identified as probable 238U NRF γ-rays
and are denoted by ‘U?’. The pair at 2080.0 and 2035.0 keV corresponds to γ-rays
separated in energy by 45 keV, which implies that each pair is due to de-excitation
of a 2080-keV state to both the ground and first excited state. The second pair at
2287.4 and 2241.1 keV is separated in energy by 46.3 keV. This difference from the
expected 44.9 keV may be attributed to the difficulty fitting the 2241 keV peak due
to its minor presence in the 2245-keV multiplet.

The sources of three additional peaks identified in the ‘beam-on’ spectrum have
been labeled as ‘?’. The peaks at 1996.6 and 2146.0 keV differ in energy by 149.4
keV. This may indicate that the 1996.4-keV peak is due to de-excitation of an 2146-
keV state to the 4+ second-excited state of 238U, which lies 148.4 keV above the
ground state. Were this the case, a 2041-keV γ-ray would also be expected, however
observation of this peak is obstructed by the presence of a background peak at the
same energy. The background-subtracted spectra indicate a bremsstrahlung-induced
peak may be present. If the two peaks in question are not due to the same NRF level,
but are due to 238U NRF, one would expect to observe additional peaks at either 45
keV above or below the identified peak’s energy. As previously mentioned, for the
1996.4-keV peak, a background peak obstructs observation of a 2041-keV NRF γ-ray
and there is no evidence of a peak at 1951 keV. For the 2146-keV level, background
peaks at 2103 and 2104.5 keV obstruct observation of a potential NRF γ-ray. Also,
no peak appears at 2191 keV. The last un-attributed peak, at 2471 keV is very
weak, and may be due only to statistical fluctuations of the spectral continuum.
Finally, the two entries in Table 4.9 with only ‘x’ correspond to a doublet region
corresponding to a 11B NRF peak and a background peak. Since the area behind
the TD contained no 11B in Run #1, this peak was not present and therefore this
region was not analyzed.
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Run #1 Run #2
EC (keV) Area EC (keV) Area Source
510.4 1.1×108 ±1.8×105 510.4 9.0×107 ±1.5×105 e+e−

1996.5 497.3 ± 61.4 1996.6 259.3 ± 56.9 ?
2000.3 548.7 ± 61.4 2000 436.9 ± 56.9 bkg
2035 1159.8 ± 61.1 2034.9 800.1 ± 53.8 U?
2041 808.4 ± 58.1 2041 668.2 ± 52.6 bkg
2080 510.7 ± 51.2 2080 403.3 ± 46.1 U?
2102.4 1019.6 ± 54.4 2102.6 946.7 ± 50.2 bkg
x x 2118.9 218.4 ± 39.8 bkg
x x 2124.1 1609 ± 54.4 11B
2130.6 1491.6 ± 56.0 2130.8 707.2 ± 45.3 U
2136.2 509.5 ± 46.4 2136.3 489.7 ± 42.9 bkg
2146.1 406.5 ± 45.3 2146 375.1 ± 41.5 ?
2163.3 1234.1 ± 51.9 2163.3 609.8 ± 42.5 U
2175.6 2702.6 ± 64.5 2175.6 1310.4 ± 50.1 U
2196.6 261 ± 40.5 2197.2 175.5 ± 40.2 Mn
2199.7 825.7 ± 45.1 2199.7 440.8 ± 39.9 U
2204.1 842.8 ± 45.3 2204 732.1 ± 42.1 bkg
2208.2 2209.3 ± 58.4 2208.2 1177.3 ± 47.1 U
2210.9 246 ± 43.0 2211.8 153.6 ± 35.3 Al
2242.3 197 ± 38.2 2240.2 97.9 ± 31.5 U?
2244.9 1397.8 ± 49.6 2244.8 883.4 ± 41.4 U
2249.1 479.5 ± 39.3 2249.2 378.4 ± 34.8 U
2252.3 72.9 ± 37.0 2252.7 138.8 ± 31.5 Mn
2287.1 398 ± 35.5 2287.5 233.2 ± 31.6 U?
2293.6 491.7 ± 36.8 2294 377.5 ± 33.9 U
2364.7 344 ± 32.1 2365.2 199.5 ± 28.8 U
2409.8 550.8 ± 33.0 2409.9 428.5 ± 29.8 U
2422.5 263.8 ± 28.3 2422.2 114.1 ± 24.1 U
2467.4 289.5 ± 25.9 2467.5 186.9 ± 22.3 U
2470.6 56.1 ± 22.0 2470.3 49.5 ± 21.1 ?

Table 4.9 Analyzed γ-ray lines in NRF energy region for Runs #1 and 2.
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Run #3 Run #4
EC (keV) Area EC (keV) Area Source
510.4 9.9×107 ±1.5×105 510.4 9.2×107 ±1.6×105 e+e−

1996.4 498.5 ± 59.0 1996.7 506.6 ± 56.8 ?
2000.2 650.6 ± 59.1 2000.5 563.7 ± 56.8 bkg
2035.1 1115.8 ± 59.1 2034.9 899.4 ± 56.1 U?
2040.8 699.3 ± 55.4 2041 638.8 ± 53.7 bkg
2080.1 391.1 ± 49.3 2079.9 368.1 ± 46.4 U?
2102.4 1188.1 ± 54.2 2102.6 929.1 ± 50.2 bkg
2118.2 285 ± 43.0 2119.4 258.4 ± 41.5 bkg
2124.1 1801.9 ± 57.7 2124.2 1693.3 ± 55.6 11B
2130.5 1200.7 ± 52.2 2130.7 1077.5 ± 49.8 U
2136.3 389.1 ± 43.7 2136 474 ± 43.3 bkg
2146.3 323 ± 43.0 2145.8 300.5 ± 41.5 ?
2163.3 1049.7 ± 48.4 2163.2 753.3 ± 44.7 U
2175.6 2300.8 ± 59.9 2175.6 1809.7 ± 55.3 U
2197.4 327.3 ± 41.7 2197 183.4 ± 38.2 Mn
2200 576.6 ± 41.3 2200 525.3 ± 40.0 U
2204.1 747 ± 43.3 2204.2 718.7 ± 42.4 bkg
2208.2 1874.1 ± 54.8 2208.3 1574.2 ± 51.5 U
2211.9 102.6 ± 37.0 2211.8 62.2 ± 37.0 Al
2240.5 131.7 ± 34.6 2240.5 59 ± 33.8 U?
2244.5 1117.1 ± 45.7 2244.8 1145.2 ± 45.4 U
2248.4 411.8 ± 38.4 2249.4 310.1 ± 35.5 U
2251.1 179.7 ± 39.1 2252.3 16.1 ± 35.6 Mn
2287.6 273.9 ± 33.2 2287.5 236.9 ± 32.1 U?
2293.9 465.9 ± 36.0 2293.6 381.3 ± 34.3 U
2364.5 338.8 ± 31.6 2364.8 285.7 ± 30.0 U
2409.6 475.3 ± 31.1 2409.7 468.2 ± 30.7 U
2422.2 225.2 ± 26.7 2421.9 179.3 ± 25.5 U
2467.3 289.8 ± 25.2 2467.5 307.1 ± 25.2 U
2471.5 80 ± 20.6 2471.7 55.2 ± 20.0 ?

Table 4.10 Analyzed γ-ray lines in NRF energy region for Runs #3 and 4.
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Peak Fitting and Integration

In this section the process of peak fitting, continuum subtraction, peak integra-
tion, and calculation of the estimated error is discussed. Candidate NRF peaks are
identified. If a peak is part of a multiplet, all peaks within the multiplet are ana-
lyzed. This process populated the peak list in Tables 4.9 and 4.10. Each multiplet
(or singlet) is individually analyzed. The analysis proceeds by the following steps:

• as summarized in Section 4.5.2, spectra are re-binned to 100 eV-wide bins,
summed, and then smoothed with a 400-eV running average;

• a linear fit is applied to the non-peak continuum;

• the continuum is subtracted from the peak regions;

• peak(s) are fit to Maxwell-Boltzmann distribution whose width is defined by
equation 4.1; and

• fit peaks are integrated.

The summed spectra were binned to a 100 eV wide grid. A 400-eV running
average is accomplished by convolving these spectra with an array composed of four
values of 0.25, resulting in smoothed spectra. This process has very little effect on
the energy resolution of the spectra because initial ADC bin widths were between 427
and 465 eV and were re-binned to finer energy resolution to accommodate spectra
summing. The non-peak regions above and below the peak (or multiplet) are fit to
linear functions. Nearby peaks may be excluded from the continuum fitting routine.
The energy-dependent intensity of the continuum beneath the peak/multiplet is es-
timated by imposing a linear function between the two linear fits to the continuums
adjacent the peak/multiplet. Counts due to the estimated linearly varying contin-
uum are subtracted from each bin in the peak/multiplet region. Identified peaks
are fit to Gaussian distributions using least-squares fitting routine. The widths of
the distributions are defined by the best-fit energy-resolution function, equation 4.1.
Centroid energies are allowed to vary, but only over a range of 1 eV beyond the
standard deviation of the best-fit resonance width. The only other constraint on the
fitting is that each peak area must be non-negative. A graphical representation of
the fitting process is shown in Figure 4.11.

The errors associated with each reported peak area are obtained using the fol-
lowing observations. The Gaussian least-squares fitting routine provides a 68% con-
fidence interval on the area, A, of each continuum-subtracted peak, from which a
fitting standard deviation, σF , can be obtained, assuming that the fitting routine
produces a Gaussian error distribution. Poisson statistics dictate that the standard
deviation of the number of counts in a peak, σP =

√
A. The standard deviation of

the continuum-subtracted peak is assigned as σT = max(σF ,σP ). One 238U NRF
peak in each of Runs #2-4 had a σF > σP , as did several smaller peaks. For the
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Figure 4.11 Portion of Run #1 summed spectrum with peak fitting graphically
demonstrated. The upper spectrum (blue) is summed re-binned data from all four
detectors. The piece-wise linear function following this spectrum’s baseline (ma-
genta) is the linear fit of the continuum in each peak/multiplet region. The lower
spectrum (red) is the 400-eV running averaged, continuum-subtracted data. The
black curve is the result of least-squares multiple-Gaussian fitting routine, which for
multiplets is the sum of the other colored Gaussian curves.
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2200-keV 238U NRF peak in Run#2, σF = 23.5 eV whereas σP = 21 eV. The 2248-
keV 238U NRF peak had σF > σP by 10% and 5% for Runs #3 and 4, respectively.

The standard deviation, σCnt of the subtracted continuum is defined by the
following expression

σCnt =

√∫ ECz+2σpk

EC−2σpk

NCnt(E)dE (4.2)

σpk denotes the best-fit standard deviation of the peak shape, and NCnt is the esti-
mated number of continuum counts as a function of energy. Finally, the net standard
deviation of a given peak’s area is given by

σ =
√
σ2
T + σ2

Cnt (4.3)

Fitting of the 511-keV peak also yielded a fitting error, σF that was larger than
the error due to Poisson statistics, σP , despite the fact that the Gaussian width,
σ, was allowed to vary freely. However, the total error associated with the 511-
keV peak fitting process was only 0.1% of the peak area, which is negligibly small
compared to other error sources. Thus, no effort was made to improve the fitting of
the annihilation peak.

4.5.5 Spectra Normalization to Annihilation Peak

In order to compare rates at which NRF is induced in the TD, the rate at
which photons near resonant energies impinge upon the TD must be known. Direct
measurement of this rate is difficult and was not attempted in this experiment.
However, the relative rate at which pair production occurs in the TD between runs
is proportional to the relative intensities of near-resonant-energy photons to a high
precision.

To demonstrate this fact, we use MCNPX(23) to calculate the photon spectrum
(normalized to electron beam current) impinging upon the TD for each of the four
target geometries. These spectra are shown in Figure 4.12. The general shapes of
the spectra appear similar, but the overall intensities vary by approximately 10%
between runs. These spectra indicated that even if the integrated electron current
incident upon the bremsstrahlung converter were precisely known and well-focused
for the duration of each run, it would be necessary to normalize counting data from
each run to take into account differing photon attenuations between targets, before
data could be compared between runs.

To perform this normalization, we define a value, Ri
PP that is proportional to

the rate at which pair production occurs in the TD for each run, i.

Ri
PP =

∫
Φi(E)σPP(E)dE (4.4)

In this definition we have omitted photon attenuation within the TD. This is an
approximation, most valid when the TD is thin compared to the mean photon path
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Figure 4.12 Photon spectra (normalized to electron beam current) impinging upon
the transmission detector for each of the four target geometries. These spectra were
calculated using MCNPX. For clarity, statistical error bars are not shown, but errors
were calculated to be less than 1% for energy bins above 0.5 MeV.

length before pair production, which is 6 - 11 mm for 1.5 - 2.6 MeV photons in
uranium. However, since the TD geometry did not change during the experiment,
the systematic inaccuracies due to this approximation will be very similar between
runs and therefore will generally cancel each other later, when different values of
Ri

PP are ratioed to obtain peak normalization.
The pair production cross section for photons incident upon uranium is shown

in Figure 4.13. The cross section is zero below the energy 1.022 MeV, and begins
to slowly turn upwards before becoming approximately linear at ∼ 1.3 MeV. This
implies that normalization of photon intensity to the rate of pair production will be
most sensitive to the highest energy portion of photon spectra.

Figure 4.14 presents the spectra in Figure 4.12, re-normalized by dividing by
Ri

PP. The spectra appear very similar. To further examine the similarity of these
spectra, each normalized spectrum has been divided by that of Run #1. The result-
ing ratios are shown in Figure 4.15. The values plotted on the ordinate are those
given by equation 4.5 for i = 2, 3 and 4. For i = 1, the Y 1(E) would be unity at all
energies.

Y i(E) =
Φi(E)

Ri
PP

R1
PP

Φ1(E)
(4.5)

In Figure 4.15, we can see three regimes of behavior. Below 0.5 MeV, the ratios
have large errors and satisfactory conclusions as to how the spectra relate can not be
made. Between 0.5 and 1.6 MeV the normalization has resulted in spectral intensities
that are lower than for Run #1, especially in the case of Run #2. However, we are
not measuring resonant attenuation of any photons at these energies, and therefore,
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Figure 4.13 Pair production cross section for photons incident upon uranium.

Figure 4.14 Calculated photon spectrum shown in Figure 4.12, re-normalized by di-
viding by Ri

PP, resulting in spectra normalized to a value approximately proportional
to the rate at which pair production occurs in the transmission detector. For clarity,
statistical error bars are not shown, but errors were calculated to be less than 1%
for energy bins above 0.5 MeV
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Figure 4.15 Spectra shown in Figure 4.14 ratioed to the 3” Pb spectrum. The values
for the three functions plotted on the ordinate are Y i(E) from equation 4.5 for
i = 2, 3 and 4. The inset box is a larger view of the energy region between 2 and 2.6
MeV.

the spectral differences after normalization have no effect on conclusions based on
the NRF induced by higher-energy photons.

Above 1.6 MeV, the normalized spectra all appear to be within 1.5% of each
other. Furthermore, the sawtooth shape of the calculated ratios shown in the inset
appear to vary about an average of 1 for Y 3(E) and Y 4(E), whereas the mean
value for Y 2(E) is about 1.005. Sawtooth shapes are very rare in nuclear data, and
this shape is probably more indicative of failings of the linear interpolation method
used to calculate incoherent scattering functions of Pb and U in MCNPX, than of
anything physical. We therefore, tentatively accept for 2.0 to 2.5 MeV photons,
the mean value of the oscillation as representative of the photon spectral intensities
incident upon the TD, relative to those intensities in Run #1, after pair production
normalization.

The experimental goal was to measure the rate of attenuation of resonant-energy
photons. By normalizing to each spectra’s 511-keV peak, we effectively equate in-
tensities incident upon the TD of non-resonant photons in the energy range of 2.0
- 2.5 MeV. This in turn, gives a baseline, relative to which resonant-energy pho-
ton absorption may be compared with systematic errors of less than approximately
1.5%. Due to the large counting errors present in the Poisson statistics, we neglect
this error in subsequent error analyses.

4.5.6 Normalized NRF Peak Ratios

Peaks identified in Runs #2-4 as due to either a known or possible 238U reso-
nance were fit, integrated and compared to corresponding peak intensities from Run
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#1. Mathematically, the compared peak intensities are expressed as

Ai
Epk

=
AiEpk

A1
Epk

A1
511

Ai511

(4.6)

where Ai
Epk

is the relative intensity (also referred to as the measured effective atten-

uation) of the peak at E = Epk for Run i, relative to Run #1. AiEpk
corresponds to

the fit area of that peak, and the subscript, ‘511’ indicates the annihilation peak.
The statistical error associated with Ai

Epk
is derived to be

σAi
Epk

=

√√√√( σ1
511

A1
511

)2

+

(
σi511

Ai511

)2

+

(
σ1
Epk

A1
Epk

)2

+

(
σiEpk

AiEpk

)2

(4.7)

where values of Aipk are given in Tables 4.9 and 4.10, and each σiEpk
is given by Equa-

tion 4.3. The resulting measured effective attenuation values are shown in Table 4.11
for each of the three runs containing 238U in the assay target. The peaks have been
arranged such that two peaks separated by 45 keV, which presumably correspond
to de-excitation of the same NRF level, are shown in a single box. We note that the
statistical quality of data corresponding to potential NRF peaks that have not been
previously reported NRF states is generally very low. Furthermore, listed peaks
without a corresponding peak due to de-excitation to the first excited state do not
appear to obey the systematic trends that would be expected theoretically and have
been observed in known NRF states.

NRF γ-rays due to de-excitation of the NRF level to the first excited state
contain the same type of information as those that decay to ground state – the rate
of attenuation of photons that would excite the NRF level. Therefore attenuation
rates of the coupled levels are combined to improve statistics. The net result of the
effective attenuations for the six previously reported NRF levels, as well as the levels
at 2080 and 2288 keV are shown in Table 4.12.

These values are compared with the values expected from the theoretical model
of photon attenuation (shown in Table 4.7) in Figures 4.16 and 4.17. Figure 4.17
only shows the comparison for the largest three resonances, which when analyzed
result in better statistics. Both figures contain data points and error bars in three
colors. Each color corresponds to data from a specific Run and each point represents
a single NRF level. The vertical error bars are associated with the statistical (and
possibly fitting) uncertainty of the peak pairs in each Run and the horizontal error
bars are due to the effects of the uncertainty in the measured NRF cross sections as
reported in reference (87). All data would fall on the line y = x, within statistical
uncertainties, if the theoretical model described in Section 3.2.2 perfectly represented
photon transport within the experimental geometry. The solid magenta lines shown
in the figures represent weighted linear best-fits. In Figure 4.16, the best-fit line was
constrained to pass through the point (1,1), whereas in Figure 4.17, the line was
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Epk (keV) Run #2 Run #3 Run #4

1996.6 0.627 ± 0.252 1.100 ± 0.171 1.206 ± 0.167

2035.0 0.829 ± 0.085 1.056 ± 0.075 0.918 ± 0.082
2080.0 0.949 ± 0.152 0.840 ± 0.161 0.854 ± 0.161

2146.0 1.108 ± 0.157 0.872 ± 0.174 0.875 ± 0.177

2130.7 0.570 ± 0.074 0.884 ± 0.057 0.855 ± 0.060
2175.6 0.583 ± 0.045 0.934 ± 0.035 0.793 ± 0.039

2163.3 0.594 ± 0.081 0.934 ± 0.062 0.723 ± 0.073
2208.2 0.640 ± 0.048 0.931 ± 0.040 0.844 ± 0.042

2199.9 0.641 ± 0.106 0.766 ± 0.090 0.753 ± 0.094
2244.7 0.759 ± 0.059 0.877 ± 0.054 0.970 ± 0.053

2241.1 0.597 ± 0.376 0.734 ± 0.326 0.355 ± 0.604
2287.4 0.704 ± 0.162 0.755 ± 0.151 0.705 ± 0.162

2249.0 0.948 ± 0.123 0.942 ± 0.124 0.766 ± 0.141
2293.8 0.923 ± 0.117 1.040 ± 0.108 0.918 ± 0.117

2364.8 0.697 ± 0.172 1.081 ± 0.132 0.983 ± 0.140
2409.7 0.935 ± 0.092 0.947 ± 0.089 1.007 ± 0.089

2422.2 0.520 ± 0.237 0.937 ± 0.160 0.805 ± 0.178
2467.4 0.776 ± 0.149 1.099 ± 0.125 1.256 ± 0.121

2471.0 1.060 ± 0.580 1.566 ± 0.470 1.166 ± 0.534

Table 4.11 Measured values of Ai
Epk

with statistical errors. Peaks grouped within
the same box correspond to de-excitation of the same NRF level.

Elevel (keV) Run #2 Run #3 Run #4
2175.6 0.578 ± 0.050 0.916 ± 0.062 0.815 ± 0.058
2208.2 0.624 ± 0.059 0.932 ± 0.069 0.800 ± 0.067
2244.7 0.715 ± 0.087 0.836 ± 0.088 0.890 ± 0.096
2293.8 0.935 ± 0.159 0.992 ± 0.163 0.843 ± 0.154
2409.7 0.843 ± 0.164 0.998 ± 0.159 0.998 ± 0.166
2467.4 0.654 ± 0.183 1.021 ± 0.207 1.041 ± 0.224
2080.0 0.865 ± 0.151 0.990 ± 0.176 0.899 ± 0.162
2287.4 0.669 ± 0.274 0.748 ± 0.269 0.589 ± 0.369

Table 4.12 Measured values of Ai
level with statistical errors.
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Figure 4.16 Comparing measured NRF line intensities with predicted values based
on the DBLP model described in Section 3.2.2. Each data point color represents data
from a single Run, the black line indicates y = x, the solid magenta line is a best-fit
line constrained to intersect the point (1,1), with the dotted lines corresponding to
68% error intervals.

unconstrained. This line passes very close to the point (1,1) and therefore we will
assume that the constrained fit is a valid representation of the data.

For the most attenuated NRF lines (the left-most data points), there appears to
be disagreement between the model and the measured data. To investigate whether
this disagreement was due to other scattering processes neglected in the analytical
model, the experimental setup was simulated in MCNPX using the code changes
described in Appendices A and B. The NRF lines that have been entered into
the MCNPX data files are evaluations of the Maxwell-Boltzmann distribution at
five energies. These lines, with the cross section profiles used in MCNPX were
also attenuated using the model described in Sections 3.2.2 and 3.2.3. This model
produced effective attenuation values that were smaller (more attenuation) than
those predicted by MCNPX (see Table 4.13). From this we can infer that detailed
particle transport, as is simulated by MCNPX, results in larger effective attenuation
values than were predicted by the analytical model using the same resonance cross
section functions.

Constrained linear weighted best-fits of form y−1 = m(x−1) are applied to two
sets of 9 ordered pairs. In each set, y represents the measured attenuation ratios for
three resonances and three runs, and x represents the corresponding calculated ex-
pected attenuation ratios from Table 4.13. In both fittings, each point was weighted
by 1/(σiElevel

)2, where σiElevel
represents statistical errors given in Table 4.12. When

the MCNPX data was used as abscissa values, a best-fit value of mX = 1.040±0.055,
whereas when the analytical evaluation of point-wise Maxwell-Boltzmann distribu-
tion was used as abscissa values, the best-fit value of mMB = 0.977 ± 0.045. Thus,
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Figure 4.17 Same as Figure 4.16 except only data corresponding to three largest
NRF lines are considered, and the best-fit line shown is unconstrained.

Elevel Run #2 Run #3 Run #4
(keV) MCNPX Analytical MCNPX Analytical MCNPX Analytical
2176 0.595 0.581 0.909 0.893 0.810 0.801
2209 0.623 0.591 0.911 0.897 0.833 0.807
2245 0.766 0.742 0.964 0.941 0.918 0.887
2295 0.897 0.885 0.979 0.976 0.967 0.953
2410 0.838 0.811 0.963 0.958 0.970 0.920
2468 0.820 0.791 0.979 0.944 0.939 0.910

Table 4.13 Effective attenuation of resonant-energy photons for largest three 238U
resonances examined. Values labeled MCNPX result from Monte Carlo simulations
of the experimental geometry. Values labeled Analytical result from the analytical
energy-dependent attenuation of resonant photons assuming the cross section profile
is given by a point-wise evaluation of a Maxwell-Boltzmann distribution, as described
Section 3.2.3.



Section 4.6. Results 159

Figure 4.18 Same as Figure 4.17 except that the values of the calculated ratio on the
abscissa include the notch-refilling correction as outlined in the text.

we attribute to the MCNPX transport of particles an addition to the best-fit slope
of ∆m = 0.063.2 We will name this correction the MCNPX-based notch-refill cor-
rection. This correction, when applied to a best-fit line constrained to (1,1) of the
data shown in Figure 4.17, changed the best-fit slope from mDBLP = 0.906 ± 0.041
to mcorr

DBLP = 0.969 ± 0.045. This new best-fit line is shown as a magenta line
with dotted ±1 σ errors in Figure 4.18, along with the data after application of the
MCNPX-based notch-refill correction to the predicted effective attenuation values.

It is of interest to note that the intensity of the MCNPX-based notch-refill
correction is comparable to the predicted intensity of the notch-refilling discussed
in Section 3.2.5. There, the intensity was predicted by consideration of the photon
spectrum leaving a side of an assay target after monoenergetic photons irradiated
the opposite side.

4.6 Results

4.6.1 Measured 238U Areal Densities

We now have a measured effective attenuation for each resonance and each run.
Using the theoretical model for effective attenuation, we may relate the measured
values to expected 238U areal densities. Figure 4.19 presents calculated functions for
the effective attenuation of the largest three 238U resonances versus areal density.
Given a measured effective attenuation value, one inverts these curves to obtain an

2The quoted errors are correlated to each other as well as to the DBLP curve and therefore we
do not propagate them in this formulation
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Figure 4.19 Model-calculated effective attenuation versus 238U areal densities for
largest three 238U NRF resonances in experimental energy range. The model was
the attenuation and TD response model using the DBLP cross sections as described
in Section 3.2.2. Dotted lines indicate errors due to reported uncertainties in ex-
perimental measurement of Γ0. EC = 2176 keV curve is identical to that shown in
Figure 3.25.

expected areal density based on the DBLP response model described in Section 3.2.2.
By combining the expected areal densities of the three resonances, we obtain an
estimate of the areal density of 238U in the target for each of Runs #2, 3 and 4.
The measured individual areal density values are shown as points with error bars
in Figure 4.20, with data from each run in a single color. The solid lines indicate
expected areal densities based on the values shown in Table 4.2. Dashed lines indicate
the weighted average areal density based on the measured NRF peaks.

Taking the results of the discussion in the previous section, we expect to under-
estimate 238U areal densities because the MCNPX results have indicated that the
analytical model underestimates the effective attenuation value (corresponding to too
much attenuation). To correct for this, we shift each predicted effective attenuation
values by the difference between the corrected best-fit line (shown in Figure 4.18) to
the uncorrected best-fit line (shown in Figure 4.16). This shift is given by

xcorrDBLP =
mDBLPxDBLP + ∆m

mDBLP + ∆m
(4.8)

The fractional increase in the predicted effective attenuation value due to correc-
tion is shown as a function of xDBLP in Figure 4.21. By multiplying a predicted
attenuation ratio by the value of the function in equation 4.8 at that value, we ob-
tain an MCNPX-based notch-refill-corrected expected attenuation value. Likewise,
we may produce functions analogous to those shown in Figure 4.19 using the cor-
rected expected attenuation values. By inverting the resulting functions for each
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Figure 4.20 NRF-assay measured areal densities for the three Runs based on invert-
ing effective attenuation curves shown in Figure 4.19. Dashed lines correspond to
weighted averages of the values and solid lines correspond to the measured areal
densities obtained from values shown in Table 4.2.

measured effective attenuation, we obtain values of the measured areal density that
includes the MCNPX-based notch-refilling correction for each observed NRF reso-
nance. These values are shown in Figure 4.22 along with weighted mean values for
each Run (dotted lines), the ±1 σ errors of the weighted mean (dashed lines), and
the directly measured areal densities (solid lines). Each color corresponds to values
for a single run. The smaller black error bars indicate ±1 σ systematic errors due to
reported uncertainties in measured values of Γ0(87).

After applying the MCNPX-based notch refill correction to the data, the result-
ing weighted mean (as described by equations 3.51- 3.54) areal density measurements
are shown in Table 4.14. All values are within ±1σ of the values obtained by weigh-
ing the plates and measuring their dimensions. However, the fact that the areal
density is under-predicted in all three Runs may indicate a remaining systematic
disagreement between experiment and prediction. The oxygen content in the tar-
get DU plates was not measured, and the presence of oxygen would decrease 238U
areal densities relative to those stated as the actual measured values. For the data
to closely match predicted values, however, there would need to be approximately
equal numbers of uranium and oxygen atoms in the DU plates. Improved statistics
would help determine whether the impurities such as oxygen or other elements have
effected the experimental results.

It is also probable that the some disagreement between experiment and predic-
tion is due to inaccuracies of 238U NRF cross sections reported by reference (87).
The black error bars on each point in Figure 4.22 indicate the magnitude that the
reported ±1 σ uncertainties on reported values of Γ0 have on the expected results.
These error bars are correlated for data from all three Runs; if the true value of Γ0
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Figure 4.21 Ratio of the corrected best-fit line to uncorrected best-fit lines both
constrained to the point (1,1) as a function of the attenuation ratio.

Figure 4.22 NRF-assay measured areal densities for three Runs based after ap-
plication of the MCNPX-based notch-refill correction. Dotted lines correspond to
weighted best fits, with ± 1 σ error bounds given by the dashed lines. Solid lines
correspond to the measured areal density as obtained by weighing and measuring
the surface area of the DU plates used in the targets. Black error bars indicate
systematic errors due to reported cross section uncertainties(87).
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Run NRF-measured ρx direct ρx deviation

# (g/cm2) (g/cm2) (%)

2 8.14 ±0.98
0.99 ± 0.49 8.47 3.9

3 1.37 ±0.68 ± 0.08 1.69 19

4 3.12 ±0.73
0.76 ± 0.15 3.34 10

Table 4.14 Values of the measured areal density of 238U obtained by analysis of NRF
peaks, and by direct measurement of the mass and area of the 238U plates used in
the assay target. The first errors listed for the NRF measurement are 1σ errors due
to counting statistics in this experiment. The second stated errors are due to the
reported uncertainties in NRF parameters indicated by reference (87). Values in
the column labeled ‘deviation’ indicate the fractional deviation between the NRF-
measured areal densities and those determined through direct measurement.

for the 2209-keV resonance is smaller than reported, the value of measured areal
density due to attenuation of the 2209-keV peak would increase for each of the three
Runs. In the following section, values of the NRF cross sections that best agree with
the data obtained in this experiment are presented, along with other measured NRF
parameters.

4.6.2 Measured NRF State Parameters

Using the MCNPX-based notch-refill correction described in equation 4.8, and
knowing the true areal density of 238U in the targets, we can calculate integrated cross
section values (which are proportional to Γ0) that best agree with the experimental
data. These values for each NRF state and the weighted averages between runs are
shown in Table 4.15. The weighted average values have also been used to re-calculate
the expected effective attenuation of each NRF line for each target geometry. These
data are plotted on the abscissa, and MCNPX-based notch-refilling-corrected mea-
sured effective attenuation values are plotted as the ordinate in Figure 4.23. As one
would expect, these data obey the y = x trend-line. The horizontal error bars are
also significantly larger than in Figures 4.16 - 4.18 due to the larger uncertainties
that resulted from back-calculating Γ0. Also, comparing the data with the expected
values of y = x, we find no trend in the deviations of the data except that the
higher-energy resonances tend to deviate more than lower energy resonances. This
can be explained by the fact that the areas of these peaks had significantly larger
fractional uncertainties.

The ratio of measured NRF γ-rays counts that were due to de-excitation to the
first-excited state in 238U versus those due to de-excitation to the 238U ground state,
R1,0, can be expressed by assuming equal detection probabilities for the two γ-rays
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Figure 4.23 Comparing measured NRF line intensities after MCNPX-based notch-
refill correction with predicted values based on the DBLP model using best-estimate
values of Γ0 from each NRF resonance based on this work. Each data point color
represents data from a single Run and the black line indicates y = x.

Elevel Run#2 Run#3 Run#4 Weighted Average
(keV) Γ0 (meV) Γ0 (meV) Γ0 (meV) Γ0 (meV)
2176 31.28 ± 5.15 24.75 ±19.64 29.39 ±10.56 30.59 ±4.50
2209 30.38 ±6.46 22.13 ±24.40 35.96 ±14.17 30.83 ±5.71
2245 22.13 ±8.37 60.95 ±38.44 19.30 ±18.54 23.14 ±7.48
2295 4.51 ±11.87 2.76 ±59.54 29.86 ±33.75 7.14 ±11.00
2410 13.25 ±15.74 0.62 ±65.86 0.46 ±34.32 10.56 ±13.98
2468 36.52 ±26.57 -8.77 ±91.64 -8.51 ±43.67 24.25 ±22.67
2080 7.95 ±8.4 2.51 ±48.45 13.79 ±24.35 7.95 ±8.40
2288 27.81 ±32.58 106.48 ±126.64 99.39 ±111.95 37.60 ±30.37

Table 4.15 Values of Γ0 that best represent the measured attenuation of a NRF peak
from each run, as well as the weighted average of Γ0 for each peak. The statistical
factor, g, has been assumed to be 1.5 for all resonances. For the 2468-keV resonance,
the measured NRF γ-ray intensities for Runs #3 and 4 were larger than Run #1 and
the resulting effective attenuation is negative. These values were assigned Γ0 = 0
and the error for the weighted average values was assumed to be entirely that from
Run #2.
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Elevel (keV) R1,0 Γ1/Γ0 (Heil)
2080 2.39 ± 0.63 x x
2176 0.55 ± 0.06 0.52 ± 0.02
2209 0.53 ± 0.07 0.55 ± 0.03
2245 0.52 ± 0.09 0.47 ± 0.03
2288 0.41 ± 0.32 x x
2294 0.92 ± 0.23 0.59 ± 0.1
2410 0.60 ± 0.16 0.54 ± 0.05
2467 0.72 ± 0.26 0.5 ± 0.05

Table 4.16 Observed ratios of de-excitation of 238U NRF states to first excited state
versus ground state, with comparison to values of Γ1/Γ0 reported by Heil(87).

as

R1,0 ≡
Γ1W1(θ)

Γ0W0(θ)
(4.9)

where Γ0 and Γ1 are the partial widths for decay of the NRF state to the ground
and first-excited state, respectively, and Wi(θ) is the angular correlation function
discussed in Section 2.11.1. The measured values are shown in Table 4.16.

For this experiment, the average angle of scattering is θ = 118o. However, the
proximity of the HPGe detectors to the TD, their relatively large diameters, and
the divergence of the beam allow the HPGe detectors to detect photons that have
scattered between θ = 105o and θ = 150o.

Comparing the angular correlation functions for spin-1 excited states, shown
in Figures 2.40 and 2.42, we note that the angular correlation functions all cross
from less-than to greater-than unity at θ = 128o, and therefore, we expect the
ratio of these angular correlation functions to be near unity as well. The angular
correlation functions for spin-2 excited states exhibit different behavior. They are
shown Figures 2.40 and 2.43, we observe that W (θ = 118o) = 0.68 for the sequence
0→ 2→ 0 and W (θ = 118o) ≈ 0.95 for the sequence 0→ 2→ 2, regardless whether
the emitted NRF γ-ray has angular momentum of 1 or 2. Thus, we expect the ratio
of angular correlation functions to be near 1.5 for cases where the spin of the NRF
state is 2, and de-excitation rates to the ground and first excited state are being
compared. All NRF lines reported by Heil were found to be magnetic dipole lines,
and therefore neglect of the factor W1(θ)/W0(θ) is valid. The Heil experiment also
used higher-energy electrons to produce bremsstrahlung, which explains why the
statistical uncertainty quoted for their values increases more slowly with increasing
NRF line energy compared to the uncertainty shown for these data.

Two additional pairs of peaks appear to be due to the de-excitation of previously
un-reported NRF states to the 238U ground and first-excited state. These γ-rays
correspond to levels at 2080 keV and 2288 keV. The R1,0 value of the 2288-keV
resonance is similar to those of other NRF peaks, indicating it is probably another
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J = 1 state. The R1,0 value of the 2080-keV resonance is 2.39± 0.63, which can lead
to two interpretations. One is that the state is a J = 2+ state, and the other is that
J = 1, but the total spin projection onto the nuclear symmetry axis, K = 0, in which
case theory predicts that R1,0 = 2. The assumption of the spin of the NRF state
influences the expected values of g and W (θ) for the NRF transition. These values
influence estimates of the width, Γ of the state when compared to other states.

By only comparing effective attenuation ratios, integrated cross sections for the
2080-keV and 2288-keV states were found to be 22.1 ± 23.3 and 82.9 ± 66.9 eV·b,
respectively. Uncertainties resulting from deriving cross sections by this technique
are very large. However, by comparing measured NRF γ-ray intensities to those
of the largest NRF peaks, we may provide better estimates of gΓ0W (θ) for the
resonances. For each peak, the ratio of peak intensities can be expressed as

R =
Apk
Arpk

=
ε(E)Φ(E)gΓ0W (θ ≈ 118o)/Apk(ρx)

ε(Er)Φ(Er)grΓr0W
r(θ ≈ 118o)/Ar

pk(ρx)
(4.10)

where the superscript, r refers to the reference state, which was taken as the 2176-
keV resonance, ε(E) corresponds the combined processes of full-energy detection of
a photon incident upon the detector and penetration of the photon through the Pb
filter, Φ(E) indicates the intensity of photons that are expected incident upon the
TD neglecting resonant absorption (Figure 4.12), and Apk is the expected excess
attenuation of resonant photons. Apk is a function of Γ0, therefore equation 4.10 was
iteratively evaluated to determine values of Γ0 and (A)pk that reproduce R.

Although full details of the geometries of three of the four HPGe detectors used
in the experiment are unavailable, they are all approximately 8 cm-diameter, by 8
cm-depth cylindrical crystals. A MCNPX simulation of the detector response when
shielded in this geometry has been described in Section C.4. With xf = 1.27 cm, we
find that for 2.0-MeV photons incident upon the shielded detector, approximately
12.2% will deposit their full energy in the HPGe detector, and 11.0% of 2.4-MeV
photons. Values calculated in this way were used for ε(E) in equation 4.10

It was further assumed that W 2288(θ) = W r(θ) and g2288 = gr. For the 2080-
keV state, both hypothesized spin states are considered. If J2080 = 2, g2080 = 5gr/3,
and otherwise, g2080 = gr. These substitutions resulted in Γ2288

0 = 5.1 ± 2.6 meV,

Γ2080
0 = 12.9±1.0 meV if J2080 = 1, and

Γ2080
0 W 2080(θ≈118o)

W r(θ≈118o)
= 7.7±0.6 meV if J2080 = 2.

W 0→2→0(θ = 118o) = 0.67 and W 0→1→0(θ = 118o) = 0.92, thus we can estimate that
if J2080 = 2, Γ2080

0 ≈ 10.6 ± 0.8 meV without performing numerical integrations of
W (θ) for specific detector geometries.

The value of Γ2080
0 falls within one standard deviation uncertainty of that de-

termined via the effective attenuation method, and the value of Γ2288
0 determined

by comparison with known resonances is about 1.1 standard deviations from the
value determined via the effective attenuation method. These results indicate the
weaknesses of using the resonant attenuation method to determine NRF parameters
for peaks with limited total counts which results in poor statistical confidence.
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4.7 Experimental Conclusions

This experiment demonstrated the applicability of a beam-normalization scheme
using 511-keV γ-rays, instead of a known NRF γ-ray peak and that the trends of
resonant-energy attenuation generally follow that predicted in Section 3.2. However,
each large resonance has exhibited a higher NRF rate than was predicted by the
analytical model, and when the data are treated collectively, the deviation from the
analytical predictions is approximately twice the error, indicating that the deviations
are likely to be statistically significant. The deviation between the model and data
can be explained by the process of notch refilling. MCNPX was used to estimate the
intensity of the notch refilling effect, and indicated that notch refill is a larger effect
for larger values of effective attenuation, as described in Figure 4.21. A correction
based on the notch refill modifies the analytical predictions such that the relative
rates of NRF γ-ray measurement shift from 2.09 σ above the prediction to ∼ 0.69 σ
above the prediction. These results appear to be the first experimental observation
of notch refilling in a transmission measurement of resonant-energy photons.

The experiment has also indicated that the intensity of the two largest 238U res-
onances (2176 and 2209-keV) are slightly smaller than reported by Heil et. al.(87).
The disagreement adds credence to the assertion, made herein, that these reso-
nances do not have additional strength that had not been observed due to weaker
de-excitation modes. The disagreement between the intensities of the states mea-
sured in this experiment and those reported by Heil (excluding the additional inten-
sity that was inferred) is approximately one standard deviation.

Two additional states that undergo NRF were also observed with excitation
energies of 2080 and 2288 keV. Both states are quite weak, and the 2288-keV state
appears to be more likely to de-excite via the first-excited state, rather than directly
to the ground state.

Better statistics could improve all of these conclusions. The experiment lasted
for four 10-hour days, but with a stronger and more reliable accelerator (i.e. ∼10
mA and stable operation), it is possible that better statistics could be attained by
significantly shorter experiments.
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Chapter 5

Summary and Conclusions

5.1 Backscatter and Transmission Measurements

The prospect of using nuclear resonance fluorescence to non-destructively and
quantitatively assay radioactive targets with bremsstrahlung radiation has been in-
vestigated by explicit consideration of two example applications; spent nuclear fuel
and large radiological sources. Although measurement parameters have not been
optimized for either application, the strengths and weaknesses of nuclear resonance
fluorescence for these applications are evident. Direct measurement of backscattered
NRF γ-rays may be subject to large backgrounds due to the radioactivity of the
assay target. This measurement method is more sensitive to the composition of the
exterior of the assay target than the interior and measurement of low-intensity NRF
γ-rays due to small resonances or low concentrations of the resonating isotope may
be difficult.

Direct measurement of the reduction in resonant-energy photons transmitted
through a target would be very difficult. This is due to the large intensity of trans-
mitted photons and is mitigated by use of a TD, which is composed of the isotope
whose resonance absorption is being measured. Radiation detectors that view the
TD can be effectively shielded from photons emitted from the assay target. The
quantity of the TD isotope in the assay target is determined by measuring the de-
crease in the NRF γ-ray rate relative to the rate in the absence of the isotope of
interest in the assay target. The precision to which this quantity can be measured
was discussed in Section 3.2.4. Measuring an isotope with large NRF resonances at
small concentrations in a target is the most attractive regime for transmission assay.

5.1.1 Assay Parameter Selection

Many of the parameters that are adjustable in the examples that have been pre-
sented were not optimized. These parameters include geometric considerations such
as target-detector separations and shielding thicknesses, bremsstrahlung converter
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dimensions and electron energies. However, the parameters chosen for study repre-
sent reasonable choices. Increasing beam energy increases NRF γ-ray rates at the
expense of further increasing both the background count rates and the rates in the
vicinity of the full-energy peak of interest. Increasing spacing between converters,
targets, TDs, and detectors generally reduces signal and background count rates, but
allows for more shielding to reduce the detection of photons that have not followed
the desired trajectory for assay. In the case of a transmission measurement, larger
dimensions also allow more shielding between the detectors and the assay target,
reducing the impact of its radioactivity.

Locating an assay target closer to the bremsstrahlung converter would allow it
to subtend a larger fraction of the incident bremsstrahlung photons. If the TD were
made to subtend the same fraction of the bremsstrahlung beam, the efficiency of the
system would increase. However, if the TD consists of a fissile actinide, the possibil-
ity of a large TD poses other drawbacks due to material security concerns. Generally,
using more efficient detectors that can operate at higher rates than assumed here
(104 c s−1) can proportionally improve expected NRF count rates. If the NRF assay
system is set up such that detector count rates are the limiting factor, increasing
target-to-detector distances and increasing the number of detectors can, in principle,
reduce or eliminate the need for a filter, which would dramatically reduce measure-
ment times. The development of γ-ray detector arrays has been an ongoing field
of research(136), however the array size necessary to sufficiently reduce count rates
is significantly larger than those under development. Beyond detector and source
improvements, parameters such as bremsstrahlung beam energy, target orientation
can potentially reduce measurement times by perhaps a factor or two, but signif-
icant changes to the conclusions drawn here would only come from technological
improvements.

5.1.2 Non-resonantly Scattered Backgrounds

The utility of NRF for assay systems is strongly dependent on the ratio of
the intensities of NRF γ-rays and non-resonant background photons. Chapter 2
described photon transport processes at energies that are relevant for NRF interro-
gation. This discussion indicated that photonuclear elastic scattering has generally
been ignored in Monte Carlo radiation transport codes and other inadequacies are
found in treating photo-atomic elastic scattering. As part of this work, a modifi-
cation of MCNPX was developed that enables this code to simulate the process of
Rayleigh scattering as described by the photo-atomic cross section data files. This
modification, described in Appendix A, has been shown to simulate the scattering
of incident interrogating bremsstrahlung interrogating photons in good agreement
with experimental data up to approximately 2 MeV. Above this energy, photonuclear
elastic processes significantly contribute to the total coherent scattering cross sec-
tion. This causes MCNPX and other popular Monte Carlo radiation transport codes
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to underestimate the intensities of backscattered photons. These shortcomings have
been addressed in this work by explicitly modifying MCNPX-calculated background
photon fluences to include additional photons expected from elastic scattering pro-
cesses. The photonuclear elastic scattering contributions become more important
with higher-energy photon spectra.

It is desirable to implement more complicated photon transport physics in the
radiation transport codes. However, at present, there is no complete compilation
of Delbrück scattering amplitudes. Any existing elastic photonuclear cross section
database will be subject to modification as the physics describing Delbrück scat-
tering is better refined. However, for relevant energies and most scattering angles
and targets, Rayleigh and nuclear Thomson scattering contribute the majority of
the elastic cross section and therefore the accuracy of the Delbrück scattering am-
plitudes is of secondary importance. Modification of the radiation transport codes
and datafiles to explicitly treat photon scattering in terms of cross sections, rather
than form factor multipliers of differential Thomson scattering cross sections, would
significantly improve performance at the expense of increased data file sizes. Photo-
atomic cross section data libraries would probably be comparable in size to neutron
or photonuclear data libraries, which pose no onerous storage requirements for mod-
ern computer systems.

While Monte Carlo radiation transport codes tend to be inaccurate in simulating
backscattering of photons, they have been shown to be quite accurate in simulating
spectra and intensities of photons transmitted through materials. The process of
down-scattering of photons into the immediate energy range of nuclear resonances,
called notch refilling, is dependent on geometry, materials, and beam characteris-
tics in a non-trivial way. For these reasons, Monte Carlo simulation of radiation
transport will continue to play an important role in modeling of transmission NRF
measurements. This observation provides even further motivation to improve the
physics describing large-angle photon scattering in Monte Carlo codes.

5.2 Large Radiological Sources

The backscatter assay method appears capable of age-dating large radiologi-
cal sources in reasonable time-periods without the need to develop any new photon
sources or radiation detector systems. This conclusion relies on the fact that daugh-
ter isotopes of radiological sources such as 137Ba have states that exhibit large NRF
signatures at energies significantly larger than the energy of γ-rays emitted after
137Cs β−-decay. This enables shielding to suppress detector sensitivity to the 137Cs
radioactivity, while still allowing sufficient intensity of 137Ba NRF γ-rays to be de-
tected.

NRF responses of parent isotopes such as 137Cs and 90Sr have not yet been
measured. It is probable that both isotopes will have NRF responses similar to those
of their daughters. If this is the case, the relative populations of both parent and
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Figure 5.1 Calculated uncertainties in the time since chemical separation of a 1 kCi
initial activity 137Cs radiological source if the statistical precision to which the 3761
keV resonance is known is 7.7, 5, 2.5 or 1%. The corresponding curve where the
uncertainty of the intensity of the 3761-keV resonance is neglected has been shown
in Figure 3.11.

daughter (grand-daughter in the case of 90Sr) may be directly measured in a single
irradiation, resulting in age-dating by direct comparison of NRF γ-ray intensities,
which in turn, reduces systematic uncertainties.

In Section 3.1.3, the fundamental limit to the precision that the time since
chemical separation of a radiological source may be quantified by a backscatter NRF
measurement was considered. This limit is based on the expected number of NRF
γ-ray full-energy deposition events observed during a measurement and the resulting
counting statistics. An estimate of the statistical precision of the age-dating process
for a 137Cs source subject to an 8-hour irradiation by bremsstrahlung produced by
a 20 mA electron beam and viewed by a single detector were shown in Figure 3.11
for varying amounts of 137Ba relative to 137Cs (as defined by the time since chemical
separation). However, the potential for systematic errors was not considered. The
largest source of systematic errors is the uncertainty in the strength of the NRF
resonance. In the case of the 3761-keV 137Ba resonance, the cross section has a
reported uncertainty of 7.7% (1σ) (115). This uncertainty tends to dominate the
total uncertainty. Figure 5.1 presents the uncertainty in the time since separation of
a 1-kCi 137Cs source in the limit that both the counting statistics and the uncertainty
of the total cross section of the 3761 keV 137Ba resonance are considered. The figure
also gives uncertainty estimates if the uncertainty in the cross section were reduced
to 1, 2.5, and 5%.

From this discussion, it seems clear that the precision to which NRF cross sec-
tions are known limit the precision to which an assay method based on NRF can
measure a nuclide within the assay target. Significant improvement in NRF cross
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sections is therefore desirable for the successful application of NRF assay technolo-
gies.

5.3 Penetration Model Accuracy

A significant portion of Section 3.2 was devoted to describing the effective at-
tenuation of resonant-energy photons as they traverse an assay target and subse-
quently interact in a transmission detector. Chapter 4 describes an experiment that
tested many of the conclusions from Chapter 3. The experiment observed slightly
more resonant-energy photons than were predicted by the analytical model. The
magnitude of these differences were approximately two standard deviations of the
statistical experimental error. However, modeling suggests that a significant portion
of this difference is due to the process of notch refilling, which was not included in
the initial analytical model.

The magnitude of notch refilling was examined both by simulating down-scattering
of monoenergetic photons through an assay target (described in Section 3.2.5), and
by simulating the entire experiment (Section 4.5.6). Both examinations suggested
that the notch refilling process can induce up to approximately a 5% effect for the
geometry experimentally studied. By adding a notch refilling correction based on
the Monte Carlo simulations, the experimental data were found to differ from the
modified predictions by less than one standard deviation. In order to make fur-
ther conclusions to the accuracy of the models derived in this dissertation, more
experimental precision would be needed.

The primary source of uncertainty in the data is statistical, associated both with
counting of the NRF γ-ray peaks, and knowledge of the intensities of the resonances.
Transmission measurement counting statistics could be improved by implementation
of one or more of the following:

• increase photon beam intensity at resonant energies;

• decrease photon beam intensity at non-resonant energies;

• increase measurement duration;

• increase the number of detectors used in the measurement;

• improve detector resolution;

• increase radiation detector count rates;

• use less-radioactive shielding and TD; and

• improve detector shielding from un-scattered beam photons.
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Some steps are directly advantageous, increasing measurement time and number
of detectors used do not have any physical drawbacks. Likewise, less-radioactive
materials would reduce background count rates. Increasing the input rates of detec-
tors generally worsens their energy resolution. Using a narrow-band photon beam
would significantly reduce the beam intensity at non-resonant energies, however the
technology to make them sufficiently intense at resonant-energies does not yet exist.
With a bremsstrahlung source, increasing the photon beam intensity proportionally
increases count rates (which were already near 2× 104 c s−1) and thus thicker filters
must be used. This would reduce NRF γ-ray detection probabilities, but this reduc-
tion is less than the total count rate reduction induced by thicker filters, which in-
dicates that the combination of increasing filter thickness and bremsstrahlung beam
intensity reduces the time needed to make a measurement.

The hypothesis that notch-refilling has been observed in the experiment could
be easily tested in a subsequent experiment by modifying the target geometry. In the
previous experiment, the depleted uranium in the target was placed upstream of the
lead. If the depleted uranium were placed downstream of the lead, the notch-refilling
should, in principle, be dramatically reduced.

The functional form describing the cross section of a resonance influences the
model predictions of the effective attenuation. The functional form becomes more
important with increasing areal density of the IOI in the target. For the 2176-keV
238U resonance described in Section 3.2.3, use of the least-accurate cross section form
considered, the step-function, would result in a 1% error relative to the Doppler-
Broadened Lorentzian Profile (DBLP) form for 0.2 g/cm2 238U in the assay target.
The sensitivity of the effective attenuation to the cross section form increases quickly
with larger areal densities of the isotope being measured in the assay target. For the
same resonance, a Maxwell-Botzmann cross section form results in a 5% difference
from the DBLP for an IOI areal density of 15 g/cm2. When using the transmission
assay technique for large areal density targets, or with larger resonances than those
described in this work, it may be important to consider the phonon spectrum in the
material to define a more-accurate profile than that of the DBLP.

5.4 Spent Fuel Assay Outlook

Spent nuclear fuel provides difficult challenges for non-destructive assay tech-
niques. It is strongly radioactive and the material of most interest to nuclear safe-
guards, the plutonium, comprises a small fraction of both the target mass and
activity. The weakness of NRF signals, relative to both non-resonantly scattered
beam photons and the radioactivity of the spent fuel indicates that direct detec-
tion of bremsstrahlung-induced NRF γ-rays emitted by 235U, plutonium, and other
actinides appears to be difficult and very time-consuming.

The transmission NRF assay technique, which uses indirect detection of resonant-
photon absorption appears, in principle, capable of isotopically, and non-destructively
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quantifying actinide content of spent nuclear fuel. However, the method appears to
suffer from weak signals, which may limit its applicability.

Resonance Strength Uncertainties

The experiments performed to measure widths of actinide NRF states have all
been backscatter measurements similar to those described in Section 3.1. These
experiments have two limitations. First, the statistical uncertainties that have been
reported are generally so large that subsequent transmission assay measurements
would be subject to systematic inaccuracies. The backscatter method also only
directly measures the value gΓiΓ0/Γ, where Γi is the partial width for emission of the
observed NRF γ-ray. The intensity of resonant-photon absorption is proportional to
gΓ0, so unless NRF γ-rays that may be emitted during de-excitation of the resonant
state are measured, Γ, and therefore Γ0, will be under-estimated. This implies that
the 239Pu resonances that have been observed may have larger values of Γ0 than
indicated by the backscatter measurements, although it is unlikely that the un-
observed portion of the de-excitation spectrum would be significantly stronger than
the observed portion.

Because the systemic uncertainties arising from imprecise cross section mea-
surements can, in principle, be reduced, the limiting factor is the statistical pre-
cision in a given measurement. The examples in Section 3.2.4 indicate that even
with very intense bremsstrahlung beams, approximately 200 detector·days of mea-
surement would be required to obtain 10% uncertainty in the amount of 239Pu in
an assembly (assuming the resonances are no stronger than observed). However, if
240Pu has similarly-intense resonances as those known for 238U, only approximately
16 detector·days could provide a 5% uncertainty 240Pu measurement. This indi-
cates that transmission nuclear resonance fluorescence measurements of isotopes with
strong resonances such as those observed in even mass number actinide isotopes may
provide very useful information for safeguarding spent fuel.

5.5 Future Work

This dissertation has described many aspects relating to the detection of nu-
clear resonance fluorescence γ-rays to perform non-destructive measurements of ra-
dioactive materials of interest to nuclear security. To either make these measure-
ments practical or possible, further improvements to the technology should be made.
Some improvements are as simple as improving the knowledge of the states and the
strengths of their nuclear resonance fluorescence transitions. Further improvements
can also be made to the databases that are used to model NRF and the compet-
ing photon-scattering processes. Finally, photon source and detector improvements
could greatly increase the potential and applicability of this technology.
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5.5.1 NRF Data

The strengths of resonances used to perform an assay measurement must be
known to better precision than the desired uncertainty in the assay measurement.
The majority of NRF transitions that have been discussed in this dissertation are
known to precisions between 5% and 15%. A measurement of 27Al excited-state nat-
ural widths is described in Reference(137). These widths were measured by trans-
mission measurement of an Al target and agreed with values obtained by other
techniques(65). The authors report uncertainties of 3% for the widths of the larger
resonances, but do not specify how non-statistical uncertainties contributed to their
estimates.

As indicated in Section 5.2, knowledge of the 3761-keV 137Ba resonance to∼2.5%
would reduce the uncertainty with which large 137Cs source could be measured by
a factor of approximately two. Improvement of the precision of the 235U and 239Pu
resonance widths could also be accomplished with larger samples than those that
were used in the measurenents by Bertozzi et.al.(123).

Measurement of NRF γ-rays emitted from the daughter isotopes of radiological
sources such as 137Cs or 90Sr can, with knowledge of the radiological source activity,
provide the time since chemical separation of the radiological source. If the NRF
responses of the parent isotopes were also known, a single NRF measurement could
be used to date the source, with only a relative measurement. This makes the
measurement of the NRF responses of 137Cs, 90Sr, and other radiological source
isotopes that are produced by chemical separation from fission products an attractive
extension of this work.

5.5.2 Model Improvements

The models discussed in Chapter 3 have, to a reasonable degree of detail, ex-
amined the back-scatter and transmission assay techniques. Appendices A and B
describe modifications to the computer code MCNPX that enables the simulation
of NRF, and the simulation of Rayleigh scattering to be conducted more accurately.
However, both computational and analytical modeling can continue to be improved.

The analytical model describing the excess attenuation of resonant-energy pho-
tons appears to need to be corrected to take into account the down-scattering of
higher-energy photons that results in resonant-energy photons. These corrections
had been estimated by Monte Carlo simulations and were applied to the analysis
of the experiment described in Chapter 4, but a more explicit model treating the
notch-refilling process would be desirable.

The investigation of the transmission assay technique to spent fuel assemblies
has explicitly assumed that assemblies can be approximated as homogeneous rect-
angular parallelepipeds, rather than discrete fuel pins. If the orientation of a fuel
assembly is such that streaming paths through the assembly exist, this appears to
be a poor approximation. However, if photons impinge upon the assembly at an
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angle where no such streaming paths exist, the applicability of the homogenized
approximation appears more valid. This is the subject of ongoing study.

The approximation that a resonance is Doppler-broadened due to thermal atomic
motion defined by a Maxwellian energy distribution neglects the properties of the
crystalline structure, which induces more complex energy distributions for the con-
stituent atoms. Descriptions of more complex recoil spectra were described in Sec-
tion 2.11.4, but the models described in Section 3.2 have only assumed cross sec-
tion distributions that are broadened by a Maxwellian energy distribution for the
atoms. If they become available, more detailed descriptions should be used. How-
ever, each distribution is specific to the crystalline structure it describes. Further,
the uncertainty associated with approximating the atomic thermal motion increases
with target areal density, but appears to be insignificant for the purpose of using
a transmission measurement to quantify any isotope except 238U in spent nuclear
fuel. For other targets of nuclear security interest, such kilogram-quantities of plu-
tonium, more accurate energy distributions of crystalline atoms may be need to be
considered.

The insertion of NRF physics responses to photonuclear ENDF and ACE datafiles
required additional approximations due to constraints in the ENDF data format. To
more accurately represent the data in ENDF, this data format would need to be
altered. Alternatively, ACE datafiles used in the MCNP codes could be directly
generated without using the ENDF format. In this case, MCNPX is capable of
accommodating the NRF data to a high degree of precision. Conversely, the imple-
mentation of more accurate elastic scattering physics would require MCNPX source
code modifications. Likewise, the ENDF format would require changes, and the com-
putational process of accurately calculating Delbrück scattering amplitudes should
be completed.

5.5.3 Technological Improvements

Measurement of relatively weak signals in a very strong background is a peren-
nial challenge in radiation detection applications. From the perspective of nuclear
resonance fluorescence assay techniques, the options are to increase the NRF signal
strength, relative to the background, or to make the γ-ray detectors more effective
at measuring the signal.

The NRF signal can be made stronger by increasing beam intensity and filter
thickness. Testing the applicability of the models with very thick filters is necessary
to ensure that no complications arise from thicker filters. One potential complication
is that the beam normalization technique described in Section 4.5.5 that was used
to analyze the experimental data will be less effective with thicker filters. Measured
511-keV annihilation γ-rays becomes less likely to be due to beam photons inducing
pair production in the TD and more likely due to scattered photons inducing pair
production in the filter.
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The signal may also be significantly increased by altering the interrogation
photon spectrum. Throughout Section 3.2, the ramifications of using a quasi-
monoenergetic photon source has been discussed, and the development of such
sources is being attempted. However, even quasi-monoenergetic photon sources
would require high count-rate detection systems to make NRF assays of spent fuel
practical. Whether this is accomplished by a combination of HPGe detectors and
shielding, or different detector types remains to be seen.

In general, fast, high-resolution, γ-ray detectors that are able to subtend a
large fraction of the backwards solid angle are needed for NRF measurements. Any
technological developments that make these devices more available are favorable for
this type of assay system.

5.5.4 Study of More Applications

This dissertation has considered two particular non-destructive analysis appli-
cations; forensics measurements of very large radiological sources produced through
chemical separation of fission products, and the measurement of 239Pu and 235U con-
tent in spent nuclear fuel. These may be thought of as two extreme cases; both
involving very radioactive targets.

Many other applications of nuclear resonance fluorescence should and are be-
ing considered. Scanning cargo for nuclear weapons is one of the primary technical
drivers pushing NRF photon source technology and prompted the measurement of
the NRF response of 235U and 239Pu. The potential to use the technology to measure
relative concentrations of 235U 238U in UF6 at enrichment facilities, as well as confir-
mation measurements for shipments of new and used fuel should also be examined.

The examination of measuring spent fuel could also be continued. With an
exhaustive study of fission product resonance strengths, multiple attractive isotopes
may be identified to measure. The possibility of using multiple isotopes in a TD has
not been discussed in this dissertation, but in principle the TD need not consist only
of one isotope.
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Appendix A

Rayleigh Scattering in MCNP

A.1 Introduction

Documentation of the MCNP series of codes has claimed for years to accu-
rately represent the data present in evaluated nuclear data files (18),(23),(25),(38).
The photo-atomic data in the ENDF/B-VI format are based on the evaluated pho-
ton data library (EPDL97)(19). However, the work supporting this thesis observed
that the sections of code describing the form factor evaluation of coherent and in-
coherent scattering had not been updated since their precursor code, MCP, was
written in 1973(26). This legacy code results in significant inaccuracies in photon
spectra computed by MCNPX when simulating geometries that are typical of NRF
experiments(43).

MCNP treats all coherent scattering as Rayleigh scattering and follows the form
factor approximation outlined in Section 2.3.1. Data libraries used in MCNP are
created by the code NJOY, which reads ENDF tabulations of atomic form factors
and converts them into the ACE format used in MCNP(44). Atomic form factor
values are tabulated for a given Z and momentum transfer between the scattered
photon and the atomic electron, q. The units of q should be units of momentum,
however q has traditionally been tabulated in reduced wave number, which has units
of inverse length1. The derivation and use of momentum transfer values in MCNP
has been poorly documented. MCP and MCNP user manuals describes q in units of
cm−1,(38),(26) however the data tabulated in MCNPX are in units of Å−1(15).

1The conversion between momentum transfer, ~k sin(θ/2), and reduced wave number is accom-

plished by dividing by Plank’s constant, h, inserting c
c
mec

2

mec2
, equating, E = ~ck and, sin(θ/2) =√

1−cos θ
2 . Evaluating the constants:

q =
c

hc

mec
2

mec2
2~k sin(θ/2) =

E

mec2
2mec

2

√
2hc

√
1− cos θ = 29.1445[Å−1]

E

mec2

√
1− cos θ
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E (keV) Angle
74.4 180o

105 90o

194 45o

853 10o

1733 4.9o

2423 3.5o

Table A.1 Maximum coherent scattering angles allowed in the MCNP codes.

The shortcoming comes from the fact that MCNP has historically had a fixed
array of q-values for which coherent scattering form factors, C(Z, q) are defined.
Despite the fact that the EPDL97 (and ENDF) now tabulates form factors for q up
to 1011Å−1, q in MCNP was restricted to q ≤ 6 Å−1 and coherent scattering form
factors for q > 6 were assumed to be 0. Table A.1 demonstrates the maximum
coherent scattering angles, θmax, that were allowed by this restriction. Figure A.1
helps to explain why this short-coming had gone un-noticed by many MCNP users2.
In it, the fraction of the Rayleigh scattering cross section that is due to scattering
above θmax is plotted versus photon energy for various elements, i.e.

f =

∫ qmax

q=6[Å−1]
σRay(θ)dΩ∫ qmax

q=0
σRay(θ)dΩ

(A.1)

where qmax = 29.1445[Å−1] E
mec2

√
2. The omission is most significant in high-Z ma-

terials, and is most important when photon energies exceed approximately 100 keV.
As will be described, this omission is only important when coherently-scattered pho-
tons can be distinguished from incoherently-scattered and annihilation photons. The
distinction is most obvious when backscattering of multi-MeV photons from high-Z
materials is considered, and this is precisely what is done in experiments designed
to measure NRF.

Modification of the MCNPX source code and the NJOY data processing code are
described in Section A.4. These modifications enable MCNPX to simulate Rayleigh
scattering for all problems.

To test that modifications of the MCNPX code and datafiles were successful,
two pairs of simulations were conducted comparing elastic scattering rates before
and after implementation of the modifications. For each pair a pencil beam of
monoenergetic 1.7-MeV photons was normally impinged upon a 1 cm-radius by 100
mm-depth cylindrical target of either uranium or iron. Photons emitted from the
target were tallied as they crossed a spherical surface of 10 cm-radius, centered at
the center of the target cylinder. The direction of the emitted photons relative to

2This short-coming was independently observed by Lodwick and Spitz when they compared in
vivo x-ray fluorescence measurements of lead in bone to MCNP calculations(140)
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Figure A.1 Fraction of Rayleigh scattering cross section that corresponds to a reduced
momentum transfer value, q ≥ 6 Å−1.

the direction of the incident beam were tallied in 1o angular bins up to 10o, and then
in 5o bins. The energy of the emitted photons were also tallied, with photons within
860 eV of the initial energy being considered elastically scattered. This bin width
was selected to ensure that incoherently scattered photons are not tallied into the
elastic bin for scattering angles greater than 1o. The effective elastic scattering cross
section was then calculated by the relation

dσES

dΩ
≈ NF1

∆Ω

M

NAρx
(A.2)

where NF1 is the number of photons in the elastic tally bin, ∆Ω is the solid angle
subtended by the angular bin, M is the molar mass of the target material, NA is
Avagadro’s number, and ρx is the areal density of the target.

Figures A.2 and A.3 present the simulated angle-differentiated cross sections for
elastic scattering of 1.7-MeV photons before (red) and after (black) the implemen-
tation of the extended Rayleigh scattering cross section library. The EPDL97 cross
section for elastic scattering is also shown in green in both figures. The cross sections
resulting from simulations that include the new form factor arrays closely follow the
EPDL97 values. For the red histogram, non-zero values calculated for scattering into
angles above the critical angle of 5.2o are due to the relatively improbable combina-
tion of photoelectric absorption followed by bremsstrahlung emission. This process
yields photons in the elastic bin, and would yield an even smaller (nominally) elastic
scattering probability were the highest energy bin made narrower. Regardless, the
five (uranium) and seven (iron) decade decreases in effective elastic scattering cross
section between the 3o − 4o and 6o − 7o bins indicate effects of the non-physical
cutoff that had been implemented in MCNP. That the effective cross section was
calculated to be 30% (uranium) and 8.5% (iron) lower after implementation of the
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Figure A.2 MCNPX-simulated differential cross section for scattering of 1.7-MeV
photons within 860 eV of initial energy from 100 µm-thick uranium with EPDL
Rayleigh scattering cross section overlaid.

extended library for the range 1o−5o is explained by the fact that photons probabilis-
tically sampled to undergo coherent scattering had been constrained to the forward
5.2o, whereas now all angles are physically allowed. The amount by which MC-
NPX had overpredicted the Rayleigh scattering cross section is exactly the inverse
of the fractions shown in Figure A.1 for 1.7-MeV photons. Thus, as another result of
the truncated form factor arrays, MCNP had previously been overestimating elastic
scattering of photons in forwards directions, and this effect was most severe for high
photon energies and high-Z materials.

A.2 Form Factor Sampling Methodology

This section describes the method used in MCNPX to sample the coherent
scatter cross section. This method defines the integrated form factors, which must
also be included in the ACE files that provide the photo-atomic data for MCNP.

Suppose we want to sample a probability density function (PDF), P (y), defined
in the interval a ≤ y ≤ b, and related to another known PDF, Q(y) by the following

P (y) = C0F (y)Q(y) (A.3)

where C0 is a constant, C0 > 1 and F (y) is a function with range 0 ≤ F (y) ≤ 1.
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Figure A.3 MCNPX-simulated differential cross section for scattering of 1.7-MeV
photons within 860 eV of initial energy from 100 : µm-thick iron with EPDL Ray-
leigh scattering cross section overlaid The large statistical uncertainty at high angles
is due to the rarity of the events.

A.2.1 Sampling a Simple PDF

First we must define what is meant by ‘sampling a PDF’. Assume the PDF,
Q(y), is a normalized and integratable function in some interval,∫ b

a

Q(y) = 1 (A.4)

Sampling of Q(y) is accomplished by using a random number, 0 ≤ r ≤ 1, to select
a value, ysample, between a and b with a probability proportional to the value of the
PDF.

The cumulative (or integrated) distribution function (CDF) for Q(y) is defined
as,

Q(y′) =

∫ y′

a

Q(y)dy (A.5)

Therefore Q(a) = 0 and Q(b) = 1. By inverting the function Q(y′), we have a
function with a domain of [0,1]. Using the random number, r1, we obtain

ysample = Q−1(r1) (A.6)

which is a value of y, sampled from the PDF Q(y). Clearly, this only works for PDFs
than can be integrated, and whose integral can be inverted.

A.2.2 Rejection-Sampling Method

Sampling of equation A.3 is accomplished by use of the rejection-sampling
method. First, Q(y) is sampled. The value of y is accepted, with a probability
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of F (y), by using a second random number, r2 to check that

r2 < F (y) (A.7)

The probability of not accepting a sampled value for y is given by

Preject = 1−
∫ b

a

F (y)Q(y)dy (A.8)

When y is rejected, we sample another value of Q(y) and again check with a new
random number against equation A.7, potentially allowing an infinite number of
samplings.

To prove that this will give an appropriate sampling of P (y), first note that

1 =

∫ b

a

P (y)dy =

∫ b

a

C0F (y)Q(y)dy (A.9)

so ∫ b

a

F (y)Q(y)dy = C−1
0 (A.10)

The probability of k rejections is then

Pk = (1− C−1
0 )k (A.11)

and the probability of accepting the k + 1-th iteration is

(1− 1/C0)kF (y) (A.12)

Using
∞∑
k=0

(1− 1/C0)k = C0 (A.13)

we see that if an infinite number of iterations is allowed, the PDF for sampling y is
given by

C0F (y)Q(y) = P (y) (A.14)

A.3 Sampling Rayleigh Scattering Cross Sections

The angle of Rayleigh scattering is sampled in MCNPX by the rejection - sam-
pling method. In this formulation, the independent variable, y, is given by, q2, the
square of the momentum transfer of the scattering event, which for a given photon
energy is

q = Kα
√

1− µ (A.15)

where K = 29.1445 Å−1, α = E/mec
2, and µ = cos(θ).
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The Rayleigh scattering cross section is given by

σRay(θ) = σTh(θ) [F (q, Z)]2 (A.16)

where the Thomson scattering cross section is given by

σTh(θ) =
r2
e

2
(1 + cos2 θ) =

r2
e

2
(1 + µ2) (A.17)

The PDF for scattering into the angle, µ, is given by

p(µ) =
σRay(Z, α, µ)∫
σRay(Z, α, µ)dµ

(A.18)

The PDF for a given squared-momentum transfer is given by

P (q2)d(q2) = p(µ)

∣∣∣∣ dµd(q2)

∣∣∣∣ d(q2) (A.19)

Solving equation A.15 for µ and differentiating, we have

dµ

d(q2)
=
−1

Kα2
(A.20)

Substituting, equations A.16, A.17, A.20, and A.18 into equation A.19, we
obtain the expression for the angular scattering PDF

P (q2) =
r2
e

(Kα)2

1 + µ2

2

[F (q, Z)]2∫
σRay(Z, α, µ)dµ

(A.21)

In MCNPX, equation A.21 is re-expressed by multiplying numerator and de-

nominator by pairs of Z2 and
∫ q2

max

0
[F (Z, q2)]2d(q2) to obtain

P (q2) =

[
r2
eZ

2
∫ q2

max

0
Z−2[F (Z, q2)]2d(q2)

(Kα)2
∫
σRay(Z, α, µ)dµ

][
1 + µ2

2

][
[F (q, Z)]2Z−2∫ q2

max

0
[F (Z, q2)]2Z−2d(q2)

]
(A.22)

This cumbersome expression is actually written in the form of equation A.3, where
the expression in the first brackets

C0 =
r2
eZ

2
∫ q2

max

0
Z−2[F (Z, q2)]2d(q2)

(Kα)2
∫
σRay(Z, α, µ)dµ

(A.23)

is, in fact, a constant. The integral,
∫
σRay(Z, µ)dµ, is the total Rayleigh scatter-

ing cross section and the other integral is obtained through interpolation between
tabulated integrated form factor values. The expression in the second brackets of
equation A.22 is

F (y) =
1 + µ2

2
(A.24)
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which is a function with range, [0,1]. The third brackets contain,

Q(y) =
[F (q, Z)]2Z−2∫ q2

max

0
[F (Z, q2)]2Z−2d(q2)

(A.25)

which is the PDF for selecting a squared momentum transfer, where again, the
tabulated integrated form factor is used.

A.3.1 Integrated Form Factors

The quantity, ∫ q2
max

0

Z−2[F (Z, q2)]2d(q2) (A.26)

is the integrated form factor. It is numerically integrated in NJOY and values are
tabulated for corresponding values of q2. The ENDF form factor tabulation specifies
that ln[F (Z, q2)] shall be linearly interpolated with ln[q2]. Thus the integrated form
is tabulated as∫ q

0

2Z−2[F (Z, q2)]2d(q2) ≈ exp

(∑
i

ln[Z−2[Fi(Z, q
2
i )]

2]∆[ln(q2
i )]

)
(A.27)

The interpolation scheme is slightly more complicated in that ln(0) is undefined, and
the first momentum transfer entry, q1 = 0. Such problems are fixed in NJOY by the
use of linear integration as necessary. Likewise, the ENDF creators were aware of
this, and correspondingly recommend linear interpolation in such cases.

A.4 Description of MCNPX Patch ‘Rayleigh Fix’

The modification described here successfully allowed MCNPX to simulate Ray-
leigh scattering properly, but it has been superseded by the modifications described
in reference(45), which use the same logic, but also dynamically allocate variables
such that the data used in MCNPX is identical to that in the EPDL97 libraries.

A description of the sampling method used to determine the scatter angle of a
photon that underwent Rayleigh scattering is described in Section A.2. MCNP uses
tabulated values of C(Z, q2) for each element, Z, and for fixed array of a momen-
tum transfer values, q. The length of these tabulations was defined by the variable,
mcoh= 55 words. Two arrays whose contents are defined during MCNPX initial-
ization, vco and wco contained the corresponding values of q and q2, respectively.
The maximum value in vco was q = 6 Å−1. The EPDL97 contains values of F (Z, q)
for q ≤ 1011 Å−1. To enable MCNPX to simulate Rayleigh scattering at all possible
angles for energies of interest, new arrays of length mcohe = 77 words were also
defined in MCNPX initialization. They contained the original 55 values of q and q2,



Section A.4. Description of MCNPX Patch ‘Rayleigh Fix’ 186

as well as 22 additional values, increasing quickly to q = 104 Å−1. These arrays were
named vcoe and wcoe. The only additional changes necessary to the MCNPX code
was a logical check of the length of the form factor arrays (part of the jxs array).
If the new form factor array had a length of mcohe, the code would perform the
exact same logic for sampling the coherent scatter PDF as is done in the un-modified
code, except that the form factor array and integrated form factor arrays would be
defined according to q and q2 values of vcoe and wcoe, respectively.

The PERL scripting of the MCNPX patch follows:

*/ ----------------------------------------------------- GLOBAL1_zc.F

*ident 05p ( File: src/mcnpx/mcnpf/GLOBAL1_zc.F )

*i,mgp5e.24

integer(kindi), parameter :: mcohe = 77

*/ ----------------------------------------------------- GLOBAL2_vv.F

*ident 05p ( File: src/mcnpx/mcnpf/GLOBAL2_vv.F )

*i,mgt.330

real(kindr) :: vcoe(mcohe) = (/

& 0.,.01,.02,.03,.04,.05,.06,.08,.1,.12,.15,.18,.2,.25,

& .3,.35,.4,.45,.5,.55,.6,.7,.8,.9,1.,1.1,1.2,1.3,1.4,1.5,1.6,

& 1.7,1.8,1.9,2.,2.2,2.4,2.6,2.8,3.,3.2,3.4,3.6,3.8,4.,4.2,4.4,

& 4.6,4.8,5.,5.2,5.4,5.6,5.8,6.,6.5,7.,7.5,8.,9.,10.,11.,12.,

& 14.,16.,18.,20.,25.,30.,40.,50.,75.,100.,500.,1000.,5000.,

& 10000. /)

*i,mgt.339

real(kindr) :: wcoe(mcohe) = (/

& 0.,.0001,.0004,.0009,.0016,.0025,.0036,.0064,.01,

& .0144,.0225,.0324,.04,.0625,.09,.1225,.16,.2025,.25,.3025,.36,

& .49,.64,.81,1.,1.21,1.44,1.69,1.96,2.25,2.56,2.89,3.24,3.61,

& 4.,4.84,5.76,6.76,7.84,9.,10.24,11.56,12.96,14.44,16.,17.64,

& 19.36,21.16,23.04,25.,27.04,29.16,31.36,33.64,36.,42.25,49.,

& 56.25,64.,81.,100.,121.,144.,196.,256.,324.,400.,625.,900.,

& 1600.,2500.,5625.,10000.,250000.,1000000.,

& 25000000.,100000000. /)

*/ --------------------------------------------------------- colidp.F

*ident 05p ( File: src/mcnpx/mcnpf/colidp.F )

*i,cp.137

if ((jxs(4,iex)-jxs(3,iex))/2.eq.mcoh) then

*i,cp.153

else

if(t5.lt.wcoe(mcohe))go to 191

t7=xss(jxs(3,iex)+mcohe-1)

go to 221

191 do 201 i=2,mcohe
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201 if(t5.lt.wcoe(i))go to 211

211 t3=(t5-wcoe(i))/(wcoe(i-1)-wcoe(i))

ib=jxs(3,iex)+i-1

t7=xss(ib)+t3*(xss(ib-1)-xss(ib))

221 t3=t7*rang()

ib=jxs(3,iex)-1

do 231 i=2,mcohe

231 if(t3.lt.xss(ib+i))go to 241

241 t3=(t3-xss(ib+i))/(xss(ib+i-1)-xss(ib+i))

cs=1.-2.*(wcoe(i)+t3*(wcoe(i-1)-wcoe(i)))/t5

t3=1.+cs**2

if(t3.le.2.*rang())go to 221

end if

*/ -------------------------------------------------------- calcps.F

*ident 05p ( File: src/mcnpx/mcnpf/calcps.F )

*i,ct.96

if ((jxs(4,iex)-jxs(3,iex))/2.eq.mcoh) then

*i,ct4b.10

else

if(t3.ge.vcoe(mcohe))go to 600

do 131 i=2,mcohe

131 if(t3.lt.vcoe(i))go to 141

141 ib=jxs(3,iex)+mcohe+i-1

psc=(.2494351/(tpd(2)-tpd(1)))*(1.+cs**2)*(xss(ib)+(xss(ib-1)-

& xss(ib))*(t3-vcoe(i))/(vcoe(i-1)-vcoe(i)))**2

end if

The data processing code, NJOY, must also be modified in order to create
data files that contain form factor and integrated form factor arrays that reflect
the MCNPX changes. This process was quite simple. The array vco in MCNPX
corresponds to an array vc in the ACER routine of NJOY. This array is modified,
and subsequent assumptions of the length of vc by the following NJOY patch,
created to modify NJOY259:

*ident upBQ05p

*d acer.14675

dimension vi(21),vc(77)

*d acer.14687

& 5.0d0,5.2d0,5.4d0,5.6d0,5.8d0,6.0d0,6.5d0,7.0d0,7.5d0,8.0d0,

& 9.d0,10.d0,11.d0,12.d0,14.d0,16.d0,18.d0,20.d0,25.d0,30.d0,

& 40.d0,50.d0,75.d0,100.d0,500.d0,1000.d0,5000.d0,10000.d0/

*d acer.14785

jflo=jcoh+154
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*d acer.14801

do i=1,77

*d acer.14804

xss(jcoh+76+i)=s

*d acer.14814

do i=1,77

*d acer.15084

write(nsyso,’(1x,1p,6e14.4)’) (xss(jcoh-1+i),i=1,77)

*d acer.15088

write(nsyso,’(1x,1p,6e14.4)’) (xss(jcoh+76+i),i=1,77)

*d acer.15142

n=21+2*77

Unfortunately, NJOY259 appears to have a bug that causes the program to crash
in a latter section in which formatted x-ray fluorescence data tables are produced.
These tables are supposed to follow the form factor array portion of the ACE file. To
bypass this problem, each new ACE file, containing additional form factor data, that
was produced by the modified NJOY259 code was combined with properly formatted
x-ray data tables in the previously distributed ACE files. This resulted in properly
functioning data files that appropriately represent the Rayleigh scattering evaluated
data present in the EPDL97.
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Appendix B

Addition of NRF Data to
Photonuclear Datafiles

This appendix describes the inclusion of NRF data into the photonuclear ENDF
and ACE datafiles used by MCNPX. Because of constraints regarding both the
ENDF data format and the NJOY code, several approximations were made, modi-
fying the theoretical shape of the NRF resonances and eliminating correlated γ-ray
emission cascades. After describing the process by which ENDF and ACE datafiles
were created, the ramifications of these approximations are discussed.

B.1 Description of Datafile Creation Method

The capability of simulating photonuclear interactions has been in place within
MCNPX since version 2.3(24). These interactions include photo-fission, other pho-
tonuclear interactions such as (γ,n) reactions, and in principle, (γ,γ’) reactions. In
the most recent release of MCNPX (version 2.6.0)(23), descriptions of (γ,γ’) interac-
tions were absent from the photonuclear data files. Below, is summarized the work
that has been performed to add NRF data - which is a subset of the (γ,γ’) reactions
- to photon transport in MCNPX.

The process of adding NRF data to the ENDF-B/VII(18) and the MCNPX data
file format, which are called ACE files, consists of the following steps:

1. NRF Data literature search. The Discrete Level Scheme Library (DLSL) of the
Reference Input Parameter Library 2 (RIPL-2)(141) was used as the primary
database of NRF levels. For each isotope, the corresponding Evaluated Nuclear
Structure Data File (ENSDF) and documents referred to therein were also
reviewed to search for more NRF lines.

2. A computer code, ripl2fix.exe was written and used to improve the resolu-
tion with which energies of emitted γ-rays are described in the RIPL-2 DLSL.
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The program also modifies the DLSL database to take into account the frac-
tion of the decay energy that is taken as recoil kinetic energy by the nucleus
during γ-ray emission.

3. nrfxssi step 1: information gathering

4. nrfxssi step 2: NRF level identification and analysis.

5. nrfxssi step 3: DLSL Level Trimming

6. nrfxssi step 4: γ-ray cascade analysis

7. nrfxssi step 5: data formatting

8. nrfxssi step 6: data insertion into photonuclear ENDF file

9. ACE file creation using njoy(44)

10. NJOY bug repair.

More detailed descriptions of the above process follow. Step 1 is done by hand.
Step 2 is accomplished by invoking the program ripl2fix.exe, which was written
for this project. Steps 3-8 are accomplished in the program nrfxssi.exe, (NRF
cross(X) SectionS Inserter) also written for this project. Step 9 involves operating
the nuclear data processing code NJOY, and step 10 is post-processing of the NJOY
output because the code was found to have a minor bug when creating photonuclear
ACE files from ENDF files where photon creation processes are present more than
once within the data file.

B.1.1 NRF Data Search

For each isotope, the ENSDF(133) and documents describing (γ,γ’) reaction
studies cited therein were examined. If levels not contained in the DLSL were iden-
tified and were within energy ranges deemed important for NRF-based assay, the
state, its half-life, and its decay scheme were added to a modified DLSL file. Scien-
tific literature post-dating the ENSDF cutoff date are also reviewed by searching the
INSPEC(142) database with the key words ‘nuclear resonance fluorescence’ and the
isotope being updated. The values of E0, and gΓ0 are required to calculate the total
NRF cross section of a resonance. The product, gΓ0 is often provided in the ENSDF,
but the spin of the NRF state and therefore, g, cannot be individually measured. In
this case the spin is assumed to be a single unit greater than the ground state spin,
and the value of Γ0 that preserves the measured gΓ0 is entered into the modified
DLSL.
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B.1.2 NRF γ-ray Energy Description and ripl2fix.exe

The DLSL describes the excitation energies of nuclear states to a precision of 1
eV, although these values are often not known to this precision. The energies of γ-
rays corresponding to the de-excitation of an excited nuclear level are only described
to a precision of 1 keV. This could result in emission of NRF γ-rays at the resonance
energy, which would dramatically alter the transport of NRF γ-rays. To correct for
this, a program named ripl2fix.exe was written.

ripl2fix.exe modifies DLSL files by calculating de-excitation γ-ray centroid
energies to 10 meV precision. After calculating these energies, ripl2fix re-writes
modified DLSL files with higher γ-ray energy precision. ripl2fix.exe accomplishes
this through the following steps:

ripl2fix.exe reads through each DLSL file located in the /levels/ directory.
It first reads the nominal level energies and mass number for each isotope. Then
the energy of the γ-ray emitted during the de-excitation of the parent state to a
daughter state (which may, or may not be the ground state) is computed by the
following equation:

Eγ = Eparent − Edaughter −
(Eparent − Edaughter)

2

2Mc2
(B.1)

Where Mc2 is the rest mass-energy of the γ-emitting nucleus. The energy lost to the
recoiling nucleus is 9 eV for a 2 MeV transition from a nucleus with mass number,
A = 238. This mass is approximated as the product of A and the mass of a neutron.
This effectively neglects nuclear binding energies, however these differences would
result in less than a 0.5% correction. Likewise, our expression for the energy of
the γ-ray is not exact: it is obtained from a second order binomial expansion of
the quadratic equation that is solved when conservation of momentum and energy
are imposed upon the two particle problem of photon emission from an isotope.

The next term in the binomial expansion is
(Eparent−Edaughter)

3

4M2c4
, which for the previous

example is 40 µeV. The output modified DLSL files are created in the directory
/out/. Compilation has been performed using cygwin c++(143)1.

B.1.3 NRFXSSI Step 1: Information Gathering

The nrfxssi program is run by the routine nrfxssi.cpp. This routine only
calls subroutines that perform the steps described. In the first subroutine called,
gather.cpp, the user is asked to identify the name of the isotope to be analyzed.
After the specified isotope is located in the DLSL, the width, spin, de-excitation
modes, and corresponding daughter levels are loaded into memory for each excited
level. The Debye temperature of the elemental material and the ground state spin of

1The version of c++ used to compile this was produced by Cygnus Solutions Inc. Cygwin is
now owned by Redhat, and the version used to produce the programs described herein appears to
be no longer distributed.



Section B.1. Description of Datafile Creation Method 192

Column #
Row type [0] [1] [2] [3] [4]
1st Row nLevels ib θ A 0
Level Row NγD ELevel ln τ J
Subsequent NγD Rows -1 Eγ daughter ln Pγ 0

Table B.1 cascade and dataset array formats. Descriptions of the variables are
described in the text.

the isotope are also are loaded into memory. gather.cpp returns thee arrays to the
main program: atominf is a 3 element array containing the elemental symbol, Z,
and A of the isotope; the other two arrays are dataset and cascade. The layout
of these arrays is depicted in Table B.1 and the content is described below.

The first row of cascade and dataset is a header that contains information
specific to the isotope being processed. nLevels is an integer describing the number
of nuclear levels described in the DLSL for the isotope. ib is a Boolean, which is 1 if
the isotope has an even number of both protons and neutrons, and zero, otherwise
(at this point, this information is un-used by nrfxssi). θ is the Debye temperature
of the material in Kelvin, and A is the isotope’s mass number. After the header row,
a Level Row follows. Each Level Row describes a specific nuclear level defined in
the DLSL. NγD is the number of different γ-ray emissions this level may undergo.
ln is an integer describing the level, τ is the mean lifetime of the level, in seconds,
and J is the spin of the level. After each Level Row, NγD rows follow, describing
each γ-ray emitted from the level. The first entry in the γ-ray row is always a -1.
The energy of the emitted γ-ray is given as Eγ. The daughter’s level is ln, and the
probability for emission of the γ-ray is given by Pγ. After the NγD γ-ray emission
rows, another Level Row follows, until all nLevels have been listed.

At this point in the code, dataset and cascade only differ by the ordering
of the Level Rows. cascade is ordered from highest to lower energy, whereas
in dataset, they are ordered as read from the DLSL. This facilitates subsequent
program flow.

B.1.4 NRFXSSI Step 2: DLSL Data Trimming

After the data are collected into the arrays, dataset and cascade, both arrays
are trimmed of unnecessary levels. Each level in dataset is subjected to six checks:

1. If the daughter of the highest-energy γ-ray emitted from a level is not the
ground state, the level is removed from the data array.

2. If no γ-ray data is known, the level is removed from the data array.

3. If the lifetime of the level is unknown, it is removed from the data array. The
lifetime of the state must be known because it is related to the NRF cross
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section, which must be known.

4. If the spin of the level is unknown, it is removed from the data array. Often,
the quantity, gΓ0, is experimentally measured, instead of the spin and lifetime.
It is important to note that values of J and τ must be assigned or the code
will purge the state.

5. If the spin of the level is greater than 10 it is removed from the data array.
This removal triggers a printed warning in the code execution window.

6. If the probability that a state emits a γ-ray resulting in direct de-excitation to
the ground state state is less than an adjustable tolerance level (set to 0.001
in the code), the level is removed from the data array. This removal triggers a
printed warning in the code execution window.

For each level that is removed from dataset, the subsequent NγD rows corre-
sponding to γ-ray emission information for the level are also removed.

cascade also undergoes series of checks to purge unnecessary data, however,
since a state may be relevant for an NRF cascade, yet not directly excited by NRF
absorption, different checks are necessary:

1. Identical to #2 for dataset.

2. If a level is higher energy than the highest-energy level in the trimmed dataset
array, the entire level is removed from the data array.

3. Lines corresponding to individual γ-rays are also purged from cascade if the
intensity associated with the γ-ray emission is less than the tolerance of 0.001.

B.1.5 NRFXSSI Step 3: NRF Cross Section Analysis

The cross section for NRF to occur for each resonance is calculated in the sub-
routine nrfcalc.cpp. This routine determines a cross section function for each
excited state in the trimmed dataset array. First the subroutine asks the user to
define a temperature at which the cross section will be calculated. The code assumes
that the cross section is either calculated from a Maxwell-Boltzmann distribution,
equation 2.95, whose width is defined by the Doppler width of the resonance, equa-
tion 2.96, or the natural width of the NRF line, Γ, whichever is wider. The actual
profile is given by equation 2.99, and the code should be modified to reflect this,
but for the uses of the code to date, values Γ describing the NRF lines have been
trivially small, and therefore can be somewhat accurately neglected. The ambient
temperature, Ta, at which Doppler-broadened cross section has been calculated is
300 K in all the produced ENDF files. The temperature used in equation 2.96 has
modified by

T = Ta · [.906 exp(.1555/(Ta/θ))] (B.2)
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to take into account the effects of crystal lattices. Equation B.2 is only valid for
Ta � θ, and the code should be modified to instead include a numerical integration
of equation 2.100.

Because of constraints in both NJOY and the ENDF format, data points can
be defined on an energy grid no finer than 2 eV. If the width of the cross section
distribution is greater than 6 eV, an energy grid spacing of Γ/2 is used. This coarse
energy resolution causes Gaussian distributions, whose full width at half maximum
(FWHM) is normally 1 - 2 eV, to be highly prone to discretization errors that will
alter the total integrated cross section during the discretization process. To correct
this, the resonant integral is analytically computed in the code, and the point-wise
integrated cross section values are multiplied by the ratio of the analytic integral
to that of the discretized function. This ensures that the integrated cross section is
correct. A schematic description of the discretization and renormalization process is
shown in Figure B.1.

Figure B.1 Point-wise discretization of Maxwell-Boltzmann cross section, renormal-
ized to preserve integrated cross section.

The resulting array, totxs, is two columns wide, with each row containing an
energy in the first column and the corresponding computed NRF cross section in the
second. Each level in the dataset array results in five rows in the totxs array. In
the above formulations, it is assumed that the resonances can be well-represented as
isolated from one another.

B.1.6 NRFXSSI Step 4: γ-ray Cascade Analysis

The subroutine cascadecalc.cpp processes the γ-ray cascades emitted from
each NRF level. It does this by identifying the levels in cascade that correspond
to NRF levels identified in dataset. With the level identified, cascadecalc.cpp
calls a subroutine cascadegrab that loops over each γ-ray emitted from level, finds
the probability of emission for each γ-ray, and, if necessary, calls itself to analyze the
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daughter levels populated by γ-ray emissions from the level. The net result is a new
array named gamarrayprelim. The entries of the columns of gamarrayprelim
are the following:

0. Energy of the NRF level. (All energies are expressed in eV.)

1. Energy of the level that emitted the γ-ray.

2. Energy of the γ-ray.

3. Number of emissions of the γ-ray per excitation of the level.

4. Level number (ln) of the γ-ray emitting level. This is subsequently changed
to the total number of discrete γ-ray energies that can be emitted the corre-
sponding NRF level.

5. Spin of the γ-ray-emitting state.

6. ln of the daughter γ-ray level. This subsequently becomes the spin of ground
state or -1.

After cascadegrab is complete, gamarrayprelim is sorted. γ-rays emitted
from a given NRF level are placed in ascending order and redundant γ-ray lines are
combined, with their respective probabilities summed.

After this sorting process, ln in Column 4 of gamarrayprelim is replaced
with the number of γ-rays emitted from a given NRF level and the daughter ln in
Column 6 is replaced by the spin of the daughter level, or -1 to denote that the state
populated by the γ-ray emission is the ground state.

With gamarrayprelim complete, cascadecalc.cpp computes the γ-ray
multiplicity of each NRF level. The multiplicity of a level is defined as the mean
number of emitted γ-rays per excitation of the NRF level, which is the sum of the
values in Column 3 of the gamarrayprelim array corresponding to a single NRF
level. The multiplicities are stored in the Column 1 of the array gmults, and the
corresponding energy of each level is stored in Column 0. gmults also has a header
row which contains the total number of resonances in both entries in the row.

Finally, cascadecalc.cpp produces the array, gamarray. The values of the
rows of gamarray are nearly identical to those of gamarrayprelim. The primary
difference is that gamarray is formatted to be entered into the ENDF format as
a point-wise evaluation of the multiplicity versus energy function. It is assumed
that outside of the resonance energies, the multiplicity for γ-ray emission is zero.
Because of this, each line in gamarrayprelim becomes 3 lines in gamarray.
The first of the three lines corresponds to the lower energy bound of possible γ-ray
energies emitted during a specific de-excitation of the state. The entry in Column
2 (the energy of this data point) is 10 eV less than the energy of the γ-ray. The
corresponding yield, Column 3, is set to 0. The second row is identical to the
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corresponding gamarrayprelim row, except that the yield must be re-normalized
such that the integral over the multiplicity function results in the yield computed for
gamarrayprelim (Column 3), and the γ-ray multiplicity in gmults is factored
out. This value is Yi/10/Mi, where Yi is the corresponding value in Column 3 of
gammarayprelim, and Mi is the corresponding value in Column 1 of gmults. The
number, 10, is one-half the width of the multiplicity function which is integrated in
radiation transport codes to determine yield. The third row for a single γ-ray in
gamarray is identical to the first row, except that the energy is now 10 eV above
the nominal energy of the γ-ray - the upper bound for the yield distribution function.
gamarray is passed to insert.cpp, which formats the data and inserts it into the
mt6 mf52 section of the resulting ENDF file.

B.1.7 NRFXSSI Step 5: Data Formatting and Integration

new355.cpp is called to combine NRF cross section data (produced in nrf-
calc.cpp) with cross section data that may be present in the photonuclear ENDF
datafile that already exists for the isotope. The data in mt3 in an ENDF file is the
cross section data. mf3 corresponds to the total cross section and mf5 corresponds
to cross section data for ’other types of reactions’, which NRF is considered. The
subroutine reads the cross section data in the old ENDF file, and inserts the NRF
cross sections from the totxs array into the appropriate location. In the event that
the pre-existing cross section is non-zero at an energy where totxs is defined, values
of the pre-existing cross section are linearly interpolated to the energies where the
NRF cross sections are defined and the resulting total cross section is determined by
adding these values to the NRF cross section. The resulting arrays, a33 and a35
are then formatted to be inserted into the ENDF photonuclear file.

B.1.8 NRFXSSI Step 6: Data Insertion into Photonuclear
ENDF File

The final step of nrfxssi is to insert the NRF data into the a photonuclear
ENDF file. The subroutine insert.cpp accomplishes this. insert opens the pho-
tonuclear ENDF file, updates the file’s descriptor block, and inserts NRF cross sec-
tion and secondary γ-ray emission data along with the proper header information.

The first step is to read the data already present in the ENDF file and to modify
the file descriptor section (mt1 mf451). All information is read from the input file
and either copied or modified as it is written to a temporary output file, temp.endf.
The changes to the descriptor section include incrementing by 1 nmod, an integer
describing how many modifications this ENDF file has undergone, adding a text
boilerplate that describes the changes to the ENDF file, checking that there are
mt3 mf3, mt3 mf5, and mt6 mf5 section directories in the description section,

2See reference(144) for descriptions of the data formats used in ENDF files.
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and either deleting the entries for the lengths of these sections, which will later be
updated, or making directory place-holders for these sections to be updated later.

After the descriptor section is modified, insert skips forward to the section
mt3 mf3, deletes all old data and inserts the array, a33, along with the proper
header information. The subroutine nrfimp.cpp is called to perform the insertion.
After mt3 mf3, the mt3 mf5 section is modified using identical logic as the mt3
mf3 section except that the array a35 is used as the data source. The mt6 mf5
insertion involves slightly different formatting, and is accomplished by inserting the
gmults multiplicity data, and gamarray secondary photon data. Similar logic to
the nrfimp.cpp subroutine is present in this section of insert.

Finally, insert rewinds temp.endf and opens the final output file, whose name
is identical to the original input file, but is located in the folder /out/. temp.endf
is copied verbatim to the output file, but the lengths (in number of rows) of the newly
inserted or modified sections are added to the file directory in the file descriptor
section.

B.1.9 ACE file Creation using NJOY

With ENDF files created, the data processing code NJOY was used to con-
vert the ENDF files to ACE files. NJOY was called by the following command:
njoy259<in.dat. An example of in.dat for processing the 238U ENDF file is
shown below:

reconr

20 -22

’NRF U238 from endf/b-vii’ /

9237 1 /

.1 0 .05 1e-5 /

’U238 from modified endf/b-vii U238.endf’ /

0/

acer

20 -22 0 26 27/

5 /

’U238@300deg, photo-nuclear’

9237 /

Stop

NJOY assumes all input and output files are ’tapes’. To use the above example,
the 238U ENDF file output from nrfxssi must first be copied to /njoy/tape20.
Likewise, the outputs of NJOY are the files tape26 and tape27. tape26 is an
ACE file and tape27 is the xsdir line corresponding to the ACE file. The number
9237 identifies 238U, and the ‘5’ in the second line of the acer call tells NJOY that
the ENDF data is photonuclear.
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Figure B.2 The 239Pu cross photon sections as read by MCNPX. The dashed line
indicates the photo-atomic cross section, and the solid line indicates the photonu-
clear cross section. Before this modification, the photonuclear cross section file only
contained of the feature in the 6 to 20 MeV range.

B.1.10 NJOY Bug Repair

NJOY was found to have a simple systematic bug when processing the pho-
tonuclear ENDF files produced by nrfxssi. Upon completing an NJOY run, the
angular distribution locators for secondary particles (the landp array) in the output
ACE file are incorrectly defined. The error was found to be systematic. The first
entry of landp should always be 1, but instead, the correct value for the second
entry is inserted. Similar problems continue for the remaining entries. The code
tape26fix.exe was written to fix the landp array. The output of tape26fix is a
properly formatted photonuclear ACE file that may be used in MCNPX.

B.1.11 NRF data insertion results

Figure B.2 provides an example of a NRF cross section read by MCNPX, and
displayed using the cross section plotting functionality in the code.

Figures B.3 and B.4 demonstrate a spectrum that was calculated using the
new photonuclear datafiles and the modification of the MCNPX code described in
Appendix A. In this simulation, a pencil beam of photons, uniformly intense be-
tween 2.430 and 2.432 MeV, irradiated a cylinder of 239Pu with 0.5 cm-diameter
and 1 cm-length. The photon flux at a distance 60 cm from the cylinder center
was calculated at an angle of 135o relative to the pencil beam direction using the
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Figure B.3 MCNPX-calculated backscattered photon spectrum per simulated photon
due to 2431 ± 1 keV photons incident upon 239Pu. Statistical uncertainties are shown
as dots above and below the center of each energy bin.

next-event-estimator tally (see Section C.3). The spectrum demonstrates several
features. A energies below 2.4 MeV, the spectrum is dominated by the inelastic
scattering processes that are described in the first half of Chapter 2. These pro-
cesses result in an annihilation peak at 511 keV, a Compton-scatter photo-peak at
266 keV, and a continuum due to photo-electron bremsstrahlung production. At the
initial beam energy, elastic scatter of photons produces a profile that is similar to the
beam profile. This feature is only present because of the modifications to the code
described in Appendix A. Finally, two additional peaks are visible at 2431.7 and
2423.8 keV. These are due to resonance fluorescence of the 2431-keV state in 239Pu,
which de-excites to the ground and first-excited states by γ-ray emission, resulting
two NRF γ-rays separated in energy by 7.9 keV.
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Figure B.4 Same as Figure B.3, except the energy range between 2422 and 2433 keV
is expanded.
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Appendix C

Supporting Documentation of
MCNPX Simulations

Throughout this dissertation, results of MCNPX simulations have been pre-
sented. This appendix describes the logic behind some more complicated simulations
and presents example input files. The primary cause of complications is the use of
variance reduction techniques. Variance reduction is defined as using methods to
reduce the statistical uncertainty (or variance) of a simulation result in the same
amount of time. There are three primary types of variance reduction. The first is to
truncate a problem in either geometry or energy space such that irrelevant portions
of the simulation-space are not simulated. This is essentially done in all simulations
since no model may contain all details of the physical world.

In MCNPX, variance reduction may also take the form of non-physically adjust-
ing the number of particles simulated and correspondingly modifying the weights of
these particles. For example, the simulation described in Section C.3 calculates the
photon flux backscattered from a target. Photons that are incident upon the target
volume are forced to undergo an interaction, which would normally provide non-
physical results. To keep the results physical, MCNPX does the following. First, the
probability, pint, for the incident photon to interact along its path through the TD
is computed. The location of the forced interaction along the photon’s path is then
randomly sampled, and a new particle is created at that location with weight, pint
relative to the weight, w of the incident photon. This photon is forced to undergo
some collision, whereas the fate of the initial photon continues is then simulated
without any modification, except that its weight is reduced to w(1−pint). The effect
of this weight-adjusting variance reduction technique is to promote the simulation of
particles that have interacted in the target volume, which for this simulation, results
in reducing the statistical uncertainty of the calculated flux.

Weight-varying methods may also be implemented during definition of the prob-
ability of generating particles during the simulation (see Section C.1), by increasing
the probability that a simulated particle is transmitted through a material, or by
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inducing extra particles to be simulated in portions of the geometry that are deemed
important (see Section C.2).

A third type of variance reduction methods involves next-event estimators.
Next-event estimators essentially add deterministic treatment to otherwise stochastic
modeling. A point or region of interest is defined and each time a particle interacts
within the simulation, the expected contribution of the flux at this point is determin-
istically calculated. This method works quite well when the majority of interactions
occur sufficiently far from the point of interest and the angular distribution of par-
ticles emitted due to the interaction event are known. Next-event estimators are
used in the backscattered photon flux calculations described in Section C.3 Finally,
details concerning the treatment of electrons and the production of bremsstrahlung
by MCNPX are provided in Sections C.6 and C.5

C.1 Bremsstrahlung Source Simulations

Bremsstrahlung was assumed to be the photon source for most of the simulated
NRF experiments described in this dissertation. These spectra were calculated using
MCNPX with input files similar to the one provided below. The simulated geometry
is monoenergetic electrons normally incident upon a 102 µm-thick gold converter
(Z=79) that is supported by 1 cm-thick copper (Z=26) slab. There is no shielding
simulated. In the simulation, the energy and relative angle of photons that cross
the surface of a 50 cm-radius sphere whose center is the intersection of the electron
beam and the gold foil (surface 10) are counted. The lines phys:e 2.9 8j 1 and
bbrem 1. 1. 46I 2.0 1 are of primary interest. The first line indicates that the
electron data library need only extend up to 2.9 MeV, that all electron physics
processes are default except that bremsstrahlung photon production is biased such
that one reduced-weight photon is produced at each electron substep rather than
probabilistic sampling of full-weight photon production. The second line indicates
that bremsstrahlung photon production in material 1 (gold) is to be biased such that
higher energy photons are more likely to be produced at correspondingly reduced
weight.

2.6 MeV

c -- cells

1 1 -19.3 1 -3 2 -4 5 -6 imp:p=1 $Ag

11 2 -8.96 1 -3 2 -4 6 -7 imp:p=1 $Cu

12 0 -10 #1 #11 imp:p=1

13 0 10 imp:p=0

c -- surfaces

1 px -1

2 py -1
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3 px 1

4 py 1

5 pz 0

6 pz .0102 $Ag

7 pz 1.0102 $Cu

10 so 50

c -- materials

m1 79000.03e 1

m2 28000.03e 1

mode p e

nps 2e9

phys:e 2.9 8j 1

bbrem 1. 1. 46I 2.0 1

sdef pos=0 0 0 par=3 erg=2.6 dir=1 vec = 0 0 1 $2.6 MeV es inc on Au

cut:e j 0.09 3j $electrons below 90 keV are not simulated

cut:p j 0.09 3j $photons below 90 keV are not simulated

F1:P 10

E1 .1 25I 2.6000001

ft1 FRV 0 0 1

c1 -.9961947 -.98480775 -.9396926 -.8660254 -.766044443119

-.642787609 -.5 -.34202014 -.173648 0 .173648 .34202014

.5 .642787609 .766044443119 .8660254 .9396926 .98480775

.9961947 1

C.2 Photon Penetration Through Thick Shielding

Shielding calculations tend to be difficult to simulate with Monte Carlo radiation
transport codes. For example, the probabilities that a 0.5, 1, and 2-MeV photon
penetrates 25 cm of Pb without interacting are 3.4×10−19, 4.2×10−9, and 2.1×10−6,
respectively. To calculate shielding requirements for a bremsstrahlung spectrum, or
to shield a large 137Cs source, variance reduction techniques must be used to avoid
using unnecessary computation time simulating particles that will never reach the
opposite side of the shield.

The variance reduction technique uses the following routine.

• The simulation is conducted with no variance reduction, but with reduced
shielding density. Weight-windows are generated.

• The density of the shielding is increased and the simulation is re-run with
variance reduction. New weight-windows are regenerated.

• This process continues until the full shielding density is simulated.
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Use of weight windows is a to particle-weight-modifying variance reduction tech-
nique. Weight windows divide the geometry of a simulation into segments, and each
segment is assigned weight cutoffs. If a simulated particle enters a segment with a
weight greater than the segment’s upper weight cutoff, the particle is divided into
multiple particles of reduced weight, which are then separately simulated. If a simu-
lated particle enters a segment with a weight below the segment’s lower weight cutoff
the particle is subjected to termination (also called Russian Rouletting), with prob-
ability, pRR. If the particle is not terminated, the weight of the particle is increased
by 1/pRR. Likewise, weight-window segments can be generated for different energy
ranges.

To generate weight windows, the wwg and wwge (for energy segmentation)
cards are used in the MCNPX input files. These cards cause the code to deter-
mine from which segments, and at which energies, came particles that contribute
to the flux (or an energy range of the entire flux) that is specified to be impor-
tant. If a segment is found to be important, the weight cutoffs are lowered, causing
more particles with reduced weight be generated in the segment. After the weight
window-generating simulation, the weight-windows are written to a file, which may
be read for subsequent simulation. The method of iteratively increasing the shield-
ing material density and creating a series of weight-window files allows simulated
particles to contribute to the flux with higher probability (and reduced weights),
which subsequently allows the code to more efficiently determine how to weight the
segments.

A second variance reduction method was also employed to increase the prob-
ability that simulated photons would penetrate the shielding. This involved the
exponential transform function, invoked by the ext card. The exponential trans-
form modifies probability distribution function (PDF) that describes the distance to
collision, xc. Normally, this PDF is given by P (x) = Nσ exp(−Nσx) where N is the
number density of atoms in the material and σ is the total reaction cross section.
This PDF may be sampled using a random number1, r, to obtain xc = − ln(r)

Nσ
The

exponential transform creates a new non-physical cross section, σ∗, samples xc using
this value, and if the particle interacts within the transform cell, it increases the
weight of the particle by

w =
σ exp(−Nσxc)
σ∗ exp(−Nσ∗xc)

(C.1)

If the particle does not react, its weight is reduced by

w =
exp(−Nσxc)
exp(−Nσ∗xc)

(C.2)

This conserves the probability for particle transport by correctly increasing in-
teracting particle weights and reducing weights for transmitted particles.

1See Section A.2 for a description of PDF sampling.
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The draw-back of the exponential transform is that it may under-sample scat-
tering events. Because of this, the statistical analyses of the Monte Carlo simulation
are carefully considered and the value of σ∗/σ is taken to be as close to unity as is
practical.

An example of an input file for a MCNPX shielding simulation is shown below.
The simulation is one of the series of simulations described in Section 3.1.2. This
particular file is the last of four iterations simulating the penetration of the 40-50o

angular range of a 2.5 MeV endpoint-energy bremsstrahlung beam through 40 cm
of tungsten.

40cm W shield, 2.5 MeV endpoint-E photons rho should be 19.3g/cm3

c -- cells

1 1 -19.3 1 -2 -3 imp:p=1 $p is lower in earlier iterat

2 0 91 -1 imp:p=1

3 0 1 -2 3 imp:p=0

4 0 2 imp:p=0

5 0 -91 imp:p=0

c -- surfaces

1 px 0

2 px 40

3 cx 30

91 px -1

c -- materials

m1 74000 1

mode p

nps 2e7

ext:p .8X 0 0 0 0

wwg 1 0 0 4j 0

wwge:p 1 1.5 2.50001

wwp:p 2 2j 0 -1 0 2j 3e-7 $this line is commented out in 1st iterat

mesh geom=cyl ref=0 0 0 axs = 1 0 0 origin=-.1 0 0 vec=0 1 0

jmesh 40.1

jints 40

imesh 30

iints 3

kmesh 1

kints 1

sdef pos=-0.1 0 0 par=2 dir=1 vec 1 0 0 erg=d1

si1 0 .1 23i 2.5

sp1 0 1.25 1.23 2.69 3.7 3.33 2.74 2.16 1.74 1.39 1.14 .927 .764

.629 .521 .434 .359 .297 .242 .201 .16 .124 .0929 .0631 .0357
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.00886

sb1 0 .2 8r .3 .4 .5 .6 .7 .8 .9 1 1.1 1.2 1.5 2 2.5 3 5 10

phys:p 3

TF11 6j 3 j $tally between 1.75 and 2 MeV most important

E1 0 24i 2.50001

f1:p 2

E11 0 1.75 2.5

f11:p 2

C.2.1 Comparison to Published Build-up Factors

The effect of down-scattering has been approached by modifying simple attenu-
ation by use of a build-up factor, B(Z,E, µx), that is a function of energy, material
composition, and geometry. This results in an effective attenuation expression that
is written as

I = IoB(Z,E, µx) exp(−µ(Z,E)x) (C.3)

There are several different formulations of build-up factors. The factors most com-
monly encountered apply to dose-rates rather than fluxes.

One build-up formulation is the polynomial form:

B(Z,E, µx) = 1 + a(Z,E)× (µx) + b(Z,E)× (µx)2 + c(Z,E)× (µx)3 (C.4)

Values of a, b, and c for energy transmission through shielding from an isotropic
point photon source were taken from reference (111), and used to find an expected
build-up factor. B(Z,E, µx) = 23.42 for 4-MeV photons, emitted from the center of
a 30-cm radius tungsten shield. Using equation C.3 and an attenuation coefficient,
µ = 0.779 cm−1(19), we expect each photon to transmit, on average the following
energy:

E = EγB exp(−µx)

= 23.42× 4[MeV]× exp(−30[cm]× 0.779[cm−1]) = 6.60× 10−9[MeV] (C.5)

The energy build-up formalism is useful for estimating the energy or dose due to
a photon fluence penetrating shielding, but it does not provide an estimate of the
number of individual photons that escape the shielding. This renders these build-
up factors useless for predicting detector responses, to shielded photon fluxes when
detectors are operated in pulse mode2. To make these predictions, we turn to Monte
Carlo calculations using MCNPX and built-in variance reduction functionality, while
using the published build-up parameters as a check on our use of the code.

2The converse is true, if detectors are operated in an integrating mode, where the charge de-
posited in a detector is continuously integrated by a capacitive circuit.
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Figure C.1 MCNPX-calculated photon spectrum leaving tungsten shielding for a
4 MeV point isotropic source located at the center of a tungsten sphere of 30 cm
radius. Statistical errors are negligible.

To check the validity of the MCNPX results, we first simulate a geometry iden-
tical to that whose build-up constants are tabulated; a point isotropic 4-MeV photon
source located in the center of a 30 cm-radius W sphere. The calculated energy spec-
trum of photons emitted from the tungsten shield is shown in Figure C.1. To convert
this spectrum into emitted energy, and subsequently, a build-up value, probability
of photon emission is multiplied by the corresponding energy, and summed for the
entire spectrum. This calculation results in the computed average energy leaving
the tungsten sphere per 4-MeV photon emitted from the sphere’s center, which was
6.14× 10−9 MeV per 4-MeV source photon for the MCNPX computation. The cor-
responding energy build-up factor is BMCNPX = 21.8. The agreement between this
value and that from equation C.5 is impressive, given that differing photon cross sec-
tion data were used for the two computations. We thus conclude that using variance
reduction techniques enables MCNPX to provide reasonable estimates of build-up
factors, suggesting that the MCNPX calculations are likely to be accurate for studies
of photon fluences penetrating through shielding.

C.3 Backscattered Photon Flux Calculations

Calculations of backscattered photon spectra and intensities is an important
part of predicting the relative strengths of the NRF γ-rays and background photons.
The simulations cannot be accurately performed without variance reduction because
the fraction of photon scattering events that result in large-angle scatter without sig-
nificant energy loss is very small. For example, if a 2.4-MeV photon is incident upon
a 1 cm-thick slab of uranium, it will interact with a probability of approximately 0.6.
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Of the fraction of photons leaving 1 cm of uranium due to scattering, approximately
one-fifth are in the backwards direction, and the majority of these are low-energy. Of
the entire backscattered intensity, approximately 10−3 are elastically scattered, and
approximately 2 × 10−4 are inelastically down-scattered to an energy between 2.1
and 2.2 MeV. Because of these low probabilities, direct simulation of backscattered
photon intensities near the endpoint energy of a bremsstrahlung spectrum requires
approximately 104 particles to simulate a single energetic photon scattered into the
backwards direction, which is very inefficient.

To improve upon these efficiencies, a next-event estimator technique is used
for the backscatter simulations. These simulations model the backscattered photon
spectrum resulting from some defined photon spectrum incident upon a target (or
TD). To determine the expected photon spectrum that would be incident upon a
radiation detector, the flux at the center of the detector, at point rd, is determined by
the next-event estimator routine. In the simulation, each time a particle (presumably
photon or photo-electron) interactions in the target, the probability-weighted flux
contribution at point rd is calculated. This contribution is given by

∆Φ(rd) = w
p(Ω)

R2
exp

[
−
∫ R

0

N(s)σ(s)ds

]
(C.6)

where w is the weight of the interacting particle, which may be non-zero if other
variance reduction techniques are employed, p(Ω) is the differential probability that
the interaction will result in production of a photon directed toward rd, R is the
distance between the interaction point and rd, therefore the 1/R2 term takes into
account the reduction of emanating photon intensity with distance from the interac-
tion point. Finally, the term exp[−

∫ R
0
N(s)σ(s)ds] reduces the contribution to the

fluence by the amount proportional to the attenuation of the photon before reaching
rd. s is the parameterized distance along the line between the interaction point and
rd, and N(s) and σ(s) correspond to the atom density, and interaction cross section
for photons in the material present at the distance s along the path, respectively.

Although not explicitly contained in equation C.6, the energy of the contribution
to the next-event estimation is at least partially determined by the interaction type
and angle. The following examples further explain this. If the interaction that causes
the next-event flux estimation is a coherent scatter, the energy at which the next-
event flux estimate at rd contributes is equal to that of the scattered photon. If
the interaction is an incoherent scatter, the angle, Ω defines the contribution energy
by equation 2.23. Other interaction types do not constrain the energy when the
scattering angle is fixed, such as a bremsstrahlung emission from a slowing electron.
In this case the energy of the bremsstrahlung photon is first sampled, then the PDF
relating the energy of a bremsstrahlung photon to the angle of emission is sampled
to determine p(Ω) at that bremsstrahlung photon energy.

Next-event estimators can result in multiple contributions to the calculation
of an expected photon spectrum per particle history. For example all three events



Section C.3. Backscattered Photon Flux Calculations 209

described in the preceding paragraph could occur when a single photon impinges
upon a target. Next-event estimators result in simulations that give statistically
convergent and significant results in reasonable calculation times. The following
two examples of MCNPX input files indicate the use of next-event estimator tallies
(called f5 tallies in MCNPX) for simulating the backscattered photon flux. The
first example produced the calculated spectrum shown in Section B.1.11. This input
file reflects modifications to the MCNPX code and its data files described in Appen-
dices A and B. Particularly, the line, (plib=.05)calls for the .05p photo-atomic data
files, which contain the full set of form factors for Rayleigh scattering, and the .30u
photonuclear data files contain NRF resonances and secondary particle information
pertaining to NRF γ-rays.

2 keV-wide uniform intense pencil beam of 2431 keV photons on Pu239

100 1 -19.6 -10 -20 21 imp:p=1 $Pu cyl

200 0 10 -11 -20 21 #202 #203 imp:p=0 $shielding

202 0 10 -20 -15 16 #203 imp:p=1 $viewing hole

203 0 10 -11 -22 23 imp:p=1 $collimator

997 0 20 imp:p=0

998 0 -21 imp:p=0

999 0 11 -20 21 imp:p=0

10 cy 0.5

11 cy 80

15 1 cx 0.5

16 1 px 0

20 py 60

21 py -60

22 cx 0.5 $collimator

23 px 0

*tr1 0 0 0 45 315 90 135 45 90 90 90 0

mode p e

m1 94239.30u 1

plib=.05

xs1 94239.30u 236.998600 PU239Ace 0 1 1 71391 0 0 0.000E+00

sdef pos=60 0 0 par=2 erg=d2 dir=1 vec = -1 0 0 ara=1

si2 H 0 2.430 2.432

sp2 0 0 1

cut:p j 0.09 3j

cut:e j 0.09 3j

prdmp j -60 j 2 0

phys:p 3.0 j j 1 j

ctme 2000
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f15:p 42.426 42.426 0 0 $60 cm from center,

e15 0.1 39i .5 .509 .513 .6 14i 2.1 31i 2.42 119i 2.43201

A second example explicitly excluded the .05p and .30u data libraries so that
the elastic scattering contribution to the backscattered photon spectrum could be
calculated using elastic cross section values that also included nuclear Thomson and
Delbrück scattering. This calculation was combined with a similar calculation in
which the minimum simulated energy was 3 MeV to estimate the inelastic scattering
contribution to the background for measurement of 137Ba content in aged 137Cs
sources. The cutoff of 3 MeV was used in the following simulation to provide lower
uncertainties in the upper energy bins.

Cs/BaCl 4 MeV endpoint energy S-T 60cm, T-D 60cm 45 degs

100 1 -2 -10 imp:p=1 $Cs/BaCl sphere 20% theor

101 2 -7.7 10 -11 imp:p=1 $Steel sph cont

200 3 -19.3 21 11 -20 12 13 #300 #301 imp:p=1 $most of shield

201 0 11 -20 -12 13 imp:p=0 $bottom no imp

202 0 11 -20 -13 imp:p=0 $back no imp

203 0 -21 11 -20 12 13 #301 imp:p=1 $most of shield

300 0 11 -20 -15 21 #301 imp:p=1 $irrad hole

301 0 11 -20 -16 22 imp:p=1 $viewing hole

999 0 20 imp:p=0 $rest of world

10 so 1.742

11 so 2.042

12 pz -15

13 py -15

15 cx 1.742

16 1 cx 1.742

20 so 65

21 px 0

22 1 px 0

*tr1 0 0 0 45 315 90 135 45 90 90 90 0

mode p

fcl:p -1 0 6r

m1 17000 0.5 55000 .25 56000 .25 $Cs1Ba1Cl2

m2 26000 0.72 24000 .18 28000 .10

m3 74000 1

dd0 0 0

print

sdef pos=60 0 0 par=2 erg=d2 dir=d1 vec = -1 0 0

si1 H -1 .996194 1 $0-5 degrees
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sp1 0 0 1

si2 0 .1 40I 4

sp2 0 3.6636e-8 9.1549e-7 8.3803e-6 5.1766e-5 0.00010238

0.00013271 0.0001291 0.00012422 0.00011573 0.0001064

9.7301e-5 8.9228e-5 8.0441e-5 7.3751e-5 6.6967e-5

6.1339e-5 5.5978e-5 5.1208e-5 4.6852e-5 4.3017e-5

3.94e-5 3.6243e-5 3.3137e-5 3.0822e-5 2.8333e-5

2.5915e-5 2.4092e-5 2.2167e-5 2.0309e-5 1.8582e-5

1.7074e-5 1.562e-5 1.4258e-5 1.2778e-5 1.1468e-5

9.9432e-6 8.6647e-6 7.2497e-6 5.9731e-6 4.6801e-6

3.3235e-6 1.6381e-6

sb2 0 1 40I 100

c prdmp 0 50000000 0 2 5000000

nps 2e9

f5:p 42.426 42.426 0 0 $60 cm from center

fm5 .0018294 $convert to per electron from per photon

e5 0 39i 4.0

fc15 TALLY PER SOURCE ELECTRON

C.4 Detector Response Modeling

Semiconducting radiation detectors count interactions by measuring a short
impulse of electrical current, resulting from the movement of electron-ion pairs in
an electric potential. The electron-ion pair is created by interacting particles. The
amount of charge liberated is predicted by the energy deposited by the radiation and
the well-studied average energy required to create an ion-pair(96). The purpose of the
MCNPX simulations described in this work is to determine the rate of depositions,
and amount of energy deposited, within the detector materials for a given NRF assay
geometry. The detector response modeling is accomplished in a very simple manner
in MCNPX. The sum energy of simulated particles leaving the detector volume is
subtracted from the sum energy of particles entering volume for each simulated
history.

For the detector response calculations used in this dissertation, incident photon
spectra were calculated by separate MCNPX simulations, such as those described
in Sections C.2 and C.3. These simulations provide calculated spectra at a point or
passing through a plane in the modeled space. The detector response model simu-
lations assume that these calculated photon spectra may be represented as though
they were uniformly-intense and normally incident upon a plane representing an
outer surface of a shielded detector geometry. To further simplify the calculations,
monoenergetic photons were simulated as incident upon the shielded geometry and
results were superposed to determine the expected detector response to more com-
plicated spectra.
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Figure C.2 Horizontal cut-through of the geometry used in MCNPX simulations to
estimate photon energy depositions within a shielded HPGe detector. Photons enter
the geometry from the bottom, uniformly distributed on the (y,z) plane within a ra-
dius, rsource, from the germanium crystal center. Dimensions are given in Table C.1.
Dimensions given as r indicate radii, and that the object is circular in the perpen-
dicular plane. The HPGe detector is assumed to be set inside an Fe enclosure. The
Fe is modeled as a hollow, open-sided rectangular parallelepiped. Below the Fe is
additional Pb shielding.

C.4.1 Model Geometry

Monoenergetic photons were emitted uniformly over a 12 cm-radius disc in the
(y,z) plane and irradiated the shielded geometry shown in Figure C.2. The photons
are incident from the bottom of the figure. The shielded detector geometry consists of
lead of variable thickness, xf , in front of a coaxial germanium crystal in an aluminum
housing, contained in a square iron enclosure that is open on its front and back. Lead
shielding of at least 5 cm-thickness is also present on the sides surrounding the iron
enclosure. The geometry of the simulated shielded coaxial HPGe detector is shown
in Figure C.2 with dimensions indicated in Table C.1

The input file for the simulation of the detector response to 3.761-MeV photons
for xf = 13.2 cm is shown below.

3761 keV photons penetrating 13.2cm pb shielding to 100% r.e. HPGe
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dimension value
yPbL 5 cm
yFe−Al ≥ 1.21 cm
rbore 6.2 mm
rdet 3.975 mm
rAlin 4.375 mm
rAlout 4.505 mm
yFe 1.27 cm
yPbR 8 cm
xdet 8.05 cm
xPb 8.85 cm

xPb−Al 3 mm
xAl 1 mm

dAl−Ge 4 mm
xbore 8.2 mm
xf variable

rsource 12 cm
zFe−Al ≥ 2.42 cm
zPbBottom 7.5 cm

Table C.1 Dimensions of shielded HPGe detector geometry shown in Figure C.2.
The final two dimensions listed are not indicated in the figure. zFe−Al is the distance
between the top of the Al case and the top, inner, surface of the Fe enclosure. The
dimension, zPbBottom indicates thickness of Pb beneath the Fe.
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1 1 -11.34 1 -2 40 -33 41 -42 imp:p=1 $front pb filter

2 2 -5.323 5 -6 -11 #3 imp:p=1 $Ge det

3 0 7 -6 -13 imp:p=1 $bore hole

4 3 -2.702 -15 3 -4 imp:p=1 $cap

5 0 -11 4 -5 imp:p=1 $bt cap and Ge

6 0 -15 2 -3 imp:p=1 $bt Pb and cap

7 0 11 -14 4 -6 imp:p=1 $air b/t side Al and Ge

8 3 -2.702 14 -15 4 -6 imp:p=1 $Al side wall

9 0 15 30 -32 34 -36 2 -6 imp:p=1 $air bt side al and Fe

10 4 -7.8 31 -33 35 -34 2 -6 imp:p=1 $Left Fe Wall

11 4 -7.8 31 -33 36 -37 2 -6 imp:p=1 $Right Fe Wall

12 4 -7.8 32 -33 34 -36 2 -6 imp:p=1 $Top Fe Wall

13 4 -7.8 31 -30 34 -36 2 -6 imp:p=1 $Bottom Fe Wall

20 1 -11.34 40 -31 41 -42 2 -6 imp:p=1 $Pb bottom

21 1 -11.34 31 -33 41 -35 2 -6 imp:p=1 $Pb left

22 1 -11.34 31 -33 37 -42 2 -6 imp:p=1 $Pb right

102 0 -99 -1 imp:p=1 $front air

103 0 -99 6 imp:p=1 $back air

104 0 -99 1 -6 33 imp:p=1 $center air top

105 0 -99 1 -6 -40 imp:p=1 $center air bottom

106 0 -99 1 -6 40 -33 -41 imp:p=1 $center air left

107 0 -99 1 -6 40 -33 42 imp:p=1 $center air right

999 0 99 imp:p=0 $

1 px 10

2 px 23.2 $13.2 cm shield

3 px 23.5 $3mm bt Pb and detector front

4 px 23.6 $1mm end cap thickness

5 px 24.0 $4mm endcap to xtal gap FRONT PLANE

6 px 32.05 $8.05cm xtal BACK PLANE

7 px 24.82 $bore depth=0.82cm from surf 5

11 cx 3.975 $Ge det radius

13 cx .62 $bore hole radius

14 cx 4.375 $4mm gap b/t Ge and Al

15 cx 4.505 $1.5mm wall

30 pz -4.505 $fe inner bottom

31 pz -5.14 $fe outter bottom

32 pz 6.925 $fe inner top

33 pz 8.195 $fe outter top (2 boxes)

34 py -5.715 $fe left inner

35 py -6.35 $fe left outter

36 py 5.715 $fe right inner
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37 py 6.35 $fe right outter

40 pz -12.64 $pb bottom

41 py -11.43 $pb left

42 py 15 $pb right (keeps going)

80 px 0

99 so 105

mode p e

nps 5e8

m1 82000 1 $U

m2 32000 1 $HPGe

m3 13000 1 $Al

m4 26000 1 $Fe

c cut:e j .01

cut:p j .01

ext:p .2X 0 21r

sdef par=2 pos=0 0 0 sur=80 erg=3.761 dir=1 axs=1 0 0 &

rad=d3 vec =1 0 0

si3 0 12

sp3 -21 1

f8:p 2

e8 0 .1 34i 2.501 300i 4.001

C.5 Electron Stopping Treatment in MCNP

The process of bremsstrahlung production described in Section 2.6.2 is compli-
cated by the details of energetic electron transport in materials. Because electrons
are charged, they are subjected to the Coulomb force, which has an infinite range.
Thus, rather than describing single discrete interactions (as is considered in neutral-
particle transport), electrons are treated statistically in the electron transport code,
ETRAN(35). MCNP’s electron transport mimics this approach(38). The energy
loss per unit length along the trajectory of an electron is described as a distribu-
tion function(36) whose mean is the nominal stopping power of the material(37).
Likewise, the angular deflection of the electron (i.e. θ12), and the production of
bremsstrahlung are also treated as probability distribution functions(39).

To reduce computational requirements, the electron transport probability dis-
tributions are calculated for an energy group whose energy boundaries are given
iteratively by

En+1 =
En
21/8

(C.7)

where E1 is the maximum electron energy expected in the problem, which is set
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by default to 100 MeV, but is recommended to be changed by the user. The mean
distance that an electron travels during energy loss from En to En+1 is called a step.
Each step is further divided into m substeps. There is an empirically predefined
default m for each element in MCNPX, increasing with Z from 2 to 15, and the value
can be increased above the default through user input. At each substep, the emission
of bremsstrahlung, non-radiative energy loss, and angular deflection of the electron
are randomly sampled, and the energy and direction of the electron are updated.
When the electron energy decreases outside the step, distributions corresponding to
the next step are calculated and the process is repeated. This results – on average
– in approximately the correct treatment of electron stopping and bremsstrahlung
production, however correlations between sampled distributions are ignored. Also, if
materials are thinner than a step, inaccuracies may result because the actual electron
transport is too coarsely discretized during the sampling of only a few substeps.

There is an additional way in which MCNP can determine the energy group
for an electron. This is referred to as the nearest-boundary method, where the
step parameters are recalculated when the electron energy becomes closer to En+1

than En. The differences between the two methods become more significant when
predicting bremsstrahlung from lower-energy electrons than are of interest here.

C.6 Thick-Target Bremsstrahlung Model

An additional feature in MCNPX is the thick-target bremsstrahlung model.
The code allows the user to select which types of particles are transported during
the simulation. When photon transport is turned on (as must be the case in all
simulations of interest for NRF), electron transport is not turned on by default. This
is primarily due to the hundredfold increase in computation time required to include
electron transport. With the exception of the following example, all computational
results in this work include electron transport.

When electron transport is not included, a model for bremsstrahlung produc-
tion is applied whenever an electron would be created during photon transport. The
model, called the thick-target bremsstrahlung (TTB) model, immediately produces
photons sampled from a bremsstrahlung spectrum at the point of electron creation.
The number and direction of the photons are sampled from a tabulated probability
distribution that assumes the electron loses all its energy while stopping in a thick
target. This assumption is generally quite good. However, when photo-electrons
are produced within the electron’s range of a material surface, the TTB model can
over-predict bremsstrahlung production. Furthermore, the model appears to un-
der sample the emission of bremsstrahlung at large angles relative to the trajectory
of the electron-producing photon. The spectra of monoenergetic 1.7-MeV photons
normally incident upon the circular surface of a uranium cylinder of 1 cm-radius
and 1 cm-thick, as calculated by MCNPX, are shown in Figure C.3. The effec-
tive photon scattering cross sections are shown for the angular ranges 4o − 5o and



Section C.6. Thick-Target Bremsstrahlung Model 217

Figure C.3 MCNPX-simulated differential cross section for scattering of 1.7-MeV
photons from 1 cm uranium with and without full electron transport enabled.

100o− 110o, with and without electron transport. The TTB model appears to over-
estimate low-energy bremsstrahlung emission in forwards directions and significantly
underestimate bremsstrahlung production in backwards directions.
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