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Abstract

Hypoxia is a critical pathological element in many human diseases, including ischemic stroke, myocardial infarction, and solid tumors. Of
particular significance and interest of ours are the cellular and molecular mechanisms that underlie susceptibility or tolerance to low O2.
Previous studies have demonstrated that Notch signaling pathway regulates hypoxia tolerance in both Drosophila melanogaster and
humans. However, the mechanisms mediating Notch-conferred hypoxia tolerance are largely unknown. In this study, we delineate the evo-
lutionarily conserved mechanisms underlying this hypoxia tolerant phenotype. We determined the role of a group of conserved genes that
were obtained from a comparative genomic analysis of hypoxia-tolerant D.melanogaster populations and human highlanders living at the
high-altitude regions of the world (Tibetans, Ethiopians, and Andeans). We developed a novel dual-UAS/Gal4 system that allows us to acti-
vate Notch signaling in the Eaat1-positive glial cells, which remarkably enhances hypoxia tolerance in D.melanogaster, and, simultaneously,
knock down a candidate gene in the same set of glial cells. Using this system, we discovered that the interactions between Notch signaling
and bnl (fibroblast growth factor), croc (forkhead transcription factor C), or Mkk4 (mitogen-activated protein kinase kinase 4) are important
for hypoxia tolerance, at least in part, through regulating neuronal development and survival under hypoxic conditions. Becausethese ge-
netic mechanisms are evolutionarily conserved, this group of genes may serve as novel targets for developing therapeutic strategies and
have a strong potential to be translated to humans to treat/prevent hypoxia-related diseases.

Keywords: Notch signaling; genetic interactions; eaat1-posive glia; Hypoxia; Drosophila melanogaster

Introduction
Hypoxia (O2 deprivation) is a common pathological factor in
many human diseases, including apnea of prematurity, hypox-
emia in ICU settings resulting from neurologic, hematologic, re-
spiratory and cardiac diseases, stroke, and cancer (Sands and
Owens 2015; Adler et al. 2017; Schmidt et al. 2017, 2019; Group
2018; Thille et al. 2018; Di Fiore et al. 2019). To date, strategies to
treat or prevent hypoxia-induced injury are very limited. Thus,
understanding the mechanisms regulating tolerance or suscepti-
bility to hypoxia is crucial for developing effective therapeutic
strategies.

A number of studies have demonstrated that Notch signaling
plays an important role in regulating the cellular and molecular
mechanisms underlying the responses to hypoxic stress (for se-
lected reviews, see Andersson et al. 2011; Alberi et al. 2013;
Marignol et al. 2013; Zhou and Haddad 2013; Borggrefe et al. 2016;
Fearon et al. 2016; Arumugam et al. 2018). For example, (1) it has
been shown that Notch intracellular domain coordinates with
HIF signaling to regulate cellular response to hypoxia (Gustafsson

et al. 2005; Pear and Simon 2005; Sainson and Harris 2006); (2) we
have previously discovered that Notch signaling is activated and
plays a critical role in regulating hypoxia tolerance in Drosophila
melanogaster (i.e., D.melanogaster carrying Notch loss-of-function
alleles are super-sensitive to low O2, and, in contrast, the fruit
flies carrying gain-of-function alleles are remarkably resistant)
(Zhou et al. 2008, 2011) (3) neuronal- or glial-specific activation of
Notch rescues naı̈ve flies from lethal degree of O2 deprivation
(Zhou et al. 2011); and (4) Notch signaling is an evolutionarily con-
served mechanism regulating adaptation to low O2 environments
not only in Drosophila but also in humans (Jha et al. 2016).
However, the molecular mechanisms underlying the role of
Notch signaling in regulating hypoxia responses are still not well
understood. BecauseNotch is highly pleiotropic, it is clear that
specific downstream responses to Notch activation depend on
cellular context and its synergic integration with other signaling
pathways (Bray and Bernard 2010; Ho et al. 2018). Furthermore,
due to the broad physiological role of Notch signaling in cell dif-
ferentiation and metabolism, therapeutic strategies directly tar-
geting Notch may introduce severe side-effects (Rizzo et al. 2014;
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Takebe et al. 2014; Mollen et al. 2018). Therefore, identifying ge-
netic modifiers or downstream effectors that mediate the role of
Notch in hypoxia are very important for developing effective
therapeutic strategies.

It has long been recognized that hypoxia does not affect all
organs/tissues of the body equally. Of all the organs, brain is one
of the organs that are very sensitive to oxygen deprivation (Leach
and Treacher 1998; Purins et al. 2012). We previously discovered
that hypoxia-induced lethality can be rescued by activating
Notch signaling only in the excitatory amino acid transporter 1
(Eaat1)-positive glial cells in D.melanogaster, which is likely
through cell injury prevention in the central nervous system. It is
remarkable that the activation of Notch in this group of glial cells
alone is sufficient to enhance the organismal survival under pro-
longed hypoxic conditions (Zhou et al. 2011). Presumably, this
group of Eaat1-positive glial cells regulates hypoxia tolerance
through suppression of glutamate neurotoxicity, neuronal prolif-
eration as well as the growth and organization of axons (Gibson
1989; Ikonomidou et al. 1989; Stacey et al. 2010). Furthermore,
since we have identified a group of evolutionarily conserved
genes and biological processes (including Notch signaling) be-
tween D.melanogaster and human highlanders (Jha et al. 2016) that
are important for survival in hypoxic environment, some of these
conserved genes may interact with Notch signaling to regulate
Notch activation-conferred hypoxia tolerance. In this study, we
studied the genetic interactions between Notch signaling and a
group of these conserved genes [i.e.,branchless (bnl), crocodile (croc),
Epidermal growth factor receptor (Egfr), grain (grn), hairy (h), invected
(inv), and MAP kinase kinase 4 (Mkk4)]and identified modifiers that
regulate Notch activation-conferred hypoxia tolerance in
D.melanogaster.

Materials and methods
Drosophila stocks and culture conditions
The following available TRiP UAS-RNAi lines, UAS-reaper lines and
Gal4 driver stocks were obtained from the Bloomington Drosophila
Stock Center: [y1 sc* v1 sev21; PfTRiP.HMS01046gattP2] (bnl-RNAi,
FBst0034572), [y1 sc* v1 sev21; PfTRiP.HMS01122gattP2] (croc-RNAi,
FBst0034647), [y1 v1; PfTRiP.JF02283gattP2] (Egfr RNAi, FBst0036770),
[y1 sc* v1 sev21; PfTRiP.HMS01085gattP2] (grn-RNAi, FBst0033746), [y1

sc* v1 sev21; PfTRiP.HMS01052gattP2] (grn-RNAi, FBst0034578), [y1 sc*

v1 sev21; PfTRiP.HMS01313gattP2] (h-RNAi, FBst0034326), [y1 sc* v1

sev21; PfTRiP.HMS02209gattP2] (inv-RNAi, FBst0041675), [y1 sc* v1

sev21; PfTRiP.HMS02524gattP40] (Mkk4-RNAi, FBst0042832), [w1118;
PfUAS-rpr.Cg27] (FBst0005823), [w1118; PfUAS-rpr.Cg14]
(FBst0005824), [w*; Kr[If-1]/CyO; Pfw[þmW.hs]¼GAL4-da.G32gUH1]
(FBst0055850, was used to derive da-Gal4) and [w*;
Pfw[þmC]¼Eaat1-GAL4.Rg2] (Eaat1-Gal4, FBst0008849). The UAS-
NICD and 4XSu(H)-lacZ stocks were kindly provided by Dr. J.
Posakony. BecauseUAS-NICD transgenic stock was generated on
the background of w1118(Go et al. 1998), the w1118 stock
(FBst0003605) was used as one of the negative controls in the dual-
UAS/Gal4 experiments.

Flies were maintained in vials with Cornmeal-Molasses-Yeast
medium. Flies for the hypoxia tolerance assay were prepared as
follows. 20 Females of UAS-RNAi were crossed with 20 males of
EN line, Eaat1-Gal4 or da-Gal4 and incubated at room air/temper-
ature condition. After 24 hours, parents were removed. One group
of the vials (n¼ 3 to 6 vials) containing the embryos were trans-
ferred to a computerized atmosphere chamber supplied with 5%
oxygen for hypoxia treatment, and the other group of vials (n¼ 3

to 6 vials) were cultured in room air condition and used as con-
trols.

Generation of dual-UAS/Gal-4 system
We have generated a unique fly line that has Notch upregulated
specifically in the glial cells that produce the glutamate trans-
porter EAAT1. The details on the strategy to generate this line
are provided in Supplementary Figure S1. Briefly the UAS-
NICD inserted on 3rd chromosome and Eaat1-Gal4 ([w*;
Pfw[þmC]¼Eaat1-GAL4.Rg2] (FBst0008849); stock# 8849,
Bloomington, USA) were simultaneously crossed with a double
balancer [w*; Cyo; TM3, Sb’](stock#2475, Bloomington, USA). The
F1 flies with both Cyo and Sb phenotype from both crosses (i.e.,
[w; þ/Cyo; UAS-NICD/TM3, Sb’]from the first cross and [w;PfEaat1-
GAL4.Rg2/Cyo; þ/TM3, Sb’]from the second cross) were selected
and self-crossed to remove flies with Sb’ phenotype from the [w;
þ/Cyo; UAS-NICD/TM3, Sb’]line and Cyo phenotype from the
[PfEaat1-GAL4.Rg2/Cyo;þ/TM3, Sb’]lines. Subsequently, these flies
were intercrossed and again select for flies with Cyo and Sb’ phe-
notype. Finally, they were self-crossed to obtain homozygote [w;
PfEaat1-GAL4.Rg2; UAS-NICD] (i.e., the EN line).

Hypoxia treatment and survival test
Three- to five-day-old Eaat1-Gal4and EN males (n¼ 10) were
crossed to the UAS-RNAi virgin females (n¼ 10) targeting specific
genes. Sufficient time was given (�3 days) for the flies to mate/
cross. Simultaneously the w1118and the Gal4 line were ‘self-
crossed’ and used as negative controls, the [EN] x [w1118] cross
was used as a positive control. Each set of crosses were in 3 to 6
replicate vials. The vials were kept under ambient conditions for
48 hours so that the flies can lay sufficient number (50 to 100) of
eggs. After 48 hours, the adults were transferred to a new vial. For
the hypoxia tolerance test the original vials were then transferred
to a computer-controlled hypoxia chamber, constantly main-
tained at 5% oxygen. The chambers were in a room with 12/
12 hours light/dark cycle, and temperature �22

�
C. The adults

from the new vials (i.e., from the second batch of vials) were dis-
carded after 48 hours, and the vials with the eggs were kept at
ambient oxygen conditions (�21% O2) also with 12/12 hours light/
dark cycle (temperature �22

�
C) as room air controls. After

21 days, the ratio of the empty pupae (eclosed) to the total num-
ber of pupae formed (eclosed þ uneclosed) in each vial was calcu-
lated to determine the eclosion rate. Due to the fact that most of
the collected embryos will be at an early larval stage, this hypoxia
test was mainly to determine the survival rate from larval stage
to adulthood, as representated by eclosion rate.

Immunostaining and microscopy
The third instar larval brain samples for immunostaining were
prepared according to previous descriptions (Wu and Luo 2006;
Zhou et al. 2011). Briefly, brains of wandering third instar larvae
were dissected in PBS and fixed in 4% paraformaldehyde in PBS.
Cell membranes were permeabilized with 0.3% Triton X-100 in
PBS, blocked with 7% goat serum, and put in primary antibody
overnight at 4�C (or for 1 hour at room temperature). This proce-
dure was followed by washes in 0.3% Triton X-100 in PBS, incuba-
tion with secondary antibody for 90 minutes. Following staining,
the brain samples were washed multiple times with PBS, mount-
ing and microscopy. The mouse anti-NICD (undiluted in-house
supernatant) and rat anti-elav (1:50) were obtained from the
Developmental Studies Hybridoma Bank (DSHB); rabbit anti-repo
(1:500) was a kind gift of Dr. G. Technau at the Institute of
Genetics, University of Mainz, Mainz, Germany. Secondary
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antibodies used were goat anti-mouse; goat anti-rabbit; and goat
anti-rat conjugated to Alexa 488, 546, or 647 (1:250, Invitrogen).
The Prolong Gold anti-fade reagent with DAPI (Invitrogen) was
used as mounting media. Confocal microscopy was performed in
the University of California at San Diego Neuroscience
Microscopy Shared Facility. Imaging was done on a confocal mi-
croscope (Olympus FV1000) and the images were processed with
Image J.

Statistical analysis
Data were analyzed and graphed using GraphPad Prism 6 soft-
ware. The differences in eclosion rate at 5% oxygen between the
[EN]�[UAS-RNAi]and [Eaat1-Gal4]�[UAS-RNAi]and all the controls
were assessed using ordinary one-way ANOVA with Turkey’s
multiple comparison tests.

Results and discussion
The Eaat1-positive cells are a group of glia regulating glutamate

metabolism and transport as well as neuronal activity in Drosophila

brain (Rival et al. 2004; Peco et al. 2016). We have previously discov-

ered that hypoxia activates Notch signaling (Zhou et al. 2008), and

this activation particularly in the Eaat1-positive glial cells can sig-

nificantly enhance survival of Drosophila in severely hypoxic envi-

ronments (Zhou et al. 2011). We aimed in this study to dissect the

potential mediators of Notch-conferred hypoxia tolerance.

Eaat1-positive glial cells are critical for Drosophila
development and survival
Glutamate is both the principal excitatory neurotransmitter and a

potent neurotoxin (at high concentrations) in the mammalian CNS

A B

DC

Figure 1 Distribution of Eaat1-positive glial cells during development. The Eaat1-positive glial cells were labeled by GFP in the progeny of [Eaat1-
GAL4]�[UAS-GFP]crosses. The expression of glial marker (repo) and neuronal marker (elav) were labeled by immunostaining. (A–D): the distribution of
Eaat1-positive glial cells at first (A), second (B), and third (C) instar larval as well as adult (D) brain. Colocalization of GFP and Repo within the same cell
was highlighted in (C) (insert, image represents a Z-projection of 5–12 slices). GFP (green), Repo (red), and Elav (blue). Scale bar ¼ 50 mm.
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(Krnjevic 1970; Olney and Ho 1970; Fonnum 1984; Choi 1988;
Nicholls 1993). Indeed, extracellular glutamate levels are tightly
regulated for precise control of neurotransmission at glutamatergic
synapses, and to prevent neuronal cell death from excitotoxicity
(Danbolt 2001). In Drosophila, this process is regulated by a group of
cells that express Eaat1, the only Drosophila high-affinity glutamate
transporter (Besson et al. 1999). Although a previous study in adult
flies has shown that RNAi-mediated knocking down of Eaat1 in glial
cells increased sensitivity to oxidative stress, enhanced degenera-
tion of the brain neuropil and decreased lifespan (Rival et al. 2004),
the importance of this group of glial cells in neuronal development
and function still remains largely unknown.

First, we determined the developmental expression pattern of
Eaat1 by crossing Eaat1-Gal4 with UAS-GFP. As shown in Figure 1,
the Eaat1-Gal4 expressing cells were detected throughout all de-
velopmental stages from first instar larvae to adulthood. The
Eaat1-Gal4 positive cells are a subgroup of glial cell that
co-express the glial marker Repo (Figure 1C). Then, to further de-
termine the role of Eaat1-positive glial cells in development and
survival of D.melanogaster, we ablated these cells by specific ex-
pression of an apoptotic gene reaper (rpr) in the Eaat1-positive
glial cells through crossing the virgin female Eaat1-GAL4 with
male UAS-rpr carrying the UAS-rpr transgene on the 2nd or the X
chromosome. We found that depletion of this group of cells in
both males and females (in the progeny of Eaat1-Gal4 female
crossed with male UAS-rpr carrying transgene on the 2nd chro-
mosome) terminated D.melanogaster development at embryonic
stage under room air condition, as no pupae and adult flies were
obtained. To further confirm this phenotype, we crossed the
Eaat1-Gal4 female with male UAS-rpr carrying the transgene on

the X chromosome. With this cross, the rpr transgene was only
expressed in the female progeny. As expected, only male progeny
survived (Figure 2), demonstrating that these glial cells are essen-
tial in organismal development and survival.

Neurons and glia are two major cell types in the nervous system
of both vertebrate and invertebrate animals. Glial cells are critical
for the development and function of neurons by providing neurons
with survival and axonal guidance cues, electric shield, and acting
as macrophages to remove injured/dead cells (Yildirim et al. 2019;
Bittern et al. 2020; Hilu-Dadia and Kurant 2020). Previous studies
have shown that Notch signaling plays an important and evolution-
arily conserved role in regulating glial differentiation and prolifera-
tion during development or following neuronal injuries (Jacobs
2000; Hidalgo and Logan 2017; Kato et al. 2018; Bahrampour and
Thor 2020). Our previous study has shown that increasing Notch ac-
tivity specifically in this set of glial cells dramatically enhanced
hypoxia survival, implying that these glial cells also play an impor-
tant role in regulating organismal development and survival under
stress conditions (Zhou et al. 2011), which, at least in part, through
rebalancing hypoxia-induced dysregulation and neurotoxicity of
glutamate, maintaining the function of neuropil and development
of neuronal-glial system (Choi and Rothman 1990;Stacey et al. 2010;
MacNamee et al. 2016). In addition, discovery of the property of
Notch signaling in regulating cellular responses to hypoxic chal-
lenge further broadened the pleiotropic nature of this signaling
pathway (Zhou et al. 2011; Arumugam et al. 2018).

Creation and characterization of a dual-UAS/Gal4
system
In order to determine genetic interactions that mediate the function
of Notch signaling under hypoxic conditions, we created a dual-
UAS/Gal4 system (Supplementary Figure S1). This system contains
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Figure 2 Eaat1-positive glial cells are important for the development and
survival of D.melanogaster. Eaat1-Gal4 virgin female was crossed with
male UAS-rpr with transgene inserted on 2nd or X chromosome (Chr2 or
ChrX) to deplete the Eaat1-positive glial cells by rpr-induced cell death.
The crosses of Eaat1-Gal4 with UAS-rpr (m, Chr2) were lethal in both
males and females, none of the embryos reached adult stage. In the
cross between female Eaat1-Gal4 and male UAS-rpr (m, ChrX), only male
flies were obtained, demonstrating that the Eaat1-positive glial cells are
essential for the development and survival of D.melanogaster.

Room Air 5% Oxygen

ns

ns

***

Figure 3 Characterization of the dual-UAS/Eaat1-Gal4 system. The EN
line was crossed with UAS-LacZ or the background D.melanogaster strains
(w1118 or yw) for the transgenic lines to test the efficiency of this system.
No alterations on survival were observed in the crosses and controls
under room air condition. A significant enhancement of hypoxia survival
was detected in the [EN] � [w1118], [EN] � [yw], and [EN] � [UAS-LacZ] as
compared to the controls (w1118, yw, and UAS-LacZ) under 5% O2,
demonstrating that double the dosage of UAS-transgenes Eaat1-
Gal4>UAS-NICD/UAS-LacZ (the progeny of [EN] � [UAS-LacZ]) did not
significantly affect the hypoxia tolerant phenotype showing in Eaat1-
Gal4>UAS-NICD (the progeny of [EN] � [w1118] or [EN] � [yw]). Bars
represent mean 6 SD (n¼ 3 vials) for each group/treatment. Ordinary
one-way ANOVA [F(13, 28)¼ 108.3, P<0.0001]with Turkey’s multiple
comparison tests (*** P< 0.001; ns: not significant).
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an Eaat1-Gal4 transgene that simultaneously drives the expression

of a UAS-NICD (the functional domain of Notch receptor) transgene

to activate Notch signaling and a UAS-RNAi transgene to target and

knockdown the expression of the specific candidate gene of choice.

In order to test the efficiency of this system, we crossed the EN-line

with a UAS-LacZ transgene or a background Drosophila strain for

the transgenic lines (w1118 or yw). As shown in Figure 3, the crosses

containing Eaat1-Gal4, UAS-NICD, and UAS-LacZ (one copy of each

transgene) showed a hypoxia tolerance similar to those containing

only Eaat1-Gal4 and UAS-NICD (60%–80%), but significantly higher

than those of controls (<25%) (P< 0.01), demonstrating that the

presence of an additional UAS (Gal4 upstream activating sequence)

did not significantly reduce the efficiency of Gal4-driven expression

of UAS-NICD transgene, nor did it significantly affect the phenotype

that is induced by NICD overexpression. Hence, the dosage of

Eaat1-Gal4 is sufficient to simultaneously drive the expression of

two UAS-transgenes.

Evolutionarily conserved mechanisms underlying
Notch-conferred hypoxia tolerance
It has been shown that combinatorial and context-dependent

interactions between cellular signaling pathways regulate a wide

and diverse range of biological processes for development, ho-

meostasis, and disease. Previous studies have demonstrated that
cellular context-specific integration of Notch signaling with other
genes and pathways are essential for mediating the action of
Notch in various developmental and pathological processes

(Hurlbut et al. 2007; Bray and Bernard 2010; Borggrefe and Liefke
2012). However, the specific mechanisms by which Notch regu-
lates hypoxia survival still largely remain uncharacterized.

To identify the genetic interactions regulating Notch-
conferred hypoxia tolerance in Eaat1-positive glial cells, we

tested 7 of the 23 evolutionarily conserved candidate genes [i.e.,
branchless (bnl), crocodile (croc), Epidermal growth factor receptor (Egfr),
grain (grn), hairy (h), invected (inv), and MAP kinase kinase 4 (Mkk4)]
that have available VALIUM20 UAS-RNAi transgenic lines from

the Drosophila Transgenic RNAi Project (TRiP) at Harvard Medical
School. These TRiP RNAi lines contain a 21 bp targeting shRNAi
sequence embedded into a micro-RNA (miR-1) backbone that is
very effective for knocking down the expression of a target gene

in both soma and germline (Ni et al. 2011; Perkins et al. 2015). As
expected, knocking down hairy[h, one of the Notch downstream
genes that regulates development and hypoxia tolerance in

Drosophila (Kim et al. 2000; Cui 2005; Zhou et al. 2008)] decreased
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Figure 4 Genetic interactions regulating hypoxia tolerance conferred by activating Notch in Eaat1-positive glial cells. Specific UAS-RNAi line targeting
bnl, croc, Egfr, grn, h, inv or Mkk4 was crossed with the EN line to knock down the expression of the targeted genes individually on the background of
Notch activation in the Eaat1-positive glial cells. The eclosion rate of the progeny under hypoxic condition (5% O2) were measured. A significant
reduction of Notch activation-conferred hypoxia survival was observed in the crosses with (A) bnl knock down [Ordinary one-way ANOVA; F(4,10) ¼
18.25, P¼ 0.0001], (B) croc knock down [Ordinary one-way ANOVA; F(4,10) ¼ 11.09, P¼ 0.0011], (C) Mkk4 knock down [Ordinary one-way ANOVA; F(4,10) ¼
13.44, P¼ 0.0005], or (G) h knock down [F(4,10) ¼ 44.24, P< 0.0001]. In contrast, knock down (D) Egfr [Ordinary one-way ANOVA; F(4,10) ¼ 37.23, P< 0.0001),
(E) grn [Ordinary one-way ANOVA; F(4,10) ¼ 23.66, P< 0.0001]or (F) inv [Ordinary one-way ANOVA; F(4,10) ¼ 56.93, P< 0.0001]did not significantly diminish
the hypoxia survival rate to control levels. Bars represent mean 6 SD (n¼3 to 6 vials) for each group (*P< 0.05, ** P< 0.01, ***P< 0.001; Turkey’s multiple
comparison tests).
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Notch activation-conferred hypoxia tolerance, reducing survival
rate from 86.1% to 34.7% in hypoxia (P< 0.01) (Figure 4G).
Furthermore, we found that knocking down bnl, croc and Mkk4
also reduced Notch-conferred hypoxia tolerance (Figure 4, A–C).
However, knocking down the other candidate genes (Egfr, grn,
and inv) did not show a clear modifier effect, i.e., knocking down
Egfr, grn, and inv on the background of Notch activation ([EN] �
[UAS-RNAiEgfr]; [EN] � [UAS-RNAigrn] and [EN] � [UAS-RNAiinv])
showed hypoxia survival rates that were still significantly higher
than those of the controls (Figure 4, D–F).

The role of bnl, croc and Mkk4 in Drosophila neuronal development
has been reported in various studies. Branchless (bnl) is a fibroblast
growth factor (FGF) homolog in Drosophila that is an important regu-
lator of tracheal and neuronal morphogenesis (Barrett et al. 2008;
Muha and Muller 2013;Du et al. 2017). A neuronal expression of bnl
has been detected in embryo and larval brain, which is essential for
the induction of cell migration and neuronal connection (Du et al.
2017). Our results indicate that bnl is also expressed in the Eaat1-
positive glial cells in addition to neurons. This pattern of expression
may be important in neuronal development through regulating cell
migration and axon outgrowth to create functional neuronal net-
works. Furthermore, the expression of bnl is highly inducible by
hypoxia, and such expression of bnl is important to trigger the
growth of the tracheal system to improve O2 delivery (Jarecki et al.
1999; Centanin et al. 2008). Becauseinteractions between FGF and
Notch signaling has been observed in Drosophila and mammals in
particular in the neuronal system (Bartlett et al. 1998; James et al.
2004; Yoon et al. 2004; Ghabrial and Krasnow 2006; Zhou and
Armstrong 2007; Fujita et al. 2011; Voelkel et al. 2014), the current
results suggest that bnl produced by the Eaat1-positive glial cells is
essential for Notch-activation-conferred survival under severe hyp-
oxic conditions, at least in part, by maintaining axon growth and in-
tegrity of proper neuronal-glial connectivity during development
(Figure 6).

The crocodile (croc) gene encodes a member of the forkhead
transcription factor family in Drosophila. Genes encoding this
family of transcription factors are widely conserved during evolu-
tion ranging from yeast to humans (Hannenhalli and Kaestner
2009). In Drosophila, the expression of croc is mainly detected in
embryo, third instar larvae and adult female flies (Lee and Frasch
2004; Lopez et al. 2017). At the embryonic stage, it is expressed in
the head anlagen of the blastoderm and controls the establish-
ment of head structures (Hacker et al. 1995). Although signaling
mechanisms regulating the activity of croc are yet uncharacter-
ized, our results indicate that the Notch/croc interaction within
the Eaat1-positive glial cells is essential for organismal survival
under hypoxic condition, possibly through maintaining the via-
bility and function of these Eaat1-positive glial cells and, thus,
neuronal development (Figure 6).

A number of studies have shown that Mkk4 regulates the ac-
tivity of JNK pathway and neuronal development in
Drosophila(Geuking et al. 2009; Rallis et al. 2010).The interactions
between Notch and JNK signaling have been reported in
Drosophila and mammals during development or under disease
conditions. Such interactions may determine or fine-tune the fi-
nal output of Notch signaling in a cell context-dependent fashion
(Zecchini et al. 1999; Kim et al. 2005, 2010; Curry et al. 2006; Ho
et al. 2015). It was very interesting to find that cell-specific and
ubiquitous manipulation of Mkk4 exhibited opposite phenotypes
in terms of hypoxia tolerance (i.e., knocking down Mkk4 specifi-
cally in Eaat1-positive glial cells led to lethality, but ubiquitous
knocking down this gene enhanced hypoxia survival) (Figures 4C
and 5), implying a cell context-dependent role of JNK signaling in

hypoxia response. Indeed, it has been shown in tumor cells that
hypoxia-induced JNK activation increases resistance to chemo-
therapeutic treatment (Comerford et al. 2004), but, in the pulmo-
nary arteries, such activation leads to structural remodeling (Jin
et al. 2000). Furthermore, we found that ubiquitous knocking
down of several genes modulating the activity of JNK signaling
can enhance hypoxia survival (Azad et al. 2012), which suggests a
cell context-dependent role of JNK signaling on hypoxia response
in the organism. Therefore, we hypothesize that the interaction
between Mkk4 and Notch may regulate survival of glial cells un-
der hypoxic conditions, and, hence, hypoxia tolerance in
Drosophila (Figure 6).

In addition, we performed an experiment with ubiquitous
knocking down of these candidate genes using the da-Gal4 driver
to evaluate their role in Drosophila development and hypoxia tol-
erance (Figure 5). We found that the progeny of [da-Gal4] � [UAS-
RNAibnl] or [da-Gal4] � [UAS-RNAiEgfr] crosses were lethal under
both normoxia and hypoxia conditions. In contrast, flies with da-
Gal4>UAS-RNAigrn, da-Gal4>UAS-RNAiinv or da-Gal4>UAS-
RNAiMkk4 exhibited significantly enhanced tolerance to hypoxia
with > 2-fold eclosion rates as compared to those of the controls
under hypoxia (p< 0.01). The result of Mkk4 KD is somewhat sur-
prising: unlike specific knocking down in the Eaat1-positive glial
cells (Eaat1-Gal4>UAS-RNAiMkk4) (Figure 4C), ubiquitous knock-
down of Mkk4 significantly enhanced hypoxia tolerance in
Drosophila, suggesting a developmental and/or cell type specific
role of Mkk4 in regulating organismal response to hypoxia.

Conclusions and perspectives
In conclusion, we evaluated the interactions between Notch sig-
naling and a group of evolutionarily conserved genes in Eaat1-

**

Figure 5 Effect of ubiquitous knocking down of candidate genes on
hypoxia tolerance. Specific UAS-RNAi line targeting bnl, croc, Egfr, grn, h,
inv, or Mkk4 was crossed with the da-Gal4 driver to ubiquitously knock
down the expression of the targeted genes individually in D.melanogaster.
The eclosion rate of the progeny under 5% O2 hypoxic condition was
measured. A significant enhancement of hypoxia survival was detected
in the flies with specific knocking down of grn, inv, and Mkk4. In
contrast, the crosses with croc and h knocking down showed a similar
survival rate with the controls. And ubiquitous knocking down of bnl or
Egfr was lethal. Bars represent means 6 SD (n¼ 3 to 6 vials) for each
cross. Ordinary one-way ANOVA [F(8,48) ¼ 31.93, P< 0.0001]with Turkey’s
multiple comparison tests (**P< 0.01).
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positive glial cells and the role of such interactions in regulating

hypoxia survival in Drosophila. The synergy of signaling between

Notch and bnl, Notch and croc and between Notch and Mkk4

were found to be essential for Notch activation-conferred hyp-

oxia tolerance. We hypothesize that the synergy between these

functionally distinct signaling mechanisms regulates cell sur-

vival and neuronal development under hypoxic conditions in the

Drosophila central nervous system, and this is also sufficient for

the survival of the organism as a whole (Figure 6). Furthermore,

we provided evidence indicating that bnl, croc, and Mkk4 are

expressed in the Eaat1-positive glial cells. These conserved mech-

anisms have high potential to be translated into humans for de-

veloping strategies to treat hypoxia-induced injuries in the

central nervous system.
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