UC San Diego

UC San Diego Electronic Theses and Dissertations

Title
Exploring security implications of the AMD STREAM PROCESSOR

Permalink
https://escholarship.org/uc/item/0r38818x

Author
Lee, Seung-won

Publication Date
2008

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/0r38818x
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Exploring security implications of the AMD STREAM PROCESSOR

A thesis submitted in partial satisfaction of the
requirements for the degree Master of Science
in

Computer Science

Seung-won Lee

Committee in charge:

Professor Hovav Shacham, Chair
Professor Stefan Savage
Professor Geoffrey M. Voelker

2008

The thesis of Seung-won Lee is approved and it is accept-
able in quality and form for publication on microfilm and

electronically:

Chair

University of California, San Diego

2008

iii

II

II

v

TABLE OF CONTENTS

Signature Page ii
Table of Contents v
Listof Figures vi
Listof Tables vii
Abstract viii
Introduction L 1
CALPLATFORM e 5
A. Introduction 5
B. ProgrammingModel 5
C. CALRuntime 7

I. System 8

2. Device Management 8

3. Context Management 8

4. Memory Management 10

5. Program Loader, 12

6. Computation L 12
D. Sample application L 14
AMD Memory Controller 20
A. Memory Controller, 20
B. PCIExpress o e 22
C. Hypermemory v it 25
Windows Memory Forensic 28
A. Cyclecountsof readand write 28
B. Acquisitionof memory L. 29

1. Hardware based acquisitiontools 29

2. Software based acquisitiontools 31
C. Memory Analysis e 32
Windows Kernel Debugger 36
A. Converting virtual address to physical address 36
B. Windows Kernel Debugger 40

1. CommandsandResults 40

v

VI Conclusion e e
A. Future Work
B. Summary

Bibliography

Figure I.1:
Figure 1.2:

Figure I1.1:
Figure I1.2:
Figure I1.3:
Figure 11.4:
Figure IL.5:
Figure I1.6:

Figure III.1:
Figure II1.2:
Figure I11.3:
Figure I11.4:
Figure I11.5:
Figure II1.6:
Figure II1.7:

Figure IV.1:

Figure V.1:
Figure V.2:
Figure V.3:
Figure V.4:
Figure V.5:
Figure V.6:
Figure V.7:

LIST OF FIGURES

Hardware Abstraction (CTM) 2
AMD Stream Computing Software Stack 3
CAL System 6
CAL Platform 7
CALdeviceattribs 9
CALdevicestatus 9
Local and Remote Memory 10
CALcode generation 12
Ring-busdiagram 21
PCI systemlayout 22
The sharedbus 23
The shared switch 24
Linksandlanes 24
Memory allocation and use with HyperMemory 26
PCI Express memory auxiliary memory channel 26
VAD tree fornotepad.exe 34
Virtual to Physical (x86) 37
Virtual to Physical in PAE enabled x86 system) 38
'processO0Ocommand 41
“Ivtop”command 43
Physical address range associated with PCI bus 44
'pfnoutputo 45
GPU writing to memory region written by CPU 46

Vi

Table IV.1:

Table V.1:

LIST OF TABLES

Cycle counts of read and write

Iprocess 0 O output

Vil

ABSTRACT OF THE THESIS

Exploring security implications of the AMD STREAM PROCESSOR

by

Seung-won Lee
Master of Science in Computer Science
University of California, San Diego, 2008

Professor Hovav Shacham, Chair

Since its invention, the graphics card has become one of the most important
components of a computer system. In early days of computer architecture, the CPU
was responsible for performing most of the computations needed for the transfer of
the image data from the software state onto the screen, while the graphics card’s role
was limited to determining where the resulting image was to be placed on the screen.
However, recently developed graphics cards not only can handle manipulating and
displaying images, but are also making computational inroads into some of the tasks
formerly performed by the CPU due to their fast, highly-parallel embedded graphics
processing unit (GPU). Modern, high-end GPUs have faster computation rates com-
pared to CPUs when dealing with heavy floating-point computations, and their usage
has spread into a variety of fields, such as computing complex algorithms in Artificial
Intelligence, Bioinformatics, etc.

ATI Technologies has recently developed the AMD Stream Processor (also
known as the AMD FireStream) that uses a modified stream processor to allow a Gen-
eral Purpose Computing on Graphics Processing Units (GPGPU). The stream process-
ing hardware comes with Close-to-Metal (CTM), a hardware interface that exposes the
GPU architecture to provide direct communication to the device. The CTM allows the
developer to directly access the instruction set, along with the memory space used by

the AMD graphics card. The developer not only can allocate and access resources in

viii

the GPU local memory, but also has the ability to control resources in the CPU system
memory.

In this thesis, we particularly focus on the CTM’s ability to allow developers
to directly allocate and access memory space in the CPU. The core of our research
aims to understand how the AMD Stream Processor writes to the system memory, in-
cluding whether it writes to the system memory independent of the CPU, and whether
a malicious user can inject malicious code through the GPU without being noticed by

any anti-virus program.

1X

Introduction

The General Purpose Computing on Graphics Processing Units (GPGPU) is
a technique of using a high-performance, parallel GPUs to perform computation in
applications traditionally handled by the CPU. Modern graphics cards have additional
programmable states in the rendering pipelines to allow software developers to use
GPU on non-graphics data [2].

Unfortunately, developers have had a hard time utilizing the powerful GPU
due to the lack of an Application Programming Interface (API) that can access the
graphics hardware. The OpenGL and the Direct3D are, at present, the two most widely
used APIs in the graphics field; however, these APIs are not designed for non-graphics
applications, and hide most of the architectural details of the GPU that may be useful
or necessary to application programmers.

The AMD Stream Processor is a stream processor that utilizes the GPGPU
concept for heavy floating-point computations. The Stream Processor comes with a
new hardware abstraction called Close-to-metal (CTM). The CTM exposes the GPU
architecture as a data-parallel processor array and a memory controller, fed by a com-
mand processor [5]. Figure I.1 illustrates how the CTM exposes GPU. The applica-
tions can directly communicate with the GPU by calling the CTM APIs that control

the command processor. The Data Parallel Processor Array (DPP) executes the CTM

Application

CTM API

GPU

v

Command

Processor _ i CPU memory
Memory

1 Controller

Data Parallel

) GPU memory

Processor

Array

Figure I.1: Hardware Abstraction (CTM)

program, and interacts with the Memory Controller (MC) to read from and write to
memory space in both CPU (System) and GPU (Local). The CTM hides all other
graphics-specific features and eliminates driver-implemented procedural APIs to push
policy decisions to application and remove constraints imposed by graphics APIs [41].

Our intuition of the CTM was that it gives too much leverage to the develop-
ers by allowing them to read/write directly to/from CPU (system) memory. If the write
function occurs independent of the CPU, a malicious user not only can inject malicious
code, but can also overwrite the memory space used by the kernel. In addition, virus
scanning programs may have a hard time detecting malicious behavior if the injected
code resides on the GPU side.

Unfortunately, AMD has revamped the CTM and has released a new hard-
ware abstraction called the Compute Abstraction Layer (CAL). The CTM Software
Development Kit (SDK) is no longer available, and the developers now must use the
Stream Computing SDK available at [9]. We actually had use of both the CTM and the
CAL SDK, but decided to use the CAL, since the CTM SDK does not support high-

end graphics cards, and the CAL supports most of the features present in the CTM,

Stream Applications

Libraries 3rd party Tools
ACML RapidMind
Shader 3D Graphics
Brook+ Analyzer Inter-operability
AMD Runtime Compute Abstracion Layer

Close—to-the—metal
AMD

AMD
Multicore e
CPUs

Processors

Figure 1.2: AMD Stream Computing Software Stack

including the ability to allow developers to directly access the CPU system memory.

The Stream Computing SDK is composed of Brook+, a modified Brook open
source compiler and CAL, a cross-platform interface to the GPU [9]. Figure 1.2 shows
the software stack of stream applications.

The Brook+ is an open source Brook C/C++ compiler for developers creating
non-graphics applications able to run in the GPU environment. Ordinary developers
should first try using Brook+ to write applications, since Brook+ is more straight-
forward, in a sense that it allows users to program a C-level code for the kernel that
runs on the GPU. In addition, Brook+ sits on top of CAL and provides more user-
friendly APIs. However, we used CAL to write our application, since CAL allows
users to allocate and access resources in CPU system memory. The details of the rest

of the components in the software stack of the AMD stream applications can be found

at [8].

The remainder of this thesis is about our understanding of how the AMD
Stream Processors accesses the CPU system memory under Windows XP Service Pack
2.

In Chapter II, we first describe CAL platform along with the application
we have used to invoke the GPU to write to the system memory. In Chapter III, we
describe the memory controller used in the AMD Stream Processor, including how it
accesses system memory through the PCI Express interconnect. In Chapter IV and
V, we describe various tools and experiments that we have used to verify whether the
GPU indeed writes to the system memory, independent of the CPU. Finally, in Chapter

VI we conclude our discussion, along with an overview of future work.

II

CAL PLATFORM

In this chapter we describe the structure of the Compute Abstraction Layer
(CAL) and the various CAL runtime components, along with their relevant APIs. For
further understanding we present, at the end of the chapter, a sample application that
causes the GPU to write to the system memory. Most of the contents in this chapter
can be found in the “AMD Compute Abstraction Layer Programming Guide” [6] and
“CAL Platform” [12].

II.A Introduction

“The AMD CAL is designed to provide an easy-to-use, forward compatible
interface to the high-performance, floating-point, parallel processor arrays found in
the AMD Stream Processors” [6]. The computational model of CAL is processor-
independent, and it allows users to switch from directing a computation from the GPU

to the Central Processor Unit (CPU), or vice versa.

II.LB Programming Model

Figure II.1 illustrates a CAL system. It has one master process driving one

or more GPU devices. The CPU is responsible for running the master process and

REMOTE (SYSTEM) Memory

v

Command
Master \

Process) Status

Device 1 Device n

LOCAL(GPU) LOCAL(GPU)

Memory Memory

Figure II.1: CAL System

for sending commands to the GPU through the CAL APIs. Each GPU is a physical
device that runs CAL programs. The GPU receives commands from the CPU, and
runs the computational function specified by the application running on the CPU side.
Both the GPU device driver program and the CAL run on the CPU side. A device
is connected to two memory subsystems: the local (GPU) and the remote (system)
memory. Context on a device can read from and write to its GPU local memory through
fast memory interconnects, and it can also access remote (system) memory through the
PCI Express interconnect. The details of PCI Express are presented in chapter III. The
master process executing on the CPU side also has access to both of the memory pools.
The CAL abstraction has two key types of commands: device commands and context
commands. The device commands involve resource allocation to both local and remote
memory. A context is composed of a queue of commands that are sent to a device. All
resources are created on devices, and must be mapped into a context to provide scoping
and access control. This feature allows multiple contexts to access the same memory

resource; synchronization of these contexts should be handled by the programmer.

Memory

Program »

Processor

Inputs

v

r

Outputs

Figure I1.2: CAL Platform

A device has one or more computational stream processors. The stream
processor receives input, executes computational functions (also referred to as kernel),
and subsequently writes the results to an output resource. Both inputs and outputs may
reside in either the local or the remote memory. Figure II1.2 shows the computational

model of CAL.

II.C CAL Runtime

The CAL runtime is composed of multiple parts: the system, the device
management, the context management, the memory management, the program loader,
and the program execution. In this section, we describe what these components are

responsible for, and how some of the key APIs are related to each of these components.

II.C.1 System

The system component is responsible for both initializing and shutting down
of the CAL system. The callnit routine initializes the CAL system and recognizes
all the running CAL devices on the system. This routine should be invoked at the
beginning of an application, before calling any other operations. Similarly, calShut-
down should be called before closing the application, in order to cleanly shut down
every component. The application can query the CAL version running on the system

through the callGetVersion routine.

II.C.2 Device Management

The device management component manages both opening and closing de-
vices. Multiple devices can run in the CAL system, and each device is identified by
a unique number in the range [0..N-1], where N is the number of available CAL de-
vices on the system. The calDeviceGetCount routine is used to query the number of
devices, and GPUs running on the system. The general device information, including
the device type and the maximum dimensions of buffer resources, can be retrieved by
the calDeviceGetlnfo routine. Before running any device operations, a dedicated con-
nection between the device and application should be created using the calDeviceOpen
routine. Similarly, an application needs to shut down the device before it exits through
the calDeviceClose routine. In addition to retrieving the basic information of a device
returned by the calDeviceGetlnfo routine, the application can extract more detailed
information using the calDeviceGetAttribs and the calDeviceGetStatus routines. Fig-

ure I1.3 and II.4 are the structures returned by the routines.

II.C.3 Context Management

The context management component is responsible for creating and destroy-
ing contexts on a particular device. A context can be thought of as an abstraction

representing all the device states that affect the execution of a CAL kernel. The ap-

Struct CAL deviceattribs

{

CALuint struct_size:
CAltarget target;

CALuint physical RAM;
CALuint uncachedRemoteRAM:
CALuint cachedRemcteRAM:
CALuint engineClock:
CALuint memoryClock:
CALuint wavefrontSize:
CALuint numberofSIMD;
CALboolean doublePrecision:
CAltarget reservered1-4:

CAlLboolean memExport:

[+size of CALdeviceattribs struct
[+asic identifier

[+amount of local GPU RAM
[+amount of uncached remote RAM
[+amount of cached remote RAM
[+GPU device clock rate

/=GPU memory clock rate
[=Wavefront size

J=number of SIMDs

/~double precision supported
[+reserverd

/*memory export supported

Figure I1.3: CALdeviceattribs

Struct CALdevicestatus

{

CALuint struct_size:

CALuint availLocalRAM:

[+ size of struct

[+available local RAM

CALuint availuncachedRemoteRAM: /+ available uncached remote memory

CALuint availcachedRemoteRAM;

[*available cached remote memory

Figure I1.4: CALdevicestatus

10

' LOCAL |
PCl . MEMORY
SYSIEM _ Express
I: :
v MEMORY |

MEMORY |

Figure I1.5: Local and Remote Memory

plication needs to have a valid CAL context before executing any kernel on a CAL
device. The application can create or destroy a CAL context by calling the calCtx-
Create and the calCtxDestroy routines, respectively. Destroying a context involves
releasing all modules and memory related to the specified context. As we mentioned
earlier, a resource needs to be mapped onto a context for scoping and access control.
The calCtxGetMem routine is used to map a resource onto the specified context, and it
generates a memory handle of the resource. Before closing the application, a generated

memory handle needs to be released through the calCtxReleaseMem routine.

II.C.4 Memory Management

The memory management component manages allocating and freeing mem-
ory resources in both local and remote memory. All CAL devices have access to local
and remote memory. Remote memory corresponds to memory that is not local to
the given device (GPU). In this document, remote memory, however, refers to system

memory only (Figure IL.5).

11

The following steps are required before using the memory buffers in the CAL

kernel:
e Allocating memory resources (local or remote).

e Initializing the input and constant contents by mapping the resource onto appli-

cation address space.
e Creating memory handles for each resource.
e Binding memory handles to corresponding parameters in CAL kernel

‘Resource’ refers to all physical memory blocks allocated in both local and
remote memory. Local resources are allocated using the calResAllocLocal routine.
Similarly, remote resources can be allocated through the calResAllocRemote routine.
At the time of allocation, both the data type and the format of the element in resources
need to be specified. The supported formats are 8, 16, 32-bit, signed and unsigned in-
teger types, as well as 32 and 64-bit floating-point types. An allocated remote resource
uses uncached system memory by default, and may slow down the system when ac-
cessed by the CPU. However, uncached memory does give better performance for
non-CPU involving operations (e.g. Direct Memory Access (DMA)). CAL resources
are used as inputs, outputs and constants to CAL kernels. Inputs and constants need
to be initialized by the host application through the calResMap routine. The routine
maps the resource to the applications address space and returns a host-side memory
pointer. The routine is synchronous and blocks every other operation until the CPU
pointer is valid. For a local surface, this may require a copy of a resource; however,
for remote surfaces a pointer is always returned without copying. This function is one
of the key APIs to keep in mind, since the returned pointer is equivalent to the virtual
address of the resource which is required to perform various Memory Forensic tech-
niques, which we describe in chapter IVand in chapter V. A mapped resource cannot
be accessed by the CAL kernel; therefore, the resource needs to be unmapped through

the calResUnmap routine before being used by the kernel.

12

Application

External Tools for High

Level Language Translation

CAL Compiler

Processor specific
ISA

Figure I1.6: CAL code generation

II.C.5 Program Loader

This component provides a mechanism to load an image (or program) onto
a context. The CALimage executable file format must be the Executable and Linking
Format (ELF) [11]. Creating an image involves compiling and linking a source written
in one of many supported languages (e.g. Microsofts DirectX High Level Shading
Language (HLSL); Brook+ [10]; or AMD Intermediate Language (IL) [7]).

The calclCompile routine invokes the CAL compiler to compile device ker-
nels written in one of multiple supported interfaces, and generates a binary object
specific to a given device (Figure 11.6). After compilation, the object needs be linked

into an image through the calcllink routine.

II.C.6 Computation

The Computation component handles setting up the inputs, outputs, and the

entry point in the loaded program, along with executing a computation on a given

13

context.
Computation (Kernel execution) on a CAL device involves three high level

steps: module loading, parameter binding, and kernel invocation.

e Module Loading A linked CAL image needs to be loaded as an executable mod-
ule through the calModuleLoad routine. For execution, the entry point within the
module needs to get specified before running the kernel. This entry point can be

queried through calModuleGetEntry routine.

e Parameter Binding The CAL runtime also provides interfaces to setup various
parameters, such as inputs, outputs, and constants, which are required by the
CAL module. Each parameter is identified by IL-style variable name. For in-
stance, i# represents inputs, o# represents outputs, and cb# is used for constant
buffers. The calModuleGetName routine returns a variable handle within the
module. These variable handles can be bound to any of the memory handles cre-
ated by the calCtxGetMem routine in context component, and can later be called

by the kernel at runtime.

e Kernel Invocation The calCtxRunProgram routine launches a kernel by speci-
fying context, entry point and the domain of execution. The calCtxRunProgram
is an asynchronous routine and the application is free to call any other routines
while the computation is being done. The programmer can use calCtxIsEvent-
Done routine to check for the completion of the event. calMemCopy routine also
invokes CAL kernel, and is used to copy data buffers between remote and local
devices. The routine uses a dedicated DMA engine in memory controller and is
also asynchronous. The use of DMA can improve data transfer rates by accessing

system memory directly independent of the CPU.

14
II.LD Sample application

In this section, we provide an application we have used to invoke GPU to

write to system memory using CAL APIs.

/////Header files /////
#include "cal.h"
#include "calcl.h"

#include <string>

The following code snippet is the kernel code written in AMD Interme-
diate Language. It basically loads the input buffer to the register 0 using “sam-
ple_resource(0)_sampler(0)” and writes the value to the output buffer 00. The details

of each command can be found at AMD Intermediate Language (IL)[7]).

std::string programIlL =

"il ps_2_0\n"

"dcl_input_interp(linear) vObjIndex0.xy\n"
"dcl_output_generic o0\n"
"dcl_resource_id(0)_type(2d)_fmtx (SINT)_
fmty (SINT)_fmtz (SINT)_fmtw(SINT)\n"
"sample_resource(0)_sampler(0) r0, vO0.xyxx\n"
"mov o0, rO0\n"

"ret_dyn\n"

"end\n";

The following code snippet initializes CAL, retrieves the number of available
devices in the system and opens the first (Oth) CAL device. The application then

retrieves the device attributes and creates a context on the opened device.

int main(int argc, char** argv)

{

15

//Initializing CAL
calInit();
CALuint numDevices = 0;

calDeviceGetCount (&numbDevices) ;

//Opening device
CALdevice device = 0;

calDeviceOpen(&device, 0);

//Querying device attribs
CALdeviceattribs attribs;
attribs.struct_size = sizeof(CALdeviceattribs);

calDeviceGetAttribs(&attribs, 0);

//Creating context to opened device
CALcontext ctx = 0;

calCtxCreate(&ctx, device);

The following code compiles the device kernel via calclCompile and links

the generated object file into an image via calclLink.

CALobject obj = NULL;

CALimage image = NULL;

CALlanguage lang = CAL_LANGUAGE_TIL;
std::string program = programlL;

std::string kernelType = "IL";

calclCompile(&obj,lang,program.c_str(),attribs.target);

calclLink(&image, &obj, 1);

16

The following code allocates memory for input and output buffers used by
the device kernel. Input buffer gets allocated in GPU local memory via calResAllocLo-
cal, while output buffer gets allocated in system memory through calResAllocRemote.
By allocating the output buffer in system memory, GPU is forced to write the result-
ing value to CPU remote memory. The application then initializes the input buffer by

filling in a constant value 588 and maps both input and output buffer into a context.

// Input and output resources
CALresource inputRes = 0;

CALresource outputRes = 0;

//allocating resource in GPU memory
calResAllocLocal2D(&inputRes, device, 256, 256,

CAL_FORMAT_INT_1, 0);

//allocating resource in CPU system memory.
calResAllocRemote2D (&outputRes, &device, 1,256, 256,

CAL_FORMAT_INT_1, 0);

//Initializing input buffer by filling in value(588)
int* fdata = NULL;

CALuint pitch = 0;

calResMap((CALvoid**)&fdata, &pitch, inputRes, 0);
for (int i = 0; 1 < 256; ++1i)

{

int* tmp = &fdatal[i * pitchl];

for (int §j = 0; J < 256; ++7)

{tmp[j] = 588;}

}

17

//Mapping buffers into context
calCtxGetMem(&inputMem, ctx, inputRes);

calCtxGetMem(&outputMem, ctx, outputRes);

As we mentioned in previous section, computation (kernel execution) is done
by executing three high level steps:Module Loading, Parameter Binding, and Kernel
Invocation. The following code demonstrates how each step can be done in applica-

tion.

// Creating module using compiled image
CALmodule module = 0;

calModuleLoad(&module, ctx, image);

// Defining symbols in module
CALfunc func = 0;

CALname inName = 0, outName = 0;

// Defining entry point for the module(parameter binding)
calModuleGetEntry(&func, ctx, module, "main");
calModuleGetName (&inName, ctx, module, "i0");

calModuleGetName (&outName, ctx, module, "oO");

// Setting input and output buffers used in the kernel
calCtxSetMem(ctx, inName, inputMem) ;

calCtxSetMem(ctx, outName, outputMem);

// Setting domain

CALdomain domain = {0, 0, 256, 256};

18

// Event to check completion of the program

CALevent e = 0;

//kernel invocation

calCtxRunProgram(&e, ctx, func, &domain);

//Waits till the completion of an event

while (calCtxIsEventDone(ctx, e) == CAL_RESULT_PENDING) ;

The final code snippet shows the process to close the application cleanly.
All module, image, object needs to be freed and every allocated resource should be

de-allocated before killing the context.

// Unloading the module

calModuleUnload(ctx, module);

// Freeing compiled program binary
calclFreeImage(image) ;

calclFreeObject(obj);

// Releasing resource from context
calCtxReleaseMem(ctx, inputMem);

calCtxReleaseMem(ctx, outputMem);

// Deallocating resources
calResFree(outputRes);

calResFree(inputRes) ;

// Destroying context

calCtxDestroy(ctx);

// Closing device

calDeviceClose(device);

// Shutting down CAL

calShutdown() ;

return 0;

}

19

I

AMD Memory Controller

In Chapter II, we described the structure of Compute Abstraction Layer
(CAL) along with various CAL runtime components, including memory management.
In this Chapter, we focus on AMD GPU’s memory controller (MC), including its struc-

ture and the way it accesses system memory through the PCI Express.

III.LA Memory Controller

Every GPU includes a memory controller, which is responsible for managing
complex task of multiple read and write requests issued by the processors [14]. This
can be thought of as a client/server arrangement, where clients such as shader proces-
sors units, texture units, and the PCI express interface, sending memory requests to
memory controller which acts as a server. As graphics performance scales upward, the
need for the amount of data transfer over a link or interface has scaled with it. The
faster the GPU processes data, the more memory bandwidth must be provided to run
the system at peak efficiency. There are multiple ways to increase memory bandwidth.
The most common ways are to increase the width, clock speed or data rates of the
interface. However, these methods force not only the GPU, but also the attached mem-
ory devices to implement the supporting technologies. On the other hand, methods

like latency hiding, caching, and compression techniques, can be implemented only in

20

21

AV il

]E Ring

PCl Express St°°

Ring Stop S'S
Ring a bemacy E
Stop Controller

gitgi Bi'bi_t_rqgmw
ﬁ 1024 bit ring bus ‘ i ‘ | sl ‘ e
SiZbitread+ & ¥ 3 ¥

‘512 bitwiite

=
a

UL

Ring Stop

t I 4
Arbrter Arbrter

Hll
Hll

Figure III.1: Ring-bus diagram

the GPU, without modifying the attached memory devices. The ATI Technology has
invented a ring bus memory controller that increases the memory performance, using
all of these techniques.

Figure III.1 shows the ring-bus memory controller used in AMD ATT graphic
cards. The controller is fully distributed instead of using a central arbiter. The internal
memory bus uses ring topology and consists of four bidirectional ring buses. The
memory is connected to the buses at the so-called “Ring Stops” [40]. Each Ring Stop
sends out data to the requesting client, according to memory controllers instructions.
The memory controller is divided up into eight separate 64-bit memory channels, for a
total of 512-bits [30]. Each channel accesses portions of the frame buffer, and memory
accesses are done by circling the ring bus to find the proper STOP. Four ring stops

are used for local GPU memory and PCI Express Ring Stop is dedicated for accessing

22

Core Logic Frontside

Chipset __bus

Figure II1.2: PCI system layout

the PCI Express memory space in the CPU. From the GPU point of view, all memory
space, including both the local and the remote one, are thought of as one linear memory

space. More details are presented at the end of this chapter.

III.LB PCIExpress

We have mentioned the PCI Express on several occasions so far; in this sec-
tion, we take a detailed look at PCI Express: what it is, and how it improves the
interconnect scheme. Before we go into the PCI Express, it is worthwhile to take a
look at the PCI system layout.

Figure V.5 shows the layout of a PCI system. “The core logic chipset acts
as a switch or router, and it routes I/O traffic among the different devices that make
up the system” [22]. In reality, the chipset is split into two parts: the Northbridge
and the Southbridge. The Northbridge handles communication between CPU, main

memory, and the video card, while the Southbridge routes traffic from different I/O

23

Figure I11.3: The shared bus

devices such as, hard drive, USB ports, Ethernet ports, etc. The PCI bus is attached to
the Southbridge and is the slowest bus in modern PC system. PCI uses a shared bus
topology to allow communication among different I/O devices on the bus as shown in
figure IIL.3.

The bus arbitration, which can be thought of as a scheduler, is in place to
order which device gets access to the system. This scheme is very simple, cheap and
easy-to-use; however, the main bottleneck is performance, especially when multiple
devices try to access the system simultaneously.

PCI Express was invented to overcome this bottleneck. The main different
between PCI bus and PCI Express is that PCI Express uses a point-to-point bus topol-
ogy instead of shared bus topology (Figure I11.4).

In a point-to-point topology, a switch is the single shared resource, and each

Figure I11.4: The shared switch

X1 Link X2 Link

Figure II1.5: Links and lanes

24

25

device has an exclusive access to the switch. The CPU can talk to any of the PCle de-
vices by accessing the address space of that device and opening up a direct communica-
tion link. “The fundamental building blocks that make up the fabric of the PCI Express
interface are lanes and links” [16]. Two PCI Express devices are connected through a
link which is composed of one or more lanes. Each lane is a dual-unidirectional com-
munication channel between two PCI Express devices, and is capable of transmitting
one byte at a time in both directions. (Figure IIL.5).

The biggest advantage of this scheme is that it allows aggregating multiple
lanes to form a single link. In other words, you can double the bandwidth of a link by

coupling two lanes together to form a single link.

III.C Hypermemory

The final piece of information we mention, is HyperMemory, a technology
developed by ATTI to use system memory as part of the video card’s frame-buffer mem-
ory. HyperMemory technique is not used in the high-end graphics cards. However, the
concept of HyperMemory will help reader to understand how GPU accesses the sys-
tem memory. HyperMemory relies on a fast data transfer mechanism within the PCI

Express and has two key components [13].

e “Pre-emptive virtual memory along with the intelligent memory allocation to al-

low GPU to have less local memory without suffering from performance loss.”

e “A memory controller connected to the GPU’s PCI Express interface to allow the

PCI Express interface treated as a part of GPU local memory resources.”

Figure III.6 illustrates the memory allocation and use by the application
when HyperMemory memory manager is in place. Hypermemory manager preemp-
tively removes unused memory blocks from the local GPU memory to higher-latency,
remote system memory. It also re-orders memory allocations requested by the appli-

cation, and intelligently decides where to actually store the data.

HyperMemory
Manager

Memory

Managzr

Buffer requested by

application Buffers intelligently

allocated by
HyperMemory
/|

= Memory use =p
=Memory Allocation =

Figure II1.6: Memory allocation and use with HyperMemory

DDR interface

Core logic

Auxiliary Memory

: Controller
Aux Memory Interface

DDR interface> | Reles M=l iiteladl!
DDR interface> Eete= 1 2 Te a2

PCI Express

Interface

Figure I11.7: PCI Express memory auxiliary memory channel

26

27

Figure III.7 illustrates how the PCI Express auxiliary memory channel fits
into a system. There are two things that can be drawn from HyperMemory technique:
The first is that the allocation of resources in system memory does not involve any
interaction with the CPU. The CPU (or the operating system) initially decides and
allocates a region of memory space (PCI Express memory space) that is accessible
by GPU; however, as we have seen in Figure I11.6, it is the memory manager who is
responsible for allocating and storing resources within the PCle memory space. The
other thing to keep in mind is that the GPU do not have any knowledge of whether it
is accessing a local GPU memory or a remote system memory. Instead, both of them

are part of one large linear memory space from the GPU’s stand point of view.

IV

Windows Memory Forensic

After understanding how the CAL system works, we need to next check
whether the GPU is indeed writing onto the system memory, and if so, which region
of the memory is written on.

In recent years, memory forensic has become one of the most popular tech-
niques to identify offensive attacks such as viruses, worms and trojans. “Traditional
forensics procedures examined hard disks by acquiring an exact sector-by sector copy
for later analysis” [19]. However, acquiring disk image was not sufficient to detect
any volatile information residing in random access memory (RAM), such as process
information, network connections, command history, etc.

Our first intuition was that this memory forensic technique could help us
understand how the GPU writes to the system memory.

In this chapter, we describe various techniques of acquiring and analyzing

Windows physical memory, and the experience we’ve had dealing with them.

IV.A Cycle counts of read and write

Before using any of the forensic tools, we first ran a simple experiment to
check how many cycles get consumed when the GPU reads or writes to the system

memory. We then compared those numbers to the cycles counts consumed when the

28

29

CPU reads/writes to its own system memory. The cycle counts should not show a huge
difference if the GPU is indeed writing to the system memory.

Table IV.A are the results gained from our experiments.

e CPU-CPU without CAL represents the case where the CPU reads/writes to its

own system memory, without invoking the CAL system;

e CPU-GPU represents the case where the CPU reads/writes to the GPU memory
under CAL;

e CPU-CPU represents the case where the CPU accesses its own memory under

CAL;
e GPU-CPU represents the case where the GPU writes to the system memory.

We ran this experiment multiple times by changing the size of the allocated
memory region (array). As we expected, the cycles consumed by the wrife operation
were quite similar in all cases. However, the number for read operations was on a
bigger order of magnitude under the CAL system. The explanation of this behavior is

presented in chapter V

IV.B Acquisition of memory

In order to analyze volatile information, we first need to collect all data that
resides in the RAM. There are two approaches to acquire physical memory images:

hardware and software oriented.

IV.B.1 Hardware based acquisition tools

Hardware-based acquisition relies on a dedicated hardware (physical device)
to access physical memory through a dedicated communication port. Two most widely

used tools are: Tribble and FireWire bus.

30

Table IV.1: Cycle counts of read and write

Case | Write | Read
CPU-CPU without CAL 152 1256
CPU-GPU 472 600
CPU-CPU 224 1944
GPU-CPU 4308 N/A
(a) 1x1 array
Case | Write | Read
CPU-CPU without CAL | 42920 | 36656
CPU-GPU 38232 | 341792
CPU-CPU 37656 | 367912
GPU-CPU 77432 N/A
(b) 64x64 array
Case | Write | Read
CPU-CPU without CAL | 147856 | 134904
CPU-GPU 144656 | 1267776
CPU-CPU 144888 | 1288712
GPU-CPU 179448 N/A
(c) 128x128 array
Case ‘ Write ‘ Read
CPU-CPU without CAL | 372000 | 323520
CPU-GPU 345776 | 3155488
CPU-CPU 348952 | 2940032
GPU-CPU 333432 N/A
(d) 196x196 array
Case | Write | Read
CPU-CPU without CAL | 586312 | 530296
CPU-GPU 569904 | 5197191
CPU-CPU 570112 | 4943512
GPU-CPU 563416 N/A

(e) 256x256 array

31

e Tribble. This technique requires a dedicated PCI card, and needs to be installed

before incident occurrence.

e FireWire bus. “FireWire bus, also known as IEEE 1394 bus, supports high speed

communication and data-transfer, and physical access to system memory” [19].

The main advantage of the hardware-based acquisition technique is that it
uses Direct Memory Access (DMA) to prevent any interaction with the operating sys-
tem, and it gives the user the exact memory image. However, the installing process

can be a little tricky and may not be worthwhile to use.

IV.B.2 Software based acquisition tools

e Data Dumper (DD) Data Dumper available on G.M. Garner website [20] is the
most widely used software-based acquisition tool. This solution yields a very
light footprint and is very easy to use. Data Dumper does not support the latest
version of Windows, since DD retrieves the memory image by accessing the spe-
cial device “\Device \Physical-Memory”, which is prohibited since Windows
2003 Service Pack 1. Recently, ManTech International Corporation released
MDD, which generates a DD-style memory dump and supports Windows 2000,
XP, Vista, and Windows Server [23]. The major drawback of Data Dumper is that

it can last for several hours of operation, according to the size of the RAM.

e Userdump Microsoft also has its own tool for memory dump, called Userdump
[34]. This software creates a dump file (DMP format) of a process, instead of
dumping the entire RAM, and is only compatible with Microsoft tools. If you are
only interested in memory contents written by a specific process and are planning
to use one of the Microsoft tools to analyze the dump file, Userdump should be

the best tool to use.

e Crash dump Utility Last technique is to be used with the Windows crash dump

utility. In Windows, when a crash dump occurs, the system state and the contents

32

of the memory are copied to a disk. The output file is in .DMP format and is
only compatible with Microsoft tools. “Crashes can be easily induced through a
specific keyboard shortcut when the following registry key [CrashOnCtrl-Scroll]
is set to REG-DWORD” [31]. Currently, complete dumps are not available any-

more and are mostly used for debugging purpose.

IV.C Memory Analysis

Collecting volatile memory is just the first step of the job: We need addi-
tional tools to read the contents of the memory image, and reconstruct important data

structures from a raw memory file:

e String.exe This tool should only be used to search predefined key words, since
it does not have the ability to reconstruct any data structures from raw memory
files. However, it can still be useful to check whether certain contents have been

written to memory.

e BinText BinText is also a text extractor that has the ability to find ASCII, Unicode
text, and Resource strings [18]. This tool also has the ability to filter out unwanted

text.

e PTfinder “Process and thread finder (PTfinder) is a Perl script created by An-
dreas Schuster that detects all running processes and threads at the time of RAM
acquisition” [32]. This tool is useful in the way that it identifies _-EPROCESS
and _LETHREAD structures in Windows memory dump files. However, that is
basically all it can do; it does not include any other features to help user perform
a deep analysis on dump file. PTfinder supports all versions of Windows, from

2000 to Windows server 2003.

e KnTTools with KnTList This tool can both acquire the physical memory (KnT-

Tools) and interpret the structures in memory (KnTList) [21]. I personally did not

33

have a chance to use this tool, since it is commercial software; however, it seems

that KnTTools is equivalent to Data Dumper, and KnTList is similar to PTfiner.

e Volatility The Volatility Framework, originated from Volatools [35], is a com-
pletely open collection of tools, implemented in Python under the GNU General
Public License, for the extraction of digital artifacts from volatile memory images

(DD-style) acquired from Microsoft Windows XP SP2.[36].

The extraction capabilities from images include:

1. Date and time information from an image;

2. Running processes;

3. Open network sockets;

4. Open network connections;

5. DLLs loaded for each process;

6. Open files for each process;

7. OS kernel modules;

8. Mapping physical offsets to virtual addresses;

9. Virtual Address Descriptor (VAD) information.

This tool is much more powerful than PTfinder, since it does not only have the
ability to detect all running processes, it can also identify all loaded modules for
process and kernel. Mapping the physical offsets to virtual addresses, do not
seem to work correctly. Volatility also has the ability to dump Virtual Address
Descriptor (VAD) used by windows memory manager. VAD describes the mem-
ory ranges used by a process as they are allocated [17]. When a process allocates
memory with VirtualAlloc, an entry in the VAD tree is created and the corre-
sponding page directory and page table entries are not created unless the process
references that particular entry in the VAD tree. This behavior can save a signif-

icant amount of memory space if a process allocates a huge amount of memory,

34

Vad @80e1234
00190000 - 00120000

VRN

Vads @80e2534 Vadl @ffal234
00030000 - 00070000 01100000 - 01120000
4 \ 7 Y
V4 \ 7 \
»/ % ,’ Y
ControlArea @80e3534 FileObject@80d1434

Flags: Accessed, File Name: notepad.exe

Figure IV.1: VAD tree for notepad.exe

but rarely accesses it. A VAD tree is a self balancing tree, with memory address
lower than the current node staying in the left side of the sub-tree and higher one

in the right (Figure IV.1).

I personally had a hard time extracting any useful information from VAD nodes.
The tool is still at an early stage of development, and if one is interested in locat-
ing the physical page ranges associated with a process, one still needs to know
the page directory and page table entries of a process. Nonetheless, Volatility
was the most straightforward tool to use, and was especially useful in identifying

loaded modules.

Windbg Windbg, a debugger with a graphical user interface and a console in-
terface, is one of the tools included in Microsoft Windows Debugging Tool[39].
Windbg supports analyzing the dump file with a.DMP format. Should one decide
to use windbg, either “Userdump” or “Crashdump Utility” must be used to gen-
erate the dump file. The installing and learning phase of Windbg took significant

amount of time; however, this tool seems to be more useful than any other tools

35

mentioned above. User can retrieve the assembly code of a process, stack infor-
mation, register values, and the contents for specified virtual address. Windbg
also supports retrieving the Virtual Address Descriptor (VAD) nodes related to a

process. The list of windbg commands can be found at [15]

Memory forensic is a fairly new area that not many people are familiar with.
It can be very useful in retrieving Process information, Network connections, Network
status, Command history, Services/driver information and Logged users with their au-
thentication credentials [33]. However, it is still at an early stage of development and it
requires further research. The analysis can vary among different versions of Windows
Operating System. In addition, the acquired memory image may not contain the infor-
mation that users are interested in, since the pages in the system memory constantly
get swapped in and out. Therefore, examiner should expect a significant amount of
time and effort in using memory forensic technique.

The main goal of our memory analysis was to identify the physical memory
region written by a process (or GPU), and to extract the flag settings of a page (Write-
Copy, Write, Read, Execute, etc), in order to tell if the GPU is indeed writing to the
system memory. Unfortunately, none of the tools were able to extract the page table
information of a process. Nonetheless, we believe the contents of this chapter can still

help many researchers to decide whether he/she should use this technique.

\Y%

Windows Kernel Debugger

After trying out various memory forensic tools, we were still facing the same
issue: How can we find the physical address ranges written by a process (or GPU)?
In other words, we had to check whether the backing pages written by GPU were in
the range associated with the System board, or in the range associated with the PCI
bus. We decided to try using the Windows Kernel Debugger, which is also a part of
Microsoft Debugging Tools. In this section, we first describe how to convert virtual
address to physical address in an X86-system, followed by the experience and results

we have obtained by using the Windows Kernel Debugger.

V.A Converting virtual address to physical address

Before we go into Windows Kernel debugger, it is worthwhile to take a look
at how a virtual address gets translated into a physical address in X86 system.

Figure V.1 illustrates how a virtual address gets translated into a physical
address on a non PAE-enabled X86 system. CR3, also known as a Page-Directory
Base Register (PDBR), is the CPU’s control register, which contains the physical base
address of the page-directory, and each process has a distinct CR3 value.

The virtual address (32 bit address) is a combination of three fields [37]:

e Page Directory Index = Upper 10 bits of virtual address;

36

CR3|
==
PD FAL PAGES
PT N 1
— L —
1024 PDEs 1024 PTEs
0000000000 0100101111 1011000000

Virtual address (0x12F980)

Figure V.1: Virtual to Physical (x86)

e Page Table Index = Next 10 bits of virtual address;

e Offset into data page pointed by PTE = Lower 12 bits.

DATA

37

CR3 register, along with upper 10 bits of virtual address, gives us the Page
Frame Number (PFN) of Page Directory Entry (PDE). The value stored in the PEN is

the base address of the Page Table Entry (PTE), and along with Page Table Index (next

10 bits of virtual address), the PEN of the PTE can be retrieved. The value stored in

the PFN of the PTE points to the top of a 4 KB physical page that contains the data

written by a process, and the lower 12 bits of the virtual address are then used to locate

the physical address that holds the desired data.

Physical Address Extension (PAE) refers to a feature of x86 and x86-64 pro-

cessors that allows more than 4GB of physical memory to be used in a 32-bit sys-

tem [29]. In Windows XP Service Pack?2 and later versions, the PAE mode is turned

on by default on processors with no-execute (NX) or execute-disable (XD) features

38

— ’_I:
CR3 Page

Directory 4 KB

Pointer — pTE PAGES

Entries
512 Page
Directory 512 Page

—] Enfries Table

PDPI (?bits) | Page Directory Index | Page Table Index
(9 bits) (9 bits)

Virtual Address

Figure V.2: Virtual to Physical in PAE enabled x86 system)

[28]. In PAE-enabled X86 system, virtual address translation uses a three-level ad-
dress translation instead of two-level linear address [26]. Figure V.2 illustrates how
address translation works in a PAE-enabled x86 system.

In a PAE-enabled system, virtual address is split into four components, in-

stead of three, as in the case of a non-PAE system:

e Page Directory Pointer Index (PDPI) = Upper 2 bits of virtual address;
e Page Directory Index = Next 9 bits of virtual address;
e Page Table Index = Next 9 bits of virtual address;

e Offset into data page pointed by PTE = Lower 12 bits.

The CR (Control Register) now points the Page Directory Pointer Index
(PDPI), which is 2-bits wide. The first two bits of virtual address are the index to
the Page Directory Pointer Entry (PDPE), which stores a pointer to a Page Directory.

The next 9 bits of virtual address are then used to retrieve the Page Directory Entry

39

(PDE) in Page Directory. The resulting PDE, along with the next 9 bits of virtual ad-
dress, points to the Page Table Entry (PTE) in the Page Table. Finally, this PTE value
points to a 4KB page in the memory and the lower 12 bits of virtual address works as
an offset on that page to retrieve the desired data.

Once PAE mode is enabled, user may have trouble locating the Page Table
Entries, since most of the tools (including Windbg and Kernel Debugger) expect the
system to run in non-PAE mode. One can check whether a system is running on a
PAE mode by running the Winver.exe, located in C: \Windows*\ System folder or
run Volatility described in chapter IV. The simplest solution is to just disable the
PAE feature by adding ““\ noexecute=Alwaysoff” clause in boot.ini file. The details of
editing boot.ini file can be found at [25].

Even after understanding how address translation works, it is still challeng-
ing to recover the physical address, unless user can dump Page Frame Number (PFN)
of Page Directory and Page Table. However, the user can at least recover the PTE

address with three additional pieces of information:
e The size of the PTE, which is 4 bytes on non PAE x86 systems;
e The size of a page which is 0x1000 bytes;

e The PTE_BASE virtual address, which is 0xC0000000 on non PAE system.

Using the data above, the Page Frame Number of PTE can be retrieved by:

PTFEaddress = PTE_BASE + (PageDirectoryIndex) « PAGE_SIZE
(V.1)

+ (PageTableIndex) sizeof (PTE)

40

V.B Windows Kernel Debugger

The next step was to find the tool that actually dumps the physical memory,
in order to verify the contents stored in the area pointed by PTE. Windows Kernel
Debugger is part of the Windows Debugging tool which is a set of extensible tools for
debugging device drivers for the Microsoft Windows family of operating systems and

is useful in debugging of [39]:
e “Applications, services, drivers, and Windows Kernel”.
e “Live targets and dump files”.
e “Microsoft Windows NT 4.0, Microsoft Windows 2000, and Windows XP”’.
e “x86-based and Itanium-based target systems”.
e “Local and remote targets”.
e “User-mode programs and kernel-mode programs”.

There are two types of Windows Kernel Debugging: Local Kernel Debug-
ging (LocalKD) and Live Kernel Debugging (LiveKD). Live Kernel Debugging re-
quires two systems connected through a null modem cable, a communication method
to connect two DTEs (computer, terminal, printer, etc.) [38]. One machine runs the
debugger acting as a “host”, while the “target” machine runs the kernel to be debugged.
On the other hand, Local Kernel Debugging only requires a single machine, and acts
as both the “host” and “target” system. We decided to use the Local Kernel Debug-
ging due to its simple installation process. The details of performing Local Kernel

Debugging can be found at [27].

V.B.1 Commands and Results

In this section, we present some of the built-in commands supported by ker-
nel debugger that helped us understand how GPU writes to system memory. The de-

scription of all supported commands can be found at [4] and [24].

AWINDOWS\system 32\cmd.exe - kd -kl

1kd> tprocessz B B

e T ACTIUE PROCESS DUME sesesese

PROCESS 8a3b?838 Sessionld: none Cid: 0884
DirBase: Bbi48888 ObjectTabhle: elB@1e78
Image: System

PROCESS 8a131da#® Sessionld: none Cid: 8448
DirBase: 1842aB@@ ObhjectTable: eldal28@
Image: smss.exe

PROCESS 8a18fda# Sessionld: B Cid: 8498
DirBase: 1aB81980@ ObhjectTable: el75h258
Image: csPrss.exe

PROCESS 88cc4daB Sessionld: @ Cid: B4hbh8
DirBase: 2261eB88 ObjectTabhle: el7BehB88
Image: winlogon.exe

PROCESS 8a188328 Sessionld: B8 Cid: B4ed
DirBase: 22bceBBdB ObjectTabhle: elf76df8

Image: services.exe

PROCESS 89f1b748 Sessionld: B Cid: B4f@
DirBase: 22h9580@ ObjectTable: el186f748
Image: lsass._exe

PROCESS 8aB4d828 Sessionld: B Cid: B5h8
DivBase: 233f580@ ObjectTable: e26464cB
Image: atiZeuxx.exe

PROCESS 88c3fdaB Sessionld: B Cid: B5cc
DivBase: 23bh4BBB@ ObjectTable: e2Gfe5780
Image: suchost._exe

PROCESS 8aBaB238 Seszionld: @ Cid: B608
DirBase: 2377aB88 ObjectTahle: e26Be2hd
Image: svchost.exe

PROCESS 82832418 Sessionld: @ Cid: 86d4
DirBase: 24848888 ObjectTahle: e27a73cB

Peh: B0O0OEOE ParentCid: BOBE

HandleCount :

P11,

Peh: 7?ffde@Bd ParentCid: BOB4

HandleCount =

Peh: 7ffdcBBa
HandleCount =

Peh: 7ffdedbd
HandleCount :

Peh: 7ffdaBba
HandleCount :

Peh: 7ffd?088
HandleCount :

Peh: 7ffdedbd
HandleCount =

Peh: 7ffdedbd
HandleCount =

Peh: 7ffd48688
HandleCount :

Peh: 7ffdcB@B
HandleCount :

21.

ParentCid: 8448
783.

ParentCid:
613,

ParentCid:
351.

ParentCid:
448 .

ParentCid:
186 .

ParentCid:
288.

ParentCid:
428.

ParentCid:
1773.

41

Image: svchost.exe

Figure V.3: !process 0 0 command

In previous section, we described how to convert Virtual address to Physical
address in x86 system. Fortunately, for those of you who are not familiar with address
translation, the Windows Debugger offers two extensions that translate virtual address
to physical address: /vtop and /pte. We tried using both of the extensions, however,
only /vtop was successful in returning the correct physical address. The !vtop exten-
sion receives two inputs, the virtual address and the page frame number of the directory
base of a process, and returns the corresponding physical address. The directory base
of a process is the value stored in CR3 register, and can be retrieved via the /process
0 0 command. As shown in Figure V.3, /process command dumps all active (running)
processes. The Table V.B.1 describes the information returned by /process 0 0.

Figure V.4 shows the three steps to retrieve and verify the corresponding

physical address. We first ran /process 0 0 hellocal.exe to retrieve the directory base

42

Table V.1: !process 0 0 output

Element | Meaning
Process The hexadecimal address of the EPROCESS block.
Cid The identification number of a process.
Peb The hexadecimal address of the process environment block.
ParentCid The identification number of the parent process.
DirBase The value stored in CR3 register.
ObjectTable The hexadecimal address of process object.
HandleCount The number of handle references for the object.
Image The module that owns the process.

of the process (hellocal.exe). The first parameter of the /vtop command is the page
frame number (PFN) of the directory base, which is simply the directory base without
three trailing zeroes (i.e. The PFN of “5ebbe000” is “5ebbe”). The virtual address
“16d000’ was retrieved through the CalResMap routine described in Chapter II. The
!vtop command returns the page frame number, which is the address of the beginning
of a 4KB physical page. In our example, this value is “1e740000”. We then need to
add the byte index, the lowest 12 bits of the virtual address, to the returned page frame
number. In our case the byte index is “000”. Now we finally have the corresponding
physical address (“1e7400007) that holds the contents written by the GPU. The final
step was to verify whether the computation was correct by looking at the contents of
the address. The /dd command displays the memory at a specified physical address.
The output of the /dd extension shows “24c¢” which is “588” in decimal (Flgure V.4).
This is the exact value that we were looking for, since we used the same application
presented in Chapter II, which writes “588” to 256x256 array allocated in the system
memory.

After retrieving the physical address range written by the GPU, we then
checked whether this range was associated with System board or PCI bus. As we
mentioned in Chapter II, the GPU only has access to the region of system memory
specified by the operating system. We wanted to check whether the specified region

is part of the System board or the PCI bus to get a sense which region of the system

43

o CAWINDOWSAsystem 32\cmd. exe - kd -kl

1kd>

1kd> *process B B hellocal_exe

PROCESES Balbc2VB _ Sessionid: B8 Cid: B6LH8 Peh 7ffdaBBB ParentCid: BYeB
DirBaze: SebbeBd ObjectTable: e53e3928

Images hellocal exe Bed rectangle DII"E[‘.tDrH base of the process
lkd) 'utop 53hhe 16dBBBB

Blue rectangle = Virtual address retrieved via
A1 6dBE6E 1e74BBBB pfndie748)

Lkd> 1dd te740000 CalResMap routine
11 0 740600 :
it1 0740010 9880624c BAP0BZ4c
i1 074002 0 AERORZ4c AORORZ4c DOAORZ4c
11740030 PERBRZ4c POPOR24c DEROR24c
110740040 PARAAZ4c POROR24c DEABA24c
it1 0740850 @EN0RZ4c POPOR24c DEAOB24c
AOROR24c DEADRZ4c DARBAZ4c OPOBAZ24c
AOROR24c_NBAGR24c BRABA24c ORARA2 4

Figure V.4: “!vtop” command

memory gets reserved for the PCI Express Interconnect. Figure V.5 shows the physical
memory layout of our system, which can be accessed by opening the Device Manager
in the Windows system. The physical address “1€740000” obtained via the /vtop ex-
tension, belongs to the memory range [00100000 - 7FEDFFFF] associated with the
System board. In other words, the PCI Express memory, the memory region specified
by the CPU or the operating system accessible by the GPU, is part of the memory
region used by the System.

The /pfn is an extension provided by the Windows Debugger that displays
information of a specified page frame. In Chapter IV, we showed an experiment that
aimed to check how many cycles get consumed when the GPU reads or writes to the
system memory. As a result, the read operation took an order of magnitude more
cycles than the write operation. The /pfn extension helped us understand this behavior.
Figure V.6 shows the output returned from the /pfn extension. The result shows that the
Read and Write operations are in progress and the page flag is set to Write Combine
(WriteComb). “Write combine is a computer bus technique for allowing data to be
combined and temporarily stored in a buffer - the write combine buffer (WCB) - which
is later to be released together in burst mode instead of writing (immediately) as single
bits or small chunks” [3]. In other words, the number of cycles consumed during the

write operation represents the time spent writing to the write combine buffer, instead

File Action iew Help

HES 2 8 =Ra

=1 il Mernary e
-4 [00000000 - D009FFFF] System board E
E. é [000A0000 - DOOBFFFF] ATI Radeon HD 2600 %7
- 1§ [000ADODD - DOOBFFFF] PCI bus
% [000A0000 - OOOBFFFF] PCI standard PCI-ta-PCI bridge
(0000000 - DOODFFFF] PCT bus
[000FO000 - D00FFFFF] System board

)
:
- 1 7FEDFFFF] System board
)
)

[7FEEOOO0 - FFEFFFFF] System board
i [7FFOD000 - FEBFFFFF] PCI bus
é [1C0000000 - CFRFFFFF] ATI Radeon HD 2600 5T
- ; [iC0000000 - CFFFFFFF] PCI standard PCI-to-PCI bridge

[DO000000 - DFFFFFFF] ATI Radeon HD 2600 XT
¢ [D0000000 - DFFFFFFF] PCI standard PCI-to-PCI bridge
" 3 [EFBO0000 - EFBFFFFF] PCI skandard PCI-to-PCI bridge

[EFBEOOOO - EFBEFFFF] ATI Radeon HD 2600 XT =
e ‘_‘ [EFBFCO00 - EFBFFFFF] Microsaft UAS Bus Driver Far High Definition Audio
. [EFC00000 - EFCFFFFF] PCI standard PCI-ta-PCI bridge
LR [EFCEQQDD - EFCEFFFF] ATI Radean HD 2600 5T
o -j [EFCFCO00 - EFCFFFFF] Microsoft UAA Bus Driver For High Definition Audio

--&Z [EFEFFOOO0 - EFEFFFFF] OHCI Campliant IEEE 1394 Host Contraoller o

Figure V.5: Physical address range associated with PCI bus

44

45

WINDOWSisystem32\cmd. exe -

1kd> tprocesszs B B hellocal.exe

PROCESS 8%edcdad Sessionld: @ Cid: 8144 Peh: 7#{fddBB@ ParentCid: Beld
DirBase: 5d624888 ObjectTabhle: e49144bh8 HandleCount: 22.
Image: hellocal.exe

1kd> tvtop 54624 1778888
Pdi 5 Pti 398

1£340088 pfndlf348>

tdd 1£3486008

340008 DPBPB24c BEBBRB24c
4 AEBRE24c PHEBER24c
BABRB24c PABEBZ24c
AEBRE24c PHEBER24c
BABRB24c PABEBZ24c
AEBRE24c PHEBER24c
PABRB24c PEBBBZ4c
BIBRE24c PHEBBBZ24c
1£348

aonanonn

B2
Y

*pfn 3
PFN BPBA1F348 at address B1AECEBGA
flink BEBEBEBE blink ~ share count BABBEEEL pteaddress BEBE7CDH1
reference count HBHA1 WriteGombh| color
restore pte BABABBBA conTaining page FFEDGCB Active RW
ReadInProgress WritelnProgress

Figure V.6: !pfn output

of on the actual physical memory. On the other hand, the number of cycles consumed
by the read operation represents the time spent fetching the data from the physical
memory.

Our final experiment was to let the CPU write to the resource allocated in
system memory by mapping the resource into the application’s address space and then
invoking GPU to overwrite the contents written by the CPU. Figure V.7 shows the
result obtained from our experiment. We first let the CPU to write the hexadecimal
value “a” to the allocated region, after mapping the resource onto the application’s
address space through the CalResMap routine and then invoking GPU to write ‘“24c¢”
to the same region, without un-mapping the resource. As shown in Figure V.7, the
contents written by the CPU do get overwritten by the GPU. This experiment assured

us that when a resource is mapped onto the CPU side and the CPU is accessing it, the

WINDOWS\system 32\cmd. ex

kd> *process B B hellocal _exe

PROCESS 8868f8h8 Sessionld: B Cid: Bhd4 Peh: fdeBABA ParentCid: B774
DirBaze: 6fA14888 OhjectTable: eS4c43dB HandleCount: 22.
Image: hellocal.exe

1kd> tutop 6f@14 16dP6BE
Pdi 5 Pti 248
B16dB0A8 1e? pfndle?48>

PABARRRa APBRPPNA PRRBRAHA
PEBERREa BBBROR0. BRRORERA
PARPRRRRa DDBBBERA BOBBAEAA
PHBORARa ABBBARNa BBRAREBA
PHBERBRa BBBBPRHA BORBREHA
PHBEBBRa BBEBARNa BORARERA
PIBARBRa PBBRPRNA PRRRREHA
PEBERRBa ABBBEPNA BBBARERA

BRPRR24c DDBBEB24c GOBAE24c
BRRRAZ4c DDBBEE24c BOBBAZ4c
PEBER24c BBEBH24c BBRARZ4c
PHBER24c BOEBRZ4c BOBBRZ4c
PEBER24c ABEBR24c BOBAR24c
PIBARZ4c PBERRZ4c BBBRRZ4c
PEBER24c ABBBA24c BBBARZ24c
PEPBRZ4c PPBROZ24c PDOOODZ4c

Figure V.7: GPU writing to memory region written by CPU

GPU writes to that resource are propagated to the CPU’s side.

46

VI

Conclusion

We have explored how the AMD Stream Processor interacts with the sys-
tem memory, and particularly how the stream processor writes to the system memory.
During our experiments, we realized that AMD Stream Processor has a complex ar-
chitecture and requires further research to discover whether malicious code can be
injected through the GPU without notice. Below, we provide the future work that is

necessary to identify possible vulnerabilities, followed by the summary of the thesis.

VI.A Future Work

Our initial goal was to identify whether the AMD Stream Processor writes
to the system memory independent of CPU, and whether a malicious program sitting
on the GPU side can overwrite the system memory without being noticed by the virus
scanners. It is hard to conclude whether the GPU performs direct memory access
(DMA) to the system memory. We do know that GPU writes to the system memory
through the PCI Express Interface; however, we have to make sure that CPU does not
get involved while the writing happens. One possible solution would be to disable the
interrupts imposed by the CPU, and see whether GPU can still write to the system
memory. If so, we can conclude that the GPU does write to the system memory, inde-

pendent of the CPU. In the Linux system, the kernel provides functions for enabling

47

48

and disabling interrupts:
e void enable_irq(int irq);
e void disable_irg(int irq);

Unfortunately, our experiment was done under Windows XP SP2, and we
could not find a way to disable the interrupts.

The next thing to explore is to discover how the CPU and the GPU (or mem-
ory controller in GPU) initially negotiate to setup the range of system memory accessi-
ble by the GPU. In Chapter V, we showed the range of the system memory accessible
by the GPU. However, as fat as hackers are concerned, writing arbitrary code to the
area specified by the operating system is not going to be sufficient to take over the
system. Instead, if one can find a way to overwrite the kernel space memory with-
out gaining the “root” privilege, any malicious code can have devastating effects on
the system: One can either modify or delete the system settings, and can even obtain
critical information.

Programmability is one of the most interesting aspects of modern GPU ar-
chitecture. In other words, GPU itself can contain the malicious code (kernel), without
using the system memory. Virus scanning programs may have a hard time detecting
the code, if the program sits on the GPU side, as it periodically overwrites the contents
in system memory. In addition, if the GPU can overwrite the contents in the kernel
space memory, no virus scanner will be able to detect or prohibit this behavior, since
virus scanner itself is a user-land application, and do not have access to the kernel
space.

Injecting the malicious code inside a game program will be an interesting ex-
periment to prove this vulnerability. As 3D computer games are becoming the norm,
not only the performance of the GPU, but the interaction between the GPU and the
CPU is also becoming the crucial aspect for running the game programs. The GPU

must not only perform image and data processing promptly, but the data transfer be-

49

tween the GPU and the CPU must also be done swiftly. If the game program contains
a high level code (Brook+ or CAL) or the assembly code that invokes GPU to periodi-
cally overwrite the contents of the system memory, the system can get infected just by

running the game program, and without notice.

VL.LB Summary

Modern Graphics Cards have begun to expose their architecture through
hardware APIs in order to help developers write non-graphics applications that can
take advantage of fast, highly-parallel GPUs. AMD has released AMD Stream Pro-
cessor with a “Close-to-metal hardware abstraction, which later evolved into Compute
Abstraction Layer (CAL); NVIDIA also developed a Compute Unified Device Archi-
tecture (CUDA), which is a compiler and set of development tools that allow develop-
ers to use a variation of C code kernel for execution on the GPU in NVIDIA GeForce
graphics card [1]. As the usage of GPU gets broader, the interaction between GPU and
system memory will get more attention, since the memory operations always cause a
bottleneck, compare to faster running processors (GPU or CPU).

In this thesis, we explored how AMD Stream Processor interacts with the
system memory, particularly how the GPU writes to the system memory. We first de-
scribed the Compute Abstraction Layer (CAL), a hardware abstraction used by AMD
Stream Processors, along with a sample application that invokes the GPU to write its
output to the system memory via CAL APIs. To understand the interaction between
the GPU and the CPU system memory, we described the Memory Controller (MC)
attached in AMD Stream Processors, followed by the details of the PCI Express In-
terconnect scheme. We also described various techniques we have used, including
memory forensic, and Windows Kernel Debugger, for further understanding. From the
experiments, we showed that the physical address range of system memory accessible
by the GPU is part of the range used by System board. We also showed that the GPU

can, indeed, overwrite the contents initially written by the CPU.

50

At this point, it is hard to conclude whether there is any vulnerability in the
AMD Stream Processors architecture. Nonetheless, we believe that this paper can
only help researchers in computer security community who are particularly interested
in exploiting vulnerabilities in the graphics card, as well as prove useful for developers
who are planning to create applications that utilize the AMD Stream Processors for

numerically intensive computations.

Bibliography

[1] Cuda. http://en.wikipedia.org/wiki/CUDA.
[2] Gpgpu. http://en.wikipedia.org/wiki/GPGPU.

[3] Write-combining. http://en.wikipedia.org/wiki/
Write-combining.

[4] Addison-Wesley. Undocumented windows 2000 secrets-appendix a. http:
//undocumented.rawol.com/,2001.

[5] AMD Inc. Amd close-to-the-metal programming guide.

[6] AMD Inc. Amd compute abstraction layer programming guide. http://ati.
amd.com/technology/streamcomputing/sdkdwnld.html, 2008.

[7] AMD Inc. Amd intermediate language (il) reference. http://ati.amd.
com/technology/streamcomputing/sdkdwnld.html,2008.

[8] AMD Inc. Amd stream computing software stack. ati.amd.com/

technology/streamcomputing/firestream-sdk-whitepaper.
pdf, 2008.

[9] AMD Inc. Amd stream sdk. http://ati.amd.com/technology/
streamcomputing/sdkdwnld.html, 2008.

[10] AMD Inc. Brook+ programming guide. http://ati.amd.com/
technology/streamcomputing/sdkdwnld.html, 2008.

[11] AMD Inc. Cal image. http://ati.amd.com/technology/
streamcomputing/sdkdwnld.html, 2008.

[12] AMD Inc. Cal platform. http://ati.amd.com/technology/
streamcomputing/sdkdwnld.html, 2008.

[13] ATT Inc. Hypermemory-next generation memory management for pci ex-
press graphics. http://ati.amd.com/technology/HyperMemory_
Whitepaper.pdf, 2004.

51

52

[14] ATI Technology. Radeon x1800 memory controller. http://ati.amd.com/
products/radeonxlk/whitepapers/X1800_Memory_Controll$%
er_Whitepaper.pdf, 2005.

[15] Exploring windows 2000 memory. http://undocumented.rawol.com/
sbs-w2k-4-exploring-windows—-2000-memory.p%df.

[16] W. Central. Pci express and windows. http://www.microsoft.com/
whdc/system/bus/PCI/PCIle_Windows.mspx, 2004.

[17] B. Dolan-Gavitt. The vad tree: A process-eye view of physical memory. Science
Direct - Digital Investigation Volume 4, 2007.

[18] Foundstone, Inc. Bintext. http://www.foundstone.com/us/
resources/proddesc/bintext.htm, 2003.

[19] G. L. Garcia. Forensic physical memory analysis: an overview of tools and tech-
niques. TKK T-110.5290 Seminar on Network Security, 2007.

[20] Garner George m. forensic acquisition utilities. http://www.
gmgsystemsinc.com/fau, 2008.

[21] GMC Systems, Inc. Knttools with kntlist. http://gmgsystemsinc.com/
knttools/, 2005.

[22] jon stokes. Pci express:an overview. http://arstechnica.com/
articles/paedia/hardware/pcie.ars,2004.

[23] mdd. Mantech international corporation. https://sourceforge.net/
project/showfiles.php?group_1id=228865&release_1i%d=
618037, 2008.

[24] microsoft. debugger. Help file in Debugging Tools for Windows.

[25] microsoft Help and Support. How to edit the boot.ini file in windows xp. http:
//support.microsoft.com/kb/289022,2003.

[26] microsoft TechNet. How pae x86 works. http://technet.microsoft.
com/en-us/library/cc736309.aspx,2003.

[27] Msdn. Performing local kernel debugging. http://msdn.microsoft.
com/en—-us/library/cc266422.aspx.

[28] Nx bit. http://en.wikipedia.org/wiki/NX_bit.

[29] Deploying windows xp service pack2 wusing software update ser-
vices. http://technet.microsoft.com/ko-kr/library/
bb457097 (en—-us) .aspx, 2004.

53

[30] PC perspective. Amd ati radeon hd 2900 xt review:r600 arrives. http://www.
pcper.com/article.php?type=expert&aid=406,2005.

[31] N. Ruff. Windows memory forensics. SSTIC 2007 BEST ACADEMIC Papers,
2008.

[32] A. Schuster. Searching for prcoesses and threads in microsoft windows memory
dumps. Digital forensic research workgroup, 2007.

[33] I. Sutherland, J. Evans, T. Tryfonas, and A. Blyth. Acquiring volatile operating
system data tools and techniques. SIGOPS Oper. Syst. Rev., 42(3):65-73, 2008.

[34] Microsoft userdump. http://support.microsoft.com/kb/241215/
en-us, 2008.

[35] Volatools. http://computer.forensikblog.de/en/2007/03/
volatools.html, 2007.

[36] Volatile systems. http://computer.forensikblog.de/en/2008/
06/volatility_1_1_2.html,2008.

[37] Converting virtual addresses to physical addresses. http://msdn.
microsoft.com/en—-us/library/cc267483.aspx.

[38] Wikipedia. Null modem. http://en.wikipedia.org/wiki/Null_
modem_cable.

[39] Microsoft windows debugging tools. http://technet.microsoft.com/
en-us/library/bb742599.aspx.

[40] Xbit laboratories. Ati radeon x1000: Brand-new graphics architecture from
ati explored (page 6). http://www.xbitlabs.com/articles/video/
display/radeon-x1000_6.html#sect%0,2005.

[41] J. Yang. Amd stream computing. www.sharcnet.ca/events/
ssgc2008/presentations/yang—-sharcnet-final.pdf.

