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Abstract

Studies of Auction Bidding with Budget-Constrained Participants

by

Maciej Henryk Kotowski

Doctor of Philosophy in Economics

University of California, Berkeley

Professor Shachar Kariv, Chair

Consider a first-price, sealed-bid auction where participants have affili-
ated valuations and private budget constraints; that is, bidders have private
multidimensional types. We offer sufficient conditions for the existence of a
monotone equilibrium in this environment along with an equilibrium char-
acterization. Hard budget constraints introduce two competing effects on
bidding. The direct effect depresses bids as participants hit their spending
limit. The strategic effect encourages more aggressive bidding by partic-
ipants with large budgets. Together these effects can yield discontinuous
equilibrium strategies stratifying competition along the budget dimension.
The strategic consequences of private budget constraints can be a serious
confound in interpreting bidding behavior in auctions. Evidence from an
experimental auction market lends support to the strategic importance of
budget constraints.
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Chapter 1

Introduction

Budget constraints are a fundamental feature of many auctions. For example,
bidders may be buying real estate. Valuations for a house are partly idiosyn-
cratic and all potential buyers face a private spending limit determined by
a financial institution. Problems securing a large loan may prevent a buyer
from placing a competitive bid on a desirable property.

Once bidders have multidimensional private information composed of a
valuation, which determines their preferences, and a budget, which defines
their feasible strategy set, even simple auctions feature nontrivial equilib-
rium behavior which has hitherto been poorly understood. Understanding
equilibrium behavior is a critical first step in gauging a mechanism’s economic
properties, such as allocative efficiency and revenue potential.

For concreteness, consider a first-price, sealed-bid auction for one item.
Bidders simultaneously submit their best offer to the seller and the high-
est bidder wins. Only the winner pays her own bid. In this straightfor-
ward setting, private budgets introduce two effects on equilibrium bidding.
Budgets have a direct effect constraining bidders; however, they also intro-
duce a strategic effect whereby high-budget bidders deliberately outbid high-
valuation opponents who have the misfortune of being budget constrained.
The strategic effect emerges as a discontinuity in the equilibrium strategy
and it endogenously stratifies competition within the auction along the bud-
get dimension. These effects profoundly change the strategic interaction of
the first-price auction with consequences for its efficiency, revenue potential,
and even bidders’ perception of the winner’s curse.

Once we recognize the direct and the strategic effects of private budgets,
naive inference concerning a first-price auction’s equilibrium becomes per-
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Figure 1.1: Equilibrium strategy in Example 1. High-budget bidders increase
their bid discontinuously to w at ŝ. Low-budget bidders are restricted to bids
below w. bf (s) is the equilibrium strategy absent private budget constraints.

ilous. Although we show that an equilibrium in monotone strategies exists
under general circumstances, we need to amend our intuition regarding equi-
librium strategies accounting for the new dimension of competition. Example
1, which extends a textbook model,1 serves to introduce the argument. As
will be seen below, its intuition applies generally.

Example 1. Consider a first-price, sealed-bid auction for one item. There

are two risk-neutral bidders and let Si
i.i.d.∼ U [0, 1] be player i’s private value

for the item. Ties are resolved with a fair coin flip. If a bidder with value
Si = si wins by bidding bi, her utility is si− bi; otherwise, it is zero. It is well
known that the symmetric equilibrium2 bidding strategy is bf (si) = si/2.

Suppose, additionally, that bidders have a private budget of wi ∈ {w, 1}.
A bidder of type θi = (si, wi) cannot bid above wi. Budgets are distributed
independently such that Pr[Wi = w] ≡ p ∈ (0, 1). When w < 1/2, bf (si) =
si/2 can no longer be an equilibrium. Instead, suppressing subscripts, the

1See Vickrey (1961); Krishna (2002); Milgrom (2004); Menezes & Monteiro (2005).
2Bayesian Nash equilibrium is the solution concept throughout.
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symmetric equilibrium strategy is

β(s, w) =







s
2

if s ∈ [0, ŝ] and w ∈ {w, 1}
s2(p−1)−2k1
2p(s−1)−2s

if s ∈ (ŝ, 1] and w = 1
ps2+2k2

2ŝ−2pŝ+2sp
if s ∈ (ŝ, ŝ′] and w = w

w if s ∈ (ŝ′, 1] and w = w

. (1.1)

The constants {ŝ, ŝ′, k1, k2} are defined in Appendix A.1. Figure 4.1 presents
a sketch of β(s, w) along with bf (s).

3

Example 1 conveys two main points concerning equilibrium behavior.
First, the equilibrium strategy features a prominent discontinuity at ŝ. The
intuition for this discontinuity rests on the strategic tradeoff made by uncon-
strained bidders (wi = 1) in equilibrium. An unconstrained bidder always
has the option of placing a bid above w. Exercising this option substantially
increases the probability of a win as she is guaranteed to outbid all con-
strained bidders. When a bidder’s valuation is ŝ, the discontinuous increase
in bid becomes worthwhile. With private budget constraints, some bidders
therefore bid more aggressively than if budget constraints were absent. The
intuition for the discontinuity at ŝ′ is similar; however, such bidders may tie
with others rather than win outright.

Second, although the discontinuities imply higher bids by some types of
bidders, on the margin bids are often less brazen than if budget constraints
were absent. In Figure 4.1, the slope of β(s, w) declines moving past ŝ.
The intuition here hinges on the endogenous stratification of competition
along the budget dimension. For instance, bidders placing a bid above w are
competing on the margin only against other unconstrained bidders rather
than all bidders. The precipitous decline in competition reduces the incentive
to bid aggressively at distinct budget levels. A similar intuition holds for
constrained bidders with value s ∈ (ŝ, ŝ′]. Only if a high-budget bidder is
exceptionally pessimistic regarding the item’s value does a low-budget bidder
stand a chance of winning the auction.4

3Appendix A.1 confirms that β(s, w) is an equilibrium strategy and generalizes this

example to Si
i.i.d.∼ H and N bidders. The equilibrium’s main features are robust to this

extension. Some comparative statics for ŝ are also presented.
4A corollary is that expected revenues in the auction decline for all p > 0 and w < 1/2

(Lemma 9 in Appendix A.1). This conclusion is not immediate due to the non-monotonic
adjustment of equilibrium strategies following the introduction of private budget con-
straints.
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Although the above lessons appear to be specific to Example 1, or perhaps
an artifact of the discrete budget distribution, they are a general phenomena
that preceding research failed to identify.

Following a brief survey of preceding research, this study considers three
complementary questions. All are crucial in delineating the strategic and
economic implications of budget constraints in auctions. First, with private
budget constraints does there exist a well-behaved—for instance, monotone—
equilibrium? Employing a recent equilibrium existence result from Reny
(2009), Chapter 2 offer sufficient conditions guaranteeing an equilibrium in
monotone strategies. Apart from constraining a bidder’s action, budget con-
straints focus attention on the economic tradeoffs in the bidding decision. A
successful bidder wins the item but makes a payment from her budget while
an unsuccessful bidder keeps her money to enjoy in some other manner. The
trade-off between the two goods may be quite complex if bidders exhibit risk
aversion or other preferences that are sensitive to the level of wealth, which
is private information. Accommodating such effects requires a careful spec-
ification of a monotone strategy. Bidders with larger budgets tend to—but
need not necessarily—bid more. Except for the private-values case, passing
the equilibrium to a continuous action space depends on an endogenous tie-
breaking rule, a common feature of auction models with multidimensional
types.

Whereas the existence of a monotone equilibrium is reassuring, it is an
empirically weak conclusion. Thus, Chapter 3 specialize to the general sym-
metric model with interdependent and affiliated valuations of Milgrom &
Weber (1982) and we augment it with private budget constraints distributed
on an interval. Fang & Parreiras (2002, 2003) analyze the second-price auc-
tion in this setting and it extends the analysis of Che & Gale (1998). Ex-
ample 1’s main features, such as discontinuous equilibrium strategies and
endogenously stratified competition, can appear in this benchmark environ-
ment. For example, equilibrium bid distributions can be multimodal even
when the underlying type-space is uniform and ex-post valuations have a
unimodal distribution. The identified strategic effects seriously confound in-
ference concerning model primitives as bidders react non-monotonically to
the presence of private budgets. In addition to comparative static exercises,
we sketch a simple test for the presence of private budget limits if only bid
distributions are observable. One needs to vary the auction format holding
the environment otherwise fixed.

Finally, in Chapter 4 we transplant the developed theory to a laboratory
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setting to document and study behavior in auctions with budget constraints.
This exercise builds on the framework of Example 1 which is the simplest
non-trivial setting where the interaction of private budget constraints and
private valuations implies novel equilibrium responses. Although qualified by
well-known empirical anomalies in auction experiments—such as overbidding
relative to the risk-neutral Nash equilibrium prediction—the experimental
evidence suggests that participants recognize the strategic implications of
budget constraints in auctions and many key qualitative predictions of the
equilibrium bidding model are evident in the data.

1.1 Literature

Researchers have recognized the possibility of budget constraints in auctions
for over thirty years;5 however, few studies treat both valuations and budgets
as private information. Indeed, many studies examine budget constraints in
multi-unit or sequential settings where a budget’s strategic importance is
transparent and where assumptions simplifying the information structure or
the auction format are a practical necessity (Pitchik & Schotter, 1988; Benôıt
& Krishna, 2001; Pitchik, 2009; Brusco & Lopomo, 2008, 2009). Budgets fea-
ture in many internet-motivated applications, such as selling advertisements,6

and accounts by Bulow et al. (2009), Salant (1997), and Cramton (1995) of
wireless spectrum auctions give budget constraints a prominent role.

This study contends however that complex or multi-unit environments
are not necessary to appreciate the strategic effects introduced by private
budgets—single item settings are sufficient, although research here has been
more limited. Early research by Che & Gale (1996a,b) considers first-price,
second-price, and all-pay auctions where the sale item’s common value is
common knowledge but bidders have private budgets. In an important paper,
Che & Gale (1998) discuss revenues in a class of auction mechanisms allowing
for financial constraints; these results foreshadow Che & Gale (2006) which
conducts revenue comparisons among auction formats when bidders have
multidimensional independent types.

5Rothkopf (1977) and Palfrey (1980) are early discussions of multi-unit auctions with
budgets.

6For example Ashlagi et al. (2010) propose a budget-accommodating modification of
the generalized second-price auction used by internet search engines to sell advertisements.
Edelman et al. (2007) and Varian (2009) provide an introduction to this auction format.
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Fang & Parreiras (2002) were the first to characterize equilibrium bidding
in the second-price auction with private budget constraints where valuations
are affiliated and interdependent. Their environment forms the starting point
of our analysis in Section 3. Kotowski (2010a) considers the same environ-
ment but analyzes the all-pay auction.

The optimal auction design problem in the spirit of Myerson (1981) incor-
porating budget constraints is particularly challenging and has been consid-
ered under various guises (Laffont & Robert, 1996; Monteiro & Page, 1998;
Che & Gale, 1999, 2000; Maskin, 2000; Malakhov & Vohra, 2008). Pai &
Vohra (2009) offer the most general description of optimal mechanisms. De-
signing multi-unit auctions accounting for budgets has also spurred a growing
literature among computer scientists.7

While most models assume “hard” budget constraints, some authors have
explored ex post default or asymmetries in bid financing ability (Zheng, 2001;
Jaramillo, 2004; Rhodes-Kropf & Viswanathan, 2005).8 While appropriate
for specific applications, such models mask the strategic effects of budget
constraints alone. Therefore, we treat budgets as rigid bounds for bids and
payments. Cho et al. (2002) suggest that overcoming budget constraints
can encourage collusion or the formation of bidding consortia. We assume
non-collusive behavior.

7For example Abrams (2006), Andelman & Mansour (2004), Borgs et al. (2005),
Dobzinski et al. (2008), Feldman et al. (2008), or Harsha et al. (2010).

8See also Che & Gale (1996b, 1998, 2006) for related analyses.
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Chapter 2

The Environment and
Equilibrium Existence

2.1 The Environment

Suppose there is a set of bidders N = {1, 2, . . . , N} participating in a first-
price, sealed-bid auction for one item. Players simultaneously submit bids
and the highest bidder receives the item for sale. Only the highest bidder
makes a payment equal to her bid to the auctioneer. In this section we define
the model’s environment: types, feasible actions, preferences, and our notion
of a “monotone” strategy.

Types Each player has a private type θi = (si, wi) ∈ Si × Wi = Θi. si is
a player’s value-signal and it is normalized to the unit interval, Si = [0, 1].
A value-signal is a player’s information about the item for purchase. wi is
a player’s budget and Wi = [wi, w̄i] ⊂ R+.1 Suppose wi < w̄i. Although
specialized further in subsequent discussion, we will maintain that θ’s distri-
bution is atomless, has full support, and admits a strictly positive density,
f(θ) > 0 for all θ = (θ1, . . . , θN) ∈ ×iΘi.

Feasible Bids A private budget introduces a natural constraint on the
feasible actions of a bidder. In particular, a bidder cannot submit a bid in
excess of her budget.

1For notation, profiles of values are in boldface as in w = (w1, . . . , wN ). As usual,
w−i = (w1, . . . , wi−1, wi+1, . . . , wN ).
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Assumption 1 (Feasible Bids). The set of feasible bids for a bidder of type
θi = (si, wi) is Bi(wi) = [ri, wi] ∪ {l} where l is a guaranteed losing bid and
ri ≥ 0 is the reserve price.2 Bids other than l are non-losing bids.

The guaranteed losing bid ensures voluntary participation, an important con-
sideration if there is a reserve price.

Although an action space where bidders can place non-losing bids from
an interval, [ri, wi], is the ultimate focus of our analysis, en route we will
also consider a discretized version of the bidding set. Complications due to
tied bids are the primary (technical) concern in many auction models and
analyzing a model with finite bidding sets is a key step in establishing many
features of an equilibrium. Following Reny & Zamir (2004) and McAdams
(2006), among others, it will prove convenient to also consider the analogous
discretized action set.

Assumption 2 (Disjoint Feasible Bids). For each i, let Pi ⊂ R+ be a finite
set such that for i 6= j, Pi ∩ Pj = ∅. The set of feasible bids for a bidder of
type θi = (si, wi) is Bi(wi) = (Pi ∩ [ri, wi]) ∪ {l}.

The desired interpretation of Pi is as an arbitrarily fine finite grid of values.

Preferences A bidder’s utility function is a mapping ui : S×Wi×R+ → R.
If bidder i of type (si, wi) wins the auction, her payoff is ui(s, wi, bi). If
she does not receive the item, her payoff is ui(0, wi, 0). She makes zero
payment but keeps her money (budget) to enjoy in some other manner. As
a normalization, set ui(0, 0, 0) = 0. The signals s can be interpreted as
indicating item quality. An item of zero quality is like not receiving the item
at all. The function ui satisfies the following conditions.

Assumption 3 (Utility). The function ui(s, wi, bi) is bounded, differentiable,
nondecreasing in s and wi, and non-increasing in bi. Furthermore,

i) For feasible non-losing bids bi ≥ b′i, ui(s, wi, bi) − ui(s, wi, b
′
i) is nonde-

creasing in s and wi;

ii) There exists κi > 0 such that ∂ui
∂si

∈ [κi,∞) and ∂ui
∂wi

∈ [0,∞).

2If ri > wi then Bi(wi) = {l}. The losing bid is isolated and l < ri. The bidder-specific
reserve prices are common knowledge among the players.

8



Assumption 3(i) generalizes a standard assumption seen in Maskin & Ri-
ley (2000), Reny & Zamir (2004), or McAdams (2007), among others, by ad-
ditionally assuming the utility difference is nondecreasing in wi. Assumption
3(ii) asserts the existence of bounded partial derivatives of ui with respect to
a player’s own type. This feature of utility will play an important role below
when we make precise the notion of a monotone strategy.

Many utility function meet Assumption 3. Consider for example,

ui(s, wi, bi) = vi(s) + wi − bi (2.1)

where vi : S → R+ is a bidder’s valuation, vi(0) = 0, and ∂vi/∂si ∈ [κi,∞).
Section 3 will consider the model in detail when bidders’ preferences are in
this class. Assumption 3 allows for more general preferences as well. For
example, to accommodate risk-aversion one may consider ûi(vi(s) + wi − bi)
where ûi(·) is concave with a bounded derivative. Further generalizations are
also possible.

In many cases, wealth or a budget can interact with preferences over
auction outcomes in non-trivial ways. For example, consider risk-aversion.
Suppose that increasing a bidder’s wealth decreases her aversion to risk.
In a first-price auction, decreasing aversion to risk encourages a bidder to
bid less : the insurance with respect to the auction outcome from a higher
bid is less valuable.3 Therefore, a bidder’s budget can behave like (private)
parameter controlling a bidder’s displayed risk preferences and a wealthy
bidder may justifiably bid less than a counterpart with the same value-signal
but a lower budget. Example 6 in Appendix A.1 introduces wealth-dependent
risk-preferences into the model of Example 1 and bidders with lower budgets
bid more in equilibrium (at least over a range of value-signals). Situations
like these demand a qualification to the usual notion of a monotone strategy,
a task we turn to next.

Monotone Strategies In his analysis of the multi-unit auction with risk-
averse bidders, Reny (2009) pioneered the weakening of the notion of a mono-
tone strategy in games of incomplete information. Indeed, our analysis closely
parallel’s his construction as the analogy between our setting and a multi-unit
auction is quite clear. A first-price auction with private budget constraints
can be interpreted as an unusual multi-unit auction: the highest bidder wins

3See Krishna (2002, p. 38) or Matthews (1987) on the effects of risk-aversion in a
first-price auction.
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the item for sale and all bidders “win” their budget irrespective of their
feasible bid.

Typically, a strategy is monotone if an increase in si or wi implies a weakly
higher bid. In our setting, however, an increase in wi will not necessarily
imply a higher bid. As a first step in (re)defining a monotone strategy, we
introduce an alternative partial order on the type-space. This order is defined
using a bidder’s utility function and relates changes in a bidder’s information
to changes in her utility.

Definition 1 (≥θi Ordering). Define the value αi ∈ [0,∞) as

αi =
sup ∂ui

∂wi
− inf ∂ui

∂wi

inf ∂ui
∂si

.

Define the partial order ≥θi on Θi as θi ≥θi θ
′
i ⇐⇒ wi ≥ w′

i and si−αiwi ≥
s′i − αiw

′
i. The asymmetric component, >θi, is defined analogously with at

least one of the preceding inequalities strict.

Figure 2.1 sketches the “greater-than” and “less-than” sets for type θ̂i. An
increase in si always implies a higher type. If wi increases, si must increase
commensurably to imply a higher type. αi = 0 when bidders are risk-neutral
as in (2.1). In this case ≥θi reduces to the usual coordinate-wise ordering of
R

2.
With ≥θi defined, we can introduce the class of strategies that bidders

will ultimately follow in a monotone equilibrium.

Definition 2 (Strategies). A feasible (pure) strategy for player i is a mea-
surable function βi : Θi → R+ ∪ {l} such that βi(si, wi) ∈ Bi(wi). Let Si be
player i’s set of admissible strategies. A pure strategy βi is nondecreasing if
θi ≥θi θ

′
i =⇒ βi(θi) ≥ βi(θ

′
i). Let Ii ⊂ Si be player i’s set of nondecreasing

admissible strategies.

A pure strategy is nondecreasing if ≥θi-higher types bid more. By defining
a nondecreasing strategy in this manner, we can accommodate the counter-
vailing incentives introduced by changes in a bidder’s budget. Our definition
aligns changes in a bidder’s utility—rather than changes in her information
or type—with changes in her bid.

10
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θ̂i
b
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θ′i ≤θi θ̂i
Θi

Slope = 1
αi

Figure 2.1: The ≥θi type-space ordering. Sets greater-than and less-than θ̂i
are indicated. ≥θi is a weakening of the usual coordinate-wise partial order
of R

2.

2.2 Equilibrium Existence

In this section we consider the above environment and offer sufficient con-
ditions for the existence of an equilibrium in nondecreasing strategies. As
common in the literature, we consider the cases of finite (Assumption 2)
and continuum (Assumption 1) action sets separately. Finite action sets al-
low us to identify sufficient conditions on the information structure and on
preferences guaranteeing a monotone equilibrium. Continuum action sets
introduce the added complexity of tied bids. Relevant ties are a serious con-
cern when values are interdependent and their resolution demands a special
tie-breaking protocol.

The proof of the following results is in Appendix A.2 and, noting the
analogy described above, follows closely Reny (2009)’s analysis of multi-unit
auctions. We consider two separate information structures in succession:
independent types and affiliated types.

Proposition 1. Consider the auction environment above meeting Assump-
tions 2–3. Suppose that bidder’s types are mutually independent, i.e. θi ⊥⊥ θj.
Then there exists an equilibrium in nondecreasing strategies.

11



Once information is correlated across bidders we are more limited in the
conclusion that we can draw. Specifically, ≥θi must reduce to the usual
partial order on R

2 if we wish to accommodate affiliation in bidder’s value
signals.

Proposition 2. Consider the auction environment above meeting Assump-
tions 2–3. Suppose

i) Utility is quasilinear as in (2.1).

ii) Bidders’ value-signals s are affiliated and have joint density h(s).4

iii) Bidders’ budgets are mutually independent and independent of value-
signals.

iv) For all i and s−i, vi(si, s−i)λ(s−i|si) is nondecreasing in si where

λ(s−i|si) ≡ h(s−i|si)
1−H(s−i|si) and H(s−i|si) =

∫

y−i≤s−i
h(y−i|si)dy−i.

Then there exists an equilibrium in nondecreasing strategies.

Although affiliation is a standard assumption, its further qualification by
condition (iv) requires context. Variants of (iv) appear in Fang & Parreiras
(2002), Krishna & Morgan (1997), and Lizzeri & Persico (2000). The con-
dition ensures the direct influence of a bidder’s value-signal on preferences
dominates its informational content concerning s−i. It is satisfied if types
are independent. Under strict affiliation, it may fail. For example, if there
are two bidders with valuations vi(si, sj) = (si+sj)/2 and value-signals have
joint density h(si, sj) ∝ 4sisj + 1 on [0, 1]2, then it holds. The condition
fails if instead h(si, sj) ∝ 4sisj + 0.01. The following example highlights this
assumption’s precise role when types are affiliated.

Example 2. Suppose there are two bidders {i, j} and fix a nondecreas-
ing strategy βj . Consider two bids placed by bidder i, b > b′. Let A′ =
{θj : βj(θj) ≤ b′} be the set of j’s types who are defeated by the bid b′. Let
A = {θj : b′ < βj(θj) ≤ b} be the set of additional types defeated by the
higher bid b. Let Ui(b, βj |θi) be player i’s expected utility when she is of type
θi and bids b.

A common sufficient condition ensuring that nondecreasing strategies are
best replies is that if Ui(b, βj |θi) ≥ Ui(b

′, βj|θi) for some θi, then this in-
equality continues to hold if θi increases. Without a limit on the degree

4See Milgrom & Weber (1982) for the properties of affiliated random variables.
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(a) Low signal θi

A
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6 (7) 6 (7)

(b) High signal: θ′i > θi

Figure 2.2: Failure of nondecreasing differences in Example 2. An increase in
type from θi to θ′i increases a bidder’s payoffs conditional on winning. It also
decreases the probability of winning by changing the conditional distribution
of Sj.

of affiliation relative to a bidder’s valuation, this condition can fail as il-
lustrated by Figure 2.2. Figure 2.2 depicts Θj and the subsets A′ (dashed
enclosure) and A (solid enclosure). Budgets are independent of value-signals
but (Si, Sj) are positively correlated. The conditional distributions of Wj

and Sj are noted along the axes. Θj is divided into four cells and within
each cell C is bidder i’s expected utility given θj ∈ C when bidding b (b′).
For instance, the expected utility from bidding b′ is zero (0) if θj ∈ A as
b′ < βj(θj). On the other hand, b > βj(θj) if θj ∈ A earning a payoff of 4 if
θi is low and 5 if it is high. Thus, when θi is low,

Ui(b, βj |θi) = (0.9)(0.5)4 + (0.5)(0.9 + 0.1)5

= 4.3 > 3 = (0.9 + 0.1)(0.5)6 = Ui(b
′, βj|θi).

When θi increases to θ′i, higher realization of sj become more likely reducing
the probability of a win for player i. Thus,

Ui(b, βj|θ′i) = (0.1)(0.5)5 + (0.5)(0.1 + 0.9)6

= 3.25 < 3.5 = (0.1 + 0.9)(0.5)7 = Ui(b
′, βj |θ′i).

The event A becomes much less likely making the higher bid inferior to
the lower alternative. When types are independent, this reversal does not
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happen. Absent independence, condition (iv) in Proposition 2 ensures that
the direct increase in expected utility is dominant precluding the preference
reversal.

Continuum Action Spaces The equilibrium’s extension to the contin-
uum action space is qualified due to complications resulting from tied bids.
Relevant ties render the bidder’s utility function discontinuous, posing a
problem for standard existence results. When values are private, however,
these complications can be overcome.

Proposition 3. Consider an auction environment above meeting Assump-
tions 1 and 3. Suppose valuations are private, i.e. ui(s, wi, bi) = ui(si, wi, bi).
In the setting of Propositions 1 and 2 there exists an equilibrium in nonde-
creasing strategies under the uniform tie-breaking rule.

Allowing interdependent values necessitates the use of an endogenous tie-
breaking protocol depending both on submitted bids and player’s announced
types. That is, a bidder’s strategy will specify a bid βi(θi) and a message
σi(θi) used to arbitrate ties it they occur. Araujo et al. (2008) recognize
multidimensional types as a case where non-standard tie-breaking rules may
be necessary because a bidder’s payoffs depend in a complex manner on the
precise set of opponents whom she may defeat at a given bid.5 For example, a
bidder may defeat opponents who are pessimistic regarding the item’s value;
however, she may defeat others who are exceptionally optimistic regarding its
value but were unfortunate to be budget constrained. The conflict between
the two effects does not suggest a universal preference for resolving ties in
one’s favor—a condition often needed to render simple tie-breaking rules,
such as the uniform tie-breaking rule, sufficient for equilibrium existence.6

Proposition 4. Consider an auction environment above meeting Assump-
tions 1 and 3. In the setting of Propositions 1 and 2 there exists an equilib-
rium in nondecreasing strategies with an endogenous tie-breaking rule where
bidders truthfully announce their type.

The auction’s allocation rule, defined non-constructively in Appendix A.2,
awards the item to the highest bidder if she is unique; otherwise, it resolves

5Jackson (2009) also has a thoughtful survey of this issue.
6Reny & Zamir (2004) confirm this fact when types are unidimensional. Athey (2001)

relies on a similar conclusion.
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ties by relying on bidders’ announced types. Thus, the allocation rule is
“standard” up to its treatment of relevant ties. Araujo & de Castro (2009)
employ a similar construction. Whether pure-strategy equilibria in monotone
strategies exist in a general setting absent a special tie-breaking protocol is
an open question; however, as seen in the next section, in a specialized,
symmetric environment with no reserve prices we can construct equilibria
that feature no ties and thus the tie-breaking rule is irrelevant.
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Chapter 3

Discontinuous Equilibrium
Strategies in the Symmetric
Model

Although monotonicity is an appealing equilibrium feature, it is an em-
pirically weak conclusion. In special cases a sharper description is pos-
sible. Specifically, the key strategic consequences of budget constraints—
discontinuous equilibrium strategies and endogenously stratified competition
along the budget dimension—can appear when valuations are interdepen-
dent, value-signals are affiliated, and budgets distributed continuously on an
interval. Within this specialized setting, this section concludes with some
comparative statics and applications. For instance, if budgets are more
binding on average, the implication for equilibrium strategies is ambiguous.
Sometimes bidders may bid more, sometimes less. This conclusion contrasts
with the second-price auction where the equivalent exercise unambiguously
increases bids. A more detailed comparison of bid distributions between first-
and second-price auctions allows an observer to infer the presence of budget
constraints in an auction environment. Finally, setting a small reserve price,
say ǫ, may decrease expected revenues as it can screen bidders along the
wrong dimension.

Suppose there are two bidders with quasilinear preferences: ui(s, wi, bi) =
vi(s)+wi−bi as introduced in (2.1). Normalize vi(0) = 0 and vi(1) = 1. The
type-space for each bidder is Θi = Si×Wi = [0, 1]×[w, w̄] where w < 1 ≤ w̄.1

1w ≥ 1 is a sufficient condition ensuring that some types will be unconstrained in
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The bidders are ex ante symmetric with a differentiable valuation function
vi(s) = v(si, sj). A bidder with budget wi can bid bi ∈ [r, wi] ∪ {l}.

To economize on subscripts, for notation let (S,W ) be player 1’s value-
signal and budget respectively. (Y, Z) is player 2’s value-signal and budget
pair. Anticipating the model’s symmetry, the exposition will be from player
1’s perspective. The following assumption specifies the information structure
and introduces notation.

Assumption 4. The distribution of types satisfies the following:

i) Value-signals are affiliated and have the joint density h(s, y). h(·, ·) is
bounded and h(s, y) = h(y, s) > 0. The conditional density of Y given
S = s is denoted by h(y|s) and H(y|s) =

∫ y

0
h(x|s)dx. To simplify

exposition, suppose h(s, y) is differentiable.

ii) Budgets are independently and identically distributed and are indepen-
dent of value-signals. For w ≤ v(1) the cumulative distribution function
of a bidder’s budget, G(·), is concave: G′′(w) ≡ g′(w) ≤ 0.

iii) For all y, v(s, y)λ(y|s) ≡ v(s, y) h(y|s)
1−H(y|s) is nondecreasing in s.

Assumption 4 specializes the information structure introduced in Propo-
sition 2 by imposing a symmetry requirement on the density h(s) and a
concavity condition on the budget distribution. By adding private budgets,
this environment builds on Milgrom & Weber (1982)’s classic setting. Like
Fang & Parreiras (2002), who analyze the second-price auction in an anal-
ogous setting, we restrict attention to two bidders for expositional clarity.
Assumption 4(ii) is stronger than considered in Fang & Parreiras (2002), but
it is equivalent to Assumption 5 from Che & Gale (1998) (see Lemma 29 in
Appendix A.3). This assumption is not crucial for many results and it can
be relaxed at the cost of considerable parsimony.2

The discussion below is organized into three cases depending on w, the
minimal budget. Thus, the exposition subsumes the comparative static of
varying w. Whether w is small, intermediate, or large is a model-specific
question whose answer depends on the valuation function and on the distri-
bution of types.

equilibrium.
2See Appendix A.4.2 for a relaxation of this assumption.
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If w = 0, or is sufficiently small, the equilibrium is primarily defined
by a differential equation; however, identifying the appropriate boundary
condition requires care. This case also serves to introduce concepts that help
identify the remaining two scenarios. In particular, this section derives the
model’s key differential equation and establishes the qualitative behavior of
its solutions of interest.

When w is large, the equilibrium is a natural constrained analogue of the
equilibrium without budget constraints. Indeed, if w → 1 only dominated
bids remain infeasible so recovering the unconstrained model’s equilibrium
for a large w is not surprising.

Finally, when w is intermediate, the offered equilibrium strategy features
a discontinuity in the spirit of Example 1. In equilibrium, bidders endoge-
nously separate into two groups—those with relatively large budgets and
others with small budgets. However, unlike Example 1 the distribution of
equilibrium bids has no mass points and has connected support. This case
highlights the generality of the tension between the direct and strategic effects
introduced by private budget constraints. Bids become depressed by budget
limits; however, the chance to exploit others’ possible budget constraint is a
strategic option encouraging a more aggressive bidding strategy.

As it appears frequently in the following discussion, recall from Milgrom
& Weber (1982) that in the corresponding model without budget constraints
the equilibrium bidding strategy solves

b′f (s) = [v(s, s) − bf (s)]
h(s|s)
H(s|s) , bf (0) = 0. (3.1)

3.1 Low Minimal Budgets

The following analysis applies when w and the reserve price are “low” (defined
below), but for concreteness assume w = 0 and set the reserve price to zero.
Toward identifying the equilibrium strategy, consider the following working
assumption.

Working Assumption 1. Suppose a symmetric equilibrium bidding strategy
is of the form β(s, w) = min

{
w, b̄(s)

}
where b̄(s) = β(s, w̄) is the strategy

of an unconstrained bidder. Moreover, assume b̄(s) is continuous, strictly
increasing, and differentiable.
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Working Assumption 1 implies Leontief “isobid” curves in (s, w)-space with
b̄(s) defining the locus of kink-points. We will confirm that there is a sym-
metric equilibrium of this form.

Assume that all players are following a strategy meeting Working As-
sumption 1. Viewing the auction as a revelation mechanism, if a bidder of
type (s, w̄) bids as if her type is (x, w̄) then

U(β(x, w̄)|s, w̄) =

∫ b̄(x)

0

∫ 1

0

(
v(s, y) − b̄(x)

)
h(y|s)g(z)dydz

+

∫ 1

b̄(x)

∫ x

0

(
v(s, y)− b̄(x)

)
h(y|s)g(z)dydz.

The first term is the contribution to expected utility from the defeating all
opponents with a budget z ≤ b̄(x). The second term is the contribution to
expected utility of defeating all bidders with a budget z > b̄(x) but who
have a value-signal less than x, and are therefore by Working Assumption 1
bidding less than b̄(x). Differentiating this expression with respect to x and
setting

∂U(β(x, w̄)|s, w̄)

∂x

∣
∣
∣
∣
x=s

= 0,

which must hold if b̄(s) is a best response for an unconstrained bidder, gives:

b̄′(s) =

(
G(b̄(s)) − 1

) (
v(s, s) − b̄(s)

)
h(s|s)

g(b̄(s))
∫ 1
s
(v(s, y) − b̄(s))h(y|s)dy +G(b̄(s))H(s|s) −G(b̄(s)) −H(s|s)

.

(3.2)

Collecting hazard rate terms and simplifying notation gives:

b̄′(s) =
λ(s|s)

(
b̄(s) − v(s, s)

)

γ(b̄(s))
(
η(s|s) − δ(b̄(s), s|s)

) (3.3)

where

δ(b, x|s) ≡ b+
G(b)

g(b)
+

H(x|s)
g(b)(1 −H(x|s))

η(x|s) ≡ E [v(s, Y )|S = s, Y ≥ x] =

∫ 1

x

v(s, y)
h(y|s)

1−H(x|s)dy

γ(z) ≡ g(z)

1 −G(z)

λ(y|s) ≡ h(y|s)
1 −H(y|s)
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Two observations concerning (3.3) follow. First, it is not clear that there is
a solution to (3.3) satisfying Working Assumption 1. Second, (3.3) gives little
guidance concerning boundary conditions. To appreciate this complication
suppose v(s, y) = (s+y)/2 and say s = 0. A bid of ǫ > 0 wins with probability
greater than G(ǫ) > 0 as some bidders have lower budgets. Consequently,
E[v(0, Y )|S = 0, “win”] > 0 and a bidder with a value-signal of zero can have
an incentive to bid a positive amount if she can reliably defeat opponents who
are more optimistic regarding the item’s value. Budget constraints therefore
attenuate the winner’s curse.

To address these issues it is convenient to develop an understanding of the
global qualitative behavior of solutions to (3.3), especially when s ∈ (0, 1)
and b ∈ (w, w̄). To do so consider the slope field described by

b′(s, b) =
λ(s|s) (b− v(s, s))

γ(b) (η(s|s) − δ(b, s|s)) . (3.4)

b̄(s) is just a particular solution consistent with (3.4). We can recast the
problem further and consider instead the system of autonomous differential
equations:

ṡ = γ(b) (η(s|s) − δ(b, s|s))
ḃ = λ(s|s) (b− v(s, s))

. (3.5)

ṡ and ḃ are functions of the suppressed variable time (t).3 We can recover
(3.4), when it is defined, by noting

db

ds
=
db

dt

/ds

dt
=
ḃ(s, b)

ṡ(s, b)
. (3.6)

Interpreting the problem in this manner allows for the use of elementary
techniques and results from phase-plane analysis to discern the qualitative
behavior of candidate solutions.4 The direction or velocity of motion as a
function of time in (3.5) is immaterial for our purposes. Rather, we are in-
terested in the paths taken by orbits. Such paths—if they are representable

3Both ḃ and ṡ are not defined at s = 1. However, they are defined for all s < 1;
therefore, the following analysis can be used on the interior of the type-space to identify a
candidate solution. This candidate can be extended using (3.3) to the boundary. To keep
the exposition clear, we will suppress this technical detail.

4See for example Strogatz (1994); Cronin (2008); Agarwal & O’Regan (2008).
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by a function b̄(s)—correspond to solutions of (3.3) for different initial con-
ditions. This section’s remainder identifies orbits that when viewed as such
functions meet the desiderata imposed on b̄(s) by Working Assumption 1.

To understand the qualitative behavior of a system of differential equa-
tions we are interested in two related objects: the nullclines and the critical
points. The nullclines of (3.5) are loci in (s, b)-space where orbits are hori-
zontal or vertical. These sets are

ν =
{

(s, b) : ḃ(s, b) = 0
}

ψ = {(s, b) : ṡ(s, b) = 0}

The next lemmas describe ν, ψ, and the behavior of the (ṡ, ḃ) system. As
with all results in this section, their proofs are in Appendix A.3 unless noted
otherwise.

Lemma 1 (ν). Let sν be such that w = v(sν , sν). Then on [sν , 1], ν is
described by the continuous and strictly increasing function ν(s) = v(s, s).
For s ∈ [0, sν), ν is empty.

Lemma 2 (ψ). Define the correspondence ψ(s) = {b : (s, b) ∈ ψ} and Sψ =
{s : ψ(s) 6= ∅}. Then,

a) If ψ(s) 6= ∅, ψ(s) is single valued.5

b) The function

ψ̃(s) =

{

ψ(s) if ψ 6= ∅
w if ψ = ∅

is continuous.

c) If sψ ≡ supSψ, then lims→sψ
s∈Sψ

ψ(s) = w.

In typical examples, Sψ = [0, sψ] for some sψ ≤ 1. If w = 0, then 0 ∈ Sψ.
The following observation describes the (ṡ, ḃ) system between the nullclines.

Lemma 3. If b > ν(s) then ḃ(s, b) > 0. If b < ν(s) then ḃ(s, b) < 0. If
b > ψ(s) then ṡ(s, b) < 0. If b < ψ(s) then ṡ(s, b) > 0.

5Appendix A.4.2 presents an example with a multi-valued ψ(s) when G(·) is not con-
cave.
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Critical points occur where nullclines intersect. (s∗, b∗) is a critical point
if ṡ(s∗, b∗) = ḃ(s∗, b∗) = 0. Let C∗ denote the set of critical points.

Lemma 4. If w = 0, C∗ 6= ∅.

The next lemma however ensures that orbits near critical points are well-
behaved in generic cases. Specifically, around critical points (3.5) behaves
like a linear system.

Lemma 5 (Saddle Point or Node). Let (s∗, b∗) be a critical point of (3.5).
Then (s∗, b∗) is either a node or a saddle point.

As the critical points are nodes or saddles, there exist orbits that tend
toward (or emanate from) each of the points. The direction of the orbits’
motion as a function of time is irrelevant; rather, the key observation is that
there are paths in (s, b)-space following (3.5) whose closure contains elements
of C∗.

Assumption 5. For expositional clarity, we will consider the case where the
set of critical points, C∗, is at most a singleton.

Appendix A.4.1 elaborates on the treatment when C∗ is multivalued.6 The
set of critical points C∗ may be empty if w is large. Section 3.2 subsumes
this case.

Leveraging Assumption 5, the preceding analysis allows us to construct
an accurate qualitative representation of the phase portrait of (3.5). Figure
3.1 sketches the situation. The nullclines ψ(s) and ν(s) partition the space
into four regions—R1, . . . , R4—that meet at the critical point (s∗, b∗). Several
sample orbits are plotted in the figure and thick arrows indicate the direction
of flow in each region. The critical point is a saddle point. In cases when
there are multiple critical points, they alternate between saddles and nodes.
Generically, there is an odd number of critical points.

Figure 3.1 also informs our understanding of b̄(s). This function is hy-
pothesized to be continuous, strictly increasing, and meeting (3.4). If such
a solution to (3.3) exists, it must begin in region R1, “pass through” the
critical point (s∗, b∗) and continue in R3. Only in regions R1 and R3 is
b′(s, b) = ḃ/ṡ > 0. The analysis also confirms that the only possible orbits

6A sufficient condition for a single critical point is that
∫ 1

s
[v(s, y) − v(s, s)] h(y|s)

1−H(s|s)dy

is decreasing in s and H(s|s) is increasing.
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Figure 3.1: Phase-diagram of the (ṡ, ḃ) system defined in (3.5). By Assump-
tion 5 there is a single critical point at (s∗, b∗). The two stable manifolds
define the function b̄(s).

consistent with these requirements correspond to the two stable manifolds of
(3.5), illustrated as orbits with initial conditions (0, b̄0) and (1, b̄1) in Figure
3.1. For notation, let (st, bt)[s0,b0] denote the specific orbit of (3.5) in (s, b)-
space at time t with initial condition (s0, b0). Considering the two stable
manifolds, define

b̄ =
{
(st, bt)[0,b̄0] : t ∈ [0,∞)

}
∪
{
(st, bt)[1,b̄1] : t ∈ [0,∞)

}
(3.7)

and let b̄(s) be the corresponding function. b̄(s) is well defined, continuous,
strictly increasing and satisfies the differential equation (3.3) almost every-
where.7 It has the endogenously determined boundary condition b̄(0) = b̄0 <
ψ(0).

To summarize, there is a function b̄(s) consistent with the conditions
outlined in Working Assumption 1. The remaining step is to verify that all
bidders following β(s, w) is an equilibrium.

7The exception is s∗ where (3.3) is undefined. At s∗ we can fill this gap by setting
b̄′(s∗) equal to the slope of the negative eigenvector from the Jacobian matrix of (3.5)
evaluated at the critical point.
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Figure 3.2: Equilibrium characterization in Example 3. There is a single
critical point at the intersection of ν and ψ. b̄(s) is defined as the union of
the stable manifolds passing through the critical point. For low value-signals,
bidders with a large budget bid more than if budget constraints were absent.

Proposition 5 (Equilibrium of the First Price Auction: Case 1). Suppose
w = 0, then β(s, w) = min

{
w, b̄(s)

}
where b̄(s) is defined by (3.7) is a

symmetric equilibrium.

Proof. See Appendix A.3. The proof is routine treating the auction as a reve-
lation mechanism and showing that expected utility is concave in announced
type.

The following numerical example illustrates the concepts developed thus
far. The example’s parameters correspond to those chosen by Fang & Par-
reiras (2002) to illustrate their characterization of the second-price auction’s
equilibrium.

Example 3. Suppose bidders’ valuations are given by v(si, sj) = si+ sj and

that Wi
i.i.d.∼ U [0, 2], Si

i.i.d.∼ U [0, 1]. The reader can verify that the differential
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equation describing b̄(s) is

b̄′(s) =
2(2 − b̄(s))(2s− b̄(s))

(1 + s)(3s− 1) − 4(s− 1)b̄(s)
.

There is no closed form solution for b̄(s). The ψ locus is defined by the
function ψ(s) = 5

4
+ 1

s−1
+ 3s

4
. The critical point is at s∗ = 1

5
(5 − 2

√
5) ≈

0.105. The eigenvalues of the Jacobian of (ṡ, ḃ) at the critical point are
−2(

√
5+

√
205)

5
≈ −6.62 and 2(−

√
5+

√
205)

5
≈ 4.83. Therefore, the critical point is

a saddle point and the stable manifolds approach it with a slope 8
√

5
3
√

5+
√

205
≈

0.85. Additional computation allows us to conclude that b̄0 ≈ 0.1202 while
the maximal bid is b̄1 ≈ 0.878.

b̄(s) is plotted in Figure 3.2 along with bf (s) = s, which is the equilibrium
in the same model but with no budget constraints. The nullclines, ψ and
ν, and representative orbits from the associated two-dimensional system are
included for context. This example highlights the attenuation of the winner’s
curse: low value-signal bidders (who can afford to) bid considerably more
than in the same model absent budget constraints. Winning the auction is
not such bad news regarding the item’s value.

When w > 0, two new factors may complicate the preceding analysis.
First, for a bidder placing a bid of b̄(0), the expected payoff may be negative:
η(0|0) − b̄(0) < 0. Such a bidder and those with budgets w ∈ [w, b̄(0)) may
therefore be better off bidding zero. Second, the manifold tending to (s∗, b∗)
from below may not originate on the b-axis. Instead, its initial condition
will be of the form (s0, w) for some s0 > 0. If this is the case, the strategy
β(s, w) = min{b̄(s), w} fails to specify the behavior of all types. In either
case, Proposition 5 cannot apply; otherwise, we have the following definition
and corollary.

Definition 3. The minimal budget w is low if a critical point exists, s0 = 0,
and η(0|0) − b̄(0) ≥ 0.

Although definition 3 is several steps removed from model primitives, nothing
can be said regarding its latter two conditions absent a solution for b̄(s).

Corollary 1. Suppose w is low. Then Proposition 5 continues to define an
equilibrium.
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Proof. It is identical to the preceding analysis. As b̄(s) depends on w through
G(·), the equilibrium strategy changes with w. Its characterization as a
strategy of the form β(s, w) = min{w, b̄(s)} for the appropriate b̄(s) does not
change.

Analysis of subsequent cases, when w is large or intermediate, builds on
the preceding results. In particular, the function

b̄(s) : [s0, 1] → [w, w̄] (3.8)

composed as the closure of the union of the upward-sloping (stable) manifolds
passing through the critical point (s∗, b∗) will reappear. b̄(s) is reserved as
notation for this function.

3.2 Large Minimal Budgets

If budget constraints are large relative to most valuations, a strong intuition
suggests that they should matter strategically only for high valuation bidders.
In Example 1, for instance, low-valuation bidders (s < ŝ) follow the bidding
strategy bf (s) bidding as if budgets are strategically irrelevant. Their bids
are far below the range of budgets. This section extends this observation
to the general model. When w is sufficiently large all bidders with a value-
signal below some threshold s̃ will bid according to the strategy bf (s), the
equilibrium strategy identified by Milgrom & Weber (1982) and defined in
(3.1). When s > s̃, bids in excess of w will be placed according to the function
min{w, b̃(s)} where b̃(s) is an appropriate solution to (3.3). Like the low w
case, and in contrast with Example 1, the equilibrium strategy β(s, w) for a
large w will be continuous.

Definition 4. The minimal budget w is sufficiently large if b−1
f (w) /∈ Sψ or

if ψ = ∅.
The specific term “sufficiently large” originates from the limiting case, w ≥
bf (1) which ensures Definition 4 is satisfied. However, the condition is often
met in less trivial settings. Specifically suppose s̃ ≡ b−1

f (w) < 1.

Proposition 6 (Equilibrium of the First-Price Auction: Case 2). Suppose
w is sufficiently large. Let

β(s, w) =

{

bf(s) if s ≤ s̃

min
{

w, b̃(s)
}

if s > s̃
(3.9)
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where bf (s) is defined in (3.1), s̃ ≡ b−1
f (w), and b̃(s) is the solution to

b̃′(s) =
λ(s|s)

(

b̃(s) − v(s, s)
)

γ(b̃(s))
(

η(s|s) − δ(b̃(s), s|s)
) , (3.10)

with boundary condition b̃(s̃) = w. β(s, w) is a symmetric equilibrium.

Proof. See Appendix A.3. The difference with the case of low minimal bud-
gets is that the critical point (if it exists) is bypassed by b̃(s). It is easy to
see that if a critical point exists at (s∗, b∗) then s̃ > s∗.

As in the low w case, β(s, w) is continuous and, abusing terminology, b̃(s)
extends bf (s) into the range of bids above w. Bids above w defeat opponents
who have a low value-signal and a relatively low budget. Therefore, the
marginal effect on the probability of winning the auction changes as bids
cross the w threshold. This change in reflected in the bidding strategy of
unconstrained bidders. The corollary and example make this effect more
precise.

Corollary 2. There exists a s′ ≤ 1 such that for all bidders of type (s, w),
with s ∈ (s̃, s′) and w sufficiently close to w̄, β(s, w) = b̃(s) ≥ bf(s).

High-budget participants bid more when s ∈ (s̃, s′) because the marginal
returns of higher bidding change. Bids above w defeat bidders who are budget
constrained and who may have a high value-signal. Both effects encourage
more aggressive bidding near w.

Example 4. Suppose bidders’ valuations are v(si, sj) = si + sj and that

Wi
i.i.d.∼ U [1

2
, 2], Si

i.i.d.∼ U [0, 1]. The only difference with respect to Example
3 is now w = 1

2
. w is large enough to preclude any critical points. The

differential equation describing b̃(s) reduces to

b̃′(s) =
2(2s− b̃(s))(2 − b̃(s))

4(1 − s)b̃(s) + s(3s+ 2) − 2
. (3.11)

while bf(s) = s; thus, s̃ = 1/2. Figure 3.3 depicts the functions b̃(s), bf (s),
and ν(s). The conclusion of Corollary 2 is clearly present.
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Figure 3.3: Equilibrium characterization in Example 4. w = 1/2 is suffi-
ciently large to preclude the existence of ψ(s); therefore, there is no critical
point. The function min{b̃(s), w} extends the equilibrium strategy into the
range of bids above w.

3.3 Intermediate Minimal Budgets

The intermediate case is defined in opposition to the low-w and high-w cases
already considered. Therefore, suppose w > 0, b−1

f (w) ∈ Sψ and one of the
following cases hold:

1. b̄(s) does not originate on the b-axis: 0 < s0 ≡ b̄−1(w)

2. b̄(s) originates on the b-axis, s0 ≡ 0, but η(0|0) − b̄(0) < 0.

3. There are no critical points.8

In both cases, the preceding theory is inadequate to describe equilibrium
behavior. For instance, at (s, w) = (b−1

f (w), w) the differential equation (3.9)

8We will assume in the discussion below that there is a critical point and thus b̄(s)
exists. Accommodating case 3 is a straightforward modification of the argument below
and is omitted for brevity.
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evaluates to b̃′ < 0 precluding an extension as in the high-w case. Such
features prompt consideration of discontinuous bidding strategies similar to
Example 1. While the discontinuities in Example 1 are partly due to the
discrete set of budgets, supporting discontinuities where budgets can assume
a continuum of values is a more involved matter. In contrast with Example 1,
the distribution of equilibrium bids will exhibit no mass points and will have
connected support; however, the underlying intuition will remain the same.
To translate Example 1’s intuition to this environment requires several new
concepts.

ν

b

ψ b̄

s

b

w

s0 s∗ s1
ψ s2

ψ s3
ψ

Figure 3.4: Definition of µ(s), denoted as the thick dotted curve. µ(s)
“climbs” the b̄ function until it reaches the critical point. For s > s∗ it
follows min{ψ(s), w}. In the figure, ψ(s) has two separate components.

We begin by specifying a function µ(s) that will define the initial “landing-
point” in the discontinuous equilibrium strategy under construction. Recall
the function ψ̃(s) from Lemma 2 and define µ : [0, 1] → [w, w̄] as

µ(s) =

{

w if s < s0

min{b̄(s), ψ̃(s)} if s ≥ s0

. (3.12)

b̄(s) was defined in (3.7) and passes through the critical point (s∗, b∗). As an
example, Figure 3.4 presents µ(s)—the heavy dotted curve—for the case of
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Sψ = [0, s1
ψ]∪ [s2

ψ, s
3
ψ].

9 To intuit the function’s origin consider a high-budget
bidder of type (s, w̄) where s > s0 and suppose she engages in the following
thought experiment:

(⋆) Suppose all other bidders follow the strategy

β(y, z) =

{

bf (y) y ≤ s

min
{
b̄(y), z

}
y > s

.

Among all bids in the range [w, w̄], what is the optimal bid?

µ(s) is the answer. To see why, suppose s > s∗. Trivially, bids above b̄(1)
are dominated. From the analysis when w is low, among bids in the range
[̄b(s), w̄], b̄(s) is optimal. To find the optimal bid among bids in the range
[w, b̄(s)] we solve

b = arg max
b̌≥w

∫ s

0

(
v(s, y)− b̌

)
h(y|s)dy +G(b̌)

∫ 1

s

(
v(s, y)− b̌

)
h(y|s)dy.

The problem’s first-order condition at an interior optimum leads to

0 = η(s|s)− b− G(b)

g(b)
− H(s|s)
g(b)(1 −H(s|s)) = η(s|s)− δ(b, s|s) =⇒ b = ψ(s).

Otherwise, the solution is b = w at the boundary. As ψ̃(s) < b̄(s) it follows
that µ(s) is the best response in the range [w, w̄]. The case of s < s∗ can be
addressed similarly.

Although µ(s) is the best response among bids in [w, w̄], it is not nec-
essarily optimal among all bids. In particular, bf (s) may be superior when
(⋆)’s solution is unrestricted.10 To delineate the boundary between these

9The definition of µ(s) applies to the case of multiple critical points provided ψ(s) is
single-valued. The equilibrium strategy constructed below continues to apply with a minor
amendment accounting for the additional critical points. See Appendix A.4.1.

10Bids in the range (bf (s), w) are easily seen to be suboptimal.
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situations consider the inequality

Utility from bid of µ(s)
︷ ︸︸ ︷
∫ s

0
(v(s, y) − µ(s))h(y|s)dy +G(µ(s))

∫ 1

s

(v(s, y) − µ(s))h(y|s)dy

≤
∫ s

0
(v(s, y) − bf (s))h(y|s)dy

︸ ︷︷ ︸

Utility from bid of bf (s)

(3.13)

⇐⇒ G(µ(s))(1 −H(s|s))
H(s|s) ≤ µ(s) − bf (s)

η(s|s) − µ(s)

and define the set Z =
{
s : (3.13) holds, and s ∈ [s0, b

−1
f (w)]

}
.

Lemma 6. Suppose w is intermediate. Then Z 6= ∅ and at ŝ ≡ supZ, (3.13)
holds with equality.

Here the signal ŝ will play the same role as in Example 1. This will be the
value-signal of the lowest type who increases her bid discontinuously.

With ŝ defined, we can state the proposed equilibrium strategy.11 As
the whole exceeds the sum of its parts, we defer providing intuition until
afterwards. Let

β(s, w) =







bf (s), if s ≤ ŝ

b1(s) if s > ŝ, w < φ(s)

min
{

w, b̂(s)
}

if s > ŝ, w ≥ φ(s)

(3.14)

Where the above terms are defined as follows:

• ŝ is defined as above.

• bf (s) is the equilibrium bidding strategy from the first-price auction
without budget constraints, defined by (3.1).

• b̂(s) is the solution to

b̂′(s) =
λ(s|s)

(

b̂(s) − v(s, s)
)

γ(b̂(s))
(

η(s|s) − δ(b̂(s), s|s)
) (3.15)

11Both the low w and the large w cases can be accommodated as special cases of the
strategy defined below.
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subject to b̂(ŝ) = µ(ŝ).12

• b1(s) is the solution to

b′1(s) =
[v(s, s) − b1(s)]h(s|s)G(φ(s))

H(ŝ|s) +
∫ s

ŝ
G(φ(y))h(y|s)dy (3.16)

subject to b1(ŝ) = bf (ŝ).

• φ(s) : [ŝ, 1] → [w, µ(ŝ)] is a non-increasing, continuous function such
that:

1. The following equation is satisfied:

φ(s) − b1(s)

η(s|s) − φ(s)
=

G(φ(s))(1 −H(s|s))
H(ŝ|s) +

∫ s

ŝ
G(φ(y))h(y|s)dy . (3.17)

2. φ(ŝ) = µ(ŝ).

3. φ(ŝ′) = b1(ŝ
′) = w for some ŝ′ ∈ (ŝ, 1].

Figures 3.5 and 3.6 illustrate this strategy. Dashed curves indicate a
discontinuity along the set D = {(ŝ, w) : w ≥ µ(ŝ)} ∪ {(s, φ(s)) : s ∈ [ŝ, ŝ′)}.
Importantly, however, β(·, w) : [0, 1] → R+ is continuous.

The intuition underlying this strategy echos that from Example 1. Bid-
ders who increase their bid discontinuously at ŝ are indifferent between the
higher bid and a bid of bf (ŝ). The larger bid is attractive for two reasons.

First, a higher bid wins with greater probability. Indeed, a bid of b̂(ŝ) defeats
all competitors who have a value-signal s < ŝ, just like bf (ŝ). It also defeats

all competitors with a relatively low budget, w < b̂(ŝ). Second, because a
bid of b̂(ŝ) bests many bidders with low budgets, it has the added benefit
of attenuating the winner’s curse. A defeated opponent may have received
a high value-signal but was unlucky regarding her finances. These reasons
compel a bidder with a value signal greater than ŝ to favor the much higher
bid.

12When there exists a critical point and ŝ ≤ s∗, b̄(s) solves (3.15) with the initial

condition b̂(ŝ) = µ(ŝ) and extends it to values s > s∗. From the arguments in the

low w case, a strictly increasing and continuous b̂(s) exists. Appendix A.4.1 considers

constructing b̂(s) when there are multiple critical points.
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µ(ŝ)

µ(ŝ)

bf (s)

min{w, b̂(s)}

b1(s)

Figure 3.5: The strategy β(s, w) when w is intermediate. The functions bf , b1,

and b̂(s) are strictly increasing. Dashed curves indicate a discontinuity along
the set D = {(ŝ, w) : w ≥ µ(ŝ)} ∪ {(s, φ(s)) : s ∈ [ŝ, ŝ′)}. However, β(·, w) is
continuous.

If bidders with a budget of w ≥ b̂(ŝ) choose to bid strictly above w,
bidders with budgets w ∈ [w, b̂(ŝ)) must somehow respond. Consider the
problem now facing a bidder with a value-signal ŝǫ = ŝ + ǫ and a budget
ŵǫ = b̂(ŝ) − ǫ. Such a bidder has an incentive to bid her budget and benefit
from the two positive effects noted above. However, she does not compare
bidding bf (ŝǫ) versus ŵǫ. The fact that all bidders with a budget in excess

of b̂(ŝ) are already outbidding her changes her incentives—she is facing less
effective competition on the margin. The same effect is seen in Example 1 for
bidders with a budget of w and a value-signal of s ∈ (ŝ, ŝ′). Therefore, she
compares bidding ŵǫ versus b1(ŝǫ) which accounts for this change in marginal
incentives. {(s, φ(s)) : s > ŝ} is the set of types just indifferent between such
bids as s increases. The subtle point, however, is that b1(·) is not independent
of the rate at which bidders prefer to bid their budget versus b1(s). As more
bidders discontinuously increase their bid above w, bidders with even lower
budgets but higher value-signals have even less incentive to bid aggressively
on the margin.
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Figure 3.6: Level sets (isobid curves) of β(s, w) when w is intermediate. The
dashed curve indicates a discontinuity. β(·, w) is continuous.

Proposition 7 (Equilibrium of the First-Price Auction: Case 3). Suppose
budgets are intermediate and value-signals are independent. Then (3.14) is
a symmetric equilibrium.

Proof. See Appendix A.3. Verifying that this is an equilibrium is routine.
Preparatory work involves showing that functions φ and b1 exist with the
stated properties (they are introduced in a self-referential manner). Schauder’s
fixed-point theorem aids in this task. The independence of value-signals al-
lows for a straightforward verification that the functions φ and b1 have the
properties described above.13

The strategy β(s, w) defined in (3.14) generates a bimodal distribution
of bids with few bids near w. This contrasts with Example 1 where, as
an artifact of discrete set of possible budgets, w was a mass point of the
bid distribution. After observing such a bimodal equilibrium bid distribu-
tion, an observer not accounting for the strategic implications of budget
constraints may erroneously conclude that there are two distinct classes of

13The independence assumption is not necessary to confirm the proposed strategy is an
equilibrium; only that it exists.
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bidders: those with high values and those with low values. This is a serious
error if attempting counterfactual analysis, for example to inform optimal
reserve price setting. With private budgets even a uniform type distribution,
and a unimodal distribution of ex post valuations, leads to this endogenous
separation as highlighted by the following example.

Example 5. Suppose bidders’ valuations are v(si, sj) = si + sj and that

Wi
i.i.d.∼ U [1

5
, 2], Si

i.i.d.∼ U [0, 1]. This is the setting of Examples 3 and 4 except
now w = 1/5. The ψ locus is ψ(s) = 3s

4
+ 9

10(s−1)
+ 5

4
. There is a critical point

at s∗ = 1 − 3
5

√
2 ≈ 0.151. The differential equation describing b̂(s) is

b̂′(s) =
10(2 − b̂(s))(b̂(s) − 2s)

20b̂(s)(s− 1) − 5s(3s+ 2) + 7

and bf (s) = s. The initial discontinuity is at ŝ ≈ 0.181 where some bidders
place a bid of µ(ŝ) ≈ 0.286—an increase in bid of approximately 58 percent.

Figure 3.7 depicts the functions bf , b1, b̂, ν, ψ, and φ. Several representa-
tive orbits from the associated two dimensional system are included to relate
the example with previously derived results. Although b̄(s) is not shown, it
is easy to see that for all s > ŝ, b̄(s) > b̂(s) and b̄−1(w) = s0 > 0 confirming
that this indeed is an intermediate level for w.

Figure 3.8 presents a stacked histogram of the resulting bid distribution.
Only 24 percent of types actually place a bid equal to their budget; nev-
ertheless, the strategic consequences of budget constraints are pronounced.
Without budget constraints, the distribution of bids would be uniform.

3.4 Comparisons, Comparative Statics, and

Applications

In this section we place the previously derived equilibrium in context by con-
sidering several applications. In particular, we provide a comparison with
the second-price auction’s symmetric equilibrium strategy. This is a useful
comparison if we wish to learn about the distribution of budget constraints
from bidding behavior alone. We also note some subtle differences in the
comparative static behavior of equilibrium strategies between the two for-
mats, especially following changes to the budget distribution. Curiously,
skewing the distribution of budgets to lower values may increase or decrease
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Figure 3.7: Equilibrium characterization in Example 5 where w = 1/5. The
equilibrium strategy bypasses the critical point; however, the strategy fea-
tures a discontinuity.

equilibrium bids conditional on a player’s type. The section concludes with a
discussion of reserve prices. When budget constraints are present, even small
reserve prices may decrease expected revenues.

The Second-Price Auction Fang & Parreiras (2002) study the second-
price auction’s symmetric equilibrium in the above environment. Referring to
their characterization but adopting our notation,14 the equilibrium strategy
in the second-price auction is of the form

β2(s, w) =

{

v(s, s) s < ŝ2

min {b2(s), w} s ≥ ŝ2

. (3.18)

b2(s) is a solution for s ∈ [0, 1] to the following boundary-value problem:

b′2(s) =
λ(s|s)
γ(b2(s))

[b2(s) − v(s, s)]

[η(s|s) − b2(s)]
, b2(1) = v(1, 1) = η(1|1).

14From Fang & Parreiras (2002), the function ϕ(s, x) corresponds to η(x|s) in this article.
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Figure 3.8: Stacked histogram of equilibrium bid distribution in Example 5.
Bids place by constrained bidders (β(s, w) = w) and unconstrained bidders
(β(s, w) < w) are indicated separately. There are few bids placed near w as
bidders with sufficiently large budgets increase their bids discontinuously to
values in excess of w.

When ŝ2 > 0 it is a point of discontinuity in the bidding strategy. If this is
the case, lims→ŝ+

2
b2(s) = w. As in the first-price auction, the discontinuity’s

presence depends on the prior distribution of types and on the valuation
function. Unlike the first-price auction, the second-price auction lacks critical
points in the type-space’s interior. More importantly, budget constraints in a
second-price auction do not introduce the same strategic effects as seen in the
first-price auction and there is no endogenous stratification of competition
along the budget dimension. If bids discontinuously increase from v(s, s) up
to w at s = ŝ2, all bidders with signals s > ŝ2 will bid at least w. The
next lemma compares equilibrium strategies between first- and second-price
auctions. It confirms the standard result that a bidder shades her bid more
in the former.

Lemma 7. Fix an auction environment as in sections 3.1–3.3. Let β1(s, w)
and β2(s, w) be symmetric equilibrium strategies for the first-price and second-
price auctions respectively. Then,

i) β1(s, w) ≤ β2(s, w) and the inequality is strict if β1(s, w) < w.
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ii) If β1(s, w̄) and β2(s, w̄) have discontinuities at ŝ1 and ŝ2 respectively,
then ŝ2 ≤ ŝ1.

Exploiting the weak inequality in Lemma 7(i) allows for a simple test for
the presence of budget constraints in an auction environment, even if bids or
bid distributions are the only observables. If a first-price and second-price
auction are conducted simultaneously for the same item15 and a bidder sub-
mits the same bid across formats, her bid is driven by the budget constraint.

When such laboratory-style, bidder-level data are unavailable one can
compare the distributions of submitted bids in both formats. To illustrate
the idea, fix an auction environment such that w = 0 and suppose v(s, y) is
a function of both arguments. Let β1(s, w) and β2(s, w) be the equilibrium
strategies for the first-price and second-price auctions respectively. When
w = 0 neither β1 nor β2 exhibit discontinuities and b̄(0) > 0. Thus, for all
w ≤ b̄(0), β1(s, w) = β2(s, w) = w. Consequently, the distribution of bids
less than b̄(0) will be the same across auction formats and it will reflect the
distribution of budgets in this range. Without budget constraints, bidders
would bid v(s, s) in the second-price auction’s symmetric equilibrium. As
bf (s) < v(s, s) the distribution of first-price auction bids in this range would
be different if binding budgets were not present.

Such tests are unusual insofar as they demand observing bidding across
auction formats while maintaining the environment otherwise fixed. How-
ever, they do in principle allow identifying private budget constraints, as
distinct from valuations, based on bidding behavior alone.

Comparative Statics Several additional comparative statics can help fos-
ter intuition for the first-price auction equilibrium’s properties. The following
exercises mirror those offered by Fang & Parreiras (2002) for the second-price
auction. The non-strategic release of value-enhancing information will en-
courage higher bids. However, unlike in the second-price auction, moving to
a stochastically lower distribution of budgets can have an ambiguous effect
on the equilibrium bid of a participant.

Public Signals Consider the situation where a bidder’s final valuation
depends on (S, Y ) and on some public signal T which is observable to all

15For example, participants could submit format-contingent bids.
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participants prior to bidding. Suppose (S, Y, T ) are affiliated and

v(s, y|t) ≡ E[π(S, Y, T )|S = s, Y = y, T = t].

π can be understood as a primitive mapping of signals to ex-post valuations.16

Thus, higher realizations of T are good news regarding the sale item’s final
value. Similarly define

η(x|s, t) ≡ E [v(S, Y |T )|Y ≥ x, S = s, T = t] .

By affiliation, v and η are increasing of their arguments while the conditional
cumulative distribution H(y|s, t) and the conditional hazard rate λ(y|s, t) are
now also decreasing in t.

As t can be treated as a model parameter, the equilibrium characteriza-
tion remains unchanged with statements conditional on t replacing the pre-
ceding analysis’ unconditional statements. In particular, the model’s main
differential equation (3.3) is now

d

ds
b(s, t) =

λ(s|s, t) (b(s, t) − v(s, s|t))
γ(b(s, t)) (η(s|s, t) − δ(b(s, t), s|s, t)) . (3.19)

The specific solution to (3.19) passing through the critical point, denoted
here as b̄(s, t), admits comparative statics as t changes. The following lemma
confirms an intuitive conclusion: good news—i.e. large realized values of
T—encourages bidders to increase their bids.

Lemma 8. Suppose that for all y, v(s, y|t)λ(y|s, t) is non-decreasing in
(s, t).17 Let t0 < t1. Then for all s ∈ [0, 1] such that b̄(s, t0) and b̄(s, t1)
are defined, b̄(s, t0) ≤ b̄(s, t1).

Financial Constraints Budget constraints offer a new dimension along
which the auction environment may change. Sections 3.1–3.3 focused on
changing the support of the budget distribution. Here we consider changing
G(·) holding [w, w̄] fixed. Specifically, consider two distributions of budgets,
G0 and G1, with the same support such that

w′ > w =⇒ g0(w
′)

g1(w′)
≥ g0(w)

g1(w)
. (3.20)

16Assume that v(s, y|t) enjoys the previous properties of convenience, such as differen-
tiability, boundedness, etc.

17This condition is satisfied if v(s, y|t) = (s+ y+ t)/3 and h(s, y, t) ∝ syt+10 on [0, 1]3.
It is always satisfied if signals are independent.
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Thus, G0 likelihood ratio dominates G1.
18 Intuitively, financial constraints

are more severe when budgets are distributed according to G1 rather than
G0.

In the second-price auction, changing the budget distribution from G0 to
G1 increases unconstrained bidders’ bids (Fang & Parreiras, 2002). In the
first-price auction, in contrast, increasing the severity of budget constraints in
the sense of (3.20) has ambiguous effects on bidding: an unconstrained bidder
may bid more or less. As likelihood ratio dominance is a restrictive stochas-
tic ordering implying both hazard-rate dominance and first-order stochastic
dominance, this ambiguity can be interpreted as a negative conclusion from
an empirical perspective.

To confirm an ambiguous effect, it is sufficient to study a parametric
example and to examine the bids placed by an unconstrained bidder near the
critical point (s∗, b∗); indeed, in typical cases this is the only point where we
can easily pin-down the value of an unconstrained bidder’s bid. Specifically,
consider the model of Example 3 but with three alternative distributions of
budgets on [0, 2]:

G0(w) =
w

2
, G1(w) =

√
w

2
, and G1′(w) =

w(4 − w)

4
.

G0 likelihood ratio dominates both G1 and G1′ . Comparatively, budgets are
more likely to be low when budgets are distributed according to G1 or G1′ .
The critical point (s∗, b∗) occurs at the intersection of ν(s) and ψ(s). ν(s) is
invariant to changes in G(·); however, each distribution Gk implies a distinct
ψk(s):

ψ0(s) =
3s2 + 2s− 1

4s− 4

ψ1(s) =
9s3 − 7s2 + 3s+ 3 − 4

√
9s5 − 11s4 + 3s3 + 3s2

18 (s2 − 2s+ 1)

ψ1′(s) =
9 − 6s− 3s2 −

√
9s4 − 36s3 + 48s2 − 84s+ 57

6 − 6s

Table 3.1 summarizes approximate values for the critical point in each
case and Figure 3.9 sketches the overall situation. The critical points are

18Likelihood ratio dominance implies hazard rate dominance, g1(w)
1−G1(w) ≥ g0(w)

1−G0(w) , and

first-order stochastic dominance, G1(w) ≥ G0(w).
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Table 3.1: Critical Points for Different Budget Distributions

Distribution s∗k b∗k
G0 0.1056 0.2111
G1 0.0864 0.1728
G1′ 0.1264 0.2528

strictly ordered: s∗1 < s∗0 < s∗1′ . In a neighborhood of s∗0 the sign of the
change in bid can be either positive or negative. Unconstrained players bid
less when they are distributed according to G1 instead of G0: b̄1(s

∗
0) < b̄0(s

∗
0).

The converse is true when budgets follow G1′ instead of G0: b̄1′(s
∗
0) > b̄0(s

∗
0).

The supporting intuition centers on two conflicting effects. When values
are interdependent, budget limits attenuate the winner’s curse encouraging
higher bids. Defeating an opponent because she was budget constrained is
good news. The countervailing force concerns the marginal effects of higher
bids on the probability of winning. There is less incentive to bid aggressively
because competition is curtailed at higher bid levels. Budgets directly reduce
the probability that an opponent is capable of placing a relevant competing
bid. Both effects become magnified as budget distributions are skewed toward
lower values and the final alignment of incentives may favor one or the other.

Reserve Prices As in the case of the second-price auction, a general ex-
pression for expected revenues is not available but we can draw some revenue
conclusions by examining equilibrium strategies alone. Specifically, as a final
application we consider the setting of a common reserve price. The main
lesson is one of caution: setting even a small reserve price may exclude the
wrong types of bidders and thus decrease revenue. The following is an im-
mediate corollary to Proposition 5 when w is low.

Corollary 3. Suppose w is low and let β(s, w) = min{b̄(s), w} be the equilib-
rium strategy absent any reserve prices. Let r ∈ (w, b̄(0)] be a reserve price.
Then

βr(s, w) =

{

l if w < r

min
{
b̄(s), w

}
if w ≥ r

is an equilibrium following the introduction of a reserve price. The auction’s
expected revenue has decreased.
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Figure 3.9: Changing budget distributions shifts the critical point. Thick
dashed curves denote the b̄k(s) functions in various cases. ν(s) is invariant
to changes in Gk(·). Locally near the critical point, changing Gk in the
manner considered has an ambiguous effects on the equilibrium strategy of
an unconstrained bidder.

Setting r < b̄(0) leaves unchanged the bid of all bidders with a larger bud-
get. Such bidders were already defeating all opponents with budgets w < r
and they are unmoved by the latter’s exclusion from the auction. The ex-
pected revenue declines because the reserve price is reducing the probability
of sale by screening low-budget bidders while not improving the expected
price paid conditional on sale to a participant with a budget w ≥ r. Ab-
sent budget constraints, in contrast, a small reserve price screens out low-
valuation bidders and increases the bid of all participants through its uplift
of the lowest-valuation participating bidder’s equilibrium bid. Bidders with
a value-signal of s = 0 continue to place a non-losing bid according to βr
provided they have a sufficiently large budget.

When private budget constraints exist, setting the revenue-maximizing
reserve price is a delicate exercise. For instance, in the introductory model
of Example 1 with budgets w ∈ {w, 1}, the revenue-maximizing reserve price
varies discontinuously with the model’s parameters. If budgets are low with
low probability, a reserve price of r∗ = 1/2 is optimal. This is also the
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revenue-maximizing reserve price in the model absent budget constraints. If
the probability of a bidder being budget constrained is sufficiently large, the
optimal reserve price will be considerably lower, r∗ ≤ w < 1/2. Selling the
item more often at a possibly lower price is on balance the better decision if
binding budget constraints are prevalent.

43



Chapter 4

Experiments

Whereas the preceding theory offers a rich set of predictions concerning equi-
librium behavior, whether auction participants recognize the nuanced strate-
gic implications of private budget constraints reduces to an empirical ques-
tion. This chapter reexamines the introductory model of Example 1 in an
experimental setting. Recall that Example 1 builds around a simple general-
ization of Vickrey (1961)’s classic first-price sealed-bid auction model. It is
the simplest non-trivial setting where budget constraints matter for bidding
behavior. A bidder will face a hard budget constraint with probability p;
otherwise, the bidder’s budget will be sufficient for all (undominated) bids.
For simplicity, budgets are independent of valuations and both budget and
valuations are private information. This framework, which can equally well
be applied to other auction forms, offers a tractable setting to explore the
effects of private budgets in auctions.

Mirroring nearly all first-price auction experiments, the experimental
analysis cast doubt on the equilibrium bidding model per se. For exam-
ple, overbidding relative to the risk-neutral equilibrium strategy is observed.
On the other hand, the data lend support for the equilibrium’s main qualita-
tive features. In particular, the presence of budget constraints is recognized
as a major strategic opportunity for unconstrained bidders. Moreover, the
bidding strategy employed by unconstrained participants further accounts
for the stratification of competition implied by budget constraints.

Although auction theory has recognized the possibility of budget con-
straints in auctions, to my knowledge their effects have not been explored in
the laboratory. The only exception is Pitchik & Schotter (1988) which fo-
cuses on equilibrium selection in a sequential auction setting rather than on
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the strategic issues introduced by budget constraints in the standard model.
Kagel (1995) and Kagel & Levin (2011) comprehensively survey the experi-
mental auction literature, including research on first-price auctions.

Section 4.1 is a self-contained revisiting of Example 1. Equilibrium pre-
dictions are derived and include a congruence of equilibrium strategies among
both constrained and unconstrained bidders with low valuations. For bidders
with low valuations, budget limits are not strategically relevant. Equilibrium
strategies also feature a prominent discontinuity when bidders who do not
face a budget constraint outbid all constrained types. Finally, at relatively
high bid levels, there exists a stratification of competition implying changed
marginal returns to increased bids. Section 4.2 introduces the experimen-
tal environment which dutifully mirrors standard auction experiments and
simultaneously allows for the collection of a rich individual level data-set.
Finally, section 4.3 considers multiple tests of the equilibrium model’s main
predictions. In particular, we focus on the discontinuities in equilibrium
strategies, the congruence of equilibrium behavior among high- and low-
budget bidders at very low valuations, and the change in bids implies by the
resultant stratification of competition between high and low-budget bidders.
Whereas budgets clearly do impact behavior, subject’s reactions often fail to
correspond to the model’s quantitative predictions. That said, the strategic
issues introduced by budget limits impact behavior in a manner qualitatively
aligned with theory.

4.1 The Model

The model under study is a generalization of Vickrey (1961)’s classic first-
price, sealed-bid auction with independent private values. For simplicity, and
looking forward to the experiment, assume there are 2 bidders, i ∈ {1, 2},
and each bidder has a private value si

i.i.d.∼ U [0, 1]. The bidder submitting
the highest bid wins the auction and ties are resolved with a fair coin flip.1

Bidders are assumed to be risk-neutral and winners receive a payoff of si− bi
where bi is the bidder’s own bid. Losing bidders receive a payoff of zero.
As we focus on the symmetric Bayesian Nash equilibrium, subscripts will be
omitted unless confusion may result. When players do not face a budget

1When the model is augmented with budget constraints, ties among high-bidders oc-
cur with positive probability in equilibrium. Therefore, the tie-breaking assumption is
important.
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constraint, the equilibrium bidding strategy is

bf (s) =
s

2
.

Consider the following generalization. Suppose players also have an abso-
lute spending limit, a budget, known only to themselves. Player’s budgets
are independent and can assume one of two values wi ∈ {w, 1}. To pre-
clude degenerate cases, suppose w < 1

2
and let Prob[wi = w] = p ∈ (0, 1).

Therefore, a player’s type θ = (s, w) is composed of both a valuation and a
budget. While θ is private, its distribution is common knowledge. The pres-
ence of the budget constraints noticeably modifies the symmetric equilibrium
bidding strategy.

Proposition 8. The following strategy is a symmetric Bayesian Nash equi-
librium of the first-price auction with private budget constraints:

β(s, w) =







s
2

if s ∈ [0, ŝ] and w ∈ {w, 1}
s2(p−1)−2k1
2p(s−1)−2s

if s ∈ (ŝ, 1] and w = 1
ps2+2k2

2ŝ−2pŝ+2sp
if s ∈ (ŝ, ŝ′] and w = w

w if s ∈ (ŝ′, 1] and w = w

. (4.1)

The closed-form values of the constants {ŝ, ŝ′, k1, k2} are presented in Ap-
pendix A.1.

Proof. See Appendix A.1. Verifying that β is an equilibrium is routine;
however, it is not immediate that β exists as both ŝ and ŝ′ are defined as
values at which a bidder is indifferent between the low and the high bids.

Figure 4.1 sketches an example of β(s, w), along with b(s) for comparison.
β(s, w) displays several novel and testable features.

First, constrained and unconstrained bidders follow the same bidding
strategy for valuations s ≤ ŝ. For these bidders their budget is never binding
and is ancillary information.

Second, at ŝ the equilibrium strategy of an unconstrained bidder displays
a discontinuity. The intuition for the jump is straightforward. By bidding
more than w, an unconstrained bidder can increase discontinuously his chance
of winning the auction by outbidding all constrained types. With a valuation
of ŝ he is just indifferent between competing only with low valuation bidders
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Figure 4.1: Equilibrium strategy in Proposition 8. High-budget bidders in-
crease their bid discontinuously to w at ŝ. Low-budget bidders are restricted
to bids below w. bf (s) is the equilibrium strategy absent private budget
constraints.

with a bid of ŝ/2 and paying a premium w − ŝ/2 to boost his chance of
winning by this discrete amount.

Third, constrained bidders will only bid their entire budget for relatively
high valuations, s > ŝ′. This implies that ties happen with positive prob-
ability in equilibrium. Indeed, the precise value of ŝ′ depends on the tie
breaking procedure employed. A move from bidding less than w to a bid of
w increases discontinuously a player’s probability of winning and ŝ′ is the
lowest type who can benefit from this jump in bid.

Fourth, there is a clear stratification of competition among high- and
low-budget bidders. This stratification is most clearly exhibited in the dis-
continuity already mentioned; however, it is also reflected by the change in
the equilibrium strategy’s slope at valuations s > ŝ. Bids placed by bidders
with valuations s > ŝ are competing on the margin only with bids placed
by opponents with similar budget levels and the strategies need to adjust to
reflect this decline in effective competition.

Finally, it is worth noting that β(s, w) nests bf (s) = s
2

as a limiting case
(for instance if p→ 0 or w → 1

2
).
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Beyond the striking individual level behavior, the generalized model also
makes several predictions concerning the auction’s aggregate performance.

Proposition 9. For all p > 0 and w < 1/2 the expected revenue of the first-
price auction with private budget constrains is less that the expected revenue
when there are no budget constraints (say p = 0).

Proof. See Lemma 9 in Appendix A.1. The conclusion is not immediate
because of the non-monotonic response of bidding strategies following the
introduction of private budgets.

Conclusions concerning the decline in the auction’s allocative efficiency
are trivial. With positive probability, the item will be allocated to a rel-
atively low-valuation bidder as a high-valuation opponent may be budget-
constrained.

Based on this characterization of equilibrium, we focus on two related
features of the model.

1. To what extent do individual and aggregate bidding behavior corre-
spond to the equilibrium model? This includes investigating the con-
gruity of the bidding strategy of constrained and unconstrained bidders
with low valuations (s ≤ ŝ) and the discontinuity in unconstrained
bidder’s bidding strategy at ŝ.2 Both of these features help identify
whether bidders can recognize the strategic importance of budget con-
straints and when such constraints do and do not matter.

2. How robust are the model’s predictions about aggregate outcomes such
as revenue and efficiency? Whereas theory predicts a decline in ex-
pected revenue and efficiency, whether this decline is empirically true
is not a priori obvious. The relatively complicated bidding problem
may encourage the use of heuristic strategies moving these variables in
either direction or at best ameliorating their decline.

Investigating these features allows us to gauge how budget constraints
enter the decision making calculus of bidders and presents a first step beyond
the raw equilibrium analysis in incorporating such realistic constraints into
more applied auction environments.

2The discontinuity in the constrained bidder’s strategy at ŝ′ will not be a focus of
the experimental analysis. The parameters selected for the experiment make this second
discontinuity relatively small.
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Table 4.1: Summary of Experimental Sessions

Session
Treatment
Order

Rounds
per Treat-
ment

Subjects Const.
Subjects

Mean
Earnings

1 1–2 5–5 22 18 $ 25.78
2 1–2 5–5 18 10 $ 19.39
3 2–1 5–5 18 16 $ 16.91

4.2 Experiment Procedures

Three experimental sessions were conducted at the Xlab at the University of
California, Berkeley. Subjects were undergraduate students recruited by e-
mail who have not participated in this experiment previously.3 The sessions
consisted of 22, 18, and 18 participants. This subject pool size is comparable
to other recent auction studies (Kagel & Levin, 2009; Neugebauer & Perote,
2008). Per Xlab policy, subjects received a $5 show-up payment in addi-
tion to any earnings in the experiment. Average payments were $21.04 and
the experiment lasted approximately 60 minutes with 20 additional minutes
needed to process payments.4 Payments for the experiment were calibrated
to approximate a subject’s average hourly wage of $15.

In each session, subjects participated in two treatments. In both treat-
ments, valuations were independently distributed uniformly on [0, 10] and
were rounded to the nearest hundredth. In Treatment 1 bidders did not face
a strategically relevant budget constraint nor any uncertainty about the bud-
get of others. Specifically, subjects were informed that their budget was 10.
This ensures that all undominated bids are feasible for all types of bidders.
Treatment 2 introduces private budget constraints of wi = 3.50 with prob-
ability p = 0.7; otherwise, wi = 10. Subjects remained at the same budget
level for the duration of the treatment and budgets were assigned randomly
by computer. Table 4.1 summarizes the experimental sessions.

At the start of the experiment subjects were seated at computer termi-

3Many subjects have likely participated in previous Xlab experiments.
4In session 1 the round that was randomly selected to determine payment was from

Treatment 1 in which no subject faced a budget constraint; therefore, the earnings are
noticeably greater.
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nals and presented with instructions for the experiment.5 Subjects read the
instructions; subsequently, the moderator read the instructions aloud. Sub-
jects had the opportunity to ask clarifying questions. During the experiment,
subjects participated in 10 rounds of bidding. In two sessions, 5 rounds of
Treatment 1 were followed by 5 rounds of Treatment 2. Between the two
treatments, there was a minor pause as the moderator publicly announced
the new way budgets are henceforth determined. The third session reversed
the treatment ordering. Subjects were not informed ahead of time concern-
ing the number of planned rounds of bidding nor of the expected change in
treatments midway through the session. There were no “practice” rounds.
Each round consisted of the following:

1. Subjects were randomly matched to another bidder. Subjects remained
anonymous.

2. Each subject was presented on their computer screen some information
about the auction environment, such as the distribution of valuations
and the number of bidders. In Treatment 1, subjects learned that all
bidders have a budget of 10. In Treatment 2, subjects were informed
about the distribution of the other player’s budget. This information
was also prominently displayed on a whiteboard to ensure that subjects
were symmetrically informed.

3. Each subject was presented with 10 realized valuations and was asked
to place a bid for each valuation as a separate auction.6 Subjects were
also informed of their own budget constraint.7 In each of the 10 auctions
per round, bids could be any value between zero and a subject’s budget
constraint. A bidding screen from this interface was included in the
instructions and was explained at the start of the experiment (See
Appendix B, Figure B.1).

4. A new round began once all players have submitted bids. Subjects
received no feedback between rounds of bidding and were informed of
this no feedback feature at the experiment’s beginning.

5Abridged instructions are in Appendix B.1.
6The valuations were not ordered.
7Subjects were constrained or unconstrained and remained so for all rounds in Treat-

ment 2.
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At the experiment’s end, the computer selected one auction from one
round to determine payment. Subjects were informed of their budget, bid,
and valuation from the selected auction and whether they won or not. The
competing bidder’s identity, bid, valuation, and budget was not revealed.
The experiment’s unit of account was the experimental currency unit (ECU).
Subjects received xi+wi−bi ECU if they won the selected auction. A subject
earned the value of the financial asset and made a payment from their budget.
Otherwise they earned wi ECU. The exchange rate was 1 ECU = 2 USD.

A novel feature of this experimental design is the hybrid random-matching
and strategy method interface which elicited bids for several values simulta-
neously. Strategy method designs are relatively rare in auction experiments
with Filiz-Ozbay & Ozbay (2007)’s pen-and-paper design being a recent ex-
ception. The design greatly increases the collected data’s richness without
significantly impacting costs while maintaining the spirit of traditional auc-
tion experiments built around round-by-round random matching.8 Pezanis-
Christou & Sadrieh (2003) is another computerized auction study employing
a strategy method design; however, this experiment restricted subjects to
submitting piecewise-linear bidding functions. Adopting a design in this
spirit would impose too much structure on subjects’ responses obfuscating
the equilibrium’s interesting elements.

The zero-feedback between rounds, although also unusual in auction ex-
periments, minimizes potentially conflating issues such as learning, super-
game effects, or regret. In most experiments subjects are informed of the
previous round’s outcome—winning bids, earnings, etc.—and they can some-
times review outcomes from earlier rounds. Recent experimental evidence
suggests that observed overbidding in first-price auction experiments rela-
tive to the risk-neutral Nash equilibrium strategy, a phenomenon surveyed
comprehensively by Kagel (1995) and Kagel & Levin (2008), can be partially
attributed to the “usual” feedback offered during experiments. Neugebauer
& Selten (2006) suggest that such an information structure biases learning
while Filiz-Ozbay & Ozbay (2007) and Engelbrecht-Wiggans & Katok (2007)
contend that it leads to anticipated regret. These effects in turn manifest
themselves as relative overbidding.9 Experiments by Neugebauer & Perote

8In a more complicated auction-like setting Kotowski (2010b) found no statistically
significant difference between bids elicited using this hybrid design and a standard design
where subjects placed only one bid every round.

9Risk aversion has also been suggested to rationalize observed overbidding in auction
experiments (see the December 1992 issue of the American Economic Review). Some non-
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(2008) suggest that providing no feedback between rounds leads to slight
underbidding relative to the risk-neutral Nash equilibrium with bids con-
verging to the equilibrium as the experiment progresses. Looking forward to
the experimental results, and in response to this recent literature, the phe-
nomenon of bidding closer to the risk-neutral Nash equilibrium prediction
is not observed in this study despite the strategy method design arguably
offering subjects a better platform in which to engage in introspective learn-
ing.10 Thus, rather than interpreting the limit on feedback as a means to get
bidding more in line with equilibrium’s predictions, this study uses it to get
a cleaner test of the theory limiting previously identified confounds.

The introduction of budget constraints on an auction-by-auction basis
also addresses the subtle issue of “cash-balance effects” seen in some auction
studies.11 In many experiments, such as Rose & Levin (2008) or Andreoni
et al. (2007), subjects carry an earnings account between rounds with wins
contributing to and losses subtracting from this total. Although more salient
in common-value settings where the winner’s curse leads to losses for auction
winners, Ham et al. (2005) note that the cash balances carried by bidders
between rounds can bias bidding even in private-value experiments. With
per auction budgets, a player’s cash balance is a parameter under the exper-
imenter’s control.

With the adopted parameters of p = 0.7 and w = 3.50, ŝ = 4.93691 and
ŝ′ = 6.05617. The equilibrium bidding strategy of an unconstrained bidder
is:

β(s, 10) =

{
s
2

if s ∈ [0, 4.93691]
0.03s2+5.20556

0.06s+1.4
if s ∈ (4.93691, 10]

.

The constrained bidder’s equilibrium strategy is:

β(s, 3.5) =







s
2

if s ∈ [0, 4.93691]
0.07s2+0.731193
0.14s+0.296215

if s ∈ (4.93691, 6.05617]

3.5 if s ∈ (6.05617, 10]

.

equilibrium bidding models, such as Level-k thinking, have also been proposed to explain
these effects (Crawford & Iriberri, 2007). This experiment does not seek to explain sources
of overbidding; rather, it considers it to be a feature of the data and seeks to understand
the impact of budget constraints taking overbidding as given.

10For instance, by submitting several bids at once it may be easier to implement a
monotonic bidding strategy or to better see how one’s bids stand in relation to each other.

11Selecting only one auction for payment also controls for this effect.
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This parameterization represents a compromise ensuring a prominence of the
equilibrium’s novel elements, and the “naturalness” of the visible parameters.

4.3 Experiment Results

The experiments are tailored to investigate the novel features of the equilib-
rium bidding strategy. This section begins by reviewing data from Treatment
1, which is the standard first-price auction without budget constraints. The
purpose of this review is to ensure a comparability of the collected data
across the sessions and with other experiments. We examine novel elements
introduced by private budget constrains in subsection 4.3.2.

4.3.1 Bidding in Treatment 1

Recall that Treatment 1 corresponds to the standard two-player first-price
auction with an equilibrium strategy bf (s) = s

2
. Figure 4.2 presents a scatter

plot of value-bid pairs pooling across all sessions and rounds. For reference,
the equilibrium bidding strategy and a 45-degree line are also displayed. A
cursory examination of the scatter plot suggests that overbidding relative
to the risk-neutral Nash equilibrium bidding strategy is a characteristic of
the data. This is a standard observation in first-price auction experiments.
Table 4.2 presents descriptive statistics of the submitted bids across sessions
in Treatment 1.

As the equilibrium bidding strategy is linear in type, the linear regression

bi,t = β0 + β1si,t + ǫi,t. (4.2)

is a natural candidate to better organize the data.12 bi,t is subject i’s bid in
auction t as a function of his or her signal si,t and an idiosyncratic error ǫi,t
Table 4.3 reports the results of this regression with subject, round, and sub-
ject × round fixed effects. For reference, the same regressions are performed
using data from Palfrey & Pevnitskaya (2008) who perform a first-price auc-
tion experiment with two bidders and uniformly distributed valuations using
a more traditional experimental design.13

12A Lowess regression yields a fitted curve that is very well approximated by a straight
line; therefore, I will focus on linear regressions in discussing the data.

13In Palfrey & Pevnitskaya (2008) valuations are uniformly distributed on [0, 700], sub-
jects bid on one auction per round, and received feedback after each round. These data
are rescaled to correspond to the scale seen here.
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Figure 4.2: Bids in Treatment 1 (All Sessions)
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Of the four specifications, Model (4) which includes a full set of subject
× round fixed effects is the preferred specification given the heterogeneity
seen in individual bidding strategies. Across all fixed-effect specifications,
the estimates of the slope of the bidding function, β1, are consistent with
secular overbidding relative to the risk-neutral strategy—a common finding.
The estimated parameters are comparable to those seen in the data from
Palfrey & Pevnitskaya (2008).

An unusual feature of the collected data is the high preponderance of
subjects submitting bids in excess of their valuations. In Treatment 1, 17.86
% of bids were in excess of a subject’s valuations. Such behavior is difficult
to reconcile with any standard interpretation of rational economic decision
making. Despite this feature, no data are excluded from the empirical analy-
sis and we interpret such departures from equilibrium behavior as noise that
is characteristic of the data.
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Table 4.2: Descriptive Statistics of Submitted Bids in Treatment 1

Session Observations Mean St.Dev. Skewness Min Max

All 2900 3.93 2.83 0.50 0 10
1 1100 3.90 2.76 0.36 0 10
2 900 3.71 2.74 0.61 0 10
3 900 4.17 2.99 0.51 0 10

4.3.2 Bidding in Treatment 2

Figures 4.3 and 4.4 present scatter plots of value-bid pairs for unconstrained
and constrained bidders pooling across all sessions. For reference, the equi-
librium bidding strategy and a 45-degree line are also plotted. In total, 44
subjects were constrained bidders and 14 subjects were unconstrained. Ta-
ble 4.4 presents descriptive statistics of bids submitted by constrained and
unconstrained bidders in Treatment 2.

An examination of the scatter plots and table suggest that budget con-
straints influence the bidding behavior of constrained and unconstrained bid-
ders. Beyond the purely mechanical effect of limiting bids submitted by
constrained bidders, the possible budget constraint attenuated the bids of
many unconstrained bidders due to the reduced competition in Treatment
2. The presence of a discontinuity in the unconstrained bidders’ strategy
is a plausible conclusion suggested by Figure 4.3 which will be investigated
below.

Discontinuities in Bidding Strategies

A key equilibrium prediction is the discontinuity in both constrained and
unconstrained bidders’ strategies. Here we focus on the unconstrained bid-
der’s strategy. As noted above, Figure 4.3 is suggestive of the presence of a
structural break in the bidding strategy of a unconstrained bidder.

As the theoretical model posits a break at ŝ = 4.93691, a simple test
considers the following piecewise-linear model of bidding for unconstrained
bidders:

bi,t = β0 + β1si,t + δi,t (β2 + β3si,t) + ǫi,t (4.3)

where δi,t = 1(si,t > ŝ) is an indicator for valuations above ŝ. Although the
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Table 4.3: Bidding in Treatment 1. OLS parameter estimates.
Heteroskedasticity-consistent standard errors in parenthesis. (* p < 0.05,
** p < 0.01, *** p < 0.001)

Sample (1) (2) (3) (4)

(A) All Sessions β0 0.480*** -0.065 0.769*** 0.637*
[Obs = 2900] (0.073) (0.166) (0.112) (0.289)

β1 0.681*** 0.672*** 0.680*** 0.684***
(0.013) (0.010) (0.013) (0.009)

(B) Session 1 β0 0.647*** 0.183 0.834*** 0.847**
[Obs = 1100] (0.121) (0.183) (0.169) (0.324)

β1 0.637*** 0.620*** 0.635*** 0.641***
(0.023) (0.019) (0.022) (0.018)

(C) Session 2 β0 0.64*** -0.726*** 1.260*** -0.790***
[Obs = 900] (0.138) (0.109) (0.225) (0.224)

β1 0.632*** 0.648*** 0.628*** 0.659***
(0.024) (0.016) (0.024) (0.012)

(D) Session 3 β0 0.112 0.189 0.209 0.630***
[Obs = 900] (0.112) (0.171) (0.183) (0.137)

β1 0.781*** 0.758*** 0.781*** 0.763***
(0.021) (0.016) (0.183) (0.016)

(E) Palfrey &
Pevnitskaya
(2008)

β0 0.283*** 0.235 0.471*** -

[Obs = 240] (0.065) (0.315) (0.129) -
β1 0.664*** 0.657*** 0.664*** -

(0.0174) (0.016) (0.017) -
Subject FE - • - -
Round FE - - • -
Subject × Round FE - - - •
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Figure 4.3: Bids in Treatment 2 by Unconstrained Bidders (All Sessions)
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Figure 4.4: Bids in Treatment 2 by Constrained Bidders (All Sessions)
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Table 4.4: Descriptive Statistics of Submitted Bids in Treatment 2

Unconstrained Bidders
Session Observations Mean St.Dev. Min Max

All 700 3.519 2.279 0 10
1 200 3.341 1.561 0.05 7.48
2 400 3.375 2.435 0 10
3 100 4.450 2.620 0.1 10

Constrained Bidders
Session Observations Mean St.Dev. Min Max

All 2200 2.385 1.271 0 3.50
1 900 2.550 1.190 0 3.50
2 500 2.430 1.254 0 3.50
3 800 2.171 1.338 0 3.50

equilibrium strategy of an unconstrained bidder is not linear for valuations
above ŝ, it is nearly so and (4.3) offers a useful and easily interpretable
approximation.14 Table 4.5 reports the results of this regression with various
fixed-effect controls.

The estimated bidding strategy offers support for a break in the bidding
strategy of unconstrained bidders. An F -test for parameter constancy (β2 =
0 and β3 = 0) is rejected across all specifications.

Going beyond identifying the presence of a break, the equilibrium model
offers several qualitative predictions concerning how the bidding strategy
should behave within various ranges of the type space. In particular, the
predictions that β1 = 0.5, β2 > 0, and β3 < 0 are all individually supported
by the above analysis. From β2 > 0 we can conclude that unconstrained
bidders increase their bid at relatively high valuations. On the other hand,
β3 < 0 implies a reduction in the slope of the bidding strategy at relatively
high valuations. This is reflective of the decline in relative competition at
higher bid levels due to the stratification of competition introduced by budget
constraints.

14The slope of an unconstrained bidder’s equilibrium strategy ranges continuously from
0.0508 to 0.1769.
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Table 4.5: Estimates for Unconstrained Bidder’s Strategy.
Heteroskedasticity-consistent standard errors in parenthesis. (OBS =
700, * p < 0.05, ** p < 0.01, *** p < 0.001)

Variable (1) (2) (3) (4)
β0 0.990*** 1.62*** 0.943** 1.230*

(0.238) (0.265) (0.322) (0.521)
β1 0.565*** 0.547*** 0.566*** 0.53***

(0.076) (0.048) (0.077) (0.047)
β2 1.25* 1.360*** 1.220* 1.27***

(0.516) (0.343) (0.512) (0.305)
β3 -0.257** -0.237*** -0.255** -0.212***

(0.098) (0.063) (0.098) (0.059)
Subject FE - • - -
Round FE - - • -

Subject-Round FE - - - •
Regressors 4 17 8 73

R2 0.31 0.74 0.31 0.79

While the preceding results are supportive of the qualitative implica-
tions of private budget constraints, the model’s quantitive predictions con-
tinue to exhibit the shortcomings typical of the risk-neutral Nash equilib-
rium bidding model when applied to laboratory data. For example, with
Subject-Round fixed effects, the estimate of the strategy’s slope above ŝ is
β̂1 + β̂3 = 0.53 − 0.212 = 0.318. The 95% (asymptotic) confidence interval
for this value is CI0.95 = [0.247, 0.389]. This confidence interval is above the
slope’s theoretical maximum value of 0.1769; therefore, unconstrained bid-
ders are (still) too aggressive relative to the risk-neutral Nash equilibrium
benchmark. However, this finding is consistent with the empirical regularity
of overbidding relative to the risk-neutral model.

Whereas the preceding analysis suggests that the parameters character-
izing the bidding strategy employed by low- and high-valuation bidders is
not constant, one cannot conclude that the structural break occurs precisely
at ŝ ≈ 4.93. As overbidding relative to the risk-neutral Nash equilibrium
bidding strategy has already been identified in the data, it is natural to con-
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Figure 4.5: F-Tests for a Structural Break in the Unconstrained Bidder’s
Strategy (All Sessions)
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sider discontinuities arising at a relatively lower signals than ŝ ≈ 4.93. To
identify such locations we can consider a series of F -tests. Figure 4.5 plots
the value of the F -statistic as a function of the hypothesized break point in
(4.3) in the model without any fixed effect controls. The maximum value,
supF = 15.23, occurs at ˆ̂s = 3.53. Break points around 3.5 are a natural
candidate to consider as that value is focal in the experiment’s design.

To conclude this subsection, it is clear that unconstrained bidders rec-
ognize the strategic opportunity their extra budget affords them and their
bidding behavior does display the qualitative effects identified by the equi-
librium analysis. The model, however, continues to exhibit the quantitive
shortcomings of the risk-neutral Nash equilibrium bidding model when ap-
plied to auction experiments.
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Strategy Congruence Among Low Valuation Bidders

The coincidence of equilibrium bidding strategies for low-valuation bidders
is one of the model’s key features. In equilibrium, both constrained and
unconstrained bidders with s < ŝ bid according to the strategy β(s, w) =
bf (s) = s

2
. Moreover, this corresponds to the equilibrium bidding strategy

in the model without budget constraints. For low-valuation bidders, the
presence of budget constraints in the environment is strategically irrelevant.

To test for the congruence between bidding strategies among low valua-
tion bidders we will first restrict our sample to observations where the subject
received a valuation below a cutoff: si,t ≤ c̄. We consider two possible cutoff
values:

(a) In sample (a), we restrict attention to the case where si,t ≤ 3.5 = w.
Whereas the equilibrium bidding model predicts the congruity of bid-
ding strategies for a greater range of valuations, up to ŝ, restricting
attention to this restricted sample limits any “mechanical” effects that
the introduction of budget constraints may have. All undominated bids
are feasible for both constrained and unconstrained bidders.

(b) In sample (b), we restrict attention to the case where si,t ≤ ŝ ≈ 4.93.
As clear from the discussion in previous sections, this sample selection
is motivated entirely by the theoretical predictions of the equilibrium
bidding model.

In either sample we posit that bidding behavior will be consistent across
treatments and, guided by theory, it will be a linear function of the valuation.
Therefore, we first consider the specification

bi,t = β0 + β1si,t + δi,t (β2 + β3si,t) + ǫi,t (4.4)

where δi,t is an indicator variable for Treatment 2. Additionally one may posit
that the introduction of budget constraints into the bidding environment may
encourage an anchoring effect among high or low budget bidders implying
systematically different bidding behavior among the two groups in Treatment
2. Therefore, we also consider the model

bi,t = β0 + β1si,t + δi,t (β2 + β3si,t + β4w̄i,t) + ǫi,t (4.5)
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Table 4.6: Estimated parameters from Models 4.4(a & b) and 4.5(a & b).
Heteroskedasticity-consistent standard errors in parenthesis. (* p < 0.05, **
p < 0.01, *** p < 0.001)

Variable 4.4(a) 4.5(a) 4.4(b) 4.5(b)
β0 0.136 0.129 0.164 0.172

(0.122) (0.120) (0.117) (0.117)
β1 0.630*** 0.630*** 0.645*** 0.645***

(0.047) (0.047) (0.028) (0.028)
β2 -0.159 -0.146 -0.125 -0.140

(0.116) (0.112) (0.097) (0.095)
β3 -0.067 -0.067 -0.079 -0.078*

(0.057) (0.057) (0.034) (0.034)
β4 - -0.055 - 0.062

- (0.148) - (0.124)
Subject FE • • • •

Observations 2008 2008 2813 2813
R2 0.52 0.52 0.57 0.57

where w̄i,t is an indicator variable equal to 1 if subject i in auction t had a
high budget level. In both models (4.4) and (4.5)—and across both samples—
strategy congruence implies coefficients of zero for parameters β2, β3, and β4.

Table 4.6 presents the result of OLS estimates of these models with a
collection of subject fixed-effects. The estimated slope parameter, β1 is es-
sentially invariant across both samples and across both models. Moreover,
with the exception of the β3 parameter in model 4.5(b) we fail identify signif-
icant differences in the bidding of low-valuation subjects across treatments.
The estimates of the β4 parameter do not support the hypothesis that intro-
duction of budget constraints affected the bidding of high- and low-budget
bidders in disparate ways in Treatment 2.

The significant coefficient estimate for β3 in model 4.5(b) can be partly
explained by the mechanical effect of budget constraints. Taking as given the
preponderance of experimental subject to overbid relative to the risk neutral
Nash equilibrium strategy (β2 ≈ 0.64), there is a greater likelihood a subject
may be “constrained” in the expanded sample (b). In sample (a), where
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budget constraints are genuinely ancillary information and all undominated
bids are feasible for all bidders there is no significant change in bidding
behavior.

Aggregate Predictions

Although the equilibrium bidding model gives predictions at the individual
level, and its qualitative implications are reflected in the data, the model also
offers aggregate predictions concerning the efficiency and the revenue of the
auction. Arguably, the ability to predict these facts is the model’s most im-
portant feature. To measure efficiency, I focus on ordinal efficient outcomes;
that is, whether the winner of the auction had the greatest valuation.15 Rev-
enue is measured by the selling price. Tables 4.7 and 4.8 report means of
these variables from the experimental sessions along with 95% confidence
intervals.

Focusing first on revenue, both treatments confirm the presence of over-
bidding with average revenue comfortably exceeding the theoretical bench-
marks. The revenue in Treatment 2 decline due to two effects. First, the
direct effect of budget constrains mechanically constrains many bidders.
Second, the strategic effect notwithstanding, the stratification of competi-
tions encourages less aggressive bidding on the margin by high-budget, high-
valuation bidders. Together these empirically salient points serve to depress
revenue.

In contrast to the decline in revenue between treatments, the allocative ef-
ficiency of the auction did not change between treatments in an economically
significant manner. This does suggest a reassuring hypothesis that, given the
departures from equilibrium bidding already present, the additional effect of
budgets on allocative efficiency may be small. A caveat in this interpretation
is that the experiment’s parameters are not necessarily tailored to examine
efficiency effects and the theoretical decline of 15% may be too subtle to
detect given the noise characteristic of bidding in auction experiments.

4.4 Discussion

This chapter is the first to investigate individual bidding behavior in first-
price, independent-private value-auctions where bidders face a private budget

15This is the same as the measure EA% in Güth et al. (2005).
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Table 4.7: Average Seller Profits and Allocative Efficiency in Treatment 1

Session Auctions
Revenue Efficiency

Mean CI0.95 Mean CI0.95

Theory - 3.33 - 1.00 –
All 1450 5.60 [5.47, 5.73] 0.787 [0.766, 0.808]
1 550 5.54 [5.34, 5.75] 0.760 [0.724, 0.796]
2 450 5.31 [5.07, 5.55] 0.793 [0.756, 0.831]
3 450 5.96 [5.71, 6.22] 0.813 [0.777, 0.849]

Table 4.8: Average Seller Profits and Allocative Efficiency in Treatment 2

Session Auctions
Revenue Efficiency

Mean CI0.95 Mean CI0.95

Theory - 3.05 - 0.856 –
All 1450 3.50 [3.42, 3.58] 0.752 [0.729, 0.774]
1 550 3.39 [3.32, 3.46] 0.716 [0.679, 0.754]
2 450 3.83 [3.66, 4.01] 0.798 [0.761, 0.835]
3 450 3.30 [3.15, 3.45] 0.749 [0.709, 0.789]

constraint. It therefore complements the main theoretical component of this
study and serves as a first, controlled step in bringing the model to data.

Although the equilibrium bidding model inherits the quantitative short-
comings of the risk-neutral equilibrium model from usual auction experiments
(without budget constraints), its qualitative predictions are consistent with
the response of subjects to this novel change in the auction environment.
The strategic, and not simply mechanical, effects of budgets are recognized
by bidders and many qualitative predictions are supported by the data. Low-
valuation bidders do not react strategically to the introduction of budget
constraints. High-budget bidders on the other hand adjust their bidding
strategy taking advantage of their fortunate position.
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Chapter 5

Conclusion

Private budget constraints are a key feature of many economic environments
and, as argued above, have a deep strategic effect which organizes economic
interaction. Although monotone equilibria, properly understood, exist un-
der general circumstances, describing equilibrium strategies in a first-price
auction demands a marked amendment of existing intuition. Private budgets
have both direct and strategic effects on equilibrium bids and they can subtly
interact with preferences changing bidder’s incentives.

Budget constraints also change the nature of competition in the first-price
auction. Within a general environment competition becomes endogenously
stratified along the budget dimension. The option to exploit other bidders’
budget constraints introduces a strategic effect that breaks the natural rela-
tionship between valuations and bids and suggest many possibilities for fur-
ther research. For instance, the degree to which the inefficiencies introduced
by budget limits can be ameliorated by resale is an important issue await-
ing resolution. Similarly, extending the analysis to more complex auction
settings or addressing deeper technical matters within the standard environ-
ment, such as equilibrium uniqueness, are open questions. Untangling the
more subtle relationship between bids, valuations, and budgets stands as a
new challenge for theoretical and empirical researchers alike.
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Appendix A

Technical Appendix

A.1 Example 1: Further Discussion

This appendix presents a detailed treatment of the model from in Example
1.

A.1.1 Example 1: The Uniform Two-Bidder Case

When signals are distributed uniformly, the model admits a closed-form ex-
pression for equilibrium strategies. Reproducing the strategy:

β(s, w) =







s
2

if s ≤ ŝ, w ∈ {w, 1}
s2(p−1)−2k1
2p(s−1)−2s

if ŝ < s and w = 1
ps2+2k2

2ŝ−2pŝ+2sp
if s ∈ (ŝ, ŝ′] and w = w

w if ŝ′ < s and w = w

. (A.1)
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When p 6= 1/2, the constants {ŝ, ŝ′, k1, k2} are:

ŝ =
w(p− 1) + p−

√

−2w2p+ w2 + (w − 1)2p2

2p− 1
,

ŝ′ =
(2w − 2wp+ 2p− 2)

√

−2w2p+ w2 + (w − 1)2p2

(w − 1)(1 − 2p)2

+
2w2p2 − 4w2p + 2w2 − w − 2p2 + 2p

(w − 1)(1 − 2p)2
,

k1 = (ŝ− p(ŝ− 1))w +
ŝ2(p− 1)

2
,

k2 =
(1 − p)ŝ2

2
.

If p = 1/2, the constants are

ŝ =
w

1 − w
and ŝ′ =

w(w2 + w − 1)

(w − 1)3
.

{k1, k2} are unchanged. Verification that (A.1) is an equilibrium follows from
Appendix A.1.2 which analyzes this model’s generalization.

Lemma 9. For all p ∈ [0, 1] and w ∈ [0, 1/2] the expected revenue of the first-
price auction with private budget constrains is less that the expected revenue
when there are no budget constraints.

Lemma 9 is not trivial as some types of bidders increase their bids due
to private budget constraints. Moreover, the distribution of a player’s bids
absent budget constraints does not (first-order) stochastically dominate the
distribution of bids once budgets are introduced. Finally, the revenue in-
equality is tight (say at p = 0).

Proof. As types are independent, it is sufficient to show that the expected
payment of a bidder declines once private budgets are introduced. With no
budget constraints, the expected payment of a bidder is

∫ 1

0

sbf (s) ds =

∫ 1

0

s2

2
ds =

1

6
.

Using a standard envelope theorem argument to express equilibrium expected
utility, we can write the expected payment of a high budget bidder with
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value-signal s as

m(s, 1) =

{

s2 −
∫ s

0
xdx if s ≤ ŝ

(p+ (1 − p)s)s−
∫ ŝ

0
xdx−

∫ s

ŝ
(p+ (1 − p)x)dx if s > ŝ

.

Similarly, for a low budget bidder:

m(s, w) =







s2 −
∫ s

0
xdx if s ≤ ŝ

(ps+ (1 − p)ŝ)s−
∫ ŝ

0
xdx

−
∫ s

ŝ
(px+ (1 − p)ŝ)dx

if s ∈ (ŝ, ŝ′]

(ps+ (1 − p)ŝ)s−
∫ ŝ

0
xdx

−
∫ ŝ′

ŝ
(px+ (1 − p)ŝ)dx

+
∫ s

ŝ′
p
(
ŝ′+1

2

)
+ (1 − p)ŝdx

if s > ŝ′

A bidder’s ex-ante expected payment is thus a function of p and w

Π(p, w) = p

∫ 1

0

m(s, w)ds+ (1 − p)

∫ 1

0

m(s, 1)ds.

Some careful algebra allows us to express Π(p, w) as

Π(p, w)

=

∫ ŝ

0

s2

2
ds+

∫ 1

ŝ

p(1 − p)ŝds+

∫ ŝ′

ŝ

(p2 + (1 − p)2)
s2

2
ds

+

∫ 1

ŝ′

[

p2 ŝ
2

2
+ (1 − p)2s

2

2

]

ds

=

∫ ŝ

0

s2

2
ds+

∫ 1

ŝ

p(1 − p)ŝds+

∫ 1

ŝ

(1 − p)2s
2

2
+

∫ ŝ′

ŝ

p2s
2

2
ds+

∫ 1

ŝ′
p2 ŝ

2

2
ds

≤
∫ ŝ

0

s2

2
ds+

∫ 1

ŝ

p(1 − p)ŝds+

∫ 1

ŝ

(1 − p)2 s
2

2
+

∫ ŝ′

ŝ

p2s
2

2
ds+

∫ 1

ŝ′
p2s

2

2
ds

=
ŝ3

6
+ p(1 − p)(1 − ŝ)ŝ+ (1 − p)2 (1 − ŝ3)

6
+ (1 − p)2 (1 − ŝ3)

6
+ p2 (1 − ŝ3)

6

=
1

6
(1 − 2(p− 1)p(ŝ− 1)3)

The inequality follows from changing ŝ to s in the final term of the expression.
As 2(p− 1)p(ŝ− 1)3 ≥ 0, it follows that Π(p, w) ≤ 1/6.
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A.1.2 Example 1: The General Case

Consider the setting of Example 1. Suppose that there areN ≥ 2 bidders and
values are independently and identically distributed according to H : [0, 1] →
[0, 1] which is a strictly increasing distribution admitting a continuous density
h(·). Noting symmetry, subscripts are omitted. The equilibrium strategy in
this model without budget constraints is

bf (s) = s−
∫ s

0
H(y)N−1dy

H(s)N−1
. (A.2)

As a regularity condition, suppose that w < bf (1); hence, bf (s) is not feasible
upon the introduction of budget constraints.

We will consider strategies in a similar class to the claimed equilibrium for
Example 1. For notation, let hn(s) ≡ d

ds
H(s)n = nH(s)n−1h(s) and ξ(k) ≡

(
N−1
k

)
pN−1−k(1 − p)k. Consider the following functions aj : [0, 1] → [0, 1],

a1(s) = H(s)N−1 (A.3)

a2(s) =
N−1∑

k=0

ξ(k)H(s)k (A.4)

a3(s) =

N−1∑

k=0

ξ(k)H(s)N−1−kH(ŝ)k (A.5)

a4(s) =
N−1∑

k=0

N−1−k∑

m=0

(
N − 1 − k

m

)
ξ(k)H(ŝ)kH(ŝ′)N−1−k−m (1 −H(ŝ′))m

m+ 1

(A.6)

Lemmas 10 and 11 below will define ŝ, ŝ′ ∈ [w, 1]. Now let a : [0, 1] ×
{w, 1} → [0, 1] be

a(s, w) =







a1(s) if s ∈ [0, ŝ], w ∈ {w, 1}
a2(s) if s ∈ (ŝ, 1], w = 1

a3(s) if s ∈ (ŝ, ŝ′], w = w

a4(s) if s ∈ (ŝ′, 1], w = w

And finally set1

β(s, w) = s−
∫ s

0
a(y, w)dy

a(s, w)
. (A.7)

1For completeness, β(0, w) = 0.
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When all bidders follow the strategy β(s, w), a(s, w) is the probability that
a bidder of type (s, w) wins the auction. (This probability incorporates the
uniform tie breaking rule.)

Lemma 10. There exists a unique ŝ ∈ (w, b−1
f (w)) such that

∫ ŝ

0
a1(y)dy =

a2(ŝ) (ŝ− w).

Proof. Let χ(s) =
∫ s

0
H(y)N−1dy and τ(s) =

∑N−1
k=0 ξ(k)H(s)k(s − w). Evi-

dently, τ(w) = 0 < χ(w). Let bf (s̃) = w. Then, using w = s̃−
R s̃

0
H(y)N−1dy

H(s)N−1 ,

τ(s̃) >
N−1∑

k=0

ξ(k)H(s̃)N−1(s̃−w) = H(s̃)N−1(s̃−w) =

∫ s̃

0

H(y)N−1dy = χ(s̃).

By continuity, there exists ŝ ∈ (w, s̃) such that τ(ŝ) = χ(ŝ). To establish
uniqueness of ŝ, differentiate τ(s) and χ(s):

τ ′(ŝ) =

N−1∑

k=0

ξ(k)hk(ŝ)(ŝ− w) +

N−1∑

k=0

ξ(k)Hk(ŝ)

>
N−1∑

k=0

ξ(k)H(ŝ)k ≥
N−1∑

k=0

ξ(k)H(ŝ)N−1 = H(ŝ)N−1 = χ′(ŝ)

Thus, ŝ is unique as τ(s) always crosses χ(s) from below.

Henceforth, define ŝ as in Lemma 10.

Lemma 11. Let

â4(x) =
N−1∑

k=0

N−1−k∑

m=0

(
N−1−k
m

)
ξ(k)H(ŝ)kH(x)N−1−k−m (1 −H(x))m

m+ 1
.

Then ∃z ∈ (ŝ, 1) such that
∫ ŝ

0
a1(y)dy +

∫ z

ŝ
a3(y)dy = â4(z) (z − w).

Note that â4 is a function of x while a4(·), defined in (A.6), is a constant
value. This lemma helps defines the ŝ′ in (A.6).
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Proof. Let χ̃(z) =
∫ ŝ

0
a1(y)dy +

∫ z

ŝ
a3(y)dy and let τ̃(z) = â4(z) (z − w).

Building on the proof of Lemma 10,

χ̃(ŝ)

=

N−1∑

k=0

ξ(k)H(ŝ)k (ŝ− w)

>
N−1∑

k=0

ξ(k)H(ŝ)k (ŝ− w)
N−1−k∑

m=0

(
N−1−k
m

)
H(ŝ)N−1−k−m(1 −H(ŝ))m

m+ 1
︸ ︷︷ ︸

<1

= τ̃(ŝ).

Trivially, χ̃(ŝ) < χ̃(1). Furthermore, τ(1) =
∑N−1

k=0 ξ(k)H(ŝ)k(1 − w). Ap-
plying Lemma 10,

τ̃ (1) − χ̃(1)

=
N−1∑

k=0

ξ(k)H(ŝ)k(1 − w) −
N−1∑

k=0

ξ(k)H(ŝ)k(ŝ− w)

−
∫ 1

ŝ

N−1∑

k=0

ξ(k)H(ŝ)kH(y)N−1−kdy

=
N−1∑

k=0

ξ(k)H(ŝ)k(1 − ŝ) −
∫ 1

ŝ

N−1∑

k=0

ξ(k)H(ŝ)kH(y)N−1−k
︸ ︷︷ ︸

<1

dy

>

N−1∑

k=0

ξ(k)H(ŝ)k(1 − ŝ) −
∫ 1

ŝ

N−1∑

k=0

ξ(k)H(ŝ)kdy = 0

Thus, τ̃(1) > χ̃(1) > χ̃(ŝ) > τ̃ (ŝ). Hence, ∃z ∈ (ŝ, 1) such that χ̃(z) =
τ̃(z).

Let Z be the set of values satisfying Lemma 11. Define ŝ′ ≡ inf Z.

Lemma 12. Let ŝ and ŝ′ be defined according to Lemmas 10 and 11. The
strategy β(s, w) defined in (A.7) is a symmetric equilibrium strategy in the
generalization of Example 1 to N bidders and distribution of signals H.

Proof. Consider the direct mechanism corresponding to the first-price auc-
tion when all bidder follow the strategy β(s, w). By showing no player has
incentive to misreport his type we rule out all deviations in β’s range.
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It is readily verified that when all players follow the strategy (A.7), a
player’s utility from a truthful announcement is

U(β(s, w)|s, w) =

∫ s

0

a(y, w)dy.

There are five cases to consider.

i) s < ŝ,w = 1. Suppose that the player reports to be a type x ≤ ŝ instead
of type s. Then,

U(β(x, w)|s, w) = a(x, w)s− a(x, w)x+

∫ x

0

a(y, w)dy

=

∫ s

x

a(x, w)dy +

∫ x

s

a(y, w)dy + U(β(s, w)|s, w)

=

∫ s

x

a(x, w) − a(y, w)dy + U(β(s, w)|s, w) (A.8)

When x ≤ y ≤ s, a(y, w) ≥ a(x, w). Therefore
∫ s

x
a(x, w) − a(y, w)dy ≤

0. When x > s, -
∫ x

s
a(x, w) − a(y, w)dy ≤ 0. Thus, no such deviations

are profitable for a type (s, 1).

Suppose instead that the player deviates to a report of (x, 1), x > ŝ. In
this case (A.8) becomes

U(β(x, 1)|s, w)

=

∫ s

ŝ

a(x, 1) − a(y, 1)dy +

∫ ŝ

x

a(x, 1) − a(y, 1)dy + U(β(s, 1)|s, w)

= U(β(s, 1)|s, w)−
∫ s

ŝ

a(x, 1) − a(y, 1)dy −
∫ ŝ

x

a(x, 1) − a(y, 1)dy

As a(x, w) ≥ a(y, w) ∀y ≤ x, the preceding expression is less than
U(β(s, 1)|s, w). Therefore, this is not a profitable deviation. Deviations
to misreports of (x, w) where x > ŝ are ruled out analogously.

ii) s ∈ (̂s, 1],w = 1. An argument identical to that above demonstrates
that such a player will not misreport his type to (x, 1) for any x.
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Claims of being a type (x, w) give a utility of

U(β(x, w); s, 1)

=

∫ s

x

a(x, w) − a(y, 1)dy + U(β(s, 1); s, 1)

=

∫ s

x

N−1∑

k=0

ξ(k)
(
H(x)N−1−kH(ŝ)k −H(y)k

)
dy + U(β(s, 1)|s, 1)

≤
∫ s

x

N−1∑

k=0

ξ(k)
(
H(x)N−1 −H(y)k

)
dy + U(β(s, 1)|s, 1) (A.9)

AsH(y)N−1 ≤ H(y)k, the first term of (A.9) is negative for all x ∈ (ŝ, ŝ′].
Therefore, there is no profitable deviation for such a player. Reporting
to be a type (x, w) where x > ŝ′ is ruled out by bidding ǫ > 0 more to
break a possible tie.

iii) s < ŝ,w = w. By the same argument as given in cases (i) and (ii) such
a player will not have an incentive to misreport his type. Deviations to
x ≤ ŝ are easy to rule out. Consider a report of (x, w), x ∈ (ŝ, ŝ′]. The
expected utility from such a report is given by

U(β(x, w)|s, w)

=

∫ s

ŝ

a(x, w) − a(y, w)dy +

∫ ŝ

x

a(x, 1) − a(y, 1)dy + U(β(s, w)|s, w)

= U(β(s, w)|s, w) −
∫ ŝ

s

a(x, w) − a(y, w)dy −
∫ x

ŝ

a(x, w) − a(y, w)dy

As
∑N−1

k=0 ξ(k)H(x)N−1−kH(ŝ)k > H(y)N−1 for y ≤ ŝ and H(x)N−1−k ≥
H(y)N−1−k for x ≥ y, the player cannot profitably deviate in this man-
ner. A simple adaptation of the above argument rules out deviations to
x > ŝ′.

iv) s ∈ (̂s, ŝ′],w = w. Deviations to x ∈ [0, ŝ′] are ruled out as in the pre-
vious cases. A player will not wish to report a type (x, w) with x > ŝ′
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as

U(β(x, w)|s, w)

=

∫ s

ŝ′
a(x, w) − a(y, w)dy +

∫ ŝ′

x

a(x, w) − a(y, w)dy + U(β(s, w)|s, w)

= U(β(s, w)|s, w) −
∫ ŝ′

s

a(x, w) − a(y, w)dy −
∫ x

ŝ′
a(x, w) − a(y, w)
︸ ︷︷ ︸

=0

dy.

and a(x, w) > a(y, w) ∀y ∈ (ŝ, ŝ′].

v) s ∈ (̂s′, 1],w = w. It is sufficient to verify that such a player will not
wish to mimic a type x ≤ ŝ′.

U(β(x, w)|s, w)

= U(β(s, w); s, w) +

∫ s

ŝ′
a(x, w) − a(y, w)
︸ ︷︷ ︸

=0

dy −
∫ x

ŝ′
a(x, w) − a(y, w)
︸ ︷︷ ︸

>0

dy

Therefore, no type has any incentive to mimic the bid of any other type.
Bids outside of Im[β(s, w)] are dominated by bids of β(1, 1) or β(ŝ′, 1).

Corollary 4. When N = 2 and H(s) = s, (A.1) is an equilibrium of the
first-price auction with budget constraints.

Proof. It can be verified that (A.1) can be expressed as in Lemma 12. An
alternative derivation of the equilibrium strategies is possible by solving the
appropriate differential equations with carefully chosen boundary conditions.

The following are comparative static results for the general case.

Lemma 13. As N → ∞, ŝ→ w.

Proof. Let ŝN denote ŝ when there are N bidders. For all N , w ≤ ŝN ≤
sN where s̃N solves w = s̃N −

∫ s̃N
0

(
H(y)
H(s̃N )

)N−1

dy. But, 0 ≤ s̃N − w ≤
∫ 1

0

(
H(y)
H(w)

)N−1

dy
N→∞−−−→ 0.

With Lemma 13 we can conclude that as the number of bidders grows
without bound, the discontinuity in an unconstrained bidder’s strategy van-
ishes. A similar result holds for the discontinuity in β(s, w). Indeed, the
overall limiting strategy is β(s, w) = min{s, w}.

74



Lemma 14. ŝ is increasing in w.

Proof. Implicitly differentiating the indifference condition

∫ ŝ

0

a1(y)dy = a2(ŝ) (ŝ− w) ,

d

dŝ

∫ ŝ

0

H(y)N−1dy
dŝ

dw

=
d

dŝ

N−1∑

k=0

ξ(k)H(ŝ)N−1 dŝ

dw
(ŝ− w) +

N−1∑

k=0

ξ(k)H(ŝ)k
(
dŝ

dw
− 1

)

.

Rearranging the expression gives

dŝ

dw
=

−∑N−1
k=0 ξ(k)H(ŝ)k

H(ŝ)N−1 −∑N−1
k=0 ξ(k)H(ŝ)k − (ŝ− w)

∑N−1
k=0 ξ(k)hk(ŝ)

.

Noting that H(ŝ)N−1−∑N−1
k=0 ξ(k)H(ŝ)k =

∑N−1
k=0 ξ(k)

(
H(ŝ)N−1 −H(ŝ)k

)
<

0 and ŝ > w allows us to conclude that the denominator is negative. Thus,
dŝ
dw
> 0.

A.1.3 Budget-Dependent Risk Aversion in Example 1

Example 6. Consider the two-budget-level model of Example 1. Suppose
p = 1

2
and that wi ∈ {1

4
, 3

4
}. A bidder with a budget of w = 1/4 is constrained

while a bidder with a budget of 3/4 will be unconstrained.
Unlike Example 1 suppose that bidders are risk-averse. Following a win,

a bidder of type θi = (si, wi) receives a payoff of ui(θi, bi) = (si − bi)
wi+

1

4 .
Payoffs following a loss are zero. This utility function captures the idea that
bidders with a large budget are less risk-averse.2 A bidder with a budget of
wi = 3/4 is risk-neutral while a bidder with a budget of wi = 1/4 is strictly
risk-averse. Introducing risk-preference heterogeneity in this form follows
Cox et al. (1988).

2The utility function allows a modest degree of tractability and is adopted with this
reason in mind. It is intended only as an illustration of an equilibrium in non-monotone
strategies. Moreover, it does not satisfy Assumption 3.
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The following is an equilibrium strategy profile:

β(s, 3/4) =

{
s
2

s ≤ ŝ
2s2+13

√
11−42

4(s+1)
ŝ < s

β(s, 1/4) =







2s
3

s < ŝ′′

16s3+24(
√

11−3)s2+33(19
√

11−63)
24(s+

√
11−3)

2 s ∈ [ŝ′′, ŝ′)

1
4

ŝ′ ≤ s

where ŝ =
√

11 − 3, ŝ′′ = 3
4
(
√

11 − 3), ŝ′ ≈ 0.29839. There is no analytic
expression for ŝ′, but it is easy to solve for numerically.

Figure A.1 presents a sketch of the strategy β(s, w). Just like Example 1
the equilibrium strategy features discontinuities at ŝ and ŝ′ and competition
becomes stratified along the budget dimension. Unlike Example 1, the equi-
librium strategy highlights the nuanced role played by risk-aversion, which
is controlled by the (private) parameter wi. It is well known that equilib-
rium bids tend to increase with bidder’s risk aversion (Krishna, 2002, p. 38).
This effect is present for low-budget bidders, who are also more risk-averse.
For value-signals s < ŝ′ low-budget bidders bid more than their large-budget
counterparts. The equilibrium strategy is not increasing in (s, w) and thus
not monotone as normally understood.

Proof. To confirm that β(s, w) is an equilibrium strategy we will consider
possible deviations by constrained and unconstrained bidders. Clearly, we
need only consider possible deviations into the range of β(s, w).

Unconstrained Bidders (w = 3/4) Consider a bidder of type s < ŝ.
Among bids in the range [0, ŝ/2], the optimal bid will solve:

max
x≤ŝ

(

p · 3

4
x+ (1 − p)x

)(

s− x

2

)

Clearly, x = s is the solution. A bid of w = 1/4 is strictly dominated by a bid
of w+ ǫ as the probability of winning increases discontinuously. The optimal
bid (strictly) above 1/4 can be determined by solving maxx≥ŝ U(x, s) where
U(x, s) = (p+ (1 − p)x) (s− β(x, 3/4)). It is straightforward to calculate
that

∂U

∂x
=
s− x

2
≤ 0 ∀x ≥ ŝ
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s

w = 1
4

b

0

1
2

1ŝ

β(s, 3/4)

ŝ′′ ŝ′

ŝ/2

β(s, w)

Figure A.1: Equilibrium strategy in Example 6. The large-budget (uncon-
strained) bidder increases her bid discontinuously at ŝ. Low-valuation, low-
budget bidders bid relatively more because of risk aversion. (Figure not to
scale.)

when s ≤ ŝ. Therefore, this bidder has no profitable deviation into this range
of bids. A completely analogous argument applies to a bidder of type s > ŝ
who considers deviating into the range of β(s, 3/4).

We need only confirm that bids in the range of β(s, 1/4) for s ∈ (ŝ′′, ŝ′]
are not profitable deviations. Consider first a bidder of type s < ŝ. Let

∆(x, s) =
7s2

16
− (px+ (1 − p)ŝ)(s− β(x, 1/4))

be the expected utility difference between a bid of s/2 and β(x, 1/4) for a
bidder of type s. (We partly simplified the express to the example’s parame-
ters.) It is sufficient to establish that ∆(x, s) ≥ 0 for all s < ŝ and x ∈ [ŝ′′, ŝ′].
It is clear that ∆(ŝ′′, ŝ) = 0. Next, observe that when x = ŝ′′,

∂∆(ŝ′′, s)

∂s
=

7

8
(s− ŝ) ≤ 0.

Thus, it is sufficient to confirm that ∂∆(x,s)
∂x

≥ 0 for all s < ŝ and x ∈ [ŝ′′, ŝ′].
Again, a direct calculation gives,
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∂∆(x, s)

∂x
=

1

48

(

8
(√

11 − 3 − 3s
)

+ 32x− 49
(
19
√

11 − 63
)

(
x+

√
11 − 3

)2

)

≥ 1

48

(

8
(√

11 − 3 − 3ŝ
)

+ 32ŝ′′ − 49
(
19
√

11 − 63
)

(
ŝ′′ +

√
11 − 3

)2

)

= 0

where we used the fact that 19
√

11 − 63 > 0. Therefore, a bidder of type
s < ŝ has no incentive to deviate into this range of bids.

Finally, consider a bidder of type s > ŝ and as before define

∆(x, s) = (p+ (1 − p)s)(s− β(s, 3/4)) − (px+ (1 − p)ŝ)(s− β(x, 1/4)).

Again it is sufficient to confirm that ∆(x, s) ≥ 0 for s > ŝ and x ∈ [ŝ′′, ŝ′]. It
is clear that ∆(ŝ′′, ŝ) = 0. Next, observe that when x = ŝ′′,

∂∆(x, ŝ)

∂x
= 1 −

√
11

3
+

2x

3
− 49

(
19
√

11 − 63
)

48
(
x+

√
11 − 3

)2

≥ 1 −
√

11

3
+

2ŝ′′

3
− 49

(
19
√

11 − 63
)

48
(
ŝ′′ +

√
11 − 3

)2 = 0

Thus, it is sufficient to confirm that ∂∆/∂s ≥ 0 for all s > ŝ and x ∈ [ŝ′′, ŝ′].
A direct calculation gives

∂∆(x, s)

∂s
=

1

8

(

4s− 4
(

x+
√

11 − 3
)

+ 4
)

≥ 1

8

(

4ŝ− 4
(

1 +
√

11 − 3
)

+ 4
)

= 0.

Therefore, a unconstrained bidder of type s > ŝ has no incentive to deviate
into this range of bids and β(s, 3/4) is a best response.

Constrained Bidders (w = 1/4) Consider a bidder of type s < ŝ. Among
bids in the range [0, ŝ/2], determining the optimal bid for a constrained bidder
is equivalent to solving:

max
x≤ŝ′′

(

px+ (1 − p) · 4

3
x

)(

s− 2x

3

) 1

2
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Clearly, x = s is the solution. A similar argument shows that β(s, 1/4) is the
optimal bid for a bidder of type s ∈ [ŝ′′, ŝ′). The constant ŝ′ is the unique
solution to the equation

(pŝ′ + (1 − p)ŝ)(ŝ− b(ŝ))
1

2 =

(

p
ŝ′ + 1

2
+ (1 − p)ŝ

)

(s− 1/4)
1

2

where b(s) =
16s3+24(

√
11−3)s2+33(19

√
11−63)

24(s+
√

11−3)
2 . We need only verify that a con-

strained bidder of type s does not wish to deviate to some alternative “seg-
ment” of β(s, 1/4). There are three cases.

(i) Consider a bidder of type s < ŝ′′. As ŝ′′ = 3
4
(
√

11 − 3) ≈ 0.237 < 1/4,
a bid of w = 1/4 is dominated. If such a bidder bids β(x, 1/4) for
x ∈ (ŝ′′, ŝ′), the bidder’s expected payoff is

U(x, s) = (px+ (1 − p)ŝ)(s− β(x, 1/4))
1

2

Differentiating this expression with respect to x gives

∂U

∂x
=

√
6(s− x)

√

8
(
3s+

√
11 − 3

)
− 16x− 49(19

√
11−63)

(x+
√

11−3)
2

≤ 0

implying that there is profitable deviation to announcement in excess
of ŝ′′.

(ii) Consider a bidder of type s ∈ (ŝ′′, ŝ′). An analogous argument that
that above established that such a bidder would not wish to deviate to
a bid below ŝ′. We thus need only verify that no such bidder wishes to
bid w = 1/4. Let

Uβ(s) = (ps+ (1 − p)ŝ)(s− β(s, 1/4))
1

2

Uw(s) =

(

p
ŝ′ + 1

2
+ (1 − p)ŝ

)

(s− w)
1

2

∆(s) = Uβ(s) − Uw(s)
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By definition Uβ(ŝ
′) = Uw(ŝ′). It is sufficient to establish that U ′

β ≤ U ′
w

for all s ∈ (ŝ′′, ŝ′). Consider

U ′
w(s) =

ŝ′ + 2
√

11 − 5

4
√

4s− 1

≥ ŝ′′ + 2
√

11 − 5

4
√

4ŝ− 1
=

11
√

11 − 29

16
√

4
(√

11 − 3
)
− 1

≈ 0.901

and

U ′
β(s) =

√
3
2

(
s+

√
11 − 3

)

√

8s− 49(19
√

11−63)
(s+

√
11−3)

2 + 8
(√

11 − 3
)

≤

√
3
2

(
ŝ+

√
11 − 3

)

√

8ŝ′′ − 49(19
√

11−63)
(ŝ′′+

√
11−3)

2 + 8
(√

11 − 3
)

=

(√
11 − 3

)2

√

38
√

11 − 126
≈ 0.563

Therefore U ′
β < U ′

w for all s ∈ (ŝ′′, ŝ′) and thus ∆′(s) ≤ 0 confirming
that Uβ ≥ Uw.

(iii) Consider a bidder of type s ≥ ŝ′. With argument like the preceding,
it is straightforward to establish that the optimal deviation for such a
bidder is to bid β(ŝ′, 1/4). As before

U ′
w(s) =

ŝ′ + 2
√

11 − 5

4
√

4s− 1

And at a bid of β(ŝ′, 1/4), expected utility is

Uβ(ŝ′)(s) ≡ (pŝ′ + (1 − p)ŝ)(s− β(ŝ′, 1/4))
1

2

As Uw(ŝ′) = Uβ(ŝ′)(ŝ
′) it is sufficient to confirm that U ′

w(s) ≥ U ′
β(ŝ′)(s)
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for s > ŝ′. Consider therefore,

U ′
w(s)

U ′
β(ŝ′)(s)

=

(
ŝ′ + 2

√
11 − 5

)
√

8
(
3s+

√
11 − 3

)
− 16ŝ′ − 49(19

√
11−63)

(ŝ′+
√

11−3)
2

2
√

24s− 6
(
ŝ′ +

√
11 − 3

)

≥

(
ŝ′′ + 2

√
11 − 5

)
√

8
(
3s+

√
11 − 3

)
− 16ŝ− 49(19

√
11−63)

(ŝ′′+
√

11−3)
2

2
√

24s− 6
(
ŝ+

√
11 − 3

)

=

√
(
333 + 68

√
11
)
s− 86

√
11 + 502

3

8
√

4s− 1

This final expression is decreasing in s and at s = 1 we can conclude
that

U ′
w(s)

U ′
β(ŝ′)(s)

≥ 1

24

√

1501 − 54
√

11 ≈ 1.51 ≥ 1

which is the desired result.
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A.2 Proof of Propositions 1–4

A.2.1 Preliminaries and Notation

Penalty Function and Restriction to Feasible Strategies As a tech-
nical device, we will define the following penalty function for bidder i as

̺i(wi, bi) = −1(bi /∈ Bi(wi))K

Where K is an large constant such that bi > wi =⇒ sup(ui) + ̺i(wi, bi) <
infs,wi ui(s, wi, l). As utility is bounded, such as K exists. It is clear that
when a bidder’s objective function is ui(s, wi, bi) + ̺(wi, bi) all bids in out-
side a bidder’s feasible bid set are strictly dominated by the bid l and all
best reply strategies will reside in Si—the set of strategies that respect the
set of feasible bids. (Note that the penalty is imposed irrespective of auc-
tion outcome.) Whenever we consider an auction with budget constrained
bidders we will implicitly think of an auction game where bidder’s utilities
are augmented with the above penalty function; without loss of generality
we focus on strategies and bids respecting the budget constraint which set
̺(wi, bi) = 0.

Utility and Allocations In keeping with the main text, f(θ) is the joint
density of bidders’ types. When budgets are mutually independent and in-
dependent of value signals we will write f(θ) = h(s)g(w) where g(w) =
∏
gi(wi). We will work with the following allocation rule.

Definition 5. The standard allocation rule with uniform tie breaking is

ϕi(b) =

{
1

|{j : bj=max(b)}| if bi > l and bi = max(b)

0 otherwise
.

As bidder’s bidding sets are mutually disjoint ties do not occur and
ϕi(b) ∈ {0, 1}. Moreover, ϕi(b) is nondecreasing in bi and non-increasing in
b−i.

Let ũi(θ, b) ≡ ui(s, wi, b) − ui(0, wi, 0). Fix a strategy profile β−i. The
expected payoff to a type θi from the individually rational bid b ∈ Bi(wi) is
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Ui(b, β−i|θi)

=

∫

Θ−i

[
ϕi(b, β−i)ui(s, wi, b) + (1 − ϕi(b, β−i))ui(0, wi, 0)

]
f(θ−i|θi)dθ−i

= ui(0, wi, 0) +

∫

Θ−i

ϕi(b, β−i)ũi(θ, b)f(θ−i|θi)dθ−i

= ui(0, wi, 0) + E[ϕi(b, β−i)ũi(θ, b)|θi].

When bidder i employs the strategy βi ∈ Si, her (ex ante) expected utility
is

Ui(βi, β−i) = E[Ui(βi(θi), β−i|θi)]

=

∫

Θ

[ui(0, wi, 0) + ϕi(β)ũi(θ, βi(θi))] f(θ)dθ

Definition 6. A Nash equilibrium is a (feasible) strategy profile β∗ ∈ S

such that for all i Ui(β
∗
i , β

∗
−i) ≥ Ui(βi, β

∗
−i) for all βi ∈ Si. If β∗ ∈ I , the

equilibrium is in nondecreasing strategies.

The following lemma illustrates the utility of the ≥θi ordering.

Lemma 15. Fix θ−i and b ∈ Bi(wi). Suppose θi ≥θi θ
′
i, then ũi(θ, b) ≥

ũi(θ
′, b).

Proof. As b and s−i are fixed, ui(·, s−i, ·, b) : Θi → R, which by assumption is
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a smooth function. Then the following inequalities can be established:

ui(si, s−i, wi, b) − ui(s
′
i, s−i, w

′
i, b)

=
∂ui
∂si

∣
∣
∣
∣
θi=θ̂i

(si − s′i) +
∂ui
∂wi

∣
∣
∣
∣
θi=θ̂i

(wi − w′
i)

≥
(

inf
∂ui
∂si

)

(si − s′i) +

(

inf
∂ui
∂wi

)

(wi − w′
i)

≥
(

inf
∂ui
∂si

)

αi(wi − w′
i) +

(

inf
∂ui
∂wi

)

(wi − w′
i)

≥
(

sup
∂ui
∂wi

)

(wi − w′
i)

≥ ∂ui
∂wi

∣
∣
∣
∣
θi=θ̃i

(wi − w′
i)

= ui(0, wi, 0) − ui(0, w
′
i, 0)

The two equalities follow from the mean-value theorem and the inequalities
are a consequence of the ≥θi partial order and a substitution for αi. Rear-
ranging terms gives the desired result.

A.2.2 Proposition 1 and Proposition 2.

Together the following lemmas give a proof of Lemmas 1 and 2. They confirm
that we can apply Reny (2009, Theorem 2.1) in this setting to show that there
is an equilibrium in nondecreasing strategies.

Lemma 16. Consider the setting of Lemma 1. Fix β−i and suppose θi ≥θi θ
′
i.

Let b > b′ be feasible bids for a type θ′i. If Ui(b, β−i|θ′i) ≥ Ui(l, β−i|θ′i), then

Ui(bi, β−i|θ′i)−Ui(b′i, β−i|θ′i) ≥ (>)0 =⇒ Ui(bi, β−i|θi)−Ui(b′i, β−i|θi) ≥ (>)0.

Proof. As bidder’s types are independent, it is sufficient to verify that ex-post
payoffs display increasing differences in θi for all possible auction outcomes.

Define the events

A = {θ−i : ϕi(b, β−i(θ−i)) = 1} , A′ = {θ−i : ϕi(b′, β−i(θ−i)) = 1} .
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Clearly, A′ ⊂ A as the allocation rule is nondecreasing in a bidder’s own
action. The utility difference now becomes,

Ui(bi, β−i|θ′i) − Ui(b
′
i, β−i|θ′i)

=

∫

A′

[
ũ(θ′, b) − ũi(θ

′, b′)
]
f(θ−i|θ′i)dθ−i +

∫

A\A′

ũ(θ′, b)f(θ−i|θ′i)dθ−i.

There are two cases:

1. θ−i ∈ A′. ũi(θ
′, b)− ũi(θ′, b′) = ui(s

′
i, s−i, w

′
i, b)−ui(s′i, s−i, w′

i, b
′) is non-

decreasing in both s′i and w′
i by assumption; thus, it is nondecreasing

according to ≥θi .

2. θ−i ∈ A \ A′. Then by Lemma 15, θi ≥θi θ
′
i =⇒ ũi(θ, b) ≥ ũi(θ

′, b).

As θ−i is independent of θi, f(θ−i|θ′i) = f(θ−i|θi). Therefore,

0 ≤ Ui(bi, β−i|θ′i) − Ui(b
′
i, β−i|θ′i) ≤ Ui(bi, β−i|θi) − Ui(b

′
i, β−i|θi)

as required.

Lemma 17. Consider the setting of Lemma 2. Fix β−i and suppose θi ≥θi θ
′
i.

Let b > b′ be feasible bids for a type θ′i. If Ui(b, β−i|θ′i) ≥ Ui(l, β−i|θ′i), then

Ui(bi, β−i|θ′i)−Ui(b′i, β−i|θ′i) ≥ (>)0 =⇒ Ui(bi, β−i|θi)−Ui(b′i, β−i|θi) ≥ (>)0.
(A.10)

Proof. Let

A = {θ−i : ϕi(b, β−i(θ−i)) = 1} , A′ = {θ−i : ϕi(b′, β−i(θ−i)) = 1} ,

and define define Ã ≡ A\A′. We can express the first difference in (A.10) as
∫

Ã

[vi(s
′
i, s−i) − b]f(θ−i|θi)dθ−i +

∫

A′

[b′ − b]f(θ−i|θ′i)dθ−i

=

∫

Ã

(vi(s
′
i, s−i) − b)f(θ−i|θ′i)dθ−i + (b′ − b)Pr[A′|θ′i]

Because A′ is a decreasing set and θ is affiliated, Pr[A′|θ′i] ≥ Pr[A′|θi];
thus 0 ≥ (b′ − b)Pr[A′|θi] ≥ (b′ − b)Pr[A′|θ′i]. Therefore, it suffices to verify
that

∫

Ã
(vi(s

′
i, s−i) − b)f(θ−i|θ′i)dθ−i ≤

∫

Ã
(vi(si, s−i) − b)f(θ−i|θi)dθ−i. There

are two cases:
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1. Suppose Pr[Ã|θ′i] ≥ Pr[Ã|θi]. Then,

∫

Ã

[vi(s
′
i, s−i) − b]f(θ−i|θ′i)dθ−i

=

∫

Ã

vi(s
′
i, s−i)λ(s−i|s′i)(1 −H(s−i|s′i))g(w−i)dθ−i − Pr[Ã|θ′i]b

≤
∫

Ã

vi(si, s−i)λ(s−i|si)(1 −H(s−i|si))g(w−i)dθ−i − Pr[Ã|θi]b

=

∫

Ã

[vi(si, s−i) − b]f(θ−i|θi)dθ−i

The inequality follows from the assumption that vi(·, s−i)λ(s−i|·) is non-
decreasing and that H(s−i|·) is decreasing (by affiliation).

2. Suppose Pr[Ã|θ′i] < Pr[Ã|θi]. As

∫

Ã

[vi(s
′
i, s−i) − b]f(θ−i|θ′i)dθ−i = Pr[Ã|θ′i]E[vi(s

′
i, s−i) − b)|Ã, θ′i] > 0,

it is sufficient to verify that E[vi(s
′
i, s−i) − b)|Ã, θ′i] ≤ E[vi(si, s−i) −

b)|Ã, θi]. The conclusion would be immediate if Ã was a sublattice
of Θ−i. This however may not always be the case under the usual
coordinate ordering; however, Ã is a sublattice under the following
partial order:

θ≥̃iθ
′ ⇐⇒







s ≥ s′

wi ≥ w′
i

w−i ≤ w′
−i

It is clear that f(θ) = h(s)g(w) is log-supermodular under the ≥̃i

ordering and vi(si, s−i) − b is also nondecreasing. An application of
Milgrom & Weber (1982, Theorem 23) therefore gives E[vi(s

′
i, s−i) −

b)|Ã, θ′i] ≤ E[vi(si, s−i) − b)|Ã, θi], the desired result.3

This is exhaustive of all cases.

3This conclusion depends crucially on independent budgets which allow f to be log-
supermodular under various re-orderings of Θ. Such re-orderings need to maintain Θ as a
sublattice of R

2N .
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Lemma 18. Let β−i ∈ I−i. Player i’s set of (interim) best reply bids is
nonempty and increasing in the strong set order.4

Proof. As action sets are finite and non-empty (they always contain l), the
set ρ(β−i; θi) ≡ arg maxb∈Bi(wi) Ui(b, β−i|θi) 6= ∅. That ρi(β−i, θi) is non-
decreasing in the strong set order is an immediate consequence of Lemma
16.

As the interim best-reply correspondence is nondecreasing, player i has
at least one nondecreasing best reply when others employ nondecreasing
strategies. This follows from Topkis (1998, Theorem 2.8.3) and depends on
Bi(wi) varying monotonically with a player’s type. Let ρ∗i : I−i → I−i be
player i’s best reply map. For β−i ∈ I−i, ρ

∗
i (β−i) 6= ∅ and is point-wise

join-closed.

Lemma 19. There exists an equilibrium in nondecreasing strategies.

Proof. The conclusion follows from Reny (2009, Theorem 4.1). Conditions
G.1–G.6 are easy to verify. The partial order on Θi is measurable and by
assumption f(·) is atomless. Condition G.3 follows from Reny (2009)’s anal-
ysis of the multi-unit auction with risk-averse bidders as the ≥θ order is an
adaptation of the analogous construction in that setting. The unrestricted
action space is {l}∪ ([ri, w̄i] ∩ Pi), satisfying G.4 and G.5. Finally, a bidder’s
utility is bounded, measurable, and continuous in b. Continuity follows from
the discretized action set.

When all others employ nondecreasing strategies, player i has a non-
decreasing best response in Ii which is compact, nonempty, join-closed,
piecewise-closed, and point-wise limit-closed. Arguments mirroring those in
Reny (2009, Theorem 4.1) show that ρ∗i : I−i → Ii is upper-hemicontinuous
and nonempty. Similarly, ×ρ∗i can be shown to be contractable-valued im-
plying a fixed point (i.e. equilibrium) by Reny (2009, Theorem 2.1).

A.2.3 Continuum Action Spaces

Proposition 3

Consider a private values setting where utility is ui(si, wi, bi). To extend the
equilibrium to a continuum action space we offer an argument that mirrors

4Let X and Y be two sets. Then X is greater than Y in the strong set order if ∀x ∈ X
and ∀y ∈ Y, x ∨ y ∈ X and x ∧ y ∈ Y .
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the proof of Reny & Zamir (2004, Theorem 2.1). We simply indicate the
set-up and the notable modification. To fix ideas, define the set of allowable
bids for player i as

Bi(wi)k =

({
m w̄i + υi

2k
: m = 1, . . . , 2k

}

∩ [ri, wi]

)

∪ {l}

where {υi} are small, fixed numbers chosen such that Bi(w̄)k ∩Bj(w̄)k = {l}
for all k. It is easy to verify that Bi(wi)k ∩ Bj(wj)k = {l}.

Call an auction with such bidding sets Γk and let βk be a nondecreasing
equilibrium. Let k → ∞ and consider the sequence of auction games {Γk}.

By Helly’s selection theorem5 for each i there is a nondecreasing function,
βi, such that βki (θi)

a.e.−−→ β̂i(θi) where we passed to a subsequence without
relabeling.

As βki is monotone and ϕi(β
k(·)) is nondecreasing in θi and non-increasing

in θ−i. The corresponding limit, ϕi(β
k(·)) a.e.−−→ ϕ̂i inherits these properties

too. Without loss of generality, we may assume that βk and ϕ(βk) converge
on the same dense subset of Θ and are extended together to all of Θ. We
will argue that β̂ is an equilibrium of Γ, an auction with a continuum action
space and uniform tie-breaking.

Consider the limiting strategy β̂. For each i, β̂i(θi) has at most count-

ably many mass points. Let P = ∪Nj=1

{

b : Pr[b = β̂j(θj)] > 0
}

. Let Ti =

{θi : wi ∈ P}. Ti has zero measure. Henceforth consider only types θi ∈
Θi \Ti. Such bidders do not have a budget equal to a mass-point of the bid
distribution; hence, should they ever choose to bid their budget versus β̂−i
they do not need to worry about it resulting in a tie with positive probability.

Given that all but a measure zero of bidder’s types is capable of resolv-
ing relevant ties, i.e. those that occur with strictly positive probability, by
bidding slightly more, we will establish that it is indeed in their interests to
do so. Consider the limiting strategy β̂−i and a bidder of type θi who places
a feasible bid b > l. Let A = {θ−i : b ≥ maxj 6=i β̂j(θj)}. And define the set
A(w−i) = {s−i : (s−i,w−i) ∈ A} ⊂ S−i. A(w−i) is a slice of A fixing w−i.
When bidders follow monotone strategies it is a sublattice of S−i.

A bid of bmay win or may tie with competing bidders. As the bidder is not
budget constrained in bidding b we can find a sequence of feasible bids b′ ↓ b
that tie with probability zero. That is 1({θ−i : b′ > maxj 6=i β̂j(θj)}) a.e.→ 1(A).

5See Reny (2009, Lemma A.10) for the appropriate generalization.
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Then,

0 ≤ Ui(b, β̂−i|θi) − ui(0, wi, 0)

= E[ϕi(b; β̂−i)ũi(θ, b)|θi]
= Pr[A|θi]E

[

ϕ(b; β̂−i)ũi(θ, b)|A, θi
]

= Pr[A|θi]E
[

E[ϕ(b; β̂−i)ũi(θ, b)|A(w−i), θi]|A, θi
]

≤ Pr[A|θi]E
[
E[ϕ(b; β̂−i)|A(w−i), θi] E[ũi(θ, b)|A(w−i), θi]

︸ ︷︷ ︸

=ũi(θ,b)≥0

|A, θi
]

(¶)

≤ Pr[A|θi]E[ũi(s, wi, b)|θi, A]

= lim
b′↓b

Ui(b
′, β̂−i|θi) − ui(0, wi, 0).

The above inequalities show that under uniform tie breaking, a bidder always
wishes to resolve a tie in her favor. As ϕ̂i is decreasing in s−i a similar
argument establishes that a bidder wishes to improve upon payoffs obtained
in the limit as k → ∞. The remainder of the proof follows from the proof of
Theorem 2.1 in Reny & Zamir (2004, pp. 1121–25).

Remark 1. At (¶) this argument fails when values are interdependent. Pro-
ceeding to the next inequality follows from setting E[ϕ(b; β̂−i)|A(w−i), θi] =
1. With interdependent values however E[ũi(θ, b)|A(w−i), θi] ≷ 0.

Proposition 4

We will pass to a continuous action space via an endogenous tie-breaking
/ allocation rule. This rule will be defined as the limit of a sequence of
allocations from equilibria of discretized versions of the auction game.

Relaxed Discrete Bidding Sets Modify the preceding framework as
follows. For a (large) fixed k, a bidder of type θi = (si, wi) can place a bid
from the set

Bi(wi)k =

({
m w̄i + υi

2k
: m = 1, . . . , 2k

}

∩
[

ri, wi +
1

k

])

∪ {l}. (A.11)

The bidding set (A.11) allows bidders to place bids slightly above their budget
limit for fixed k. (For k sufficiently large there are feasible bids on [wi, wi +
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1/k].) Thus, bidders are able to approximate bidding their budget (wi) with
a decreasing sequence of bids for increasing k.

It is clear that for fixed k an auction with bidding sets defined by (A.11)
continues to admit a monotone equilibrium βk(θ) and as above we can con-
sider a sequence of equilibria such that for all i, βki (θi)

a.e.−−→ β̂i(θi). It is
also clear that the limiting strategy β̂i(θi) respects the (actual) budget limit:
β̂i(θi) ≤ wi for all θi.

Limit Allocation Rules We will define an allocation rule that will
map player’s submitted bids and announced types, ϕ̂ : ×i R+ ∪ {l} × Θ →
[0, 1]N+1, into allocations.6 Let (b, θ) be a submitted bid profile and an
announced type profile. For player i placing bid bi and announcing type θi,
define the sequence of bids β̃ki (θi)[bi] as

β̃ki (θi)[bi] =

{

βki (θi) if bi = lim βki (θi)

b̃ki if bi 6= lim βki (θi)
(A.12)

where b̃ki = min
{
b ∈ Bki (wi) : b ≥ bi

}
. If the bid bi is the limit of a se-

quence of bids placed by a bidder of type θi, the sequence assumes those
values. Otherwise, bi is approached from above. Note that this sequence
of bids is feasible within the relaxed budget set for large k. For notation,
let β̃k(θ)[b] = (β̃k1 (θ1)[b1], . . . , β̃

k
N(θN )[bN ]). For any profile (b, θ) define the

following allocation rule

ϕ̂i(b, θ) = lim
k
ϕi(β̃

k(θ)[b]). (A.13)

The allocation rule (A.13) is standard in the sense that if the high bidder
is unique, she wins the item. When bidders tie for the highest bid, this
allocation rule breaks ties by relying on a limit of allocations from approxi-
mating games given the announced types of bidders. The following statement
complete the proof of Lemma 4.

Lemma 20. Consider a first-price auction where bidders of type θi can bid
from Bi(wi) = [ri, wi] ∪ {l} and must announce their type. Suppose the
allocation rule is defined by (A.13) and let σ̂i(θi) = θi. Then (β̂, σ̂) is an
equilibrium.

6ϕ̂0 = 1 −∑j≥1 ϕ̂j to account for cases where the item is unsold.
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Proof. Suppose (β̂i, σ̂i) is not an equilibrium and player i has a profitable
deviation to (β̃i, σ̃i).

Define the following sequence of strategies.

β̌ki (θi) = β̃ki (σ̃i(θi))[β̃i(θi)]

By construction β̌ki → β̃i. Therefore the bidding strategy from the prof-
itable deviation, β̃i, can be approximated by a sequence of feasible strategies.
As ũi(θ, bi) is continuous in bi, ũi(θ, β̌

k
i ) → ũi(θ, β̃i). Similarly by construc-

tion, ϕi(β̃
k(θ)[β̃i, β̂−i]) → ϕ̂i(β̃i, β̂−i, σ̃i, σ̂−i).

Define the following values:

Ui(β
k) =

∫

Θ

[
ui(0, wi, 0) + ϕi(β

k)ũi(θ, β
k
i )
]
f(θ)dθ

Ûi(β̂, σ̂) =

∫

Θ

[

ui(0, wi, 0) + ϕ̂i(β̂, σ̂)ũi(θ, β̂i)
]

f(θ)dθ

Ûi(β̃i, β̂−i, σ̃i, σ̂−i) =

∫

Θ

[

ui(0, wi, 0) + ϕ̂i(β̃−i, β̂−i, σ̃i, σ̂−i)ũi(θ, β̃i)
]

f(θ)dθ

Ui(β̃
k
i , β

k
−i) =

∫

Θ

[

ui(0, wi, 0) + ϕi(β̃
k
i , β

k
−i)ũi(θ, β̃

k
i )
]

f(θ)dθ

For player i, Ui(β̂
k) → Ûi(β̂, σ̂) while Ui(β̃

k
i , β

k
−i) → Ûi(β̃i, β̂−i, σ̃i, σ̂−i) as

all integrands are bounded. There exists an ǫ > 0 sufficiently small such that

Ûi(β̃i, β̂−i, σ̃i, σ̂−i) > Ûi(β̂, σ̂) + ǫ (A.14)

But if βk defines an equilibrium for the auction indexed by k, we have that
Ui(β

k) ≥ Ui(β̃
k
i , β

k
−i) which implies a contradiction.
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A.3 Proofs

This appendix collects proofs and additional results referenced in the main
text.

Lemma 21. δ(b, x|s) is continuous and increasing in b and x and decreasing
in s. η(x|s) is continuous, differentiable, and increasing in both arguments.
λ(y|s) is decreasing in s.

Proof. All of the constituent functions are continuous, thus, δ is also continu-
ous. g′(b) ≤ 0, therefore, δ is increasing in b. δ is increasing in x as H(x|s) is
increasing in x. Finally as S and Y are affiliated, if s′ > s, H(·|s′) first-order
stochastically dominates H(·|s). Consequently, for all y H(y|s′) ≤ H(y|s)
and thus,

H(y|s′)
1 −H(y|s′) ≤ H(y|s)

1 −H(y|s).

as required. It is clear why η(x|s) is increasing. λ(y|s) is decreasing in s from
affiliation.

Proof of Lemma 1. This follows from the definition of v(·, ·). �

Proof of Lemma 2. Clearly, ṡ(s, b) = 0 ⇐⇒ η(s|s) = δ(b, s|s). For any s,
δ(b, s|s) is strictly increasing in b. If a solution exists it is therefore unique.
As δ(w, s|s) ≥ η(s, s), if a solution fails to exist at s it is because

η(s|s) < w +
H(s|s)

g(w)(1 −H(s|s)) .

If ψ(s) ≤ w, then ψ̃(s) is obviously continuous. Suppose instead that at
some x, ψ(x) > w. Then by the implicit function theorem, ψ(·) is continuous
at x and there is an open set Ox containing x such that s ∈ Ox =⇒ ψ(s) >
w. We can then write X = ∪{x : ψ(x)>w}Ox as a countable union of disjoint
open sets: X = [0, s0

ψ) ∪ ∪∞
k=1(s

2k
ψ , s

2k+1
ψ ).7 1 /∈ X as δ(b, 1|1) is not defined

for all b. For m ≥ 0, consider lims→sm
ψ
ψ̃(s) > w then ψ(smψ ) > w which is

a contradiction. Hence ψ̃(s) is continuous. That lims→sψ ψ̃(s) = w follows
from this observation. �

7[0, s0ψ) is open in the relative topology on [0, 1]. If s0ψ = 0, [0, s0ψ) = ∅.
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Proof of Lemma 3. The conclusion is immediate because δ(b, s|s) is strictly
increasing in b. �

Proof of Lemma 4. If w = 0, then ψ(0) ≥ 0 This follows from δ(0, 0|0) = 0
and 0 ≤ η(0|0) ≤ 1. As δ is strictly increasing in b, there will be a solution
η(0|0) = δ(b, 0|0) for some b ∈ [0, η(0|0)]

If ψ(0) = 0, then (0, 0) is a critical point. Alternatively, if ψ(0) > 0, then
ψ(s) is continuous on [0, s0

ψ) and lims↑s0
ψ
ψ(s) = w. On the other hand, ν(s)

is strictly increasing from 0 to v(1, 1) ≥ η(0|0) ≥ 0. Thus, ∃s∗ ∈ [0, s0
ψ] at

which ν(s∗) = ψ(s∗). �

Proof of Lemma 5. It is sufficient to confirm that the eigenvalues of the
Jacobian matrix evaluated at (s∗, b∗),

J =

(
∂ṡ
∂s

∂ṡ
∂b

∂ḃ
∂s

∂ḃ
∂b

)∣
∣
∣
∣
(s∗,b∗)

,

are real-valued. The eigenvalues will be real if

(

∂ṡ

∂s
− ∂ḃ

∂b

)2

+ 4
∂ṡ

∂b

∂ḃ

∂s

when evaluated at (s∗, b∗) is non-negative. Then,

∂ṡ

∂b

∣
∣
∣
∣
(s∗,b∗)

= γ′(b∗) (η(s∗|s∗) − δ(b∗, s∗|s∗))
︸ ︷︷ ︸

=0

+γ(b∗)

(

− ∂δ

∂b

∣
∣
∣
∣
(s∗,b∗)

)

= −γ(b∗) ∂δ
∂b

∣
∣
∣
∣
(s∗,b∗)

< 0

where the conclusion follows from δ strictly increasing in b and γ(b∗) 6= 0.
Also,

∂ḃ

∂s

∣
∣
∣
∣
∣
(s∗,b∗)

=
∂λ

∂s

∣
∣
∣
∣
(s∗,b∗)

(b∗ − v(s∗, s∗))
︸ ︷︷ ︸

=0

+λ(s∗|s∗)
(

− ∂v

∂s

∣
∣
∣
∣
(s∗,b∗)

)

= −λ(s∗|s∗) ∂v
∂s

∣
∣
∣
∣
(s∗,b∗)

< 0
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Therefore, 4∂ṡ
∂b

∂ḃ
∂s
> 0 as needed. �

Proof of Proposition 5. We need to verify that the first-order charac-
terization of the best response is optimal given that all others are following
the strategy β(s, w) = min{w, b̄(s)}. Treating the auction as a revelation
mechanism, the expected utility of a bidder of type (s, w) who bids as a type
x ∈ [̄b−1(0), b̄−1(w)] is

U(b̄(x)|s, w) =

∫ b̄(x)

0

∫ 1

0

(
v(s, y)− b̄(x)

)
h(y|s)g(z)dydz

+

∫ 1

b̄(x)

∫ x

0

(
v(s, y) − b̄(x)

)
h(y|s)g(z)dydz.

Differentiating this expression with respect to x gives

∂U(b̄(x)|s, w)

∂x
= (1 −G(x))h(x|s)

(
v(s, x) − b̄(x)

)

+ b̄′(x)g(b̄(x))(1 −H(x|s))
[
η(x|s) − δ(b̄(x), x|s)

]
.

Collecting hazard rate terms,

∂U

∂x
= g(b̄(x))(1 −H(x|s))

×
[
λ(x|s)
γ(b̄(x))

(
v(s, x) − b̄(x)

)
+ b̄′(x)

(
η(x|s) − δ(b̄(x), x|s)

)
]

.

To establish that x = s is optimal it is sufficient to show that

x > s =⇒ ∂U(b̄(x)|s, w)

∂x
≤ 0

x < s =⇒ ∂U(b̄(x)|s, w)

∂x
≥ 0

Suppose x > s. By affiliation, η(x|x) ≥ η(x|s) and δ(b̄(x), x|x) ≤ δ(b̄(x), x|s).
Also due to affiliation λ(x|x) ≤ λ(x|s) and by assumption v(s, x)λ(x|s) ≤
v(x, x)λ(x|x). Thus for x > s,

∂U(b̄(x)|s, w)

∂x
≤ ∂U(b̄(x)|x, w)

∂x
= 0. (A.15)
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By a similar argument, if x < s, ∂U(b̄(x)|s,w)
∂x

≥ 0. Thus, a bidder of type (s, w)
has no incentive to deviate to a bid in the range of b̄(·). The same argument
applies to a bidder who bids β(s, w) = w; however, such a bidder can only
consider mimicking a type x < b̄−1(w) and is therefore at a constrained
optimum (in the range of b̄).

Bids in excess of b̄(1) are dominated. To rule out deviations below b̄(0),
suppose a bidder bid b < b̄(0) ≤ w. This bid competes only against other
bidders who are bidding exactly their budget. Hence, the bidder’s expected
utility is given by

U(b|s, w) =

∫ b

0

∫ 1

0

(v(s, y) − b) h(y|s)g(w)dydw = G(b)(η(0|s) − b)

This expression is concave in b and achieves a maximum at b̌ which solves
η(0|s) = b̌ + G(b̌)/g(b̌). Recall that ψ(0) satisfies η(0|0) = ψ(0) + G(ψ(0))

g(ψ(0))
.

Consequently, by affiliation, η(0|s) ≥ η(0|0) =⇒ b̌ ≥ ψ(0) because b +
G(b)/g(b) is increasing. However, for s sufficiently close to zero, b̄(s) ≤ ψ(s),
hence b̄(0) ≤ ψ(0). Therefore the optimal bid (weakly) below b̄(0) is b̄(0),
which was already recognized as inferior to β(s, w) ≥ b̄(0).

Finally consider bidders with a budget of w < b̄(0). Given the strategy
followed by all other bidders they solve maxb≤wG(b)(η(0|s) − b). By the ar-
gument above, β(s, w) = w is their optimal bid. �

Proof of Proposition 6. Suppose s̃ < 1 as otherwise there is little to prove.
β(s, w) is continuous and β(s, w̄) is strictly increasing. We need only verify
that no bidders wish to deviate within the range of β(s, w). Treating the
auction as a revelation mechanism suppose a bidder of type (s, w) instead
bid as a type (x, w) while other bidders follow β(s, w). Her expected utility
from doing so is

U(β(x, w)|s, w) (A.16)

=







∫ x

0
(v(s, y) − bf(s))h(y|s)dy if x ≤ s̃

G(b̃(x))
∫ 1

0

(

v(s, y)− b̃(x)
)

h(y|s)dy
+(1 −G(b̃(x))

∫ x

0

(

v(s, y)− b̃(ŝ)
)

h(y|s)dy
if x > s̃

There are two cases to consider:
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Case 1. Suppose that s ≤ s̃. Then β(s, w) = bf (s). As bf (s) is an equi-
librium strategy profile in the first-price auction without budget constraints,
the bidder has no profitable deviation imitating some type x < s̃. Therefore,
we need only rule out deviations above w. By an argument parallel to (A.15)
we know that if x > s̃ ≥ s,

∂U(b̃(x)|s, w)

∂x
≤ 0.

Thus, the best announcement for a type s bidder in excess of s̃ is x = s̃.
However, this bid is in bf (s)’s range and thus not optimal.

Case 2. Suppose s > s̃. The same argument as in Lemma 5 establishes
that this bidder has no profitable deviation to bids above w. Consider a
deviation to some type x < s̃. Differentiating (A.16) in this domain gives

∂U(bf (x)|s, w)

∂x
= H(x|s)

[

(v(s, x) − bf (x))
h(x|s)
H(x|s) − b′f (x)

]

≥ H(x|s)
[

(v(x, x) − bf (x))
h(x|x)
H(x|x) − b′f(x)

]

= 0

where the inequality follows from affiliation. Therefore the best response of
a type s > s̃ bidder in the range [0, w] is to bid w. However, this was already
shown to be suboptimal.

Finally, for bidders who are constrained, ∂U(β(x,w)|s,w)
∂x

∣
∣
∣
x=s

≥ 0; therefore,

they wish to bid more but cannot. Downward deviations are ruled out by
the same argument as for an unconstrained bidder. �

Proof of Corollary 2. It is sufficient to establish that b′f (s̃) < lims→s̃+ b̃
′(s).

At s̃, b̃(s̃) = bf (s̃) = w and G(w) = 0. Let H̃ ≡ H(s̃|s̃), g̃ ≡ g(b̃(s̃)) and
η̃ ≡ η(s̃|s̃). By concavity, s̃ > 0 =⇒ g̃ <∞. Then,

lim
s→s̃+

b̃′(s) =
λ(s̃|s̃)

(

b̃(s̃) − v(s̃, s̃)
)

γ(b̃(s̃))
(

η(s̃|s̃) − δ(b̃(s̃), s̃|s̃)
)

=

H̃

1−H̃ · 1
g̃

H̃

1−H̃ · 1
g̃

+ w − η̃
b′f (s̃)
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The equality follows from the substitution

b′f(s̃) = [v(s̃, s̃) − bf(s̃)]h(s̃|s̃)/H(s̃|s̃).

As w − η̃ < 0 we can conclude that lims→s̃+ b̃
′(s) > b′f (s̃). �

Proof of Lemma 6. At s = s0, (3.13) becomes

∫ s0

0

(v(s0, y) − µ(s0)) h(y|s0)dy +G(µ(s0))

∫ 1

s0

(v(s0, y) − µ(s0))h(y|s0)dy

≤
∫ s0

0

(v(s0, y) − bf (s0)) h(y|s0)dy.

There are two cases. If s0 = 0, this expression reduces to

G(b̄(s0))

∫ 1

0

(
v(0, y)− b̄(0)

)
h(y|0)dy = G(b̄(s0))

(
η(0|0) − b̄(0)

)
≤ 0,

which is true. If instead s0 > 0, then µ(s0) = w and so,

∫ s0

0

(v(s0, y) − w) h(y|s0)dy ≤
∫ s0

0

(v(s0, y) − bf (s0)) h(y|s0)dy.

This expression is also true as w > bf (s0). Thus, Z 6= ∅. At s = s̃ ≡ b̄−1(w),

∫ s̃

0

(v(s̃, y) − µ(s̃)) h(y|s̃)dy +G(µ(s̃))

∫ 1

s̃

(v(s̃, y) − µ(s̃))h(y|s̃)dy

>

∫ s̃

0

(v(s̃, y) − bf (s̃)) h(y|s̃)dy.

This follows from the definition of µ(s). Thus ŝ < s̃ by continuity. �

Proof of Proposition 7. The proof is divided into two parts. Part 1 con-
firms the existence of functions φ and b1 with the stated properties. Their
existence is not immediate as they are introduced in a self-referential manner.
Part 2 verifies that the proposed strategy is an equilibrium. As the verifica-
tion of equilibrium follows the standard argument, this part is abbreviated.
Throughout the discussion below, it is convenient to extend G(s) to all of R,
i.e. G(w) = 0 if w ≤ w and analogously G(w) = 1 for w > w̄.
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Part 1: The functions b1 and φ. This section derives some implied relation-
ships between b1 and φ and uses these relationships to construct a map Λ
whose fixed point(s) will be used to define b1 and φ. If φ and b1 exist, they
need to be consistent with three facts:

i) φ(s) describes an indifference condition; otherwise β(s, w) could not
be discontinuous along {(s, φ(s))}s>ŝ. Types (s, φ(s)) are indifferent
between bids of b1(s) and φ(s). The expected utility from bidding φ(s)
is

U(φ(s)|s, φ(s)) =

∫ ŝ

0

(v(s, y) − φ(s))h(y|s)dy (A.17)

+

∫ s

ŝ

(v(s, y) − φ(s))G(φ(y))h(y|s)dy (A.18)

+G(φ(s))

∫ 1

s

(v(s, y) − φ(s))h(y|s)dy. (A.19)

(A.17) is the contribution to utility from defeating all bidders of type
y < ŝ, who are bidding according to bf (·). (A.18) is the contribution of
utility from defeating bidders of type y ∈ [ŝ, s) but who have w < φ(y).
Such bidders are bidding according to b1(·). (A.19) is the contribution
to utility from defeating all bidders of type y ≥ s who have a budget
less than φ(s). The expected utility of bidding b1(x) is

U(b1(x)|s, w) =

∫ ŝ

0

(v(s, y) − b1(x))h(y|s)dy

+

∫ x

ŝ

(v(s, y) − b1(x))G(φ(y))h(y|s)dy. (A.20)

The first term is the contribution to utility from defeating all bidders
who bid according to bf (·). The second term is the contribution to utility
from defeating all bidders of type y > ŝ who bid less than b1(x). The
bounds of integration follow from b1(·) being strictly increasing. Setting
U(b1(s)|s, φ(s)) = U(φ(s)|s, φ(s)) gives (3.17) which is reproduced here:

φ(s) − b1(s)

η(s|s) − φ(s)
=

G(φ(s))(1 −H(s|s))
H(ŝ|s) +

∫ s

ŝ
G(φ(y))h(y|s)dy.
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ii) b1(·) must be optimal for all types who do not increase their bid discon-
tinuously. Treating the auction as a revelation mechanism and differenti-
ating (A.20) with respect a player’s announced type gives the differential
equation (3.16) which is reproduced here:

∂U(b1(x)|s, w)

∂x

∣
∣
∣
∣
x=s

= 0 =⇒ b1
′(s) =

[v(s, s) − b1(s)]h(s|s)G(φ(s))

H(ŝ|s) +
∫ s

ŝ
G(φ(y))h(y|s)dy

(A.21)

iii) If a bidder of type (s, w) increases her bid discontinuously, the large
increase must be a good idea. That is, it must be the constrained optimal
bid in the range [w,w]. The expected utility of a bid b ∈ [w, φ(ŝ)] is

U(b|s, φ(s)) =

∫ ŝ

0

(v(s, y) − b)h(y|s)dy

+

∫ φ−1(b)

ŝ

(v(s, y) − b)G(φ(y))h(y|s)dy

+G(b)

∫ 1

φ−1(b)

(v(s, y)− b)h(y|s)dy.

Each term’s motivation mirrors that of the corresponding term (A.17)–
(A.19). At b = φ(s),

∂U(b|s, φ(s))

∂b

∣
∣
∣
∣
b=φ(s)

≥ 0. (A.22)

We are concerned with showing that there exist b1 and φ that meet (A.21),
(A.21), and (A.22), along with the collection of boundary and monotonicity
conditions from (3.14). Let C[ŝ, 1] be the set of continuous functions on the
interval [ŝ, 1] equipped with the usual metric, d(c1, c2) = sups∈[ŝ,1] |c1(s) −
c2(s)|, and define the following subsets:

• B ⊂ C[ŝ, 1].

If b ∈ B then b(s) is nondecreasing, b(ŝ) = bf(ŝ), b(s) ≤ min{v(s, s), w}
and if s, s′ ∈ [ŝ, 1], then

|b(s) − b(s′)| ≤
[

sup
s∈[ŝ,1]

v(s, s)h(s|s)
H(ŝ|1)

]

|s− s′|.
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• Z ⊂ C[ŝ, 1].

If ζ ∈ Z then ζ(ŝ) = H(ŝ|ŝ), 0 < H(ŝ|1) ≤ ζ(s) ≤ 1 and if s, s′ ∈ [ŝ, 1],
then

|ζ(s)− ζ(s′)| ≤
∣
∣
∣
∣
∣
sup
s∈[ŝ,1]

(

h(s|s) +
∂H(ŝ|x)
∂x

∣
∣
∣
∣
x=s

)
∣
∣
∣
∣
∣
|s− s′|.

With (b, ζ) ∈ B × Z consider the following function (suppressing its
dependence on b(·) and ζ(·)):

Φ(s) ≡ min

{

arg min
φ̂∈[w,η(s|s)]

∣
∣
∣
∣
∣
max

{

0,
φ̂− b(s)

η(s|s) − φ̂

}

− G(φ̂)(1 −H(s|s))
ζ(s)

∣
∣
∣
∣
∣

}

.

(A.23)
For a given b and ζ , the equation

φ̂− b(s)

η(s|s) − φ̂
=
G(φ̂)(1 −H(s|s))

ζ(s)
(A.24)

may not admit a solution—φ̂—greater than w. Φ(s) returns an approximate
solution, if no solution exists. If a solution does exist it selects the smallest
solution. To develop an intuition for Φ(s), Figure A.2 presents three typ-
ical scenarios. Noting that both b(·) and ζ(·) are continuous, Φ(s) is also
continuous in b(·), ζ(·) and s.

Finally, define the map Λ as follows: Λ(b, ζ) = (b̌, ζ̌) such that

b̌(s) = bf (ŝ) +

∫ s

ŝ

[v(x, x) − b(x)]G(Φ(x))h(x|x)
ζ(x)

dx (A.25)

ζ̌(s) = H(ŝ|s) +

∫ s

ŝ

G(Φ(x))h(x|s)dx (A.26)

It is easy to see that both B and Z are equicontinuous subsets of C[ŝ, 1].
Moreover Λ is continuous and Λ(B×Z ) ⊂ B×Z . By Schauder’s fixed point
theorem, Λ has a fixed point. We next verify that a fixed point of Λ satisfies
several additional conditions, which are necessary for it to conform with the
description of the strategy given above. (We do not make any statements
concerning the uniqueness of the fixed point.)
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φ

b w ηΦ
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R
Min Distance

(a) No Exact Solution

φ

b w ηΦ

L
R

(b) Two Solutions

φ

bw = Φ η

L
R

(c) Solution at w.

Figure A.2: The value of Φ for a fixed s, b(s) and ζ(s) in the three possible

cases. Notation: L(φ) = max
{

0, φ̂−b(s)
η(s|s)−φ̂

}

, R(φ) = G(φ̂)(1−H(s|s))
ζ(s)

.

Lemma 22. Let (b, ζ) be a fixed point of Λ. b(s) satisfies the following
properties:

1. b(ŝ) = bf (s) and b(·) is continuous and increasing whenever Φ(s) > w.

2. b(s) ≤ w.

Proof. The first statement is trivial. To see that the second statement is
true, suppose that b(s) > w for all s > s̃. By the definition of Φ(s) in (A.23)
it follows that Φ(s) = w for all s > s̃ and so b′(s) = 0 for all s > s̃. But if
w = b(s̃) < b(1) then b′(s) > 0 for some s ∈ (s̃, 1], a contradiction.

Lemma 23. Let (b, ζ) be a fixed point of Λ and let Φ(s) be defined as in
(A.23). Then for all s ≥ ŝ,

Φ(s) − b(s)

η(s|s) − Φ(s)
=
G(Φ(s))(1 −H(s|s))

ζ(s)
. (A.27)

Proof. If ever b(s) = w, the (A.27) is easily seen to hold. Suppose b(s) < w.
We first establish that (A.27) holds at s = ŝ. When s = ŝ, (A.27) reduces to

Φ − bf (ŝ)

η(ŝ|ŝ) − Φ
=
G(Φ)(1 −H(ŝ|ŝ))

H(ŝ|ŝ)
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From Lemma (6), we know that Φ = µ(ŝ) > w satisfied this equation.
To see that there is no φ < µ(ŝ) that could satisfy (A.23), suppose the

contrary. Then any such φ must satisfy (suppressing the dependence on ŝ)

−bf = (η − φ)G(φ)(1 −H)/H − φ (A.28)

Differentiating the right-hand side of (A.28) with respect to φ gives

d

dφ

(
(η − φ)G(φ)(1 −H)/H − φ

)

= g(φ)(η − φ)
1 −H

H
−G(φ)

1 −H

H
− 1

= g(φ)
1 −H

H

(

η − φ− G(φ)

g(φ)
− H

g(φ)(1 −H)

)

= g(φ)
1 −H

H
(η(ŝ|ŝ) − δ(φ, ŝ|ŝ)). (A.29)

When φ < µ(ŝ), η(ŝ|ŝ)−δ(φ, ŝ|ŝ) > 0. So the right-hand side of (A.28) is
increasing as φ ↑ µ(ŝ). Equality occurs only at φ = ψ(ŝ) ≥ µ(ŝ). Therefore,
there is no φ < µ(ŝ) that solves (A.28). If µ(ŝ) = ψ(ŝ) then the solution to
(A.28) is at a tangency point. The final term in (A.29) is zero at φ = ψ(ŝ) and
is positive (negative) for φ < (>)ψ(ŝ). Thus, (A.28) has only one solution.

As Φ(s), b(s), and ζ(s) are continuous, if (A.28) fails to be satisfied, it
must fail on some interval, say (s̃, s̃′). It is clear that if (A.28) fails, it must
be that for s ∈ (s̃, s̃′) at Φ(s),

Φ(s) − b(s)

η(s|s) − Φ(s)
≥ G(Φ(s))(1 −H(s|s))

ζ(s)

=⇒ (Φ(s) − b(s))ζ(s) ≥ (η(s|s) − Φ(s))G(Φ(s))(1 −H(s|s)) (A.30)

As the inequality in (A.30) becomes strict for s > s̃, at s = s̃, the derivative of
the left-hand side of (A.30) with respect to s (holding Φ(s̃) fixed) must exceed
the derivative of the right-hand side of (A.30) with respect to s. Intuitively,
the right-hand side escapes downward from the left-hand side locally at s̃.
Therefore, the following must be true,

d

ds
[(Φ(s̃) − b(s))ζ(s)] |s=s̃ ≥

d

ds
[(η(s|s) − Φ(s̃))G(Φ(s̃))(1 −H(s|s))] |s=s̃.

(A.31)
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Following some algebra and substituting b(s̃) = [v(s̃,s̃)−b(s̃)]G(Φ(s̃))h(s̃|s̃)
ζ(s̃)

and

ζ ′(s̃) =
∂H(ŝ|s)
∂s

∣
∣
∣
∣
s=s̃

+G(Φ(s̃))h(s̃|s̃) +

∫ s̃

ŝ

G(Φ(y))
∂h(y|s)
∂s

∣
∣
∣
∣
s=s̃

dy

gives,

(Φ(s̃) − b(s̃))

[
∂H(ŝ|s)
∂s

∣
∣
∣
∣
s=s̃

+

∫ s̃

ŝ

G(Φ(y))
∂h(y|s)
∂s

∣
∣
∣
∣
s=s̃

dy

]

+ Φ(s̃)G(Φ(s̃)

[

h(s̃|s̃) − dH(s|s)
ds

∣
∣
∣
∣
s=s̃

]

≥ G(Φ(s̃)

∫ 1

s̃

∂

∂s
v(s, y)h(y|s)

∣
∣
∣
∣
s=s̃

dy

By independence, the above reduces to

0 ≥
∫ 1

s̃

∂

∂s
v(s, y)h(y|s)

∣
∣
∣
∣
s=s̃

dy > 0

Where the strict inequality follows from the assumption that v(s, y) is strictly
increasing in a player’s own signal. As this final line is a contradiction we
conclude that (A.27) indeed holds with equality for all s ≥ ŝ.

Lemma 24. There exists ŝ′ ∈ (ŝ, 1] such that for all s ≥ ŝ′, b(s) = Φ(s) = w.

Proof. As (A.27) holds, at s = 1, we clearly have Φ(1) = b(1). Moreover, as
b(s) ≤ w ≥ Φ(s) we must have b(1) = Φ(1) = w. The lemma’s conclusion
follows.

Lemma 25. The following inequality holds:

(1 −H(s|s)) (g(Φ(s))(η(s|s) − Φ(s)) −G(Φ(s)) ≥ ζ(s). (A.32)

Proof. Recall that for each s, Φ(s) solves (suppressing the s),

Φ − b = (η − Φ)G(Φ)(1 −H)/ζ

For Φ > w, the righthand side of this expression is concave in Φ, therefore at
the minimal solution to this equation, the slope of the right-hand side must
exceed the slope of the left-hand side. Differentiation gives [g(Φ)(η − Φ) −
G(Φ)](1 −H)/ζ ≥ 1 which is (A.32).
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Lemma 26. Φ(s) is non-increasing on [ŝ, 1].

Proof. Recall that Φ(s) solves U(Φ(s)|s,Φ(s)) = U(b1(s)|s,Φ(s)) for s > ŝ.
Suppressing a bidder’s budget-type in the following notation, differentiating
the preceding expression with respect to s gives

∂U(Φ(s)|s)
∂Φ(s)

dΦ(s)

ds
+
∂U(Φ(s)|s)

∂s
=
∂U(b1(s)|s)
∂b1(s)

db1(s)

ds
+
∂U(b1(s)|s)

∂s
(A.33)

where

∂U(Φ(s)|s)
∂Φ(s)

dΦ(s)

ds
(A.34)

=
[
(1 −H(s|s)) (g(Φ(s))(η(s|s) − Φ(s)) −G(Φ(s)) − ζ(s)

]
Φ′(s) (A.35)

∂U(Φ(s)|s)
∂s

(A.36)

=

∫ s

0

d

ds
[v(s, y)h(y|s)]GΦ(y)dy +GΦ(s)

∫ 1

s

d

ds
[v(s, y)h(y|s)]dy

− Φ(s)

[∫ s

0

d

ds
h(y|s)GΦ(y)dy +GΦ(s)

∫ 1

s

d

ds
h(y|s)dy

]

(A.37)

∂U(b1(s)|s)
∂b1(s)

db1(s)

ds
= 0 (A.38)

∂U(b1(s)|s)
∂s

(A.39)

=

∫ s

0

d

ds
[v(s, y)h(y|s)]GΦ(y)dy − b1(s)

∫ s

0

d

ds
h(y|s)GΦ(y)dy (A.40)

and for notation

GΦ(y) =

{

1 y < ŝ

G(Φ(y)) y ≥ ŝ
.
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(A.38) is zero by the envelope theorem. The first terms of (A.35), ∂U(Φ(s)|s)
∂Φ(s)

,

is nonnegative by Lemma 25. A rearrangement of (A.33) for s ∈ (ŝ, ŝ′) gives:

∂U(Φ(s)|s)
∂Φ(s)

dΦ(s)

ds
= [Φ(s) − b1(s)]

∫ s

0

d

ds
h(y|s)GΦ(y)dy

−GΦ(s)

∫ 1

s

d

dx

[
(v(x, y) − Φ(s))h(y|x)

]

x=s
dy

︸ ︷︷ ︸

>0

< 0

(A.41)

where the final inequality follows from independence. Therefore, Φ′(s) ≤ 0
as desired.

Remark 2. The inequality (A.32) implies that (A.22) holds. Therefore, bid-
ders who increase their bids discontinuously and bid their entire budget are
at a constrained optimum.

Choose a fixed point of the Λ mapping and define b1(s) ≡ b∗(s) and
φ(s) = Φ0(s) = Φ1(s). From Lemma 23 we know that there is a ŝ′ ≤ 1 such
that s < ŝ′ =⇒ , b′1(s) > 0, φ(s) > w and s < ŝ′ =⇒ b1(s) = φ(s) = w.
Therefore proposed the strategy exists.

Part 2. Verification of Equilibrium. Arguments analogous to the other cases
confirm that β(s, w) is a best response for bids above µ(ŝ) and for bids below
bf (ŝ).

Bids placed according to b1(s) in its range are optimal by the routine
argument (Krishna, 2002, Proposition 6.3). The following simple lemma, of
independent interest, is useful in carrying out this step.

Lemma 27. Let f : R → R+ be a non-increasing function, f 6= 0, and let
X, Y be affiliated random variables with joint density h(x, y). Then

σf (y|x) =
f(y)h(y|x)

∫ y

0
f(z)h(z|x)dx

is nondecreasing in x.
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Proof. If f(y) = 0, then the result is trivial. Suppose f(y) > 0 and let x′ > x.
Then

σf (y|x) =
f(y)h(y|x)

∫ y

0
f(z)h(z|x)dz

=
f(y) h(y|x)

H(y|x)
∫ y

0
f(z) h(z|x)

H(y|x)dz

≤ f(y)σ(y|x′)
E[f(Y )|X = x, Y ≤ y]

≤ f(y)σ(y|x′)
E[f(Y )|X = x′, Y ≤ y]

= σf (y|x′)

The first inequality follows from σ(y|·) being nondecreasing. The second
inequality follows from affiliation and f(·) being non-increasing. Therefore,
the numerator decreases in x.

Bidders who increase their bid discontinuously only do so when they are
indifferent between bidding φ(s) and b1(s); therefore, such an increase is
optimal. The only unusual element in need of verification is that a bidder
of type (s, w) does not bid φ(š) for some š > φ−1(w). (These are the only
remaining feasible deviations for such a bidder. Bids of φ(š) if š < s are
not feasible because φ is decreasing.) To see that such a deviation is not
worthwhile fix š, let b̌ = b1(š) and φ̌ = φ(š) and consider the expression

∆(s, š) = U(φ(š)|s, w)− U(b1(š)|s, w)

=

∫ 1

0





(b̌− φ̌) · 1(y < ŝ)

+(b̌− φ̌)G(φ(y)) · 1(ŝ ≤ y < š)

+(v(s, y)− φ̌) · 1(š ≤ y)





︸ ︷︷ ︸

α(y,s)

h(y|s)dy

= E[α(Y, s)|S = s].

α(y, s) is a nondecreasing function of y and is increasing in s. By affiliation,
therefore, ∆(s, š) is increasing in s and is zero when š = s. Thus, when
s < š,

U(φ(š)|s, w) ≤ U(b1(š)|s, w) ≤ U(b1(s)|s, w).

The second inequality follows from b1(s) being the optimal bid for a bidder
of type (s, w) in b1(·)’s range. This completes the proof of Proposition 7. �
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Proof of Lemma 7. If there are no critical points, the result is immediate
as β1(s, w) ≤ v(s, s) ≤ β2(s, w). Suppose instead that there is a critical
point (s∗, b∗) and let b̄(s) be the solution (3.3) passing-through (s∗, b∗). It is
sufficient to show that b̄(s) ≤ b2(s) whenever they are defined. From their
definitions, it is easy to see that for all s ∈ [s∗, 1], b2(s) > v(s, s) ≥ b̄(s).

Suppose instead that b2(s) < b̄(s) for some s < s∗. As both functions
are continuous, there must exists a s such that b2(s) = b̄(s). Noting that
δ(b, s|s) > b, b′2(s) < b̄′(s). Therefore b2(·) always crosses b̄(·) from above
when s < s∗. This contradicts b2(s

∗) > v(s∗, s∗). Thus, b̄(s) < b2(s) and so
β1(s, w) ≤ β2(s, w).

The conclusion that ŝ2 ≤ ŝ1 is a corollary to the preceding argument by
noting that the initial discontinuous bid increases in the first-price auction
(if it happens at all) is to some bid lims→ŝ+

1
β1(s, w̄) ∈ (w, b̄(ŝ1)] while the in

the second-price auction it is to a bid of lims→ŝ+
2
β2(s, w̄) = w. �

Proof of Lemma 8. Let (s∗k, b
∗
k) be the critical point when t = tk and

let ψk(s) and νk(s) be the associated nullclines. As v is increasing in t,
s > 0 =⇒ ν1(s) > ν0(s) and ψ1(s) > ψ0(s). Consequently, b∗1 > b∗0.
Let s∗ be the solution to ψ0(s) = ν1(s) (or 0 if no solution exists). Let
s̄∗ be the solution to ψ1(s) = ν0(s). Then ∀k, s∗k ∈ [s∗, s̄∗] and so s ∈
[s∗, s̄∗] =⇒ b̄(s, t0) < b̄(s, t1). Thus, in a neighborhood of the critical points
value-enhancing information increases the unconstrained bidder’s bid.

To prove that b̄(s, t0) < b̄(s, t1) ∀s, suppose the contrary. There are two
cases:

1. Suppose b̄(š, t0) ≥ b̄(š, t1) for some š ≤ s∗.

As b̄(·, tk) is continuous, without loss of generality suppose b̄(š, t0) =
b̄(š, t1) ≡ b. As the reader can verify, at this š, b̄′(š, t1) > b̄′(š, t0).
Thus, b̄(s, t1) must cross b̄(s, t0) from below at š. For notation let

λ(š|š, tk) ≡ λ̌k v(š, š|tk) ≡ v̌k

η(š|š, tk) ≡ η̌k δ(b, š|š, tk) ≡ δ̌k

Therefore,

b̄′(š, t1) > b̄′(š, t0) ⇐⇒ λ̌1(b− v̌1)

γ(b)(η̌1 − δ̌1)
>

λ̌0(b− v̌0)

γ(b)(η̌0 − δ̌0)

⇐⇒ λ̌1(b− v̌1)(η̌0 − δ̌0) > λ̌0(b− v̌0)(η̌1 − δ̌1).
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As λ̌1 < λ̌0, b ≥ v̌1 > v̌0, η̌1 > η̌0, and δ̌1 < δ̌0, this is a contradiction.

2. Suppose b̄(š, t0) ≥ b̄(š, t1) for some š ≥ s̄∗. Without loss of generality,
suppose b̄(š, t0) = b̄(š, t1) ≡ b. With similar reasoning to case 1, b̄(s, t1)
crosses b̄(s, t0) from above, i.e. b̄′(š, t1) < b̄′(š, t0). Thus,

b̄′(š, t1) < b̄′(š, t0) ⇐⇒ λ̌1(b− v̌1)

γ(b)(η̌1 − δ̌1)
<

λ̌0(b− v̌0)

γ(b)(η̌0 − δ̌0)

⇐⇒ λ̌1(v̌1 − b)

δ̌1 − η̌1

<
λ̌0(v̌0 − b)

δ̌0 − η̌0

⇐⇒ λ̌1(v̌1 − b)(δ̌0 − η̌0) < λ̌0(v̌0 − b)(δ̌1 − η̌1).

Observing that δ̌0 − η̌0 > δ̌1 − η̌1 and using the assumption that
v(s, y|t)λ(y|s, t) is nondecreasing in (s, t) yields the contradiction.

Therefore t0 < t1 =⇒ b̄(s, t0) ≤ b̄(s, t1) for all s ∈ [0, 1]. �

The following are supplemental lemmas referenced in the main text.

Lemma 28. Let δ(b, x|s) = b+ G(b)
g(b)

+ H(x|s)
g(b)(1−H(x|s)) . For k ≥ 0, kb+ δ(b, x|s)

is increasing in b ∀(x, s) ⇐⇒ G′′(b) ≤ 0.

Proof. (⇐=) Trivial. (=⇒) Suppose δ(b, x|s) is nondecreasing in b for all
(x, s), then

d

db

(
kb+ δ(b, x|s)

)
= 2 + k +

[G(b) +H(x|s) −G(b)H(x|s)]g′(b)
(H(x|s) − 1)g(b)2

≥ 0

=⇒ [G(b) +H(x|s) −G(b)H(x|s)]g′(b) ≤ (2 + k)(1 −H(x|s))g(b)2

For x = 1, this inequality becomes g′(b) = G′′(b) ≤ 0.

Lemma 29. Suppose budgets and value-types are independent. Then G′′(·) ≤
0 if and only if Assumption 5 from Che & Gale (1998) is satisfied.

Proof. Fix s and let

G̃(w, v) = 1 −
∫ w̄

w

∫ 1

v

g(w̃)h(ṽ|s)dṽdw̃.

108



G̃ is the “G(·, ·)” function from Che & Gale (1998, p. 10) adapted to section
3’s information structure of affiliated value-signals and independent budgets
on the type space [0, 1] × [w, w̄]. (There is typographic error in its original
introduction in that article.) If G̃1 is the derivative of G̃ with respect to the
first argument, Assumption 5 from Che & Gale (1998) is:

For all v ∈ (0, 1) and N ≥ 2, (N − 1)w + G̃(w,v)

G̃1(w,v)
is strictly

increasing in w.

Some algebra gives

(N − 1)w +
G̃(w, v)

G̃1(w, v)
= (N − 1)w +

G(w)

g(w)
+

H(v|s)
g(w)(1 −H(v|s))

= (N − 2)w + δ(w, v|s).

The equivalence follows from Lemma 28.
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A.4 The Symmetric Model: Extensions

This appendix considers caveats introduced in Section 3.

A.4.1 Multiple Critical Points

In general the set of critical points, C∗, may not be a singleton. Multiple
critical points can arise if ψ(s) is not monotonic. This may happen if G(·)
is not sufficiently concave and/or affiliation is relatively strong. When ψ(s)
is not monotone, the essence of the procedure is to identify a family of con-
nected, upward sloping (i.e., ḃ/ṡ > 0) orbits from (3.5) and to construct b̄(s)
by linking appropriate manifolds.

For example, Figure A.3 presents the case of three critical points and
w = 0. The central critical point is an unstable node while the others are
saddle points. The thick arrows indicate the motion of (3.5) in the various
regions and the dashed lines denote unstable manifolds (the central node has
infinitely many such manifolds). Confining attention to the regions between
ν(s) and ψ(s), we are able to link adjacent nodes constructing a path for b̄(s)
meeting Working Assumption 1.

If w is intermediate and there are multiple critical points, we can use
a similar linking procedure to construct the appropriate solution for b̂(s).
Consider, for example, the situation in Figure A.4. There are again three
critical points. Suppose the equilibrium strategy is discontinuous at ŝ and
µ(s) is indicated as the dotted curve. As the critical point s∗2 is a node
solutions for b̂(s) will be absorbed by the point. Beyond s∗2, b̂(s) is extended
by b̄(s) = b̂(s) which ensures passage through the final critical point at s∗3.

A.4.2 Relaxation of G′′(·) ≤ 0

A non-concave distribution of budgets implies that budget constraints are
relatively lax with large realizations of Wi relatively likely. From a strictly
technical perspective, G(·)’s concavity guarantees that ψ(s) is single valued.
This is no longer the case if G(w), w < v(1, 1), is convex. If ψ(s) is multival-
ued, there can be multiple critical points and, depending on model specifics,
some critical points may need to be excluded when constructing b̄(·). Al-
though discontinuities in the equilibrium strategy are not ruled out, if we set
this possibility aside then many previously developed tools continue to be
useful as illustrated in the following example.
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Figure A.3: Linking orbits to construct b̄(s). There are three critical points.
The function b̄(s) can be constructed by linking together manifolds connect-
ing adjacent critical points as shown.

Example 7. Consider Example 3 but suppose that the distribution of bud-
gets is now G(w) = (w/2)2. We can consider an equilibrium of the form
β(s, w) = min

{
b̄(s), w

}
where b̄(s) is a solution of (3.2).8 The resulting

differential equation is

b̄′(s) =
(2s− b̄(s))

(
b̄(s)2 − 4

)

(1 + 2s− 3s2) b̄(s) + 3(s− 1)b̄(s)2 − 4s
.

b̄(0) = 0 is the only boundary condition that admits a strictly increasing
solution for s ∈ (0, 1]. Figure A.5 illustrates the situation. The ψ and ν

8The concavity of G(·) was not used to verify the equilibrium; therefore, the same
argument applies as all equilibrium bids are in the range of b̄(s).
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Figure A.4: Construction of b̂(s) when w is intermediate and there are multi-
ple critical points. µs is denoted as the dotted curve. For s > s∗2, b̂(s) = b̄(s).
b1(s) and φ(s) are not shown.

loci intersect only at (s∗, b∗) = (0, 0). The inequality b̄(s) > bf (s) for s > 0
sufficiently small is due to the interaction of interdependent values and budget
constraints. As bids increase there is an increase in the rate at which bidders
hit their budget limits. This ameliorates the winner’s curse and encourages
relatively more aggressive bidding. The convexity of the budget distribution
implies that this effect only “kicks in” at relatively high bid levels.

To appreciate why, unlike Example 3, b̄(0) 6> 0 consider the bidding
decision faced by a bidder of type (0, w). If such a bidder bids b > 0, the
item will have strictly positive expected value as she will defeat all bidders
who have a budget less than b. However given G(·)’s convexity there are
relatively few such types. Hence, b must be large to win with meaningful
probability. However as b increases, given the strategy followed by the other
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Figure A.5: Equilibrium characterization in Example 7. The ψ(s) correspon-
dence is multivalued and the critical point is at (0, 0).

bidders, more types with low value-signals are defeated thus dampening the
payoff conditional on winning. The increase in payoff does not compensate
for the necessary increase in b.
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Appendix B

Experimental Appendix

B.1 Experiment Instructions

Below are abridged instructions for the experiment. Full instructions in-
cluded additional information about logging into the experimental platform.

In this experiment you will participate in several auctions. Please pay
careful attention to the instructions as a considerable amount of money is at
stake.

The entire experiment should be complete within 1.5 hours. At the end
of the experiment you will be paid privately. You will receive $5 as a partic-
ipation fee (for showing up on time).

You are seated at a computer terminal. Note the computer number care-
fully. This is your participant ID. It will be used to match you to your
earnings at the end of the experiment.

In this session you will participate in several rounds of bidding. In each
round, you will place bids in several separate auctions. All rounds and auc-
tions are independent. Your performance in each auction has no bearing on
any other rounds or auctions.

In each round you will be randomly matched with other bidders. This
matching changes after each round. You will not know the identity of the
other bidders and it will not be revealed to you afterwards. The number of
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other bidders will be indicated on your screen.

What is for sale?

In each auction a financial commodity is available for purchase. You
will receive a signal regarding the value of this commodity. All signals are
determined randomly and are private information. You will be informed
about the distributions of your own signals and of all other bidders on your
bidding screen; however, you will not be informed of others realized signals.

Throughout the experiment, the value of the commodity is expressed in
Experimental Currency Units (ECU). In this session, the signals you receive
determine the value of each commodity to you by the following formula:

Value of Commodity X to you in ECU = Your Signal about
Commodity X

Note: Other bidders may value the same commodity more or less than you.

Your Budget

For each auction your are given a budget of ECUs that you can use to
bid. All budgets are determined randomly and are private information. You
will be informed about the distributions of your own budget and of all other
bidders on your bidding screen. Note that other bidders may have different
budgets than you.

Your budget is only useful for bidding in the auction for which it is issued.
It cannot be saved for use in future auctions nor transferred to other auctions
in the same round.

The Auction Rules

In each auction you can place one bid. The highest bidder will win the
auction.

The price paid by the winning bidder for the commodity will be equal to
his/her own bid.

The losing bidders will not pay anything.
If the winning bidder bids in excess of their budget, they forfeit all earn-

ings in the auction and their budget. The commodity remains unallocated.1

1In this experiment the software prevented subjects from placing bids in excess of their
budget. This fact was verbally communicated by the moderator at the start of the exper-
iment. This point (and point 3 in the following subsection) were left in the instructions
to allow the same set of instructions to be employed across a variety of treatments and
auction formats.
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If there is a tie for the winning bid, the computer will randomly choose a
winner from the high bidders.

Your Earnings

Suppose that your valuation is V, your budget is M and the price paid
by the winner is P.

1. If you win the auction your earnings will be: E = V + M - P

You earn the value of the commodity. You make a payment from your
budget equal to the price.

2. If you do not win the auction your earnings will be: E = M

You make no payments and you keep your budget.

3. If the price is in excess of your budget and you win the auction your
earnings will be: E = 0 (zero)

Your Payment

At the end of the experiment one round and one auction will be selected
at random. Each round and auction will have the same probability of being
selected.

If your earnings in the selected auction are E ECU your payment (includ-
ing the $5 show-up fee) for the experiment will be: Payment = $ 2 × E +
5

FAQ

Q: Will I see the outcome of each auction where I place a bid?
A: No. You will only be informed of the outcome of the auction which is

selected at random at the end of the experiment to determine your payment.
Q: The interface / program is not working correctly. What do I do?
A: Please raise your hand and a moderator will come to assist you.
Q: Can I use my mobile phone or use the Internet while waiting?
A: Out of courtesy for others, please refrain from activities not associated

with the experiment.
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The Interface

At the top of the bidding screen there is some text regarding the current
auctions. Please read this information carefully. It may change from round-
to-round but applies equally to all auctions within a round.

In the middle of the screen there are 4 columns. Auction Number iden-
tifies the given auction. Your Signal is the realization of your signal for the
commodity available for purchase in the corresponding auction. Your Budget
defines your budget limit for each corresponding auction.

You can use the keyboard to enter your bid in the Your Bid column for
each corresponding auction.

At the bottom-right of the screen you will find the Continue button. Press
this button when you are finished placing bids. You may have to wait for
others to complete bidding after pressing Continue.

Figure B.1: A Typical Bidding Screen
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