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Abstract

Declarative Systems

by

Tyson Condie

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Joseph M. Hellerstein, Chair

Building system software is a notoriously complex and arduous endeavor. Devel-
oping tools and methodologies for practical system software engineering has long been
an active area of research. This thesis explores system software development through
the lens of a declarative, data-centric programming language that can succinctly ex-
press high-level system specifications and be directly compiled to executable code. By
unifying specification and implementation, our approach avoids the common problem
of implementations diverging from specifications over time. In addition, we show that
using a declarative language often results in drastic reductions in code size (100× and
more) relative to procedural languages like Java and C++. We demonstrate these
advantages by implementing a host of functionalities at various levels of the system
hierarchy, including network protocols, query optimizers, and scheduling policies. In
addition to providing a compact and optimized implementation, we demonstrate that
our declarative implementations often map very naturally to traditional specifications:
in many cases they are line-by-line translations of published pseudcode.

We started this work with the hypothesis that declarative languages — originally
developed for the purposes of data management and querying — could be fruitfully
adapted to the specification and implementation of core system infrastructure. A
similar argument had been made for networking protocols a few years earlier [61].
However, our goals were quite different: we wanted to explore a broader range of al-
gorithms and functionalities (dynamic programming, scheduling, program rewriting,
and system auditing) that were part of complex, real-world software systems. We
identified two existing system components — query optimizers in a DBMS and task
schedulers in a cloud computing system — that we felt would be better specified via
a declarative language. Given our interest in delivering real-world software, a key
challenge was identifying the right system boundary that would permit meaningful
declarative implementations to coexist within existing imperative system architec-
tures. We found that relations were a natural boundary for maintaining the ongoing
system state on which the imperative and declarative code was based, and provided
an elegant way to model system architectures.
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This thesis explores the boundaries of declarative systems via two projects. We
begin with Evita Raced; an extensible compiler for the Overlog language used in
our declarative networking system, P2. Evita Raced is a metacompiler — an Over-
log compiler written in Overlog — that integrates seamlessly with the P2 dataflow
architecture. We first describe the minimalist design of Evita Raced, including its
extensibility interfaces and its reuse of the P2 data model and runtime engine. We
then demonstrate that a declarative language like Overlog is well-suited to expressing
traditional and novel query optimizations as well as other program manipulations, in
a compact and natural fashion. Following Evita Raced, we describe the initial work
in BOOM Analytics, which began as a large-scale experiment at building “cloud”
software in a declarative language. Specifically, we used the Overlog language to
implement a “Big Data” analytics stack that is API-compatible with the Hadoop
MapReduce architecture and provides comparable performance. We extended our
declarative version of Hadoop with complex distributed features that remain absent
in the stock Hadoop Java implementation, including alternative scheduling policies,
online aggregation, continuous queries, and unique monitoring and debugging facil-
ities. We present quantitative and anecdotal results from our experience, providing
concrete evidence that both data-centric design and declarative languages can sub-
stantially simplify systems programming.
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Chapter 1

Dissertation Overview

There has been renewed interest in recent years on applying declarative languages
to a variety of applications outside the traditional boundaries of data management.
Examples include work on compilers [56], computer games [96], security protocols [57],
and modular robotics [11]. Our work in this area began with the Declarative Net-
working project, as instantiated by the P2 system for Internet overlays [63, 62]. The
P2 project demonstrated the viability of declarative languages as being a natural fit
for programming network overlay protocols. In Chapter 2, we review this influential
work because it sets the stage for this thesis. Specifically, we describe the declarative
language Overlog — a dialect of Datalog — and the P2 system, which compiles
Overlog programs into dataflow runtime implementations reminiscent of traditional
database query plans.

Following the background material, Chapter 3 describes a declarative system com-
ponent called Evita Raced, which is a metacompiler implemented in P2. Evita Raced
formulates the task of query compilation as a query; written in the same declarative
language (Overlog) used by “client” queries: such as the various networking protocols
from Loo, et al. [62, 63]. Evita Raced exposes the P2 compiler state to the Overlog
language (Chapter 3.1), thereby permitting the specification of query transforma-
tions (i.e., optimizations) in Overlog. Many traditional database optimizations, like
the magic-sets rewrite (Chapter 4), the System R dynamic program (Chapter 5.2),
and the Cascades branch-and-bound algorithm (Chapter 5.3), can be fully expressed
as Overlog queries. Specifying these optimizations as Overlog queries results in a
more concise representation of the algorithm as code and a dramatic reduction in the
overall development effort. We reflect on the practicalities of a declarative approach
to query compilation and our overall experience with Evita Raced in Chapter 6.

In Chapter 7, we turn to the topic of cloud computing [10] and introduce the
BOOM project: an effort to explore implementing cloud software using declarative,
data-centric languages. As a first concrete exercise, we built BOOM Analytics: an
API-compliant reimplementation of Hadoop MapReduce in a declarative language. In
Chapter 8, we review the salient aspects of Hadoop and the MapReduce programming
model that it implements. In Chapter 9, we describe our rewrite of the Hadoop sched-
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uler in a declarative language and show that equivalent performance, fault-tolerance,
and scalability properties can be achieved in a declarative language. In Chapter 10, we
evolve the batch-oriented data flow implemented by Hadoop to a more online execu-
tion model that pipelines data between operators. We then describe extra scheduling
policies implemented in the declarative scheduler that accommodate pipelined plans.
Finally, we conclude in Chapter 11 with a discussion of future directions.
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Chapter 2

P2: A Logical Beginning

This chapter contains background material related to the Declarative Networking
project [61], which is a lead-in to this thesis. The original project members included
Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, and Ion Stoica at the Univer-
sity of California, Berkeley, Petros Maniatis and Timothy Roscoe at Intel Research
Berkeley, and Raghu Ramakrishnan at Yahoo! Research. Together, we developed a
new declarative language called Overlog and a runtime system called P2. Our initial
goal was to make it easy to implement and deploy overlay networks 1 by allowing spec-
ifications in a high-level declarative language to be directly executed on nodes that
span the Internet. These overlay specifications, expressed as Overlog rules, contained
orders of magnitude fewer lines of code than the corresponding overlay implementa-
tions written in an imperative language (e.g., C/C++). The project implemented,
and deployed, declarative versions of a Narada-style mesh network [25], using only 12
“rules”, and the Chord structured overlay [89] in only 35 “rules” [63]. The P2 project
clearly showed that relations, together with a recursive query language, can fairly
naturally represent the persistent routing state of the overlays it considered [61].

The Overlog language is a descendent of Datalog, which we review in Chapter 2.1.
In Chapter 2.2, we present the Overlog language by detailing its extensions to Dat-
alog: it adds a notation to specify the location of data, provides some SQL-style
extensions such as primary keys and aggregation, and adds a flexible notion of state
lifetime. Chapter 2.3 describes the P2 runtime, which is responsible for compiling
and executing Overlog programs on a set of distributed nodes. The design of P2
was inspired by prior work in programming languages [85], databases [66, 92, 21, 46],
systems [79], and networking [89, 54]. The P2 implementation is based in large part
upon a side-by-side comparison of the PIER peer-to-peer query engine [46] and the
Click modular router [54]. Like PIER, P2 can manage structured data tuples flowing
through a broad range of query processing elements, which may accumulate significant
state and perform substantial asynchronous processing. Like Click, P2 stresses high-
performance transfers of data units, as well as dataflow elements with both “push”
and “pull” modalities.

1A computer network built on top of an existing network e.g., IP (layer 3).
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l i n k ( ‘ ‘ node1 ’ ’ , ‘ ‘ node2 ’ ’ , 1 ) .
l i n k ( ‘ ‘ node2 ’ ’ , ‘ ‘ node3 ’ ’ , 1 ) .

r1 path (X, Y, cons (X, Y) , C) :−
l i n k (X, Y, C) .

r2 path (X, Z , cons (X, P2 ) , C1+C2) :−
l i n k (X, Y, C1) , path (Y, Z , P2 , C2) ,
conta in s (X, P2) == f a l s e .

query path ( ‘ ‘ node1 ’ ’ , Y, P, C) .

Figure 2.1: Path program written in Datalog.

2.1 Introduction to Datalog

Our description of Datalog is based on a survey by Ramakrishnan and Ullman [76],
and course notes [93] on the subject. Datalog drew inspiration from the Prolog
language, which was one of the first logic programming languages. Both Datalog and
Prolog consist of a set of declarative rules and an optional query. A rule has the
form p :- q1, q2, . . . , qn, which informally reads “if q1 and q2 and . . . and qn is true
then p is true.” The predicate appearing to the left of the :- symbol is the head
predicate, and those to the right are body literals or “subgoals.” Literals are either
predicates over fields (variables and constants), or function symbols applied to fields.
Recursion is expressed by rules that refer to each other in a cyclic fashion. That is,
the head predicate also appears as a subgoal in the rule, or indirectly through some
other subgoal predicates.

A predicate literal is a named reference to a set of data tuples associated with a
specific schema. In Datalog, a data tuple is referred to as a fact, which is stored in a
relational table that may not necessarily fit in memory. A predicate whose relation is
stored in the database is called an extensional database (EDB) relation, while those
that are defined by logical rules are called intensional database (IDB) relations. In
other words, EDB tuples are those that persist in the database as relations, while
IDB predicates are more like “views” (or stored queries) over the database schema.

During evaluation, EDB facts represent the input to the Datalog program, and
IDB derivations are the output. Most implementations of Datalog evaluate rules in
a bottom up fashion, starting with all known EDB facts, and deriving new IDB facts
through rule deductions. A key consequence of a bottom-up evaluation strategy is
that it can efficiently handle relations whose size exceed the capacity of a machine’s
main memory.
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2.1.1 Datalog Syntax

Figure 2.1 provides our first look at a program expressed in Datalog. The fact state-
ments at the top specify the existence of two data tuples in the link table with the
given attribute constants. Each row of the link table contains three attributes; two
strings, and an integer. The program rules derive all reachable paths from this initial
set of known link tuples, and presents that result in a relational view called path.

Base derivations proceed from the rule body (those predicates to the right of “:-”)
and project onto the rule head (to the left of “:-”). The link facts are used in the
evaluation of rule r1 to derive an initial set of path tuples. The rule reads “if there
exists a link from X to Y at cost C, then there exists a path from X to Y consisting
of nodes X, Y at cost C.” Both initial facts meet this criterion and hence are included
in the path relation.

Rule r2 expresses a transitive closure over the link and path relations. The rule
reads “if there is a link from X to Y at cost C, and there is a path P2 from Y to
Z at cost C2, then there is a path from X to Z via P2 at cost C1 + C3.” A path
from “node1” to “node3”, through “node2”, satisfies this criterion, and such a tuple is
included in the path IDB relation. The selection predicate contains(X, P2) == false

avoids cyclic paths, ensuring a finite result and program termination. The “query”
predicate at the bottom of Figure 2.1 asks for all paths that start at “node1.” The
path tuples that begin with “node1” and end at “node2” and “node3” (via “node2”)
both meet this query constraint.

2.1.2 Safety First

There are constraints that must be in place for a Datalog program to make sense as
operations on finite relations.

Definition 1. A safe Datalog rule ensures that all variables mentioned in the rule
appear in some nonnegated subgoal table predicate of the rule body.

This definition ensures that all variables in negated subgoals and the head pred-
icate are restricted by some nonnegated subgoal table predicate. For example, the
following rule is not safe since it does not restrict the P variable in the path head
predicate.

path (X, Y, P, C) :− l i n k (X, Y, C) .

The above rule generates an infinite number of path tuples since we can substitute
any conceivable value for P . A safe Datalog rule is a necessary, but not sufficient, 2

condition for obtaining a finite (IDB) solution from evaluating a finite set of rules on
a finite (EDB) input. Datalog further restricts its (IDB) output to set semantics, as

2The programmer can still express an infinite solution, for example by simply leaving out the
contains(X, P2) == false predicate in rule r2

5



1: path = ∆path = πX,Y,cons(X,Y ),Clink

2: while ∆path != ∅ do
3: ∆path = πX, Z, cons(X,P2), C1+C2 (σcontains(X,P2) == false(link �� ∆path))
4: ∆path = ∆path - path
5: path = path

�
∆path

6: end while

Figure 2.2: Seminäıve evaluation of the path program in Figure 2.1.

opposed to bag semantics that allow duplicate tuples. The reader can assume these
safety restrictions in all the rules presented in this thesis.

2.1.3 Evaluation of Datalog Rules

We now turn to the evaluation of a set of Datalog rules, which is performed in
a bottom-up fashion, starting with the set of known EDB facts. There are two
standard approaches to evaluating a set of Datalog rules. The first is called näıve
evaluation, which is an iterative algorithm that repeatedly applies all known facts
to the program rules, in some stylized set-oriented fashion, until no new knowledge
is obtained. Starting with the tuples contained in the EDB, the näıve evaluator
iteratively executes a select-project-join (SPJ) query against the predicates in the
rule body, to continually derive new IDB tuples. Each iteration applies all the tuples
contained in the EDB and IDB to the rule set. The process repeats until no new tuples
can be inferred, marking the end of the evaluation, which is commonly referred to as
a “fixed point.”

Each iteration of this näıve algorithm uses all known data in the database when
deriving new data. A second approach, which is also the optimal approach, adds
a condition to the iteration loop that prunes the data that was not derived in the
previous round. The remaining facts, if any, are then used in the subsequent iteration.
This seminäıve evaluation algorithm is based on the principle that “if a fact is derived
during round i then it must have been inferred from a rule in which one or more
subgoals were instantiated with facts that were inferred in round i− 1.” [94]

Figure 2.2 describes the steps performed by a seminäıve evaluation of the path
program shown in Figure 2.1. Let ∆path be a reference to the set of new tuples
added to the path relation in the previous round. In the first round, line 1 of the
algorithm uses rule r1 to derive the initial set of path tuples from the EDB link

relation. Subsequent rounds are carried out in the while loop (lines 2 · · · 6) until
∆path is empty. The body of the loop contains the following three steps.

1. Evaluate rule r2 relative to the tuples in ∆path.

2. Assign ∆path to the new tuples derived in this round only.

3. Accumulate the new ∆path in the path relation.

6



r4 path (X, Y, cons (X, Y) , C) :−
l i n k (X, Y, C) ,
not detour (X, Y) .

r5 detour (X, Y) :−
l i n k (X, Y, C) ,
. . .

Figure 2.3: Negated Datalog rule.

In the first step, we evaluate rule r2 using the ∆path tuples derived in the previ-
ous round (e.g., initially, those obtained from the link relation). In general, if there
existed other rules that referenced path in the body, then those too would be eval-
uated against the same ∆path tuples, and any deductions would contribute to the
∆ predicate referenced by the rule head. The last two steps in the loop deal with
ensuring ∆path only references deductions from the previous round, and that the new
deductions are accumulated in the path relation.

2.1.4 Fixed Point Semantics

Datalog is a monotonic language: once a fact is derived during evaluation it is cer-
tain to be in the final answer. The evaluation of a program proceeds as a series of
deductions to the IDB. A Datalog program is said to be at a fixed point when no
further deductions can be made relative to the current EDB and IDB tuples. The
result derived at a fixed point is a model for the Datalog program. Given a model m
and a Datalog program p, m is a minimal model if and only if no proper subset of
m is a model for p. In the absence of negated subgoals, a Datalog program has one
and only one minimal model. A logic program with negation may have more than
one minimal model. However, if the program is “stratified” then there is a uniquely
identifiable “intended” minimal model, based on the (stratification) order in which
the relations are (intended to be) minimized. [76]

2.1.5 Negation and Stratification

We touch on the subject of handling negated subgoals in the body of a Datalog rule.
There is a large body of work on this subject that we will not address here since it
does not pertain to the content of this thesis. Our goal instead is to introduce the
reader to the notion of stratified negation, which ensures that a set of Datalog rules
with negated subgoals “make sense,” by way of reaching an intended minimal model
on a fixed point evaluation. Before going further, we review some semantic issues
raised by negated subgoals in Datalog.

Consider rule r4 in Figure 2.3, which formulates a path from a link if X and Y
does not cross a detour. Unfortunately, the complement of the detour relation is not

7



path

link detour

¬

Figure 2.4: Dependency graph for predicates appearing in Figure 2.3.

well-defined; since the variables range over an infinite domain the compliment is also
infinite. Moreover, we cannot specify the complete detour relation prior to evaluation,
since it is an IDB predicate (due to rule r5). If we were to simply evaluate the rules
in Figure 2.3 (using for example the seminäıve algorithm) then we could end up with
path tuples that cross detours. To see this, lets assume that we start by evaluating
rule r4 with the initial facts in the link relation. The execution plan for the negated
detour is similar to an anti-join operation, where tuples from link relation pass if they
do not already exist in the current detour relation. Since we have not yet evaluated
rule r5, all link tuples pass the anti-join, and produce a set of path deductions in
rule r4. Subsequently evaluating rule r5 would give us our detour tuples, but this
would be too late in the sense that we have already made incorrect deductions, and
cannot take them back. 3

We could obtain the correct IDB by simply evaluating rule r5 first. Such an order-
ing of predicate evaluations forms the basic idea behind stratified Datalog. Before we
get to that definition, we first review how the dependencies of a Datalog program are
represented graphically. Figure 2.4 shows the dependency graph for the predicates
appearing in the rules of Figure 2.3. Constructing this graph is a straightforward
application of the following two rules.

1. Add p → q dependency if there is a rule with head predicate p and subgoal q.

2. Add p → q dependency labeled ¬ if there is a rule with head predicate p and
negated subgoal q.

From Figure 2.3, rule r4 forms the path → link and negated: path → detour edge
dependencies, while rule r5 supplies the detour → link edge dependency.

The stratum of an IDB predicate p is defined to be the largest number of negations
(¬) along any path involving predicate p. The dependency graph in Figure 2.4 places
predicates detour and link in the lowest stratum 0, while the path predicate is in
stratum 1. If all IDB predicates have a finite stratum, then the Datalog program is
stratified. If any IDB predicate has an ∞ stratum, then the program is unstratified.
An IDB predicate is assigned an ∞ stratum if it is included in a cyclic path crosses
a negated (subgoal) edge.

3Recall: Datalog is a monotonic language (Chapter 2.1.4).
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l i n k ( ‘ ‘ node1 ’ ’ , ‘ ‘ node2 ’ ’ , 1 ) .
l i n k ( ‘ ‘ node2 ’ ’ , ‘ ‘ node3 ’ ’ , 1 ) .

r1 path (X, Y, cons (X, Y) , C) :−
l i n k (X, Y, C) .

r2 path (X, Z , cons (X, P2 ) , C1+C2) :−
l i n k (X, Y, C1) , shor te s tPath (Y, Z , P2 , C2) ,
conta in s (X, P2) == f a l s e .

r3 minCostPath (X, Y, min<C>) :−
path (X, Y, P, C) .

r4 shor te s tPath (X, Y, P, C) :−
minCostPath (X, Y, C) , path (X, Y, P, C) .

Figure 2.5: Shortest path variant of Figure 2.1.

We evaluate a stratified Datalog program using the seminäıve algorithm (e.g.,
Figure 2.2) but with a slight twist – we sort the IDB predicates by their assigned
stratum, and follow this order when choosing ∆ predicates (e.g., ∆ path) to evaluate
in the loop. This order ensures that if the program is stratified then any negated
subgoal (i.e., detour) has already had its relation fully evaluated first. The result of
this evaluation is called a stratified model. 4

We revisit the notion of stratified Datalog throughout this thesis. It turns out
that the P2 system did not supported stratified Datalog, which slightly complicated
the (Overlog) program rules described in Chapters 3, 4 and 5. Fortunately, there is
another class of locally stratified Datalog programs that “make sense” on certain data.

2.1.6 Local Stratification

Stratified Datalog is defined in terms of a syntactic property that translates to cycles
through negations in the dependency graph of a collection of rules. An extension to
this definition is a class of locally stratified programs, which is defined in terms of
a data dependent property. Intuitively, these programs are not necessarily stratified
according to their rules, but they are stratified when we instantiate those rules on
a specific collection of data. Many of the rules and data instances presented in this
thesis fall into the class of locally stratified programs.

Like negation, an aggregation adds a stratification boundary to a Datalog pro-
gram. Intuitively, we must derive all facts from the tables mentioned in the rule body,
before we can evaluate the aggregate in the rule head. Consider the variant of the
path program in Figure 2.5, which modifies rule r2 to formulate new paths from the

4We further note that the notion of stratified Datalog has nothing to do with the termination of
a Datalog program. The issue here is the existence a unique minimal result that is consistent with
the programmer’s intent.
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path

link

shortestPath

minCostPath

min<C>

Figure 2.6: Dependency graph for predicates appearing in Figure 2.5. A cycle through
an aggreagation appears in bold.

shortestPath relation, rather than the path relation. Two extra rules r3 and r4 are
used to derive the shortest path from the path relation. Rule r3 selects the minimum
cost path from X to Y , and rule r4 selects the actual minimum path based on the
minimum cost value in C.

The dependency graph for this program is shown in Figure 2.6. As shown, this
program is not stratified since there is a cyclic path in the rule dependency graph
that traverses an aggregation. Intuitively, we need to derive all path tuples before we
can identify the one that is of minimum cost. Yet, path derivations are based on what
“currently” exists in the shortestPath relation. As a result, the Datalog program in
Figure 2.5 is not stratified.

It is however locally stratified. Assume that this program is evaluated using
the seminäıve algorithm (e.g., Figure 2.2). The only option in the first step of the
bottom-up evaluation is to derive all paths of length 1 using rule r1. Subsequent steps
recursively use rule r2 to derive paths of length 2, 3, . . . (fully, in that order) until
no further paths exist. These derivations are monotonic because we are performing
a min aggregation of a sum over non-negative integers. As a result, rule evaluations
derive path tuples of length k before path tuples of length j > k, which ensures that
new path tuples are derived from a (seemingly) complete set of shortestPath tuples.

Many of the programs described in this thesis are not stratified, and of those,
all are locally stratified. For example, the System R rules presented in Chapter 5
performs a min aggregation on the cost 5 of a query plan. This is used to select
the “best plan” among the set of equivalent plans in a given level (plan size) of the
System R dynamic program. The “best plan” is then recursively used to construct
new plans, containing an extra predicate, for the next dynamic programming level. 6

Since adding an extra predicate to a query plan can only increase its cost (principle
of optimality), and we fully explore all plans in a given level before moving to the
next, this optimization is locally stratified.

5 A non-negative integer value.
6Each level of the System R dynamic program adds an extra predicate to the query plan.
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mat e r i a l i z e ( l ink , i n f i n i t y , i n f i n i t y , keys ( 1 , 2 ) ) .
ma t e r i a l i z e ( path , i n f i n i t y , i n f i n i t y , keys ( 1 , 2 , 3 ) ) .
ma t e r i a l i z e ( shortestPath , i n f i n i t y , i n f i n i t y , keys ( 1 , 2 , 3 ) ) .

l i n k ( ‘ ‘ l o c a l h o s t : 10000 ’ ’ , ‘ ‘ l o c a l h o s t : 10001 ’ ’ , 1 ) .
l i n k ( ‘ ‘ l o c a l h o s t : 10001 ’ ’ , ‘ ‘ l o c a l h o s t : 10002 ’ ’ , 1 ) .

r1 path (@X, Y, P, C) :−
l i n k (@X, Y, C) , P := f c on s (X, Y) .

r2 path (@X, Z , P, C) :−
l i n k (@X, Y, C1) , path (@Y, Z , P2 , C2) ,
f c o n t a i n s (X, P2) == f a l s e ,
P := f c on s (X, P2 ) , C := C1 + C2 .

r3 minCostPath (@X, Y, a min<C>) :−
path (@X, Y, , C) .

r4 shor te s tPath (@X, Y, P, C) :−
minCostPath (@X, Y, C) ,
path (@X, Y, P, C) .

query shorte s tPath ( ‘ ‘ l o c a l h o s t : 10000 ’ ’ , Y, P, C) .

Figure 2.7: Shortest path program in Overlog. We follow the notation of Loo et
al. [61]: a prefixes introduce aggregate functions and f prefixes introduce built-in
functions. Variables that do not contribute to the rule evaluation are ignored using
an underscore e.g., rule r3, third path attribute. We will use ’. . .’ to indicate a series
of ignored variables.

2.2 Overlog: Our first look

Overlog marks a new beginning for the Datalog recursive query language, where
distribution through data partitioning takes center stage. Like Datalog, an Over-
log program consists of a set of deduction rules that define the set of tuples that can
be derived from a base set of tuples called facts. Each rule has a body on the right of
the :- divider, and a head on the left; the head represents tuples that can be derived
from the body. The body is a comma-separated list of terms; a term is either a pred-
icate (i.e., a relation), a condition (i.e., a relational selection) or an assignment. 7 An
example Overlog program is shown in Figure 2.7. Overlog introduces some notable
extensions to Datalog, which we describe before presenting the P2 runtime.

7Overlog’s assignments are strictly syntactic replacements of variables with expressions; they are
akin to “#define” macros in C++.
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Figure 2. An Overlog timestep at a participating node: in-
coming events are applied to local state, the local Datalog
program is run to fixpoint, and outgoing events are emitted.

When Overlog tuples arrive at a node either through rule
evaluation or external events, they are handled in an atomic
local Datalog “timestep.” Within a timestep, each node sees
only locally-stored tuples. Communication between Datalog
and the rest of the system (Java code, networks, and clocks) is
modeled using events corresponding to insertions or deletions
of tuples in Datalog tables.

Each timestep consists of three phases, as shown in Fig-
ure 2. In the first phase, inbound events are converted into
tuple insertions and deletions on the local table partitions.
The second phase interprets the local rules and tuples accord-
ing to traditional Datalog semantics, executing the rules to a
“fixpoint” in a traditional bottom-up fashion [36], recursively
evaluating the rules until no new results are generated. In
the third phase, updates to local state are atomically made
durable, and outbound events (network messages, Java call-
back invocations) are emitted. Note that while Datalog is
defined over a static database, the first and third phases allow
Overlog programs to mutate state over time.

2.1 JOL
The original Overlog implementation (P2) is aging and
targeted at network protocols, so we developed a new Java-
based Overlog runtime we call JOL. Like P2, JOL compiles
Overlog programs into pipelined dataflow graphs of operators
(similar to “elements” in the Click modular router [19]). JOL
provides metaprogramming support akin to P2’s Evita Raced
extension [10]: each Overlog program is compiled into a
representation that is captured in rows of tables. Program
testing, optimization and rewriting can be written concisely
as metaprograms in Overlog that manipulate those tables.

Because the Hadoop stack is implemented in Java, we
anticipated the need for tight integration between Overlog
and Java code. Hence, JOL supports Java-based extensibility
in the model of Postgres [33]. It supports Java classes as
abstract data types, allowing Java objects to be stored in
fields of tuples, and Java methods to be invoked on those
fields from Overlog. JOL also allows Java-based aggregation
functions to run on sets of column values, and supports Java
table functions: Java iterators producing tuples, which can be

referenced in Overlog rules as ordinary relations. We made
significant use of each of these features in BOOM Analytics.

3. HDFS Rewrite
Our first effort in developing BOOM Analytics was BOOM-
FS, a clean-slate rewrite of HDFS in Overlog. HDFS is
loosely based on GFS [14], and is targeted at storing large
files for full-scan workloads. In HDFS, file system metadata is
stored at a centralized NameNode, but file data is partitioned
into chunks and distributed across a set of DataNodes. By
default, each chunk is 64MB and is replicated at three
DataNodes to provide fault tolerance. DataNodes periodically
send heartbeat messages to the NameNode containing the set
of chunks stored at the DataNode. The NameNode caches
this information. If the NameNode has not seen a heartbeat
from a DataNode for a certain period of time, it assumes that
the DataNode has crashed and deletes it from the cache; it
will also create additional copies of the chunks stored at the
crashed DataNode to ensure fault tolerance.

Clients only contact the NameNode to perform metadata
operations, such as obtaining the list of chunks in a file; all
data operations involve only clients and DataNodes. HDFS
only supports file read and append operations; chunks cannot
be modified once they have been written.

Like GFS, HDFS maintains a clean separation of control
and data protocols: metadata operations, chunk placement
and DataNode liveness are decoupled from the code that
performs bulk data transfers. Following this lead, we imple-
mented the simple high-bandwidth data path “by hand” in
Java, concentrating our Overlog code on the trickier control-
path logic. This allowed us to use a prototype version of JOL
that focused on functionality more than performance. As we
document in Section 8, this was sufficient to allow BOOM-FS
to keep pace with HDFS in typical MapReduce workloads.

3.1 File System State
The first step of our rewrite was to represent file system
metadata as a collection of relations (Table 1). We then
implemented file system operations by writing queries over
this schema.

The file relation contains a row for each file or directory
stored in BOOM-FS. The set of chunks in a file is identified by
the corresponding rows in the fchunk relation.2 The datanode
and hb chunk relations contain the set of live DataNodes
and the chunks stored by each DataNode, respectively. The
NameNode updates these relations as new heartbeats arrive; if
the NameNode does not receive a heartbeat from a DataNode
within a configurable amount of time, it assumes that the
DataNode has failed and removes the corresponding rows
from these tables.

2 The order of a file’s chunks must also be specified, because relations are
unordered. Currently, we assign chunk IDs in a monotonically increasing
fashion and only support append operations, so clients can determine a file’s
chunk order by sorting chunk IDs.

C++ Tables

Events Actions

Figure 2.8: A single Overlog fixpoint.

2.2.1 Horizontal partitioning

Overlog’s basic data model consists of relational tables that are partitioned across
distributed nodes in a network. Each relation in an Overlog rule must have one
attribute, whose variable is preceded by an “@” sign. This attribute is called the
location specifier of the relation, and must contain values in the network’s underlying
address space (e.g., IP addresses for Internet settings, 802.13.4 addresses for sensor
networks, hash-identifiers for code written atop distributed hash tables, etc.). Loca-
tion specifiers define the horizontal partitioning of the relation: each tuple is stored at
the address found in its location specifier attribute. At a given node, we call a tuple
a local tuple if its location specifier is equal to the local address. Network communi-
cation is implicit in Overlog: tuples must be stored at the address in their location
specifier, and hence the runtime engine has to send some of its derived tuples across
the network to achieve this physical constraint. Loo, et al. provide syntactic tests to
ensure that a set of rules can be maintained partitioned in a manner consistent with
its location specifiers and network topology [62].

2.2.2 Soft State and Events

The three phases shown in Figure 2.8 describe a single evaluation round of an Overlog
program. The input to this evaluation is a set of event tuples that are created when
the network receives a packet, the system clock advances to some significant value 8,
or through some arbitrary C++ code that updates the database. These events are
queued in the first phase of the evaluation. An evaluator loop dequeues some number
of these events and atomically executes a Datalog iteration. The rule deductions
take the form of actions, which, in the third phase, cause data to be sent over the

8The Overlog language allows for the definition of a stream that periodically (based on real-time)
produces a tuple with a unique identifier.
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network or perform updates to the local database. These three phases represent a
single time-step in the Overlog language.

Associated with each Overlog table is a “soft-state” lifetime that determines how
long (in seconds) a tuple in that table remains stored before it is automatically deleted.
Lifetimes can vary from zero to ∞. Zero-lifetime tables are referred to as event tables,
and their tuples are called events; all other tables are referred to asmaterialized tables.
An event only exists in the time-step that derived it, while materialized tuples span
multiple time-steps, until explicitly deleted or when the lifetime expires (checked at
the end of every time-step).

Overlog contains a materialize declaration that specifies the lifetime of a ma-
terialized table. At any time-step instance, at any given node in the network, the
contents of the local Overlog “database” are considered to be: (a) the local tuples in
materialized tables whose lifetime has not run out, (b) at most one local event fact
across all event tables, and (c) any derived local tuples that can be deduced from
(a) and (b) via one or more iterations of the program rules. Note that while (b)
specifies that only one event fact is considered to be live at a time per node, (c) could
include derived local events, which are considered to be live simultaneously with the
event fact. This three-part definition defines the semantics of an Overlog program
at a “snapshot in time.” Overlog has no defined semantics across “time” and space
(in the network); we describe the relevant operational semantics of the prototype in
Chapter 2.3.

2.2.3 Deletions and Updates

Overlog, like SQL, supports declarative expressions that identify tuples to be deleted,
in a deferred manner after a fixed point is achieved. To this end, any Overlog rule
in a program can be prefaced by the keyword delete. In each timestep, the program
is run to fixpoint, after which the tuples derived in delete rules – as well as other
tuples derivable from those – are removed from materialized tables before another
fixpoint is executed. It is also possible in Overlog to specify updates, but the syntax
for doing so is different. Overlog’s materialize statement supports the specification
of a primary key for each relation. Any derived tuple that matches an existing tuple
on the primary key is intended to replace that existing tuple, but this replacement
happens through an insertion and a deletion: the deduction of the new tuple to be
inserted is visible within the current fixpoint, whereas the deletion of the original
tuple is deferred until after the fixpoint is computed.

2.2.4 A Canonical Example

To illustrate the specifics of Overlog, we describe the shortest paths example in Fig-
ure 2.7, which is similar to that of [62], but with fully-realized Overlog syntax that
runs in P2. The three materialize statements specify that link, path and bestpath
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r2a l i nk copy (@Y, X, Y, C1) :−
l i n k (@X, Y, C1 ) .

r2b path (@X, Z , P, C) :−
l i nk copy (@Y, X, Y, C1) ,
path (@Y, Z , P2 , C2) ,
f c o n t a i n s (X, P2) == f a l s e ,
P := cons (X, P2 ) , C := C1 + C2 .

Figure 2.9: The localized version of rule r2 in Figure 2.7.

are all tables with ∞ lifetime and ∞ storage space. 9 For each table, the positions of
the primary key attributes are noted as well. Rule r1 can be read as saying “if there is
a link tuple of the form (X,Y,C) stored at node X, then one can derive the existence of
a path tuple (X,Y,P,C) at node X, where P is the output of the function f cons(X,Y)

– the concatenation of X and Y.” Note that rule r1 has the same location specifiers
throughout, and involves no communication. This is not true of the recursive rule r2,
which connects any link tuple at a node X with any path tuple at a neighboring node
Y, the output of which is to be stored back at X. Figure 2.9 shows a rewritten version of
rule r2 10, wherein all rule body predicates have the same location specifier; the only
communication then is shipping the results of the deduction to the head relation’s
location specifier. Further details regarding the steps that perform this rule “rewrite”
are presented in Chapter 3.3.

2.3 The P2 Runtime Engine

While ostensibly a network protocol engine, architecturally P2 resembles a fairly tra-
ditional shared-nothing parallel query processor, targeted at both stored state and
data streams. The P2 runtime at each node consists of a compiler — which parses
programs, optimizes them, and physically plans them — a dataflow executor, and
access methods. Each P2 node runs the same query engine, and, by default, par-
ticipates equally in every “query.” In parallel programming terms, P2 encourages
a Single-Program-Multiple-Data (SPMD) style for parallel tasks, but also supports
more loosely-coupled (MPMD) styles for cooperative distributed tasks, e.g. for com-
munications among clients and servers.

The P2 runtime is a dataflow engine that was based on ideas from relational
databases and network routers; its scheduling and data hand-off closely resemble the
Click extensible router [54]. Like Click, the P2 runtime supports dataflow elements
(or “operators”) of two sorts: pull-based elements akin to database iterators [37], and

9The third argument of P2’s table definition optionally specifies a constraint on the number of
tuples guaranteed to be allowed in the relation. The P2 runtime replaces tuples in “full” tables as
needed during execution; replaced tuples are handled in the same way as tuples displaced due to
primary-key overwrite.

10The new “localized” rules would replace the original rule r2.
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Figure 2.10: P2 Dataflow Architecture.

push-based elements as well. As in Click, whenever a pull-based element and a push-
based element need to be connected, an explicit “glue” element (either a pull-to-push
driver, or a queue element) serves to bridge the two. More details of this dataflow
coordination are presented in the original P2 paper [63]. In Chapter 2.3.1 we describe
the aspects of the dataflow architecture that affect our language semantics, and in
Chapter 2.3.2 we describe the individual processing elements.

2.3.1 Dataflow Architecture

The P2 architecture consists of a dataflow of processing elements and queues, and
a single driver loop. Figure 2.10 provides a high-level view (driver omitted) of this
architecture, which contains three queuing elements. The event queue represents the
primary input queue, which contains the current snapshot of tuples that the system
uses to drive the processing. The localmem secondary queue feeds the main event
queue with tuples when none currently exist in it. Tuples in the localmem queue
represent side-affecting events (i.e., insert and delete) to local memory relations. P2
evaluates this queue in a tuple at a time fashion, where a single tuple is dequeued
and executed in a “dataflow fixpoint.”

The P2 architecture contains three output queues that hold the tuples derived
from the rule engine. The choice of which queue a tuple is added to depends on
the value of the location attribute. If the tuple’s location is local to the current P2
instance, and its lifetime is greater than zero, then it will be added to the localmem

15



queue. If the tuple is remote, then it is added to the netout queue. The third output
queue is the event queue. All (possibly many) local tuples that have a zero-lifetime
are directly added to the event queue, which continues to drive rule deductions until
no zero-lifetime tuples locally exist. This implementation decision exhibits a kind of
“mini-fixpoint” (a side-effect unique to P2-Overlog) that we refer to as a dataflow
fixpoint, which occurs when all tuples in the event queue have been drained. We
describe this by example.

Assume a single tuple in the localmem input queue, and all other queues are empty.
When the driver executes its “pull-push” element on the input of the empty event

queue, it will dequeue a tuple in the localmem queue and add it to the event queue.
In an iterative loop, the driver will dequeue a single tuple from the event queue and
“route it” to the processing elements, which then produce some number of new tuple
deductions. If any of those deductions contain local tuples with a zero lifetime, then
they are reinserted into the event queue. The tuples with non-zero lifetimes represent
“write” (insert or delete) actions against the local database (in localmem), and they
are (silently) queued while the driver then continues to process tuples solely from the
event queue until it is again empty. At this point, P2 declares a dataflow fixpoint,
which triggers a flush of the local 11 “insertion” action writes from the (silent) queue,
generating some number of new event tuples that are added to the localmem queue. If
no “insertion” action tuples exist then a flush of the “deletion” action tuples occurs,
and the corresponding deletion events are added (directly) to the event queue, before
the process repeats, this time treating deductions as further deletions.

After all insertion and deletion tuples have been processed by the initial localmem
input tuple, the system declares a global fixpoint. At this point, the driver loop
will flush all tuples in the netout queue, triggering a transfer of those tuples to the
corresponding P2 instances spanning the network. The driver loop then returns to
the localmem queue for the next tuple to process.

From this perspective, the P2 runtime looks quite a bit like an Event-Condition-
Action (ECA) system with a dataflow underneath: events are generated by the system
clock and network components, while conditions are checked via dataflow process-
ing elements, and actions initiate outbound network messages and updates to the
database. A driver loop continuously routes events from the event queue to the “con-
ditions” via the demux element in Figure 2.10. The initial input to the driver loop is
the single tuple at the head of the localmem queue. This sole tuple is the input to
the “current” fixpoint. Next, we describe the elements that implement the condition
and action processing logic.

2.3.2 Dataflow Elements

The set of elements provided in P2 includes a suite of operators familiar from relational
query engines: selection, projection, and in-memory indexes. These operators are

11Write actions from the network input are buffered and applied at the end of a “global fixpoint.”
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strung together to implement the logical condition of the processing loop. P2 supports
joins of two relations in a manner similar to the symmetric hash join: it takes an
arriving tuple from one relation, inserts it into an in-memory table for that relation,
and probes for matches in an access method over the other relation (either an index
or a scan). The work described in Chapter 3 extended this suite to include sorting
and merge-joins, which allowed us to explore some traditional query optimization
opportunities and trade-offs (Chapter 5).

P2 consists of exactly two logical actions: a local database write and a network
send. We first describe the details behind a database write. An event tuple is
modeled as transient database write, and therefore its action is the reinsertion into
the event queue. P2 did not have support for persistent storage, beyond the ability
to read input streams from comma-separated-value files. Its tables are stored in
memory-based balanced trees that are instantiated at program startup; additional
such trees are constructed by the planner as secondary indexes to support predicate
join attributes. A write to the database is applied to the memory-based table, and a
relevant (insert/delete) event is enqueued into the localmem queue.

The action for a remote output tuple is to simply enqueue it on the netout queue.
When this queue is eventually flushed by the driver loop, all tuples in it are sent over
the network prior to the next fixpoint iteration. As part of the same dataflow, P2
provides a number of elements used for networking, which handle issues like packet
fragmentation and assembly, congestion control, multiplexing and demultiplexing,
and so on; these are composable in ways that are of interest to network protocol
designers [27]. The basic pattern that the reader should assume is that each P2
node has a single IP port for communication, and the dataflow graph is “wrapped”
in elements that handle network ingress with translation of packets into tuples, and
network egress with translation of tuples into packets.
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Chapter 3

Evita Raced: Metacompiler

Declarative Networking has the potential to expand the lessons and impact of
database technologies into new domains, while reviving interest in classical database
topics like recursive query processing that have received minimal attention in recent
years. Yet our own system was entirely implemented in an imperative programming
language: the initial version of the P2 runtime was implemented in C++ [63]. We
asked ourselves whether Codd’s vision applies to our own efforts: can declarative
programming improve the implementation of declarative systems?

In this chapter, we put declarative systems “in the mirror” by investigating a
declarative implementation of one key component in any relational database system,
the query compiler. Specifically, we reimplemented the query compiler of P2 as a
metacompiler: a compiler (optimizer) for the P2 language, Overlog, that is itself
written in Overlog. We named the resulting implementation “Evita Raced.”1 Using
Evita Raced, we extended P2 with a number of important query optimization tech-
niques it formerly lacked, and found that our declarative infrastructure made this
quite elegant and compact.

The elegance of our approach was derived in part from the fact that many query
optimization techniques – like many search algorithms – are at heart recursive algo-
rithms, and therefore would benefit from a declarative approach in much the same
way as networking protocols. Even non-recursive optimization logic – such as parts
of the magic-sets algorithm presented in Chapter 4 – are simple enough to express
in a declarative fashion that abstracts away mechanistic details such as state cleanup
(e.g., garbage collection) and invariant enforcement via key constraints and materi-
alized view maintenance.

The remainder of this chapter is organized as follows. We describe the architec-
ture of Evita Raced in Chapter 3.1, which involves compiling an Overlog program into
a relational representation. Compiling code into data is necessary in order to then
express compilation steps (i.e., rewrites, optimizations) as queries. In Chapter 3.1.1,

1“Evita Raced” is almost “Declarative” in the mirror, but as with the Overlog language itself, it
makes some compromises on complete declarativity.
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we describe the schema of the compiled code, which is packaged in a Metacompiler
Catalog. The architecture of Evita Raced is described in Chapter 3.1.2 as a dataflow
of compilation steps and a scheduler to determine compilation step order. A given
compilation step is called a stage, which can be written in either C++ or Overlog.
Chapter 3.1.3 describes our four basic C++ stages that bootstrap the compiler into
a state that permits the subsequent dynamic installation of Overlog stages. In Chap-
ter 3.2, we present our first declarative compilation stage: the delta rewrite [62] for
rewriting a rule into a form suitable for seminäıve evaluation. In Chapter 3.3, we
describe our Overlog rules for expressing the localization rewrite [63], which rewrites
distributed (join) rules into a locally executable form. Chapter 3.4 contains some
final thoughts on the Evita Raced architecture. Further declarative stages are then
presented in Chapter 4 (magic-sets rewrite) and Chapter 5 (System R and Cascades
cost-based optimizations).

3.1 Declarative Compilation

Evita Raced is a compiler (i.e., query optimizer) for the Overlog declarative language
that supports a runtime-extensible set of program rewrites and optimizations, which
are themselves expressed in Overlog. This metacompilation approach is achieved by
implementing optimization logic via dataflow programs (query plans) running over a
table representation of the compiler state. Two main challenges must be addressed
to make this work. First, all compiler state – including the internal representation
of both declarative Overlog programs and imperative dataflow programs – must be
captured in a relational representation so that it can be referenced and manipulated
from Overlog. Second, the (extensible) set of tasks involved in optimization must
itself be coordinated via a single dataflow program that can be executed by the P2
runtime engine. In this chapter, we describe the implementation of the Evita Raced
framework, including the schema of the compiler state, the basic structure of the
Evita Raced dataflow graph, and the basic dataflow components needed to bootstrap
the architecture.

3.1.1 Table-izing Optimizer State

A typical query optimizer maintains a number of data structures to describe the
contents of a query, and to represent the ongoing state of a query planning algorithm,
including fragments (i.e., subplans) of query plans. Our first task in designing Evita
Raced was to capture this information in a relational schema.

Figure 3.1 shows an Entity-Relationship (ER) diagram we developed that captures
the properties of an Overlog program, and its associated P2 dataflow query plans.
In the figure, entities are squares with attributes hanging off of them as ovals. An
attribute has a name, and if it is part of the primary key, then it is shown in bold.
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Figure 3.1: ER Diagram of a query plan in P2.

Relationships are shown as diamonds that include a name description. Lines connect
entities to relationships and identify the following constraints.

• A bold line indicates the existence of at least one tuple in the output of a
“foreign-key join” with the connecting entities, while a regular line imposes no
constraints on the “join” output.

• An arrow directed into a relationship indicates many tuples from the origin
entity “join with” exactly one tuple from the entity on the other side of the
relationship.

We derived the constraints in the diagram by reviewing the semantic analysis
rules enforced in the original P2 compiler; we discuss a few of them here for illus-
tration. An Overlog rule must appear in exactly one program. A select term (e.g.,
f contains(X,P2) == false in Figure 2.7) is a Boolean expression over attributes in
the predicates of the rule, and must appear in exactly one rule. The diagram indicates
that a predicate must also appear in a unique rule, and that it may possibly reference
a single table. A predicate that references a table is called a table predicate (or a
materialized predicate), while one that does not reference a table is called an event
predicate. An index is defined over exactly one table, and a table defines at least one
index (namely the primary key index, which P2 always constructs). Some relations
may contain facts (input tuples) at startup, each of which must belong to a single
program and must reference a single table.
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Name Description Relevant attributes

table Table definitions table id, primary key
index Index definitions index id, table id, keys, type
fact Fact definitions program id, table id, id, tuple
program User program description program id, name, stage, text,

depends, plan
rule Rules appearing in a program program id, rule id, name,

term count, head id
predicate Relational predicates id, rule id, table id, name, posi-

tion, access method
select Selection predicates id, rule id, boolean, position
assign Variable substitution statements id, rule id, variable, value, posi-

tion

Figure 3.2: The Metacompiler Catalog: tables defining an Overlog program and
dataflow execution plan. The primary key columns are shown in bold.

The conversion from ER diagram to relational format was a textbook exercise [77].
Table 3.2 lists the set of relations that capture the entities mentioned in the ER
diagram; we refer to this as the Metacompiler Catalog. We modified P2 to create
these tables at system startup, and they are accessible to any system-authorized
Overlog programs (i.e., optimizations) added to the system.

3.1.2 Metacompiler Architecture

Optimization logic expressed in Overlog is declarative, and Evita Raced realizes this
logic by converting it to a dataflow program to be executed by the P2 dataflow subsys-
tem (Chapter 2.3). Here, we describe how Evita Raced represents query optimization
programs as dataflow, and also the way it orchestrates multiple different optimization
programs in P2.

An optimizer built using Evita Raced is composed of an extensible number of
stages, each of which performs some compilation task on the input program. Table 3.3
describes the primary compiler stages packaged with the Evita Raced framework. An
Evita Raced stage can be written as a dataflow program of one or more P2 elements in
C++, which are then compiled into the P2 binary; this is how we implement certain
base stages required for bootstrapping (Chapter 3.1.3). However, the power of Evita
Raced comes from its support for stages written in Overlog. In addition to being
compactly expressed in a high-level language, Overlog stages can be loaded into a
running P2 installation at any time, without the need to compile a new P2 binary.

A stage programmer registers a new stage with Evita Raced by inserting a tuple
into the program relation. Such a tuple contains an unique identifier (program id),
a name (name), a list of stage dependencies (depends — Chapter 3.1.2), and the
program text (text). The program relation also contains an attribute for the name of
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Stage name Language Description

StageScheduler
(Chapter 3.1.2)

C++ Coordinates the compilation of stages.

Parser
(Chapter 3.1.3)

C++ Bison based parser engineered to populate the Meta-
compiler Catalog with data from the program AST.

Planner
(Chapter 3.1.3)

C++ Generates a dataflow description from the program
data contained in the Metacompiler Catalog.

Installer
(Chapter 3.1.3)

C++ Instantiates C++ dataflow objects from a dataflow
description.

Delta Rewrite
(Chapter 3.2)

Overlog Converts rules based on materialized tables into an
ECA form.

Localization
(Chapter 3.3)

Overlog Rewrites distributed (join) rules into a locally exe-
cutable form.

Magic-sets
(Chapter 4)

Overlog Rewrites rules to include magic predicates, which
act as selection predicates for constants contained
in query predicates.

System R
(Chapter 5.2)

Overlog A top-down dynamic programming optimization.

Cascades
(Chapter 5.3)

Overlog A bottom-up dynamic programming optimization.

Figure 3.3: Primary Evita Raced compiler stages.

the compiler stage currently operating on the program (stage), and the final physical
plan (plan — Chapter 3.1.3); these attributes are used to convey partial compilation
results from stage to stage. We next describe the interfaces to an Evita Raced compiler
stage and how we schedule different stages when compiling (any) Overlog programs.

The Stage API

An Evita Raced stage can be thought of as a stream query that listens for a tuple to
arrive on an event stream called <stage>::programEvent, where <stage> is the name
of the stage. The <stage>::programEvent table contains all the attributes mentioned
in the program table. When such a tuple arrives, the queries that make up that stage
execute, typically by modifying catalog tables in some way. When a stage competes it
inserts a new program tuple, including the current stage name in the stage attribute,
into the program table.

To represent this behavior in a stage written in Overlog, a relatively simple tem-
plate can be followed. An Overlog stage must have at least one rule body containing
the <stage>::programEvent predicate. These stage initiation rules react to new pro-
grams arriving at the system and trigger other rules that are part of the same stage.
In addition, the stage must have at least one rule that inserts a program tuple into
the program table to signal its completion.
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Stage Scheduling

In many cases, optimization stages need to be ordered in a particular way for com-
pilation to succeed. For example, a Parser stage must run before any other stages,
in order to populate the Metacompiler Catalog. The Planner must follow any query
transformation stages, since it is responsible for translating the (relational) logical
query plan into a physical dataflow representation. And finally, the Installer stage
must follow the Planner, since it instantiates dataflow specifications as P2 C++ ele-
ments, and installs them into the P2 runtime.

A natural way to achieve such an ordering would be to “wire up” stages explic-
itly so that predecessor stages directly produce <stage>::programEvent tuples for
their successors, in an explicit chain of stages. However, it is awkward to modify
such an explicit dataflow configuration upon registration of new stages or precedence
constraints. Instead, Evita Raced captures precedence constraints as data within a
materialized relation called StageLattice, which represents an order (i.e., an acyclic
binary relation) among stages; this partial order is intended to be a lattice, with the
Parser as the source, and the dataflow Installer as the sink.

To achieve the dataflow connections among stages, the built-in StageScheduler
component (itself a stage) listens for updates to the program table, indicating the ar-
rival of a new Overlog program or the completion of a compiler stage for an on-going
program compilation. The StageScheduler is responsible for shepherding compila-
tion stage execution according to the StageLattice. Given a program update, the
StageScheduler “joins with” the StageLattice to identify a next stage that can be
invoked, and derives a <stage>::programEvent tuple that will start the given stage;
the contents (attributes) of the <stage>::programEvent tuple are the same as those
in the updated program tuple.



 


























Figure 3.4: The Evita Raced (cyclic) dataflow architecture, containing only the de-
fault compilation stages. The arrows leaving the Demux element route tuples, based
on the tuple name, to the relevant stages on the right. We focus here on the portion
of the P2 dataflow that corresponds to the Evita Raced architecture.

The StageScheduler and any compilation stages (whether built-in or runtime-
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installed) are interconnected via the simplified dataflow illustrated in Figure 3.4. The
Evita Raced architecture is embedded in the same P2 dataflow used to execute user
queries. As described in Chapter 2.3 (and [63]), the dataflow consists of a C++
“demultiplexer” that routes tuples from its input (on the left) to individual event
handlers listening for particular tuple names. The Evita Raced runtime simply adds
these “default stages” to the bootstrap routine of the P2 system.

Consider the simplicity of how Evita Raced architecture coexists with the P2
dataflow. To install a new (Overlog) compilation stage into the runtime, the In-
staller stage (Chapter 3.1.3) simply extends the Demux element to include a port
for <stage>::programEvent tuples, routing them to the respective rule(s) of a given
stage’s Overlog program. The StageLattice relation is also updated (e.g., through
fact tuples in the Overlog stage program) to include its position in the compilation
pipeline. Once installed, the Overlog stage need only follow a simple protocol for
when and how it should execute.

The protocol, followed by stages, indicates when a stage should start (after re-
ceiving a <stage>::programEvent tuple) and what it must do on completion. When
a stage completes, the only requirement is to update the program table with the
“stage” attribute set to the current stage name. The StageScheduler receives all such
updates to the program table – see Figure 3.4, the Demux program tuple port into the
StageScheduler – and uses the value of the program depends attribute along with the
StageLattice relation to determine the next stage. This covers the full Evita Raced
compilation process of an Overlog program, from the Parser stage to the Installer
stage, and any other stages along the way.

To sum up, the lifecycle of a program compilation starts when a user submits a
program tuple to the system with a null stage attribute. The StageScheduler receives
that program tuple and generates a parse::programEvent tuple (the Parser being the
source stage in the lattice), which is routed by the Demux element to the Parser stage.
When the Parser is done, it updates that program tuple in the corresponding table,
changing the tuple’s stage attribute to “Parser.” The StageScheduler receives the
program tuple, and routes a planner::programEvent to the Demux and eventually the
Planner, which goes round the loop again to the Installer. Finally, once the Installer is
done and notifies the StageScheduler via a program tuple with the stage attribute set
to “Installer,” the StageScheduler concludes the compilation process. If the Overlog
program being parsed is itself a new compilation stage, then after installation, the
scheduler updates the stage lattice (e.g., by applying stage lattice facts defined in the
stage program).

3.1.3 Compiler Bootstrapping

This section describes the baseline Evita Raced compiler as four simple C++ stages
that are loaded by the P2 bootstrap routine. As in many metaprogramming settings,
this is done by writing a small bootstrap component in a lower-level language. Evita
Raced is initialized by a small C++ library that constructs the cyclic dataflow of Fig-

25



ure 3.4, including the four default stages shown. The bootstrap compiler is sufficient
to compile simplified Overlog programs (local rules only, no optimizations) into op-
erational P2 dataflows. We describe here the implementation of our Parser, Planner,
and Installer bootstrap stage elements, which form the core foundation of the Evita
Raced architecture.

Parser

The Parser passes the program text it receives in the parse::programEvent through
a traditional lexer/parser library specified using flex [2] and bison[1]; this library
code returns a standard abstract syntax tree representation of the text. Assuming the
Parser does not raise an exception due to a syntax error, it walks the abstract syntax
tree, generating Metacompiler Catalog tuples for each of the semantic elements of
the tree. In addition to recognizing the different terms of each rule, the parser also
annotates each term with a position, relative to its “parse” order. In Chapter 3.2, we
will use this position when “compiling” a rule into ECA form, and in Chapter 5, we
use it to reorder subgoals in the rule body for optimizing the join order.

Physical Planner

The Planner stage is responsible for doing a näıve translation of Metacompiler Catalog
tuples (i.e., a parsed Overlog program) into a dataflow program. It essentially takes
each rule and deterministically translates it into a dataflow graph language, based on
the rule term positions.

More specifically, for each rule, the Planner considers each term (predicate, se-
lection or assignment) in order of the position attribute contained in the relevant
Metacompiler Catalog relation. The predicate representing the event stream is always
planned first, and registers a listener in the Demux element (recall Figure 3.4). The
terms following the event stream are translated, left-to-right, into a C++ dataflow
in the same way that the original P2 system did using select-project-join operator
methods.

We further mention three specific details. First, where the original P2 system
translated a logical query plan directly to a software dataflow structure in C++, we
have chosen to create an intermediate, textual representation of the dataflow. This
representation is in a language akin to the Click router’s dataflow language, but we
omit its details here.

Second, unlike the original P2 system, we have introduced a number of new join
methods for in-memory tables. Prior to this work, P2 only supported index-nested-
loop joins, where the appropriate index was built on the join column(s) during pro-
gram compilation. We have added two elements to the P2 runtime that perform a
simple nested-loop join and a sort-merge join on a tuple from the outer input, with
a relation on the inner. We note that our sort-merge join is not traditional: it only
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requires the inner relation to be sorted. The P2 architecture was not optimized for
blocking operators; a consequence of its tuple at a time dataflow evaluator (Chap-
ter 2.3.1). Therefore, we decided not to sort the outer relation in a sort-merge join,
and instead perform a binary search on the inner relation for each outer (streaming)
tuple. The predicate relation contains the choice of join method as one of its at-
tributes, and the Planner creates the appropriate dataflow element that implements
the given join method.

Third, the Planner only understands rules that are in an event-condition-action
(ECA) form. An Overlog rule may have no event predicate (e.g., “table1 :- table2,

table3.”). A delta rewrite (from Loo, et al. [62]) is used to convert such rules in
an ECA form (E.g., “table1 :- delta table2, table3.” and “table1 :- table2,

delta table3.”.) As in earlier versions of P2 [62], delta table denotes a stream
conveying insertions, deletions, or timeout refreshes to tuples of the target table. We
could have done this directly in the Planner, but instead we built it as an Overlog
stage (Chapter 3.2). This decision had an important consequence; when expressing
the delta rewrite stage in Overlog, we had to use rules that contained an explicit event
predicate. Furthermore, any Overlog program that contains rules with no explicit
event predicate, depends on the delta rewrite stage. The delta rewrite stage consists
of a mere 12 Overlog (ECA) rules (25 lines of code), and is one of the first Overlog
stages to be compiled into the system.

Installer

Following the Planner stage, what remains is to parse the textual representation of the
physical dataflow, create the corresponding C++ elements, and “wire them up” ac-
cordingly. We have implemented these steps in a single C++ Installer stage. Once the
elements and their connections are instantiated, the Installer stage stitches them into
the P2 runtime’s overall dataflow graph. In other words, the Installer implemented an
extensible dataflow runtime by dynamically adding new rule instantiations to (possi-
bly new) Demux ports (see Figure 3.4); a feature not available prior to the release of
Evita Raced.

3.1.4 Modularity

A stage adds a weak notion of modularity to the Overlog language. Prior to Evita
Raced, P2 was only able to install a single Overlog program into its dataflow. The
rules in this program had complete visibility of all materialized relations, and accord-
ingly side effects to these relations were visible throughout. In this work, we had
to ensure that side effects made by one stage were not visible in another, since such
overlapping updates against the Metacompiler Catalog could render it inconsistent.

The first Overlog stage installed into Evita Raced adds stage modularity to the
system. Itself a rewrite, the stage adds guard predicates to all rule bodies in subse-
quently installed Overlog stages. These guard predicates ensure that only rules in an
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“active” stage react to Metacompiler Catalog updates. A stage is activated when its
<stage>::programEvent tuple is first derived, and deactivated when the stage inserts
a finalized program tuple. Facts added to the guard relation activate the rules of a
stage, and deactivate rules in other stages. We do not mention these guard rules
further since they are completely abstracted way from the programmer.

3.1.5 Discussion

The metacompilation approach of Evita Raced led us to naturally design the system
extensibility around issues of data storage and dataflow, rather than library loading
and control flow modifications. While rule-based systems are usually intended to be
easier to extend than a procedural system, the internal implementation of Evita Raced
is clean, due to our thorough embrace of the native dataflow infrastructure, which we
use both to execute optimization code, and orchestrate stages via precedence tables
and the StageScheduler cycle. The result of this design is that even a major addition
to the Evita Raced compiler entails very minimal modification to the runtime state:
only the addition of a pair of dataflow edges to connect up the new stage, and the
insertion of precedence tuples in a single table. Beyond the StageScheduler and the
four bootstrap stages, no additional extensibility code was added to P2 to support
Evita Raced.

Despite its simplicity, Evita Raced is flexible enough that other researchers have
used it to enhance P2 with support for new languages at both its input and output.
First, by extending the Parser element and registering some Overlog rules, Abadi and
Loo were able to get P2 to optimize and rewrite programs written in a new language,
which extends Overlog with the ability to attest to the provenance of data [5]. Second,
Chu, et al. were able to use Evita Raced to cross-compile Overlog programs into
dataflow specifications that execute on the DSN platform, a declarative networking
system that runs on wireless sensor nodes [24].

3.2 The Delta Rewrite

In this section we describe our declarative implementation of the delta rewrite for
Overlog rules. The rewrite itself consists of only 12 rules, which includes rules for
stage activation, finalization and general housekeeping of the Metacompiler Catalog
relations. Before diving into the specific rules for the rewrite, we describe its actions
by example.

3.2.1 Delta by Example

Consider the shortest path program in Figure 3.5, copied over from Figure 2.7. First
thing to notice is the materialize statements at the top. They indicate that posi-
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mat e r i a l i z e ( l ink , i n f i n i t y , i n f i n i t y , keys ( 1 , 2 ) ) .
ma t e r i a l i z e ( path , i n f i n i t y , i n f i n i t y , keys ( 1 , 2 , 3 ) ) .
ma t e r i a l i z e ( shortestPath , i n f i n i t y , i n f i n i t y , keys ( 1 , 2 , 3 ) ) .

r1 path (@X, Y, P, C) :−
l i n k (@X, Y, C) , P := f c on s (X, Y) .

r2 path (@X, Z , P, C) :−
l i n k (@X, Y, C1) ,
path (@Y, Z , P2 , C2) ,
f c o n t a i n s (X, P2) == f a l s e ,
P := f c on s (X, P2 ) , C := C1 + C2 .

r3 minCostPath (@X, Y, a min<C>) :−
path (@X, Y, P, C) .

r4 shor te s tPath (@X, Y, P, C) :−
minCostPath (@X, Y, C) ,
path (@X, Y, P, C) .

Figure 3.5: Shortest path program.

tive lifetime tables should exist for link, path, and shortestPath tuples, along with
the appropriate primary key columns. Since there is no materialize statement for
the minCostPath predicate, P2 considers such tuples to be events, that will end up
triggering rule r4 when “pulled” from the event queue. The question then is, what
triggers the other rules to produce minCostPath event tuples?

The delta rewrite converts the rules in Figure 3.5 into the rules shown in Figure 3.6.
The new rules contain a single ∆ predicate, shown (by convention) at the front of
the rule. Since rule r4 already contains an event predicate, the delta rewrite simply
ignores this rule, which is fixed to trigger off of minCostPath tuples. The remaining
rules are converted into ∆ form so that they can be installed into the P2 runtime by
the Planner stage. We start with rule r1, which contains the single subgoal link.
The delta rewrite simply adds a delta annotation to this predicate, informing the
Planner to trigger the rule when a receive/insert/delete event occurs on the link

relation. The same thing happens in rule r3 w.r.t., the plan relation.

Rule r2 has two subgoals link and path, both of which are materialized tables.
In this case, we must break the rule into two disjoint rules (one for each materialized
subgoal). The first of these rules will trigger on (say) the link tuple, followed by a
join with path, etc. The second rule triggers on path event tuples, and joins with the
link relation, etc. Both of these rules project onto the path relation, which in turn
triggers further invocations of rule r2b on new path data.

29



mat e r i a l i z e ( l ink , i n f i n i t y , i n f i n i t y , keys ( 1 , 2 ) ) .
ma t e r i a l i z e ( path , i n f i n i t y , i n f i n i t y , keys ( 1 , 2 , 3 ) ) .
ma t e r i a l i z e ( shortestPath , i n f i n i t y , i n f i n i t y , keys ( 1 , 2 , 3 ) ) .

r1 path (@X, Y, P, C) :−
∆ l i n k (@X, Y, C) ,
P := f c on s (X, Y) .

r2a path (@X, Z , P, C) :−
∆ l i n k (@X, Y, C1) ,
path (@Y, Z , P2 , C2) ,
f c o n t a i n s (X, P2) == f a l s e ,
P := f c on s (X, P2 ) , C := C1 + C2 .

r2b path (@X, Z , P, C) :−
∆path (@Y, Z , P2 , C2) ,
l i n k (@X, Y, C1) ,
f c o n t a i n s (X, P2) == f a l s e ,
P := f c on s (X, P2 ) , C := C1 + C2 .

r3 minCostPath (@X, Y, a min<C>) :−
∆path (@X, Y, P, C) .

r4 shor te s tPath (@X, Y, P, C) :−
minCostPath (@X, Y, C) ,
path (@X, Y, P, C) .

Figure 3.6: Delta rewrite rules from Figure 3.5.

/*Initiate a rewrite at position 1 of a rule not already containing an event
predicate in this position. */
d1 r ewr i t e (@A, Pid , Rid , PredID , f i d g e n ( ) , f i d g e n ( ) , Pos ) :−

de l t a : : programEvent (@A, Pid , . . . ) ,
sys : : r u l e (@A, Rid , Pid , , HeadID , , , , Goals ) ,
sys : : p r ed i c a t e (@A, PredID , Rid , , Name, Tid , , Schema , Pos ) ,
Tid != nul l , Pos == 1 .

/*Initiate a rewrite position for each predicate in the rule body. */
d2 r ewr i t e (@A, Pid , Rid , PredID , f i d g e n ( ) , f i d g e n ( ) , Pos ) :−

r ewr i t e (@A, Pid , Rid , . . . ) ,
sys : : p r ed i c a t e (@A, PredID , Rid , . . . , Schema , Pos ) ,
Pos > 1 .

Figure 3.7: Deduce a rewrite fact for a new delta rule to be created for a particular
table predicate in the original rule’s body.
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/*Put the delta predicate in the first position of the new rule. */
d3 sys : : p r ed i c a t e (@A, f i d g en ( ) , NewRid , Notin , Name, Tid , ”DELTA” ,

Schema , 1) :−
r ewr i t e (@A, Pid , Rid , DeltaPredID , NewRid , NewHeadID , ) ,
sys : : p r ed i c a t e (@A, DeltaPredID , Rid , Notin , Name, Tid , ECA,

Schema , Pos ) .

/*Make a new head predicate for the new rule by copying the old head predicate. */
d4 sys : : p r ed i c a t e (@A, NewHeadID , NewRid , Notin , Name, Tid , ECA,

Schema , 0) :−
r ewr i t e (@A, Pid , Rid , DeltaPredID , NewRid , NewHeadID , ) ,
sys : : r u l e (@A, Rid , Pid , , HeadID , . . . ) ,
sys : : p r ed i c a t e (@A, HeadID , Rid , Notin , Name, Tid , ECA, Schema , ) .

Figure 3.8: Rules that copy the old head predicate from the old rule to the new rule,
and creates the delta predicate in the new rule from the subgoal referenced by the
rewrite tuple.

3.2.2 Declarative Delta

We now turn to the delta rewrite Overlog stage; used translate Figure 3.5 into Fig-
ure 3.6. Prior to the installation of this stage, only rules containing an explicit event
predicate can be installed. As a result, all rules described here contain an explicit
event predicate e.g., the delta::programEvent tuple.

Figure 3.7 contains two rules that initiate the delta rewrite by deducing a
rewrite tuple from each rule in the target program. Rule d1 triggers on the
delta::programEvent tuple and “joins with” the rule and predicate tables, selecting
out the predicate in position 1. Recall that this is the event position, and that this
rewrite ignores rules containing an explicit event. Therefore, if the predicate in posi-
tion 1 references a materialized table (T id ! = null) — it is not an event — then we
need to rewrite it. Once a rewrite event tuple has been deduced for a given target
rule, rule d2 initiates a second rewrite event tuple for each predicate in the target
rule’s body. The Pos > 1 selection avoids the head predicate (position 0) and the
first predicate already handled by rule d1.

Assume we have initiated a rewrite tuple for a given rule r and body predicate pi
at position i. The next step is to actually create the new rule ∆ri with predicate ∆pi
that references the delta events of predicate pi. The new rule will take the following
form h :- ∆pi, Gj!=i, where h references the original head predicate in rule r and
Gj!=i is the list of subgoals that exclude predicate pi.

Figure 3.8 contains two rules that create the head predicate (h) and the delta
predicate (∆pi) for the new delta rule (∆ri). Rule d3 specifically creates the delta
predicate, placing it in position 1 (by convention) of the new rule. Next, rule d4

copies the head predicate, from the old rule, by joining the old rule identifier (Rid)
in rewrite with the rule table, and the predicate table along the old head predicate
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/*Kick off an iterator for the remaining rule subgoals. */
d5 remainder (@A, Pid , Rid , NewRid , 1 , 2 , Pos ) :−

r ewr i t e (@A, Pid , Rid , DeltaPredID , NewRid , , Pos ) .

/*Forward the remainder iterator along the subgoals. */
d6 remainder (@A, Pid , Rid , NewRid , OldPos+1, NewPos , DeltaPos ) :−

remainder (@A, Pid , Rid , NewRid , OldPos , NewPos , DeltaPos ) ,
sys : : r u l e (@A, Rid , Pid , . . . , Goals ) ,
OldPos < Goals ,
NewPos := OldPos == DeltaPos ? NewPos : NewPos + 1 .

/*Copy table predicate to the new delta rule. */
d7 sys : : p r ed i c a t e (@A, f i d g en ( ) , NewRid , Notin , Name, Tid , nu l l ,

Schema , NewPos) :−
remainder (@A, Pid , Rid , NewRid , OldPos , NewPos , DeltaPos ) ,
sys : : p r ed i c a t e (@A, PredID , Rid , Notin , Name, Tid , , Schema , OldPos ) ,
OldPos != DeltaPos .

/*Make a new assignement for the new delta rule. */
d8 sys : : a s s i gn (@A, f i d g en ( ) , NewRid , Var , Value , NewPos) :−

remainder (@A, Pid , Rid , NewRid , OldPos , NewPos , ) ,
sys : : a s s i gn (@A, Aid , Rid , Var , Value , OldPos ) .

/*Make a new selection for the new delta rule. */
d9 sys : : s e l e c t (@A, f i d g en ( ) , NewRid , Bool , NewPos) :−

remainder (@A, Pid , Rid , NewRid , OldPos , NewPos , ) ,
sys : : s e l e c t (@A, Sid , Rid , Bool , OldPos , AM) .

Figure 3.9: Rules that copy old subgoals to the new delta rule.

identifier (HeadID). The new head predicate is given a new predicate identifier
(NewHeadID) and the new rule identifier (NewRid).

Figure 3.9 contains the next group of rules that copy the body predicates Gj!=i

from the old rule r to the new ∆ri rule, excluding predicate pi. We express this
through a secondary group of event tuples, called remainder, that reference each body
predicate in rule r excluding pi. A remainder tuple contains the predicate position
relative to rule r and a new position in the ∆ri rule. The new position must start at
2, following the delta predicate, which is already set to pi.

Rule d5 initiates the first remainder tuple from a rewrite tuple, and rule d6

carries further remainder deductions along each subgoal in the body of rule r. A
remainder tuple contains three attributes that reference rule positions; shown here by
the OldPos, NewPos and DeltaPos variable names. The OldPos variable specifies
the predicate position to copy from the original rule to the new ∆ rule, and NewPos
is its position in this new rule. The DeltaPos variable refers to the position of pi,
the new ∆ predicate, in the original rule. Special logic is used to avoid predicate
pi w.r.t., remainder tuples. For example, rule d6 does not increment the NewPos
when OldPos == DeltaPos. The remaining rules (d7, d8 and d9) deal with copying
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/*Create the new rule */
d10 sys : : r u l e (@A, NewRid , Pid , Name, NewHeadID , nu l l , Delete , Goals ) :−

r ewr i t e (@A, Pid , Rid , DeltaPredID , NewRid , NewHeadID , Pos ) ,
sys : : p r ed i c a t e (@A, DeltaPredID , Rid , , PredName , . . . ) ,
sys : : r u l e (@A, Rid , Pid , RuleName , , , Delete , Goals ) ,
Name := RuleName + ” de l t a ” + PredName + Pos .

/*Clean up old rule state */
d11 d e l e t e sys : : r u l e (@A, Rid , Pid , Name, HeadID , P2DL, Delete , Goals ) :−

r ewr i t e (@A, Pid , Rid , . . . ) ,
sys : : r u l e (@A, Rid , Pid , Name, HeadID , P2DL, Delete , Goals ) .

/*Signal the completion of the delta rewrite to the StageScheduler. */
d12 sys : : program (@A, Pid , Name, Rewrite , ” de l t a ” , Text , Msg ,

P2DL, Src ) :−
programEvent (@A, Pid , Name, Rewrite , Status , Text , Msg , P2DL, Src ) .

Figure 3.10: Creates a new rule tuple that references the delta rewrite rule. Cleans
up the old (non-delta) rule. Inserts a program tuple indicating that the delta rewrite
has finished.

r2a l i nk copy (@Y, X, Y, C1) :−
l i n k (@X, Y, C1 ) .

r2b path (@X, Z , P, C) :−
l i nk copy (@Y, X, Y, C1) ,
path (@Y, Z , P2 , C2) ,
f c o n t a i n s (X, P2) == f a l s e ,
P := f c on s (X, P2 ) , C := C1 + C2 .

Figure 3.11: The localized version of rule r2 in Figure 3.5.

subgoals rule r to the new ∆ri rule. Notice that rule d7 skips predicate pi at position
DeltaPos.

The final set of rules shown in Figure 3.10 perform housekeeping tasks related to
this rewrite. Rule d10 creates a rule tuple that references the delta rule ∆ri for a given
delta predicate ∆pi. The old rule r is deleted in rule d11, which, through materialized
view maintenance, removes the old head predicate and subgoals. Finally, rule d12

inserts a program tuple that indicates the completion of the delta rewrite stage. 2

3.3 The Localization Rewrite

We briefly describe the localization compiler stage, which turns a rule with multiple
location specifiers in its body, into many rules, each of which has a single location

2Note that this entire rewrite is performed in a single P2 dataflow fixpoint.
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specifier in its body; turning a distributed join into a set of local joins with partial
result transmissions among the rules involved [62]. This rewrite was part of the
original P2 system, but implemented in C++ and woven into the monolithic compiler.
In Evita Raced, the localization rewrite stage contained 11 rules that resembled the
rules in the delta rewrite stage. Therefore, we provide a high level description of this
rewrite, and its declarative structure.

We start with an example description using rule r2 from Figure 3.5. This rule is
rewritten into the two rules shown in Figure 3.11. The link copy (event) predicate
forwards link tuples at node X to node Y . This will result in a network transfer of
link tuples @X to link copy tuples @Y . At node Y , the link copy tuples trigger
rule r2b, which completes the execution of rule r2 before sending the path results
back to node X.

Declaratively, the localization stage traverses distributed rules in left-to-right or-
der; rules with local-only body predicates are selected out early in the stage. The
location attribute of the current predicate in this traversal is stored along with the
cursor information of the traversal. A rewrite is derived if the traversal reaches a
predicate with a location attribute that differs from the previous. The rewrite tuple
splits the rule at the given position, creating a new glue predicate IR copy, and two
new rules defined as follows.

1. IR copy :- (predicates to the left, excluding the rewrite position).
2. (original rule head predicate) :- IR copy, (predicates to the right, including

the rewrite position).

The location attribute in the IR copy predicate is taken from the predicate at the
rewrite position. That is, the predicate with the “new” location attribute. The
other attributes in the IR copy predicate are taken from the predicates to the left of
(and not including) the rewrite position, which represents the schema of the inter-
mediate result (IR copy). The algorithm then removes the original rule, and moves
recursively on to the second rule, which contains the remaining body predicates that
need to be searched (and possibly split). The recursion terminates at the rightmost
predicate position.

3.4 Summary

The delta and localization stages are program rewrites necessary to make materialized
(no event predicate) and distributed rules executable. These rewrites are expressed
compactly in Overlog (around 12 rules each), and avoid complex C++ code in the
Planner stage implementation. The original P2 code that performed these tasks
consisted of a few hundred lines of code spread throughout the system implementation;
making it hard to evolve.

The Evita Raced metacompilation framework allows Overlog compilation tasks to
be written in Overlog and executed in the P2 runtime engine. It provides significant
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extensibility via a relatively clean declarative language. As we will see next, many of
the tasks of query optimization – dynamic programming, dependency-graph construc-
tion and analysis, statistics gathering – appear to be well served by a recursive query
language. The notion of metacompilation also leads to a very tight implementation
with significant reuse of code needed for runtime processing.
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Chapter 4

Declarative Rewrite: Magic-sets

Having described the Evita Raced infrastructure, we now turn to our use of it
to specify query optimizations in Overlog. Using Evita Raced, we have implemented
three optimization techniques from the literature: the magic-sets rewrite [15, 16], the
System R dynamic program [82] and the Cascades branch-and-bound algorithm [36].
We begin in this chapter with the magic-sets rewrite, which aims to efficiently an-
swer predicates pertaining to a small subset of the data values in the database. For
example, the shortestPath predicate in Figure 2.7 pertains to paths originating from
node “localhost:10000.” In order to efficiently evaluate this predicate, the magic-sets
rewrite pushes predicate constants down into the supporting rules so that a Datalog
evaluator never derives superfluous facts.

As mentioned in Chapter 2.1.3, Datalog-oriented systems like P2 perform a
bottom-up (forward chaining) evaluation on each rule, starting with known facts
(tuples), and recursively deriving new facts through rule deductions. The advantage
of this strategy is that the evaluation is data driven (from known facts to possible de-
ductions) and will not enter infinite loops for some statically verifiable safe programs.
In contrast, a top-down (backward chaining) evaluation (e.g., in the Prolog language),
starts with the “query” predicates (i.e., shortestPath in Figure 2.7) as the top-level
goals, and recursively identifies rules whose head predicates unify with needed goals,
replacing them with the subgoal predicates in the rule body, until all subgoals are
satisfied by known facts or rejected when no further recursion is possible. The ad-
vantage of a top-down evaluation strategy is that it avoids resolving goals that are
not needed by the posed queries (e.g., paths not originating from “localhost:10000”).

For a given Datalog program, the magic-sets rewrite adds extra rules and predi-
cates that prune results, known to be superfluous, from a bottom-up evaluation. The
primary data structure used by this rewrite technique is a rule/goal graph, which
we review in Chapter 4.1, along with the magic-sets algorithm. Using the rule/goal
graph representation of an Overlog program, in Chapter 4.2 we express the magic-sets
rewrite in 44 Overlog rules. We divide these rules into two logical groups. The first
is presented in Chapter 4.2.1, which constructs the rule/goal graph via a transitive
closure on the Metacompiler Catalog. Our second group of rules, presented in Chap-
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l i n k ( ‘ ‘ node1 ’ ’ , ‘ ‘ node2 ’ ’ , 1 ) .
l i n k ( ‘ ‘ node1 ’ ’ , ‘ ‘ node3 ’ ’ , 1 ) .
l i n k ( ‘ ‘ node2 ’ ’ , ‘ ‘ node1 ’ ’ , 1 ) .
. . .
r1 path (@X, Y, P, C) :−

l i n k (@X, Y, C) , P := f c on s (X, Y) .

r2 path (@X, Z , P, C) :−
l i n k (@X, Y, C1) , path (@Y, Z , P2 , C2) ,
f c o n t a i n s (X, P2) == f a l s e ,
P := f c on s (X, P2 ) , C := C1 + C2 .

query path ( ‘ ‘ node1 ’ ’ , Y, P, C) .

Figure 4.1: The path-only rules copied from Figure 2.7.





      

Figure 4.2: Experimental topology.

ter 4.2.2, also performs a transitive closure, but this time on the rule/goal graph itself,
to obtain the rewritten rules that include the predicates used to filter tuples that are
not relevant to the final answer.

4.1 Magic-sets in a Nutshell

The magic-sets technique rewrites logical rules so that bottom-up evaluation over
the rewritten rules has all the advantages of a top-down and a bottom-up evaluation
strategy. We give some intuition here by reviewing the advantages of magic-sets
using the path program shown in Figure 4.1. For the purpose of this discussion, lets
assume we execute these rules locally with the initial set of link fact tuples forming
the topology shown in Figure 4.2. The abbreviated list of facts shown at the beginning
of Figure 4.1 populate the link relation with our basic topology information. Our
goal is to find all paths that start at “node1.”

A straightforward bottom-up evaluation of this program applies the link tuples to
rule r1, creating the initial set of path tuples. Rule r2 performs a transitive closure
over the link and path relations, while any path tuples matching “node1” in the
first field are returned in the programmer’s query. Clearly this bottom-up evaluation
strategy examines some path tuples that do not contribute to the query answer; for
example, paths that originate from nodes 5−10 1. In contrast, a top-down evaluation
begins by unifying the query predicate with the head predicate of rules r1 and r2.

1Paths that originate from nodes 2 − 4 are still relevant since they can be included in paths
originating from “node1.”
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l i n k ( ‘ ‘ node1 ’ ’ , ‘ ‘ node2 ’ ’ , 1 ) .
l i n k ( ‘ ‘ node1 ’ ’ , ‘ ‘ node3 ’ ’ , 1 ) .
l i n k ( ‘ ‘ node2 ’ ’ , ‘ ‘ node1 ’ ’ , 1 ) .
. . .
magic path ( ‘ ‘ node1 ’ ’ ) .

r 1 c a s e5 path (@X, Y, P, C) :−
magic path (@X) ,
l i n k (@X, Y, C) , P := f c on s (X, Y) .

r 2 ca s e2 sup r2 1 (@X, Y, C1) :−
magic path (@X) ,
l i n k (@X, Y, C1 ) .

r 2 c a s e3 magic path (@Y) :−
sup r2 1 (@X, Y, C1 ) .

r 2 c a s e4 sup r2 2 (@X, Y, Z , C1 , P2 , C2) :−
sup r2 1 (@X, Y, C1) ,
path (@Y, Z , P2 , C2 ) .

r 2 c a s e5 path (@X, Z , P, C) :−
sup r2 2 (@X, Y, Z , C1 , P2 , C2) ,
f c o n t a i n s (X, P2) == f a l s e ,
P := f c on s (X, P2 ) , C := C1 + C2 .

query path ( ‘ ‘ node1 ’ ’ , Y, P, C) .

Figure 4.3: A magic-sets rewrite of the rules in Figure 4.1.

This path predicate unification binds the @X attribute to “node1” in both rules,
which is then carried over to the predicates in the rule body.

The magic-sets rewrite is an optimization that can achieve the same efficiency
found in the top-down evaluation, using a bottom-up evaluator. Since it is still
bottom-up, we retain all the benefits of seminäıve evaluation: set-oriented evalua-
tions, unique minimal model and stratification. Magic-sets does this by adding extra
selection predicates to the rules of a program that emulate the goal-oriented exe-
cution of a top-down evaluation (sometimes called sideways information passing or
SIP). Conceptually, given a rule of the form H :- G1, G2, ..., Gk, where H is the head
predicate and G1,...,k are the subgoals, the magic-sets rewrite intersperses selection
predicates s1,...,k to generate the rule form H :- s1, G1, s2, G2, ..., sk, Gk. Facts for
these selection predicates are generated according to attribute bindings in the user’s
query or from other rule predicates in the program, to constant values.

Figure 4.3 shows the rewritten rules from the path program in Figure 4.1. The
program contains some new predicates prefixed with magic and sup that are included
in the rule body with the link and path predicates. Ullman [94] refers to these new
predicates as magic predicates (i.e., magic path) and supplementary predicates (i.e.,
sup r2 1, sup r2 2). Magic predicates maintain bindings relevant to query predicates

39



(i.e., path), while supplementary predicates pass bindings along rule bodies, ensuring
that no extraneous deductions are made along the way.

We now describe the rewritten rules, which are named by 1) the original rule
name, and 2) a “case” number that will be described in Chapter 4.2.2. 2 We start
with rule r1 in Figure 4.1, again assuming we are running locally with all facts in
the link relation. As it stands, rule r1 will generate path tuples using any of the
link tuples, regardless of whether they contribute to answering the final query. To
avoid extraneous deductions, we add the magic path predicate to the body of this
rule, giving us rule r1 case5 in Figure 4.3.

The rewrite of rule r2 appears to be quite a bit more complicated, expanding out
to four separate rules. We describe the purpose of each rule on a case-by-case basis.
Rule r2 case2 adds a rule that fills the sup r2 1 relation with tuples produced by
“joining” magic path and link relations. The outcome of which is no different than
rule r1 case5 in our previous discussion; excluding the extra path information. The
interesting bit here is that, in rule r2 case4, the sup r2 1 predicate is “joined” with
the path predicate. This effectively uses the magic path predicate to prune superfluous
tuples from link before “joining” with the path relation.

This brings us to the more interesting case 3 w.r.t. rule r2. Here we are feeding
sup r2 1 tuples into the magic path relation. At a high-level, this rule updates the
magic path table with tuples that satisfy the constraints imposed by the current
magic path table instance and includes the new (path) information from the link

predicate. Observe that rule r2 case3 feeds magic path values from its Y variable,
which represents the intermediate hop in rule r2, and therefore must be part of the
final answer. In this example, rule r2 case3 is responsible for adding each node in
the clique (i.e., nodes 2, 3, and 4 in Figure 4.2) to the magic path relation because
there is a path from “node1” to it.

The remaining cases simply stitch things up using the remaining terms in rule r2.
In case 4, we combine sup r2 1 with the path predicate to obtain the sup r2 2, which
is then used to finish off the rule in case 5 (rule r2 case5). The reader may be confused
by the need for sup r2 2. Why not simply create the following rule?

r 2 c a s e ? path (@X, Z , P, C) :−
sup r2 1 (@X, Y, C1) ,
path (@Y, Z , P2 , C2 ) .
f c o n t a i n s (X, P2) == f a l s e ,
P := f c on s (X, P2 ) , C := C1 + C2 .

Indeed, this rule is correct and it does not generate paths that are not relevant to the
final answer. Nevertheless, we introduce the sup r2 2 predicate (case 4), in general,
since we do not know if this is the last occurrence of a magic predicate (i.e., path) in
rule r2. The occurence of a magic predicate p in rule r at position j triggers cases 2
and 3, which generate rules in the following form.

2Case 1 refers to the creation of the single magic predicate magic path fact, which contains the
bound constants from the query predicate.
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• case 2: suprj(...):-sup
r
i−1(...), Gi, ..., Gj−1

• case 3: magicp(...):-suprj(...)

The subgoals Gi...j−1 refer to EDB predicates appearing in the body of rule r at the
respective positions. Returning to our example, case 4 anticipates the need for gener-
ating a sup r2 X predicate, which will use sup r2 2 and all subseqent EDB predicates
to generate case 2. Furthermore, case 3 requires sup r2 X to update the magic (IDB)
predicate appearing in rule r2 at position X. In keeping with the current numbering
scheme, we note that sup r2 0 :- magic path.

Before presenting the declarative rules that implement this rewrite technique, we
must review the concept of adornments and the rule/goal graph representation for
a collection of Datalog (Overlog) rules. These data structures form the basis of the
transitive closure algorithm performed by our magic-sets rewrite. The discussion
leading up to Chapter 4.2 follows from Chapter 13 of Ullman’s textbook [94], which
provides the most through coverage on the subject to date.

4.1.1 Adornments

Consider again the path program in Figure 4.1. The query predicate path(‘‘node1’’,
Y, P, C) asks for all paths that originate from “node1”. An adornment is a binding
pattern that contains a string of b’s (bound) and f ’s (free) of length k, for each k
arguments of path. In the current context, the path query predicate matches the
pathbfff adornment since the first argument is bound to a constant and the last
three variables are free to take on any value. Such goal adornments are assigned to
rule predicates, based on the position of the predicate in the rule and the bindings
associated with that rule position.

Rule bindings are assigned by position, according to a left-to-right (SIP) evalua-
tion order. The steps for assigning rule adornments are as follows.

1. A variable appearing in a bound argument of the rule head is bound before
processing any subgoals i.e., pathbfff binds @X in the path head of rule r2.

2. A variable is bound after processing subgoal Gi if it was bound before processing
Gi or if it appears anywhere in Gi i.e., the link subgoal binds the @Y variable
in the path subgoal of rule r2 (variables Z, P2, and C2 in path remain free).

The format of a rule adornment differs from that of a predicate. It follows the form
[B1, · · · , Bm|F1, · · · , Fn], which contains two sublists of variables separated by a bar.
The variables to the left of the bar (i.e., B1, · · · , Bm) represent bound variables, while
those to the right (i.e., F1, · · · , Fn) are free.

A given rule contains a number of these binding patterns, one for each subgoal
position. That is, a rule adornment is a binding pattern of a rule at a given rule
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linkbff

pathbfff

r1[@X|Y,P,C]
0 r2[@X|Y,C1,Z,P2,C2]

0

r2[@X,Y,C1|Z,P2,C2]
1

Figure 4.4: Rule/Goal graph of the program in Figure 4.1.

position. The notation that we follow here identifies the rule’s position as a subscript
and the binding pattern as a superscript. For example, r1[@X|Y,P,C]

0 is the adornment
for rule r1 at position 0, which is based on the binding pattern of the pathbfff

adornment relative to the head predicate schema.

Continuing, r2[@X,|Y,Z,C1,P,C]
0 represents the adornment for rule r2 at the head

position 0, again binding the first variable of the head predicate. The r10 and r20
rule adornments “feed” the link subgoal with its bindings, create the linkbff goal
adornment. The link subgoal adds variables Y and C1 to the list of bound variables
for rule r2 at position 1. This yields the r2[@X,Y,C1,|Z,P,C]

1 rule adornment, which “feed”
bindings into the path predicate, creating the pathbfff adornment by binding the Y
variable in the first argument.

4.1.2 Rule/Goal Graphs

A rule/goal graph is a representation of binding patterns that occur in a collection of
Datalog (Overlog) rules. The graph consists of rule and goal vertices. A goal vertex
consists of a predicate with an adornment (e.g., pathbfff ) and similarly, a rule vertex

represents the adornment of the rule in a particular position (i.e., r1[@X|Y,P,C]
0 ).

Figure 4.4 illustrates the rule/goal graph for our Figure 4.1 example. To construct
this graph, we start at the query predicate, and create a goal vertex in the graph with
its proper adornment. For every rule with that goal predicate as its head, we create
a rule adornment relative to position 0. For rule r1 this is r1[@X|Y,P,C]

0 and for rule r2

we have r2[@X,|Y,Z,C1,P,C]
0 . A rule vertex feeds bindings to the subgoal just beyond its

position. Both rules in position 0 bind the link predicate variable X. In the case of
rule r2, position 1 receives the bindings of its parent rule and the bindings from the
link subgoal, giving us the r1[@X,Y,C1,|Z,P,C]

1 rule vertex.
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At this point in rule r2 we have reached the position prior to the path predicate.
We create the appropriate pathbfff adornment, which matches up with our original
path goal node. Since we have no further rule binding steps beyond the path predicate,
the process halts. Our declarative rules initiate the rewrite process by performing
these steps recursively over the Metacompiler Catalog.

4.2 Declarative Magic-sets

Using Evita Raced, we expressed the magic-sets rewrite stage in Overlog. The first
step in this rewrite constructs the rule/goal graph, captured as relational data. It
uses this graph data to check for a unique binding property with respect to the adorn-
ment of the query predicate. This property is met when the query predicate qp,
expressed against predicate p, contains a unique “binding pattern” throughout the
rule/goal graph. The query predicate qp provides the first binding pattern (the root
of the rule/goal graph), while rules that mention p provide further bindings based on
sideways-information-passing (SIP).

We check for the unique binding property in the first phase of our rewrite, while
constructing the rule/goal graph via a transitive closure on the Metacompiler Catalog.
If this property is violated at any point then the rewrite terminates early, without
changing any rules. The Metacompiler Catalog already provides some of the rule/goal
graph information, specifically goal (head predicate) and subgoal (body terms) rule
dependencies. The remaining information that we need to collect is the adornments
for rule/goal “vertices.” Once this information is secured, we can move to the actual
rewrite rules described in Chapter 4.2.2, where magic and supplementary relations
are created according to the five cases previously discussed.

4.2.1 Rule/Goal Graph Construction

The algorithm for constructing a rule/goal graph begins at the query predicate, and
follows with the rules that mention the query predicate in the head. We assume the
unique binding property holds in the beginning, and detect if it does not along the
way. Given a query predicate qp, we create a magic predicate, denoted as mp, with a
corresponding adornment. A set of supplementary predicates, denoted as supi (i being
the rule position), are also created as we recursively walk the rules in a left-to-right
(SIP) order.

The abbreviated rule in Figure 4.5 creates an adornment for the query predicate
and adds that fact to the magicPred relation. A query predicate is identified in P2
by a rule containing a single goal (Goals == 1). The sole predicate in this rule
has a schema (Schema) that contains some number of (binding) constants and (free)
variables. The function f adornment takes such a schema object as its argument and
returns a string representing an adornment signature (the binding pattern).

43



/*Create an adornment for the query predicate and add a fact to the magicPred
table referencing this adornment. */
ms1 magicPred (@A, Pid , Name, S ig ) :−

magic : : programEvent (@A, Pid , . . . ) ,
sys : : r u l e (@A, Rid , Pid , . . . , Goals ) ,
sys : : p r ed i c a t e (@A, , Rid , . . . , Schema ) ,
Goals == 1 ,
S ig := f adornment (Schema ) .

Figure 4.5: Construction of the query adornment and corresponding magic predicate.

Rule ms1 creates the top-level goal node that represents the root of the rule/goal
graph. The group of rules in Figure 4.6 deal with creating adornments for rule
positions in the target program. We store the rule adornment in a sup relation since
this information will be used to create supplementary predicates in Chapter 4.2.2. A
sup tuple contains the following attributes in order:

• A reference to the target program and rule identifiers.

• A position within that target rule.

• A name for the supplementary predicate.

• A rule adornment, as a schema object containing all constants and variables up
to that rule position.

• A new identifier that will be used (in Chapter 4.2.2) to create a new rule that
supplies facts to the supplementary relation (e.g., rule cases 2 and 4 in Fig-
ure 4.3).

We now describe the details of each rule in Figure 4.6. Rule ms2 initiates the
first sup deduction. It joins magicPred with the rule and predicate relations to
obtain those rules that reference a magic predicate in the head. This result will
represent the supplementary predicate in position 0. The adornment for this rule
position is obtained by projecting the head predicate schema onto the magic predicate
adornment. The function f project takes care of the step-by-step details of combining
the head predicate schema and the signature of the magic predicate adornment, and
then returning a new schema that contains only the bound head variables (according
to the adornment). For example, if the head predicate schema is [@X, Y, P, C] and
the adornment is bfff then the f project will return [@X] as the new schema. The
new schema is used by the current (position 0) supplementary predicate. 3

The rules that receive a sup tuple are consider next by creating further sup tu-
ples for each subgoal position. In Overlog, only table predicates and “assignment”
statements create new bindings. As a result, sup tuples are only generated for rule

3The supplementary predicate at position 0 is a symbolic reference to the magic predicate.
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/*Initialize sup position 0 for rules that reference a magic predicate in the head. */
ms2 sup (@A, Pid , Rid , Pos , SupName , Schema , f i d g e n ( ) ) :−

magicPred (@A, Pid , Name, S ig ) ,
sys : : r u l e (@A, Rid , Pid , RName, HeadPid , . . . ) ,
sys : : p r ed i c a t e (@A, HeadPid , Rid , , Name, . . . , FSchema , . . . ) ,
Schema := f p r o j e c t ( Sig , FSchema ) ,
SupName := ” sup ” + RName + 0 ,
Pos := 0 .

/*Create supplementary predicate for a given subgoal. */
ms3 sup (@A, Pid , Rid , Pos , SupName , NewSchema , f i d g e n ( ) ) :−

supNext (@A, Pid , Rid , Pos , Schema ) ,
sys : : r u l e (@A, Rid , Pid , RName, . . . ) ,
sys : : p r ed i c a t e (@A, Fid , Rid , . . . , FSchema , Pos , . . . ) ,
SupName := ” sup ” + RName + ” ” + Pos ,
NewSchema := f merge (Schema , FSchema ) .

/*Create supplementary predicate for a given assignment. */
ms4 sup (@A, Pid , Rid , Pos , SupName , NewSchema , f i d g e n ( ) ) :−

supNext (@A, Pid , Rid , Pos , Schema ) ,
sys : : r u l e (@A, Rid , Pid , RName, . . . ) ,
sys : : a s s i gn (@A, Aid , Rid , Var , , Pos ) ,
SupName := ” sup ” + RName + ” ” + Pos ,
NewSchema := f as s i gnschema (Schema , Var ) .

/*Move the rule position forward when update occurs to sup. */
ms5 supNext (@A, Pid , Rid , Pos+1, Schema) :−

sup (@A, Pid , Rid , Pos , Name, Schema , Tid ) .

/*Move supNext forward for selection predicates. */
ms6 supNext (@A, Pid , Rid , Pos+1, Schema) :−

supNext (@A, Pid , Rid , Pos , Schema ) ,
sys : : r u l e (@A, Rid , Pid , . . . , Goals ) ,
sys : : s e l e c t (@A, Sid , Rid , , Pos , ) ,
Pos < Goals .

Figure 4.6: Rules for supplementary relational predicates.
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/*We’ve encountered a magic predicate in the body of a rule. Compute its adornment based on
current bound variables. */
ms7 magicPred (@A, Pid , FName, S ig ) :−

supNext (@A, Pid , Rid , Pos , Schema ) ,
sys : : r u l e (@A, Rid , Pid , RName, . . . ) ,
sys : : p r ed i c a t e (@A, Fid , Rid , , FName, . . . , FSchema , Pos , . . . ) ,
magicPred (@A, Pid , FName, S ig ) ,
S ig := f adornment (Schema , FSchema ) .

Figure 4.7: Encountering a magic predicate during subgoal traversal.

positions relevant to such terms: relational predicates (rule ms3) and assignment state-
ments (rule ms4). The f merge and f assignschema functions are used to update the
schema object with the bindings of the current term position. A series of supNext tu-
ples is created for each rule position to considered. The supNext relation is generated
by rule ms5 for predicate and assignment terms, and rule ms6 for selection predicate
terms, which add no new bindings to the previous schema.

The previous group of rules ignored the special case of discovering a magic predi-
cate at rule positions referenced by some supNext tuples. In order to verify that the
unique binding property holds, we must compute the adornment for each magic pred-
icate appearance in the rule body. Figure 4.7 contains the single rule that generates
an adornment for a subgoal that references a magic predicate. If the adornment is
different than the previous, then multiple rows will exist in the magicPred relation,
signaling the presence of multiple magic predicate binding patterns. A simple count
query (Figure 4.8: count ms12 and check ms13) is used to detect violations of the
unique binding property.

The last group of rules detect when the rule/goal graph construction “phase”
has completed, and on completion, checks for the unique binding property. In Fig-
ure 4.8, rules ms9 and ms10 together count the number of rules that have completed
the rule/goal graph construction phase. Rule ms11 counts the total number of rules
in a given program and rule ms12 counts the number of adornments for a given
magicPred. Finally, rule ms13 signals the completion of the current phase by de-
riving a commitMagicPred tuple if all rules have completed and the magic predicate
has a single adornment. We note here that the counts for programRuleCount and
rulesComplete would not be needed if P2 had support stratified Datalog. The magic
predicate adornment count is needed before moving to the next phase, but it also
marks a stratification boundary. To prevent a premature commitMagicPred deduction
in rule ms13, we ensure the counts in programRuleCount and rulesComplete are equal.

4.2.2 Rewrite Phase

At this point, the adornment information for the magic predicate and rule positions
have been populated in the magicPred and sup relations, and we can now begin with
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/*Indicate when a rule has been fully explored. */
ms9 ruleComplete (@A, Pid , Rid ) :−

supNext (@A, Pid , Rid , Pos , ) ,
sys : : r u l e (@A, Rid , Pid , . . . , Goals ) ,
Pos == Goals .

/*Count the number of completed rules. */
ms10 rulesComplete (@A, Pid , a count<Rid>) :−

ruleComplete (@A, Pid , Rid ) .

/*Count the number of rules in a program. */
ms11 programRuleCount (@A, Pid , a count<Rid>) :−

programEvent (@A, Pid , . . . ) ,
sys : : r u l e (@A, Rid , Pid , . . . ) .

/*Count the number of adornments for a given magic predicate. */
ms12 countAdornments (@A, Pid , Name, a count<Sig>) :−

magicPred (@A, Pid , Name, S ig ) .

/*Commit a magic predicate iff it has a unique adornment. */
ms13 commitMagicPred (@A, Pid , Name, Sig , f i d g e n ( ) ) :−

programRuleCount (@A, Pid , RuleCount ) ,
ru lesComplete (@A, Pid , RuleCount ) ,
countAdornments (@A, Pid , Name, Count ) ,
magicPred (@A, Pid , Name, S ig ) ,
Count == 1 .

Figure 4.8: Detect completion of rule/goal traversal and check for unique binding
property.
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/*Create a rewriteRule tuple that contains identifiers for a new ruleand a corresponding head
predicate. */
ms14 rewr i t eRu le (@A, Pid , Rid , f i d g e n ( ) , f i d g e n ( ) , MagicName , S ig ) :−

commitMagicPred (@A, Pid , MagicName , Sig , Tid ) ,
sys : : r u l e (@A, Rid , Pid , Rid , HeadID , . . . ) ,
sys : : p r ed i c a t e (@A, HeadID , Rid , , PredName , . . . ) ,
f isMagicPredName (PredName , MagicPredName ) == true .

Figure 4.9: Signal the rewrite of the top level rule containing the given magic predi-
cate.

the actual rewrite phase. We now further describe the cases mentioned in Figure 4.3 in
a general fashion. Consider the following rule with k subgoals and a query predicate p

p :- G1, · · · , p, · · · , Gk.

The head and the ith subgoal both reference predicate p. Our magic-sets rules will
rewrite the above rule into the following rule cases.

1. case 1: mp(· · · ).

2. case 2: supi−1 :- mp, G1, · · · , Gi−1.

3. case 3: mp :- supi−1.

4. case 4: supi :- supi−1, p.

5. case 5: p :- supi, Gi+1, · · · , Gk.

These rule cases reference the original goals G# and head predicate p, along with new
magic (mp) and supplementary (sup#) predicates.

We now give a high level description of each case in order. The first is simply
a fact on the magic predicate mp, containing the constants mentioned in the query
predicate p. The second case creates a rule body containing the magic predicate mp

and the first i − 1 subgoals (prior to the p predicate position). The rule head for
this second case references the supplementary relation supi−1. The third case has the
supplementary predicate supi−1 feeding the magic predicatemp values, taken from the
SIP supi−1 bindings. The fourth case joins supi−1 with predicate p (the ith subgoal) to
supply the values for the supi head predicate. Finally, in the fifth case, we complete
the rule by joining supi with the remaining subgoals, and projecting that result onto
the original head predicate p. We now describe these steps declaratively.
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/*The event predicate for the new rule is the magic predicate, which through
sideways information passing will trigger the rule’s execution. */
ms15 sys : : p r ed i c a t e (@A, f i d g en ( ) , NewRid , f a l s e , MagicNameName , Tid ,

‘ ‘DELTA’ ’ , MagicSchema , 1) :−
r ewr i t eRu le (@A, Pid , Rid , NewRid , NewHead , MagicName , MagicSig ) ,
sup (@A, Pid , Rid , 0 , Name, Schema , Tid ) ,
MagicSchema := f p r o j e c t (MagicSig , Schema ) .

/*Initiate an iterator for the new magic predicate rewrite along a given rule.
The iteration begins at the goal predicate immediately following the event
predicate. */
ms16 r ew r i t e I t e r (@A, Pid , Rid , NewRid , NewHeadFid , 1 , 2) :−

r ewr i t eRu le (@A, Pid , Rid , NewRid , NewHeadFid , , ) .

Figure 4.10: Rule for initiating an iteration over the top level rule that is to be
rewritten.

Initialization

Figure 4.9 contains rule ms14, which initializes the rewrite phase from the magic
predicate reference contained in the commitMagicPred tuple 4. The rule derives a
rewriteRule tuple for each rule with a head predicate that matches an existing magic
predicate. The schema of rewriteRule contains attributes that hold new identifiers
for a new rule, and corresponding head predicate, that will handle case 3 and case
5, depending on a condition we defer for now.

The rewriteRule predicate is used in Figure 4.10 to create the magic predicate mp

in the event position (one) and to initiate a rewriteIter tuple. Rule ms15 concurrently
handles the magic predicate for cases 2 and 5, using the rule/goal graph information
for sup position 0. The next step is to walk down the list of subgoals in the original
rule body and copy each subgoal Gi that does not reference a magic predicate to the
new rule. Rule ms16 takes care of invoking this fact through a rewriteIter tuple with
the following information.

1. Location attribute.

2. Program identifier.

3. The original rule identifier.

4. A new rule identifier.

5. An identifier for the new rule’s head predicate.

6. The subgoal position relative to the original rule.

7. A position of the subgoal in the new rule.
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/*If goal node Gi is not a magic predicate then shift position to NewPos
in the new rule NewRid. */
ms17 sys : : p r ed i c a t e (@A, PredID , NewRid , NotIn , Name, Tid , ECA, Schema ,

NewPos) :−
r ew r i t e I t e r (@A, Pid , Rid , NewRid , NewHeadFid , RulePos , NewPos ) ,
sys : : p r ed i c a t e (@A, PredID , Rid , NotIn , Name, Tid , ECA, Schema ,

RulePos ) ,
not in magicPred (@A, Pid , Name, S ig ) .

/*Point assignment to the new rule (NewRid) in the new position (NewPos). */
ms18 sys : : a s s i gn (@A, Aid , NewRid , Var , Value , NewPos) :−

r ew r i t e I t e r (@A, Pid , Rid , NewRid , NewHeadFid , RulePos , NewPos ) ,
sys : : a s s i gn (@A, Aid , Rid , Var , Value , RulePos ) .

/*Point selection predicate to the new rule (NewRid) in the new position (NewPos). */
ms19 sys : : s e l e c t (@A, Sid , NewRid , Bool , NewPos) :−

r ew r i t e I t e r (@A, Pid , Rid , NewRid , NewHeadFid , RulePos , NewPos ) ,
sys : : s e l e c t (@A, Sid , Rid , Bool , RulePos ) .

Figure 4.11: Rule’s for moving subgoals in the top level rule the new rule undergoing
the rewrite.

The primary purpose of the rewriteIter is to reference the subgoals of the orig-
inal rule leading up to a predicate that references a magic predicate. These prior
subgoals need to be copied to the new rule. This is handled by the rules in Fig-
ure 4.11. Rule ms17 copies the predicate at position RulePos (starting at position 1)
in the original rule to position NewPos (starting at position 2, just after the “magic”
event predicate) in the new rule. Rules ms18 and ms19 simply copy EDB subgoals —
including assignment and selection predicates — in the old rule to the new rule.

Figure 4.12 contains two rules that will either move the positions referenced in the
current rewriteIter forward, or deduce a new break tuple. These two conditions are
based on the current subgoal at position RulePos, and whether it references a magic
predicate. If not, then rule ms20 advances the rewriteIter positions (both RulePos
and NewPos) by one. Otherwise, rule ms21 derives a break tuple that contains the
new identifiers associated the new rule.

Are we there yet?

We now need to consider whether we have completed the rewrite for a given target
rule, or not. This decision is based on the rule position referenced in the break tuple.
If at that position lies a magic subgoal, then we must finalize the rule for case 2, and
create the rules for case 3 and case 4. If it occurs after the last subgoal position then
we simply finalize the rule in case 5, which completes the rewrite for the given target

4The planner uses tuples in commitMagicPred to create the necessary magic predicate facts in
case 1.
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/*Continue the rewrite iter if the current goal node Pid is not a magic predicate. */
ms20 r ew r i t e I t e r (@A, Pid , Rid , NewRid , HeadFid , RulePos+1, NewPos+1) :−

r ew r i t e I t e r (@A, Pid , Rid , NewRid , HeadFid , RulePos , NewPos ) ,
sys : : p r ed i c a t e (@A, Pid , Rid , NotIn , Name, Tid , ECA, Schema ,

RulePos ) ,
not in magicPred (@A, Pid , Name, S ig ) .

/*The current goal node Pid is a magic predicate. Indicate where the break
occurs (RulePos) within the subgoals of the given rule Rid. */
ms21 break (@A, Pid , Rid , NewRid , NewHeadID , RulePos , NewPos) :−

r ew r i t e I t e r (@A, Pid , Rid , NewRid , NewHeadID , RulePos , NewPos ) ,
sys : : p r ed i c a t e (@A, Pid , Rid , , Name, , , Schema , RulePos ) ,
magicPred (@A, Pid , Name, S ig ) .

Figure 4.12: Given a particular subgoal Gi, these rules determine if the iteration
should continue to the next subgoal or if a break tuple should be deduced because
Gi represents a magic predicate.

rule. We consider here, the case when we arrive at a magic subgoal, and conclude
this section with a description of the final case.

Not yet

Recall that the rules in Figure 4.11 copy subgoals over to the new case 2 (or perhaps
the case 5) rule, as these subgoals are referenced by rewriteIter tuples. Furthermore,
rule ms15 in Figure 4.10 already created the mp predicate (set to the magic predicate)
in the event position of our new case 2 rule. Therefore, all that remains is for us to
deal with the final head predicate supi−1, in this case.

Figure 4.13 contains the rules that finalize case 2. Rule ms22 generates a sup case2

tuple if the RulePos does not exceed the number of terms in the rule body. In
rule ms23, we reference the supplementary predicate supi−1 in the head of the rule.
And finally in rule ms24, we commit this rule information to the rule relation, indi-
cating the relevant identifiers and the number of terms (NewPos) in it.

Figure 4.14 contains the rules that handle case 3. Similar to the previous rules,
we initiate this rewrite in rule ms25 if the RulePos refers to an actual subgoal, which
itself is implicitly referencing a magic predicate. Rule ms26 creates the magic predicate
mp head for our case 3 rule, while rule ms27 creates a reference to the supi−1 sup-
plementary predicate in the event position. We commit our case 3 rule in rule ms28,
which indicates that the new rule contains exactly two terms.

Figure 4.15 contains the rules that deal with case 4. The familiar rule ms29,
derives a sup case4 tuple, which contains new identifiers for the new rule and its
head predicate. The supi predicate information is obtained from the sup relations at
the RulePos position. This supplementary predicate will be the head predicate in
the case 4 rule, and it is created by rule ms30. We then come to rule ms31, which
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ms22 sup case2 (@A, Pid , Rid , NewRid , NewHeadID , RulePos , NewPos) :−
break (@A, Pid , Rid , NewRid , NewHeadID , RulePos , NewPos ) ,
sys : : r u l e (@A, Rid , Pid , Rid , . . . , Terms ) ,
RulePos < Terms .

/*Write predicate supi−1 to predicate relation in head position 0. */
ms23 sys : : p r ed i c a t e (@A, NewHeadFid , NewRid , f a l s e , SupName , SupTid ,

nu l l , Schema , 0) :−
sup case2 (@A, Pid , Rid , NewRid , NewHeadFid , RulePos , ) ,
sup (@A, Pid , Rid , SupPos , SupName , Schema , SupTid ) ,
SupPos == RulePos − 1 .

/*Commit this rule. */
ms24 sys : : r u l e (@A, NewRid , Pid , RuleName , NewHeadID , nu l l , f a l s e ,

NewPos) :−
sup case2 (@A, Pid , Rid , NewRid , NewHeadID , RulePos , NewPos ) ,
RName := ”SupRule” + Rid + RulePos .

Figure 4.13: Finalize case 2: supi−1:-supi−j, Gj, Gj+1, · · · , Gi−1.

/*Initiate this rewrite by inferring a sup case2 tuple with required information. */
ms25 sup case3 (@A, Pid , Rid , f i d g e n ( ) , f i d g e n ( ) , RulePos ) :−

break (@A, Pid , Rid , , , RulePos , NewPos ) ,
sys : : r u l e (@A, Rid , Pid , Rid , . . . , Terms ) ,
RulePos < Terms .

/*Create mp magic head predicate in the new rule. */
ms26 sys : : p r ed i c a t e (@A, NewHeadID , NewRid , f a l s e , MagicPredName , Tid ,

nu l l , MagicSchema , 0) :−
sup case3 (@A, Pid , Rid , NewRid , NewHeadID , RulePos ) ,
sup (@A, Pid , Rid , RulePos , Name, SupSchema , ) ,
SupPos == RulePos − 1$ ,
commitMagicPred (@A, Pid , Name, Sig , Tid ) ,
MagicSchema := f p r o j e c t ( Sig , SupSchema ) .

/*Create the supplementary predicate supi−1 (i == RulePos) in the new rule. */
ms27 sys : : p r ed i c a t e (@A, f i d g en ( ) , NewRid , f a l s e , Name, Tid ,

”DELTA” , Schema , 1) :−
sup case3 (@A, Pid , Rid , NewRid , , RulePos ) ,
sup (@A, Pid , Rid , SupPos , Name, Schema , Tid ) ,
SupPos == RulePos − 1 .

/*Commit the new rule with 3 terms. */
ms28 sys : : r u l e (@A, NewRid , Pid , RuleName , NewHeadID , nu l l , f a l s e , 2) :−

sup case3 (@A, Pid , Rid , NewRid , NewHeadID , RulePos ) ,
RuleName := ”MagicPredFi l l ” + Rid + Pos .

Figure 4.14: Create the rule for case 3: mp :- supi−1.
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/*Initiate this rewrite by inferring a sup case2 tuple with required information. */
ms29 sup case4 (@A, Pid , Rid , f i d g e n ( ) , f i d g e n ( ) , RulePos ) :−

break (@A, Pid , Rid , , , RulePos , NewPos ) ,
sys : : r u l e (@A, Rid , Pid , Rid , \ l dot s , Terms ) ,
RulePos < Terms .

/*Create supi (i == RulePos) head predicate in the new rule. */
ms30 sys : : p r ed i c a t e (@A, NewHeadID , NewRid , f a l s e , Name, Tid , nu l l ,

Schema , 0) :−
sup case4 (@A, Pid , Rid , NewRid , NewHeadID , RulePos ) ,
sup (@A, Pid , Rid , RulePos , Name, Schema , Tid ) ,

/*Create the supplementary predicate supi−1 (i == RulePos) in the new rule. */
ms31 sys : : p r ed i c a t e (@A, f i d g en ( ) , NewRid , f a l s e , Name, Tid , ”DELTA” ,

Schema , 1) :−
sup case4 (@A, Pid , Rid , NewRid , , RulePos ) ,
sup (@A, Pid , Rid , SupPos , Name, Schema , Tid ) ,
SupPos == RulePos − 1 .

/*Copy target rule subgoal Gi, which has a magic predicate mp, to the new rule. */
ms32 sys : : p r ed i c a t e (@A, f i d g en ( ) , NewRid , f a l s e , Name, Tid ,

”PROBE” , Schema , 2) :−
sup case4 (@A, Pid , Rid , NewRid , , RulePos ) ,
sys : : p r ed i c a t e (@A, Pid , Rid , , Name, Tid , , Schema , RulePos ) .

/*Commit the new rule with 3 terms. */
ms33 sys : : r u l e (@A, NewRid , Pid , RuleName , NewHeadID , nu l l , f a l s e , 3) :−

sup case4 (@A, Pid , Rid , NewRid , NewHeadID , RulePos ) ,
RuleName := ”MagicPredFi l l ” + Rid + Pos .

Figure 4.15: Create the rule for case 4: supi :- supi−1, Gi.
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/*Restart the rule rewrite process. The restart tuple contains identifiers
for the new rule identifier and its corresponding head predicate. */
ms34 r e s t a r t (@A, Pid , Rid , f i d g e n ( ) , f i d g e n ( ) , RulePos ) :−

break (@A, Pid , Rid , NewRid , HeadFid , RulePos , NewPos ) .
sys : : r u l e (@A, Rid , Pid , Rid , . . . , Terms ) ,
RulePos < Terms .

/*Create the event predicate for the rule in the next iteration that
references supplementary predicate supi. */
ms35 sys : : p r ed i c a t e (@A, f i d g en ( ) , NewRid , f a l s e , Name, Tid , ”DELTA” ,

Schema , 1) :−
r e s t a r t (@A, Pid , Rid , NewRid , HeadFid , RulePos ) ,
sup (@A, Pid , Rid , RulePos , Name, Schema , Tid ) .

/*Restart iterator by deducing a new rewriteIter tuple containing
the new identifiers (rule and head predicate) and new positions. */
ms36 r ew r i t e I t e r (@A, Pid , Rid , NewRid , HeadFid , RulePos+1, 2) :−

r e s t a r t (@A, Pid , Rid , NewRid , HeadFid , RulePos ) .

Figure 4.16: Rules for starting the next iteration after encountering a magic predicate
in the top level rule.

creates a reference to supplementary predicate supi−1 in the event position of the
body. The subgoal in the original rule at position RulePos is copied to the second
position by rule ms32. Finally, rule ms33 completes case 4 by deriving a rule tuple
with the appropriate information (i.e., 3 terms).

The rules in Figure 4.16 restart the rewrite traversal over the target rule. The
break tuple contains the position of the goal node that represents the magic predi-
cate. Rule ms34 derives a restart tuple at the position following the magic predicate
and creates a new rule and head predicate identifier (for the next case 2/5 rule).
Rule ms35 adds the supi (i == RulePos) supplementary predicate to the first posi-
tion of the new rule for the next iteration. And finally, rule ms36 generates a new
rewriteIter tuple with the new position (NewPos), starting at two since supi is
already at the event position 1.

Finally

Figure 4.17 contains the rules that handle case 5, which is similar to case 2. The
difference here is that we have reached the last term in the original rule. Therefore,
we need a finalizer rule, whose body already contains the previous supplementary
predicate and subsequent subgoals that do not refer to a magic predicate; all copied
during the rewriteIter traversal using rules ms17, ms18 and ms19. The head of this
new rule is given the original head predicate p, which we copy in rule ms38 by refer-
encing the original rule head predicate, through the original rule identifier Rid, and
predicate at position 0. Rule ms37 simply initiates these rules when the RulePos
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/*Create the group record that will contain the new rule identifier
and the new head predicate identifier. */
ms37 sup case5 (@A, Pid , Rid , NewRid , NewHeadID , NewPos) :−

break (@A, Pid , Rid , NewRid , NewHeadID , RulePos , NewPos ) ,
sys : : r u l e (@A, Rid , Pid , Rid , . . . , Terms ) ,
RulePos == Terms .

/*Copy the old head predicate to the new rule’s head predicate. */
ms38 sys : : p r ed i c a t e (@A, NewHeadID , NewRid , f a l s e , Name, Tid , nu l l ,

Schema , 0) :−
sup case5 (@A, Pid , Rid , NewRid , NewHeadID , ) ,
sys : : p r ed i c a t e (@A, , Rid , , Name, Tid , , Schema , Pos ) ,
Pos == 0 .

/*Commit the new Rule. */
ms39 sys : : r u l e (@A, NewRid , Pid , RuleName , NewHeadID , nu l l , f a l s e ,

NewPos) :−
sup case5 (@A, Pid , Rid , Pos , NewRid , NewHeadID , NewPos ) ,
RuleName := ”SupRuleGroup3” + Rid + Pos .

Figure 4.17: Create the rule for case 5: h :- supi, Gi+1, · · · , Gk. Since we have
already copied the body predicates to the new rule, we only need copy the head
predicate from the old rule to be the head of the new rule.

position is equal to the number of terms in the original rule. And finally, rule ms39

commits the new rule information.

4.2.3 Termination

The final step is to detect when the rewrite has completed. On completion, we
clean up all references to rewritten rules and update the program relation to signal
the completion. Since this rewrite spans an unknown number of dataflow fixpoints
(Chapter 2.3.1), we must detect the termination of this rewrite manually. Our ter-
mination rules are shown in Figure 4.18. Rule ms40 counts the number of rules that
need to be rewritten by counting the number of commitMagicPred tuples generated for
rules that contain such a predicate in the head position. Rule ms41 counts the num-
ber of rules that have been completely rewritten. This occurs when the rewriteIter

reaches the final rule term. A completion is derived when these two counts are equal
in rule ms42. Note that the rewriteCount is derived in the rule/goal graph construc-
tion phase, while completeCount is evaluated in the rewrite phase. As a result, the
derivations of these two counts are separated by a dataflow fixpoint boundary, which
means that the rewrite is complete when these counts are equal for a given program.
Rule ms43 performs some housekeeping on the rule relation, and rule ms44 returns
control to the StageScheduler.
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/*Count the number of rules that will be rewritten. */
ms40 rewriteCount (@A, Pid , a count<∗>) :−

commitMagicPred (@A, Pid , Name, . . . ) ,
sys : : r u l e (@A, Rid , Pid , Rid , HeadFid , . . . ) ,
sys : : p r ed i c a t e (@A, HeadFid , Rid , , Name, . . . ) .

/*Count the number of rules that have been rewritten. A rule
has been fully rewritten when the rewriteIter Pos is at
the last subgoal at position Goals. */
ms41 completeCount (@A, Pid , a count<∗>) :−

r ew r i t e I t e r (@A, Pid , Rid , Pos , . . . ) ,
sys : : r u l e (@A, Rid , Pid , Rid , . . . , Goals ) ,
Pos == Goals .

/*Since P2 does not support stratified Datalog we must manually detect
when the rewrite has completed. */
ms42 rewriteComplete (@A, Pid ) :−

rewriteCount (@A, Pid , Count ) ,
completeCount (@A, Pid , Count ) .

/*Cleanup all rules that were rewritten. */
ms43 d e l e t e sys : : r u l e (@A, Rid , Pid , Rid , . . . , Goals ) :−

r ew r i t e I t e r (@A, Pid , Rid , Pos , . . . ) ,
rewriteComplete (@A, Pid ) ,
sys : : r u l e (@A, Rid , Pid , Rid , . . . , Goals ) ,
Pos == Goals .

/*Signal the completion of this rewrite. */
ms44 sys : : program (@A, Pid , Name, Rewrite , ”magic−s e t s ” , Text , Msg ,

P2DL, Src ) :−
rewriteComplete (@A, Pid ) ,
sys : : program (@A, Pid , Name, Rewrite , Stage , Text , Msg , P2DL, Src ) .

Figure 4.18: Detect the termination of the magic-sets rewrite. On termination, clean
up old rule state and signal the completion of the rewrite.
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4.2.4 Magic-sets by example

We briefly summarize the high-level points of our two phases relative to its transfor-
mation of the path program (Figure 4.1 to Figure 4.3). The rule/goal graph for this
program was presented in Figure 4.4. We now focus on the final rewritten program,
which was shown in Figure 4.3.

A transitive closure over the rule/goal graph generates magic and supplementary
predicates specific to each “goal” vertex in the magicPred table. In the example, a
single adornment for the link and path goals. Since the path predicate is referenced
by the query predicate, it is given the magic predicate path magic. The path magic

predicate is inserted in the 1st position of all rules with the path predicate as the
rule head. The path magic predicate includes the bound variables (i.e., @X) from the
path head predicate relative to the path adornment (signature). In the example, the
adornment for path is bfff , which for both rules yields the magic path(@X) predicate.
Also supplementary predicates are created for rule positions prior to, and at, path
predicate subgoals. For example, sup r2 1(@X,Y,C1) is created for “rule” vertex r2,1
with the bound variables of the magic path and link subgoals.

Also during the second phase, the algorithm maintains the magic predicate rela-
tion, which was placed within the rewritten program. Any a priori known bindings
about the root goal vertex (e.g., from the user’s query) are placed in the magic rela-
tion. In the example, the fact magic path(‘‘node1’’) is put into the database from
the bindings in the path query. Also, any edges in the rule/goal graph that start from
a rule vertex and end at a goal vertex, with a unique adornment (i.e., upward arrows
in the recursive tree that constitutes the graph), are written as rules that generate
new magic tuples from new tuples of the rule node’s supplementary predicate. In the
example, rule r2 case3 adds more magic facts as more sup r2 1 tuples are produced.

4.3 Magic-sets in the Network

We conclude with an analysis of the magic-sets rewrite in a networked setting. What
is intuitively happening in Figure 4.3 is that the variable bindings in the query are
recursively translated into filtering magic and supplementary predicates. Since the
query is only looking for paths from “node1”, at first the magic fact in rule r1 case5

restricts single-hop paths created from links to only those that originate from “node1”
Similarly, in what used to be rule r2, link tuples are filtered according to the magic
predicate (in rule r2 case2), before being joined with existing path tuples to complete
the old rule r2. The reason rule r2 was split into the four rules is because the
supplementary result sup r2 1 is needed for adding extra bindings to the magic path

table (in rule r2 case3); this is because any variable binding that survives filtering
right before the path predicate in the body of the old rule r2 is also an interesting
binding for existing or future path tuples. If the original program had not been
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Figure 4.19: For each node (node ID on x axis), number of tuples received (top), sent
(middle), and locally generated (bottom) on the y axis.

recursive, then such recursive definitions of magic facts would not appear in the
rewritten program.

To understand the effects of this rewrite, we describe two experimental runs of our
program, before and after the magic-sets rewrite (both programs were also subjected
to the localization rewrite from Chapter 3.3 since they are distributed). The two
programs are executed in the simple link topology of Figure 4.2. Nodes are started
up one at a time in order of identifier, and the preloaded database (EDB) consists of
the links pictured. For each experiment we measure the number of tuples sent and
received by each node, as well as any path tuples constructed. The latter measure is
meant to convey “work” performed by the distributed program even in local compu-
tation that does not appear on the network (e.g., local tuple computations, storage,
and other dependent actions on those tuples).

Figure 4.19(a) shows the number of tuples that each node receives from the net-
work. The magic-sets rewritten program causes no more tuples to be received than
the original, and for most nodes significantly fewer when moving to nodes farther
away from the clique. That is because many paths that are generated in the original
program with destinations within the clique other than node node1 are pruned early
on and never transmitted all the way to the far end. Similarly, Figure 4.19(b) shows
the number of tuples each node transmits. Again, the magic-rewritten program does
a lot better. The two programs have similar tuple transmit/receive overheads for
nodes represents the number of tuples a node sends out over the network.

The inclusion of the magic-sets rewrite reduces the number of sends in all but
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one case (node10). We note here that the edges from node10 to node4 are directed.
As a result, node10 is the only node with no incoming links and is therefore never
burdened with network traffic other than its own. As a result, its transmit tuple
overhead is unaffected, since it already sends out no extraneous paths other than its
own path to other nodes. Finally, tuple storage is impacted beneficially by magic sets
everywhere (Figure 4.19(c)), since both path tuples received from the network, and
those generated locally for local consumption are pruned away by the rewrite.
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Chapter 5

Declarative Optimization

Previous chapters described the Evita Raced declarative architecture and its reuse
of the query executor in a stylized fashion to serve as the engine beneath the query
compilation process. This resulted in an economy of mechanism [80] not afforded
by earlier extensible optimizers (i.e., EXODUS [32], Starburst [75], Volcano [38],
OPT++ [52]). In Chapter 4, we presented our first optimization stage; the magic-
sets rewrite, which we declaratively expressed as a transitive closure over the rule/goal
graph of an Overlog program.

In this chapter we turn our attention to cost-based optimizations, which are com-
monly based on dynamic programming algorithms. We begin in Chapter 5.1 with a
short review of literature on extensible query optimizers, with further details described
in the two optimizations we discuss. Chapter 5.2 describes a dynamic programming
optimizer stage akin to that of System R. In Chapter 5.3, we present a declarative
version of the Cascades branch-and-bound optimizer, which is structured around a
dynamic programming algorithm called “memoization.” Based on our experience de-
scribed here, we believe that declarative metacompilation is a clean, architecturally
parsimonious way to build the next generation of extensible query optimizers for a
wide variety of emerging application domains, where the relevant optimizations are
likely to evolve over time.

5.1 Related Work

The pioneering work on extensible query optimizer architectures was done in the EX-
ODUS [32] and Starburst [59, 75] systems, which provided custom rule languages for
specifying plan transformations. The EXODUS optimizer generator used a forward-
chaining production rule language to iteratively transform existing query plans into
new ones. Follow-on work (Volcano [38] and Cascades [36]) exposed more interfaces
to make the search in this space of transformations more efficient. Starburst had two
rule-based optimization stages. The SQL Query Rewrite stage provided a production
rule execution engine, for “rules” that were written imperatively in C; it included a
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precedence ordering facility over those rules. The cost-based optimizer in Starburst
was more declarative, taking a grammar-based approach to specifying legal plans and
subplans.

While all of this work was rule-based and extensible, most of it only exposed in-
dividual plan transformations to extensibility; the actual search algorithms or trans-
formation orderings of EXODUS, Volcano, Cascades, and the Starburst cost-based
optimizer were confined to procedural code. By contrast, Evita Raced does not embed
a search algorithm, instead leaving that open to specification as needed. As we show
in Chapter 5.2, both the System R bottom-up strategy and the Cascades top-down
strategy naturally fit to a Datalog-based rule language.

Another interesting extensible query optimizer is Opt++ [51], which exploits the
object-oriented features of C++ to make an optimizer framework that was easy to
customize in a number of ways. A specific goal of Opt++ was to make the search
strategy extensible, enabling not only top-down vs. bottom-up state-space enumera-
tion, but also randomized search algorithms. Evita Raced embraces these additional
dimensions of extensibility introduced by Opt++, but provides them in a higher-level
declarative programming framework.

5.2 System R Optimization

The System R optimizer paper by Selinger, et al. is the canonical textbook framework
for database query optimization [82]. The paper laid out for the first time the notion
that query optimization can be decomposed into two basic parts: query plan cost
estimation and plan enumeration. While this algorithm is traditionally implemented
inside the heart of a database system via a traditional procedural programming lan-
guage, both of these tasks are naturally specified in a declarative query language. To
perform cost estimation, System R requires data statistics like relation cardinalities
and index selectivities, which can be packaged into a relational format, and thereby
accessible in the Overlog language.

We focus on the basic dynamic programming algorithm for the state-space enu-
meration at the heart of the System R optimizer. A sketch of the System R dynamic
program is given in Figure 5.1, which searches for an optimal plan from a set of
query predicates (PREDS). We focus here on the search strategy, which enumerates
query plans for increasingly-large subgoals of the query. It fills in a dynamic pro-
gramming table (i.e., bestplan array) with the best plans that cover a given number
of (relational algebra) predicates. Each entry in this table contains the set of lowest-
estimated-cost query plans among all plans producing an equivalent output relation
(i.e., plans composed of the same predicates), and among the plans that produce
an “interesting order.” If the plan produces tuples in an order that is relevant to a
later join condition, or an “group/order by” clause, then it is considered to be an
interesting order [82].

The optimize procedure in Figure 5.1 takes the set of predicates mentioned in
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def optimize (PREDS)

1: Let AM = ∅ be a set of single table access method plans
2: for all relations r ∈ PREDS do

3: AM = AM
�

access methods on r
4: end for

5:
6: GRPAM = GroupBy(f equivalent, AM)
7: GRPAM = GRPAM − {uninteresting ordered, suboptimal groups ∈ GRPAM}
8: bestplan[1] = ArgMin(f cost, GRPAM ) /* best plans of size 1, from each group */
9: BP = search (bestplan, PREDS, f sizeof(PREDS))
10: bp = ArgMin(f cost, BP ) /* best overall plan */
11:
12: if query contains a group by or order by clause then

13: bop = best ordered plan relative to the clause attributes
14: return Min(f sort?(bp), f sort?(bop)) /* Note: ignores hash grouping plans */
15: else

16: return bp
17: end if

end

/* Returns a set containing the best size k plans. */
def search (bestplan, PREDS, k)

1: if bestplan[k] = ∅ then

2: /* Get the set of size k − 1 best plans. */
3: BPk−1 = search (bestplan, PREDS, k − 1)
4: Let Pk = ∅ be a set of size k plans
5: for all plans bp ∈ BPk−1 do

6: for all predicates p ∈ PREDS /∈ bp do

7: Mk = all methods (e.g., join) that take plan bp (outer) and include p (inner)
8: Pk = Pk

�
Mk

9: end for

10: end for

11:
12: /* Group by equivalent plan, and retain optimal and interesting ordered plans. */
13: GRPk = GroupBy(f equivalent, Pk)
14: GRPk = GRPk − {uninteresting ordered, suboptimal groups ∈ GRPk}
15:
16: /* The set of size k best plans from each group in GRPk */
17: bestplan[k] = ArgMin(f cost, GRPk)
18: end if

19: return bestplan[k] /* The set of size k best plans */

end

Figure 5.1: Sketch of the System R optimizer algorithm. The optimize procedure
is called with all predicates mentioned in the query (PREDS), while the search

procedure enumerates the plan space (bottom-up). Each enumeration step generates
plans size k ∈ [1, . . . , |PREDS|], and stores the set of optimal plans in the bestplan
array.
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the query, and returns an optimal plan to the query. The search begins with plans
of size one, which consists of the access methods to any relations mentioned in the
query. Note that in P2 the initial plan (of size one) is the event predicate, which is
assigned to the rule by the delta rewrite (Chapter 3.2). The event predicate is used
to initialize the optimization described in Chapter 5.2.1, instead of the traditional
approach; shown here as the optimal table access methods. The search procedure
captures the essence of generating plans of size k, and pruning away those plans
that are not optimal, nor interesting. The optimize procedure makes the “top-level”
call to search, requesting the best plans that cover all predicates in the query. The
search returns a reference to this set of “top-level” optimal plans; including those
with interesting orders. If the query contains a group by or order by clause, then we
may require a further sorting operation 1 — the cost of which depends on the order
of the chosen optimal plan. In the absence of any ordering constraints, we simply
return the overall lowest-estimated-cost plan.

In the System R optimizer, the principle of optimality is assumed to hold: the
lowest-cost solution to some plan is constructed from the optimal solutions to sub-
plans. Thus dynamic programming can proceed in a “bottom-up” fashion. For a
given set of predicates (PREDS), the optimizer generates plans of size k terms by
appending a single (unused) term from PREDS to an optimal plan of size k − 1
terms, as shown in the loop of search procedure of Figure 5.1. There are a few ad-
ditional details that we have chosen to gloss over in the pseudocode. For instance,
avoid combining a k-way plan with a 1-way plan if there is no join condition between
them, unless all other predicates with join conditions have been used (i.e., postpone
Cartesian products). We handle this case in our Overlog rules by ensuring the cost of
a “cross-product” plan is greater than any other plan that contains joining attributes.

We now turn to the description of our Overlog rules for plan generation and con-
clude with our rules for best plan selection. Our declarative optimizer adds two new
tables (plan and bestPlan) to the Metacompiler Catalog. The plan table identifies a
join method for evaluating a subgoal as the “inner” relation. Each plan tuple contains
an identifier, which the bestPlan table uses to reference optimal plans. For a given
rule body term, the Planner stage generates a physical dataflow plan based on the
position and join method assigned in the relevant term relation (i.e., sys::predicate,
sys::assign and sys::select). Chapter 5.2.1 presents our System R rules for gener-
ating plans (plan tuples) from the predicates in the rule body. Our rules for selecting
a best plan are described in Chapter 5.2.2, which also includes a description of how we
estimate selectivities. We then conclude with our termination rules in Chapter 5.2.3.

5.2.1 Plan Generation

Figure 5.1 describes the System R algorithm in two phases; access method plan gener-
ation and plan enumeration for increasingly large subgoals. Recall from Chapter 3.2
that P2 converts a rule into an event-condition-action (ECA) form, where the event

1This pseudocode ignores hashing plans for group by.
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s r1 plan (@A, Pid , Rid , PlanID , Group , Sort , Schema , Card , Cost ) :−
systemr : : programEvent (@A, Pid , . . . ) ,
sys : : r u l e (@A, Pid , Rid , . . . ) ,
sys : : p r ed i c a t e (@A, Pid , Rid , PredID , . . . , Schema , Pos , . . . ) ,
Pos == 1 ,
PlanID := f c on s ( ‘ ‘ de l ta ’ ’ , PredID ) ,
Group := f c on s (PredID , nu l l ) ,
Sort := nul l ,
Card := 1 , Cost := 1 .

Figure 5.2: Plan seed rule.

predicate represents a stream of tuples representing side-affect actions (i.e., insert and
delete) to the reference table. As a consequence of this dataflow design, our first phase
simply generates a plan that listens for such event tuples. The reader can assume the
delta rewrite stage executes before the System R optimizer stage, and that the delta
predicate is in the first rule position.

Figure 5.2 contains the single rule that creates an initial plan, from each rule in
the program, using the delta predicate. A plan tuple represents a query plan for a
given rule, and the plan’s size reflects the number of term identifiers covered in the
Group variable (i.e., the number of leaves in the plan tree). The optimizer listens on
the systemr::programEvent event stream in rule sr1, which initiates the optimization
process. The systemr::programEvent tuple is joined with the sys::rule table along
the Pid (program identifier) variable to obtain the set of rules defined in the input
program. This result set of rule tuples is joined with the sys::predicate table along
the Rid (rule identifier) variable; producing a tuple for each predicate term defined by
a given rule. The predicate term assigned to position 1 (Pos == 1) is by convention
the event predicate term. The result of this rule creates a plan of “size one” for
each rule in the input program. The Group variable is initialized to a list containing
the PredID of the event predicate and the PlanID is used to hold the actual plan
definition. As plan enumeration proceeds, we append new subgoal term identifiers to
the Group variable and physical operator descriptions (e.g., sort-merge join) to the
PlanID variable.

The Overlog optimizer defines a set of plan generation rules that together perform
the induction step of the dynamic program. These rules extend a best plan of k terms
with a (k+1)st, thus far unused term from the rule body. If the new term considered
is a table predicate, then the new plan (PlanID) is annotated with an appropriate
join method, which takes the optimal subplan and “joins it” with the predicate table.
The join methods supported by P2 include scanned and index-nested-loop join, as
well as sort-merge join. A plan tuple also carries with it an associated cost, which
only considers CPU costs since all P2 relations reside in memory. 2 We now turn

2Including other cost metrics (e.g., I/O) would entail modifying the cost estimations defined in
rules sr2, sr3, and sr4.

65



s r2 plan (@A, Pid , Rid , PlanID , Group , Sort , Schema , Card , Cost ) :−
bestPlan (@A, Pid , Rid , OPlanID ) ,
plan (@A, Pid , Rid , OPlanId , OGroup , OSort , OSchema , OCard , OCost ) ,
sys : : p r ed i c a t e (@A, Pid , Rid , PredID , . . . , Tid , PSchema , Pos , . . . ) ,
Pos > 1 ,
sys : : t ab l e (@A, Tid , . . . , TCard , Sort ) ,
f c o n t a i n s (PredID , OGroup) == f a l s e ,
PlanID := f c on s ( ‘ ‘ nested−loop ’ ’ , OPlanId , PredID ) ,
Group := f c on s (PredID , OGroup) ,
Schema := f jo inSchema (OSchema , PSchema ) ,
Sort := OSort ,
Card := f n l j c a r d (OCard , OSchema , TCard , PSchema ) ,
Cost := f n l j c o s t (OCost , OSchema , TCard , PSchema ) .

Figure 5.3: nested-loop join method.

to the description of the rules that generate plans for nested-loop-join, index nested-
loop-join, and sort-merge join methods.

All materialized table predicates appearing in the rule body are considered when
creating a nested-loop join plan, which is derived by rule sr2 in Figure 5.3. Rule sr2

is evaluated on an update to the bestPlan relation (described in Chapter 5.7), which
contains the plan identifier (OPlanID) used to select the reference (optimal) subplan
in the plan relation. The result of joining bestPlan with the plan table gives us the
“outer” plan of the nested-loop join method.

We extend the “outer” plan with an “inner” table predicate by joining with the
sys::predicate relation along the same rule identifier (Rid). The selection predicate
Pos > 1 ensures that we do not consider the rule head predicate (the zeroth term
by convention) or the delta predicate (the first term position). The outer plan tuple
contains a list (OGroup) of the term identifiers that already appear in it. This list
is used to prune results that reference inner table predicates already appearing in
the outer plan. This test happens in the f contains function, which checks for inner
table predicate membership in the outer plan term list.

The next step is to assign a cost to our nest-loop join plan. This cost depends
on cardinality estimates for the outer plan — already defined in the plan tuple —
and the inner relation. Cardinality estimates for the inner relation are given by
the sys::table predicate, which is joined with the sys::predicate in rule sr2 along
the T id (table identifier) variable. The functions f nlj cost and f nlj card consider
existing costs and cardinality estimates, as well as the (join) input schemas. If the
input schemas force a cross-product plan, then f nlj cost assigns an infinite cost,
which postpones this plan relative to other plans that contain joining attributes. We
also note that the result order that this plan produces is identical to the order of the
outer plan, which is referenced by the OSort variable.

An index-nested-loop join plan is generated by rule sr3 in Figure 5.4. Like rule sr2,
it joins the bestPlan, plan, sys::predicate, and sys::table predicates to get all
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s r3 plan (@A, Pid , Rid , PlanID , Group , Sort , Schema , Card , Cost ) :−
bestPlan (@A, Pid , Rid , OPlanID ) ,
plan (@A, Pid , Rid , OPlanId , OGroup , OSort , OSchema , OCard , OCost ) ,
sys : : p r ed i c a t e (@A, Pid , Rid , PredID , . . . , Tid , PSchema , Pos , . . . ) ,
Pos > 1 ,
sys : : t ab l e (@A, Tid , . . . , TCard , Sort ) ,
sys : : index (@A, I id , Tid , Key , Type , S e l e c t i v i t y ) ,
f c o n t a i n s (PredID , OGroup) == f a l s e ,
f indexMatch (OSchema , PSchema , Key ) ,
PlanID := f c on s ( ‘ ‘ index−loop ’ ’ , OPlanID , PredID , I i d ) ,
Group := f c on s (PredID , OGroup) ,
Sort := OSort ,
Card := OCard ∗ ( S e l e c t i v i t y ∗ TCard ) ,
Cost := OCost + Card .

Figure 5.4: index-nested-loop join method.

s r4 plan (@A, Pid , Rid , PlanID , Group , Sort , Schema , Card , Cost ) :−
bestPlan (@A, Pid , Rid , OPlanID ) ,
plan (@A, Pid , Rid , OPlanId , OGroup , OSort , OSchema , OCard , OCost ) ,
sys : : p r ed i c a t e (@A, Pid , Rid , PredID , . . . , Tid , PSchema , Pos , . . . ) ,
Pos > 1 ,
sys : : t ab l e (@A, Tid , . . . , TCard , TSort ) ,
f c o n t a i n s (PredID , OGroup) == f a l s e ,
JM := f s o r tP l an (OSort , OSchema , PSchema , TSort ) ,
PlanID := f c on s ( ‘ ‘ sor t−merge ’ ’ , OPlanID , PredID , JM) ,
Group := f c on s (PredID , OGroup) ,
Sort := f s o r t J o i nA t t r i b u t e s (OSort , OSchema ,

PSchema , TSort ) ,
Schema := f so r tMerge ( Sort , OSchema , PSchema ) ,
Card := OCard ∗ (TCard / 10) ,
Cost := f s o r tCo s t (JM, OCard , TCard ) .

Figure 5.5: sort-merge join method.

table predicates and cardinality estimates for predicates that do not appear in the
OGroup term list. That result is subsequently joined with the (additional) sys::index
predicate, which adds index information to the this result. The function f indexMatch
tests if the index can be used to perform the join using attributes from the outer plan
schema (OSchema) and attributes from the inner predicate table (PSchema). Any
resulting tuples are assigned (example) cardinality and cost estimates, which now use
the additional index selectivity information given by the Selectivity variable defined
by the sys::index predicate. We also support range predicates in our index-nested-
loop join plans but do not discuss them in detail.

Figure 5.5 shows the rule for generating a sort-merge join plan, which considers a
best plan and a new table predicate joined along some ordered attributes. The tuples
from the outer plan and the inner table predicate can be ordered by some attributes,
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s r5 plan (@A, Pid , Rid , PlanID , Group , Sort , Schema , Card , Cost ) :−
bestPlan (@A, Pid , Rid , OPlanID ) ,
plan (@A, Pid , Rid , OPlanId , OGroup , OSort , OSchema , OCard , OCost ) ,
sys : : s e l e c t (@A, Sid , Rid , BoolExpr , . . . ) ,
f c o n t a i n s ( Sid , OGroup) == f a l s e ,
f f i l t e r (OSchema , BoolExpr ) == true ,
PlanID := f c on s ( ‘ ‘ f i l t e r ’ ’ , OPlanID , Sid ) ,
Group := f c on s ( Sid , OGroup) ,
Sort := OSort ,
Schema := OSchema ,
Cost := OCost ,
Card := OCard / 3 .

Figure 5.6: selection predicate filter plan.

or not. We note that the TSort variable in the sys::table table identifies the ordered
attributes of the inner relation, while OSort refers to the order of the outer tuples.

The join method variable JM is given a value that indicates the need to presort
the inner relation, or not. In our implementation of the sort-merge join operator,
we decided not to sort the outer relation by first draining all of its tuples, sorting
them, and then merging with the sorted inner relation. 3 Instead, each outer tuple
is used to perform a binary search on the sorted inner relation, which returns any
tuples that join along the relevant attributes. If we know that the tuples from the
outer result will be given in order, then we can optimize this binary search to be like
a merge-join. 4 These costs are considered by the f sortCost function, which takes
the assigned join method and the input cardinalities and returns a plan cost. The
output of a sort-merge join plan includes the join attribute in the Sort variable.

Figure 5.6 contains a rule that creates a plan out of any selection predicates in
the rule body. A selection predicate plan is created when all variables mentioned
in its boolean expression (BoolExpr) are bound by the current outer plan schema
(OSchema). Applying a selection filter does not change the sorting attribute of the
outer plan, nor does it effect its schema. We assume the cost of a “filter” plan is
negligible, but could add a function that considers certain operational costs. Fur-
thermore, we use a generic cardinality estimation here but could associate meta-data
(e.g., attribute distributions and min/max values) with the plan relation that would
tune this estimator.

5.2.2 Best plan selection

Figure 5.7 shows the rules that select the best plan from a set of equivalent plans, in
terms of the output they produce and the order in which it comes. The bestGroupCost

3This would have added significant complexity to the P2 dataflow architecture, which is optimized
for tuple at a time processing.

4We maintain a cursor state on the inner relation that tells us where the last join match occurred.
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s r6 bestGroupCost (@A, Pid , Rid , Group , a min<Cost>) :−
plan (@A, Pid , Rid , PlanID , Group , . . . , Cost ) .

s r7 bestOrderCost (@A, Pid , Rid , Group , Sort , a min<Cost>) :−
i n t e r e s t i n gOrde r (@A, Pid , Rid , PlanID ) ,
plan (@A, Pid , Rid , PlanID , Group , Sort , . . . , Cost ) .

s r8 i n t e r e s t i n gOrde r (@A, Pid , Rid , PlanID ) :−
plan (@A, Pid , Rid , PlanID , . . . , PlanSchema , . . . , Cost ) ,
sys : : r u l e (@A, Pid , Rid , HeadPredID , . . . ) ,

/∗ The head pr ed i c a t e ∗/
sys : : p r ed i c a t e (@A, Pid , Rid , HeadPredID , . . . , HeadPredSchema , . . . ) ,

/∗ A ru l e body p r ed i c a t e ∗/
sys : : p r ed i c a t e (@A, Pid , Rid , BodyPredID , . . . , BodyPredSchema , . . . ) ,
HeadPredID != BodyPredID ,

/∗ p a r t i c i p a t e s in a l a t e r j o i n OR

is a p r e f i x o f a grouping a t t r i b u t e ∗/
( f c o n t a i n s (BodyPredID , PlanID ) == f a l s e &&
f c o n t a i n s ( f j o i n c ond (PlanSchema , BodyPredSchema ) , Sort ) ) | |

f i sGroupByPre f ix ( Sort , HeadPredSchema ) == true .

s r9 bestPlan (@A, Pid , Rid , PlanID ) :−
bestGroupCost (@A, Pid , Rid , Group , Cost ) ,
plan (@A, Pid , Rid , PlanID , Group , Sort , . . . , Cost ) ,

s r10 bestPlan (@A, Pid , Rid , PlanID ) :−
bestOrderCost (@A, Pid , Rid , Group , Sort , Cost ) ,
plan (@A, Pid , Rid , PlanID , Group , Sort , . . . , Cost ) ,

Figure 5.7: Best plan selection.
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predicate of rule sr6 identifies the plan with the minimum cost from the set of equiv-
alent plans, regardless of order. This is followed by rule sr7, which queries the plan

and interestingOrder relations for the minimum cost plans for each equivalent in-
teresting order. Recall that the Group variable references all the predicate identifiers
that participate in this plan. We use a set-based container object to hold these iden-
tifiers so that when a comparison is made between two such objects, it is based on
equivalent plans. Therefore, the purpose of the Group variable is to ensure that we
select the minimum cost plan among the set of equivalent plans. The purpose of
rule sr6 is to ensure we consider the costs associated with interesting ordered plans.

Rule sr8 determines if a plan, ordered by some given attributes, is interesting.
This occurs in P2 when the plan is sorted along attributes that are relevant to a later
join or are a prefix of grouping attributes. The body of this rule joins a plan tuple
with the predicate table, twice, to get the head predicate and a body predicate that
does not already exist in the plan. The final selection predicate in this rule checks the
necessary conditions, and if met, the rule will generate an interestingOrder tuple
referencing the given PlanID. The remaining two rules (sr9 and sr10) populate the
bestPlan table with the actual optimal plan information.

Improving Selectivity Estimation

For equality selection predications, our System R rules above support selectivity es-
timates using a uniform distribution estimator given by the index. For more precise
estimates and to handle range predicates, we have defined declarative rules that pro-
duce equiwidth histograms (ew-histograms); additional histogramming rules could be
added analogously. The creation of an ew-histogram is triggered by the installation of
a fact in a metadata table of the ew-histograms defined in the system. The metadata
table contains the parameters of the histogram (i.e., the table name, the attribute
position, and the number of buckets). For example, the fact

sys::ewhistogram::metadata(@LOCALHOST, ”pred”, 3, 10).

creates a ten bucket equi-width historgram on table pred for the attribute in the third
position.

Each fact in the ew-histogram table triggers Evita Raced rules that themselves
generate new rules to create ew-histograms (determining bucket boundaries based
on the bucket count and the min and max values of the attribute), and to maintain
bucket counts (performing a count aggregation over the table attributes, grouped
by the bucket boundaries). The compiler stage that generates ew-histograms in this
fashion consists of 23 rules (92 lines). The histogram data is stored in relational
format with each row corresponding to a single bucket. Exploiting these histograms
required an aggregation query to sum up appropriate bucket boundaries based on
selection predicates in the user query. The cost and selectivity estimators, in the
plan generation rules, were then modified to incorporate the result of these bucket
aggregates, and used to obtain density estimations for a given selection predicate
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s r11 r u l e s (@A, Pid , a count<Rid>) :−
systemr : : programEvent (@A, Pid , . . . ) ,
sys : : r u l e (@A, Pid , Rid , . . . ) .

s r12 completeRule (@A, Pid , Rid ) :−
bestPlan (@A, Pid , Rid , PlanID ) ,
sys : : r u l e (@A, Pid , Rid , . . . , Goals ) ,
f s i z e o f ( PlanID ) == Goals − 1 .

s r13 completeRuleCount (@A, Pid , a count<Rid>) :−
completeRule (@A, Pid , Rid ) .

s r14 sys : : program (@A, Pid , . . . , ‘ ‘ systemr ’ ’ , . . . ) :−
completeRuleCount (@A, Pid , Count ) ,
r u l e s (@A, Pid , Count ) ,
sys : : program (@A, Pid , . . . , Stage , . . . ) .

Figure 5.8: System R termination rules.

5.2.3 Termination

Figure 5.8 presents our rules for terminating the System R optimizer stage. Rule sr11
counts the number of rules in the target program. This count will be used to check
for our end condition, which occurs when all rules have been given a bestPlan tuple
with a plan size equal to the number of subgoals. Rule sr12 identifies the completion
of a rule based on this end condition, while rule sr13 counts the number of completed
rules for a given program. Finally, when the counts in completeRuleCount and rules

are equal (a familiar pattern), rule sr14 generates the termination signal for a given
program by inserting a new tuple into the program program with the “systemr” stage
name.

5.3 Cascades Optimization

The bottom-up, dynamic programming search strategy described in Chapter 5.2 is a
natural fit to a Datalog-based rule language. One might think a top-down Cascades-
style optimization strategy [36] would be difficult to implement since Overlog, like
Datalog, is evaluated in a bottom-up fashion. This is partially true but still rela-
tively straightforward. Since the System R search strategy conforms to the Overlog
evaluation strategy, we did not need to write explicit rules for traversing through the
plan space. That is, the System R search strategy was implicitly implemented by
the Overlog bottom-up evaluation. A top-down search strategy, on the other hand,
requires extra logic to guide the search through the plan space in a top-down order.
The logic of a top-down search strategy follows a dynamic programming technique
called memoization, which turns out to be just as natural and intuitive in Overlog,
and therefore can be implemented in Evita Raced.
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The remainder of this chapter presents our implementation of the Cascades
branch-and-bound optimization in Overlog. Chapter 5.3.1 provides a short descrip-
tion of the Cascades algorithm, before describing our declarative rules that implement
the algorithm. Our rules are divided into three logical modules — search strategy
(Chapter 5.3.2), plan generation (Chapter 5.3.3) and winner selection (Chapter 5.3.4)
— that model a paper description [86]. Our rules for plan generation and winner se-
lection may remind the reader of the plan generation and best plan rules in the
previous System R discussion. However, the search strategy rules are unique to this
optimization stage, and will therefore be the focus our attention.

5.3.1 Overview

Our description of the Cascades optimizer follows the notation of Shapiro, et al. [86].
Cascades’ plans are classified into groups, which is an equivalence class of expressions
(i.e., predicates) that produce the same result. During the optimization, each group
(e.g., [ABC] consisting of table predicates A, B, and C) represents a container to
physical plans (e.g., {[AB] sort-merge-join [C]}, {[B] nested-loop-join [AC]}, . . . )
over subexpressions in that group. In order to keep the search space small, a group
only references top-level physical plans through multiexpressions, which are plan ex-
pressions that restrict the input of operators to subgroups. For example, group [ABC]
references the multiexpression {[AB] sort-merge-join [C]}, whose sort-merge-join

operator takes groups [AB] and [C] as input, instead of the (possibly many) individ-
ual plans within these subgroups. Associated with each group is a winner’s circle,
which identifies the optimal plan within a given group, and will be the plan chosen
to represent the group, referenced by top-level multiexpressions.

At a high-level, the branch-and-bound algorithm that drives the Cascades opti-
mizer performs the following actions. The search strategy generates groups in a top-
down order, and within each group it performs a bottom-up search for the cheapest
multiexpression, which is called the winner. The top-down order follows a depth-first
search over the space of multiexpressions, where a particular branch (multiexpression)
is fully explored before considering another. An upper bound, initialized to ∞, is as-
signed to each group. The upper bound is updated as new (cheaper) multiexpressions
for the given group are discovered. The group bound is carried down each branch
of the depth-first search. A multiexpression is pruned if its cost exceeds the group
bound. The optimization terminates when the root group (containing all expressions
in the query) has been fully explored, and a winner chosen. In the discussion that
follows, when we indicate a plan we mean a multiexpression within a group.

5.3.2 Search strategy

The optimization begins when the root group (e.g., [ABC]) is inserted into the
group table, and a branch tuple is created to initiate a depth-first traversal over
the plan space. This is initiated by rules bb1 and bb2 in Figure 5.9 after the
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/∗ I n i t i a l i z e the top− l e v e l group ∗/
bb1 groupSeed (@A, Rid , a l i s t <PredID>, a l i s t <Schema>) :−

cascades : : programEvent (@A, Pid , . . . ) ,
sys : : p r ed i c a t e (@A, Pid , Rid , PredID , . . . , Schema , Pos , . . . ) ,
Pos > 0 . // Exclude the head p r ed i c a t e

bb2 group (@A, Rid , GroupID , PredList , SchemaList ) :−
groupSeed (@A, Rid , PredList , SchemaList ) ,
GroupID := f mkGroupID ( PredList ) .

/∗ I n i t i a l i z e a new branch and bound on the g iven group . ∗/
bb3 branch (@A, Rid , GroupID , Pos , Bound) :−

group (@A, Rid , GroupID , PredList , SchemaList ) ,
Pos := 0 ,
Bound := i n f i n i t y .

/∗ Subgroup with a l l p r ed i c a t e s except p o s i t i o n Pos ∗/
bb4 group (@A, Rid , SubGroupID , SubPredList , SubSchemaList ) :−

branch (@A, Rid , GroupID , Pos , Bound ) ,
group (@A, Rid , GroupID , PredList , SchemaList ) ,
Pos < f s i z e o f ( PredList ) ,
SubPredList := f r ema inder ( PredList , Pos ) ,
SubSchemaList := f r ema inder ( SchemaList , Pos ) ,
SubGroupID := f mkGroupID ( SubPredList ) .

/∗ Subgroup with only the p r ed i c a t e at p o s i t i o n Pos ∗/
bb5 group (@A, Rid , SubGroupID , SubPredList , SubSchemaList ) :−

branch (@A, Rid , GroupID , Pos , Bound ) ,
group (@A, Rid , GroupID , PredList , SchemaList ) ,
Pos < f s i z e o f ( PredList ) ,
SubPredList := f g e t ( PredList , Pos ) ,
SubSchemaList := f g e t ( SchemaList , Pos ) ,
SubGroupID := f mkGroupID ( SubPredList ) .

/∗ Move the branch po s i t i o n forward when the branch group i s complete . ∗/
bb6 branch (@A, Rid , GroupID , Pos+1, Bound) :−

branchComplete (@A, Rid , GroupID , Pos , Bound ) .

Figure 5.9: Cascades top-down search strategy rules.
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cascades::programEvent tuple is received. Rule bb1 aggregates lists (not sets) of
predicate identifiers and schemas, for each rule in the program. Rule bb2 converts
groupSeed tuples to group tuples by including a GroupID variable, which is initialized
to a set-based object containing the identifiers in the PredList variable.

Rule bb3 triggers on an update to the group relation, creating a branch tuple with
the given group identifier, an initial branch position, and an initial group bound (∞).
Rules bb4 and bb5 create new subgroups; first (bb4) by excluding the predicate at the
given branch position Pos, and second (bb5) by including just that branch position’s
predicate. As an aside, these two rules would need to be modified in order to consider
“bushy” plans. As we will see in Chapter 5.3.3, branch tuples are used for generating
plan tuples. Here, we must ensure that the plan enumeration does not update the
branch position until all plans relevant to that position have been discovered. We
detect this condition in rule bb6 with the branchComplete predicate: described in
Chapter 5.3.4.

5.3.3 Plan Generation

Figure 5.10 presents two rules for generating plan tuples relevant to a particular
branch position. Rule bp7 handles the case when a single predicate identifier is ref-
erenced in the GroupID value. The plan in this case is a streaming delta predicate,
which is placed in the first position of the rule body.

Rule bp8 generates a nested-loop join plan using a “winner” plan as the outer and
a single table predicate as the inner. The winner relation (described in Chapter 5.3.4)
identifies the best plans — including interesting orders — for a given group. The rule
joins the winner predicate with the plan predicate to obtain an actual (best) plan. For
the inner predicate, we look for a branch containing a single predicate then, using the
sys::predicate and sys::table predicates, we obtain the desired inner information
(i.e., PredID, ISchema, and TCard variables). The parent branch is identified by
equating the GroupID to the combined child identifiers: given by OGroupID and
IGroupID. The parent branch provides the Bound variable, which is used here to
prune expensive plans. The final step in this rule creates the remaining variables
needed to project onto the plan predicate. Like our System R rules, we use the plan
identifier (PlanID) to hold the actual plan definition.

The rules that cover index-loop and sort-merge join methods trivially follow from
rule bb8 and the respective System R rules sr3 and sr4, so we elide their details. Like
the System R rules, we need to consider various properties of these join methods.
First, when considering an index-loop join, we include the index definition relevant
to the joining attributes. Second, for a sort-merge join, we ensure the join attributes
define the order of the inner relation — sorting if necessary — so that for each tuple in
the outer plan, we can perform a (possibly optimized) binary search on inner relation.
The plan cost depends on the ordering properties of the inputs and the plan output is
ordered by the join attributes. We also omit the rule that handles selection predicates,
which resembles rule sr5 in Figure 5.6.
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bp7 plan (@A, Rid , GroupID , PlanID , Schema , Sort , Card , Cost ) :−
branch (@A, Rid , GroupID , Pos , Bound ) ,
group (@A, Rid , GroupID , , SchemaList ) ,
f s i z e o f ( PredList ) == 1 ,
PlanID := f c on s ( ‘ ‘ de l ta ’ ’ , f g e t (GroupID ) ) ,
Schema := f mkSchema ( SchemaList ) ,
Sort := nul l ,
Card := 1 ,
Cost := 1 .

bp8 plan (@A, Rid , GroupID , PlanID , Schema , OSort , Card , Cost ) :−
/∗ In format ion a s s o c i a t ed with some winner subplan . ∗/
winner (@A, Rid , OGroupID , OPlanID ) ,
plan (@A, Rid , OGroupID , OPlanID , OSchema , OSort , OCard , OCost ) ,

/∗ Evaluate p r ed i c a t e s that belong to a branch o f s i z e one ∗/
branch (@A, Rid , IGroupID , , ) ,
f s i z e o f ( IGroupID ) == 1 , // conta in s a s i n g l e p r ed i c a t e
sys : : p r ed i c a t e (@A, Pid , Rid , PredID , . . . , Tid , ISchema , Pos , . . . ) ,
f g e t ( IGroupID ) == PredID ,
f e x i s t s (PredID , OGroupID) == f a l s e , // not part o f outer plan
sys : : t ab l e (@A, Tid , . . . , TCard , TSort ) ,

/∗ Find the parent branch ∗/
branch (@A, Rid , GroupID , Pos , Bound ) ,
f combine (OGroupID , IGroupID ) == GroupID ,

PlanId := f c on s ( ‘ ‘ nested−loop ’ ’ , OPlanID , PredID ) ,
Schema := f mkSchema (OSchema , ISchema ) ,
Card := f c a r d (OSchema , ISchema , OCard , TCard ) ,
Cost := f c o s t (OSchema , ISchema , OCost , OCard , TCard ) ,
Cost <= Bound .

Figure 5.10: Cascades plan generation rules for event predicates and nested-loop join
method.

75



5.3.4 Winner Selection

The rules in Figure 5.11 select winner plans from the plans generated for a given
group. We begin with rule bb9, which determines the cost of an optimal plan, for each
group, regardless of its order. Rule bb10 does the same but also considers interesting
orders. Rule bb11 is nearly identical to rule sr8; both determine the orders that are
interesting based on later grouping and joining attributes. Finally, rules bb12 and bb13

select winners based on the costs referenced by the bestGroupCost and bestOrderCost

predicates. Note that we only generate a winner plan after we have fully explored a
branch; the Pos == f sizeof(GroupID) predicate ensures this constraint. The need
for this explicit constraint is due to the lack of stratification support in P2.

Rule bb14 serves as a feedback loop to the search strategy rule bb6, which moves
the branch position forward by one after fully exploring the current branch. A branch
is fully explored when winners have been derived along both child branches. Rule bb14
detects this case with the f isChildBranch(...) function, which uses the PredList
and (branch) Pos variables associated with the parent group to evaluate the group
identifiers belonging to the two child winners. The rule also updates the branch
bound with the cost given in the bestGroupCost predicate, relative to the parent
branch identifier. We note that the rule bb9 is not predicated on the winner predicate
relative to the parent branch so it can be used to provide the latest best cost value.
Furthermore, a rule, similar to bb14, considers cost bounds from bestOrderCost by
ensuring the lowest overall cost is used to bound subsequent branches.

5.3.5 Termination

Figure 5.12 contains the four rules used to detect the termination condition of this
optimization stage. These rules resemble the System R termination rules in Fig-
ure 5.8. The first rule (bb15) counts the total number of rules in the target pro-
gram. Rules bb16 and bb17 count how many rules have completed, which occurs when
the branch cursor has moved beyond the last predicate. Some number of fixpoints
later, when the completeRuleCount reaches the total number of rules in the program,
rule bb18 terminates the optimization stage, and projects a new sys::program tuple
with the stage attribute set to “cascades.”
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/∗ Determine the bes t o v e r a l l c o s t f o r a g iven plan . ∗/
bb9 bestGroupCost (@A, Rid , GroupID , a min<Cost>) :−

plan (@A, Rid , GroupID , , , , , Cost ) .

/∗ Determine the bes t co s t plan f o r each ordered r e s u l t . ∗/
bb10 bestOrderCost (@A, Rid , GroupID , Sort , a min<Cost>) :−

plan (@A, Rid , GroupID , , , Sort , , ) ,
i n t e r e s t i n gOrde r (@A, Pid , Rid , PlanID ) .

/∗ I d e n t i f y i n t e r e s t i n g ordered plans . ∗/
bb11 i n t e r e s t i n gOrde r (@A, Pid , Rid , PlanID ) :−

plan (@A, Rid , GroupID , PlanID , Schema , Sort , , ) ,
sys : : r u l e (@A, Pid , Rid , HeadPredID , . . . ) ,
sys : : p r ed i c a t e (@A, Pid , Rid , HeadPredID , . . . , HeadPredSchema , . . . ) ,
sys : : p r ed i c a t e (@A, Pid , Rid , BodyPredID , . . . , BodyPredSchema , . . . ) ,
HeadPredID != BodyPredID ,
( f c o n t a i n s (BodyPredID , GroupID) == f a l s e &&
f c o n t a i n s ( f j o i n c ond (Schema , BodyPredSchema ) , Sort ) ) | |

f i sGroupByPre f ix ( Sort , HeadPredSchema ) == true .

/∗ Choose a winner based on the best o v e r a l l c o s t . ∗/
bb12 winner (@A, Rid , GroupID , PlanId ) :−

bestGroupCost (@A, Rid , GroupID , Cost ) ,
branch (@A, Rid , GroupID , Pos , ) ,
Pos == f s i z e o f (GroupID ) , // Ensures a f u l l y exp lored branch
plan (@A, Rid , GroupID , PlanID , . . . , Cost ) .

/∗ Choose a winner from each i n t e r e s t i n g ordered plans . ∗/
bb13 winner (@A, Rid , GroupID , PlanId ) :−

bestOrderCost (@A, Rid , GroupID , Sort , Cost ) ,
branch (@A, Rid , GroupID , Pos , ) ,
Pos == f s i z e o f (GroupID ) , // Ensures a f u l l y exp lored branch
plan (@A, Rid , GroupID , PlanID , , Sort , , Cost ) .

/∗ branchComplete : when both ch i l d branches have winners ∗/
bb14 branchComplete (@A, Rid , ParentGroupID , Pos , Bound) :−

winner (@A, Rid , ChildGroupID1 ) ,
winner (@A, Rid , ChildGroupID2 ) ,
branch (@A, Rid , ParentGroupID , Pos , Bound ) ,
group (@A, Rid , ParentGroupID , PredList , ) ,
f i sCh i ldBranch ( PredList , Pos , ChildGroupID1 , ChildGroupID2 ) ,
bestGroupCost (@A, Rid , ParentGroupID , Cost ) ,
Bound := Cost < OldBound ? Cost : OldBound .

Figure 5.11: Cascades winner selection rules.
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bb15 r u l e s (@A, Pid , a count<Rid>) :−
cascades : : programEvent (@A, Pid , . . . ) ,
sys : : r u l e (@A, Pid , Rid , . . . ) .

bb16 completeRule (@A, Pid , Rid ) :−
branch (@A, Rid , GroupID , Pos , ) ,
f s i z e o f (GroupID) == Pos .

bb17 completeRuleCount (@A, Pid , a count<Rid>) :−
completeRule (@A, Pid , Rid ) .

bb18 sys : : program (@A, Pid , . . . , ‘ ‘ cascades ’ ’ , . . . ) :−
completeRuleCount (@A, Pid , Count ) ,
r u l e s (@A, Pid , Count ) ,
sys : : program (@A, Pid , . . . , Stage , . . . ) .

Figure 5.12: Cascades termination rules.
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Chapter 6

Evita Raced: Declarative?

When we started this work, the vision of declaratively specified query optimization
was appealing thanks to its elegance and its promise of usability and maintainability.
Although we remain convinced on this front, our optimism was tempered by the
pragmatics of developing software within a continuously changing system prototype.
Here we reflect on some of the (hard) lessons we learned while conducting this research.

6.1 A Candid Reflection

P2’s notion of consecutive Datalog-style fixpoints, especially in networked environ-
ments, still had many rough edges, both on the design and on the engineering front.
Because deep down P2’s runtime is an event-driven execution engine, its basic unit of
atomicity was akin to a single iteration through a recursive query evaluation strategy
like seminäıve evaluation, generating a set of derived actions (tuples to be inserted,
deleted, transmitted remotely, or evaluated locally for further deduction) from a single
incoming event, and committing changes to the database atomically upon completion
of such a step [64]. P2’s Datalog-style fixpoints were implemented as sequences of
such single-event iterations. As a result, the system’s design shares both event-driven
and logic-style flavors, with some unresolved conflicts (e.g., stratified Datalog).

Second, as in most prototypes, the programmer interface was not polished. De-
bugging was difficult, especially since the logic language made it tough to understand
which value corresponded to which formal attribute in a long tuple of a dozen or
more attributes. Though concise, declaratively specified optimizations pack a punch
in terms of density of concepts, which only becomes deadlier due to the (otherwise
desirable) arbitrary order of rule execution. Certainly a better thought-out system
to debug declarative programs – optimizations, no less – would have made the job
easier. To be fair, however, our experience with building monolithic optimizers in
production database management systems in the past was not a great deal rosier. It
is hard to debug code when the output’s correctness (e.g., minimality of cost) is too
expensive to verify.
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Third, the evolution of the Overlog language had a long way to go. The P2
version of the language offered no modularity, making it tough to isolate and reuse
logically distinct components. It did have a rudimentary concrete type system, but
had poor support for structured types like matrices and lists. Overlog in P2 “cut
corners” on the proper set-orientation of Datalog; since program stratification was
not present in the system, dealing with streaming aggregates required us to resort to
imperative tricks like matching “counts”, computed in separate “dataflow fixpoints”,
to determine that state was ready to be finalized.

Beyond particular characteristics of P2, one hard lesson we learned was that ex-
tensibility and ease of use at the top often comes at the expense of complexity below
the extensibility layer. The tabularization of compiler state to enable declarative op-
timizations also meant that even imperative compiler stages such as our bootstrap
stages implemented in C++ had to use tables, foregoing their familiar interaction
with C++ data structures. Building glue libraries to ease this interaction might have
relieved this pain.

Nevertheless, despite these complaints, we were able to get all of our desired
optimizations expressed in Overlog in a highly compact way, as promised by the
various earlier papers on P2. By contrast, the initial version of P2 had no query
optimizations of interest beyond localization, which was really a requirement imposed
by the P2 dataflow architecture on rules containing distributed predicates.

Finally, the cyclic dataflow used for stage scheduling in Evita Raced (Section 3.1.2)
resembles the continuous query engine of TelegraphCQ, with our StageScheduler and
Demux elements working together to behave somewhat like the TelegraphCQ eddy
operator [22]. This connection occurred to us long after we developed our design,
but in retrospect the analogy is quite natural: Evita Raced stages are akin to Tele-
graphCQ’s “installed” continuous queries, and P2’s Overlog queries are akin to data
streaming into TelegraphCQ.

6.2 Conclusion

The Evita Raced metacompilation framework allows Overlog compilation tasks to be
written in Overlog and executed in the P2 runtime engine. It provides significant
extensibility via a relatively clean declarative language. Many of the tasks of query
optimization – dynamic programming, dependency-graph construction and analysis,
statistics gathering – appear to be well served by a recursive query language. The
notion of metacompilation also leads to a very tight implementation with significant
reuse of code needed for runtime processing.

Even with the caveats expressed in Chapter 6.1, we are convinced that a declar-
ative metacompiler is much easier to program and extend than the monolithic query
optimizers we have worked on previously. We achieved a point where we could add
significant features (e.g., histograms, broadcast rewrites, stratification tests) in an
hour or two, where they would otherwise have taken days or weeks of work in a tra-
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ditional implementation. One surprising lesson of our work was the breadth of utility
afforded by the metacompilation framework. Although motivated by performance
optimizations, we have used Evita Raced for a number of unforeseen tasks. These in-
clude: automatically expanding user programs with instrumentation and monitoring
logic; generating pretty-printers for intermediate program forms; language wrappers
for secure networking functionality in the manner of SecLog [5]; stratification detec-
tors and other static code analysis. None of these are performance optimizations per
se, but all fit well within an extensible, declarative program manipulation framework.
More generally, we believe that metacompilation is a good design philosophy not only
for our work, but for the upcoming generation of declarative engines being proposed
in many fields.
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Chapter 7

BOOM: A Cloudy Beginning

The term “cloud computing” made its mainstream debut in 2007 when companies
like Amazon, Google, IBM and Yahoo!, as well as a number of universities, embarked
on a large scale cloud computing research project [60]. Conceptually, cloud computing
is similar to grid computing in terms of multiplexing massive computing resources
among a diverse set of applications. The primary difference with cloud computing,
over the grid computing model of the 1990s, is its accessibility to the outside world.
Today, companies like Amazon, Google and Yahoo! expose parts of their internal
computing resources (data centers) to outside developers, using a cost model that
is reminiscent of a traditional public utility (i.e., a pay-per-use model). The most
prominent example of cloud computing today is the Amazon Elastic Compute Cloud
(EC2), which allows users to rent virtual computers to run their applications (e.g.,
web-server, database).

A challenge moving forward is identifying the right developer API to expose for
these large distributed computing platforms. Although today’s cloud interfaces are
convenient for launching multiple independent instances of traditional single-node ser-
vices, writing truly distributed software remains a significant challenge. Distributed
applications still require a developer to orchestrate concurrent computation and com-
munication across many machines, in a manner that is robust to delays and failures.
Writing and debugging distributed system code is extremely difficult even for experi-
enced system architects, and drives away many creative software designers who might
otherwise have innovative uses for these massive computing platforms.

Although distributed programming remains hard today, one important subclass
is relatively well-understood by programmers: data-parallel computations expressed
using interfaces like MapReduce [28], Dryad [48], and SQL. These programming
models substantially raise the level of abstraction for programmers: they mask the
coordination of threads and events, and instead ask programmers to focus on applying
functional or logical expressions to collections of data. These expressions are then
auto-parallelized via a dataflow runtime that partitions and shuffles the data across
machines in the network. Although easy to learn, these programming models have
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traditionally been restricted to batch-oriented computations and data analysis tasks
— a rather specialized subset of distributed and parallel computing.

The majority of computations that run in the cloud today are derived from
MapReduce workloads. High-level languages like Pig [70], Hive [91], Scope [20]
and Jaql [18], all compile down to map and reduce operations. In many regards,
MapReduce is considered the programming interface for data-parallel workloads in
the “cloud” [10]. The importance of this new computing model led us to look at its
most popular open source implementation – Hadoop [71]. We identified parts of the
Hadoop system that we thought would benefit from a declarative perspective. We fo-
cused on the Hadoop Distributed File System (HDFS), and the Hadoop MapReduce
scheduler, which are large system components that support the distributed computa-
tion of MapReduce.

The one thing that was rather surprising to us was the code complexity
of these system components. The Hadoop MapReduce component (under the
org.apache.hadoop.mapred package) as of version 18.2 was around 61, 183 lines of
Java code. The sheer amount of code alone made it difficult to add new features;
delaying many requests for new scheduling policies i.e., LATE [104], fair share [43],
and capacity scheduler [42].

We explored the cause of such development complexities in the BOOM project;
by first developing a declarative implementation of Hadoop and then extending it
with new features i.e., alternative scheduling policies. The initial project members
included Peter Alvaro, Tyson Condie, Neil Conway, Joseph M. Hellerstein, William
Marczak, and Russell Sears. BOOM stands for the Berkeley Orders Of Magnitude,
because its purpose was to enable the development of systems that were orders of
magnitude bigger than the current status quo, with orders of magnitude less effort
than traditional programming methodologies. As a first step in this direction, we
investigated the use of a declarative language for implementing scheduling policies in
Hadoop. The Hadoop scheduler assigns work to system components based on some
policy (e.g., First-Come-First-Served). In Chapter 9, we specify Hadoop scheduling
policies in Overlog and evaluate the resulting code through informal metrics — lines
of code and development time. As we have already witnessed in previous chapters,
Overlog has its own associated complexities, some of which we have addressed in a
new implementation of the language called JOL (Java Overlog Library): described in
Chapter 9.

The remainder of this thesis is organized as follows. Chapter 8 provides an
overview of MapReduce and its open source implementation Hadoop. We focus here
on the Hadoop scheduling component and batch-oriented processing dataflow im-
plemented by Hadoop version 18.2. Readers familiar with these topics can skip to
Chapter 9, where we describe BOOM-MR — an API-compliant reimplementation of
the Hadoop MapReduce scheduler written in the Overlog declarative language. The
resulting declarative scheduler models the (basic) First-Come-First-Served (a.k.a.,
FIFO) Hadoop scheduling policy in a few dozen lines of code, which took a few weeks
to implement. We extended this baseline Hadoop policy with the LATE speculation
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policy, by adding a mere five extra rules (12 lines of code) to our FIFO policy, which
required a few days of development time. In Chapter 10, we present a pipelined ver-
sion of the Hadoop MapReduce engine, where map and reduce operators no longer
need to complete before emitting output data. This extension to the MapReduce
model brings with it new scheduling requirements that we addressed in our declara-
tive scheduler implementation.
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Chapter 8

Hadoop MapReduce: Background

In this chapter, we review the MapReduce programming model [28] and the
Hadoop system [71] — an open-source software framework that supports data-
intensive distributed applications. We begin in Chapter 8.1 with the MapReduce
programming model, which is based on two operations: map and reduce. Chap-
ter 8.2 discusses the Hadoop implementation, which is comprised of a MapReduce
dataflow engine, inspired by Google’s MapReduce [28], and a distributed file system
that models the Google File System (GFS) [33]. Chapter 8.3 summarizes the re-
maining chapters of this thesis as it pertains to the background material described
here.

8.1 MapReduce Programming Model

MapReduce programmers expresses their computations as a series of jobs that process
collections of data in the form of key-value pairs . Each job consists of two stages:
first, a user-defined map function is applied to each input record to produce a list of
intermediate key-value pairs. Second, a user-defined reduce function is called on each
distinct key and list of associated values from the map output, and returns a list of
output values. The MapReduce framework automatically parallelizes the execution
of these functions and ensures fault tolerance.

Optionally, the user can supply a combiner function [28], which will be applied to
the intermediate results between the map and reduce steps. Combiners are similar
to reduce functions, except that they are not passed all the values for a given key:
instead, a combiner emits an output value that summarizes the input values it was
passed. Combiners are typically used to perform map-side “pre-aggregation,” which
reduces the amount of network traffic required between the map and reduce steps.
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public interface Mapper<K1, V1, K2, V2> {

void map(K1 key, V1 value, OutputCollector<K2, V2> output);

void close();
}

Figure 8.1: Map function interface (Hadoop version 18.2).

8.2 Hadoop Architecture

Hadoop is composed of Hadoop MapReduce, an implementation of MapReduce de-
signed for large clusters, and the Hadoop Distributed File System (HDFS), a file
system optimized for batch-oriented workloads such as MapReduce. In most Hadoop
jobs, HDFS is used to store both the input to the map step and the output of the re-
duce step. Note that HDFS is not used to store intermediate results (e.g., the output
of the map step): these are kept on each node’s local file system.

An Hadoop installation consists of a single master node and many worker nodes.
The master, called the JobTracker, is responsible for accepting jobs from clients,
dividing those jobs into tasks, and assigning those tasks to be executed by worker
nodes. Each worker runs a TaskTracker process that manages the execution of the
tasks currently assigned to that node. Each TaskTracker has a fixed number of slots
for executing tasks (two maps and two reduces by default). A heartbeat protocol
between each TaskTracker and the JobTracker is used to update the JobTracker’s
bookkeeping of the state of running tasks, and drive the scheduling of new tasks: if
the JobTracker identifies free TaskTracker slots, it will schedule further tasks on the
TaskTracker.

8.2.1 Map Task Execution

Each map task is assigned a portion of the input file called a split. By default, a split
contains a single HDFS block (64MB by default), so the total number of file blocks
determines the number of map tasks.

The execution of a map task is divided into two phases.

1. The map phase reads the task’s split from HDFS, parses it into records (key/-
value pairs), and applies the map function to each record.

2. After the map function has been applied to each input record, a commit phase
registers the final output with the TaskTracker, which then informs the Job-
Tracker that the task has finished executing.

Figure 8.1 contains the interface that must be implemented by user-defined map
functions. After the map function has been applied to each record in the split, the
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Figure 8.2: Map task index and data file format (2 partition/reduce case).

close method is invoked. The third argument to the map method specifies an Out-
putCollector instance, which accumulates the output records produced by the map
function. The output of the map step is consumed by the reduce step, so the Out-
putCollector stores map output in a format that is easy for reduce tasks to consume.
Intermediate keys are assigned to reducers by applying a partitioning function, so the
OutputCollector applies that function to each key produced by the map function, and
stores each record and partition number in an in-memory buffer. The OutputCollector
spills this buffer to disk when it reaches capacity.

A spill of the in-memory buffer involves first sorting the records in the buffer by
partition number and then by key. The buffer content is written to the local file
system as an index file and a data file (Figure 8.2). The index file points to the offset
of each partition in the data file. The data file contains only the records, which are
sorted by the key within each partition segment.

During the commit phase, the final output of the map task is generated by merging
all the spill files produced by this task into a single pair of data and index files. These
files are registered with the TaskTracker before the task completes. The TaskTracker
will read these files when servicing requests from reduce tasks.

8.2.2 Reduce Task Execution

The execution of a reduce task is divided into three phases.

1. The shuffle phase fetches the reduce task’s input data. Each reduce task is
assigned a partition of the key range produced by the map step, so the reduce
task must fetch the content of this partition from every map task’s output.
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public interface Reducer<K2, V2, K3, V3> {

void reduce(K2 key, Iterator<V2> values, OutputCollector<K3, V3> output);

void close();
}

Figure 8.3: Reduce function interface (Hadoop version 18.2).

2. The sort phase groups records with the same key together.

3. The reduce phase applies the user-defined reduce function to each key and cor-
responding list of values.

In the shuffle phase, a reduce task fetches data from each map task by issuing
HTTP requests to a configurable number of TaskTrackers at once (5 by default). The
JobTracker relays the location of every TaskTracker that hosts map output to every
TaskTracker that is executing a reduce task. Note that a reduce task cannot fetch
the output of a map task until the map has committed its final output to disk.

After receiving its partition from all map outputs, the reduce task enters the sort
phase. 1 The map output for each partition is already sorted by the reduce key.
Therefore, the reduce task simply merges these runs together to produce a single
run that is sorted by key. The task then enters the reduce phase, during which it
invokes the user-defined reduce function for each distinct key (in sorted order) and
associated list of values. The output of the reduce function is written to a temporary
location on HDFS. After the reduce function has been applied to each key in the
reduce task’s partition, the task’s HDFS output file is atomically renamed from its
temporary location to its final location.

In this design, the output of both map and reduce tasks is written to disk before it
can be consumed. This is particularly expensive for reduce tasks, because their output
is written to HDFS. Output materialization simplifies fault tolerance, because it
reduces the amount of state that must be restored to consistency after a node failure.
If any task (either map or reduce) fails, the JobTracker simply schedules a new task
to perform the same work as the failed task. Since a task never exports any data
other than its final answer, no further recovery steps are needed.

8.3 Summary

The MapReduce interface is a good example of capturing the minimum essentials
of an abstraction, making it easy to build many higher-order constructs (e.g., data
analysis [70], SQL [91], machine learning [31]) while allowing significant flexibility
in the system implementation. Fault-tolerance was an early part of the MapReduce

1Some pre-sorting work is done during the shuffle phase.
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system design, and one of its most attractive features. The fault-tolerance model is
predicated on the batch-oriented nature of MapReduce, allowing the recovery of a
task to simply be restarting it on some (possibly alternative) node. Since no state,
in the form of output data, is allowed to exit an unfinished task (map or reduce), no
further recovery actions are required.

Optimization at the MapReduce level often comes in the form of scheduling poli-
cies that primarily focus on job response time. The runtime of a MapReduce job is
determined by its slowest tasks. The slowest map task determines the finishing time
of the shuffle phase since reduce tasks are not able to enter the reduce phase until
they have received all the map outputs that belong to them. The slowest reduce task
determines the finishing time of the overall job since a job does not complete until
all reduce tasks complete. Speculation is a response-time optimization that executes
clones of tasks deemed to be slow. Alternative speculation policies for identifying
and speculatively scheduling these “straggler” tasks exist [28, 104], but there is no
consensus on a policy that works well for all jobs and cluster configurations.

In Chapter 9, we describe an implementation of the Hadoop MapReduce engine
in the Overlog language. Using our declarative version of Hadoop, we implemented
alternative scheduling policies in Overlog that closely resemble the (policy) pseudo-
code descriptions. In Chapter 10, we move from a batch-oriented execution model to a
pipelined model where tasks incrementally send their output. Pipelining enables two
new features in the context of MapReduce: online aggregation [45] and continuous
queries. We show that a pipelined implementation of MapReduce does not sacrifice
the original system interface or its ability to tolerate faults. A pipelined MapRe-
duce model adds scheduling alternatives that we explored through policies written in
Overlog.
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Chapter 9

Declarative Scheduling

The Berkeley Orders Of Magnitude (BOOM) project began with an experiment
in construction, by implementing a substantial piece of distributed software in a
data-centric, declarative style. Upon review of recent literature on data center in-
frastructure (e.g., [19, 33, 29, 28]), we observed that most of the complexity in these
systems were related to the management of various forms of asynchronously-updated
state, including sessions, protocols and storage. Although quite complex, few of these
systems involved intricate, uninterrupted sequences of computational steps. Hence,
we suspected that data center infrastructure might be a good initial litmus test for
our hypotheses about building distributed software.

We evaluated this hypotheses in BOOM Analytics: an API-compliant reimplemen-
tation of the HDFS distributed file system and the Hadoop MapReduce engine [7].
Our declarative versions of these two components were named BOOM-FS and BOOM-
MR, respectively. In writing BOOM Analytics, we preserved the Java API “skin” of
HDFS and Hadoop, but replaced complex internal state with relations, and imple-
mented key system logic with code written in a declarative language. In this thesis,
we focus on declarative scheduling (BOOM-MR), rather than BOOM-FS which was
led by other members of the BOOM team. However, we do include some BOOM-
FS results — showing its performance is on par with HDFS — to validate the JOL
implementation, which was a project within this thesis.

The remainder of this chapter is organized as follows. Chapter 9.1 describes a
new Java-based Overlog library, which we used to execute Overlog programs within
the (Java-based) Hadoop infrastructure. In Chapter 9.2, we discuss the BOOM-MR
scheduling harness; embedded in the JobTracker component of Hadoop. Chapter 9.2.1
reviews the scheduling state and protocol implemented by Hadoop version 18.2, which
we modeled in our declarative code. Chapter 9.2.2 captures the entities and relation-
ships of the Hadoop scheduler in four (catalog) tables. Using these tables, we describe
a scheduling policy in Chapter 9.2.3 that models the Hadoop FIFO policy. We then
extend these rules in Chapter 9.2.4 with the LATE policy for scheduling “speculative”
tasks. Chapter 9.3 evaluates the performance of jobs scheduled by our declarative
FIFO policy against those scheduled by the original (unmodified) Hadoop scheduler.
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Finally, Chapter 9.4 examines some of the related work and Chapter 9.5 concludes
with a summary of our experience with BOOM Analytics.

9.1 Java Overlog Library (JOL)

In previous chapters we witnessed P2’s lack of support for stratified Datalog forced
us to implement a number of imperative hacks, which often involved (event) ma-
nipulations of the underlying dataflow fixpoints. Most of these hacks were required
for detecting the termination of a group of rules, which would have been implic-
itly handled by imposing a natural stratum boundary (e.g., count aggregate). Our
workaround involved adding a number of conditions that detected stratum bound-
aries, and ensured that these “conditions” were evaluated in separate P2 dataflow
fixpoints. This was a hard lesson, which led us to develop an entirely new Overlog
implementation that supported stratified Datalog. We briefly describe this new Java
Overlog Library (JOL), which we used to implement the remaining Overlog programs
described in this thesis.

Like P2, JOL compiled Overlog programs into pipelined dataflow graphs of opera-
tors (similar to “elements” in the Click modular router [53]). JOL provided metapro-
gramming support akin to P2’s Evita Raced extension (Chapter 3): each Overlog
program is compiled into a representation that is captured in rows of tables. Pro-
gram testing, optimization and rewriting could be written concisely as metaprograms
in Overlog that manipulated those tables.

The JOL system matured when we targeted the Hadoop stack, which required
tight integration between Overlog and Java code. The latest version of JOL included
Java-based extensibility in the model of Postgres [90]. It supported Java classes as
abstract data types, allowing Java objects to be stored in fields of tuples, and Java
methods to be invoked on those fields from Overlog. JOL also allowed Java-based
aggregation functions to run on sets of column values, and supported Java table
functions: Java iterators producing tuples, which can be referenced in Overlog rules
as ordinary relations. We made significant use of these features in BOOM Analytics;
using native Hadoop data structures as column types (Chapter 9.2.2), and integrating
with legacy Hadoop code (Chapters 9.2.3 and 10.4.1).

9.2 BOOM-MR: MapReduce Scheduler

In this section, we describe our declarative version of the Hadoop MapReduce sched-
uler, which we called BOOM-MR. Using BOOM-MR, we explored embedding a
data-centric rewrite of a non-trivial component into an existing procedural system.
MapReduce scheduling policies are one issue that has been treated in recent litera-
ture (e.g., [104, 103]). To enable credible work on MapReduce scheduling, we wanted
to remain true to the basic structure of the Hadoop MapReduce codebase, so we
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Name Description Relevant attributes

job Job definitions JobId, Priority, SubmitTime, Status, Job-
Conf

task Task definitions JobId, TaskId, Type, Partition, Status
taskAttempt Task instance JobId, TaskId, AttemptId, Progress, State,

Phase, Tracker, InputLoc, Start, Finish
taskTracker TaskTracker state Name, Hostname, State, MapCount, Re-

duceCount, MaxMap, MaxReduce

Table 9.1: BOOM-MR relations defining JobTracker state.

proceeded by understanding that code, mapping its core state into a relational rep-
resentation, and then writing Overlog rules to manage that state in the face of new
messages delivered by the existing Java APIs.

9.2.1 Hadoop MapReduce Scheduler

We briefly review the Hadoop scheduling logic that we modeled in Overlog. The
Hadoop architecture consists of a single master node called the JobTracker that man-
ages a number of worker nodes called TaskTrackers. A job is divided into a set of
map and reduce tasks. The JobTracker assigns tasks to worker nodes. Each map
task reads an input chunk from the distributed file system, runs a user-defined map
function, and partitions output key/value pairs into hash buckets on the local disk.
Reduce tasks are created for each hash bucket. Each reduce task fetches the cor-
responding hash buckets from all mappers, sorts locally by key, runs a user-defined
reduce function and writes the results to the distributed file system.

Each TaskTracker has a fixed number of slots for executing tasks (two maps and
two reduces by default). A heartbeat protocol between each TaskTracker and the Job-
Tracker is used to update the JobTracker’s bookkeeping of the state of running tasks,
and drive the scheduling of new tasks: if the JobTracker identifies free TaskTracker
slots, it will schedule further tasks on the TaskTracker. Also, Hadoop will attempt
to schedule speculative tasks to reduce a job’s response time if it detects “straggler”
nodes [28].

9.2.2 Table-izing MapReduce

BOOM-MR is a port of the Hadoop JobTracker code to Overlog. Here, we identify
the key state maintained by the JobTracker. This includes both data structures to
track the ongoing status of the system and transient state in the form of messages sent
and received by the JobTracker. We captured this information in the four Overlog
relations shown in Table 9.1.

The job relation contains a single row for each job submitted to the JobTracker.
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In addition to some basic metadata, each job tuple contains an attribute called the
JobConf , which holds a Java object constructed by legacy Hadoop code. This object
captures the configuration parameters that pertain to a single MapReduce job. The
task relation identifies each task within a job using attributes that specify the task
type (map or reduce), the input “partition” (a chunk for map tasks, a bucket for
reduce tasks), and the current running status.

A task may be attempted more than once, due to speculation or if the initial
execution attempt failed. The taskAttempt relation maintains the state of each such
attempt (one per row). In addition to a progress percentage and a state (running/-
completed), we maintain a task phase i.e., reduce tasks can be in any one of three
phases: copy, sort, or reduce. The Tracker attribute identifies the TaskTracker as-
signed to execute the task attempt. Map tasks also need a record containing the
location of their input data, which is given by InputLoc.

The taskTracker relation identifies each TaskTracker in the cluster with a unique
name. This relation includes attributes that provide the hostname, current running
state, and the TaskTracker workload. Specifically, the MapCount and ReduceCount
attributes specify the current number of map and reduce tasks that are executing
on the TaskTracker. The maximum number of map and reduce tasks that the Task-
Tracker is able to support is given by the MaxMap and MaxReduce attributes; this
is in keeping with the Hadoop implementation, which specifies a fixed number of slots
that can execute tasks.

9.2.3 MapReduce Scheduling in Overlog

MapReduce scheduling has been the subject of much recent research [103, 104, 6,
17, 87, 40], and one of our early motivations for building BOOM Analytics was to
make this research extremely easy to carry out. In our initial BOOM-MR prototype,
we implemented Hadoop’s default First-Come-First-Served (or FIFO) policy for task
scheduling, which we captured in 9 rules (96 lines). We then extended these rules
with the recently-proposed LATE policy [104] to evaluate both (a) the difficulty of
prototyping a new policy, and (b) the faithfulness of our Overlog-based execution to
that of Hadoop using two separate speculation algorithms.

First-Come-First-Served Scheduling

The FIFO policy schedules tasks from the job with the highest priority. A job’s
scheduling order is defined by its Priority followed by its SubmitT ime (see job

schema in Table 9.1). The tasks from the job that is first in the scheduling order are
scheduled before the tasks in any other jobs.

Figure 9.1 captures this constraint in three rules, which identify the job whose
tasks are considered first when TaskTracker slots are available. Rule s1 identifies
the job with the overall minimum priority, while rule s2 determines, for each job
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s1 minWait ingJobPrior ity ( a min<Pr i o r i t y >) :−
job ( JobId , Pr i o r i t y , Status , . . . ) ,
Status < JobStatus . FINISHED ;

s2 minWaitingJobPrioritySubmitTime ( Pr i o r i t y , a min<SubmitTime>) :−
job ( JobId , Pr i o r i t y , Status , SubmitTime , . . . ) ,
Status < JobStatus . FINISHED ;

s3 h i ghe s tP r i o r i t yJob ( JobId ) :−
minWait ingJobPrior i ty ( P r i o r i t y ) ,
minWaitingJobPrioritySubmitTime ( Pr i o r i t y , SubmitTime ) ,
job ( JobId , Pr i o r i t y , Status , SubmitTime , . . . ) ;

Figure 9.1: The highest priority job that still has unscheduled tasks (StartT ime < 0).

priority, what is the earliest submit time. Both rules s1 and s2 only consider jobs that
have unscheduled tasks, shown here by considering the Status < JobStatus.FINISHED

predicate. Rule s3 joins the result of rules s1 and s2 to identify the overall highest
priority job with unscheduled tasks. The highestPriorityJob predicate is used to
constrain task scheduling rules to only consider unscheduled tasks from the specified
job.

Scheduling individual tasks from the highest priority job occurs when a Task-
Tracker performs a heartbeat exchange with the JobTracker and has some number of
available map or reduce task slots. Tasks are scheduled based on slot availability; if a
task slot is available then schedule a task from the job with the highest priority. To
avoid data movement costs, the scheduling policy tries to schedule the map task close
to a machine that hosts its input data. Ideally, it schedules a map task whose input
resides on the same machine or rack. If no such option exists then an arbitrary map
task is scheduled, without considering other queued jobs. Concurrent to this work,
Zaharia et al. introduced Delay Scheduling [103], which delayed scheduling tasks on
machines that did not offer good locality. Their results achieved perfect locality —
all tasks scheduled close to the input data — and no task was delayed for more than
five seconds.

Returning to the default Hadoop policy, Figure 9.2 shows two rules that together
implement, a locality aware, Hadoop FIFO policy. When a TaskTracker heartbeat
is received, rule s4 assigns a locality metric to unscheduled tasks that belong to the
highest priority job. JOL supports the ability to add Java code at the end of a rule
body, delineated within brackets { ... }. This Java code executes last in the rule
body, and will only see those tuples that represent actual deductions. 1 In rule s4,
the bracketed Java code assigns a locality metric according to the proximity of the
heartbeat TaskTracker to the map input data.

The result of rule s4 is evaluated in rule s5, which schedules the map tasks whose
input resides closest to the heartbeat TaskTracker. The bottomK aggregate orders

1A useful feature for printf style debugging.
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/∗ Assign each task a l o c a l i t y s co r e on the g iven t r a ck e r . ∗/
s4 mapTaskLocality ( TaskId , Tracker , Loca l i t y ) :−

heartbeat ( Tracker , TrackerStatus , MapSlots , ReduceSlots ) ,
h i gh t e s tP r i o r i t y Job ( JobId ) ,
task ( JobId , TaskId , Type , , InputSp l i t s , StartTime , ) ,
StartTime < 0 , Type == ‘ ‘map ’ ’ ,
{

i f ( I npu tSp l i t s . conta in s ( TrackerStatus . getHost ( ) ) ) {
Loca l i t y := 1 ; // same machine

} e l s e i f ( I npu tSp l i t s . conta in s ( TrackerStatus . getRack ( ) ) {
Loca l i t y := 2 ; // same rack

} e l s e {
Loca l i t y := 3 ;

}
} ;

/∗ For each task t racker , l i s t the k best map task s to
schedule , where k == MapSlots . The r e s u l t o f t h i s
w i l l be added to the schedu le r e l a t i o n , which i s

returned to the TaskTracker . ∗/
s5 schedu le ( Tracker , bottomK<MapID, MapSlots>) :−

mapTaskLocality ( TaskId , Tracker , Loca l i t y ) ,
hear tbeat ( Tracker , TrackerStatus , MapSlots , ReduceSlots ) ,
TrackerStatus == TaskTrackerStatus .RUNNING,
MapSlots > 0 ,
MapID := new OrderedMapID(TaskId , Loca l i t y ) ;

Figure 9.2: Map task locality priority scheduler.
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the MapIDs from lowest to highest Locality and chooses the lowest K map tasks in
this order, not exceeding the number of available map slots (MapSlots). Each result
tuple from rule s5 is converted, through a few imperative steps in the Java language,
into a schedule action message that is returned to the TaskTracker in the RPC call
made to the JobTracker. The reduce task scheduling rule simply schedules reduces
tasks from the highest priority job based on the availability of reduce slots from the
heartbeat TaskTracker, as per stock Hadoop.

9.2.4 Task Speculation in Overlog

With the basic scheduling logic behind us, we turn now to the topic of scheduling
speculative tasks. The LATE policy presents a scheme for scheduling speculative
tasks based on straggler tasks [104]. There are two aspects to each policy: choosing
which tasks to speculatively re-execute, and choosing TaskTrackers to run those tasks.
Original Hadoop re-executes a task if its progress is more than 0.2 (on a scale of [0..1])
below the mean progress of similar tasks. LATE, on the other hand, chooses to re-
execute tasks via an estimated finish time metric that is based on the task’s progress
rate. Moreover, it avoids assigning speculative tasks to TaskTrackers that exhibit
slow performance executing similar tasks, in hopes of preventing further stragglers.

The LATE policy is specified in the paper [104] via three lines of pseudocode,
which makes use of three performance related statistics called SlowNodeThreshold,
SlowTaskThreshold and SpeculativeCap. The first two statistics correspond to the
25th percentiles of progress rates across TaskTrackers and across tasks, respectively.
The SpeculativeCap indicates the maximum number of speculative tasks allowed at
any given time, which is suggested to be set at 10% of the total available task slots.

We compute these thresholds via the five Overlog rules shown in Figure 9.3.
A task is only considered for speculation if its progress rate falls below the
SlowTaskThreshold in its given category: job identifier (JobID) and task type
(Type). Queries l1 and l2 maintain this threshold value for each category. Query
l1 determines the progress rate for a given task based on its current progress and
running time. Query l2 computes the SlowTaskThreshold, for each category, by
determining the lower 25th percentile of the progress rates.

The LATE policy ensures that speculative tasks execute on “fast” nodes by prun-
ing TaskTracker nodes whose rate of progress for a given task category fall below
some threshold. Queries l3 and l4 maintain this threshold value for each category.
The first query l3, computes the average progress that a given TaskTracker has made
for each task category and stores that result in the trackerPR table. Query l4 com-
putes the SlowNodeThreshold for each category by determining the 25th percentile
for each category of progress rates stored in the trackerPR table. Finally, query l5

counts the number of slots that can be used for task speculation. Integrating the
rules into BOOM-MR required two additional Overlog rules that 1) identify tasks to
speculatively re-execute, and 2) select an ideal TaskTracker(s) on which to execute
those tasks, all while obeying the SpeculativeCap value.
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/∗ Compute p rog r e s s r a t e per task ∗/
l 1 taskPR ( JobId , TaskId , Type , ProgressRate ) :−

task ( JobId , TaskId , Type , , , , Status ) ,
Status . s t a t e ( ) == RUNNING,
Time := Status . f i n i s h ( ) > 0 ? Status . f i n i s h ( ) :

java . lang .System . cu r r entT imeMi l l i s ( ) ,
ProgressRate := Status . p rog r e s s ( ) / (Time − Status . s t a r t ( ) ) ;

/∗ For each job , compute 25 th p c t i l e r a t e a c r o s s ta sk s ∗/
l 2 slowTaskThreshold ( JobId , Type , a p e r c e n t i l e <0.25 , PRate>) :−

taskPR ( JobId , TaskId , Type , PRate ) ;

/∗ Compute p rog r e s s r a t e per t r a ck e r ∗/
l 3 trackerPR ( Tracker , JobId , Type , a avg<PRate>) :−

task ( JobId , TaskId , Type , ) ,
taskAttempt ( JobId , TaskId , , Progress , State , Phase ,

Tracker , Start , F in i sh ) ,
State != FAILED,
Time := Fin i sh > 0 ? F in i sh : java . lang .System . cu r r entT imeMi l l i s ( ) ,
PRate := Progres s / (Time − Star t ) ;

/∗ For each job , compute 25 th p c t i l e r a t e a c r o s s a l l t r a c k e r s ∗/
l 4 slowNodeThreshold ( JobId , Type , a p e r c e n t i l e <0.25 , AvgPRate>) :−

trackerPR ( , JobId , Type , AvgPRate ) ;

/∗ Compute a v a i l a b l e map/ reduce s l o t s that can be used f o r
sp e cu l a t i on . ∗/

l 5 specu lat iveCap ( a sum<MapSlots>, a sum<ReduceSlots>) :−
taskTracker ( . . . MapCount , ReduceCount , MaxMap, MaxReduce ) ,
MapSlots := java . lang .Math . c e i l ( 0 . 1 ∗ (MaxMap − MapCount ) ) ,
ReduceSlots := java . lang .Math . c e i l ( 0 . 1 ∗ (MaxReduce − ReduceCount ) ) ;

Figure 9.3: Overlog to compute statistics for LATE.
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9.3 Evaluation

We now validate our declarative specification of both Hadoop’s default FIFO policy
and the LATE policy proposed by Zaharia et al. [104]. Our goals were both to
evaluate the difficulty of building a new policy, and to confirm the faithfulness of our
Overlog-based JobTracker to the Hadoop JobTracker when using a logically identical
scheduling policy and with the additional LATE policy.

We evaluated our Overlog policies using a 101-node virtual cluster on Amazon
EC2. One node executed the Hadoop JobTracker and the HDFS NameNode, while
the remaining 100 nodes served as “workers” for running the Hadoop TaskTrackers
and HDFS DataNodes. Each TaskTracker was configured to support up to two map
tasks and two reduce tasks simultaneously. The master node ran on a “high-CPU
extra large” EC2 instance with 7.2 GB of memory and 8 virtual cores. Our worker
nodes executed on “high-CPU medium” EC2 instances with 1.7 GB of memory and
2 virtual cores. Each virtual core is the equivalent of a 2007-era 2.5Ghz Intel Xeon
processor.

9.3.1 FIFO policy

While improved performance was not a goal of our work, we wanted to ensure that
the performance of BOOM Analytics was competitive with Hadoop. The workload
was a wordcount job on a 30 GB file, using 481 map tasks and 100 reduce tasks.

Figure 9.4 contains four graphs comparing the performance of different combi-
nations of Hadoop MapReduce, HDFS, BOOM-MR, and BOOM-FS. Each graph
reports a cumulative distribution of the elapsed time in seconds from job startup to
map or reduce task completion. The map tasks complete in three distinct “waves.”
This is because only 2 × 100 map tasks can be scheduled at once. Although all 100
reduce tasks can be scheduled immediately, no reduce task can finish until all maps
have been completed because each reduce task requires the output of all map tasks.

The lower-left graph describes the performance of Hadoop running on top of
HDFS, and hence serves as a baseline for the subsequent graphs. The upper-left
graph details BOOM-MR running over HDFS. This graph shows that map and re-
duce task durations under BOOM-MR are nearly identical to Hadoop 18.2. The
lower-right and upper-right graphs detail the performance of Hadoop MapReduce
and BOOM-MR running on top of BOOM-FS, respectively. BOOM-FS performance
is slightly slower than HDFS, but remains competitive.

9.3.2 LATE policy

We now compare the behavior of our LATE implementation with the results observed
by Zaharia et al. using Hadoop MapReduce. LATE focuses on how to improve job
completion time by reducing the impact of “straggler” tasks. To simulate stragglers,
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Figure 9.4: CDFs representing the elapsed time between job startup and task comple-
tion for both map and reduce tasks, for all combinations of Hadoop and BOOM-MR
over HDFS and BOOM-FS. In each graph, the horizontal axis is elapsed time in
seconds, and the vertical represents the percentage of tasks completed.
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Figure 9.5: CDF of reduce task duration (secs), with and without stragglers.

we artificially placed additional load on six nodes. We ran the same wordcount job
on 30 GB of data; using 481 map tasks and 400 reduce tasks, which produced two
distinct “waves” of reduce tasks. We ran each experiment five times, and report the
average over these runs.

Figure 9.5 shows the reduce task duration CDF for three different configurations.
The plot labeled “No Stragglers” represents normal load, while the “Stragglers” and
“Stragglers (LATE)” plots describe performance in the presence in stragglers using
the default FCFS policy and the LATE policy, respectively. We omit map task
durations, because adding artificial load had little effect on map task execution — it
just resulted in slightly slower growth from just below 100% to completion.

The 200 reduce tasks were scheduled concurrently with the map step. This first
wave of reduce tasks cannot enter the reduce phase until all the map tasks have
completed, which increased their duration, and resulted in the large runtime durations
indicated in the right portion of the graph. The second wave of 200 reduce tasks did
not experience this delay due to unfinished map work since these reduce tasks were
scheduled after all map tasks had finished. The second wave of reduce tasks are
reported in the left portion of the graph. Consequently, stragglers had less of an
impact on the second wave of reduce tasks since fewer resources (i.e., no map work)
were being consumed. Figure 9.5 shows this effect, and also demonstrates how the
LATE implementation in BOOM Analytics handles stragglers much more effectively
than the default Hadoop policy. This echoes the results reported by Zaharia et
al. [104]

9.4 Related Work

Declarative and data-centric languages have traditionally been considered useful in
very few domains, but things have changed substantially in recent years. MapRe-
duce [28] has popularized functional dataflow programming with new audiences in
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computing. Also, a surprising breadth of recent research projects have proposed and
prototyped declarative languages, including overlay networks [63], three-tier web ser-
vices [101], natural language processing [30], modular robotics [12], video games [97],
file system metadata analysis [41], and compiler analysis [55].

Most of the languages cited above are declarative in the same sense as SQL: they
are based in first-order logic. Some — notably MapReduce, but also SGL [97] —
are algebraic or dataflow languages, used to describe the composition of operators
that produce and consume sets or streams of data. Although arguably imperative,
they are far closer to logic languages than to traditional imperative languages like
Java or C, and are often amenable to set-oriented optimization techniques developed
for declarative languages [97]. Declarative and dataflow languages can also share
the same runtime, as demonstrated by recent integrations of MapReduce and SQL
in Hive [91], DryadLINQ [102], HadoopDB [6], and products from vendors such as
Greenplum and Aster.

Concurrent with our work, the Erlang language was used to implement a simple
MapReduce framework called Disco [68] and a transactional DHT called Scalaris with
Paxos support [81]. Philosophically, Erlang revolves around concurrent actors, rather
than data. A closer comparison of actor-oriented and data-centric design styles is
beyond the scope of this dissertation, but an interesting topic for future work.

9.5 Summary

The initial version of BOOM-MR required one person-month of development time and
an additional two person-months debugging and tuning BOOM-MR’s performance for
large jobs. The final version of BOOM-MR contained declarative specifications for
the core task scheduler (9 rules), the speculative task scheduler (5 rules), recovery
from failed tasks (3 rules), and maintenance of various job and task related statistics
(5 rules). In total, BOOM-MR consisted of 22 Overlog rules in 156 lines of code, and
1269 lines of Java. BOOM-MR was based on Hadoop version 18.2; we estimate that
we removed 6,573 lines of code (out of 88,863) from the org.apache.hadoop.mapred

Hadoop package.

In the end, we found that scheduling policies were a good fit for a declarative
language like Overlog. In retrospect, this is because scheduling can be decomposed
into two tasks: monitoring system state and applying policies for how to react to
state changes. Monitoring is well-handled by Overlog: we found that the statistics
about TaskTracker state required by the LATE policy are naturally realized as aggre-
gate functions, and JOL took care of automatically updating those statistics as new
messages from TaskTrackers arrived. In the next chapter, we will look at importing
statistics taken from the output of a MapReduce job that is continuously monitoring
machine and process level statistics. Once these near real-time monitoring statistics
have been imported into JOL, we can build some very interesting scheduling policies
around them.
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It is also unsurprisingly that a logic language should be well-suited to specifying
policy. We found the BOOM-MR scheduler much simpler to extend and modify
than the original Hadoop Java code, as demonstrated by our experience with LATE.
Informally, the Overlog code in BOOM-MR seems about as complex as it should be:
Hadoop’s MapReduce task coordination logic is a simple and clean design, and the
compactness of BOOM-MR reflects that simplicity appropriately. The extensibility
of BOOM-MR benefited us when we extended the MapReduce batch-oriented model
to one that pipelined data between operators (Chapter 10); supporting both online
aggregation [45] and stream processing [67] jobs.
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Chapter 10

MapReduce Online

MapReduce is typically applied to large batch-oriented computations that do
not require any real-time completion constraints. The Google MapReduce frame-
work [28] and open-source Hadoop system reinforce this usage model through a batch-
processing implementation strategy: the entire output of each map and reduce task
is materialized to a local file before it can be consumed by the next stage. Material-
ization allows for a simple and elegant checkpoint/restart fault-tolerance mechanism
that is critical in large deployments, which have a high probability of slowdowns or
failures at worker nodes. However, batch-processing is not a requirement for fault-
tolerance. Moreover, batch-processing prevents many online data processing strate-
gies [45, 4, 67, 22] and its aggressive materialization strategy can be costly in terms
of efficiency e.g., energy [23].

In this chapter, we propose an alternative MapReduce architecture in which in-
termediate data is pipelined between operators, while preserving the programming
interfaces and fault-tolerance properties of previous MapReduce frameworks. To val-
idate our design, we developed the Hadoop Online Prototype (HOP): a pipelined
version of Hadoop.1

Pipelining provides several important advantages to a MapReduce framework, but
also raises new design challenges. We highlight the potential benefits first:

• Since reducers begin processing data as soon as it is produced by mappers,
they can generate and refine an approximation of their final answer during
the course of execution. This technique, known as online aggregation [45], can
provide initial estimates of results several orders of magnitude faster than the
final result. We describe how we adapted online aggregation to our pipelined
MapReduce architecture in Chapter 10.2.

• Pipelining widens the domain of problems to which MapReduce can be applied.
In Chapter 10.3, we show how HOP can be used to support continuous queries:
MapReduce jobs that run continuously, accepting new data as it arrives and

1The source code for HOP can be downloaded from http://code.google.com/p/hop/
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analyzing it immediately. This allows MapReduce to be used for applications
such as event monitoring and stream processing.

• Pipelining delivers data to downstream operators more promptly, which can
increase opportunities for parallelism, improve utilization, and reduce response
time. A thorough performance study is a topic for future work; however, in
Chapter 10.1.4 we present some initial performance results which demonstrate
that pipelining can reduce job completion times by up to 25% in some scenarios.

We develop the design of HOP’s pipelining scheme in Chapter 10.1, keeping the
focus on traditional batch processing tasks. Pipelining raises several design chal-
lenges. First, Google’s attractively simple MapReduce fault-tolerance mechanism is
predicated on the materialization of intermediate state. In Chapter 10.1.3, we show
that fault-tolerance can coexist with pipelining, by allowing producers to periodically
ship data to consumers in parallel with data materialization. A second challenge
arises from the greedy communication implicit in pipelines, which is at odds with
batch-oriented optimizations supported by “combiners”: map-side code that reduces
network utilization by performing pre-aggregation before communication. We discuss
how the HOP design addresses this issue in Chapter 10.1.1. Finally, pipelining re-
quires that producers and consumers are co-scheduled intelligently. In Chapter 10.4.1,
we discuss some declarative scheduling policies that try to fill the pipeline early —
by scheduling downstream operators first — and enforce a complete pipeline for con-
tinuous queries.

The remaining portions of this chapter focus on applications of HOP and schedul-
ing policies related to those applications. In Chapter 10.2, we show how HOP can
support online aggregation for long-running jobs and illustrate the potential benefits
of that interface to MapReduce programmers. Chapter 10.3 describes our support
for continuous MapReduce jobs over data streams and demonstrate an example of
a near-real-time cluster monitoring application. In Chapter 10.4, we return to the
topic of scheduling to address the new challenges raised by these HOP applications.
Chapter 10.4.1 describes our port of the BOOM-MR declarative scheduler to HOP
and some new Overlog scheduling policies that deal with online aggregation and con-
tinuous jobs. Chapter 10.5 introduces a new speculation policy based on statistics
collected by a (continuous) MapReduce monitoring job described in Chapter 10.3.2.
Finally, Chapter 10.6 concludes with some related work.

10.1 Pipelined MapReduce

We begin with a description of our Hadoop extensions that support pipelining be-
tween tasks (Chapter 10.1.1) and jobs (Chapter 10.1.2). We describe how our design
supports fault-tolerance (Chapter 10.1.3) and compare the performance of HOP under
both pipelining and blocking execution modes (Chapter 10.1.4).
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10.1.1 Pipelining Within A Job

As described in Chapter 8.2.2, reduce tasks traditionally issue HTTP requests to pull
their input from each TaskTracker that hosted a map task belonging to the same
job. A TaskTracker is responsible for serving these HTTP requests, which could
occur long after the map task’s execution. This means that map task execution is
completely decoupled from reduce task execution. To support pipelining, we modified
the TaskTracker serving component to push data to reducers as it is produced by the
map tasks, while still maintaining the decoupling of these two steps. To give an
intuition for how this works, we begin by describing a straightforward pipelining
design, and then discuss the changes we had to make to achieve good performance.

Näıve Pipelining

We begin with a näıve implementation that sends data directly from map to reduce
tasks via a TCP socket. Immediately, this design couples the execution of map and
reduce task executions, forcing us to schedule all reduce tasks before any one map task.
Consequently, this design does not scale, most notably when there is not sufficient
reduce task slot capacity, but there are other ramifications that we discuss here before
converging on the true HOP design.

Recall, that when a client submits a new job to Hadoop, the JobTracker assigns
the map and reduce tasks associated with the job to the available TaskTracker slots.
For purposes of this discussion, we must assume that there are enough free slots to
assign all reduce tasks in a job. We modified Hadoop so that each reduce task contacts
every map task upon initiation of the job, and opens a TCP socket which will be used
to pipeline the output of the map function. As each map output record is produced,
the mapper determines which partition (reduce task) the record should be sent to,
and immediately sends it via the appropriate socket.

A reduce task accepts the pipelined data it receives from each map task and stores
it in an in-memory buffer, spilling sorted runs of the buffer to disk as needed. Once
the reduce task learns that every map task has completed, it performs a final merge
of all the sorted runs and applies the user-defined reduce function as normal.

Refinements

While the algorithm described above is straightforward, it suffers from several prac-
tical problems. First, it is possible that there will not be enough slots available to
schedule every task in a new job. Opening a socket between every map and reduce
task also requires a large number of TCP connections. A simple tweak to the näıve
design solves both problems: if a reduce task has not yet been scheduled, any map
tasks that produce records for that partition simply write them to disk. When the
map task completes, it registers the output it was not able to send with the host
TaskTracker serving component. Once the reduce task is assigned a slot, it can then
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pull the records from the map task’s host TaskTracker, as in regular Hadoop. To
reduce the number of concurrent TCP connections, each reducer can be configured
to pipeline data from a bounded number of mappers at once; the reducer will pull
data from the remaining map tasks in the traditional Hadoop manner.

Our initial pipelining implementation suffered from a second problem: the map
function was invoked by the same thread that wrote output records to the pipeline
sockets. This meant that if a network I/O operation blocked (e.g., because the reducer
was over-utilized), the mapper was prevented from doing useful work. Pipeline stalls
should not prevent a map task from making progress – especially since, once a task has
completed, it frees a TaskTracker slot to be used for other purposes. We solved this
problem by running the map function in a separate thread that stores its output in
an in-memory buffer, and then having another thread periodically send the contents
of the buffer to the connected reducers. 2

Granularity of Map Output

Another problem with the näıve design is that it eagerly sends each record as soon as
it is produced, which prevents the use of map-side combiners. Imagine a job where the
reduce key has few distinct values (e.g., gender), and the reduce applies an algebraic
aggregate function (e.g., count). As discussed in Chapter 8.1, combiners allow map-
side “pre-aggregation”: by applying a reduce-like function to each distinct key at the
mapper, network traffic can often be substantially reduced. Eagerly pipelining each
record as it is produced prevents the use of these map-side combiners.

Another related problem is that eager pipelining moves some of the sorting work
from the mapper to the reducer. Recall from Chapter 8.2.1, that in the blocking
architecture, map tasks generate sorted spill files: all the reduce task must do is
merge together the pre-sorted map output for each partition. In the näıve pipelining
design, map tasks send output records as they are generated, so a reducer (scheduled
early) must perform a full external sort. Because the number of map tasks typically
far exceeds the number of reduces [28], moving more work to the reducer increased
response time, as shown in our experiments (Chapter 10.1.4).

To avoid a heavy reduce task sort, instead of sending the buffer contents to re-
ducers directly, we wait for the buffer to grow to a threshold size. The mapper then
(quick) sorts the output by partition and reduce key, applies the combiner function,
and writes the buffer to disk using the Hadoop spill file format described in Fig-
ure 8.2. Next, we arranged for the TaskTracker serving component at each node to
handle pipelining data to reduce tasks. Map tasks register spill files with the Task-
Tracker via RPCs. 3 If the reducers are able to keep up with the production of map

2This code was based on the existing Hadoop SpillThread component, which is responsible for
writing map output to disk concurrently with the “map function.”

3We extended the existing RPC Hadoop interface to include information on individual spill files.
Having the spill files be in the same format allowed us to reuse much of the stock Hadoop serving
code i.e., I/O file formats/streams.
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outputs and the network is not a bottleneck, a spill file will be sent to a reducer soon
after it has been produced (in which case, the spill file is likely still resident in the
map machine’s kernel buffer cache). However, if a reducer begins to fall behind, the
number of unsent spill files will grow.

When a map task generates a new spill file, it first queries the TaskTracker for
the number of unsent spill files. If this number grows beyond a certain threshold (two
unsent spill files in our experiments), the map task does not immediately register the
new spill file with the TaskTracker. Instead, the mapper will accumulate multiple
spill files. Once the queue of unsent spill files falls below the threshold, the map task
merges and combines the accumulated spill files into a single file, and then resumes
registering its output with the TaskTracker. This simple flow control mechanism has
the effect of adaptively moving load from the reducer to the mapper or vice versa,
depending on which node is the current bottleneck.

A similar mechanism is also used to control how aggressively the combiner func-
tion is applied. The map task records the ratio between the input and output data
sizes whenever it invokes the combiner function. If the combiner is effective at reduc-
ing data volumes, the map task accumulates more spill files (and applies the com-
biner function to all of them) before registering that output with the TaskTracker for
pipelining.4

The connection between pipelining and adaptive query processing techniques has
been observed elsewhere (e.g., [13, 79]). The adaptive scheme outlined above is rel-
atively simple, but we believe that adapting to feedback along pipelines has the
potential to significantly improve the utilization of MapReduce clusters.

10.1.2 Pipelining Between Jobs

Many practical computations cannot be expressed as a single MapReduce job, and
the outputs of higher-level languages like Pig [70] typically involve multiple jobs. In
the traditional Hadoop architecture, the output of each job is written to HDFS in the
reduce step and then immediately read back from HDFS by the map step of the next
job. Furthermore, the JobTracker cannot schedule a consumer job until the producer
job has completed, because scheduling a map task requires knowing the HDFS block
locations of the map’s input split.

In our modified version of Hadoop, the reduce tasks of one job can optionally
pipeline their output directly to the map tasks of the next job, sidestepping the need
for expensive fault-tolerant storage in HDFS for what amounts to a temporary file.
Unfortunately, the computation of the reduce function from the previous job and the
map function of the next job cannot be overlapped: the final result of the reduce
step cannot be produced until all map tasks have completed, which prevents effective

4Our current prototype uses a simple heuristic: if the combiner reduces data volume by 1
k on

average, we wait until k spill files have accumulated before registering them with the TaskTracker.
A better heuristic would also account for the computational cost of applying the combiner function.
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pipelining. However, we describe later how online aggregation and continuous query
pipelines can publish “snapshot” outputs that can indeed pipeline between jobs.

10.1.3 Fault Tolerance

Our pipelined Hadoop implementation is robust to the failure of both map and re-
duce tasks. To recover from map task failures, we added bookkeeping to the reduce
task to record which map task produced each pipelined spill file. To simplify fault-
tolerance, the reducer treats the output of a pipelined map task as “tentative” until
the JobTracker informs the reducer that the map task has committed successfully.
The reducer can merge together spill files generated by the same uncommitted map-
per, but will not combine those spill files with the output of other map tasks until it
has been notified that the map task has committed. Thus, if a map task fails, each
reduce task can ignore any tentative spill files produced by the failed map attempt.
The JobTracker will take care of scheduling a new map task attempt, as in stock
Hadoop.

If a reduce task fails and a new copy of the task is started, the new reduce instance
must be sent all the input data that was sent to the failed reduce attempt. If map
tasks operated in a purely pipelined fashion and discarded their output after sending
it to a reducer, this would be difficult. Therefore, map tasks retain their output
data on the local disk for the complete job duration. This allows the map’s output
to be reproduced if any reduce tasks fail. For batch jobs, the key advantage of our
architecture is that reducers are not blocked waiting for the complete output of the
task to be written to disk.

Our technique for recovering from map task failure is straightforward, but places
a minor limit on the reducer’s ability to merge spill files. To avoid this, we envision
introducing a “checkpoint” concept: as a map task runs, it will periodically notify the
JobTracker that it has reached offset x in its input split. The JobTracker will notify
any connected reducers; map task output that was produced before offset x can then
be merged by reducers with other map task output as normal. To avoid duplicate
results, if the map task fails, the new map task attempt resumes reading its input at
offset x. This technique would also reduce the amount of redundant work done after
a map task failure or during speculative execution of “backup” tasks [28].

10.1.4 Performance Evaluation

A thorough performance comparison between pipelining and blocking is not the focus
of this work. However, as future work we plan to investigate a rule-based (e.g., Evita
Raced) optimizer for Hadoop MapReduce that considers pipelined plans in its search
strategy. Here, we demonstrate that pipelining can reduce job completion times in
some configurations and should be considered by any such optimizer.

We report performance using both large (512MB) and small (32MB) HDFS block
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sizes using a single workload (a wordcount job over randomly-generated text). Since
the words were generated using a uniform distribution, map-side combiners were inef-
fective for this workload. We performed all experiments using relatively small clusters
of Amazon EC2 nodes. We also did not consider performance in an environment where
multiple concurrent jobs are executing simultaneously.

Background and Configuration

Before diving into the performance experiments, it is important to further describe
the division of labor in a HOP job, which is broken into task phases. A map task
consists of two work phases: map and sort. Much of the work performed during the
job happens in the map phase, where the map function is applied to each record
in the input and subsequently sent to an output buffer. Once the entire input has
been processed, the map task enters the sort phase, where a final merge sort of
all intermediate spill files is performed before registering the final output with the
TaskTracker. The progress reported by a map task corresponds to the map phase,
which is overlapped with many in-memory record buffer sorts and subsequent spills
to local files.

A reduce task in HOP is divided into three work phases: shuffle, reduce, and
commit. In the shuffle phase, reduce tasks receive their portion of the output from
each map. In HOP, the shuffle phase consumes 75% of the overall reduce task progress
while the remaining 25% is allocated to the reduce and commit phase. 5 In the
shuffle phase, reduce tasks periodically perform a merge sort on the already received
map output. These intermediate merge sorts decrease the amount of sorting work
performed at the end of the shuffle phase. After receiving its portion of data from all
map tasks, the reduce task performs a final merge sort and enters the reduce phase.

By pushing work from map tasks to reduce tasks more aggressively, pipelining can
enable better overlapping of map and reduce computation, especially when the node
on which a reduce task is scheduled would otherwise be underutilized. However, when
reduce tasks are already the bottleneck, pipelining offers fewer performance benefits,
and may even hurt performance by placing additional load on the reduce nodes.

The sort phase in the map task minimizes the merging work that reduce tasks
must perform at the end of the shuffle phase. When pipelining is enabled, the sort
phase is avoided since map tasks have already sent some fraction of the spill files
to concurrently running reduce tasks. Therefore, pipelining increases the merging
workload placed on the reducer. The adaptive pipelining scheme described in Chap-
ter 10.1.1 attempts to ensure that reduce tasks are not overwhelmed with additional
load.

We used two Amazon EC2 clusters depending on the size of the experiment:

5The stock version of Hadoop divides the reduce progress evenly among the three phases. We
deviated from this approach because we wanted to focus more on the progress during the shuffle
phase.
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Figure 10.1: CDF of map and reduce task completion times for a 10GB wordcount
job using 20 map tasks and 5 reduce tasks (512MB block size). The total job runtimes
were 561 seconds for blocking and 462 seconds for pipelining.
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Figure 10.2: CDF of map and reduce task completion times for a 10GB wordcount job
using 20 map tasks and 20 reduce tasks (512MB block size). The total job runtimes
were 361 seconds for blocking and 290 seconds for pipelining.

“small” jobs used 10 worker nodes, while “large” jobs used 20. Each node was an
“extra large” EC2 instances with 15GB of memory and four virtual cores, each run-
ning at 2.4GHz with a 2GB L2 cache.

Small Job Results

Our first experiment focused on the performance of small jobs in an underutilized
cluster. We ran a 10GB wordcount with a 512MB block size, yielding 20 map tasks
(one per block). We used 10 worker nodes and configured each worker to execute at
most two map and two reduce tasks simultaneously. We ran several experiments to
compare the performance of blocking and pipelining using different numbers of reduce
tasks. For each experiment, we report the average progress over five separate runs.

Figure 10.1 reports the results of a job configured with five reduce tasks. A plateau
can be seen at 75% progress for both blocking and pipelining. At this point in the
job, all reduce tasks have completed the shuffle phase; the plateau is caused by the
time taken to perform a final merge of all map output before entering the reduce
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Figure 10.3: CDF of map and reduce task completion times for a 10GB wordcount
job using 20 map tasks and 1 reduce task (512MB block size). The total job runtimes
were 29 minutes for blocking and 34 minutes for pipelining.

phase. Notice that the plateau for the pipelining case is shorter. With pipelining,
reduce tasks receive map outputs much earlier and can begin sorting earlier, thereby
reducing the time required for the final merge.

Figure 10.2 reports the results with twenty reduce tasks. Using more reduce
tasks decreases the amount of merging that any one reduce task must perform, which
reduces the duration of the plateau at 75% progress. In the blocking case, the plateau
is practically gone. However, with pipelining we still see a small plateau at 75% that,
through further analysis using iostat, can be attributed to extra disk I/Os in the
pipelining case. This extra memory pressure is due to diminished effectiveness of
the combiner in the pipelining case. Although the response time of pipelining job is
better than the blocking, a job that contains a more effective combiner may be better
executed in blocking mode.

We further note that in both experiments, the map phase finishes faster with
blocking than with pipelining. This is because pipelining allows reduce tasks to
begin executing earlier and perform more work (sorting and combining); hence, the
reduce tasks compete for resources with the map tasks, causing the map phase to
take slightly longer. In this case, the increase in map duration is outweighed by the
increase in cluster utilization, resulting in shorter job completion times: pipelining
reduced completion time by 17.7% with 5 reducers and by 19.7% with 20 reducers.

Figure 10.3 describes an experiment in which we ran a 10GB wordcount job using
a single reduce task. This caused job completion times to increase dramatically for
both pipelining and blocking, because of the extreme load placed on the reduce node.
Pipelining delayed job completion by about 17%, which suggests that our simple
adaptive flow control scheme (Chapter 10.1.1) was unable to move load back to the
map tasks aggressively enough in this (extremely) unbalanced job configuration.
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Figure 10.4: CDF of map and reduce task completion times for a 100GB wordcount
job using 240 map tasks and 60 reduce tasks (512MB block size). The total job
runtimes were 48 minutes for blocking and 36 minutes for pipelining.
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Figure 10.5: CDF of map and reduce task completion times for a 100GB wordcount
job using 3120 map tasks and 60 reduce tasks (32MB block size). The total job
runtimes were 42 minutes for blocking and 34 minutes for pipelining.

Large Job Results

Our second set of experiments focused on the performance of somewhat larger jobs.
We increased the input size to 100GB (from 10GB) and the number of worker nodes
to 20 (from 10). Each worker was configured to execute at most four map and
three reduce tasks, which meant that at most 80 map and 60 reduce tasks could
execute at once. We conducted two sets of experimental runs, each run comparing
blocking to pipelining using either large (512MB) or small (32MB) block sizes. We
were interested in blocking performance with small block sizes because blocking can
effectively emulate pipelining if the block size is small enough.

Figure 10.4 reports the performance of a 100GB wordcount job with 512MB
blocks, which resulted in 240 map tasks, scheduled in three waves of 80 tasks each.
The 60 reduce tasks were co-scheduled with the first wave of map tasks. In the block-
ing case, the reduce tasks began working as soon as they received the output of the
first wave, which is why the reduce progress begins to climb around four minutes
(well before the completion of all maps). Pipelining was able to achieve significantly
better cluster utilization, and hence reduced job completion time by about 25%.
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Comparing the reduce progress in blocking to pipelining, we see that reduce tasks
make more progress during the shuffle phase when pipelining is enabled. What is
even more interesting is that the reduce phase is also shorter in the case of pipelining.
The reason for this is subtle; all reduce tasks enter the phase around the same time
since data is shipped in smaller increments. In the blocking case, when the final wave
of map tasks finish they all try to send the entire output to reduce tasks at the same
time, which increases the variance on receiving the complete output from all map
tasks. That is, some reduce tasks enter the reduce phase well in advance of others.

Figure 10.5 reports the performance of blocking and pipelining using 32MB blocks.
While the performance of pipelining remained similar, the performance of blocking
improved considerably, but still trailed somewhat behind pipelining. Using block
sizes smaller than 32MB did not yield a significant performance improvement in our
experiments.

10.2 Online Aggregation

Although MapReduce was originally designed as a batch-oriented system, it is often
used for interactive data analysis: a user submits a job to extract information from
a data set, and then waits to view the results before proceeding with the next step
in the data analysis process. This trend has accelerated with the development of
high-level query languages that are executed as MapReduce jobs, such as Hive [91],
Jaql [18], Pig [70], and Sawzall [74].

Traditional MapReduce implementations provide a poor interface for interactive
data analysis, because they do not emit any output until the job has been executed to
completion. In many cases, an interactive user would prefer a “quick and dirty” ap-
proximation over a correct answer that takes much longer to compute. In the database
literature, online aggregation has been proposed to address this problem [45], but the
batch-oriented nature of traditional MapReduce implementations makes these tech-
niques difficult to apply. Here, we show how we extended our pipelined Hadoop
implementation to support online aggregation within a single job (Chapter 10.2.1)
and between multiple jobs (Chapter 10.2.2). In Chapter 10.2.3, we evaluate online
aggregation on two different data sets, and show that it can yield an accurate ap-
proximate answer long before the job has finished executing.

10.2.1 Single-Job Online Aggregation

In HOP, the data records produced by map tasks are sent to reduce tasks shortly
after each record is generated. However, to produce the final output of the job, the
reduce function cannot be invoked until the entire output of every map task has
been produced. We can support online aggregation by simply applying the reduce
function to the data that a reduce task has received so far. We call the output of
such an intermediate reduce operation a snapshot.
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Users would like to know how accurate a snapshot is: that is, how closely a
snapshot resembles the final output of the job. Accuracy estimation is a hard problem
even for simple SQL queries [50], and particularly hard for jobs where the map and
reduce functions are opaque user-defined code. Hence, we report job progress, not
accuracy: we leave it to the user (or their MapReduce code) to correlate progress to
a formal notion of accuracy. We define a simple progress metric later in this chapter.

Snapshots are computed periodically, as new data arrives at each reducer. The
user specifies how often snapshots should be computed, using the progress metric as
the unit of measure. For example, a user can request that a snapshot be computed
when 25%, 50%, and 75% of the input has been seen. The user may also specify
whether to include data from tentative (unfinished) map tasks. This option does not
affect the fault-tolerance design described in Chapter 10.1.3. In the current prototype,
each snapshot is stored in a directory on HDFS. The name of the directory includes
the progress value associated with the snapshot. Each reduce task runs independently,
and at a different rate. Once a reduce task has made sufficient progress, it writes a
snapshot to a temporary directory on HDFS, and then atomically renames it to the
appropriate location.

Applications can consume snapshots by polling HDFS in a predictable location.
An application knows that a given snapshot has been completed when every reduce
task has written a file to the snapshot directory. Atomic rename is used to avoid
applications mistakenly reading incomplete snapshot files.

Note that if there are not enough free slots to allow all the reduce tasks in a job
to be scheduled, snapshots will not be available for reduce tasks that are still waiting
to be executed. The user can detect this situation (e.g., by checking for the expected
number of files in the HDFS snapshot directory), so there is no risk of incorrect data,
but the usefulness of online aggregation will be reduced. In the current prototype,
we manually configured the cluster to avoid this scenario. The system could also
be enhanced to avoid this pitfall entirely by optionally waiting to execute an online
aggregation job until there are enough reduce slots available.

Progress Metric

Hadoop provides support for monitoring the progress of task executions. As each
map task executes, it is assigned a progress score in the range [0,1], based on how
much of its input the map task has consumed. We reused this feature to determine
how much progress is represented by the current input to a reduce task, and hence
to decide when a new snapshot should be taken. When the transfer of a spill file to a
reduce task occurs, we include a small amount of meta-data that indicates the map’s
current progress score, relative to that spill file. To compute the overall progress score
for a reduce step snapshot, we take the average of the progress scores associated with
each map’s data residing on the reduce task prior to executing the snapshot.

Note that it is possible to have a map task that has not pipelined any output to a
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reduce task, either because the map task has not been scheduled yet (there are no free
TaskTracker slots), the map tasks does not produce any output for the given reduce
task, or because the reduce task has been configured to only pipeline data from at
most k map tasks concurrently. To account for this, we need to scale the progress
metric to reflect the portion of the map tasks that a reduce task has pipelined data
from: if a reducer is connected to 1

n of the total number of map tasks in the job, we
divide the average progress score by n.

This progress metric could easily be made more sophisticated: for example, an
improved metric might include the selectivity (|output|/|input|) of each map task, the
statistical distribution of the map task’s output, and the effectiveness of each map
task’s combine function, if any. Although we have found our simple progress metric
to be sufficient for most experiments we describe below, this clearly represents an
opportunity for future work.

10.2.2 Multi-Job Online Aggregation

Online aggregation is particularly useful when applied to a long-running analysis task
composed of multiple MapReduce jobs. As described in Chapter 10.1.2, our version
of Hadoop allows the output of a reduce task to be sent directly to map tasks. This
feature can be used to support online aggregation for a sequence of jobs.

Suppose that j1 and j2 are two MapReduce jobs, and j2 consumes the output
of j1. When j1’s reducers compute a snapshot to perform online aggregation, that
snapshot is written to HDFS, and also sent directly to the map tasks of j2. The
map and reduce steps for j2 are then computed as normal, to produce a snapshot of
j2’s output. This process can then be continued to support online aggregation for an
arbitrarily long sequence of jobs.

Unfortunately, inter-job online aggregation has some drawbacks. First, the output
of a reduce function is not “monotonic”: the output of a reduce function on the first
50% of the input data may not be obviously related to the output of the reduce
function on the first 25%. Thus, as new snapshots are produced by j1, j2 must
be recomputed from scratch using the new snapshot. As with inter-job pipelining
(Chapter 10.1.2), this could be optimized for reduce functions that are declared to be
distributive or algebraic aggregates [39].

To support fault-tolerance for multi-job online aggregation, we consider three
cases. Tasks that fail in j1 recover as described in Chapter 10.1.3. If a task in j2 fails,
the system simply restarts the failed task. Since subsequent snapshots produced by
j1 are taken from a superset of the mapper output in j1, the next snapshot received
by the restarted reduce task in j2 will have a higher progress score. To handle failures
in j1, tasks in j2 cache the most recent snapshot received by j1, and replace it when
they receive a new snapshot with a higher progress metric. If tasks from both jobs
fail, a new task in j2 recovers the most recent snapshot from j1 that was stored in
HDFS and then wait for snapshots with a higher progress score.
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Figure 10.6: Top-100 query over 5.5GB of Wikipedia article text. The vertical lines
describe the increasing accuracy of the approximate answers produced by online ag-
gregation.

10.2.3 Evaluation

To evaluate the effectiveness of online aggregation, we performed two experiments on
Amazon EC2 using different data sets and query workloads. In our first experiment,
we wrote a “Top-K” query using two MapReduce jobs: the first job counts the
frequency of each word and the second job selects the K most frequent words. We
ran this workload on 5.5GB of Wikipedia article text stored in HDFS, using a 128MB
block size. We used a 60-node EC2 cluster; each node was a “high-CPU medium”
EC2 instance with 1.7GB of RAM and 2 virtual cores. A virtual core is the equivalent
of a 2007-era 2.5Ghz Intel Xeon processor. A single EC2 node executed the Hadoop
JobTracker and the HDFS NameNode, while the remaining nodes served as slaves for
running the TaskTrackers and HDFS DataNodes.

Figure 10.6 shows the results of inter-job online aggregation for a Top-100 query.
Our accuracy metric for this experiment is post-hoc — we note the time at which
the Top-K words in the snapshot are the Top-K words in the final result. Although
the final result for this job did not appear until nearly the end, we did observe the
Top-5, 10, and 20 values at the times indicated in the graph. The Wikipedia data
set was biased toward these Top-K words (e.g., “the”, “is”, etc.), which remained in
their correct position throughout the lifetime of the job.

Approximation Metrics

In our second experiment, we considered the effectiveness of the job progress metric
described in Chapter 10.2.1. Unsurprisingly, this metric can be inaccurate when
it is used to estimate the accuracy of the approximate answers produced by online
aggregation. In this experiment, we compared the job progress metric with a simple
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Figure 10.7: Comparison of two approximation metrics. Figure (a) shows the relative
error for each approximation metric over the runtime of the job, averaged over all
groups. Figure (b) compares an example approximate answer produced by each metric
with the final answer, for each language and for a single hour.

user-defined metric that leverages knowledge of the query and data set. HOP allows
such metrics, although developing such a custom metric imposes more burden on the
programmer than using the generic progress-based metric.

We used a data set containing seven months of hourly page view statistics for
more than 2.5 million Wikipedia articles [88]. This constituted 320GB of compressed
data (1TB uncompressed), divided into 5066 compressed files. We stored the data
set on HDFS and assigned a single map task to each file, which was decompressed
before the map function was applied.

We wrote a MapReduce job to count the total number of page views for each
language and each hour of the day. In other words, our query grouped by language
and hour of day, and summed the number of page views that occurred in each group.
To enable more accurate approximate answers, we modified the map function to
include the fraction of a given hour that each record represents. The reduce function
summed these fractions for a given hour, which equated to one for all records from a
single map task. Since the total number of hours was known ahead of time, we could
use the result of this sum over all map outputs to determine the total fraction of each
hour that had been sampled. We call this user-defined metric the “sample fraction.”

To compute approximate answers, each intermediate result was scaled up using
two different metrics: the generic metric based on job progress and the sample fraction
described above. Figure 10.7a reports the relative error of the two metrics, averaged
over all groups. Figure 10.7b shows an example approximate answer for a single
hour using both metrics (computed two minutes into the job runtime). This figure
also contains the final answer for comparison. Both results indicate that the sample
fraction metric provides a much more accurate approximate answer for this query
than the progress-based metric.

Job progress is clearly the wrong metric to use for approximating the final an-
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swer of this query. The primary reason is that it is too coarse of a metric. Each
intermediate result was computed from some fraction of each hour. However, the job
progress assumes that this fraction is uniform across all hours, when in fact we could
have received much more of one hour and much less of another. This assumption
of uniformity in the job progress resulted in a significant approximation error. By
contrast, the sample fraction scales the approximate answer for each group accord-
ing to the actual fraction of data seen for that group, yielding much more accurate
approximations.

10.3 Continuous Queries

MapReduce is often used to analyze streams of constantly-arriving data, such as URL
access logs [28] and system console logs [99]. Because of traditional constraints on
MapReduce, this is done in large batches that can only provide periodic views of
activity. This introduces significant latency into a data analysis process that ideally
should run in near-real time. It is also potentially inefficient: each new MapReduce
job does not have access to the computational state of the last analysis run, so this
state must be recomputed from scratch. The programmer can manually save the
state of each job and then reload it for the next analysis operation, but this is labor-
intensive.

Our pipelined version of Hadoop allows an alternative architecture: MapReduce
jobs that run continuously, accepting new data as it becomes available and analyzing it
immediately. This allows for near-real-time analysis of data streams, and thus allows
the MapReduce programming model to be applied to domains such as environment
monitoring and real-time fraud detection.

In this section, we describe how HOP supports continuous MapReduce jobs, and
how we used this feature to implement a rudimentary cluster monitoring tool.

10.3.1 Continuous MapReduce Jobs

A bare-bones implementation of continuous MapReduce jobs is easy to implement
using pipelining. No changes are needed to implement continuous map tasks: map
output is already delivered to the appropriate reduce task shortly after it is generated.
We added an optional “flush” API that allows map functions to force their current
output to reduce tasks. When a reduce task is unable to accept such data, the mapper
framework stores it locally and sends it at a later time. With proper scheduling of
reducers, this API allows a map task to ensure that an output record is promptly
sent to the appropriate reducer.

To support continuous reduce tasks, the user-defined reduce function must be pe-
riodically invoked on the map output available at that reducer. Applications will have
different requirements for how frequently the reduce function should be invoked; pos-
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sible choices include periods based on wall-clock time, logical time (e.g., the value of a
field in the map task output), and the number of input rows delivered to the reducer.
The output of the reduce function can be written to HDFS, as in our implementa-
tion of online aggregation. However, other choices are possible; our prototype system
monitoring application (described below) sends an alert via email if an anomalous
situation is detected.

In our current implementation, the number of map and reduce tasks is fixed,
and must be configured by the user. This is clearly problematic: manual configura-
tion is error-prone, and many stream processing applications exhibit “bursty” traffic
patterns, in which peak load far exceeds average load. In the future, we plan to
add support for elastic scaleup/scaledown of map and reduce tasks in response to
variations in load.

Fault Tolerance

In the checkpoint/restart fault-tolerance model used by Hadoop, mappers retain their
output until the end of the job to facilitate fast recovery from reducer failures. In
a continuous query context, this is infeasible, since mapper history is in principle
unbounded. However, many continuous reduce functions (e.g., 30-second moving
average) only require a suffix of the map output stream. This common case can be
supported easily, by extending the JobTracker interface to capture a rolling notion of
reducer consumption. Map-side spill files are maintained in a ring buffer with unique
IDs for spill files over time. When a reducer commits an output to HDFS, it informs
the JobTracker about the run of map output records it no longer needs, identifying
the run by spill file IDs and offsets within those files. The JobTracker can then tell
mappers to garbage collect the appropriate data.

In principle, complex reducers may depend on very long (or infinite) histories of
map records to accurately reconstruct their internal state. In that case, deleting spill
files from the map-side ring buffer will result in potentially inaccurate recovery after
faults. Such scenarios can be handled by having reducers checkpoint internal state
to HDFS, along with markers for the mapper offsets at which the internal state was
checkpointed. The MapReduce framework can be extended with APIs to help with
state serialization and offset management, but it still presents a programming burden
on the user to correctly identify the sensitive internal state. That burden can be
avoided by more heavyweight process-pair techniques for fault-tolerance, but those
are quite complex and use significant resources [83]. In our work to date we have
focused on cases where reducers can be recovered from a reasonable-sized history at
the mappers, favoring minor extensions to the simple fault-tolerance approach used
in Hadoop.
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Figure 10.8: Number of pages swapped over time on the thrashing host, as reported
by vmstat. The vertical line indicates the time at which the alert was sent by the
monitoring system.

10.3.2 Prototype Monitoring System

Our monitoring system is composed of agents that run on each monitored machine
and record statistics of interest (e.g., load average, I/O operations per second, etc.).
Each agent is implemented as a continuous map task: rather than reading from HDFS,
the map task instead reads from various system-local data streams (e.g., /proc).

Each agent forwards statistics to an aggregator that is implemented as a continuous
reduce task. The aggregator records how agent-local statistics evolve over time (e.g.,
by computing windowed-averages), and compares statistics between agents to detect
anomalous behavior. Each aggregator monitors the agents that report to it, but might
also report statistical summaries to another “upstream” aggregator. For example, the
system might be configured to have an aggregator for each rack and then a second
level of aggregators that compare statistics between racks to analyze datacenter-wide
behavior.

Evaluation

To validate our prototype system monitoring tool, we constructed a scenario in which
one member of a MapReduce cluster begins thrashing during the execution of a job.
Our goal was to test how quickly our monitoring system would detect this behavior.
The basic mechanism is similar to an alert system one of the authors implemented at
an Internet search company.

We used a simple load metric (a linear combination of CPU utilization, paging,
and swap activity). The continuous reduce function maintains windows over samples
of this metric: at regular intervals, it compares the 20 second moving average of the

124



load metric for each host to the 120 second moving average of all the hosts in the
cluster except that host. If the given host’s load metric is more than two standard
deviations above the global average, it is considered an outlier and a tentative alert
is issued. To dampen false positives in “bursty” load scenarios, we do not issue an
alert until we have received 10 tentative alerts within a time window.

We deployed this system on an EC2 cluster consisting of 7 “large” nodes (large
nodes were chosen because EC2 allocates an entire physical host machine to them).
We ran a wordcount job on the 5.5GB Wikipedia data set, using 5 map tasks and 2
reduce tasks (1 task per host). After the job had been running for about 10 seconds,
we selected a node running a task and launched a program that induced thrashing.

We report detection latency in Figure 10.8. The vertical bar indicates the time at
which the monitoring tool fired a (non-tentative) alert. The thrashing host was de-
tected very rapidly—notably faster than the 5-second TaskTracker-JobTracker heart-
beat cycle that is used to detect straggler tasks in stock Hadoop. We envision using
these alerts to do early detection of stragglers within a MapReduce job: HOP could
make scheduling decisions for a job by running a secondary continuous monitoring
query. Compared to out-of-band monitoring tools, this economy of mechanism—
reusing the MapReduce infrastructure for reflective monitoring—has benefits in soft-
ware maintenance and system management.

10.4 BOOM-MR Port

This chapter describes our port of the BOOM-MR (Chapter 9) to HOP. Using BOOM-
MR, we developed alternative scheduling policies, written in Overlog, that made
use of statistics provided by the monitoring system described in Chapter 10.3.2. In
Chapter 10.4.1, we describe the port of JOL to the HOP JobTracker scheduling
component. Chapter 10.5 describes the interface between the monitoring system and
JOL, which enables the use of the monitoring results in our declarative scheduling
logic. In Chapter 10.5.4, we present an Overlog rule that monitors tasks for anomalous
behavior [26]; spawning a backup/speculative task when alerted to a potential issue.

10.4.1 Scheduling HOP with JOL

HOP is based on Hadoop 19.2, which defines an extensible interface to the JobTracker
scheduler component for alternative scheduler implementations. This made the port
of JOL to HOP trivial: the entire port consisted of 55 lines of Java glue code that
implemented the JOL harness, and Overlog code that performed the basic FIFO
policy described in Chapter 9. We altered the job relation (described in Table 9.1)
to include an attribute for the job type: pipelining/blocking, online aggregation, or
continuous. We also added three new scheduling rules (presented in Figure 10.10)
specific to online aggregation and continuous jobs.
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public abstract class TaskScheduler implements Configurable {
...

public abstract List<Task>
assignTasks(TaskTrackerStatus taskTracker) throws IOException;

}

Figure 10.9: Task scheduler interface. Not all methods shown.

JOL Port

In Hadoop 19.2, the JobTracker makes use of an interface called the TaskScheduler
to implement alternative task scheduling policies. Figure 10.9 shows a partial view of
this interface, which contains the method assignTasks that is passed a TaskTracker
status object and returns a list of tasks that should be scheduled. This method is
called by the JobTracker during a heartbeat exchange with a TaskTracker.

Our implementation of the assignTasks method transforms the TaskTracker sta-
tus object into a tuple that updates the taskTracker relation in Table 9.1. In response
to this update, the scheduling rules enter a fixpoint computation, during which it may
assign task attempts to the given TaskTracker. Any updates to the schedule relation
(see rule s5 in Figure 9.2) will trigger a (pre-registered) Java listener that translates
the update into a Task object, which the assignTasks method accumulates in a List
object that is returned by the assignTasks method at the end of the fixpoint.

Job submission interface

The Hadoop JobTracker interface for submitting jobs had to be retrofitted to support
pipelining between jobs. In regular Hadoop, jobs are submitted one at a time; a
job that consumes the output of one or more other jobs cannot be submitted until
the producer jobs have completed. To support this, we modified the Hadoop job
submission interface to accept a list of jobs, where each job in the list depends on
the job before it. The client interface traverses this list, annotating each job with
the identifier of the job that it depends on. We then added a new table to the
declarative scheduler that captured inter-job dependencies. The job scheduling rules
use this table to co-schedule jobs with their dependencies, giving slot preference to
“upstream” jobs over the “downstream” jobs they feed. As we note in Chapter 11,
there are many interesting options for scheduling pipelines or even DAGs of such jobs
that we plan to investigate in future.

Online aggregation and continuous job scheduling policies

Online aggregation and continuous jobs rely on a scheduling policy that ensures the
execution of the entire pipeline. In the case of online aggregation, a more complete
pipeline provides more accurate estimates since unscheduled partitions (i.e., groups)
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h1 unscheduledReduceTasks ( JobId , a count<TaskId>) :−
job ( JobId , JType , . . . ) ,
task ( JobId , TaskId , TType , Status , . . . ) ,
JType == JobType .ONLINE, TType == TaskType .REDUCE,
Status . s t a t e ( ) != TaskState .RUNNING;

h2 canScheduleMaps ( JobId ) :−
unscheduledReduceTasks ( JobId , Count ) ,
Count == 0 ;

h3 canScheduleMaps ( JobId ) :−
job ( JobId , Type , . . . ) ,
Type != JobType .ONLINE;

Figure 10.10: Counts the number of reduce tasks that are not running and only
schedules map tasks from an online job when this count is zero.

may contain important data. For continuous jobs, scheduling the entire pipeline is
a requirement in order to avoid the memory pressure in storing the (continuously
arriving) data for an unscheduled operator. We enforced this constraint with by a
policy that scheduled reduce tasks before any map tasks in the same job (assuming
sufficient slot capacity).

Figure 10.10 shows three rules that together determine when a job is allowed to
schedule map tasks. A separate admission controller rule ensured that the number
of reduce tasks for an online aggregation or continuous job fit within the current
cluster-wide slot capacity. For each job, rule h1 counts the number of reduce tasks
not currently running. If the job type is “online” then rule h2 will add the fact that
map tasks can be scheduled when the number of non-running map tasks is equal
to zero. Rule h3 applies to the map tasks in all other job types; it simply removes
this scheduling constraints on those map tasks. The canScheduleMaps predicate is
included in the rule that determines the scheduling of map tasks (e.g., rule s4 in
Figure 9.2).

10.5 Real-time monitoring with JOL

After porting BOOM-MR to HOP, we started writing scheduler policies based on
the real-time monitoring information supplied by our monitoring job. In order to
do this, we needed to import the results of our MapReduce monitoring job into
JOL as relations. Here, we further describe the MapReduce job that continuously
monitors HOP and its interface to JOL. We then present an alert system that detects
outlier measurements in map and reduce task execution attempts. We conclude our
discussion with a new task speculation policy that is based on our alert system.
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Measure Description Source

COMP EST Task estimated completion time Overlog
USER CPU User CPU usage /proc/stat, /proc/[pid]/stat
SYS CPU System CPU usage /proc/stat, /proc/[pid]/stat
RSS Resident set memory size /proc/[pid]/stat
VSIZE Estimated completion time /proc/[pid]/stat
WRITE BYTES Number of bytes written /proc/[pid]/io
READ BYTES Number of bytes read /proc/[pid]/io
NET OUT Network output /proc/net/dev
NET IN Network input /proc/net/dev
SWAP OUT Swaps out /proc/vmstat
SWAP IN Swaps in /proc/vmstat
PAGE OUT Pages out /proc/vmstat
PAGE IN Pages in /proc/vmstat

Table 10.1: HOP monitoring measurements.

10.5.1 MapReduce monitoring job

The MapReduce job that monitors HOP is scheduled during the system bootstrap.
The job executes a single map task on each TaskTracker in the cluster and some
number (based on the size of the cluster) of reduce tasks that group machine and
rack level statistics. For example, we could schedule a single reduce task per rack
that aggregates the statistics gathered on that rack.

Table 10.1 lists the measurements that we collected. The measurement name
is given in the first column, followed by a measurement description. The last col-
umn identifies the location under /proc where the measurement was taken. Process
level measurements reside under /proc/[pid]/, where [pid] represents the process
identifier. All other measurements outside of /proc/[pid]/ refer to machine level
measurements with the exception of the estimated completion time, which is derived
from task level statistics in the JobTracker.

A map task gathers measurements by periodically reading the source location
(last column in Table 10.1) from the local file system. For each measurement,
the map task outputs a record <host name, time stamp, pid, measurement name,

measurement value>. For machine statistics, the map task will set the PID field to
0 e.g., <boom.cs.berkeley.edu, 12348234, 0, NET OUT, 101>. The record key for all
map outputs is the identifier of the rack to which the machine belongs. If the cluster
does not contain rack-level information then the host name is used instead. This en-
sures that a single reduce task will see all measurements from a given rack or machine
boundary.
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Name Description Relevant attributes

machineStat Machine statistics Host, Measure, TimeStamp, Value
proccessStat Process statistics TaskId, Pid, Measure, TimeStamp, Value
jobStat Job statistics JobId, TaskType, Measure, StatContainer
taskStat Task statistics JobId, TaskId, Measure, TaskType, Value
alert Outlier task alerts TaskId, TimeStamp, Measure,

Description, Severity

Table 10.2: JOL monitoring relations.

/∗ Cor r e l a t e p roce s s measurements to the ac tua l map/ reduce task ∗/
t s1 ta skStat ( TaskId . getJobID ( ) , TaskId , Measure , Type , TimeStamp ,

Value ) :−
taskAttempt (TaskId , . . . , TaskState .RUNNING, Pid ) ,
p roc e s sS ta t (Host , Pid , Measure , TimeStamp , Value ) ,
Type := TaskId . isMap ( ) ? TaskType .MAP : TaskType .REDUCE;

/∗ Compute the est imated complet ion time based on the task ra t e
o f p rog r e s s ∗/

t s2 ta skStat ( JobId , TaskId , COMP EST, TaskType , TimeStamp , CompEst) :−
taskAttempt (TaskId , . . . , Progress , ProgressRate , TaskState .RUNNING,

Pid ) ,
JobId := TaskId . getJobID ( ) ,
Type := TaskId . isMap ( ) ? TaskType .MAP : TaskType .REDUCE,
CompEst := ProgressRate == 0 ? i n f i n i t y :

(1 f − Progres s ) / ProgressRate ,
TimeStamp := java . lang .System . cu r r entT imeMi l l i s ( ) ;

Figure 10.11: Rules for maintaining the taskStat table.

10.5.2 Monitoring with Overlog

The output of the monitoring job is sent directly — reduce tasks open a back-channel
TCP-socket — to the JOL instance running on the JobTracker. The receiver code
translates the data packets into JOL tuples, and inserts them into monitoring relations
defined in Table 10.2. The machineStat and processStat tables are populated by the
data packets received from the monitoring jobs. The jobStat and taskStat tables
maintain statistics for jobs and tasks, respectively, and are derived by Overlog rules
(Figures 10.11 and 10.12). The alert table contains outlier task measurements, which
depending on the severity can result in corrective action e.g., execute a speculative
task (Chapter 10.5.4).

Figure 10.11 contains two rules that together maintain the taskStat table. The
taskAttempt table was extended to include the task process identifier (Pid), which is
supplied by the TaskTracker executing the task attempt. The process identifier allows
us to correlate a task in the taskAttempt table with process level measurements in
the processStat table, as shown by rule ts1. A task’s estimated completion time is
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j s 1 t a s kS t a tL i s t ( JobId , TaskType , Measure , a l i s t <Value>) :−
ta skStat ( JobId , TaskId , Measure , TaskType , TimeStamp , Value ) ;

j s 2 jobStat ( JobId , TaskType , Measure , Stat ist ics ) :−
t a s kS t a tL i s t ( JobId , TaskType , Measure , TaskStatLis t ) ,
Stat ist ics := new StatConta iner ( TaskStatLi s t ) ;

Figure 10.12: Rules for maintaining the jobStat relation.

a1 a l e r t ( TaskId , TimeStamp , Measure , Desc , S eve r i t y ) :−
ta skStat ( JobId , TaskId , Measure , TaskType , TimeStamp , TaskStat ) ,
j obStat ( JobId , TaskType , Measure , JobStat ) ,
JobStat . o u t l i e r (Measure , TaskStat ) == true ,
Desc := JobStat . d e s c r i p t i o n (Measure , TaskStat ) ,
S eve r i t y := JobStat . s e v e r i t y (Measure , TaskStat ) ,
TimeStamp := java . lang .System . cu r r entT imeMi l l i s ( ) ;

Figure 10.13: Rule for detecting outlier tasks.

based on its current progress and progress rate: change in progress computed over
TaskTracker heartbeat intervals. Using the current progress and progress rate, rule
ts2 computes a rough estimate on the remaining time it will take for the task to
complete, which we have denoted as a COMP EST measurement — stored in the
taskStat table.

Figure 10.12 contains the rules for maintaining the jobStat table. The
taskStatList table, maintained by rule js1, provides a list of measurement values
for each job identifier, task type, and measurement name. The jobStat table groups
measurement values belonging to the same job, task type, and measurement name.
A special Java object called StatContainer is used to store each group of measure-
ments. The StatContainer class defines methods for computing various metrics (e.g.,
mean, median, stddev, etc.) from its list of measurement values. Rule js2 maintains
the jobStat table by initializing a StatContainer object for each group of aggregated
measurement values.

10.5.3 Task alerts

Figure 10.13 contains a single rule that detects outlier task by correlating the task
measurement with information in the jobStat table. We compare the measurements
from tasks that belong to the same category — job and task type (map or reduce).
The JobStat variable references a StatContainer object for a given category, and it
is used to determine if a task belonging to that category is an outlier based on some
metric e.g., k deviations from the mean. The JobStat variable is also used to provide
a description and severity of outlier measurement.
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s1 mos tRecentCr i t i ca lA l e r t ( TaskId , Measure , a min<AlertTime>) :−
a l e r t ( TaskId , AlertTime , Measure , Desc , S eve r i t y ) ,
S eve r i t y . conta in s ( ‘ ‘ c r i t i c a l ’ ’ ) ; /∗ The a l e r t i s c r i t i c a l ∗/

s2 schedu le ( Tracker , l i s t <TaskId , MapSlots>) :−
heartbeat ( Tracker , TrackerStatus , MapSlots , ) ,
MapSlots > 0 ,
mos tRecentCr i t i ca lA l e r t ( TaskId , Measure , AlertTime )

/∗ Ensure the a l e r t i s not too o ld ( a l e r t time < 10 seconds ago ) . ∗/
( java . lang .System . cu r r entT imeMi l l i s ( ) − AlertTime ) < 10000 ,

/∗ The task ’ s est imated time to complet ion i s very high r e l a t i v e
to equ iva l en t ta sk s . ∗/

taskStat ( JobId , TaskId , COMP EST, TaskType , TimeStamp , TaskStat ) ,
j obStat ( JobId , TaskType , COMP EST, JobStat ) ,
TaskStat < JobStat . p e r c e n t i l e ( 0 . 2 5 ) ,

/∗ Schedule backup map task i f host has s p l i t AND
no backup task has yet been scheduled ∗/

task ( JobId , TaskId , . . . , Sp l i t s , . . . ) , TaskId . isMap ( ) ,
taskAttemptCount ( TaskId , Count ) , Count == 1 ,
I npu tSp l i t s . conta in s ( TrackerStatus . getHost ( ) ) ;

Figure 10.14: Rule for map task speculation based on alert system data. Reduce
task speculation rule is similar (we do no consider splits) and therefore omitted.

10.5.4 Alert based speculation policy

Figure 10.14 contains a rule that reschedules map tasks with any “critical” alerts that
occurred recently; rule s1 defines the mostRecentCriticalAlert relation. Rule s2 is
evaluated at the JobTracker whenever a heartbeat exchange occurs with some Task-
Tracker. The heartbeat predicate includes the name of the TaskTracker, its status,
and its spare map slot capacity, which the rule ensures is greater than zero. The rule
joins the heartbeat with all critical alerts in the mostRecentCriticalAlert relation.
As an added precaution, we subsequently check that the alerted task’s estimated
completion (COMP EST) time is high relative to other tasks in its category. Finally,
we ensure that the task has not already been rescheduled and that the TaskTracker
contains the maps input data.

10.5.5 Evaluation

We compared our alert based speculation policy with the speculation policy imple-
mented in unmodified Hadoop 19.2. Our experiment executed a wordcount job that
contained a single faulty map task that would execute normally for a minute before
stalling out by sleeping for one second intervals between map function invocations.
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(b) HOP alert based task speculation policy

Figure 10.15: Compares speculation policies by plotting the starting point and
progress of the faulty task (first task) and speculative task (second task).

The input to the wordcount was 10GB of randomly generated words, yielding 20 map
tasks total. We executed this job on a 20 node EC2 cluster and compared the time
it took to initiate a speculative task using our policy to the policy in unmodified
Hadoop.

Figure 10.15 shows the result of this experiment by plotting the launch time and
progress of the original (first) task and the backup (second) task. HOP’s alert based
speculation policy is able to detect the faulty map task and execute a backup task
in half the time of unmodified Hadoop. In unmodified Hadoop, a task is speculated
based on its rate of progress (relative to other tasks in its category). We are able
to further extend this policy by including machine and process level statistics as
further evidence to speculate. Indeed, our choice to speculate was not only based on
a high estimated time to completion but also a critically low “user CPU” value and
a critically low I/O activity.

The astute reader will notice however that the rate of progress for the second
task in HOP is less than that of unmodified Hadoop. The reason for this is that our
monitoring jobs do add some extra load to the cluster. Nevertheless, in this instance,
the overall job response time was slightly less (a few seconds) in HOP due to the
faster turn around time in our speculation policy.

10.6 Related Work

This work relates to literature on parallel dataflow frameworks, online aggregation,
and continuous query processing.
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10.6.1 Parallel Dataflow

Dean and Ghemawat’s paper on Google’s MapReduce [28] has become a standard ref-
erence, and forms the basis of the open-source Hadoop implementation. The Google
MapReduce design targets very large clusters where the probability of worker fail-
ure or slowdown is high. This led to their elegant checkpoint/restart approach to
fault-tolerance, and their lack of pipelining. Our work extends the Google design to
accommodate pipelining without significant modification to their core programming
model or fault tolerance mechanisms.

Dryad [47] is a data-parallel programming model and runtime that is often com-
pared to MapReduce, supporting a more general model of acyclic dataflow graphs.
Like MapReduce, Dryad puts disk materialization steps between dataflow stages by
default, breaking pipelines. The Dryad paper describes support for optionally “en-
capsulating” multiple asynchronous stages into a single process so they can pipeline,
but this requires a more complicated programming interface.

It has been noted that parallel database systems have long provided partitioned
dataflow frameworks [72], and recent commercial databases have begun to offer
MapReduce programming models on top of those frameworks [87, 40]. Most par-
allel database systems can provide pipelined execution akin to our work here, but
they use a more tightly coupled iterator and Exchange model that keeps producers
and consumers rate-matched via queues, spreading the work of each dataflow stage
across all nodes in the cluster [35]. This provides less scheduling flexibility than
MapReduce and typically offers no tolerance to mid-query worker faults. Yang et al.
recently proposed a scheme to add support for mid-query fault-tolerance to traditional
parallel databases, using a middleware-based approach that shares some similarities
with MapReduce [100].

Logothetis and Yocum describe a MapReduce interface over a continuous query
system called Mortar that is similar in some ways to our work [58]. Like HOP, their
mappers push data to reducers in a pipelined fashion. They focus on specific issues
in efficient stream query processing, including minimization of work for aggregates in
overlapping windows via special reducer APIs. They are not built on Hadoop, and
explicitly sidestep issues in fault-tolerance.

Hadoop Streaming is part of the Hadoop distribution, and allows map and reduce
functions to be expressed as UNIX shell command lines. It does not stream data
through map and reduce phases in a pipelined fashion.

10.6.2 Online Aggregation

Online aggregation was originally proposed in the context of simple single-table SQL
queries involving “Group By” aggregations, a workload quite similar to MapRe-
duce [45]. The focus of the initial work was on providing not only “early returns”
to these SQL queries, but also statistically robust estimators and confidence interval
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metrics for the final result based on random sampling. These statistical matters do
not generalize to arbitrary MapReduce jobs, though our framework can support those
that have been developed. Subsequently, online aggregation was extended to handle
join queries (via the Ripple Join method), and the CONTROL project generalized
the idea of online query processing to provide interactivity for data cleaning, data
mining, and data visualization tasks [44]. That work was targeted at single-processor
systems. Luo et al. developed a partitioned-parallel variant of Ripple Join, without
statistical guarantees on approximate answers [65].

In recent years, this topic has seen renewed interest, starting with Jermaine et al.’s
work on the DBO system [50]. That effort includes more disk-conscious online join
algorithms, as well as techniques for maintaining randomly-shuffled files to remove any
potential for statistical bias in scans [49]. Wu et al. describe a system for peer-to-peer
online aggregation in a distributed hash table context [98]. The open programmability
and fault-tolerance of MapReduce are not addressed significantly in prior work on
online aggregation.

An alternative to online aggregation combines precomputation with sampling,
storing fixed samples and summaries to provide small storage footprints and interac-
tive performance [34]. An advantage of these techniques is that they are compatible
with both pipelining and blocking models of MapReduce. The downside of these
techniques is that they do not allow users to choose the query stopping points or
time/accuracy trade-offs dynamically [44].

10.6.3 Continuous Queries

In the last decade there was a great deal of work in the database research community
on the topic of continuous queries over data streams, including systems such as Bo-
realis [4], STREAM [67], and Telegraph [22]. Of these, Borealis and Telegraph [83]
studied fault-tolerance and load balancing across machines. In the Borealis context
this was done for pipelined dataflows, but without partitioned parallelism: each stage
(“operator”) of the pipeline runs serially on a different machine in the wide area, and
fault-tolerance deals with failures of entire operators [14]. SBON [73] is an overlay
network that can be integrated with Borealis, which handles “operator placement”
optimizations for these wide-area pipelined dataflows.

Telegraph’s FLuX operator [83, 84] is the only work to our knowledge that ad-
dresses mid-stream fault-tolerance for dataflows that are both pipelined and parti-
tioned in the style of HOP. FLuX (“Fault-tolerant, Load-balanced eXchange”) is a
dataflow operator that encapsulates the shuffling done between stages such as map
and reduce. It provides load-balancing interfaces that can migrate operator state
(e.g., reducer state) between nodes, while handling scheduling policy and changes to
data-routing policies [84]. For fault-tolerance, FLuX develops a solution based on pro-
cess pairs [83], which work redundantly to ensure that operator state is always being
maintained live on multiple nodes. This removes any burden on the continuous query
programmer of the sort we describe in Chapter 10.3. On the other hand, the FLuX
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protocol is far more complex and resource-intensive than our pipelined adaptation of
Google’s checkpoint/restart tolerance model.

10.7 Summary

In this chapter, we extended the batch-oriented execution model of MapReduce to
support pipelining between operators. This enables a new suite of MapReduce jobs
that are able to perform online aggregation and continuous like queries. Unlike much
of the work on online aggregation, we do not focus here on statistical guarantees
because of the flexibility of the MapReduce programming model. These guarantees
are crafted for specific SQL aggregates like SUMs, COUNTs, and AVERAGEs, and
modified to account for processing techniques like the join algorithms used. The
focus of our work here is architectural: to provide “early returns” interactions within
the powerful scalability and fault-tolerance facilities of MapReduce frameworks. The
statistical guarantees from the literature only apply to SQL-style reduce functions;
statistical guarantees for other online reducers would need to be developed in a case-
by-case basis. We expect that in many cases users will settle for simply observing
changes in the output of a job over time, and make their own decisions about whether
early returns are sufficient.

We leveraged our ability to run continuous MapReduce jobs in HOP by develop-
ing a monitoring framework that provides near real-time machine and process level
statistics. Our monitoring framework enabled new scheduling opportunities that are
based on such statistics. Porting the declarative scheduler to HOP allowed us to
quickly prototype alternative policies in Overlog where, in many cases, adding new
scheduling constraints translated into adding/removing a few rule predicates.
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Chapter 11

Conclusion and Future Extensions

Declarative programming allows programmers to focus on the high level proper-
ties of a computation without describing low level implementation details. We have
found that declarative programming not only simplifies a programmer’s work it also
focuses the programming task on the appropriate high-level issues. The declarative
networking project exemplified this through its declarative specifications of network
protocols that could execute on either wired or wireless physical networks. It was the
responsibility of the compiler to take these simple high-level specifications and map
them to an underlining technology.

The Evita Raced meta-compilation framework takes declarative programming a
step further by allowing Overlog program transformations to be written in Overlog
and executed by the P2 query processing engine. The use of metacompilation allowed
us to achieve significant code reuse from the core of P2, so that the mechanisms sup-
porting query optimization are a small addition to the query processing functionality
already in the system. A particularly elegant aspect of this is the scheduling of inde-
pendent optimization stages by expressing scheduling constraints as data, and having
that data processed by a special dataflow element for scheduling. Our hypothesis that
a Datalog-style language was a good fit for typical query optimizations was largely
borne out, despite some immaturity in the Overlog language and P2 infrastructure.
We were able to express three of the most important optimizer frameworks — System
R, Cascades, and Magic-sets — in only a few dozen rules each.

Our experience developing BOOM Analytics in Overlog resulted in a number of
observations that are useful on both long and short timescales. Some of these may be
specific to our BOOM agenda of rethinking programming frameworks for distributed
systems; a number of them are more portable lessons about distributed system design
that apply across programming frameworks.

At a high level, the effort convinced us that a declarative language like Overlog
is practical and beneficial for implementing substantial systems infrastructure, not
just the isolated protocols tackled in prior work. Though our metrics were necessarily
rough (code size, programmer-hours), we were convinced by the order-of-magnitude
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improvements in programmer productivity, and more importantly by our ability to
quickly extend our implementation with substantial new distributed features. Per-
formance remains one of our concerns, but not an overriding one. One simple lesson
of our experience is that modern hardware enables “real systems” to be implemented
in very high-level languages. We should use that luxury to implement systems in a
manner that is simpler to design, debug, secure and extend — especially for tricky
and mission-critical software like distributed services.

We have tried to separate the benefits of data-centric system design from our
use of a high-level declarative language. Our experience suggests that data-centric
programming can be useful even when combined with a traditional programming lan-
guage, particularly if that language supports set-oriented data processing primitives
(e.g., LINQ, list comprehensions). Since traditional languages do not necessarily en-
courage data-centric programming, the development of libraries and tools to support
this design style is a promising direction for future work.

Moving forward, our experience highlighted problems with Overlog that emphasize
some new research challenges; we mention two here briefly. First, and most urgent,
is the need to codify the semantics of asynchronous computations and updateable
state in a declarative language. Recent follow on work has made some progress
on defining a semantic foundation for this [9], and initial efforts at a programmer-
friendly language [8]. A second key challenge is to clarify the implementation of
invariants, both local and global. In an ideal declarative language, the specification
of an invariant should entail its automatic implementation. In our experience with
Overlog this was hampered both by the need to explicitly write protocols to test global
invariants, and the multitude of possible mechanisms for enforcing invariants, be they
local or global. A better understanding of the design space for invariant detection
and enforcement would be of substantial use in building distributed systems, which
are often defined by such invariants.

MapReduce is another example of raising the level of abstraction to the pro-
gramming task of coordinating a computation on a large number of machine. Our
Hadoop Online Prototype extends the applicability of the model to pipelining be-
haviors, while preserving the simple programming model and fault tolerance of a
full-featured MapReduce framework. This provides significant new functionality, in-
cluding “early returns” on long-running jobs via online aggregation, and continuous
queries over streaming data. We also demonstrate benefits for batch processing: by
pipelining both within and across jobs, HOP can reduce the time to job completion.

In considering future work, scheduling is a topic that arises immediately. Stock
Hadoop already has many degrees of freedom in scheduling batch tasks across ma-
chines and time, and the introduction of pipelining in HOP only increases this de-
sign space. First, pipeline parallelism is a new option for improving performance
of MapReduce jobs, but needs to be integrated intelligently with both intra-task
partition parallelism and speculative redundant execution for “straggler” handling.
Second, the ability to schedule deep pipelines with direct communication between
reduces and maps (bypassing the distributed file system) opens up new opportunities
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and challenges in carefully co-locating tasks from different jobs, to avoid communica-
tion when possible.

Olston and colleagues have noted that MapReduce systems — unlike traditional
databases — employ “model-light” optimization approaches that gather and react
to performance information during runtime [69]. The continuous query facilities of
HOP enable powerful introspective programming interfaces for this: a full-featured
MapReduce interface can be used to script performance monitoring tasks that gather
system-wide information in near-real-time, enabling tight feedback loops for schedul-
ing and dataflow optimization. This is a topic we plan to explore further, including
opportunistic methods to do monitoring work with minimal interference to outstand-
ing jobs, as well as dynamic approaches to continuous optimization in the spirit of
earlier work like Eddies [13] and FLuX [84].

Online aggregation changes some of the scheduling criteria in cases where there are
not enough slots systemwide for all of a job’s tasks. Map and reduce tasks affect an
online aggregation job differently: leaving map tasks unscheduled is akin to sampling
the input file, whereas leaving reduce tasks unscheduled is akin to missing certain
output keys – some of which could be from groups with many inputs. This favors
reducers over mappers, at least during early stages of processing.

In order to improve early results of pipelined flows (e.g., for online aggregation), it
is often desirable to prioritize “interesting” data in the pipeline, both at the mapper
and reducer. Online reordering of data streams has been studied in the centralized
setting [78], but it is unclear how to expose it in the MapReduce programming frame-
work, with multiple nodes running in parallel – especially if the data in the input file
is not well randomized.

Continuous queries over streams raise many specific opportunities for optimiza-
tions, including sharing of work across queries on the same streams, and minimizing
the work done per query depending on windowing and aggregate function semantics.
Many of these issues were previously considered for tightly controlled declarative lan-
guages on single machines [67, 22], or for wide-area pipelined dataflows [4, 73], and
would need to be rethought in the context of a programmable MapReduce framework
for clusters.

As a more long-term agenda, we want to explore using MapReduce-style pro-
gramming for even more interactive applications. As a first step, we hope to revisit
interactive data processing in the spirit of the CONTROL work [44], with an eye to-
ward improved scalability via parallelism. More aggressively, we are considering the
idea of bridging the gap between MapReduce dataflow programming and lightweight
event-flow programming models like SEDA [95]. Our HOP implementation’s roots
in Hadoop make it unlikely to compete with something like SEDA in terms of raw
performance. However, it would be interesting to translate ideas across these two tra-
ditionally separate programming models, perhaps with an eye toward building a new
and more general-purpose declarative framework for programming in architectures
like cloud computing and many-core.
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