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Abstract

A simple model is proposed to account for observed emissions of volatile organic

compounds (VOCs) from new carpets. The model assumes that the VOCs originate

predominantly in a uniform slab of polymer backing material. Parameters for the model

(the initial concentration of a VOC in the polymer, a diffusion coefficient and an

equilibrium polymer/air partition coefficient) are obtained from experimental data produced

by a previous chamber study. The diffusion coefficients generally decrease as the

molecular weight of the VOCs increase, while the polymer/air partition coefficients

generally increase as the vapor pressure of the compounds decrease. In addition, for two

of the study carpets that have a styrene-butadiene rubber (SBR) backing, the diffusion and

partition coefficients are similar to independently reported values for SBR. The results

suggest that predictions of VOCs emissions from new carpets may be possible based solely

on a knowledge of the physical properties of the relevant compounds and the carpet

backing material. However, a more rigorous validation of the model is desirable.

Key Words: Diffusion model, diffusion coefficient, polymer backing, styrene-butadiene

rubber, environmental chamber,

IntrOduction

In a previous study, Hodgson et al. (1992, In press) measured the emissions of

selected volatile organic compounds (VOCs) released by new carpets that are typical of

those used in residences, schools and offices. Carpet samples were each placed in a 20

m3, continually-mixed, controlled, environmental chamber at a fixed air exchange rate.

The emission rates of VOCs from a carpet sample were determined by monitoring, for a

week, the changes in the VOC concentrations in the chamber.

An examination of the experimental data revealed several interesting features. The

concentrations of most VOCs in the chamber air quickly reached a peak, and then decayed

rapidly over the first 12 hours. The initial decay rates of all compounds could be well
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approximated with exponential curves. After this period, the decay rates slowed, with

emissions of most compounds continuing for the entire week. The dominant VOCs emitted

by the carPets were, for the most part, constituents of the polymer backing materials. An

experiment with one carpet, in which the fibers and backing were s~parated and tested

individually for emissions, confmned that the backing was by far the dominant source.

Finally, a rough check of the characteristic time for a VOC to diffuse through a thin

polymer layer appeared to confmn that the polymer backings were acting as slow diffusive

sources of the VOCs released into the chamber air.

Others have used empirical models to describe emissions processes. For example,

Colombo et aI. (1990) fit double exponential transient mass-balance equations to the

concentration versus time curves for the emissions of VOCs from wood products and

gypsum board. Four parameters were estimated for each case by non-linear least squares

regression of a data set, and reasonably accurate fits were obtained. However, this

approach lacks a physical basis and provides no insight into the mechanisms controlling

desorption. As a consequence, estimates for regions beyond the data range are uncertain.

Several physically-based models have been developed to describe the

sorption/desorption of VOCs by various indoor sinks/sources. Some focused on surface

effects (Silberstein et aI., 1988; Dunn and Tichenor, 1988; Tichenor et al., 1991; Clausen

et al., 1991; Chang and Guo, 1992), including an example where the boundary layer

resistance between the bulk air and the source/sink was taken into account (Axley, 1991),

while others considered internal diffusion (Dunn, 1987; Clausen et al., 1992; Dunn and

Chen, 1992). Dunn (1987) emphasized the value of such models in de-coupling the

source/sink behavior from the experimental apparatus, usually an environmental chamber,

so that the results can be applied more widely.

The applicability of the existing physically-based models is briefly considered in the

light of the experimental observations. Models that focus on surface effects appear

inappropriate because many of the dominant compounds originate in the polymeric
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materials and seem to be subject to diffusion controlled release. The diffusion models of

Dunn (Dunn, 1987; Dunn and Chen, 1992) assume an infinitely deep source, and can not

be used for finite sources that are significantly depleted. Clausen et al. (1992) considered a

fmite source, but invoked concentration dependent diffusion, which may not be necessary

at L1e relatively low concentrations found in the backing in this study. Tney also neglected

equilibrium partitioning between the bulk air and the surface of the source as the VOCs in

their study had relatively high vapor pressures. As discussed later, the slow VOC emission

rates and the well-mixed conditions in the chamber allowed concerns about boundary layer

resistance between the carpet surface and the bulk chamber air to be ignored in this study.

In this paper, a simple physically-based diffusion model, which assumes that all of

the carpet emissions come from a thin layer of polymer backing material, is proposed. The

basic model parameters (the initial concentration of VOC in the polymer, a diffusion

coefficient and an equilibrium partition coefficient) are obtained from the experimental data

and, where possible, are compared to expected values. In addition, the relationship

between the model parameters and the physical properties of the VOCs is examined, and

the influence of the parameters on the e!l1issions profiles is briefly discussed.

Experimental data

The initial study (Hodgson et al, 1992a, 1992b) measured the emissions of selected

VOCs from samples of four new carpets. The original sample numbers have been

maintained to facilitate comparisons with the initial study. Carpet 1 is typical of residential

carpets with Nylon fibers and a secondary backing consisting of a coarse polypropylene

mesh bonded to the primary backing with styrene-butadiene rubber (SBR) latex adhesive.

Carpet 2 has nylon fibers and a flexible polyurethane foam (PDF) secondary backing. This

carpet was excluded from the re-analysis because it was assumed that a simple diffusion

model would not accurately describe the emissions of VOCs from the relatively porous

PDF. Carpet 3, which is manufactured in the form of tiles, had Nylon fibers and a hard

polyvinyl chloride (PVC) secondary backing. Carpet 4 has mixed polypropylene and
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Nylon fibers with the same backing as Carpet 1. All carpet samples were collected directly

from the finish lines at the manufacturers' mills and were packaged in two layers of heat

sealed Tedlar bags to preserve their chemical integrity. Two samples of Carpet 1 (la and

Ib) were collected simultaneously. The emissions measurements were made two to five

weeks after sample collection.

Each carpet sample was initially screened for emissions of VOCs using two

procedures. First, aliquots of headspace gas was withdrawn directly from the sample

storage bags and analyzed. This analysis was conducted after the bags had been stored

unopened in the laboratory for about one week. Second, samples were screened for

emissions using small-volume (4-L) chambers. Compounds for quantitative analysis

during the environmental chamber experiments were selected based on the results of the

screening measurements. Five to seven of the most abundant VOCs were selected for each

experiment. Those VOCs chosen for re-analysis are listed in Table 1 along with

abbreviations and certain physical properties.

A 20-m3 environmental chamber, constructed of low-emitting materials and lined

with stainless steel, was used for the emissions experiments. The ranges in the operating

parameters of the chamber for all experiments were: 0.98-1.00 h-1 for ventilation rate;

22.8-23.50 C for temperature; 46.5 to 50.2 percent for relative humidity; and 6.5-9 em s-1

for air velocity near the floor. The ventilation rate and temperature had relative standard

deviations ofone percent for the week-long experiments. On the day that an experiment

began, the chamber was entered, and the carpet sample was installed to cover the floor of

the chambero The loading ratio was 0.44 m2 m-3. The installation took about 15 minutes.

The initial time for the experiment waC) established by the closing of the chamber door. Air

samples for VOCs and low-molecular weight aldehydes were pericx:lically collected over the

next seven days. During the first day, the samples were collected starting at elapsed times

of 1,3,6, 12, and 24 h. Subsequent samples were collected at 24 h intervals.
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Development of model

Theory. The model assumes that all of the contaminants emitted from the carpet

diffuse out of a single uniform layer of polymer backing material. This ignores

contributions from the carpet fibers and other potential sources within the carpet.

Furthermore, the boundary layer resistance between the carpet surface and the well-mixed

bulk: air in the chamber is assumed to be small in comparison to the resistance to diffusion

within the polymer layer. This assumption is based on calculations using expected

diffusivities of the selected VOCs in air and in the backing material. A schematic

representation of the idealized carpet in the chamber is shown in Figure 1.

The governing equation describing transient diffusion through a polymer is

dC = D . d
2
C (l)

dt dX2
'

where C(x,t) is the concentration of the contaminant in the polymer slab; t is time; and x is

the linear distance. The diffusion coefficient, D, determines the rate of diffusion of a VOC

through the layer and is assumed to be independent of concentration. The initial condition

assumes that the compound of interest is uniformly distributed throughout the polymer

layer, or

C=CJorO ~x ~L, (2)

where L is the thickness of the polymer layer, and Co is the initial concentration. Since the

carpet is resting on the stainless steel floor of the chamber, the fIrst boundary condition

assumes that there is no flux out of the base of the polymer slab, or
de
dx Ix=o =o. (3)

A second flux boundary condition is imposed through a mass balance on the VOC in the

chamber air. The three terms represent the accumulation of the VOC in the chamber air, the

mass flux diffusing out of the polymer slab, and the VOC leaving the chamber in the

outflowing air stream, or

dY . V = -D .A dC I - Q. Y
dt dx x=L '
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where y is the concentration of VOC in the chamber air, Q is the volumetric flowrate of

clean air through the chamber, V is the volume of air in the chamber, and A is the area

covered by the carpet. Equilibrium is assumed to exist between the contaminant

concentrations in the surface layer of the polymer and the chamber air, or

K = C1x=L
y ,

y
(5)

(7)

where Kv is a linear partition coefficient. Combining equations 4 and 5 yields the

appropriate boundary condition

( V )ac, +D ac, +( Q JCI =O. (6)
A . Kyat x=L ax x=L A. K y x=L

The solution to equations 1-3 and 6 is obtained from an analogous heat transfer solution

(Carslaw and Jaeger, 1959), which is first transformed into mass transfer terms and then

adjusted to account for equilibrium partitioning, yielding

_ ~{ exp(-Dq~t)(h - kq~) cos(qn x) }
C(x, t) - 2CoLJ [ 2 ] ,

n=l L(h-kq;) +q~(L+k)+h cos(qnL)

where

and qn are the positive roots of

k= (V / A)
K '

y

q tan(qL) = h - kq 2.

(8)

(9)

(10)

Equation 7 gives the contaminant concentration in the polymer slab as a function of distance

from the base of the slab, and also of time. The concentration of contaminant in the

chamber air at any time, 1, is obtained by first finding the concentration at the surface of the

polymer slab and then substituting this value into equation 5, the equilibrium relationship.

Care must be exercised when evaluating equation 7 as the number of terms required for an

accurate solution depends strongly on the selected parameters. The series converges
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especially slowly for early times and at low values of D. However, at no time in this study

were more than 200 terms necessary.

Estimation of parameters. Equations 7 and 5 give the concentration of a VOC

in the chamber air as a function of time and various other parameters, most of which may

be obtained from experimental measurement. ThUS, Q, V, and A are all known, while L

was obtained by direct measurement of the polymer slab thickness. This leaves the initial

polymer concentration, Co, the partition coefficient, Kv, and the diffusion coefficient, D.

These last three parameters were obtained in an iterative fashion (described below) using

the chamber concentration data, yet), the mass per unit area emitted from the carpet over the

duration of the week-long experiment, Memil> and the concentration of the VOC present in

the air of the storage bags prior to opening, Ybag (available for carpets 1 and 4 only).

An initial estimate of the total mass per unit area, M, of the VOC in the polymer slab

at the start of an experiment was obtained by setting M = Memit, recognizing that this

would be a poor estimate if some of the VOC remained in the slab at the end of the

experiment. Co was estimated by dividing M by the thickness of the polymer slab, L. For

carpets had all been stored in the bags for a period of at least two weeks prior to opening

and it was assumed that the polymer and air concentrations were at equilibrium. Next,

equations 7 and 5 were used to find D, and in the case of carpet 3, also Ky , using an

interval weighted (Dunn and Chen, 1992) relative least-squares (Saez and Rittmann, 1992)

iterative fitting procedure, which assumed a constant variance in experimental error.

Equation 7 was then used to calculate the concentration distribution within the polymer slab

at the end of the experiment, and hence to find the fraction of the VOC, f, emitted from the

slab. This value of f was used to provide an improved estimate of the initial mass in the

slab, or M = Memitlf. The entire procedure was repeated until estimates of Co, D and Ky

converged (i.e., successive iterations produced insignificant changes in the estimates).
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Discussion of results

The experimental data and the best-fit model curves for carpets 1, 3 and 4 are

shown in Figures 2-5, while the fitted parameter values and the relative least-squares

residuals eLl) for the compounds are given in Tables 2-4. For carpets 1 and 4, Co and Ky

were based on experimental measurements, and the iterative parameter estimation procedure

had only one degree of freedom in parameter D, which was obtained by fitting the model to

the transient chamber concentration data. For carpet 3, however, no data were available

for the air concentrations in the storage bag. Therefore Ky could not be calculated

independently, and the fitting procedure had two degrees of freedom in parameters D and

Ky.

The proposed model appears to provide a reasonable fit to most of the experimental

data over the one-week time period. Although the fit to the PCH data of carpets la and Ib

does not appear to be as good as for the other compounds, an examination of the residuals

in Table 2 shows that the relative degree of fit is similar. Generally, L2 for the carpet 3

compounds is about an order of magnitude lower than for carpets 1 and 4; reflecting the

additional degree of freedom in the fitting procedure.

The parameters for STY, C2B and PCH from the experiments with carpets la and

Ib show reasonable reproducibility with the exception perhaps ofD for C2B, which varies

by about a factor of two between the duplicate experiments. The values for D and Kv for

carpets 1 and 4 are also quite similar despite .the fact that for STY, Co varies by about an

order of magnitude between the two carpets. These results appear to further support the

hypothesis that the backing materials govern the emissions, because the backings for

carpets 1 and 4 are similar, while the fibers are different

Diffusion coefficients for VOCs in polymer materials depend on the molecular

weight of the compound and also on the type of polymer (Schwope et al., 1989). Those

authors correlated diffusion coefficients of a wide range of VOCs in six polymers as a

function of molecular weight of diffusant at 25°C, revealing that D can vary by orders of
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magnitude as polymer type or molecular weight change. For carpets I and 4, the range of

observed values ofD is 10 x 10-12 to 0.5 x 10-12 m2 s-1 for VOCs with molecular weights

varying between 104 and 158. As expected, the largest molecule, PCH, has the smallest

diffusion coefficient. Park et al. (1989) measured diffusion coeffici_ents for a range of

VOCs in SBR and found values of D varying ber-ween 2.3 x 10-12 fuld 1.0 x 10-12 m2 s-1

for molecular weights varying from 72 to 166. These diffusion coefficients are in

reasonable agreement with those obtained from the carpet data, lending credibility to the

assumed physical basis of the model.

Carpet 3 has a flexible plasticized polyvinyl chloride backing with polyvinyl acetate

as a co-polymer. No independently measured diffusion coefficients are available for this

material. However, the observed D values of between 6 x 10-12 and 0.06 x 10-12 m2 s-1

are close to those that would be expected for high density polyethylene (Schwope et al.,

1989). In addition, the two low molecular weight compounds have the largest diffusion

coefficients, although it is not certain that these two compounds originate in the backing.

The low diffusion coefficients found for ISO, PRO and Em in Carpet 3 result in a large

fraction (about 85%) of the amount injti~lly present re!Il~lningwidlin ilie polymer backing

at the end of the one week period. Emissions of these compounds could be expected to

continue for several weeks.

Schwope et al. (1989) suggested that the concentration dependence of diffusion

coefficients of a VOC in polymers may be neglected when tri.e concentrations of the VOC in

the polymer is less than 1%. An examination of the observed values of Co for all three

carpets show concentrations of well below 0.1%, assuming a polymer density of 1 g cm-3.

Therefore, the assumption made in deriving equation 7 that D is independent of C seems

justified. A similar argument applies to the use of the partition coefficient, K y , which may

also depend on concentration. At the relatively low contaminant concentrations present in

the carpet backing material, the use of a linear partition coefficient appears reasonable.
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Ideally, the observed values for Kv should also be compared to expected values.

Park et aL (1989) measured Kv for various VOCs in SBR at varying polymer

concentrations. For the lowest concentration case, the values of Kv ranged from about 200

for n-hexane to 28,000 for 1,2-dicWorobenzene. The range of Kv values found in carpets

1 ~nd 4, which should be similar to SBR, varies from 1,400 to 170,000, which appears

plausible. In principle, Ky should increase as the vapor pressure of the compound

decreases, and as the solubility of the compound in the polymer increases. For carpets 1

and 4, PCH has the lowest vapor pressure, and the observed values of Ky are indeed the

largest. This trend is also observed for values for Kv for carpet 3, which follow an

increasing trend as the vapor pressure decreases. The value of Kv = 1 for ACE appears

somewhat inconsistent, although this might be due to the relative insensitivity of the model

to Kv at low values of Ky, as is shown below.

While the proposed model appears to be consistent with the observed emissions

profiles for most of the VOCs released from the carpets, the iterative fitting procedure did

not converge for the VA data of carpet 3 (data not plotted). The model under-predicts the

early data points and over-predicts the later portion of the observed chamber data. No clear

reasons can be found for this unexpected behavior.

Behavior of model

The influence of the model parameters on the resulting contaminant concentration in

air, yet), is briefly examined. Equation 7 shows that the concentration in the chamber air

depends linearly on Co, the initial concentration in the polymer, and that the shape of yet)

will scale proportionally. This suggests that the most effective way to reduce emissions

from new carpets is to reduce Co, the initial concentration of the VOCs in the polymer

backing material.

Figures 6 and 7 show the effect of a variation in D and Ky , respectively, for a

constant Co of 1()4 mg m-3. Figure 6 shows plots of yet) for values of D varying between

0.1 x 10-12 and 10 x 10-12 m2 s-1 at a constant Kv of 1000. Figure 7 gives yet) for Kv
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varying between 100 and 100,000 at a constant D of 1 x 10-12 m2 s-l. Increasing the

diffusion coefficient results in a higher emission rate at early times and more rapid depletion

of the contaminant in the polymer slab. Increasing the partition coefficient decreases the

emission rate at early times and results in a much slower depletion rate of polymer

contaminant. However, the influence of a change in Ky is virtually insignificant below a

value of about 1000.

Conclusions

The simple physically-based diffusion model provides a reasonable fit to the

experimental chamber data for most compounds. The model assumes that emissions of

VOCs from new carpets originate predominantly in a uniform slab of polymer backing

material. The diffusion and partition coefficients obtained by fitting the model to the

observed concentration data behave in fashions that are consistent with the physical

properties of the compounds. In addition, for the two carpets that have an SBR backing,

the fitted parameters are similar to those determined independently in SBR. The power of

the proposed model lies in its ability to predict source strengths of VOCs emitted by carpets

into indoor air using only a few physically meaningful parameters. This can provide a

useful guide for establishing carpet specifications, and for improving carpet design and

manufacturing procedures to reduce emissions. However, further work is necessary to

more rigorously validate the model by independently measuring the model parameters and

testing the simplifying assumptions.
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Notation

A

BPt

C

Co

D

f

L

M

Memit

MWt

Pvap

Q

t

v

x

y

Ybag

~2

area of chamber floor and of carpet (m2)

boiling point (oe)

concentration of compound in polymer (mg m-3)

initial concentration of compound in polymer (mg m-3)

diffusion coefficient for compound in polymer (m2 s-l)

fraction ofVOC emitted from polymer layer (dimensionless)

partition coefficient between polymer and air (dimensionless)

thickness of carpet polymer layer (m)

total mass per unit area ofVOC initially in polymer layer (mg m-2)

mass per unit area of VOC emitted from polymer layer (mg m-2)

molecular weight (amu)

vapor pressure (mm Hg)

volumetric air flow rate through chamber (m3 s-l)

time (s)

volume of air in chamber (m3)

linear distance (m)

concentration of compound in chamber air (mg m-3)

concentration of compound in storage bag (mg m-3)

relative least-squares residual (dimensionless)
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Table 1. Physical properties of compounds evaluated (vapor pressure at 230C).

BPt Pyap

Name (abbreviation) Formula MWt (OC) (mmHg)

Styrene (STY) CgHg 104 145 5

Ethylbenzene and xylenes (C2B)t CgHlO 106 136 6

4-Ethenylcyclohexene (VCR) CgH14 110 128

4-Phenylcyclohexene (PCR) C12H14 158

Formaldehyde (FOR) CR20 30 760

Acetaldehyde (ACE) C2I40 44 740

1,2-Propanediol (PRO) C3Hg0:2 76 187 0.2

Vinyl acetate (VA) C4H60:2 86 72 83

2,2,4-Trimethylpentane (ISO) CgHlg 114 98 39

2-Ethyl-l-hexanol (ETII) C7H160 130 184 0.05

tAverage values for ethylbenzene and ortho-, meta-, and para-xylenes.

Table 2. Parameters for carpets 1a and 1b, L = 1.25 rom.

Compound (carpet)

Parameter STY STY VCHt C2B C2B PCH PCR

(a) (b) (b) (a) (b) (a) (b)

Memit (mg m-2) 2.20 3.41 0.80 0.40 0.64 12.5 9.80

f 0.98 0.97 0.95 0.95 0.92 0.49 0.47

Co (mg m-3) 1,800 2,800 670 340 560 20,000 17,000

Ky 4,200 6,500 1,400 1,500 2,400 81,000 67,000

D (m2 s-l) x 1012 4.1 3.6 5.2 10.2 4.3 0.59 0.50

~2x 103 9.1 4.6 8.3 10.6 1.9 10.3 7.2

tNot measured for carpet 1a.
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Table 3. Parameters for carpet 3, L = 2.0 mm.

Compound

Parameter FOR ACE ISO PRO- Em

Ivfemit (mg m-2) f:. f:.l 2.52 7.55 72.0 7.20v .. v .....

f 0.74 0.96 0.14 0.14 0.13

Co(mg m-3) 4,500 1,300 25,900 255,000 26,500

Ky 11,000 1 59,000 180,000 450,000 /

D (m2 s-l) x 1012 3.2 6.4 0.060 0.065 0.088

1:2 x 103 0.40 2.3 0.92 1.1 0.31

Table 4. Parameters for carpet 4, L = 1.0 mm.

Compound

Parameter STY VCR C2B PCH

Memit (mg m·2) "'". n '" L"'" 1 1 ("\ 1 1 ")
L:>."::1 .t..OL 1.~7 ~ ~ • .L.

f 0.99 0.96 0.91 0.67

Co(mg m-3) 26,000 2,700 1,300 16,700

Ky 5,700 1,700 5,300 170,000

D (m2 s-l) x 1012 3.1 2.1 1.5 1.2

1:2 x 103 14.1 5.3 7.9 3.3
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Figure captions

Figure 1. Idealized schematic representation of a carpet in a chamber. Symbols are defined

in text and glossary.

Figure 2. Experimental chamber concentrations with time and best-fit model curves for

carpet la. The fitting procedure had one degree of freedom in parameter D. See Table 1

for chemical abbreviations.

Figure 3. Experimental chamber concentrations with time and best-fit model curves for

carpet lb. The fitting procedure had one degree of freedom in parameter D. See Table 1

for chemical abbreviations.

Figure 4. Experimental chamber concentrations with time and best-fit model curves for

Table 1 for chemical abbreviations.

Figure 5. Experimental chamber concentrations with time and best-fit model curves for

carpet 4. Tne fitting procedure had one degree of freedom in parameter D. See Table 1 for

chemical abbreviations.

Figure 6. Plots of yet) for D varying between 0.1 x 10-12 and 10 x 10-12 m2 s-1 at a Co of

10,000 mg m-3 and a constant Ky of 1000.

Figure 7. Plots of yet) for Ky varying between 100 and 100,000 at a Co of 10,000 mg m-3

and a constant D of 1 x 10-12 m2 s-l.
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