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Abstract

This study compared the event-related potentials elicited by single-digit addition, subtraction, and multiplication problems. With a delayed
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erification paradigm, 18 Chinese undergraduates were first asked to solve the arithmetic problems that were presented visually for 200 ms
nd, after 1.5 s, to judge whether a presented solution was correct or not. Results showed that, compared to addition and subtraction, multi-
lication elicited a greater N300 at the left frontal electrodes peaking around 320 ms (in the interval between 275 and 334 ms after the onset
f the arithmetic problem). To control for the confounding effects of task difficulty and solution size, comparisons were further made between
large” addition problems (with sums between 11 and 17) and “small” multiplication problems (with products between 6 and 24). Similar
esults were obtained (i.e., a significant difference between addition and multiplication in the N300 component between 296 and 444 ms). Source
nalyses demonstrated that a single dipole in the left anterior brain areas could have contributed to the topographies of the difference wave-
orms (“multiplication–addition”, “multiplication–subtraction”, and “‘small’ multiplication–‘large’ addition”). These results are interpreted in
erms of the greater reliance on phonological processing for the retrieval of multiplication facts than for the retrieval of addition and subtraction
acts.

2006 Elsevier Ltd. All rights reserved.

eywords: Arithmetic facts; Representation; Cognitive arithmetic; Numerical cognition; Event-related potentials

. Introduction

Single-digit addition, subtraction, and multiplication are fun-
amental operations of arithmetic. Children acquire the facts of
ingle-digit arithmetic mainly through two types of strategies:
rocedural strategies and rote verbal memory (e.g., Dehaene

Cohen, 1997; Roussel, Fayol, & Barrouillet, 2002; Zhou
Dong, 2003). Procedural strategies, such as counting, trans-

ormation (e.g., 6 + 7 = 6 + 6 + 1, 9 + 7 = 9 + 1 + 6), and repeated
ddition, typically involve quantity manipulation along the men-
al number line. With the rote memory strategy, people repeat-
dly recite arithmetic facts so that the facts could be stored

∗ Corresponding author.
E-mail address: dongqi@bnu.edu.cn (Q. Dong).

in memory as a type of modularized phonological associations
between a digit pair and their answer.

School children are usually taught to use procedural strategies
for simple addition and subtraction, but to use rote memory strat-
egy to memorize multiplication facts (e.g., Dehaene & Cohen,
1997; Roussel et al., 2002; Zhou & Dong, 2003). These differ-
ential strategies during the acquisition of arithmetic facts may
play an important role in shaping their mental representations
(e.g., Siegler & Shipley, 1995; Siegler & Shrager, 1984). It is
possible that mental representations of multiplication facts have
greater reliance on verbal memory than those for addition and
subtraction facts. This hypothesis has been supported by sev-
eral neuropsychological studies. Researchers have found that
patients with lesions in the left perisylvian language region and
those with low verbal fluency had more difficulty in single-digit
multiplication than in addition and subtraction (e.g., Cohen,
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Dehaene, Chochon, Lehéricy, & Naccache, 2000; Dehaene &
Cohen, 1997; Delazer & Benke, 1997; Lemer, Dehaene, Spelke,
& Cohen, 2003; Pesenti, Seron, & van der Linden, 1994; van
Harskamp, Rudge, & Cipolotti, 2002, 2005).

In contrast, neuroimaging studies with PET and fMRI have
yielded inconsistent results. Consistent with the lesion studies,
two fMRI studies have found that, compared to subtraction or
numerical–magnitude comparison, multiplication elicited more
activation in the left perisylvian language regions (either the
left angular gyrus or the left inferior frontal gyrus) (e.g., Lee,
2000; Rickard et al., 2000). Several other neuroimaging studies,
however, failed to replicate these results (Chochon, Cohen, Van
de Moortele, & Dehaene, 1999; Dehaene et al., 1996; Hayashi,
Ishii, Kitagaki, & Kazui, 2000; Kawashima et al., 2004; Kazui,
Kitagaki, & Mori, 2000). One possible reason for these incon-
sistent findings is that PET and fMRI have poor temporal res-
olution and are not always sensitive enough to detect potential
differences in a small time window among arithmetic opera-
tions. After all, a typical single-digit arithmetic problem involves
three stages: converting stimulus into appropriate internal codes,
retrieving or calculating the answer, and reporting the answer
(Campbell & Epp, 2005). Only the second stage is expected to
differ across the arithmetic operations in terms of the involve-
ment of verbal processing. By averaging signals from all three
stages, PET and fMRI studies have a greatly reduced sensitivity
to differences across arithmetic operations.

No studies have used the event-related potential (ERP) tech-
nique to systematically compare the neural basis of single-digit
addition, subtraction, and multiplication. With its high temporal
resolution and moderate capability for spatial localization, the
ERP technique is a useful tool to examine the time-locked dif-
ference in neural bases of the three arithmetic operations. Using
the ERP technique, the present study tested our hypothesis that
single-digit multiplication has greater reliance on phonological
processing than does single-digit addition and subtraction. With
source analysis, we further expected that differences among
arithmetic operations can be localized at either of the following
two areas: the left inferior frontal gyrus, especially the Broca’s
area, which has the function of phonological processing (e.g.,
Burton, 2001; Poldrack et al., 1999), or the left angular gyrus,
which has been linked to number processing (Dehaene, Piazza,
Pinel, & Cohen, 2003).

Comparisons of neural bases for different single-digit
arithmetic operations are often subject to the confounding effect
of task difficulty. Previous research has clearly documented that
different arithmetic operations have different levels of difficulty.
In general, multiplication has been found to be more difficult
than other arithmetic operations (e.g., addition) or other number
tasks (e.g., numerical–magnitude comparison) (e.g., Chochon
et al., 1999; Kawashima et al., 2004; Zhou & Dong, 2003). To
control for the potential confounding effect of task difficulty,
we further compared “large” single-digit addition problems
(with sums between 11 and 17) and “small” single-digit
multiplication problems (with products between 6 and 24).
Previous research has shown that these problems were matched
in problem difficulty for Chinese subjects (Zhou & Dong,
2003).

2. Methods

2.1. Participants

Because we used a delayed verification task (see details in the next section),
two separate samples were needed: one for the ERP experiment, and the other
for the behavioral experiment. Thirty-six undergraduate subjects were recruited
from Beijing Normal University for this study. Half of them were randomly
(stratified by gender) assigned to the ERP experiment and the other half to the
behavioral experiment. The average age of the subjects was 21.3 years, ranging
from 17.8 to 27.2 years. All participants were right-handed and had normal
or corrected-to-normal eyesight. They had not participated in any experiments
similar to the present one (i.e., involving simple arithmetic tasks of addition,
subtraction, and multiplication) during the past half a year. Subjects gave written
informed consent before the experiment.

2.2. Materials

Single-digit addition, subtraction, and multiplication problems were used in
this study. Because repeated-operand or “tie” problems (e.g., 3 + 3, 3 − 3, and
3 × 3) and those with 0 and 1 as an operand (e.g., 1 + 5, 0 + 5, 1 × 5, 0 × 5) are
rule-based problems (e.g., LeFevre et al., 1996), subjects typically use special
strategies to solve these problems. Therefore, they were not used in this study.
Subtraction problems were further limited to the large-operand-first problems
(e.g., 3 − 2) to avoid negative solutions. Due to these constraints and the need to
have a balanced set of problems across operations, there were only 28 problems
we could use for each operation. Consequently, to allow for enough trials for
the ERP recording, we had to present each problem four times, twice followed
by the correct solution, and twice followed by an incorrect solution. In the end,
there were 112 trials for each type of operation. It should be pointed out that
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he incorrect solutions were not randomly generated. They had to come from
he single-digit arithmetic table of the same operation type and had to have the
ame number of digits (either one or two digits) as the correct solution would
ave.

The addition and multiplication problems were further divided into “small”
nd “large” problems in order to control for the confounding effect of task
ifficulty. Based on Zhou and Dong’s (2003) study, “large” addition problems
ncluded those with sums from 11 to 17 and “small” multiplication problems
ncluded those with products ranging from 6 to 24.

.3. Procedure

Subjects were seated 105 cm away from the computer screen in a dimly
it, sound-attenuated room. All stimuli were presented visually in white against
lack background at the center of the screen. For each trial, a fixation sign “♦”
3 cm × 4 cm in size) was first presented for 200 ms, followed by a blank screen
or 500 ms. Then two single-digit operands (each 2 cm × 3 cm in size), separated
y a 4.5 cm blank space, were presented for 200 ms, followed by a blank screen
or 1300 ms. During the presentation of two operands and the blank screen,
ubjects would perform addition, subtraction, or multiplication as instructed on
he two operands. After the blank screen, a solution was presented. Subjects
esponded by pressing a key to indicate whether the presented solution was the
ame as their solution. Half of the subjects responded “Yes” with their right hand
nd “No” with their left hand, and the other half in the opposite way. After the
esponse, the presented solution disappeared from the screen and 2000 ms later
he next trial began. Instructions emphasized both speed and accuracy. Subjects
howed high accuracy in their responses (error rate < 2%) and fast RT (436, 427,
nd 432 ms for addition, subtraction, and multiplication conditions, respectively,
rom the onset of the solution to response).

We used a delayed verification task rather than a production task or a
tandard verification task in the ERP experiment for several reasons. First, in
erbal-production tasks, the tongue movement and muscle activities might add
rtifacts to the EEG recording. For this reason alone, many other similar studies
ave used delayed verification tasks (e.g., Galfano, Mazza, Angrilli, & Umiltà,
004; Niedeggen & Rosler, 1999; Szucs & Csepe, 2005). Second, multiplica-
ion problems generally involve larger numbers as their answers (ranging from
to 72) than do other operations such as addition (5–17) and subtraction (1–7).



2502 X. Zhou et al. / Neuropsychologia 44 (2006) 2500–2507

Consequently, verbal production might result in more verbal processing for mul-
tiplication than for addition and subtraction. The verification paradigm helps to
minimize the confounding effect of verbal production. Finally, the standard veri-
fication task (i.e., operands and proposed solution are presented simultaneously,
e.g., “2 + 3 = 8”) has been found to involve mental processes that are different
from those for verbal production of answers (e.g., Campbell & Tarling, 1996;
Lemaire & Fayol, 1995). That is because the proposed solution in the standard
verification tasks would allow subjects to make a plausibility judgment, whereas
the production paradigm and the delayed verification paradigm would require
either direct retrieval of problem solutions or calculation.

Previous research has shown strong evidence of interference among arith-
metic operations when subjects had to switch among them (e.g., Campbell &
Oliphant, 1992). To reduce such interference, problems were presented in sepa-
rate blocks. Each type of operations had two blocks (about 5 min each). Problems
were randomly presented within a block, with the constraint that consecutive
problems did not have a common operand or the same solution. At the beginning
of each block, the arithmetic operation to be performed was cued on the screen.
Subjects had a 2-min rest between blocks.

Before the formal test, there were practice trials with problems with 0 and
1 as one of the operands (e.g., 0 × 2, 1 × 2). During the practice stage, subjects
were instructed to avoid eye-blinks during a trial (from the beginning of fixation
through pressing the key). Subjects were given feedback if they made eye blinks,
made too many response errors, took too long to respond, or had obvious head
movement.

2.4. Electroencephalography (EEG) recording and analysis

Scalp voltages were recorded by a NeuroSCAN system, using a 64-channel
Quick-cap with silver chloride electrodes (Neurosoft, Inc., Sterling, USA).
Linked-ears served as reference (see Section 4 for a comment on potential prob-
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study on number-comparison task. We selected groups of adjacent electrodes
over which the operation effect reached the highest level of significance. The
voltages averaged across those electrodes and associated time windows were
then entered into a repeated measures ANOVA with multiple pairwise compar-
isons (with Bonferroni adjustment). Scalp topographies were visualized with
EEGLAB (http://sccn.ucsd.edu/eeglab/).

Similar analyses were conducted to compare “large” addition and “small”
multiplication problems. For these analyses, we used the sample-by-sample
nonparametric statistics with the Wilcoxon test. Because there were only two
conditions, post hoc contrasts were not needed.

For both the event-related potential experiment and the behavioral experi-
ment, the correct trials with greater than 3 s in reaction time were discarded.
Reaction times for the correct trials were further trimmed for each subject by
excluding trials with RT that were longer than three standard deviations above
that individual’s mean RT. Reaction times and error rates from each experiment
were subjected to a repeated measures ANOVA.

2.6. Source analysis

The software Brain Electrical Source Analysis (BESA, Version 5.1.4)
(Scherg & Ebersole, 1993) was used to construct source models for the oper-
ation effects. The default four-shell ellipsoidal head model was used to model
intracranial generator(s) as a single dipole source. The averaged digitized elec-
trode locations across subjects were imported as electrode configurations. The
grand mean difference waveforms among operations were analyzed. The inter-
val of waveform for source analysis was defined on the basis of the global field
power (GFP) (Lehman & Skrandies, 1986; Schlereth, Baumgartner, Magerl,
Stoeter, & Treede, 2003). Goodness-of-fit was estimated in terms of residual
variance (RV), i.e., the percentage of variance in the interval that could not be
explained by the model.
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ems with this procedure), and the middle of the forehead served as ground. Two
hannels were placed at the outer canthi of both eyes to record the horizontal
lectrooculogram (HEOG), and another two channels above and below the left
ye for vertical electrooculogram (VEOG). The sampling rate was 1000 Hz. The
mpedance of all electrodes was kept below 5 k�. Immediately following scalp
lectrical recording, electrode positions and physical landmarks were digitized
sing Polhemus Fastrak digitizer and 3D SpaceDx software contained within
he NeuroScan software package.

Offline, trials were rejected for incorrect responses, movement artifacts, or
mplifier saturation. A DC correction was applied, and ocular artifacts were then
orrected with NeuroScan EDIT (Version 4.3). The trigger threshold for ocular
rtifacts was set to 10%. The minimum number of sweeps that were required to
onstruct an averaged VEOG artifact was 20. The duration of the average artifacts
as 400 ms. After the correction of ocular artifacts, the continuous EEG data
ere segmented into epochs from 200 ms prestimulus (i.e., 200 ms before the
nset of digit pairs) until 1500 ms poststimulus. The 200 ms prestimulus served
s the baseline. EEG were detrended and baseline-corrected. Epochs exceeding
he rang of −100 to 100 �V at any channel except HEOG and VEOG were
ejected as artifacts. The remaining trials were averaged for each operation sep-
rately for each subject. The percentage of valid trials used for averaging were
0 ± 13% for addition, 92 ± 10% for subtraction, and 93 ± 11% for multiplica-
ion. The averaged waveform was filtered with a lowpass of 30 Hz (zero-phase,
2 dB/octave). The grand average was obtained by averaging across the subjects’
verages separately for each arithmetic operation (i.e., addition, subtraction, and
ultiplication).

.5. Statistical analysis

The event-related potentials to be analyzed were time-locked to the onset
f digit pairs. Sample-by-sample nonparametric statistics were performed on
hese data by using the Friedman test to isolate the location and time window
mong experimental conditions. The p-values for all samples over 64 electrodes
ere visualized with a software programmed in-house. A difference among

xperimental conditions in a scalp region was considered significant when it
ppeared for 30 consecutive samples (a duration of 30 ms) simultaneously on at
east five electrodes with a significance level of .05. This criterion for signifi-
ance was similar to that used in Pinel, Dehaene, Riviere, and LeBihan’s (2001)
Two types of source models were tested. First, we tested source models that
laced a single dipole in a region of interest and examined how well the data fit the
odels. Specifically, in two separate models for each type of scalp topography

f the difference waveforms, a single dipole for the onset phase of the GFP
eak was placed at one of the two brain regions that might be involved in the
honological processing of numbers: the left inferior frontal gyrus and the left
ngular gyrus. Summarizing the neuroimaging and neuropsychological studies
n number processing (Chochon et al., 1999; Dehaene, Spelke, Stanescu, Pinel,

Tsivkin, 1999; Lee, 2000; Simon, Cohen, Mangin, Bihan, & Dehaene, 2002;
tanescu-Cosson et al., 2000), Dehaene et al. (2003) concluded that the angular
yrus was the language system for number processing. The average Talairach
oordinates of activation were −41, −66, and 36. In addition, relative to other
asks (i.e., letter naming, eye fixation, perceptual motor control task, number-

agnitude comparison, or digit reading), single-digit multiplication activated the
eft inferior frontal gyrus (Tarairach coordinates: −36, 27, 3; −54, 16, 24; −40,
3, 32) and the adjacent insula (Tarairach coordinates: −30, 18, 2) (Chochon et
l., 1999; Kawashima et al., 2004; Richard et al., 2000; Zago et al., 2001). We
veraged these Talairach coordinates to define another potential neural source
or phonological processing in multiplication. The averaged coordinates were
40, 19, and 15, which is adjacent to the averaged coordinates (−43, 18, 17) for

honological tasks (e.g., rhyme generation, phoneme monitoring, and phonetic
iscrimination) as reported in Poldrack et al.’s (1999) summary of 18 studies.
single dipole was placed at locations in the Talairach space −40, 19, and 15

inferior frontal gurus) or −41, −66, and 36 (angular gyrus). The BESA then
reely adjusted its orientation to match the scalp topography of the difference
aveforms.

Second, to supplement the model-fitting analyses, we constructed a second
ype of models that allowed one dipole to fit the data without limiting the location.

e could then examine how close the final fitted location is to the original region
f interest (e.g., the left inferior frontal gyrus).

.7. Behavioral experiment

The behavioral experiment was conducted in order to examine the relative
ifficulty of the different arithmetic operations. (The ERP experiment provided
eaction times and error rates only on the verification stage, thus not relevant to
he task difficulty involved in the generation of the solution.) The materials and

http://sccn.ucsd.edu/eeglab/
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procedure were the same as those used for the ERP experiment with the exception
that subjects were asked to orally report the solutions. A voice-activated relay was
used as switch that controlled a software clock to record the reaction times. Sub-
jects’ responses were evaluated by the experimenter to calculate the error rates.

3. Results

3.1. Comparisons among addition, subtraction, and
multiplication

Fig. 1 shows the mean reaction times and error rates from the
behavioral experiment. One-factor repeated measures ANOVA
with arithmetic operation as the within-subject factor showed
a significant main effect of operation on reaction times, F(2,
34) = 46.79, MSe = 361.93, p < .001. Pairwise comparisons with
Bonferroni adjustment at .05 level showed that RT was longer
for multiplication than for addition and subtraction problems
and longer for addition than for subtraction problems. Analyses
of the error rates showed similar results, with a significant main
effect of operation, F(1, 17) = 16.15, MSe = 8.38, p < .001. Pair-
wise comparisons showed more errors for multiplication than
for addition and subtraction problems.

The raw waveforms elicited by single-digit addition, sub-
traction, and multiplication are shown in Fig. 2. Based on
sample-by-sample analysis, we selected one group of elec-
trodes mainly over the left frontal regions, including F3, F5, F7,
F
e
s
c
o
p
p
o
N
t
o
i
p
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Fig. 2. The grand mean event-related potentials elicited by single-digit addition,
subtraction, and multiplication over representative electrodes F3, F4, P3, and P4.
Typical differences among operations located at the electrodes over the left and
anterior parts of the scalp.

To investigate the locations of neural sources underly-
ing differences between arithmetic operations, the brain elec-
trical source analysis (BESA) software was used to derive
a single-dipole model based on the mean difference wave-
forms. Modeling was conducted separately for two contrasts
of the arithmetic operations: “multiplication–addition” and
“multiplication–subtraction.” For the contrast between multipli-
cation and addition, the onset phase of the GFP peak was from
263 to 323 ms, and the first spatial component of the principal
component analysis (PCA) accounted for 97.0% of the variance
in the topography of that interval. When the dipole was set at the
left inferior frontal gryus (Talairach coordinates: −40, 19, 15),

ing sin
C3, FC5, FT7, AF3, and C5. The time window for significant
ffects was from 275 through 334 ms. One-factor repeated mea-
ures ANOVA with operation as the within-subject factor was
onducted. The mean amplitudes differed significantly across
perations, F(2, 34) = 9.81, MSe = 4.70, p < .001. Pairwise com-
arisons with Bonferroni adjustment showed that multiplication
roblems elicited more negative potentials than either addition
r subtraction problems at the .001 significance level (see Fig. 2).
o differences in the mean amplitudes were found between addi-

ion and subtraction problems. The operation effect seemed to
ccur at the N300 potentials. The significant difference was in
ts peak amplitude, F(2, 34) = 9.31, MSe = 6.56, p < .005, not its
eak latency (in the interval of 275–334 ms). Pairwise compar-
sons revealed that multiplication had greater N300 than either
ddition or subtraction at the .01 level. Peak amplitudes did not
iffer between addition and subtraction (Fig. 3).

Fig. 1. Response times (ms) and error rates (%) when solv
 gle-digit arithmetic problems: the behavioral experiment.



2504 X. Zhou et al. / Neuropsychologia 44 (2006) 2500–2507

Fig. 3. Topographies of mean difference potentials among single-digit addition, subtraction and multiplication in the interval 275–334 ms. The left of the picture
corresponds to the left scalp.

the residual variance (RV) was 12.4% (see Fig. 4), and when it
was set at the angular gyrus (Talairach coordinates: −41, −66,
36), the RV was 34.4%. When the dipole was allowed to freely
adjust its location and orientation, the Talairach coordinates were
−21, 5, and 19, and the RV was 8.5%.

For the contrast between multiplication and subtraction, the
onset phase of the GFP peak was from 261 to 301 ms, and the first
spatial component accounted for 98.2% of the variance. When
the dipole was set at the left inferior frontal gryus (Talairach
coordinates: −40, 19, 15), the RV was 8.5% (see Fig. 4), and

F
t
r
d
1

when it was set at the angular gyrus (Talairach coordinates: −41,
−66, 36), the RV was 42.7%. When the dipole was allowed to
freely adjust its location and orientation, the Talairach coordi-
nates were −24, 25, and 13, and the RV was 6.0%.

3.2. Comparisons between “large” addition and “small”
multiplication problems

Data from the behavioral experiment showed that the mean
reaction times were 711 (±28) ms for “large” addition problems
and 702 (±26) ms for “small” multiplication problems. Cor-
responding error rates were 4.6% (±1.1%) and 3.7% (±.5%).
Repeated measures ANOVA of these data found no significant
differences either in reaction times or error rates, which is con-
sistent with previous findings based on a similar sample (Zhou
& Dong, 2003).
ig. 4. Source waveforms (1–800 ms) and models for the difference poten-
ials for “multiplication–addition” and “multiplication–subtraction”. The cor-
esponding intervals for dipole fitting are 263–323 and 261–301 ms. The single
ipole position is in left inferior frontal gyrus (Talairach coordinates: −40,
9, 15).

F
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ig. 5. The grand mean event-related potentials elicited by single-digit “large”
ddition and “small” multiplication over representative electrodes F3, F4, P3,

nd P4. Typical differences between operations located at the electrodes over
he left and anterior parts of the scalp.



X. Zhou et al. / Neuropsychologia 44 (2006) 2500–2507 2505

Fig. 6. Topography of mean difference potentials for the contrast between
“small” multiplication and “large” addition in the interval 296–444 ms. The
left of the picture corresponds to the left scalp.

The raw waveforms elicited by the difficulty-matched arith-
metic problems are shown in Fig. 5. Based on sample-by-
sample analysis with the Wilcoxon test, significant differences
between “large” addition and “small” multiplication problems
were found at the electrodes over the left frontal regions, includ-
ing F1, F3, F5, F7, AF3, AF7, FP1, FC5, and FC3. The time
window for significant effects was from 296 through 444 ms.
During this interval, the peak amplitudes were −.3 �V for
“large” addition and 1.1 �V for “small” multiplication problems,
which differed significantly from each other, F(1, 17) = 13.19,
MSe = 17.34, p < .005 (Fig. 6).

The averaged difference waveforms between “small” multi-
plication and “large” addition problems were submitted to the
BESA for source analyses. The onset phase of the GFP peak was
from 275 to 412 ms, and the first spatial component accounted
for 94.0% of the variance. When the dipole was set in the left
inferior frontal gyrus (Talaraich coordinates: −40, 19, 15), the
RV was 15.8% (see Fig. 7). When the dipole was set in the
angular gyrus (Talaraich coordinates: −41, −66, 36), the RV
was 48.4%. When the dipole was allowed to freely match the
scalp topography, the Talaraich coordinates were −32, 21, and
26, and the RV was 14.9%.

F
c
d
g

4. Discussion

The present study compared the event-related potentials
elicited by single-digit addition, subtraction, and multiplica-
tion problems. Results showed that, compared to addition and
subtraction, multiplication elicited more negative potentials on
the electrodes over the scalp of left frontal lobe between 275
and 334 ms. The significant operation effects were in the N300
component peaking around 320 ms. Source analyses suggested
that a single-dipole model at the left anterior brain region could
have accounted for the topography of the difference waveforms
(“multiplication–addition” and “multiplication–subtraction”).
To control for the effect of task difficulty, same analyses were
conducted with “large” addition and “small” multiplication that
matched in problem difficulty and solution size. Similar results
were obtained with a significant N300 effect between 296 and
444 ms. These findings were consistent with our hypothesis that
the retrieval of multiplication facts has a greater reliance on
phonological processing (in the left anterior brain region includ-
ing the Broca’s area) than the retrieval of addition and subtraction
facts. In the following sections, we discuss specifically the oper-
ation effects and their origin.

4.1. Operation effects

Based on the behavioral experiment, our subjects (Chinese
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ig. 7. Source waveform (1–800 ms) and model for difference potentials for the
ontrast between “small” multiplication and “large” addition. The interval for
ipole fitting is 275–412 ms. The single dipole position is in left inferior frontal
yrus (Talairach coordinates: −40, 19, 15).
ollege undergraduates) typically solved addition, subtraction,
nd multiplication within 800 ms. Within that period, they had
o go through three stages of cognitive processes: encoding two
isually presented digits, retrieving the answer (either through
irect retrieval from the memory or through calculation), and
eporting the solution to activate voice-control switch. Given that
nly the second stage differs across the three arithmetic opera-
ions, it is likely that subjects retrieved answers (with different
trategies for different operations) in the interval of 200–400 ms,
hich created the N300 effect.
Of the source models we tested, the model with a single dipole

laced at the angular gyrus did not fit the data, with RVs rang-
ng from 34 through 48%. Results of the other two models (a
ingle dipole placed at the left inferior frontal gyrus or allowed
o freely adjust its location) appear to converge. They had simi-
ar RV, ranging from 8 to 16% for the left-inferior-frontal-gyrus
LIFG) model and 6–15% for the free-fitting model. These mod-
ls located the source in the left anterior brain region, although
he free-fitting models locate a more medial source (e.g., insula)
han the LIFG model. It is worth noting that, when the task dif-
culty was controlled, the source location from the free-fitting
odel was especially close to that from the LIFG model.
Based on these data, we can draw a tentative conclusion that

he left anterior brain region (likely to involve Broca’s area) may
e more involved in multiplication than in subtraction and addi-
ion. In other words, this conclusion suggests that single-digit

ultiplication seems to involve phonological processing more
han do single-digit addition and subtraction. As discussed in
ection 1, this notion that multiplication facts are represented as
honological codes is consistent with previous neuropsycholog-
cal findings (e.g., Delazer & Benke, 1997; Lemer et al., 2003;
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van Harskamp et al., 2002) and an fMRI study (Richard et al.,
2000).

4.2. Problem difficulty and solution size

Problem difficulty and solution size are potential confound-
ing factors in comparisons of cognitive arithmetic tasks. Nor-
mally, multiplication problems were more difficult and typically
involved larger solution size than addition and subtraction. How-
ever, several findings from this and other studies seem to suggest
that problem difficulty or solution size is not responsible for
the greater N300 at the left frontal electrodes for multiplica-
tion than for addition and subtraction. First, there was also a
significant difference in difficulty and solution size between
addition and subtraction (i.e., subjects took longer to solve addi-
tion problems than subtraction problems). However, these two
types of operations did not differ in the N300 component. Sec-
ond, the topography of ERP for problem difficulty was different
from that for the operation effect (Kong et al., 1999). Kong et
al. (1999) reported that difficult problems (with carrying, e.g.,
35 + 9) elicited greater P2 at frontal regions than easy prob-
lems (without carrying, e.g., 35 + 2). Finally, and perhaps most
importantly, when we matched the difficulty and solution size
of addition and multiplication problems, we still found a similar
N300 effect.
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arithmetic problems (because of a small number of plausible and
comparable problems), such repetitions may result in the use
of different cognitive strategies in solving the arithmetic prob-
lems (e.g., calculation in the beginning and memorization for the
repeated problems). Such potential differences in strategies are
of concern in cognitive research. For the current study, however,
we believe that the repetitions of simple arithmetic problems
were not likely to have a major impact on our results for two
reasons. First, previous studies of single-digit arithmetic prob-
lems showed that a small number of repetitions may have only a
limited effect on cognitive processes. For example, the problem
size effect (i.e., larger problems are more difficult than smaller
problems) is typically stable even when the same single-digit
multiplication problems were repeated three times (LeFevre &
Liu, 1997). Second, if repetitions result in the situation that sub-
jects just remember the answers (across all types of operations),
instead of calculating those answers for addition and subtraction
and reciting verbal codes for multiplication, the repeated trials
would theoretically have reduced the differences between mul-
tiplication and addition and those between multiplication and
subtraction. Therefore, studies like ours that use repetitions of
problems would have under-estimated (not inflated) differences
among operations.

A second limitation of our study was that we used linked-ears
as reference. This error may have resulted in an irreparable dis-
tortion of the field distribution on the scalp (Miller, Lutzenberger,
&
w
c
d

m
d
d
d
l

4

m
v
T
a
r
t
o
r

A

(

R

B

.3. Acquisition of arithmetic facts

To understand the arithmetic operation effects, it is neces-
ary to examine the role experiences during the acquisition of
rithmetic facts play in shaping mental representations of arith-
etic facts (e.g., LeFevre & Liu, 1997; Siegler & Shipley, 1995;
iegler & Shrager, 1984). We should comment on the way mul-

iplication table was learnt by Chinese children. Like children in
ome other cultures (e.g., Dehaene & Cohen, 1997; Roussel et
l., 2002), Chinese children are explicitly taught to use the rote
erbal strategy to learn the multiplication facts (Zhou & Dong,
003). Chinese children start to memorize the multiplication
able during the second semester of the first grade or the first
emester of the second grade (as compared to the third grade
n the U.S.). It takes about 4 months for students to learn all

ultiplication facts. To Chinese children’s advantage, the mul-
iplication table (also called multiplication rhyme) is organized
s pithy mnemonic formulas with a reasonable rhyme. The equa-
ions for most multiplication facts only include the two operands
nd their product, without the word “times” or “multiply”, for
xample, “liu qi si shi er” (literally, “six seven four-ten-two”)
or 6 × 7 = 42. Another advantage is that Chinese multiplica-
ion table includes only smaller-operand-first entries. Finally,
he shorter pronunciation duration of Chinese digits (Chen &
tevenson, 1988; Stigler, Lee, & Stevenson, 1986) may also
acilitate Chinese children’s learning of the multiplication table.

.4. Limitations of the present study

Several limitations of the current study need to be discussed.
irst, although it is out of necessity that we repeated the same
Elbert, 1991). However, we think the effects of that problem
ere mitigated by the fact that we were comparing across three

onditions that presumably would be similarly affected by the
istortion due to linked-ears reference.

Finally, it should be noted that we only tested single-dipole
odels. Even though our models fit reasonably well with the

ata, other models involving multiple sources may also fit the
ata. Moreover, the precision of source localization is less than
esirable, especially given the aforementioned limitation of
inked-ears as reference in the current study.

.5. Conclusions

The present study of Chinese adults showed that single-digit
ultiplication elicited a greater N300 component in the inter-

al 275–334 ms than did single-digit addition and subtraction.
he greater negative potentials appeared to have a single dipole
t the left anterior brain areas, maybe at Broca’s area. These
esults are consistent with the notion that the representation and
he retrieval of multiplication facts have greater involvement
f phonological processing than do the representation and the
etrieval of addition and subtraction facts.

cknowledgements

This study was supported by the National 973 Project
2003CB716803) and the National Pandeng Project (95).

eferences

urton, M. W. (2001). The role of inferior frontal cortex in phonological
processing. Cognitive Science, 25, 695–709.



X. Zhou et al. / Neuropsychologia 44 (2006) 2500–2507 2507

Campbell, J. I. D., & Epp, L. J. (2005). Architectures for arithmetic. In J. I.
D. Campbell (Ed.), Handbook of mathematical cognition (pp. 347–360).
New York: Psychology Press.

Campbell, J. I. D., & Oliphant, M. (1992). Representation and retrieval of
arithmetic facts: A network-interference model and simulation. In J. I.
D. Campbell (Ed.), The nature and origins of mathematical skills (pp.
331–364). Amsterdam: Elsevier.

Campbell, J. I. D., & Tarling, D. P. (1996). Retrieval processes in arithmetic
production and verification. Memory & Cognition, 24, 156–172.

Chen, C., & Stevenson, H. W. (1988). Cross-linguistic differences in digit
span of preschool children. Journal of Experimental Child Psychology,
46, 150–158.

Chochon, F., Cohen, L., Van de Moortele, P. F., & Dehaene, S. (1999).
Differential contributions of the left and right inferior parietal lobules to
number processing. Journal of Cognitive Neuroscience, 11, 617–630.

Cohen, L., Dehaene, S., Chochon, F., Lehéricy, S., & Naccache, L. (2000).
Language and calculation within the parietal lobe: A combined cognitive,
anatomical and fMRI study. Neuropsychologia, 38, 1426–1440.

Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: Double
dissociation between rote verbal and quantitative knowledge of arithmetic.
Cortex, 33, 219–250.

Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits
for number processing. Cognitive Neuropschology, 20, 487–506.

Dehaene, S., Spelke, E., Stanescu, R., Pinel, P., & Tsivkin, S. (1999). Sources
of mathematical thinking: Behavioral and brain-imaging evidence. Sci-
ence, 284, 970–974.

Dehaene, S., Tzourio, N., Frak, V., Raynaud, L., Cohen, L., Mehler, J., et al.
(1996). Cerebral activation during number multiplication and comparison:
A PET study. Neuropsychologia, 34, 1097–1106.

Delazer, M., & Benke, T. (1997). Arithmetic facts without meaning. Cortex,
33, 697–710.

G

H

K

K

K

L

L

L

L

Lemaire, P., & Fayol, M. (1995). When plausibility judgments supersede
fact retrieval: The example of the odd-even effect on product verification.
Memory & Cognition, 23, 34–48.

Lemer, C., Dehaene, S., Spelke, E., & Cohen, L. (2003). Approximate quan-
tities and exact number words: Dissociable systems. Neuropsychologia,
41, 1942–1958.

Miller, G. A., Lutzenberger, W., & Elbert, T. (1991). The linked-reference
issue in EEG and ERP recording. Journal of Psychophysiology, 5,
273–276.

Niedeggen, M., & Rosler, F. (1999). N400 effects reflect activation spread
during retrieval of arithmetic facts. Psychological Science, 10, 271–276.

Pesenti, M., Seron, X., & van der Linden, M. (1994). Selective impairment
as evidence for mental organization of arithmetic facts: BB, a case of
preserved subtraction. Cortex, 30, 661–671.

Pinel, P., Dehaene, S., Riviere, D., & LeBihan, D. (2001). Modulation of
parietal activation by semantic distance in a number comparison task.
NeuroImage, 14, 1013–1026.

Poldrack, R. A., Wagner, A. D., Prull, M. W., Desmond, J. E., Glover, G.
H., & Gabrieli, J. D. (1999). Functional specialization for semantic and
phonological processing in the left inferior prefrontal cortex. NeuroImage,
10, 15–35.

Richard, T. C., Romero, S. G., Basso, G., Wharton, C., Flitman, S., & Graf-
man, J. (2000). The calculating brain: An fMRI study. Neuropsychologia,
38, 325–335.

Roussel, J., Fayol, M., & Barrouillet, P. (2002). Procedural vs. direct retrieval
strategies in arithmetic: A comparison between additive and multiplicative
problem solving. European Journal of Cognitive Psychology, 14, 61–104.

Scherg, M., & Ebersole, J. S. (1993). Models of brain sources. Brain Topog-
raphy, 5, 419–423.

Schlereth, T., Baumgartner, U., Magerl, W., Stoeter, P., & Treede, R. D.
(2003). Left-hemisphere dominance in early nociceptive processing in

S

S

S

S

S

S

v

v

Z

alfano, G., Mazza, V., Angrilli, A., & Umiltà, C. (2004). Electrophysiolog-
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