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Abstract

One of the most important research areas in case-control Genome-Wide Association Studies is to 

determine how the effect of a genotype varies across the environment or to measure the gene-

environment interaction (GxE). We consider the scenario when some of the “healthy” controls 

actually have the disease and when the frequency of these latent cases varies by the environmental 

variable of interest. In this scenario, performing logistic regression of clinically defined case status 

on the genetic variant, environmental variable, and their interaction will result in biased estimates 

of GxE interaction. Here, we derive a general theoretical approximation to the bias in the estimates 

of the GxE interaction and show, through extensive simulation, that this approximation is accurate 

in finite samples. Moreover, we apply this approximation to evaluate the bias in the effect 

estimates of the genetic variants related to mitochondrial proteins a large-scale Prostate Cancer 

study.
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INTRODUCTION

One major objective in case-control Genome-Wide Association Studies (GWAS) is to 

determine how the effect of a genotype varies across the environment, i.e. to measure the 

gene-environment interaction (GxE). Understanding the GxE interaction can provide 

valuable clues into the underlying pathophysiologic mechanism of complex diseases (Ritz et 

al, 2017). A major complication is that supposedly “healthy” controls are often undiagnosed 

cases and the frequency of these latent cases may vary by environmental variables. Hence, 

the estimated GxE interaction with respect to the true pathophysiologic disease status would 

be biased if the analyses used only the clinically diagnosed disease status. The problem of 

latent cases is relatively common. For example, Atrial Fibrillation is undiagnosed in 5–17% 

of the population above the age of 75 (Panisello-Tafalla et al. 2015), non-alcoholic fatty liver 

disease is undiagnosed in 14–30% of the adult population (El-Kader et al., 2015), and acute 

coronary thrombosis is undiagnosed in >10% of individuals at the time of death (Anderson 

et al, 1989). Our specific motivating example is a large GWAS of prostate cancer. At 

autopsy, approximately 29%, 36%, and 47% of “healthy” men aged 60–69, 70–79 and 80+ 

years have undiagnosed prostate cancer, with the exact frequencies varying by race and 

ethnicity (Jahn et al, 2015).

We illustrate below why the GxE can appear to be associated with the disease status if 

presence of the silent cases is ignored based on a hypothetical example. Shown on Figure 1 

is an example when frequency of a minor allele does differ by the true diagnosis defined as 

D = 0 to indicate controls, D = 1* silent disease and D = 1 cases, but not by the 

environmental variable X = 1,2. But because frequency of the silent disease varies by the 

environment (10% of clinically diagnosed controls are in fact silent cases when X = 1, and 

30% of the controls are silent cases when X = 2), there appears to be GxE on the clinical 

diagnosis.

In this paper, we focus on estimating the bias of the GxE interaction when logistic regression 

is performed with the observed disease status as the dependent variable and the gene, 

environment, and their interaction as the independent variables. Our discussion builds on the 

literature that describes the bias of the main effects (i.e. gene or environment) in the 

presence of silent cases (Carroll et al, 2006) and, more specifically, Neuhaus’s (1999) 

approximation to the bias of the main effects when the data are collected using prospective 

sampling and analyzed in a prospective likelihood function.

Our paper proceeds as follows. First, in the Material and Methods section, we describe our 

notation and derive the theoretical approximation bias that results from ignoring the 

presence of silent disease. Next, in the Simulation Experiments section, we compare the 

theoretical approximation to empirical estimates of the bias across multiple scenarios. Then, 

we apply our approach to a Prostate Cancer GWAS (https://www.ncbi.nlm.nih.gov/

projects/gap/cgi-bin/study.cgi?study_id=phs000207.v1.p1, Yeager et al, 2007). Finally, we 

conclude our paper with a brief Discussion section.
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MATERIALS AND METHODS

For individual i, let Gi be the genotype, Xi be the environmental variable potentially 

interacting with the genotype, and zi be a vector of other environmental variables. 

Furthermore, let Di = 0, 1  be a binary indicator of the true, and unobserved, disease status 

and let Di
CL = 0, 1 be a binary indicator of clinically diagnosed disease status. In the overall 

population, let π0 = pr DCL = 0  and π1 = pr DCL = 1  and in our study population let n0 be 

the number of controls (i.e. DCL = 0), n1 be the number of cases (i.e. DCL = 1), and 

n = n0 + n1. For clarity of presentation we suppose that all variables are binary, but the 

discussion could be easily extended to categorical variables, though the interpretation of 

GxE can then be notoriously difficult.

If θ is the frequency of minor allele a when the major allele is A, then the Hardy-Weinberg 

Equilibrium model (Hardy, 1908) states

G ∼ Q(g, θ) = pr(G = g ∣ θ) =

2 × θ × (1 − θ), i f g = Aa

θ2, i f g = aa

(1 − θ)2, i f g = AA

We assume that individuals with a clinical diagnosis have the true disease, i.e. 

pr D = 1|DCL = 1 = 1, and that a substantial proportion of “controls” also have the true 

disease and that this proportion can vary by environmental factors: 

pr D = 1|DCL = 0, X = τ X  > 0.

We next assume that the probability of the true disease follows a logistic model

prΒ D = 1 G = g, X = x, Z = z

=
exp β0 + βX × x + βZ × z + βG × g + βG×X × g × x  

1 + exp β0 + βX × x + βZ × z + βG × g + βG×X × g × x   .

(1)

Define B = β0, βX, βZ, βG, βG×X  to be the vector of coefficients of interest.

The observed data are collected using retrospective sampling design, hence the likelihood 

function of the observed data is based on the probability pr[G = g, X = x, Z = z |DCL = dcl]
and we define
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QB dCL, g, x, z = pr[G = g, X = x, Z = z DCL = dcl]   =

 
∑

d▪pr[DCL |D = d▪, X] × prB D = d▪ G, X, Z × pr G, X, Z

∑
d▪, g▪, x▪, z▪pr[DCL D = d▪, X = x▪] × prB D = d▪ G = g▪, X = x▪, Z = z▪ × pr G = g▪, X = x▪, Z = z▪

(2)

The usual analyses with the clinical diagnosis as an outcome variable and hence ignore 

presence of silent disease is based on the disease risk model

prB* DCL = 1 G = g, X = x, Z = z

=
exp β0* + βX* × x + βZ* × z + βG* × g + βG×X* × g × x  

1 + exp β0* + βX* × x + βZ* × z + βG* × g + βG×X* × g × x   .

(3)

Estimation and inference in this setting is performed based on the likelihood function in the 

form

QB* dCL, g, x, z =  prB* DCL = dcl G = g, X = x, Z = z

=
exp dCL = = 1 * (β0* + βX* × x + βZ* × z + βG* × g + βG×X* × g × x   )

1 + exp β0* + βX* × x + βZ* × z + βG* × g + βG×X* × g × x   .

(4)

We are interested to find an analytic solution that relates parameters 

B* = (β0*, βX* , βZ*, βG* , βG×X* ) from the misspecified model (4) to the parameters 

B = β0, βX, βZ, βG, βG×X  from the true model (1)–(2).

The next steps are motivated by the developments in Kullback (1959), Neuhaus (1999). 

Kullback (1959) showed that parameters B* estimated in the misspesified model (4) 

converge to values that minimize the Kullback-Leibler divergence between the true and false 

models with expectations taken with respect to the true model, i.e.

B* = argmin EX, G, Z E
DCL X, G, Z

log
QB DCL, G, X, Z

QB* DCL, G, X, Z
. (5)
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We define γ(X) = pr(DCL = 1|D = 1, X) .

Derivations shown in Appendix arrive at the following approximation of the relationship 

between the parameters of the misspecified model (4) and the true model (1). For clarity of 

presentation we first assume that variable Z is not in the risk model. Generalization to 

include Z is described in Web-based supplementary materials. We next suppose that 

variables X and G are one-dimensional. Extensions to vector forms of X and G are 

straightforward.

β0* ≈ log γ 0
1 + 1 − γ 0 + 1

1 + 1 − γ 0 × β0; (6)

βX* ≈ log
γ 1 × exp β0 + βX

1 + 1 − γ 1 × exp β0 + βX
− log

γ 0 × exp β0
1 + 1 − γ 0 × exp β0

≈ log

γ 1 × exp β0
1 + 1 − γ 1 × exp β0

− log
γ 0 × exp β0

1 + 1 − γ 0 × exp β0
+ 1

1 + 1 − γ 1 × exp β0

× βX

(7)

βG* ≈ log
γ 0 × exp β0 + βG

1 + 1 − γ 0 × exp β0 + βG
− log

γ 0 × exp β0
1 + 1 − γ 0 × exp β0

≈ 1
1 + 1 − γ 0 × exp β0

× βG;

(8)

βG × X* ≈ log
γ 1 × exp β0 + βX + βG + βG × X

1 + 1 − γ 1 × exp β0 + βX + βG + βG × X
− log

γ 1 × exp β0 + βX
1 + 1 − γ 1 × exp β0 + βX

− log
γ 0 × exp β0 + βG

1 + 1 − γ 0 × exp β0 + βG
+ log

γ 0 × exp β0
1 + 1 − γ 0 × exp β0

≈ log
γ 1 × exp β0 + βX + βG

1 + 1 − γ 1 × exp β0 + βX + βG
− log

γ 1 × exp β0 + βX
1 + 1 − γ 1 × exp β0 + βX

− log
γ 0 × exp β0 + βG

1 + 1 − γ 0 × exp β0 + βG
+ log

γ 0 × exp β0
1 + 1 − γ 0 × exp β0

+ 1
1 + 1 − γ 1 × exp β0 + βX + βG

× βG × X .

(9)
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We now derive alternative formulation. In retrospective design cases and controls are 

sampled conditionally on the disease status. We therefore introduce an imaginary indicator 

of being selected into the study, Δ= 1. Cases and controls are then selected into the study 

with probabilities δ
dcl = pr(Δ = 1 DCL = dcl)α n

dcl/πdcl. The true disease model then 

becomes

prB D = 1 G = g, X = x, Z = z, Δ = 1

=
δ1 × γ 0 × exp β0 + βX × x + βG × g + βG × X × g × x  

δ0 + [δ0 × 1 − γ 0 + δ1 × γ 0 ] × exp β0 + βX × x + βG × g + βG × X × g × x  
.

We then derive

β0* ≈ log
δ1 × γ 0 × exp β0  

δ0 + δ0 × 1 − γ 0 × exp β0
; (10)

βG* ≈ log
δ1 × γ 0 × exp β0 + βG  

δ0 + δ0 × 1 − γ 0 × exp β0 + βG
− log

δ1 × γ 0 × exp β0  
δ0 + δ0 × 1 − γ 0 × exp β0

;

(11)

βX* ≈ log
δ1 × γ 1 × exp β0 + βX  

δ0 + δ0 × 1 − γ 1 × exp β0 + βX
− log

δ1 × γ 0 × exp β0  
δ0 + δ0 × 1 − γ 0 × exp β0

;(12)

βG × X* ≈ log
δ1 × γ 1 × exp β0 + βX + βG + βG × X  

δ0 + δ0 × 1 − γ 1 × exp β0 + βX + βG × X
−   log

δ1 × γ 1 × exp β0 + βX
δ0 + δ0 × 1 − γ 1 × exp β0 + βX

−   log
δ1 × γ 0 × exp β0 + βG

δ0 + δ0 × 1 − γ 0 × exp β0 + βG
+ log

δ1 × γ 0 × exp β0
δ0 + δ0 × 1 − γ 0 × exp β0

.

(13)
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Remarks:

1. Appendix provides formulas (A11)–(A15) for the setting with environmental 

variable z that does not interact with the SNP genotype and environmental 

variable x.

2. Appendix also provides formulas (A16)–(A21) for the setting when the 

environmental variable z interacts with the environmental variable x, but does not 

interact with the SNP genotype.

3. When the clinical diagnosis and pathologic disease status correspond, i.e.

γ 0 = γ 1 = 1, then all parameter estimates are unbiased.

4. If βG = 0, then βG* = 0. Hence the usual logistic regression yields a consistent 

estimate of the null βG.

5. If β0 = 0, then β0* ≠ 0. Similarly, if βX = 0, then βX* ≠ 0; and if βG × X = 0, then 

βG × X* ≠ 0. Hence the usual logistic regression does not yield a consistent 

estimate of the null effect β0,   βX, βG × X.

6. If βG = 0, and βX × G = 0 then βG* = 0 and βG × X* = 0. Hence the usual logistic 

regression yields consistent estimate of the null βG and βG × X .

7. If the misclassification is non-differential, i.e.γ 0 = γ 1 ; and if βX = 0, then 

βX* = 0. That is then the usual logistic regression model yields consistent estimate 

of the null effect βX .

8. If the misclassification is non-differential, i.e γ 0 = γ 1 ; then β0 = 0, 

βX = 0,   βG = 0, βG × X = 0 imply βG × X* = 0. That is then the usual logistic 

regression model yields consistent estimate of the null effect of βG × X .

9. Taylor series expansion of (10)–(13) around the true parameters equal to zero 

arrives to (6)–(9).

SIMULATION EXPERIMENTS

We first perform a set of simulation studies to investigate a false positive rate for βG × X

estimates. We define the false positive rate to be the proportion of p-values ≤ 0.05 from the 

usual logistic regression with the clinical diagnosis as an outcome variable across 10,000 

studies. We simulate X to be binary with frequency 0.488 and G with frequency 0.10. Next, 

we simulate the true disease status according to the risk model with coefficients β0 = − 1, 1, 

βG = log 1 , log 1.5 , log 2 , log 2.5 , log 3 , log 3.5 , log 4 , log 4.5 ,   βX = log 2 ,   βG × X = 0.

To simulate the clinical diagnosis we define the clinical-pathological diagnoses relationship 

to be as in the Prostate Cancer data analyses, i.e. pr(D = 1 DCL = 0, X) = 0.252 and 0.389 for 

X = 0, 1. We simulate datasets with n0 = n1 = 3, 000, n0 = n1 = 1, 000. False positive rates 
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shown in Table 1 indicate that the rate is the nominal when main effect of the genotype is 

zero, and increases as the value of βG increases. When frequency of the true disease is higher 

(β0 = 1   vs .   − 1), then overall the false positive rates are lower. For example, in a study 

with n0 = n1 = 3, 000 when βG = log 3 = 1.1, the rates are 0.19 and 0.14, when β0 = − 1 and 

1, respectively. The false discovery rates are persistently elevated in studies with 

n0 = n1 = 10, 000.

We conducted simulation studies to evaluate the accuracy of the theoretical approximation 

that we derived in (6)–(9) and in the Appendix. These studies are presented in Web-based 

Supplementary Materials.

We next describe the magnitude of bias in estimates of βG × X = 0 for various frequencies of 

the clinical diagnosis and the true disease state in the population. We simulateX as Bernoulli 

with frequency 0.488 and G as Bernoulli with frequency 0.10. We next simulate the true 
disease status using coefficients 

β0 = − 3.5,   − 3,   − 2.5,   − 2, − 1.5, − 1, − 0.5,   0,   0.5,   1,   1.5,   2,   2.5,   3,   3.5; 

βG = log 1.5 = 0.41, βX = log 3 = 1.099, βG × X = 0. We next simulate the clinical diagnosis 

with frequencies 

γ 0 = pr DCL = 1 D = 1, X = 0 = 0.000001,   0.0001,   0.001,   0.005,   0.01,   0.10, and 

γ 1 = pr DCL = 1 D = 1, X = 1 = 0.000001,   0.0001,   0.001,   0.005,   0.01,   0.10. We then 

estimate bias in estimates of βG × X using (13) for each of the above settings.

Shown on Figure 2 are frequencies of the true probability of disease across values of β0 on 

the x-axis. Figure 3 presents probabilities of the clinical diagnosis across values of β0 on the 

x-axis, values of γ 1  on the panels, and values of γ 0  indicated by color. We note that the 

setting of prostate cancer example corresponds to the values of β0 around −2 and 

γ 0 ≈ γ 1 ≈ 0.000001. Bias in the estimates of βG × X shown on Figure 4 differs across values 

of β0, γ 0 ,   γ 1 . Magnitude of bias can be substantial and is usually smaller when 

γ 0 = γ 1 .

PROSTATE CANCER DATA ANALYSES

We performed GxE analyses for Prostate Cancer using data collected as part of the Prostate, 

Lung, Colon and Ovarian (PLCO) Screening trial (dbGAP: https://www.ncbi.nlm.nih.gov/

projects/gap/cgi-bin/study.cgi?study_id=phs000207.v1.p1, study accession 

phs000207.v1.p1, Yeager et al, 2007). The study included 965 cases and 1,035 controls of 

European ancestry with 550,000 genotyped SNPs. The number of cases in 50–69 and 70+ 

year age groups were 636, 329, respectively; the number of controls in the same groups were 

727 and 308. Furthermore, 11.3% of cases and 6.2% of controls had a family history of 

prostate cancer. In the following analyses, we focus on SNPs serving mitochondria. We 

mapped the SNPs onto human chromosomes using NCBI dbSNP database https://

www.ncbi.nlm.nih.gov/projects/SNP/ and recorded chromosome location, proximal gene or 
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genes in the gene structure location (e.g. intron, exon, intergenic, UTR). Based on these 

data, we inferred 1,867 SNPs serving mitochondria according to MitoCarta database (https://

www.broadinstitute.org/scientific-community/science/programs/metabolic-disease-program/

publications/mitocarta/mitocarta-in-0 ).

For each of the 1,867 SNPs, we assumed the relationship between the true disease status and 

the combination of SNP, family history, and age can be described by logistic regression, i.e. 

model (3).

logit pr(D = 1 Age,   FamHist, G) =   β0 + βAge × Age + βFamHist × FamHist
+ βAge × FamHist × Age × FamHist + βG × G + βG × Age × G × Age

(10)

We assumed the relationship between clinical disease status and the true disease status is 

pr D = 1 DC = 0, Age = 0.252 and   0.389 for age groups of 50–69 and 70+, respectively (Jahn 

et al, 2015). We suppose that the clinical diagnosis is correct for all cases (Canto and Slawin, 

2002).

We first estimate the coefficients using the usual logistic regression model without 

considering the correction for the silent disease. Then we estimate the corresponding 

coefficient of the true model from the approximation derived in Appendix (A16)–(A21) with 

the consideration of the relationship between the clinical disease status and the true disease 

status.

The usual logistic regression estimate for the intercept is −0.19, while the approximation to 

the bias is −0.60. In the usual logistic regression βFamHist = 0.60 and the bias is estimated to 

be −0.23. Across all SNPs, the usual estimate of βAge is on average 0.21, while the bias is 

approximated to be −0.68; and the usual estimate of βAge × FamHist is on average 0.08, while 

the bias is approximated to be −0.82. A permutation-based p-value for βAge × FamHist with 

recognition of the silent disease is 0.013. Shown on Figure 5A is the histogram of bias in βG

across 1,975 SNPs that ranges from −0.19 to 0.20 with an average of 0.0042. Shown on 

Figure 5B is the histogram of bias in βG × Age ranging from −1.87 to 0.81 with an average of 

−0.07.

DISCUSSION

We derived a general and convenient theoretical approximation to the bias in GxE parameter 

estimates for studies where a substantial fraction of the controls are undiagnosed cases. In 

case-control studies the usual logistic regression model produces biased estimates because 

the silent disease is ignored. The seminal work by Prentice and Pyke (1979) examined a 

setting when the outcome is not misclassified and proved under some general conditions that 

the parameter estimates obtained in a prospective and retrospective model are equivalent if 

the data are collected retrospectively. The equivalence of these two models in a setting when 

the outcome is misclassified is not clear and might be subject of future studies, what might 
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be the subject of future studies. In this paper we are interested to assess the magnitude of 

bias in the usual analyses based on the logistic regression model with the clinical diagnosis 

as an outcome variable.

While we have recently proposed a solution that eliminates the bias (Lobach et al, 2018), the 

implementation requires optimization of a complex non-linear equation. The approximation 

that we’ve developed provides convenient estimates of the bias and a clear explanation of 

how all parameter estimates can be biased. The presence of the silent disease distorts the true 

link between the GxE interaction and the true disease status.

In the analyses of Prostate Cancer, we note that bias in GxE estimates can be in either 

direction resulting in either under- or over-estimation of the magnitude of the effect. 

Similarly, the bias in βG manifested itself in either direction.

The theoretical derivations elucidated settings when the logistic regression model with the 

clinically diagnosed disease status yields correct estimates of the null effect. For example, in 

remark 6 we note that when both main effect of genotype and GxE interaction terms are 

zero, then the corresponding estimates of the misspecified model are zero as well. In the data 

analyses we observed that substantial portion of SNPs has estimates of the main effects and 

the interaction terms that are both null.

The approximation that we’ve developed is a first order Taylor series expansion of a solution 

that minimizes Kullback-Leibler divergence criteria between the true and the misspecified 

models. While the Kullback-Leibler divergence could have multiple local minima, in the 

extensive simulations studies that we considered the numerical optimization did find the 

minimum that was accurate relative to the empirical estimates. The theoretical 

approximation can be improved by deriving further order Taylor series expansions.

We note that the bias in GxE generally decreases as the frequency of the true disease and the 

clinical diagnosis decrease. The magnitude of bias, however, can be substantial even when 

the disease is common, similarly to what has been described for common diseases in trio 

designs (Peyrot et al, 2016). Specifically, when frequency of the silent disease varies by the 

environmental variable. The bias is more elastic as a function of how frequencies of the 

environmental variable are different by the environment, i.e. there is more change in the 

parameter estimates.

The proposed analyses rely on knowing the estimates of silent disease in the population 

subgroups. These estimates are often available in epidemiologic studies or can be estimated 

in an internal reliability study. For example, in the study of Prostate Cancer, the rates of 

silent disease are estimated based on a sample of size 3,799 US Whites and Europeans. If 

the estimates of the rates are with high uncertainty, the approximation that we derived 

provides a convenient and general formulae to understand how much the estimates can 

change across various settings defined by frequencies of the silent disease and frequencies of 

the disease and the clinical diagnoses in the population. If the proportion of silent cases is 

not known, the approximations that we derived provide a simple way to examine potential 

bias across various rates for silent disease that are plausible. Such analyses might inform 
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how elastic the effect estimates can be for a given value of the estimate and frequency of the 

clinical diagnosis.

The goal for exploring GxE is to investigate if the effect of a genetic variables varies by non-

genetic (environmental) variables. We described one source of bias in estimates of GxE, 

namely due to ignoring presence of silent cases. Other biases in the estimates have been 

noted in literature. For example, Keller (2014) note the widespread bias in GxE due to 

inappropriately controlling for covariates while studying GxE. We have recently analyzed 

bias in the estimates due to omitting GxE (Lobach, 2018).
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Frequency of the minor allele by a binary environmental variable (X = 1,2) on the x-axis for 

the true disease state (controls: D = 0, silent disease D = 1* and case D = 1) and for the 

clinically diagnosed status Dcl = 0 that includes both true controls and silent cases. Shown is 

a hypothetical example when frequencies of the minor allele do not differ by the 

environmental variable on the true disease status and genotype is associated with the true 
disease status. Because frequency of the silent disease within the set of clinically diagnosed 

controls varies by the environment (10% of clinically diagnosed controls are in fact silent 

cases when X = 1, and 30% of the controls are silent cases when X = 2), there appears to be 

GxE on the clinical diagnosis.
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Figure 2: 
Frequencies of the true disease status in the population for various values of the intercept. 

We simulate X as Bernoulli with frequency 0.488 and G as Bernoulli with frequency 0.10. 

We next simulate the true disease status using coefficients β = −3.5, −3, −2.5, −2, −1.5, −1, 

−0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5; βG = log (1.5) = 0.41, βX = log (3) =1.099, ΒG×X = 0
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Figure 3: 
Frequencies of the clinical diagnosis in the population for various values of the intercept 

along the x-axis, values of γ(1) =pr(DCL = 1|D = 1,X = 1) across the panels and values of 

γ(0) =pr(DCL = 1|D = 1,X = 0) as indicated by color. We simulate X as Bernoulli with 

frequency 0.488 and G as Bernoulli with frequency 0.10. We next simulate the true disease 

status using coefficients β0 = −3.5, −3, −2.5, −2, −1.5, −1, −0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5; 

βG = log(1.5), βX = log(3)= 1.0.99, βG×X = 0 We next simulate the clinical diagnosis with 

frequencies γ 0 = pr DCL = 1 D = 1, X = 0 = 0.000001,   0.0001,   0.001,   0.005,   0.01,   0.10, 

and γ 1 = pr DCL = 1 D = 1, X = 1 = 0.000001,   0.0001,   0.001,   0.005,   0.01,   0.10.
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Figure 4. 
Bias in the estimates of βG × X for various values of the intercept along the x-axis, values of 

γ 1 = pr DCL = 1 D = 1, X = 1  across the panels and values of 

γ 0 = pr DCL = 1 D = 1, X = 0  as indicated by color. We simulateX as Bernoulli with 

frequency 0.488 and G as Bernoulli with frequency 0.10. We next simulate the true disease 

status using coefficients β0 = −3.5, −3, −2.5, −2, −1.5, −1, −0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5; 

βG = log 1.5 = 0.41, βX = log 3 = 1.099, βG × X = 0. We next simulate the clinical diagnosis 

with frequencies 

γ 0 = pr DCL = 1 D = 1, X = 0 = 0.000001,   0.0001,   0.001,   0.005,   0.01,   0.10, and 

γ 1 = pr DCL = 1 D = 1, X = 1 = 0.000001,   0.0001,   0.001,   0.005,   0.01,   0.10.
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Figure 5: 
Figure 5A (left panel): Histogram of the bias of the usual logistic regression estimate of βG

in Prostate Cancer dataset. The bias is approximated using equations (A16)–(A21) and 

Figure 5B (right panel): Histogram of the bias of the usual logistic regression estimate of 

βAge × G in Prostate Cancer dataset. The bias is approximated using equations (A16)–(A21).
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