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ABSTRACT OF THE THESIS 

 

 Feature Extraction and Classification of Clouds in High Resolution Panchromatic Satellite 

Imagery 

 

By 

 

Elan Sharghi 

Master of Science in Electrical Engineering (Signal and Image Processing) 

University of California, San Diego 2013 

Professor Truong Q. Nguyen, Chair 

 

 The development of sophisticated remote sensing sensors is rapidly increasing, and the 

vast amount of satellite imagery collected is too much to be analyzed manually by a human image 

analyst. It has become necessary for a tool to be developed to automate the job of an image 

analyst. This tool would need to intelligently detect and classify objects of interest through 

computer vision algorithms. Existing software called the Rapid Image Exploitation Resource 

(RAPIER
®
) was designed by engineers at Space and Naval Warfare Systems Center Pacific (SSC 

PAC) to perform exactly this function. This software automatically searches for anomalies in the 

ocean and reports the detections as a possible ship object. However, if the image contains a high 

percentage of cloud coverage, a high number of false positives are triggered by the clouds. 



 

xii 

 The focus of this thesis is to explore various feature extraction and classification methods 

to accurately distinguish clouds from ship objects. An examination of a texture analysis method, 

line detection using the Hough transform, and edge detection using wavelets are explored as 

possible feature extraction methods. The features are then supplied to a K-Nearest Neighbors 

(KNN) or Support Vector Machine (SVM) classifier. Parameter options for these classifiers are 

explored and the optimal parameters are determined. 
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Chapter 1 

Introduction and Motivation 
 

 

 In the defense community, software has been developed to detect and classify vessels in 

high resolution panchromatic satellite imagery. At SSC PAC, a group of engineers have 

developed sophisticated software to search for objects of interest in satellite imagery. This 

software framework is called RAPIER
®
, the Rapid Image Exploitation Resource.  

 In order to detect ships, RAPIER
®
 masks out land and searches for anomalies on the 

ocean surface. The software then reports the detections to the end user by saving the objects of 

interest as image chips, and loads these files into HyperText Markup Language (HTML) and 

Keyhole Markup Language (KML) files. One of the limitations of processing panchromatic 

imagery (visible spectrum imagery), from sensors such as Quickbird2, IKONOS, and Worldview 

1 and 2, is the significant presence of clouds. This problem does not occur when processing 

synthetic-aperture radar (SAR) imagery as SAR imagers have the ability to penetrate through 

clouds, which captures data in the microwave electromagnetic spectrum [6].  

Clouds can often trigger as anomalies by RAPIER
®
 when processing panchromatic 

satellite imagery, which results in having a high false alarm rate and increasing processing time. 

The focus of this thesis is to devise a method which will accurately distinguish clouds from ships 

in high resolution panchromatic imagery.  

 

1.1 Dataset 

 The dataset used in this research project is comprised of image chips output from the 

RAPIER
®
 software. These images were produced from processing high resolution commercial 

panchromatic satellite imagery, such as IKONOS, Quickbird2, and Worldview 1 and 2. Their 
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resolution ranges from 0.5m to 1m when captured at nadir angle. For comparison consistency, we 

are using the same dataset set described by researchers of [1]. 

 The dataset is made up of 3709 grayscale images, and is separated into the following four 

classes: cloud, ship, fast moving ship, and other. Examples from each of these classes are shown 

below in Figure 1. There are 1037 cloud images, 770 ship images, 487 fast moving ship images, 

and 1415 images classified as other. The first two classes, cloud and ship, will be used for our 

research, however, results reported in [1] use all four classes. 

 
Figure 1. Test dataset separated by the following four classes: cloud, ship, fast moving ship, and 

other. 

 

 Distinguishing small vessels and small popcorn clouds is an extremely challenging task, 

even for a human observer. Examples are shown below in Figure 2 of the problematic image 

chips. Therefore, the dataset is pre-filtered to contain only large objects. The final dataset consists 

of 955 cloud images and 452 ship images. 

 
Figure 2. Examples of a small cloud object (left) and ship object (right) removed from the 

experimental dataset. 
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Chapter 2 

Survey of Methods 

2.1 Texture Analysis 

Several researchers have explored texture analysis techniques such as Gabor wavelet 

transforms and Gray Level Co-occurrence Matrices (GLCM) as cloud feature extraction methods 

[3][5]. These techniques have been applied to low resolution satellite imagery, such as 

meteorological satellite cloud imagery, to determine the cloud coverage and type [3][5]. It has 

been concluded in these publications that the use of Gabor wavelets achieves higher classification 

rates than GLCM for the application of cloud type classification. However, the authors have 

stated that feature extraction solely based on texture analysis does not yield impressive results. 

The accuracy for the Gabor wavelets spans from 81% to 92%, and 76 to 88% for GLCM, based 

on the number of test images used for the purpose of classifying cloud types in low resolution 

meteorological satellite imagery [3]. 

 

2.2 Various Feature Extraction Methods 

The issue of high cloud presence has been an ongoing problem for RAPIER
®
 since 2007 

[2]. Engineers from Tomnod Inc. were contracted by SSC PAC to research various cloud feature 

extraction methods to reduce the false alarm rate of RAPIER
®
. Their approach was to take image 

chips produced by RAPIER
®
, and classify the results into one of the four categories: ship, cloud, 

fast moving ship, and other. Their research results are summarized in [1]. The paper focuses on 

two aspects: extracting features and applying supervised classification on these features.  
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The feature extraction techniques discussed in the paper include Scale-Invariant Feature 

Transform (SIFT), Speeded-Up Robust Features (SURF), Histogram of Oriented Gradients 

(HOG), texture-based features, and ship-specific features [1]. These techniques were tuned to 

identify specific features in an image, including edges and gradients, rotation and scale-invariant 

keypoints, and textures and patterns that are specific to ship-like objects. SIFT is used to identify 

keypoints on an object that are invariant to the object’s location, scale, orientation and 

illumination. SURF is an extension of SIFT, with the exception that it uses Haar wavelets for its 

keypoint detection. HOG describes the object based on its distribution of edges and gradients in a 

local region of the image. Out of all the feature extraction techniques surveyed, the authors of [1] 

concluded that SURF descriptors in combination with Support Vector Machine (SVM) classifiers 

produced the highest accuracy of classification. The various feature extraction methods applied 

achieved 81-94% accuracy for the non-cloud class and 71-91% on the cloud class. 
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Chapter 3 

 

Feature Extraction Methods and Proposed Algorithm 
 

 

 In this Chapter, we investigated methods to extract cloud features in high resolution 

panchromatic satellite imagery. We begin by investigating Gabor wavelets for image texture 

extraction, a method used by other researchers in the field [3][5]. The correlation coefficients 

were used to create features from our Gabor filtered images. The second method uses the Hough 

transform to extract lines from our test image. We expect images from the ship dataset to contain 

parallel lines indicative of the position of the ship’s hull, and have developed code to extract these 

features. The last technique involves computing edge maps using wavelets decompositions. This 

edge image is used by the Hough transform to extract parallel line features. Classical edge 

detection techniques, such as Sobel, Prewitt, and Canny, perform poorly when processing images 

with low contrast, high amounts of ocean glint, and trailing wakes. The wavelet approach was 

investigated to determine a technique to suppress noise and enhance ship edge features. A final 

algorithm was developed using a combination of feature extraction methods we found useful in 

our research. 

 

3.1 Texture Analysis 

When trying to distinguish a cloud image chip from a ship, we notice that the textures of 

the two objects are very different. Therefore, we explore different computer vision texture 

measure approaches to use as feature descriptors for our classifier. 

 The Gabor wavelet filter can be used to extract texture information from an image. The 

2D Gabor wavelet ψ(x,y) is defined by the equations listed below [6]. 
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. A frequency representation of the different 

wavelet combinations used is shown below in Figure 3. 

 

 
Figure 3. Real components of Gabor wavelet filters at various orientation and scales. 
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The set of 16 Gabor filters are applied to a sample cloud and ship image shown in Figure 

4 and Figure 5 respectively. There is an obvious distinction between the convolved ship and cloud 

filtered images. In the sample cloud image, using the various filter frequency values, very few 

features of the object are extracted. It is only at the highest frequency value of the Gabor filter 

that we are able to extract cloud contours. In contrast, notice in the ship images shows extracted 

ship contours on the full range of frequency values tested.  

 
Figure 4. Sample cloud image and Gabor convolved images at various frequency and orientation. 
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Figure 5. Sample ship image and Gabor convolved images at various frequency and orientation. 

 

For every wavelet angle θ, we compute the normalized correlation coefficient C, defined 

below, for various combinations of frequency values, where T(x,y) represents the template image, 

and I(x,y) represents the test image. 

         
                             

 

                                    

  (2) 

The following wavelet frequency combinations listed below are computed for f. Their correlation 

coefficients are computed amongst their corresponding filtered images. This will give us 20 

correlation coefficient values, which we will use as part of our feature vector.  

f = 1/2 vs. 1/4 

f = 1/2 vs. 1/16 

f = 1/4 vs. 1/8 

f = 1/4 vs. 1/16 

f = 1/8 vs. 1/16 

We expect correlation values calculated from the ship dataset to be higher than those calculated 

from the cloud dataset. The high correlation in the ship images is a result of the high amounts of 
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texture extracted at various frequency levels, as shown in Figure 5. In contrast, the cloud images 

typically extract texture information only at high frequency values. This allows us to separate the 

two classes. However, our experimental results summarized in Chapter 4.1 shows these features 

alone will not be sufficient to reliably separate the two classes. Therefore, we will continue to 

investigate additional features. 

 

3.2 Hough Transform 

The sides of large ships form straight edges. If you compute the edge map of a ship 

image, the straight side edges can be identified using the Hough transform. The shape of a ship is 

a unique feature which allows us to distinguish it from a cloud object. If we can accurately 

identify the two long parallel lines in our image chip, we can pre-label the image as containing a 

ship.  

The Hough transform is a feature extraction technique that is used to extract line 

segments in an image [4]. This technique takes a binary edge image as an input, and extracts line 

segments that meet a certain pixel length threshold, as shown below in Figure 6. In the sample 

ship and cloud images shown in Figure 6 and Figure 7 respectively, the Canny edge detector was 

used to compute the edge map of the images (right images) and the Hough transform was 

computed (left Images). The Matlab implementation of the Canny edge detector was used with 

ideal thresholds selected by the software, and sigma set at   . We explore different edge 

extraction techniques in the following discussion about wavelets. 
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Figure 6. Lines detected from sample ship image (left) extracted from Canny edge image (right).  

 

 
Figure 7. Lines detected from sample cloud image (left) extracted from Canny edge image (right). 

 

 Although there are several line segments detected in the sample cloud image shown in 

Figure 7, the orientations of the lines are widely distributed. In contrast, we see the lines detected 

in the sample ship image in Figure 6 are approximately parallel. Therefore, we identify parallel 

lines in the image by calculating the standard deviation of detected line angles and selecting 

images below a set threshold. The image chip is then pre-labeled with high confidence as 

containing a ship, and no further processing is needed. In addition to pre-labeling our dataset for 

image chips containing parallel lines, we can use the line lengths and line angle distributions as 

feature descriptors for our classifier. 
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The limitation of performing line detection using the Hough transform is that the method 

relies on processing an accurate edge image. If an accurate edge image is not obtained, the Hough 

transform will perform poorly in extracting the parallel edges of a ship. As shown in Figure 8, 

poor contour extraction of a ship is caused by an image containing ocean waves at high levels, 

often as a result of high wind speed. These conditions are characterized as having a high sea state. 

Other contributors to poor contour extraction include low contrast in images and ships with 

trailing wakes. Therefore, we explore wavelet decomposition techniques to suppress noise and 

enhance edge detection for ship feature extraction. 

 
Figure 8. Example where Hough transform line detection fails to identify parallel line segments 

containing a ship image. 

 

3.3 Wavelet Analysis 

The wavelet decomposition approach was investigated as a pre-processing stage in order 

to improve the edge image. In order to compute the edge image, a three-level wavelet 

decomposition is obtained using the structure shown below in Figure 9. For each level, the high 
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frequency detail sub-band images HL, LH, and HH are used. These images are computed using a 

combination of highpass and lowpass filtering. They extract horizontal, vertical, and diagonal 

details respectively.  

 

 
Figure 9. Structure for wavelet decomposition. 

 

3.3.1 Image Rotation to Align Object Major Axis in the Horizontal Direction 

When performing the wavelet thresholding operations, it has come to our attention that it 

is difficult to capture edge details for some images, especially at the level one decomposition. We 

speculate that if the ship is oriented such that its length is oriented horizontally, more details of 

the ship edges would be captured in the horizontal detailed image (HL). In Figure 10, a 

comparison is made between the level one decomposition images of a rotated and non-rotated 

image. The figure consists of two set of images. For each set of four images shown in Figure 10, 

the upper left image represents the original image processed, and the remaining three images are 

the detail images following the display convention shown in Figure 9. 
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Figure 10. Comparison of wavelet decomposition images at level one for a rotated and non-

rotated image. Upper left image represents the original image processed, and the remaining three 

images are the details following the structure in Figure 9. 

 

In order to binarize the detailed component images shown above, we set the value of our 

binary image to 1 for pixels above the defined threshold, and 0 for pixels below the threshold. 

The thresholds, defined below, are dependent on the mean, E[], and standard deviation, σ, of the 

detailed image. The three binary detailed images are then thresholded using the following 

equations:  

 T_HL = E[HL] + 1.5 σHL  (3) 

T_LH = E[LH] + 3.0 σLH 

T_HH = E[HH] + 3.0 σHH 
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Notice that stricter parameters are set on the vertical and diagonal details, and looser parameters 

are set for the horizontal details. This is done in order to capture more edges in the horizontal 

direction. For the experiments described below, we perform three-level wavelet decompositions 

and use the thresholds stated above. 

The corresponding binarized edge images are shown below in Figure 11. These images 

are thresholded using the threshold values defined in Equation (3). The figure contains two sets of 

binarized edge images. For each of the set of four images shown in Figure 11, the upper left 

image is computed using a binary OR operation on the three detailed binary images.  

 
Figure 11. Comparison of binarized wavelet decompositions at level one for a rotated (top figure) 

and non-rotated image (bottom figure). The upper left images are computed using an OR 

operation on the three detailed binary images. 

 

If we examine the upper left image from Figure 11 from both the rotated and non-rotated 

images, we see that the rotated image performs better in capturing the ship’s contour. This is a 

result of orienting the ship such that the ship sides are extracted from the horizontal detailed 
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image. We therefore loosen the threshold parameter of the horizontal detailed image to obtain a 

better edge image. For the remainder of the wavelet experiments, all images are rotated such that 

the major axis of the detected object is oriented horizontally. 

 The image rotation is an automated process. To compute the object orientation, the image 

is binarized by thresholding the image. The threshold is determined by computing two standard 

deviations above the image mean. The largest detected binary object is used to determine the 

object orientation, and the Matlab function imrotate was used to rotate the object horizontally. 

 

3.3.2 Wavelet Edge Image using Various Filter Lengths and Types 

For the following experiment, we use the test image shown below in Figure 12. This 

image consist of a ship oriented horizontally and has been preprocessed with a 5x5 median filter 

for noise reduction. The Matlab function medfilt2, from the Image Processing Toolbox, is used to 

perform this operation. 

 
Figure 12. Median filtered and rotated test ship image. 

 

The image in Figure 12 has been decomposed using various wavelet filter lengths and 

types. The result for the thresholded image at level three wavelet decomposition is shown below 

in Figure 13. Notice the Haar filter produces the best edge image. The results also show the 

Daubechie wavelet applied at various filter order. As the order of the filter increases, the 

performance of the edge detector degrades.  
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Figure 13. Level three thresholded detail coefficients for various length filter of image displayed 

in Figure 12. The upper left images are computed using an OR operation on the three detailed 

binary images. 
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The remainder of the experiments are conducted using Haar wavelets since it produces the best 

edge detection for our application. 

 

3.3.3 Perform Thinning of Binary Image 

The most visibly appealing edge map is obtained from the level three thresholded image. 

However, the edges are very thick. To obtain a true edge map, we perform thinning to the binary 

image, and compare the results to commonly used edge detectors such as Canny, Sobel, and 

Prewitt.  For this experiment, we process the image shown below in Figure 14. 

 

 
Figure 14. Median filtered and rotated test image. 

 

The wavelet edge image is computed by taking the level three thresholded image, 

skeletonizing the image, and pruning the binary image over ten iterations using the Matlab 

implementation bwmorph. The results for the wavelet edge image and other commonly used edge 

detectors are shown below in Figure 15.  Notice that Prewitt and Sobel provide the most visually 

appealing edge map. In this example, the result for the wavelet decomposition edge map is 

comparable to Sobel, but no improvement is seen. The Canny edge detector is sensitive to 

background noise, and picks up edges caused by ocean glint. Sigma for the Canny edge detector 

is set at   . 
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Figure 15. Edge detection using wavelets and other commonly used edge detector. 

 

Below in Figure 16 is another example of a computed edge map. Notice in this example, 

the wavelet results performs more poorly than Sobel. One important detail to note is the edges of 

the ships detected using the wavelet method does not produce a straight line segment. This will 

produce poor line detection results when implementing the Hough transform. 
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Figure 16. Example comparing edge map computed using Haar wavelet (bottom left) and Sobel 

(bottom right) edge detector. 

 

3.3.4 Image Reconstruction with Horizontal Detail Emphasis 
 

Since the Prewitt edge detector clearly outperforms the wavelet edge image approach, it 

is pointless to further pursue wavelet edge approach for this application. The next approach we 

take is to use wavelet decomposition to decompose the image, multiply the detail component of 

the image with a factor α1, α2, α3 (where α1>α2 and α1> α3), and reconstruct the image. The α1 

scaling factor is for the horizontal detail component, α2 is for the diagonal detail, and α3 is for the 

vertical detail. The image is then reconstructed containing emphasis on the horizontal detail 

component.  For this example, we process the image shown below in Figure 17. 
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Figure 17. Median filtered and rotated test image. 

 

The edge images obtain from using Prewitt edge detector on the original image versus using the 

reconstructed image are shown below in Figure 18.  

 

 
Figure 18. Prewitt edge detection applied to the median filtered image in Figure 17 (top) versus 

the reconstructed horizontal detail emphasized image (bottom). 
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Notice that more edge segments from the side of the ship image are detected using the 

reconstructed images.  

 

3.3.5 Edges of Clouds 

So far, all of our experiments have been focused on finding edge images of ships. We 

have not displayed any results from our cloud dataset. It is immediately discovered that using the 

level three wavelet thresholded image performs poorly in extracting edge contours of a cloud. An 

example is shown below in Figure 19. As a reminder, the standard deviation of line angles 

detected from the Hough transform is used to determine is the object is a ship or cloud. Ship 

objects will have several parallel lines, and therefore a low standard deviation, while clouds will 

have high standard deviation. However, the standard deviation in the example shown below is not 

very high because a poor edge map of the cloud object was detected. 

 
Figure 19. Level three wavelet threshold image (right) and its corresponding lines detected using 

the Hough transform (left). 

 

In contrast to the cloud dataset, as we have seen earlier, the level three wavelet threshold 

image does an excellent job in extracting a ship’s contour. We can then apply the Hough 

transform to the image to identify the side edges of the ship, as shown below in Figure 20.  
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Figure 20. Level three wavelet threshold image (right) and its corresponding lines detected using 

the Hough transform (left). 

 

Prior to experimenting with wavelet edge extraction methods, we applied the Hough 

transform to the Canny edge map of the image. Examples of a cloud and ship line extraction 

result using Canny edge is shown below in Figure 21.  
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Figure 21. Hough lines extracted from Canny edge map for a cloud (top) and ship (bottom) 

image. 

 

In contrast to the wavelet edge detection approach, Canny edge detection performs well 

in extracting details from a cloud image. This method allows us to extract several line segments 

and recognize the line angles are oriented in various directions. We can then confidently label the 

image as containing a cloud object. However, the downfall of using a Canny edge detector is its 

sensitivity to extracting background noise. We see this in the ship example in Figure 21.  

We clearly see that both the Canny edge and Haar wavelet edge approaches have their 

advantages and disadvantages. Therefore, both methods will be used to determine if parallel lines 

are present in an image in order classify ship objects. 
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3.4 Final Algorithm 

A final algorithm has been created to use all feature extraction methods discussed in this 

chapter. A flow chart shown in Figure 22 summarizes the feature extraction and classification 

algorithm. The method requires that edge detection is performed using both Canny and Haar 

wavelets. Parallel line detection using Hough transform is performed on both edge images, and 

the image under test is either labeled as containing ships or further processing is done. If further 

processing is needed, the Gabor wavelets are used to filter the image, and correlation coefficients 

among the frequency combinations of the filtered images are calculated. These 20 features are 

then supplied to a classifier to determine the image class. 

 

 

Figure 22. Flow diagram of cloud filtering algorithm. 
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Chapter 4 

Simulations and Comparison of Results 

  In the previous Chapter, we discussed several feature extraction techniques. This Chapter 

discusses the experimental results for those techniques. Tests were performed on the Gabor 

wavelet filtered images, and a set of useful correlation coefficients were determined. The Hough 

transform approach was investigated as both a pre-filtering method and the line angles and line 

length were investigated. 

 For the results reported in this section, images were separated randomly for the testing 

and training dataset. Each test is repeated for ten iterations, and the mean and standard deviation 

of the classification accuracy is reported. In Chapter 4.1 and 4.2, experiments will be conducted 

using the KNN classifier. In Chapter 4.3, analyses using the SVM classifier were performed. 

Parameters were modified for the different classifiers to determine the ideal settings for our 

application. 

4.1 Gabor Results 

For all test procedures, the training set varies between 50, 100, 150, 200, and 400 images. 

Ten iterations are calculated, and the average and standard deviation of the probability of 

detection is calculated. Figure 23 displays the different combinations of correlation coefficients 

used for training and testing our dataset. Notice that the frequency f varies in four values (f = 1/2, 

1/4, 1/8, and 1/16), and the orientation θ ranges in four values (θ = 0, π/4, π/2, and 3/4π). 
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Figure 23. Gabor convolved cloud image ranging in four different frequency and four different 

orientations. 

 

The first test performed is to calculate the correlation coefficient among the different 

frequency values of the Gabor filtered images. In other words, for every orientation value θ, we 

compute the normalized correlation coefficient for the following frequency pairs: 

f = 1/2 vs. 1/4 

f = 1/2 vs. 1/8 

f = 1/2 vs. 1/16 

The results are summarized below in Table 1, using the Matlab implemented KNN classifier with 

default Euclidean distance measure. 

 

Table 1. Classification accuracy using 12 correlation coefficients and KNN Euclidean distance 

classifier. 
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For our second experiment, we calculated the correlation coefficient for the following 

scale combination, giving us only four correlation coefficients: 

f = 1/4 vs. 1/8 

The results are shown in Table 2. Notice that the detection rate has dropped to 87% when using 

only four features. 

 

Table 2. Classification accuracy using four correlation coefficients and KNN Euclidean distance 

classifier. 

 

 

For our third experiment, we combine twelve correlation coefficients with the above four 

correlation coefficients from experiments one and two. This will give us a total of 16 correlation 

coefficients. The four different frequency pair combinations are the following: 

f = 1/2 vs. 1/4 

f = 1/2 vs. 1/8 

f = 1/2 vs. 1/16 

f = 1/4 vs. 1/8 

Results are summarized in Table 3. Notice that the detection rate has improved in comparison to 

our previous results, with the highest classification accuracy at 92.5%. 

 

Table 3. Classification accuracy using 16 correlation coefficients and KNN Euclidean distance 

classifier. 
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For experiment four, we will test every combination of scale values. This will give us a total of 24 

correlation coefficients. The six different scale combinations are the following: 

f = 1/2 vs. 1/4 

f = 1/2 vs. 1/8 

f = 1/2 vs. 1/16 

f = 1/4 vs. 1/8 

f = 1/4 vs. 1/16 

f = 1/8 vs. 1/16 

Results are summarized in Table 4. The highest classification accuracy has not changed much 

compared to the previous experiment. 

 

Table 4. Classification accuracy using 24 correlation coefficients and KNN Euclidean distance 

classifier. 

 

 

For experiment six, we will repeat the combinations set in the previous experiment, with the 

exception of 

f = 1/2 vs. 1/8. 

This will give us a total of 20 correlation coefficients. The five different scale combinations are 

the following: 

f = 1/2 vs. 1/4 

f = 1/2 vs. 1/16 

f = 1/4 vs. 1/8 

f = 1/4 vs. 1/16 

f = 1/8 vs. 1/16 

Results are summarized in Table 5. Notice that this has now improved our detection rate to 93%. 
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Table 5. Classification accuracy using 20 correlation coefficients and KNN Euclidean distance 

classifier. 

 

 

The method of distance measure used in the KNN classifier can have a significant impact 

on the classification results. For the last experiment, we will test four different distance measure 

techniques, and determine which method works best for the dataset. The results are shown in 

Table 5. The table below confirms for our dataset, the most accurate distance measure for KNN 

uses Euclidean distance. 

 

Table 6. Modifications to the KNN distance measure using the twenty correlation coefficients 

shown in Table 5. 

 

 

In conclusion, our results show that the highest classification accuracy at 93.09% was 

achieved in experiment five using 20 correlation coefficients. It shows that having too few or too 

many features will reduce the classification accuracy. We can also conclude that the Euclidean 

distance measure used in KNN works best for our test set. 

 

4.2 Pre-Filtering using Hough Transform 

In Chapter 3.3, we discussed at length wavelet techniques used to improve edge 

detection. The edge image is then processed using the Hough transform, and the ship images are 
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pre-filtered as ship objects. Using this technique, five out of 955 cloud images were mislabeled as 

ship objects using the Hough transform approach to identify parallel lines present in the test 

image. These mislabeled image chips are shown below in Figure 24. However, 345 out of 481 

ship image chips were correctly labeled by the Hough transform approach. 

 
Figure 24. Cloud images mislabeled as ships through the Hough transform approach 

 

Implementing the edge extraction method described in Chapter 3, and feeding the non-ship 

labeled images to a KNN classifier, we obtain the following classification accuracy summarized 

in Table 7. Notice that using the wavelet edge extraction approach has improved our results from 

93% to 95%.  

 

Table 7. Classification accuracy using 20 Gabor correlation coefficients, KNN classifier, and pre-

filtering the dataset using line extraction through Hough transform. Edge images are computed 

using both Canny and Haar wavelet approach. 

 
 

 

4.3 SVM Classifiers 

The SVM classifier is a more complex classifier than KNN. It has several parameters the 

user can modify, such as assigning class weight values. We will explore various parameters of the 

classifier and determine what works best for our application. Additionally, we will examine the 

importance of data normalization for this classifier. 

Trained Ships Trained Clouds Test Ships Test Clouds # Iterations Mean Std. Dev.

200 200 753 251 10 94.9 0.71

300 300 653 151 10 95.2 0.48
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4.3.1 Hough Line Angles and Data Normalization 

An initial test was performed to add the distribution of line angles as an additional 

feature. The new feature caused our classification accuracy to drop to 91%. We suspect this is due 

to a normalization issue and will explore a couple normalization techniques. 

The first normalization technique we will apply to the testing/training set is the Standard 

Score approach. This is done by subtracting the mean   from the dataset, and scaling by the 

standard deviation  , as shown in the equation below. 

    
     

 
 (4) 

The SVM classifier works well when the majority of the training/testing dataset lies between -1 

and 1. By implementing the Standard Score normalization to our dataset, the majority of the 

dataset will be in our target range. The results for this approach are shown below in Table 8. 

Notice that the classification accuracy has improved to 97.16%. 

 

Table 8. Classification accuracy using SVM classifier and Standard Score normalization of 

training and testing dataset. 

 

 

The second normalization technique scales the dataset by the maximum value of the 

training set. The equation below is used. 

    
  

         
 (5) 

This normalization approach will limit the dataset between -1 and 1. The classification results are 

a slight improvement from the previous method at 97.31%, as shown in Table 9. 

 

Iterations
Train 

Cloud

Train 

Ships

Test 

Clouds

Test 

Ships

Total 

Test

Clouds 

Classification 

Accuracy

Ships 

Classification 

Accuracy

Overall 

Accuracy 

(Mean)

Standard 

Deviation

10 200 200 753 251 1004 98.46% 93.27% 97.16% 0.65
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Table 9. Classification accuracy using SVM classifier and maximum normalization of training 

and testing dataset. 

 

 

In section 4.1, we used the correlation coefficients between different scale factors of the 

Gabor convolved images as features for the training/testing set. These features were already 

bounded between -1 and 1. However, we recently introduced the distribution of Hough angles as 

a new feature, which requires that the dataset to be bounded. We have seen from our results in 

this section the importance of data normalization when using an SVM classifier. 

 

4.3.1 Weight Factor 

The results in Table 8 and Table 9 show that the cloud dataset has a significantly higher 

classification accuracy rate than the ship dataset. For our application, it is our preference to have a 

higher ship classification accuracy, even if this will result in having a lower overall classification 

accuracy. SVM has the option of modifying the box constraint, a weight factor that allows the 

user to penalize a certain class from being misclassified. We have modified the weight factor to 

be 1:100, with emphasis for ships to be correctly classified. The results are shown in Table 10. 

Notice that the ship classification results have improved from 93% to 96%. 

 

Table 10. Classification accuracy using the SVM classifier with a 1:100 weighting factor to place 

high priority in ship classification accuracy. 

 

 

 

Iterations
Train 

Cloud

Train 

Ships

Test 

Clouds

Test 

Ships

Total 

Test

Clouds 

Classification 

Accuracy

Ships 

Classification 

Accuracy

Overall 

Accuracy 

(Mean)

Standard 

Deviation

10 200 200 753 251 1004 98.55% 93.59% 97.31% 0.50

Iterations
Train 

Cloud

Train 

Ships

Test 

Clouds

Test 

Ships

Total 

Test

Clouds 

Classification 

Accuracy

Ships 

Classification 

Accuracy

Overall 

Accuracy 

(Mean)

Standard 

Deviation

10 200 200 753 251 1004 97.84% 96.02% 97.38% 0.46
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4.4 Hough Transform Line Detection Length 

Our instinct would tell us that the line segments for the ship images are longer than those 

of the cloud segments.  Therefore, using the maximum line length of the detected Hough lines as 

a feature could possibly increase our classification accuracy. A test is performed where we 

compute the Canny edge image of our test and train set, detect the length of the line segments 

using the Hough transform, and use the maximum line length as an additional feature for our 

SVM classifier. The results for this experiment are summarized in Table 11. This added feature 

has boosted our overall accuracy to 97.86%, but has slightly lowered our ship classification 

accuracy by 0.5%. Our explanation for the decline in ship accuracy is that it may be difficult to 

detect line segments of moving vessels, and therefore the line length may be similar to the clouds.  

 

Table 11. SVM classifier with maximum Hough transform line length added as additional feature 

to SVM classifier. 

 

 

Iterations
Train 

Cloud

Train 

Ships

Test 

Clouds

Test 

Ships

Total 

Test

Clouds 

Classification 

Accuracy

Ships 

Classification 

Accuracy

Overall 

Accuracy 

(Mean)

Standard 

Deviation

10 200 200 753 250 1003 98.62% 95.56% 97.86% 0.32
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Chapter 5 

Conclusion 

5.1 Summary of Contributions 

 The thesis researched confirms that performing texture analysis alone is not enough to 

accurately classify cloud versus ship objects in high-resolution panchromatic satellite imagery. 

However, we have devised an algorithm which measures texture using Gabor wavelets, detects 

straight line features using the Hough transform, enhances our line detection using Haar wavelets, 

computes distribution of line angles and maximum line length, to accurately distinguish ships 

from cloud objects. We have shown for our application and dataset, the SVM produces the 

highest accuracy at 97.86%. 

 

5.2 Future Work 

 The research conducted suggests a highly accurate algorithm for a two class problem, 

distinguishing ships from cloud objects. However, the objects detected by RAPIER
®
 can be 

divided into four classes: clouds, ships, fast moving ships, and others (including land detects). 

One of the challenges in this research topic is to distinguish clouds from land objects. Both 

objects have similar textures and do not contain straight edges, making it a challenging computer 

vision problem to separate the two classes. Another challenge is to recognize an image chip that 

contains both a cloud and ship object. Often times the ship is obscured by clouds, such as the 

example shown below in Figure 25. Finally, the code developed for this research is written in 

Matlab. It will need to be converted to C++ in order to be integrated into RAPIER
®
. 
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Figure 25. Example of ship objects obscured by clouds. 
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