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Abstract

Lean premixed prevaporized (LPP) gas turbine generators have become popular in energy
conversion applications to meet strict emission requirements. Because the combustion process
is very lean, combustion instabilities due to acoustic perturbations are more likely to occur
than in a less lean fuel combustion process. Current design of damping strategies for mitigating
these instabilities is often based on empirical trial and error, which precludes the possibility of
determining an optimal configuration. A combustion system whose elements consist of flames,
passive dampers, and ducts must be optimized to reduce or completely eliminate combustion
instabilities. Hence, a modular simulation tool is developed to examine the interaction of plane
acoustic waves with typical combustion system elements. The simulation tool represents these
interactions in the form of transfer matrices, which can be modularly arranged for exploring
a variety of configurations. In this work, a heuristic gain-delay flame model is represented as
a transfer matrix, which can be used to test damping devices. Similarly, transfer matrices
representing a Helmholtz resonator and a perforated liner with bias flow are developed, and
preliminary results are obtained.

1 Introduction

Thermoacoustic oscillations occur in a variety of applications such as rocket motors [4], jet engines
[9, 16], and gas turbine generators [13, 15]. In this work a modular simulation tool is developed to
examine the interaction of plane acoustic waves inside a duct with various sinks and/ or sources of
sound. A previous planar flame model [6] is modified to exhibit the Rayleigh criterion [12], which
results into a unstable acoustic system. A model for a Helmholtz resonator [5] and a perforated
liner with bias flow [8] is also incorporated into the simulation tool for possible passive damping
solutions.

Acoustic instabilities are a major concern in operating fuel-lean gas turbine generators and depend-
ing on the combustion system configuration, thermoacoustic oscillations may lead to instabilities.
A lean premixed prevaporized (LPP) combustion process runs at a lower temperature lowering
pollutant emissions such as NOx and CO. The production of NOx and CO chemically is an en-
dothermic process; due to the energy consumption nature of these processes, such a reaction is
more probable at higher temperatures. An LPP process lowers the adiabatic flame temperature
and hence lowers the overall temperature inside the combustion chamber, significantly reducing the
production of undesirable emissions.

One problematic outcome of running a LPP combustion process is that the system is more prone
to combustion instabilities [3, 14]. The LPP combustion process is characterized by a greater sensi-
tivity to fluctuations in the equivalence ratio φ [12]. Flame heat release in gas turbine combustion
chambers is generally unsteady. The unsteady heat release causes fluctuations in the local density,
pressure and velocity which propagate away from the flame in the form of acoustic waves [7, 2].
These oscillations reflect off the chamber boundaries (compressor, turbine, etc) and propagate back
towards the flame resulting in deviations in the fuel and air mixture and possibly amplifying the
unsteady behavior of the heat release [14, 12]. If this interaction is in phase (i.e the Rayleigh
Criterion is satisfied) this process becomes self-excited and may lead the system to experience large
amplitude oscillations, potentially causing structural damage.
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In the early rockets, acoustic instabilities were also a major problem which eventually were overcome
with extensive research on passive control. Control strategies typically consist of inclusion of baffles
and/or geometric modifications [14]. Furthermore, unlike rocket motors, combustion instabilities
in LPP gas turbine generators are excited by multiple means, such as rotating machinery, fuel
mixing, and multiple flame mechanisms. A simple approach, for example geometric modifications,
may not be sufficient to completely stabilize the system. Therefore, a more robust mechanism is
needed to overcome these instabilities. One effective solution is the utilization of passive acoustic
damping devices which remove energy from the acoustic field and thereby weaken the feedback cycle.
One conventional damper is the Helmholtz resonator, which is a cavity with a neck connected to
the system through a small orifice. Near its resonance frequency, the resonator experiences large
amplitudes of acoustic oscillation in its neck. The high amplitude oscillations in the neck dissipate
acoustic energy by means of vortex shedding at the neck-duct interface and viscous effects of fluid
and wall interaction [1].

A Helmholtz resonator, however, is only effective in the limited bandwidth near resonance. Also,
the resonant oscillation in the neck is heavily dependent on the external pressure fluctuations, so
the resonator fails to dissipate acoustic energy if placed near a pressure node. A damping system
that may overcome some of these limitations is a perforated liner with bias flow, which has an array
of orifices across the length and circumference of its cylindrical shell. Harmonic pressure differences
across the aperture excite periodic vortex shedding, and shed vortices are convected away by the
bias flow [11]. This process converts the acoustic energy into mechanical energy, which eventually is
dissipated into heat [8]. A liner, unlike a localized resonator, is spread over a length, consequently
it is effective over a relatively larger range of frequencies and locations.

The focus of this work is to investigate the effectiveness of a perforated liner with bias flow as a
damping mechanism for thermoacoustic instabilities in gas turbine combustion chambers. A partic-
ular goal of this research is to explore the robustness of damping to changes in liner geometry and
combuster conditions, and contrast it with results achieved with a Helmholtz resonator. Another
interest is to develop a generic modular acoustic simulation tool to numerically investigate multiple
system configurations with relative ease, to facilitate damper design strategies beyond empirical
trial and error approaches. This work relies on numerical modeling of the damping devices in a
simple ducted flame geometry. Thus, conclusions drawn are meant to provide guidance for future
experimental studies.

The modular simulation tool, discussed in § 2, is based on plane wave theory and relates these
propagating waves in and out of an acoustic source and/or sink with the use of transfer functions.
A heuristic flame model, discussed in § 3.1.1, is similar to the one in [6] with an adjustment of a gain-
delay modification [12] imposed to satisfy the Rayleigh Criterion. The model for the perforated liner
model, discussed in § 3.2.2, is adapted from [8], in which its accuracy was verified experimentally.
The perforated liner model will be numerically compared with a model for a Helmholtz resonator
[5], which also has been verified experimentally and is discussed in § 3.2.1.
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General Element

f1

g1

f2

g2

Figure 1: A duct with a general element.

2 Methodology

Acoustic perturbations in a duct consist of pressure, velocity and density perturbations. Because
characteristic frequencies in the system of interest are below cut-on of higher order modes, we are
modeling behavior with plane acoustic waves, which satisfy a linear one dimensional wave equation.
For a single frequency, a solution is given by

p′ (x, t) = exp(iωt)

[

f exp

(

−iωx

c̄+ ū

)

+ g exp

(

iωx

c̄− ū

)]

(1)

where f and g are wave amplitudes propagating downstream and upstream in the duct respectively.
ω, c̄ and ū is the frequency, the mean speed of sound and the mean velocity inside the duct. From
the definition of the speed of sound c2 = dp/dρ|s and the linear relationship between pressure and
density p′ = ρ′dp/dρ the density perturbation can be expressed as

ρ′ = p′/c2 (2)

Furthermore, using equations (1) and (2) the velocity perturbations can be expressed as follows

u′ = ±
p′

ρ̄c̄
(3)

where ρ̄ is the mean density. The positive sign is chosen for a forward propagating wave and
negative for a backward propagating wave.

For an arbitrary element in a system (e.g. flame, dampers, etc.), as depicted in figure 1, the pressure
and velocity jump conditions can be represented in the matrix form as follows.

[

f2

g2

]

= Y −1X

[

f1

g1

]

(4)

For a duct with only one element applying the upstream and the downstream boundary conditions
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Figure 2: Simulink approach to acoustics.

with the transfer matrix gives the following matrix equation

[

Rd −1
]

Y −1X

[

Ru

1

]

= 0 (5)

where Ru and Rd are upstream and downstream reflection coefficients respectively. Note, due to the
homogeneous nature of this equation set, the wave amplitudes cannot be solved for. The only non-
trivial solutions possible are the frequencies of the system. These frequencies are generally complex,
and the imaginary part corresponds to exponential growth or decay (negative values give growth).
If the system consisted of n elements, there will be n (2) × (2) transfer matrices representing each
element in the system.

[

Rd −1
] (

Y −1X
)

n
. . .
(

Y −1X
)

1

[

Ru

1

]

= 0 (6)

One advantage of transfer matrices is that they can be easily modeled in a block diagram approach,
connecting elements in a modular fashion. This approach allows the use of graphical software such
as Simulink to perform the analysis and virtually no coding is required. Figure 2 shows a Simulink
model for duct acoustics of one element in a simple straight duct.

In a system with entropy generation, the acoustic and entropy wave interaction modifies this ap-
proach slightly. As discussed in § 3.1.1 whenever there is heat addition entropy is generated. An
entropy wave propagating downstream of the flame can always be related to the upstream den-
sity and temperature perturbations. This interaction can be incorporated into the transfer matrix
approach.





f2

g2
S



 = Y −1X

[

f1

g1

]

+ Y −1CQ̂

note, Y is of dimension 3×3, X is of dimension 3×2 and C is of dimension 3×1. Q̂ represents heat
addition fluctuations. Because the goal here is to solve for the frequency of acoustic oscillations,
and not the entropy wave itself, the last row in the transfer matrix, which represents the entropy
wave, can be ignored.

Applying the boundary conditions to the first two rows of the transfer matrix provides the following
homogeneous equation
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S

x = lx = bx = 0

f_1

g_1

f_2

g_2

Figure 3: Flame duct system

[

Rd
1 Rd

2

]

(A+B)

[

Ru
2

−Ru
1

]

= 0

where A and B are the first two rows of Y −1X and Y −1C respectively, and the Ru,d
1,2 represent the

upstream and downstream reflection coefficients.

All the elements upstream of the flame can be represented with 2×2 matrices while all the elements
downstream of the flame are represented with 3× 3 matrices. However, the transfer matrix due to
the flame (or, in general, due to an element that generates entropy) is a 3 × 2 matrix, which leads
to dimensional consistency throughout the matrix multiplication for all the elements.

3 Model

3.1 Heuristic Flame Acoustics

3.1.1 Adapted Flame Model

The flame model utilized in this work is adapted from Dowling [6]. The following derivation
uses a similar approach as used in Dowling [6], to acquire a transfer matrix governing velocity and
pressure jump conditions across the flame.

The acoustic perturbations upstream, denoted by subscript 1, of the flame zone are given by

p′ (x, t) = exp(iωt)

[

f1 exp

(

−iωx

c̄1
(

1 + M̄u

)

)

+ g1 exp

(

iωx

c̄1
(

1 − M̄u

)

)]

u′ (x, t) =
exp(iωt)

ρ̄1c̄1

[

f1 exp

(

−iωx

c̄1
(

1 + M̄u

)

)

− g1 exp

(

iωx

c̄1
(

1 − M̄u

)

)]

ρ′ (x, t) = p′ (x, t) /c̄21

cpT
′ (x, t) = p′ (x, t) /ρ̄1

where f and g are wave amplitudes and M̄ ,c̄ and ρ̄ are the mean quantities of the Mach number,
speed of sound and density respectively. Downstream of the flame zone, denoted be subscript 2,
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the perturbations are given by

p′ (x, t) = exp(iωt)

[

f2 exp

(

−iωx

c̄2
(

1 + M̄d

)

)

+ g2 exp

(

iωx

c̄2
(

1 − M̄d

)

)]

u′ (x, t) =
exp(iωt)

ρ̄2c̄2

[

f2 exp

(

−iωx

c̄2
(

1 + M̄d

)

)

− g2 exp

(

iωx

c̄2
(

1 − M̄d

)

)]

ρ′ (x, t) = p′ (x, t) /c̄22 −
Sρ̄2

cp
exp (iω (t− x/ū2))

cpT
′ (x, t) = p′ (x, t) /ρ̄2 −

Sc̄22
(γ − 1) cp

exp (iω (t− x/ū2))

where S is the amplitude of the entropy wave and γ is the ratio of specific heats. and substitution
of the harmonic form of these perturbations into mass, momentum and energy conservation across
the flame gives the following transfer matrices

Y





f2

g2
S



 = X

[

f1

g1

]

+ CQ̂ (7)

where, Y is

Y =





(1 +M2)e1 −(1 −M2)e2 M2
2

c̄2
c̄1

(

1 −M2
2

)

e3
c̄2
c̄1

(

1 −M2
2

)

e4 − c̄2
c̄1
M2

2

(1 +M2)a3e3
c̄2
c̄1

(1 −M2)a4e4
c̄2
c̄1

− c̄2
c̄1

1

2
M2

2



 (8)

and X is

X =





c̄2
c̄1

(1 +M1)e1 − c̄2
c̄1

(1 −M1)e2
(1 +M1)

2e1 (1 −M1)
2e2

(1 +M1)a1e1 (1 −M1)a2e2



 (9)

and C is

C =





0
0
1



 (10)

where

e1 = exp
(

−iωb/c̄1(1 + M̄1)
)

, e2 = exp
(

iωb/c̄1(1 − M̄1)
)

e3 = exp
(

−iωb/c̄2(1 + M̄2)
)

, e4 = exp
(

iωb/c̄2(1 − M̄2)
)

and

a1 = M1 +
1

2
M2

1 + (γ − 1)−1, a2 = M1 −
1

2
M2

1 − (γ − 1)−1

a3 = M2 +
1

2
M2

2 + (γ − 1)−1, a4 = M2 −
1

2
M2

2 − (γ − 1)−1
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3.1.2 Unsteady Heat Release

An expression for the unsteady heat release can derived by energy balance across the flame.

Q = ṁf∆hrxn = (ṁo + ṁf )∆h0,12 (11)

note, subscripts o, f and 0 represent oxidizer, fuel and stagnation condition. Also, the heat of
reaction ∆hrxn is not a function of time and space and is only dependent on the chemical properties
of the fuel.

In this work only small fluctuations from mean conditions are considered (where |Q′| << |Q̄|). So,
the total heat release Q can be represented as Q̄+Q′, a steady heat release term Q̄ and a unsteady
heat release term Q′. Furthermore, due to linearity higher order terms can be neglected.

Linearizing equation (11) and assuming no unsteady heat input per unit mass or ∆h′0,12 → 0 leads
to

ṁ′

f∆hrxn = Q′ = (ṁ′

o + ṁ′

f )∆h̄0,12 (12)

note, the mass flux of fuel can be related to the mass flux for the oxidizer by the actual fuel to
oxidizer ratio f∗ = ṁf/ṁo and if f << 1, which is true for lean fuel condition, then the heat
release expression utilized by Dowling is acquired

Q′ = (ṁ′

o)∆h̄0,12

relating ṁ′

o to the local acoustic waves gives

Q̂ = ∆h̄0,12

[

(1 +M1)e1/c
2
1 −(1 −M1)e2/c

2
1

]

[

f1

g1

]

(13)

3.1.3 Time Delay

In order to explore the effect of damping on an unstable combustion system, the model presented
in equation (13) must be extended to allow instability. According to the Rayleigh criterion, a
combustion system experiences acoustic instabilities when the pressure and unsteady heat release
fluctuations are in phase or the unsteady heat release is driving the pressure fluctuations and vice
versa. One option is to incorporate time delays, which physically exist in combustion systems
(for example, the convection time for the fuel from the injector to the flame), into the unsteady
heat release satisfying the Rayleigh criterion. With the addition of an arbitrary time delay τd
equation (13) becomes

Q′(t, x) = m′(t− τd, x)cp
(

T̄02 − T̄01

)

(14)
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Figure 4: Schematic depicts the phase relation between pressure, mass flow, and heat release
oscillations of the current heat release model.

substituting m′(t, x) = ρ̄1u
′

1(t, x) + ρ′1(t, x)ū1 into equation (14) gives

Q′(t, x) =
(

ρ̄1u
′

1(t− τd, x) + ρ′1(t− τd, x)ū1

)

cp
(

T̄02 − T̄01

)

(15)

The unsteady heat addition with a time delay changes Q′ discussed in § 3.1.2 to

Q′ = ∆h̄0,12 exp[−iωτd]
[

(1 +M1)e1/c
2
1 −(1 −M1)e2/c

2
1

]

[

f1

g1

]

The two major contributors of unsteady heat release are the acoustic fluctuations at the fuel injector
and at the base of the flame [12]. The injectors are usually located upstream of the flame, hence
the fluctuations at the injector convect to the flame after some time, τconv.

The fluctuation at the base of the flame disturb the heat release since the fuel is burned unevenly in
accordance with the shape of the flame. The shape of the flame determines the time, τeq, required
to consume the fuel completely [12]. For a planar flame, the complete consumption of the fuel is
even, or τeq = 0.

The convection time, τconv, is the distance the perturbations must travel divided by the mean
velocity at which these perturbations travel downstream. That is,

τconv = ‖linj‖/ū

The current model given by equation (12) assumes that the unsteady heat release is in phase with
the flow perturbation. For a chocked inlet or a mass flow perturbation node at the inlet, the
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Figure 5: Schematic depicts the phase relation between pressure, mass flow, equivalence ratio, and
heat release oscillations of the modified heat release model with time delays.

pressure perturbation leads the mass flow perturbation by 90 degrees, hence the Rayleigh criterion
is not satisfied. Please refer to figure 4 for a graphical representation.

In general, the heat release is not in phase with the fluctuations in the equivalence ratio, φ′. The
heat release for a planar flame lags φ′ by the convective time delay τconv. Also, unlike the previous
assumption φ′ is not in phase with oscillation in the mass flow, ṁ′

o, for a chocked fuel injector
configuration. The oscillation in φ is given by,

φ′

φ̄
=
ṁ′

f/
¯̇mf − ṁ′

o/ ¯̇mo

1 + ṁ′

o/ ¯̇mo

so for a chocked injector ṁ′

f → 0, indicating that the oscillation in φ lags ṁ′

o by 180 degrees.

Hence, the phase of the unsteady heat release Q′ lags the phase of ṁ′

o by a time delay of τd where

τd = τconv + π/ω

Referring to figure 5, to satisfy Rayleigh’s criteria the convective time delay τconv for a choked inlet
& choked injector is given by [12]

τconv

T
= Cn = n− 3/4 where n = 1, 2, 3 . . . (16)

Cn centers around a region over which instability occurs. The limits of the region are ± 90 degrees
phase difference between pressure and heat release oscillations. Or, the unstable region is given by
(Lieuwen),
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Cn − 1/4 < τconv/T < Cn + 1/4 (17)

3.1.4 Mach Number Downstream of the Flame

Applying momentum conservation across the flame

p1 − p2 = ρ2u
2
2 − ρ1u

2
1 (18)

Assuming the specific heat ratio γ is constant across the flame and applying the definition of mach

number, M2 = u2/
(

γp
ρ

)

to equation (18) gives the following upstream and downstream pressure

ratio relation to upstream and downstream mach numbers.

p1

p2

=
1 + γM2

2

1 + γM2
1

(19)

Now, by observing mass conservation across the control volume

ρ1u1 = ρ2u2 (20)

and utilizing the ideal gas law p = ρRT and the stagnation temperature definition T0

T
= 1+ γ−1

2
M2,

equation (20) becomes

p1

p2

=
M2

M1

√

√

√

√

√

T01

T02

(

1 + γ−1

2
M2

2

)

(

1 + γ−1

2
M1

2

) (21)

combining equations (19) and (21) relates the stagnation temperature ratio across the flame to the
upstream and downstream mach numbers [10]:

T02

T01

=
M2

2

M2
1

(

1 + γ−1

2
M2

2

)

(

1 + γ−1

2
M2

1

)

(

1 + γM2
1

)2

(

1 + γM2
2

)2
(22)

3.2 Damper Models

3.2.1 Duct/ Resonator System with a Mean Flow

A Helmholtz resonator, depicted in figure 6, can act as an extremely effective acoustic damper. Near
its resonance, the resonator experiences large amplitudes of acoustic oscillation in its neck. The
high amplitude oscillations in the neck dissipate acoustic energy by the means of vortex shedding
at the neck duct interface and by the means of viscous effects of fluid and wall interaction.
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A Helmholtz resonator is analogous to a capacitor. A capacitor stores electrical energy within its
electrical field, likewise, a Helmholtz resonator holds acoustic energy within its volume. Hence, like
an alternating current electrical circuit the resonator can easily be modeled utilizing the concept
of acoustic impedance.

Z = p′/u′

The acoustic impedance is also analogous to the electrical impedance. The electrical impedance
is the ratio of the voltage to the current, where the voltage is the driver and the current is the
flow. Similarly, the acoustic impedance is the ratio of the pressure perturbation to the velocity
perturbation, where the pressure perturbation is the driver and the velocity perturbation is the
flow.

Utilizing the concept of acoustic impedance the resonator can essentially be modeled after a RLC
series circuit. The viscous resistance and the vortex shedding is similar to a resistor. The volume of
the resonator is similar to a capacitor. Last, the neck of the resonator is analogous to an inductor.
The impedance for each component is given by

Volume ZV = i
ρc2

ωV

Neck ZN = −iωρ
ln
Sn

Vortex Shedding ZR =
iωρ

Kr

For simplicity, only the vortex shedding resistance is being taken into account. Here, V is the volume
of the resonator. ln and Sn are the length and the cross-sectional are of the neck respectively. And,
Ka is the Rayleigh conductivity, which was derived by Howe [11] for an aperture with mean bias
flow.

Ka = 2a (γ + iδ) (23)

Generally, γ and δ are complicated functions of Strouhal number. However, for low frequency
perturbations these functions are approximated as:

γ ≈ 0

δ ≈
πaω

4ūn

12
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 Sn
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 Mn

Figure 6: Ducted resonator system

The stagnation enthalpy perturbation across a resonator with a mean flow is continuous. This
can be shown by conduction a mass, momentum and energy balance across the control volume,
please see [5]. A mass and momentum balance across the resonator is utilized to formulate the
transfer matrices for the system. For simplicity, the assumption of the mean flow being constant
across the control volume is made. This is certainly not a bad assumption, since the mean mass
flow through the neck is typically at least an order of magnitude less than the mean mass flow
through the duct, ṁn << ṁ. Mass balance gives

ρ′1ū1 + ρ̄2u
′

1 −
(

ρ′2ū2 + ρ̄2u
′

2

)

= −ρ̄nc
Sn

SD

(

ρ′n
ρ̄n
Mn +

u′n
ūn

)

please note that the perturbations is density and velocity in divided by there mean are the same
order of magnitude and the bias flow Mach no. is typically significantly smaller than one, Mn << 1,
hence the density perturbations in the neck are negligible to the neck velocity perturbations. Fur-
thermore, the neck velocity perturbations can be related to the stagnation enthalpy perturbations
upstream of the resonator which in turn can be related to the pressure oscillations and the Mach
no. upstream of the control volume.

u′n = ρh′0,n/SnZn = p′1 (1 ±M) /SnZn

The momentum balance across the control volume gives the pressure jump condition

p′1 + ρ′1ū
2
1 + 2ρ̄1ū1u

′

1 = p′2 + ρ′2ū
2
2 + 2ρ̄2ū2u

′

2

Substituting in the harmonic wave functions and non-dimensionalizing gives the following two
transfer matrices
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Figure 7: Perforated liner ducted system

x̃R =

[

(1 +M)(1 + Y )e1 (1 −M)(1 + Y )e2
(1 +M)2e1 (1 −M)2e2

]

ỹR =

[

(1 +M)e1 (1 −M)e2
(1 +M)2e1 (1 −M)2e2

]

where Y is the non-dimensional admittance of the resonator and is given by

Y =
ρc

SDZn

=

{

2Mn
SD

Sn

+ i

(

lSD

V

1

ω̃
+ ω̃

ln
l

SD

Sn

)}

−1

and

e1 = exp (−iω̃lr/l(1 +M))

e2 = exp (iω̃lr/l(1 −M))

3.2.2 Perforated Liner with Bias Flow

A perforated liner ducted system consists of a circular duct of length l and a perforated liner of
length lp = lb−la. The system is subject to an upstream axial flow uu and a bias flow v1. Note, both
flows are small and have the same stagnation temperature associated with them hence the mean
speed of sound and density, c̄ and ρ̄ respectively, are constant across the control volume. So, the
downstream velocity is then given by ud = uu + (C1lp/Sp)v1 where C1 and Sp is the circumference
and the cross-sectional area for liner 1 respectively.

As before, please see § 2, this model is based on plane wave theory, i.e, f1 and f2 are amplitudes
of waves traveling downstream along the duct while g1 and g2 are amplitudes of waves traveling
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upstream. Substituting in the following non-dimensional variables into the harmonic stagnation
enthalpy and velocity perturbation equations

x→ x/l, t→ c̄t/l, u→ u/c̄, v → v/c̄

B → B/c̄, ρ→ ρ/ρ̄, p→ p/(ρ̄c̄2), ω → ωl/c̄

for 0 < x < la we get

B′ (x, t) = exp(iωt)

[

f1 exp

(

−iωx

1 +Mu

)

+ g1 exp

(

iωx

1 −Mu

)]

u′ (x, t) = exp(iωt)

[

f1 exp

(

−iωx

1 +Mu

)

− g1 exp

(

iωx

1 −Mu

)]

for la < x < lb

B(x, t) = B̄ + B̂(x) exp(iωt)

u(x, t) = ū(x) + û(x) exp(iωt)

ū(x) = Mu +
C1l

Sp
x

and for lb < x < l

B′ (x, t) = exp(iωt)

[

f2 exp

(

−iωx

1 +Md

)

+ g2 exp

(

iωx

1 −Md

)]

u′ (x, t) = exp(iωt)

[

f2 exp

(

−iωx

1 +Md

)

− g2 exp

(

iωx

1 −Md

)]

Note, the stagnation enthalpy and velocity perturbations are continuous across x = la and x = lb

B̂(la) = f1e1 + g1e2 (24)

û(la) =
f1

1 +Mu

e1 +
g1

1 −Mu

e2 (25)

B̂(lb) = f2e3 + g2e4 (26)

û(lb) =
f2

1 +Md

e3 +
g2

1 −Md

e4 (27)

where

e1 = exp

(

−iωla
1 +Mu

)

, e2 = exp

(

iωla
1 −Mu

)

e3 = exp

(

−iωlb
1 +Md

)

, e4 = exp

(

iωlb
1 −Md

)

Balancing mass and momentum across the control volume and substituting ψ+ and ψ−, composite
variables see equations (2.13a-b) in [8], into mass and momentum equations gives the following two
coupled liner differential equations governing the behavior B̂ and û [8].
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Figure 8: Module representation of the transfer matrix for a perforated liner.

dψ+

dx
= −

iωl

1 + ū
ψ+ +

1

2

C1l

Sp
v̂1 (28)

dψ−

dx
=

iωl

1 + ū
ψ− −

1

2

C1l

Sp

v̂1 (29)

Substitution of ψ+ and ψ− in equations (24)-(27) give the following boundary conditions

ψ+(la) = f1e1, ψ
+(lb) = f2e3

ψ−(la) = g1e2, ψ
−(lb) = g2e4

The difference in stagnation enthalpy fluctuations across the liner can be related to v̂1 by employing
the relationship for the liner compliance given by equation (2.1) in [8]. Using this compliance with
the momentum equation in the normal direction and the relation B̂ = ψ+ + ψ− gives [8]

v̂1(x) =
η1

iω
[B̂1(x) − ψ+(x) + ψ−(x)]

where B̂1 represents fluctuation in stagnation enthalpy outside of the first liner. B̂1 is governed
by the configuration of the perforated liner. The current liner model consists of a second in an
annular cavity enclosing the first liner. The annular cavity is of the same length as the perforated
liner with rigid wall at the ends. The second liner is assigned η2 and C2 as the compliance and the
circumference respectively. A mass and momentum balance in side the cavity gives

dB̂1

dx
= −iωû1 (30)

dû1

dx
= −iωB̂1 −

C1l

Sc
v̂1 +

C2l

Sc
v̂2 (31)

v̂2(x) =
η2

iω
[B̂2 − B̂1]
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û1(la) = 0, û1(lb) = 0 (32)

Note that Sc is the annular cross-sectional area between the first and the second liner. û1 is the
fluctuating velocity in between the two liners. Also, B̂2 → 0 for an annular cavity that is open to
a resivor of fluid flowing through the liners. Furthermore, the annular cavity ends are rigid walls.

The total compliance of the each liner is developed in [8] and is given by

1

η
=
πa2

σl

1

Ka

+
t

σl
(33)

where σ = πa2/d2 is the open-area ratio of the perforated screen. a, t and d is the orifice radius, the
thickness of the liner and the distance between orifices respectively. Ka is the Rayleigh Conductivity
and for low frequencies is given by equation (23). Equations (28),(29),(30) and (31) then form a
closed set of four coupled liner differential equation governing the perforated liner system. This set
of equations can easily be solved employing any robust numerical integration recipes available. To
acquire frequency modes for a perforated liner it is vital to develop a technique which incorporates
the solution for this set of equations in our current modular simulation tool. The technique is
depicted in figure 8 below Where (Y −1X)i−1 is the transfer matrix from a previous element which
gives the upstream wave amplitudes f1 and g1 for the liner. These amplitudes can be use with
the upstream liner boundary, ψ+ and ψ− at x = la, to solve the set of equations governing the
perforated liner, equations (28),(29),(30) and (31). Note that equations (30) and (31) use equations
(32) as boundary conditions. The boundary condition at the end of the liner, ψ+ and ψ− at x = lb,
give the wave amplitudes downstream of the liner, f2 and g2, or (Y −1X)i the transfer matrix for
the perforated liner. This transfer matrix can then be incorporated in our frequency mode solver
to solve for modes of a system integrating a perforated liner.

4 Results

4.1 Effects of Time Delay on the Heuristic Flame Model

The ducted flame model consists of a chocked inlet at the upstream end, ṁo(x = 0) = 0, and an
open end at the downstream end, p′(x = l) = 0. The gas inside a LPP system is mostly air, so
for simplicity the thermodynamic properties of air are used and assumed to be constant across the
flame, i.e. the gas constant R = 287 kJ/Kg/K and the ratio of specific heats γ = 1.4. The mean
Mach no. upstream of the flame M̄1 = 0.05 with a mean stagnation temperature T̄0,1 = 288 K.
The jump in the mean stagnation temperature is taken to be T̄0,2/T̄0,1 = 6. The flame is located
at the center of the duct b/l = 0.5 and the fuel injector is located at linj/l = 0.15, therefore, the
convective distance for the fuel to the flame is given by (b − linj)/l. This convective distance is
incorporated in τd, a convective time delay, to enforce the Rayleigh criterion hence instability. Note,
all results in this and the subsequent sections are numerical and are a basis for future numerical
and experimental studies.

Figure 9 (left) shows that the imaginary frequency solutions of the system (adapted flame model)
are greater than zero. Since the harmonic pressure perturbation is given by p′(x, t) = p̂ exp(iωt) a
positive imaginary solution results into a stable system. That is, the pressure perturbation decay
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Figure 9: The simulation solves for the absolute value of the non-dimensional frequency hence the
minimums are zeros, these minimums are denoted by ”x” on the plots. Left is the flame model
with out any time delay incorporation while right is the flame model with time delay mechanics.

with time. These numerical results agree with the physical aspects of the system as discussed in
§ 3.1.3.

Likewise figure 9 (right) shows that the inclusion of time delays shifts the imaginary frequency
solutions of the system below zero resulting in an unstable system, where the pressure oscillations
grow with time. These numerical results also agree with the theory employed to modify the system
as discussed in § 3.1.3.

4.2 Ducted Helmholtz Resonator

The ducted Helmholtz resonator consists of an open end at both the upstream and the downstream
end, p′ = 0 at x = 0 and at x = l. Inside the duct standard pressure and temperature condition
is assumed so the speed of sound c = 340.29 m/s. The mean Mach no. upstream of the resonator
M̄1 = 0.05 and the mean Mach no. in the neck of the resonator M̄n = 0.02. The mean Mach no.
downstream of the resonator is approximately the same as the mean Mach no. upstream since the
cross-sectional area ratio of the resonator neck opening and the duct is very small, Sn/SD = 0.002.
The resonator neck length, volume and location is taken to be ln/l = 0.005, V/lSD = 0.002 and
lr/l = 0.5.

Figure 10 displays frequency solutions of an open-end duct/ resonator system with a mean flow.
One obvious point depicted by figure 10 is the importance of the placement of the resonator. The
damping provided by the resonator is driven by the pressure oscillations the opening of the resonator
experiences. That is, the higher the pressure oscillations at the opening the greater the damping.
Figure 10 clearly agrees with the this assessment such that at the first mode (an anti-node in an
open-end duct) the resonator provides significant amounts of damping while at the second mode

18



ℜ{ωl/c}

ℑ
{ω
l/
c
}

5 10 15
−0.2

0

0.2

0.4

0.6

0.8

ℜ{ωl/c}

ℑ
{ω
l/
c
}

5 10 15
−0.2

0

0.2

0.4

0.6

0.8

x x x x x

x

x

x

x

x

Figure 10: The simulation solves for the absolute value of the non-dimensional frequency hence the
minimums are zeros, these minimums are denoted by ”x” on the plots. Left is the simple open duct
solution without a resonator while right is the resonator ducted system.

(a node at the resonator location in an open-end duct) the resonator provides no damping at all.

Moreover, figure 10 gives insight on how the resonance of the resonator impacts the system. Due
to the location of the resonator, lr/l = 0.5, the anti-nodes and node alternate, that is, all the odd
modes are anti-nodes while all the even modes are nodes. The first and the third modes are both
anti-nodes yet the damping provided by the first is greater than the third. Same is true for the
third and fifth modes and so forth. Physically, a resonator is most effective at it’s resonance due to
the large amplitude of oscillations experienced by the system. Whether the first mode is closer to
the resonance over the third mode and so forth can be seen by examining the impedance provided
by the resonator at these modes, please see figure 12. The impedance is closest to resonance at
mode 1 and diverges with mode increment, satisfying yet another physical aspect of a Helmholtz
resonator.

4.3 Perforated Liner with Bias Flow

The ducted perforated liner with bias flow system consists of an open end at both the upstream
and the downstream end, p′ = 0 at x = 0 and at x = l. Inside the duct standard pressure and
temperature condition is assumed so the speed of sound c = 340.29 m/s. The mean Mach no.
upstream of the liner M̄1 = 0.046 and the mean flow through the liner is taken to be M̄l,1 = 0.03.
The liner’s center is located at the center of the duct and the liner is of length lp/l = 0.19. The
diameter of the duct is 12.7 cm and the length of the liner lp = 17.8 cm. The liner is perforated
by a regular lattice of holes of diameter 0.75 mm and spacing 3.3 mm, which is equivalent to an
open-area ration of the perforated screen for liner 1 σ1 = 0.040. The first liner is enclosed in a
second liner of equal length and of diameter 15.2 cm. The second liner is perforated by holes of
diameter 2.7 mm and spacing 17.0 mm corresponding to σ2 = 0.020. The thickness of both liners
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Figure 11: Effect of varying the location of the resonator on the system frequency, and the imaginary
frequency at two different modes. The resonator frequency is shown for reference.

is 3 mm.

Note, the perforated liner as a damper has similarities and differences with the Helmholtz resonator,
see § 4.2. One obvious difference is that the liner shifts the real frequencies. This shift can be
monitored by plotting the root locus of one of the modes, see figure 14. Another difference is that
the second and the forth mode, which are both anti-nodes, exhibit some damping while in the case
of the resonator they exhibited none. To elaborate, unlike the liner the resonator is a point-wise
damper so when it is located over a pressure node, the resonator as a damper becomes ineffective.
While, though the liner does experience a pressure node due to the physical dimension of the liner
the average pressure perturbation is not zero within the liner. The similarity here is that both
dampers rely on pressure fluctuation to dissipate acoustic energy, which makes sense since both
dampers use Rayleigh conductivity as a dissipative mechanism.

5 Conclusion

Lean premixed prevaporized (LPP) gas turbine generators are popular in energy generation applica-
tions to meet strict emission requirements. Because the combustion process is very lean, combustion
instabilities due to acoustic perturbations are more likely to occur than in a less lean fuel com-
bustion process. In this work, a modular simulation tool is developed to examine the interaction
of plane acoustic waves with typical combustion system elements. The simulation tool focuses on
representing these interactions in the form of transfer matrices. These transfer matrices then acts
as modules, which can be placed in any desired configuration with ease. A heuristic gain-delay
flame model is represented in a transfer matrix, which can be used to test damping devices. Sim-
ilarly, transfer matrices representing a Helmholtz resonator and a perforated liner with bias flow
are developed, based on models that have been experimentally validated in previous work. These
dampers will facilitate the stabilization of thermoacoustic instabilities generated by the heuristic

20



1 1.5 2 2.5 3 3.5 4
0.042

0.043

0.044

0.045

0.046

0.047

0.048

0.049

0.05

0.051

ℜ  { ωl/c }

A
bs

 {
 ρ

c/
Z

 }

ℑ  { Z } = 0 

Figure 12: The non-dimensional admittance of the resonator for varying resonator frequencies

flame model.

In ongoing work, optimization for each specific system will be explored by evaluating the effect
of Helmholtz and liner parameters on the suppression of instabilities in the model. The results
obtained in this work will be used to design future laboratory-scale experiments, for the purposes
of validation as well as for developing new strategies for damping of combustion dynamics in
commercial gas turbines.
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