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Abstract

Essays on the Mobile App Platform Choice and Firm Innovation Disclosure

by

Yongdong Liu

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor Brian Wright, Chair

This dissertation combines two papers on industrial organizations and innovations. The
first paper focuses on the market evolution in the mobile app platform and the second paper
is an empirical study on firm’s innovation disclosure and its impact on firm’s intellectual
property management.

Chapter 1 studies mobile app’s platform choice decisions. Ever since Apple and Google
launched their mobile application (app) stores in 2008, the market for mobile apps has
experienced rapid growth and represents an enormous business opportunity. The success
of an app platform largely relies on a great variety of apps, especially innovative and high-
quality apps. Given the existence of multiple app platforms, fundamental questions in the
app industry are how app developers choose which app platform to enter and which market
designs benefit the platform expansion. This chapter studies the platform choice decisions of
app developers and the implications for the app market evolution through using a unique and
big daily-level panel data set that contains information on every app in the two leading app
stores, Apple’s App Store and Google Play, over a 2-year period. Combining machine learning
techniques for big data problems and computationally efficient econometric approaches, I
construct and estimate a structural model for heterogeneous app developers’ platform choice
decisions within an incomplete-information game framework. I find that in general low-
quality apps make the platform less favorable for high-quality entrants. In Google app
store, the presence of low-quality apps tends to induce more low-quality apps to enter, while
Apple app store exhibits strong competitive effects among high-quality apps. Increasing
smartphone user base and improving user engagement are very useful measures to accelerate
the platform expansion, but these policies simultaneously encourage many low-quality apps
to enter. Regulations on low-quality apps and attenuating competition are more effective
on attracting high-quality apps. Platforms can bundle these policies to achieve the optimal
market design.

Chapter 2 focuses on an interesting phenomenon in firm’s intellectual property manage-
ment. Owners of knowledge sometimes choose to disclose their private innovation to the
public domain, instead of filing patents or keeping them in secret. Such behaviors are called
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knowledge disclosure. Once disclosed, the private innovation becomes public knowledge free
to use and is no longer patentable. Since it is long believed that private companies take
various measures to securely protect their proprietary innovations, the question of how firms
benefit from disclosing innovations is worth exploring. Employing a very unique data set of
IBM innovation disclosures, I empirically investigate firm’s strategic disclosures of private
innovation. I further study how such disclosures affect other firm’s patented innovation and
the focal firm’s selective exploitation of follow-up innovation. First, empirical results show
that disclosures are not very defensive. They do not undermine citing patents, but lead to
stronger citing patents. I also find that IBM discloses relatively low quality innovation on the
periphery of its expertise without patenting these. Meanwhile, IBM often discriminatorily
cites other firm’s patents that are built on its disclosures and are distant from IBM patents
assents. This selective utilization results in broader IBM patents and therefore extends its
innovation domain.
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Chapter 1

Mobile App Platform Choice

1.1 Introduction

The market for mobile apps is booming. Since Apple and Google launched their online
application stores in 2008, the number of smartphone applications has been growing ex-
ponentially. By the end of 2013, more than 1 million apps were available on Google app
store (now known as the “Google Play App Store”) and Apple app store. In 2013, the total
revenue of the Apple and Google app stores was about $15 billion, twice Facebook’s annual
revenue. Apple’s app revenue exceeds its total sales revenue from music, movie and book
sales on iTunes. More importantly, the growth in the app market continues. Gartner 2014
estimates that annual app downloads on mobile devices will reach 268 billion in 2017, with
a forecast revenue of $77 billion. The very fast growing app market therefore represents an
enormous business opportunity.

An app platform constitutes a multi-sided market, connecting app developers, mobile
device manufacturers, and consumers. As the expansion of an app platform depends on
the presence of a great variety of apps, especially very innovative and high-quality apps,
app supply by app developers is crucial for platforms. Given the existence of multiple
app platforms, how an app developer chooses an app platform is a fundamental question,
because answering this question enables platforms to know which market characteristics and
mechanisms benefit certain types of apps. Further, the platform can improve its market
designs to optimize the platform evolution. The data used by this research cover the most
dynamic phrase of app market from 2011-2013, during which the market size tripled and
Google app store developed into another giant comparable with Apple app store. Therefore,
the findings and implications in this chapter are particularly useful for new platforms or
similar industries experiencing rapid growth.

Intuitively, the platform choice decisions of app developers are based on the trade off be-
tween market size and competition, as a platform with more downloadable apps is associated
with a stronger network effect, but on the other hand, it can also be more competitive. The
countervailing effects of the market size make the platform choice decision less straightfor-
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ward, especially for heterogeneous apps. For instance, the same set of market characteristics
would have distinctive impacts on very innovative apps and junk apps. Moreover, in a
given platform the distribution of app quality is constantly changing, which complicates the
platform choice decision.1

The evolution of the app market is of substantial economic value, but is relatively under-
researched. Hence, this study aims to understand the platform choice decisions of app
developers and, in turn, how such decisions influence the evolution of the overall app market.
We investigate this using a unique and big dataset that contains information on every app
in the two leading app stores, Apple and Google, over a 2-year period. The daily panel
data incorporate very rich app characteristics, such as price, version, rating information,
developer, ranking, etc. We focus on game apps as these are usually stand-alone, with
profits collected mainly by companies in the app industry. Many other apps (e.g. the United
Airlines app, the Bank of America app) are developed by companies as tools to facilitate
their business in other industries. The platform choice decision for game apps is thus more
central.

Based on these data, we construct a structural model for heterogeneous app developers’
platform choice decisions within an incomplete information static game framework, adopting
the Bayesian Nash equilibrium concept. In each period, a group of potential entrants with
pre-determined quality levels arrives, and entrants simultaneously decide which platform
(Apple or Google) to enter. By observing the platform characteristics and the incumbent
composition, each entrant forms an expectation of other potential entrants’ entry probabili-
ties, and further updates its beliefs about the post-entry distribution of app quality for each
platform. Based on these expectations and beliefs, each potential entrant makes a platform
choice decision by comparing the expected profits associated with each platform.

This structural model on platform choice decisions not only characterizes the evolution of
the app market, but also enables us to conduct policy experiments to explore other essential
topics in this area, such as how an app platform can better design the marketplace to expand
its market size and improve its app composition, which is especially crucial for new platforms
such as Microsoft’s Windows Phone Store.

There are several challenges to be addressed. The first stems from the enormous quantity
of data: about 15 TB, with more than 1 billion observations. During the data period, more
than 0.2 million game apps entered either Apple app store or Google app store. The Bayesian
Nash equilibrium of the entry game requires that expected actions be consistent with the
optimal strategy. Estimation is usually achieved through nesting a fixed-point algorithm in
a maximum-likelihood approach. However, in our context, the extremely large entry scale
with heterogeneous entrants renders this approach virtually impossible. The computation
burden caused by the big data problem is addressed through a computationally efficient
econometric method for game estimation(e.g. Aguirregabiria and Mira 2007; Bajari et al.

1For instance, in the early stages of the app market, Apple and Google app stores were very unbalanced.
Apple’s App Store had more than 100,000 apps by the end of 2009, while Google had only 16,000. It is also
believed that the former had more high-quality apps than the latter in the first few years. By 2013, however,
both app stores had reached the 1-million-app milestone, and now they are competing head to head.
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2010). This two-step estimation approach uses a very flexible non-parametric estimation to
approximate the equilibrium, instead of solving it by the expensive fixed-point algorithm.
The rich information of the big data guarantees a very accurate approximation of the equi-
librium. Therefore, the application of the two-step approach on big data problem is not only
very computationally efficient, but also becomes a great advantage.

A second challenge arises from the high degree of heterogeneity in app quality. In this
chapter, game apps differ from each other, and such heterogeneity is crucial. “Off-the-shelf”
sub-genres (e.g. action, puzzle, sports) of game apps and market refinement techniques
borrowed from the machine learning literature could be used to group apps with similar
functions and reduce heterogeneity. However, game apps in each sub-genre still differ drasti-
cally in terms of interface, game plot, and graphic and/or animation design. To handle such
heterogeneity, we project apps’ high-dimensional heterogeneity onto their quality level (i.e.
high and low), and assume that high-quality apps and low-quality apps receive and exert
heterogeneous competitive effects. However, app quality is not directly observed in the data.
In principle, high-quality apps will tend to be downloaded more, but download numbers can
be affected by factors other than quality. For instance, top chart rankings greatly influence
app downloads, and established and newly released apps also have distinctive downloading
patterns. Therefore, app quality cannot simply be approximated by the number of down-
loads, leading to the development of an app adoption model2 to recover app quality (§1.4),
which will be an input for the entry estimation.

The third challenge relates to organizing and preparing the big data for analyses. This
challenge is addressed through state-of-the-art machine learning methodologies developed by
computer scientists. For instance, for estimation identification purposes (detailed in §1.6), we
need to identify the cross-platform apps3 from a large pool of game apps on the two platforms,
which involves 60 billion pairs of apps to compare. A highly efficient hierarchical sequential
linking schema saves the computation by 70%. Another important data preparation is to
define the game app market. In order to precisely characterize platform choice decisions, it is
crucial to have a clearly defined market (i.e. game genre) on both platforms for each potential
entrant. There are two issues with the data in this respect. First, the “off-the-shelf” game
genres in Google are too coarse and are not aligned with the well-defined game genres in Apple
app store. Second, many game apps in Apple app store are assigned to multiple genres,4

which inflates the size of the game market. To address these issues, the primary genre for
each app in Apple’s App Store that has multiple genres is first identified. Google game apps

2Because of the enormous number of apps on the market, search cost is very high for consumers, and
not every app will be discovered by potential users. The app adoption process is therefore assumed to be
driven by two forces: exposure probability and adoption probability conditional on exposure. The exposure
probability is obtained via a sampling process. The conditional adoption problem is a BLP-style (Berry,
Levinsohn, and Pakes 1995) demand system where the high-dimensional app heterogeneity is approximated
by the mean consumer utility, denoted as app quality.

3In this chapter, cross-platform apps are defined as apps that operate on both Apple and Google.
4For instance, “Words With Friends” is one of Zynga’s most popular crossword game apps. This game

is labeled as both a “Board” and a “Word” game.
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are then re-categorized in accordance with these better defined game genres in Apple app
store. Both steps are achieved by leveraging machine learning techniques of natural language
processing and text classification developed in the Computer Science literature: we extract
app features from app descriptions, vectorize the extracted features and use the quantified
feature vectors as classification variables in the support vector machine (SVM), a newly
developed classifier in computer science that is particularly suitable for text classification
problems.

This chapter makes several contributions. Theoretically, it provides insights into both
app demand and app supply. On the demand side, the app adoption model in this chapter
extends the existing research by considering search cost. On the supply side, this chapter
adds to the few studies on the mobile app entries. Substantially, this research offers policy
recommendations for app platforms regarding various market mechanisms. Methodologically,
the integration of state-of-the-art machine learning techniques with structural estimation
techniques reduces the computational burden associated with big data, and affords more
opportunities in leveraging big data in economic research.

The rest of the chapter is organized as follows. §1.2 briefly reviews related work. §1.3
documents essential data preparation work, including matching cross-platform apps and re-
defining markets. §1.4 develops and estimates the app adoption model to infer app’s quality.
The empirical model of apps’ platform choice decisions is developed in §1.5, and §1.6 discusses
identification and estimation strategies. §1.7 conducts several policy experiments regarding
market designs. Finally, we conclude with a schedule of further steps in §1.8.

1.2 Related Work

This research relates to three streams of literature. First, it builds on the rich literature on
market entry (for a complete survey please see Berry and Reiss 2007). The choice of an app
platform is most closely related to the location choice studied by Seim 2006, who, to the best
of our knowledge, was the first to endogenize product type (i.e. location in her paper) in the
entry problem. In Seim 2006, firms make two separate decisions: an entry and a location
decision. Entrants are assumed to be homogeneous themselves but are differentiated by
location choice. Competitive effects vary across locations, and competitors have incomplete
information on the profit function. Entry decision and location choice are characterized as
a Bayesian Nash equilibrium, estimated using a fixed-point algorithm nested in maximum-
likelihood estimation (MLE). Our research deviates from Seim 2006 in several ways. First,
product type has different inherent meanings. Product type in Seim 2006 refers to the store
location, while in this research it refers to app quality rather than platform (which is similar
to location). Further, Seim 2006 assumes that product type (location choice) is endogenous,
while we assume that product type (app quality) is predetermined and exogenous. Given
this exogenous quality, apps choose which platform to enter. Second, we allow competitive
effects to vary with app type. Third, because of the large market size of app stores, the
fixed-point approach is not feasible; instead, we apply a two-step estimation approach.
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Thus, this research also relates to the rich body of literature on the estimation of discrete
games, originating from Bjorn and Vuong 1984’s pioneer work (e.g. Bresnahan and Reiss
1991a; Bresnahan and Reiss 1991b; Tamer 2003; Seim 2006; Sweeting 2009; Pakes et al.
2011). Specifically, this research builds on the two-step estimation approach developed by
Aguirregabiria and Mira 2007; Bajari, Benkard, and Levin 2007; Bajari et al. 2010; Pakes,
Ostrovsky, and Berry 2007). This approach can be more easily implemented than the fixed-
point algorithm, although it tends to converge at a slower rate. The computational burden
associated with big data is reduced by applying the two-step approach. Meanwhile, the rich
information contained in big data allows very flexible non-parametric estimation for the first
step. Therefore, big data are not a burden but a great advantage for the two-step approach.

Finally, this research is also closely related to the nascent but growing literature on the
app market. Most papers explore issues on the demand side. To the best of our knowledge,
Ghose and Han 2014 were the first to estimate app demand using a structural model. They
estimate a BLP-style app demand system using a panel dataset containing the top 400 apps
over about a six-month period and find that app demand increases with the length of the
app description, the number of screen shots, in-app purchase options, app/version age, and
the number of previous versions; conversely, app demand decreases with file size and in-
app advertisements. Earlier work examines factors affecting app demand, using descriptive
analyses or reduced-form approaches. For instance, applying a reduced-form model, Carare
2012 uses daily data on the rankings of the top 100 Apple apps to study the causal impact of
today’s bestseller rank on tomorrow’s demand. He finds that consumers’ willingness to pay
is about $4.50 greater for a top-ranked app than for the same unranked app. In addition,
the effect of bestseller status on willingness to pay declines steeply with rank on the list, but
remains economically significant for the apps in the first half of the top 100 list. Engstrom
and Forsell 2013 apply a regression discontinuity design to evaluate how rating stars and
numbers of previous downloads displayed to users affect app downloads. As app download
data are very hard to obtain, Garg and Telang 2013 propose a method for inferring an
app’s actual downloads from ranking information publicly available from app stores. Kim
2013 examines how the contributing effects of mobile applications on smartphone adoption
differ across smartphone operating systems. The empirical results suggest that Apple’s apps
provide more benefits to users, but there is no evidence that Google’s apps are of lower
quality.

This research contributes to the literature on the app market in that it considers both
app supply and app demand. To infer app quality, which is central to the entry problem,
we build an app demand model that takes into account most of the factors identified by
previous researchers. In addition, the app adoption model takes a different perspective on
the adoption process: first, built upon existing app demand models, search cost is explicitly
incorporated into the app download decision; and second, app demand is modeled as an
iterative adoption process in which sales and app performance in previous periods influence
app adoption in the current period.

The supply side considers app developers’ entry decisions. A small number of papers
explore supply-side issues in the app market. For instance, Yin, Davis, and Muzyrya 2014
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study the innovation process of “killer” apps and find that cumulative improvement benefits
non-game killer apps while developer experience is more important for game killer apps.
The study that is the most related to ours is perhaps Bresnahan, Orsini, and Yin 2014
(denoted by BOY hereafter), who also study developers’ platform choice decisions. This
research differs from BOY in several major respects. First, in BOY, each developer makes
a decision independently, while we consider the strategic interactions between developers.
Second, we explicitly model competitive effects; in contrast, BOY model market share as a
random distribution with parameters to be estimated, but these parameters do not directly
reveal the effect of market structures on platform entry decisions. Third, while BOY analyze
selected apps and use parsimonious indicators to represent app characteristics, we analyze
all game apps and carefully handle app heterogeneity.

1.3 Data

This section first explains the major variables and the basic structures of the data used for this
research. Some variables and market information essential for analyses are not included in the
original data. The state-of-the-art machine learning methodologies developed in computer
science are adopted to prepare the big data, which is also briefly documented in this section.

Data Overview

Two sources of data are combined in this research: app data and global smartphone shipment
data. The app data used are provided by a company specializing in app data analysis and
consulting, and comprise all Apple and Google game apps from November 2011 to October
2013. They were collected daily from Apple and Google app stores, resulting in a daily
panel database. Table 1.1 lists the relevant variables and brief descriptions. Some variables,
such as app name and developer name, are nearly invariable over time. Other variables,
such as app price and the number of ratings, change on a daily basis. The global quarterly
smartphone shipment data for the same period are provided by Gartner, an IT consulting
company.

Identify Cross-platform Apps

Developers’ experience on the two platforms consists of the important exclusion restriction
that is crucial to the identification strategy, which will be discussed in detail in §1.5. To infer
developer experience on the two platforms, it is necessary to identify all apps developed by
one developer on both platforms.

App name and developer name can be used together to match cross-platform apps. This
matching needs to be examined for all possible pairs of Apple and Google game apps, and
there are more than 60 billion such pairs. To reduce the exceedingly high computational
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burden involved, we propose a highly efficient hierarchical sequential linking schema to iden-
tify cross-platform apps. This matching algorithm relies on three edit distances that are
specialized to detect different aspects of text similarity. The hierarchical schema gives a
higher priority to developer name matches, because developer names are more distinguish-
able than app names. In the algorithm, we first calculate a general and computationally
efficient distance for each pair. If the developer names are poorly matched when measured
by this general edit distance, the remaining steps are skipped and the pair is labeled “un-
matched”. If instead the developer names are well matched, we calculate a stricter distance
based on both developer names and app names, to further confirm the match. This pro-
cedure is repeated until the pair passes all three similarity metrics. This sequential design
reduces computation by around 70%. We train the matching algorithm on a small sample to
set the matching thresholds, and manually examine matching accuracy for several random
samples. The type I error (failure to match) is below 20%, and the type II error (mismatch)
is below 5%. The technical details of the algorithm are provided in Liu, Nekipelov, and Park
2014.

Redefine Game App Market

To characterize the platform choice decisions, it is crucial to have a clearly defined market
(i.e. game genre) on each platform for each potential entrant. Well-defined markets are
crucial to many empirical studies. A market should include mutually competitive agents,
and this competition relation may rise from functional similarity or closeness in geographical
location. In our case, if irrelevant apps are included in a market, the market competition
level would be misleading and could cause serious bias in the analysis of app adoption and
platform choices.

In the existing literature, market definition is not usually a problem that requires par-
ticular attention. First, most tangible goods already have a clear market boundary (such
as cereals, cars and CPUs). Second, in the entry literature, geographical location, such as
airline routes, convenience stores within the same zip code area, and plumbers or dentists in
relatively isolated cites or towns, naturally define the market.

In our case, however, this issue needs to be addressed. Game apps have very different
features and very specific targeted users. For instance, a violent fighting game is very unlikely
to compete with a crossword puzzle game. In addition, game apps in the two app stores in the
study account for around 0.4 million apps. Given this large market size, a carefully defined
market would reduce the number of market players and further reduce the computational
burden. Unfortunately, there are problems with the available market definitions. Although
Apple and Google each categorize game apps into several subcategories, the two systems are
not aligned with each other.5 There are 18 relatively precise subcategories for Apple games
apps, but only 6 very coarse subcategories for Google game apps. The Google game app

5In making a platform choice decision, a potential entrant needs to compare the expected profits from
each platform. Hence, it is necessary to have perfectly aligned app classifications.
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market can therefore be refined by introducing correspondence between its game categories
and those of Apple app store. In addition to the issue of alignment, about 80% of Apple’s
game apps are categorized under two or more genres,6 which inflates Apple’s market size in
each genre and creates the misleading impression that Apple app store is more appealing to
new entrants.

To address these issues, we first identify the primary genre for each app in Apple app
store that has multiple genres, and then recategorize the Google game apps in accordance
with Apple’s subgenres. Both steps are accomplished using techniques of natural language
processing and classification. App descriptions contain detailed information about app char-
acteristics, which helps to identify the primary genre for each Apple game app and allows
similar Google game apps to be recategorized. However, textual information needs to be
quantified before it can be used for analysis. First, we extract text features from the app
descriptions and vectorize these features by counting the frequency. As the occurrence of
high-frequency words introduces considerable bias, we apply term frequency-inverse doc-
ument frequency (TF-IDF) to normalize the feature vectors. Because feature vectors do
not have semantic meanings, synonymous terms cannot be clustered and polysemous words
cannot be distinguished. Consequently, we apply latent semantic analysis (LSA) to further
process the feature vectors. These pre-processed feature vectors are used as classification
variables in the support vector machine (SVM), which is a newly developed non-linear classi-
fier that is highly suitable for high-dimensional text classification problems. The parameters
in the SVM are determined through grid cross-validation of the training dataset. 7.

Multiple genres of Apple apps and the alignment of Apple and Google genres could both
be treated as a classification problem, which can be solved using the support vector machine
(SVM). To detect the primary genre of apps with multiple genres, SVM is trained on a sample
comprising Apple’s App Store games apps that have unique labels. To address the alignment
problem, the SVM is first fitted on the Apple apps and is then used to classify the Google
apps. Before fitting the SVM, features vectors are extracted from the app descriptions. This
section first introduces the steps of feature extraction and then discusses the SVM and the
evaluation of the classification results.

Feature Extraction

The simplest way to quantify textual information is to tokenize the text, calculate the fre-
quency of each token in the pool, and store these frequencies in a vector, called the feature

6For instance, “Words With Friends” is one of Zynga’s most popular crossword game apps in Apple app
store. This game is categorized as both a “Board” and a “Word” games; however, the “Word” category is
this game’s primary market and competition in the primary market should dominate developers’ platform
choice decisions.

7The discrete choice model can also be used for classification purposes. However, compared with other
classification tools (such as logit/probit regression, decision tree, random forest, and stochastic gradient de-
scents), the SVM has better non-linear performance in high-dimensional problems, and is especially suitable
for text classifications.
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vector. The most common approach tokenizes the text word by word, which is called bag-
of-words. A contiguous sequence of n terms, or n-gram, can also be applied to tokenize the
text corpus. In most cases, however, it is impractical to extract features through the simple
vectorization of the text corpus. The biggest concern is the dimension of the feature vector.
A moderate collection of texts can contain tens of thousands of different words. Supposing
that there are thousands of entries, such a large feature matrix is very difficult to store and
analyze.

In the literature of natural language processing, latent semantic analysis (LSA) can ex-
tract the most important information from the feature matrix so that it can transform a
very high-dimensional feature matrix to relatively low-dimensional feature space. Another
issue in feature extraction is the bias introduced by high-frequency words. As feature vectors
are usually very sparse, unusual high-frequency words would result in considerable bias. For
example, a document on financial systems may contain “bank” or “finance” many times.
Although these words are very important tags in such a document, their high frequency in
the feature vector would undercut the efficacy of other features. The normalization of the
feature vector is thus necessary. Term frequency-inverse document frequency (TF-IDF) is
used to normalize the raw feature vector.

Suppose that D = {di, i = 1, . . . , N} is the set containing N documents di and t is some
word included in these documents. Term frequency is then defined as the frequency of t in
text d, represented by tf(t, d). Inverse document frequency is the inverse of the number of
documents containing term t, which is:

idf(t,D) =
N

|{di ∈ D : t ∈ di}|
(1.1)

TF-IDF is the product of these two terms, tfidf(t, d,D) = tf(t, d) · idf(t,D). To smooth
TF-IDF further, logarithms are taken on tf(t, d) and idf(t,D).

Suppose that the normalized feature matrix is represented by an N ×M matrix X with
rank r, which is usually very large. We need to find another N × M matrix X ′ with a
much lower rank, k, to approximate the original high-dimensional feature matrix. Given the
matrix X and the rank k, this low-rank approximation is defined as an optimizing problem:

X?
k = argminXk

‖X −Xk‖F (1.2)

‖ · ‖F is the Frobenius norm, where ‖Y ‖F =
√∑

i

∑
j y

2
ij. X

?
k is the low-rank approxima-

tion of X. This optimized equation can be solved by singular value decomposition (SVD).
For the M×N matrix X, suppose that the M×M matrix U consists of standardized or-

thogonal eigenvectors of XXT , and that N×N diagonal matrix V consists of all eigenvectors
of XTX. M ×N matrix Σ is defined as:

σij =

{ √
λi for i = j = 1, . . . , r and λi ≥ λi+1

0 otherwise
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Matrix X can then be expressed as:

X = UΣV T (1.3)

Proof of Equation (1.3) is straightforward. As XXT is a symmetric real-valued M × M
matrix, XXT can be decomposed as XXT = UΣ2UT . As V is composed of normalized
orthogonal eigenvectors, then V TV = IN . Therefore,

XXT = UΣ2UT = UΣV TV ΣUT (1.4)

From the equation above it is easy to see that X = UΣV T .
Given SVD, the best k-rank approximation can be established by the Eckart-Young

theorem(Eckart and Young 1936) below.

THEOREM 1. Given an M ×N matrix X and its SVD X = UΣV T , the optimal k-rank
approximation of X is:

X?
k = UΣkV

T (1.5)

Σk is defined as:

σij =

{ √
λi for i = j = 1, . . . , k and λi ≥ λi+1

0 otherwise

and the optimal k-rank approximation error is:

minXk
‖X −Xk‖F =

√
λk+1 (1.6)

Theorem 1 states that the best k-rank approximation is the SVD of the biggest k eigen-
values and the corresponding eigenvectors, and the approximation error is the k-th largest
eigenvalue. The intuition behind this theorem is straightforward. As eigenvalues may rep-
resent the importance of the corresponding eigenvectors, it is natural to use the largest k
eigenvalues and their eigenvectors to approximate the original matrix.

Not only does this low-rank approximation reduce the dimensions of the original feature
matrix, but the approximation itself also has semantic meaning. Because row i in feature
matrix X captures the occurrence of term i across all documents, element (i, j) in matrix
XXT then stands for the co-occurrence of term i and term j. While SVD reduces the
dimension of X from r to k, it also concentrates the terms with similar co-occurrences, which
is called latent semantic analysis (LSA). LSA has the potential to improve the synonymy and
polysemy problem which simple vectorization cannot solve. For example, “leap,” “bounce,”
“hop” and “vault” share the similar meaning of “jump.” Latent semantic analysis can gather
these terms if the frequency of their co-occurrence is high. Conversely, “bank” could mean
either a financial institute or the ground bordering a river. If “bank” occurs together with
“finance” or “money” in some documents and with “river” or “lake” in others, LSA can
separate these two different meanings.
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SVM Classification

There are many models dedicated to classification, such as the discrete choice model, regres-
sion trees and the random forest derived from them, and the SVM. The biggest difference
between the logit or probit model and other classification methods is that the discrete choice
model is a linear model. However, in reality the relationship between input and output may
be much more complicated than a linear relationship. Despite logit or probit models being
able to accommodate sophisticated specifications, the approximation of a non-linear system
with lots of input variables will render the estimation impossible. Regression trees classify
different cases by building a tree structure decision process. While easy to interpret and to
scale up, regression trees often overfit the training data. Algorithms such as pruning and
random forest may correct this over-fitting problem. The SVM is a non-linear classification
algorithm and does not have an over-fitting problem. Linearly non-separable data can be
dealt with by the appropriate choice of a kernel function. The SVM is widely applied to
high-dimensional problems, especially those involving natural language processing.

Supposing that we observe the input x and output y, a typical classification problem
can be generalized as y = 1 if f(x) > c, otherwise y = −1. Function f(x) is the classifier
and c is the threshold value for the classifier. In the familiar discrete choice model, f()
could be a logit or probit function and the threshold value c is usually set to 0.5. The
most important question is how to find the classifier f(x). In the discrete choice model, the
choice probability derives from the underlying behavior model which compares the utilities
of different alternatives. Given the distribution assumption of the idiosyncratic component
in the utility function, it is easy to derive the choice probability, which can also be considered
to be the classifier. In the SVM, there is no such behavior model. Instead, the idea is simply
to find the boundary which can best separate different groups. Suppose that {(xi, yi)} for
i = 1, . . . , n. xi ∈ RD is the input vector and y ∈ {−1, 1} is the variable representing
alternatives. The classifier in SVM can be refined as:

f(x) = wTx+ b (1.7)

where w and b are two unknown parameters in the classifier. As xi is a point in a n-
dimensional space, f(x) = wTx + b actually is a hyper-plane in this n-dimensional space.
The essence of SVM is finding the hyper-plane that could separate different groups. Without
certain constraints, there would be infinite such hyper-planes; therefore, this hyper-plane
needs to separate the closest points from different groups as far as possible. In other words,
SVM maximizes the margins to the closest support points. Let d(xi, f(x)) be the distance
from point xi to the hyper-plane f(x). The SVM can be characterized by the optimizing
problem below.

max
w,b

min
i
d(xi, f(x))

such that yif(xi) ≥ 0,∀i = 1, . . . , n (1.8)

It is easy to see that the hyper-plane f(x) is only characterized by these closest points,

and xi such that i = argmini d(xi, f(x)) is called the support vector. d(xi, f(x)) = |wT xi+b|
||w||
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is invariant with a proportional change in w and b, which indicates that the distance should
be normalized. For i = argmini d(xi, f(x)), let |wTxi + b| ≡ 1. The objective function in
(1.8) then becomes maxw,b

1
||w|| , which is equivalent to minw,b

1
2
||w||2. The original optimizing

problem then becomes:

min
w,b

1

2
||w||2

such that yif(xi) ≥ 0,∀i = 1, . . . , n (1.9)

This is a quadratic programming problem and a global minimum is guaranteed. In many
practical implementations, however, data are not linearly separable. Slack variables are thus
added to accommodate data irregularity.

min
w,b

1

2
||w||2 + C

∑
i

εi

such that yif(xi) ≥ 1− εi,∀i = 1, . . . , n (1.10)

C is the punishment parameter, which is often tuned according to the cross-validation.
Some non-linear kernel function can be applied to x, such as the commonly used Gaussian
radial basis function kernel (RBF kernel), k(x, z) = exp(−γ||x − z||). In this case, the
separating hyper-plane becomes curvy. The feature dimension of the RBF kernel is infinite,
which scales the SVM up to very large samples with a large number of features. The
punishment parameter C and the RBF kernel parameter γ need to be tuned according to
cross-validation and the hyper-plane parameters w and b, and the slack variable εi can be
solved from the optimization. Once we obtain the classifier f(x), the prediction will be
obtained according to the sign of f(x) on a test sample.

Performance Evaluation

Two aspects of the performance of the classifier are evaluated. First, a good classifier needs
to collect as many entities of a true type as possible. Second, misclassifications should be
eliminated. In other words, the perfect classifier should recognize all of the true types and
exclude any samples not of that type. Suppose that G = {(gi, ji), i = 1, . . . , N, ji ∈ {0, 1}}
is the set containing entities gi with type 1 and type 0. A classifier F (gi) ∈ {1, . . . , J} maps
entities to the binary, and F (gi) = 1 means that gi is classified as type 1. The detection
ability of this classifier is measured by the recall:

recall =

∑
i F (gi) · 1(ji = 1)

|{gi, ji) ∈ G : ji = 1}|
(1.11)

The misclassification is measured by the precision:

precision =

∑
i F (gi) · 1(ji = 1)∑

i F (gi)
(1.12)
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However, the recall and the precision contradict each other. A strict classifier tends to
have high precision but low recall, while a slack classifier is the opposite. Therefore, only
targeting one measure usually returns a very poor classifier. The F1 score balances these
two measures and attempts to reach a trade-off:

F1 = 2× precision · recall
precision+ recall

(1.13)

F1 score is restricted to (0, 1); the higher the score, the better the classification perfor-
mance. F1 score can only be used to evaluate a classifier’s performance on a training data
set. The best use of the F1 score is to guide model section in cross-validation.

Redefine Apple Market

There are 18 genres of Apple App Store game apps, describing a very detailed spectrum of
games, but Apple game apps are usually classified into more than one genre. Table 1.2 shows
that about 80% of apps are classified into more than one genre, with the majority classified
into two genres. While multiple genres may reach more potential users, in most cases the
primary genre is obvious. For instance, “Words With Friends” is Zynga’s very popular
crossword game app on Apple’s App Store. This game is classified as both a “Board” and
a “Word” game, but the primary market is as a “Word” game and the competition in this
primary market should dominate developer’s platform choice decisions.

The SVM can be used to distinguish an app’s primary genre from secondary genres, but
first needs to be fitted to a training data set where the primary genre is obvious. 21% of
Apple’s game apps are uniquely assigned to a single sub-genre and hence are used for the
SVM training sample. The estimated classifier is also used to predict the primary sub-genre
of the apps with multiple genres.

In our data, the number of multiple genre combinations is as high as 1879. Each combi-
nation needs to train an individual SVM. Moreover, a combination of more than 2 genres is a
multiclass classification problem. Not only does the training sample involve more apps, but
the complexity of the SVM is also more than doubled due to the multiclass nature. However,
the incidence of complex combinations is very low. Most multi-genre cases are 2-genre or
3-genre combinations. To reduce the computational burden, SVM is only trained on 2-genre
combinations with more than 100 samples or 3-genre combinations with more than 30 sam-
ples, which covers 196 combinations and accounts for 94% of the apps with multiple genres.
The primary genre of other multi-genre apps is randomly selected. Table 1.4 compares the
distribution of apps with the original multiple genres and the result of SVM classification.
In general, the SVM preserves the original distribution across genres.

The performance of the classifier is evaluated by the F1 score. A higher F1 score means
fewer errors are made by the classifier. Figure 1.1 shows the histogram of the F1 score for
the 196 genre combinations, calculated for the training sample during cross-validation. The
distribution is skewed to the right and more than 50% of the SVMs have F1 scores of 0.9 or
higher.
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Table 1.2: Distribution of Apple’s Game Apps Cross Combinations

filespaCombinationsfilespa
Combination Distribution App Distribution
fileFreq.file filePercentfile fileFreq.file filePercentfile

1 18 0.95% 39789 21.01%

2 153 8.07% 135323 71.46%

3 616 32.47% 11350 5.99%

4 756 39.85% 2445 1.29%

5 265 13.97% 361 0.19%

6 60 3.16% 68 0.04%

7 19 1.00% 19 0.01%

8 8 0.42% 8 0.00%

9 2 0.11% 2 0.00%

Total 1897 100.00% 189365 100.00%

This table reports the distribution of apps assigned to multiple genres. The second and the third columns
list the distribution of different genre combinations. The fourth and the fifth columns report the distribution
of apps in these genre combinations.

Redefine Google Market

Unlike Apple app store, Google app store only has six very broad genres for game apps.
Table 1.3 lists the distribution of Apps across these genres. Although each Google game
app is uniquely assigned to only one genre, some genres, such as “Casual” and “Brain &
Puzzle” are so coarsely defined that they may contain very differentiated games In addition,
Google’s genres are not aligned with Apple’s App Store genres. Classifying Google game
apps according to Apple’s App Store game genres, which cover a wide spectrum of game
apps, would align the apps on the two platforms and break the broad Google genres down
into finer genres.

As there are 18 Apple game genres, a convenient approach would be to disregard Google’s
existing genres and build an 18-class SVM to classify all of the Google game apps. However,
training an SVM with such a complex structure would be very costly. Even if the SVM could
be successfully trained, its performance would not be satisfactory. Binary classification
usually has better performance than multiclass classification, and multiclass classification
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Figure 1.1: Apple App Classification F1 Score from Cross-Validation

with fewer classes is more reliable than a bulky multiclass classification. To optimize this
classification problem, we first find the potential classification genres for each Google genre
from the cross-platform apps and then implement the SVM independently for each Google
genre. Table 1.3 lists the corresponding Apple genres for each broad Google genre. The final
column in Table 1.3 shows the F1 score obtained from cross-validation. The SVM results
are given in Table 1.4. Google app store has many more Puzzle apps than Apple app store,
but otherwise the game genres are similarly distributed in the two platforms.

Table 1.4 lists the distribution of game apps across genres after market re-definition.
The “Multi-genre” column gives the genre distribution of the raw data, and the “Unique”
column only shows Apple game apps that have a unique genre. “SVM Results” gives the
new distribution after market re-definition. For most genres, the distribution of Apple game
apps is similar before and after market re-definition. In general, the app distributions of
the two platforms are in line with each other, except for Google having more puzzle apps.
“Puzzle”, “Action”, “Arcade”, “Family” and “Educational” are the top genres, accounting
for more than half of all game apps.
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Table 1.3: Distribution of Google Game Apps Cross Genre and Corresponding Apple Genres

Genre Freq Percent Corresponding Apple Genres SVM F1 Score
Arcade & Action 39517 25.50% Action, Adventure, Arcade 0.71

Brain & Puzzle 55587 35.80%
Board, Educational,Family, Puzzle,Strategy,

0.81
Trivia, Word

Cards & Casino 8661 5.60% Card, Casino 0.94

Casual 37287 24.00%
Action, Adventure, Arcade, Educational,Family,

0.70
Puzzle, Role Playing, Simulation, Strategy, Trivia

Racing 6398 4.10% Racing -

Sports Games 7744 5.00% Sports -

Total 155194 100.00% - -

This table reports the app distribution cross original Google game genres. The fourth column lists the
Apple genres for classification, which is determined by the corresponding genres revealed in cross-platform
apps.

Descriptive Statistics

To better demonstrate the platform growth during the data period, Figure 1.2 shows the
numbers of downloadable game apps on the two platforms and the global smartphone ship-
ments in the 2-year period of the study. From 2011-2013, the game market size in both
Apple and Google tripled. Before 2012, Google game app fell far behind Apple, but Google
starts to catch up since 2012. The gap between the two platforms in terms of game apps is
gradually narrowing during the course of the data period. Notably, however, Android phone
shipments are growing much more quickly than iPhone shipments, widening the gap between
smartphone user bases on the two platforms.

In order to examine the market evolution cross heterogeneous apps, apps are separated
into three groups according to the number of ratings. Figure 1.3 plots the ratio of the market
size in October 2013 to the market size in November 2011 for each rating group. During
the two-year period, apps without any ratings increased by 7.5 times in Google, but that
ratio in Apple is only 3.4. Google also experienced a rapid growth in the high-end segment.
The market size of apps with more than 1000 ratings became 6 times larger in Google, but
during the same period Apple’s high-end segment only doubled. Apps receiving medium
ratings (less than 1000 ratings) increased by a similar scale in two platforms. The market
evolution in two platforms exhibits very distinctive patterns. Namely, in Google the influx of
low-type apps was accompanied with a great increase of high-type apps and the bar graph is
in the “U” shape. On the contrary, low-type apps increased the most in Apple and high-type
apps had the smallest growth. The increasing ratio is decreasing with the rating groups.

Table 1.5 reports the distribution of apps in three rating groups at November 2011 and
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Figure 1.2: The Evolution of Mobile App and Smartphone Market Size

Phone shipments data are from Gartner and on quarterly basis. The number of apps is on monthly basis.
The lines of smart phone shipments are smoothed.

October 2013 respectively. In general, app compositions in Apple are very stable during the
data period, but the share of apps with more than 1000 ratings dropped by 2 percentages.
Since popular apps only account for a very small share, the 2-percentage drop actually is
very significant. App compositions in Google changed drastically. On the one hand, high-
end apps increased steadily, but on the other hand app compositions deteriorated rapidly in
low-end and middle level segments. For example, the share of no rating apps skyrocketed
and accounted for more than half of entire apps. Meanwhile the share of middle class apps
shrunk greatly. Google’s market evolution shows a tendency of bipolarization.

1.4 App Quality Inference

For apps even in the same category, they are still different on many dimensions, but some
app characteristics are either hard to measure or not observable at all. However, it is crucial
to consider heterogeneous apps in the platform choice decision, since the same set of market
characteristics probably brings very different or even opposite impacts on heterogeneous
apps. We assume app’s high dimensional heterogeneity could reflect on one single variable



CHAPTER 1. MOBILE APP PLATFORM CHOICE 20

7.5

3.4

4.1

3.2

6.1

2.1

0
2

4
6

8
In

cr
ea

si
ng

 R
at

io

No Rating 0<Ratings<1000 Ratings>1000

Google Apple

Figure 1.3: The Evolution of Mobile App by Rating Group

This figure plots the ratio of the number of apps at the end of data period to the number of apps at the
beginning of data period in different rating groups. Therefore, it shows the market expansion in different
market segments.

Table 1.5: Apps Distribution by Rating Groups (%)

xxxxxApp Groupxxxxx
Apple Google

xxBeginxx xxEndxx xxBeginxx xxEndxx
No Rating 65.5 68.0 39.4 53.2

0<Ratings<1000 28.4 28.0 55.3 41.0

Ratings>1000 6.2 4.0 5.3 5.9

“app quality”.
App quality is central to the platform choice model, but is not directly observed in the

data. In principle, high-quality apps tend to be downloaded more, but download numbers
can be affected by factors other than quality. For instance, top chart rankings greatly
influence app downloads, and established apps and newly released apps reveal distinctive
downloading patterns. Therefore, app quality cannot simply be approximated by the number
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of downloads, and hence we develop an app adoption model in this section to recover app
quality.

App Adoption Model

Because of the enormous number of apps on the market, the search cost is very high for
consumers, and not every app will be discovered by potential users. Therefore, the app
adoption process is assumed to be driven by two forces: app visibility and adoption prob-
ability conditional on exposure. The app visibility is a probability modeled by a sampling
process. The conditional adoption problem is a logit style demand system (see Ghose and
Han 2014; Kim 2013), where the high-dimensional app heterogeneity is approximated by the
mean consumer utility, denoted as app quality.

We start by introducing the consumer utility associated with apps. Based on this utility,
we then discuss in turn the discovery process and the conditional adoption process. The
actual adoption model combines the two processes.

Consumer n’s indirect utility from downloading app i is:

uni = ζi + εni, (1.14)

where ζi is the average utility that users get from app i and is normalized by outside
goods. Hereafter, this average user utility stands for app quality. εni is a user-app-specific
idiosyncratic shock following an i.i.d. type I extreme value distribution.

Discovery Process

The process of app discovery can be viewed as a sampling process. Because of the enor-
mous number of apps, there is very little difference between sampling with replacement and
sampling without replacement. For simplicity, we assume that the process is sampling with
replacement. The equation (1.15) represents the discovery probability for app i in period t.
If all apps were homogeneous, in a market with I apps each app would have an equal discov-
ery probability of 1

I
. However, due to heterogeneity in app characteristics and performance,

discovery probability in fact varies greatly.

pit =
exp(vit)∑I
l=1 exp(vlt)

(1.15)

Due to the high search cost, apps compete strongly for listing on top charts, which can
drastically increase the opportunity for exposure to potential users. Top chart ranking is
therefore one of the most important factors determining app discovery. In many cases,
app adoption falls into a virtuous cycle. High adoption in one period increases the app’s
discovery probability and boosts its adoption in the next period. The adoption process
therefore assumes that app performance in the previous period affects app adoption in the
current period.
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Surveys of smartphone users (e.g. Nielsen 2011; Surikate 2012; Corti 2013) confirm that
users rely heavily on top charts and social networks to discover new apps. Rankings on top
charts have the most direct and the largest effect on app discovery probability. In addition,
the more an app is adopted, the more likely it is to be mentioned in social media and the
more likely it is to be discovered by other potential users.

Therefore, we assume the factor vit determining app i’s sampling probability is charac-
terized as:

vit = γ1Q
2
i,t−1 + γ2Qi,t−1 + γ3kit + γ4t+ ςit, (1.16)

where Qi,t−1 is app i’s total number of adoptions up to period t − 1, and kit is app i’s
ranking in period t. It is likely that the adoption rate decrease as the user base gets larger,
so the quadratic term of Qi,t−1 wants to capture this pattern. We assume that an app’s
novelty follows a geometric decay process captured by γ4, which is similar to findings in the
advertising literature (e.g. Mela, Gupta, and Lehmann 1997; Dubé, Hitsch, and Manchanda
2005). ςit captures unobservable factors that affect the sampling probability, such as in-
app advertising, being featured in an app store, or being mentioned in a TV show or in a
celebrity’s blog.8

Conditional Adoption Problem

Apps are highly differentiated, and users may thus install multiple apps for the same purpose
(Ghose and Han 2014). This app demand model does not assume that app adoption is exclu-
sive. Therefore, consumers could discover more than one app in each period. Competition
in our app adoption model therefore mainly comes from the app discovery process. After an
app is exposed to users, it is endowed with great market power and its only competitor is
an outside option. The conditional adoption process is therefore considered to be a discrete
choice between the focal app and the outside option, without involving comparison with
other apps.

Suppose that a user is exposed to app i at period t with probability pit. The user installs
app i if and only if the indirect utility from this app is greater than the utility from the
market-specific outside option.

The conditional adoption probability of app i is therefore:

s̄i = P (ζi + εi > ε0) =
exp(ζi)

1 + exp(ζi)
. (1.17)

Users who download this app become adopters. Those who have not yet adopted the
app and new users coming to the platform in this period are the potential users in the next
period. Users may be exposed to the same app multiple times. We assume that exposures

8vit does not contain any time-invariant components, simply because the discovery probability constantly
changes over time. The app market is very new and still evolving, and therefore even factors that are usually
assumed to be time-invariant in other markets (e.g. the branding effect) are unlikely to be time-invariant in
the app market.
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and adoption decisions in previous periods do not affect a user’s adoption decision in the
current period. In other words, users who were exposed to a given app but did not adopt
it in previous periods will make an adoption decision in the same way as new users. This
assumption makes the adoption model much more tractable; moreover, it is not as strong as it
sounds. First, most apps are regularly updated and app characteristics evolve quickly; many
apps, for example, have their icons or interfaces re-designed every few months. Hence, the
carry-over impression from previous exposure provides limited information about the app’s
current quality, and should not have much effect on the user’s current adoption decision.
Second, the number of potential users is much larger than the number of available apps.
Statistically, the probability that an app is exposed to the same users multiple times is small
and any errors introduced by this assumption are likely to be essentially negligible.

Actual Adoption Rate

Multiplying (1.15) and (1.17) gives the actual adoption rate sit:

sit = pit · s̄i =
exp(vit)∑I
l=1 exp(vlt)

× exp(ζi)

1 + exp(ζi)
. (1.18)

This app adoption model reveals how apps diffuse over time. One of the dynamics
embedded in the model suggests that downloads in previous periods determine the app
discovery probability in the current period and further affect the app adoption in the current
period.

Adoption Model Estimation

The interpretation of this adoption rate is not straightforward. Assume that the total number
of potential users in market m in period t is Njt, and that qit users adopt app i in period t.
The adoption rate in (1.18) is then:

sit =
qit

Njt −Qi,t−1

, (1.19)

where Qit =
∑t

k=1 qik is the total number of downloads realized up to period t. Usually,
Qit � Njt, so that:

sit ≈
qit
Njt

. (1.20)

Replace the adoption rate sit with (1.20). The adoption function in (1.19) is transformed
into:

qit
Njt

=
exp(vit)∑I
l=1 exp(vlt)

× exp(ζi)

1 + exp(ζi)
, (1.21)
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and logarithm transformation results in:

ln(qit) = vit + ln(Njt)− ln

(
I∑
l=1

exp(vlt)

)
︸ ︷︷ ︸

constant within period t

+ ln

(
exp(ζi)

1 + exp(ζi)

)
(1.22)

Noting that Njt and
∑I

l=1 exp(vlt) in Equation (1.22) are constant within period t, define:

µt ≡ ln(Njt)− ln

(
I∑
l=1

exp(vlt)

)
. (1.23)

And ln
(

exp(ζi)
1+exp(ζi)

)
is a monotonic transformation of quality ζi, so define:

ηi ≡ ln

(
exp(ζi)

1 + exp(ζi)

)
. (1.24)

Finally, vit is characterized by Equation (1.16). Substituting Equations (1.16), (1.23) and
(1.24) into Equation (1.22) gives:

ln(qit) = γ1Q
2
i,t−1 + γ2Qi,t−1 + γ3kit + γ4t+ ηi + µt + ςit. (1.25)

However, our data contain very limited information on app downloads. No download
information is available for Apple app store. For Google app store, only intervals of cumula-
tive app downloads are observed. Although the download interval cannot be used directly to
estimate the adoption model, descriptive evidence shows that download intervals are highly
correlated with the number of ratings. We therefore assume that the number of downloads
is proportional to the number of ratings and that qit ≈ αrit, which leads to:

ln(rit) = − ln(α) + α1R
2
i,t−1 + α2Ri,t−1 + α3kit + α4t+ ηi + µt + ςit, (1.26)

where Ri,t is app i’s total cumulative number of ratings at the beginning of period t.
After these transformations, the original app adoption model is simplified to a linear

equation with period fixed effects and app fixed effects. Parameters of interest are the
transformed app qualities ζi, i = 1, ..., I, captured by the app fixed effect in (1.26). The
original 2-year daily panel data are cut into bi-weekly panel data in which estimation is
performed. The app ranking during each window is represented by the number of days the
app is ranked at different positions on the top chart (top 50, top 50-100, or outside top 100).

In order to estimate so many fixed effects consistently, we take the first difference of
(1.26) to get rid of the fixed effect.

ln(rit)−ln(rit−1) = α1(R2
i,t−1−R2

i,t−2)+α2(Ri,t−1−Ri,t−2)+α3(kit−kit−1)+α4+(µt−µt−1)+ςit−ςit−1.
(1.27)
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In the equation above (R2
i,t−1 − R2

i,t−2), (Ri,t−1 − Ri,t−2) and (kit − kit−1) are correlated
with ςit− ςit−1. However, Ri1, ..., Rit−2, R2

i1, ..., R2
it−2 are all exogenous with ςit− ςit−1, which

can be used to construct many moment conditions. Equation (1.27) can be consistently
estimated by GMM. Once coefficients α are estimated consistently, the fixed effect ηi in
equation(1.26) could be easily recovered.

Apple and Google apps are estimated separately, so the estimated quality is platform-
specific. To make sure the quality measures in Apple and Google are comparable, we use
the cross-platform apps to calibrate estimated quality levels. 9 For the majority of apps
that are present only on one platform, only one quality is recovered and this is used to
proxy the app’s quality on the other (not entered) platform. However, this assumption
may cause a selection problem as the Android and iOS operating systems represent two
different platforms in terms of application programming interfaces, development tools and
programming architecture. Because developers might be more proficient on one platform
than the other, the same app idea may eventually have different realized quality levels on
the two platforms. This may incentivize developers to enter the platform with the higher
realized quality level and unobservable quality might therefore be overestimated. If, however,
an entrant’s expected profit depends on its competitors’ highest realized quality levels across
both platforms, then the selection problem will not cause bias in the estimation. We consider
this to be the case: in general, entrants are not aware of their competitors’ development
proficiency in iOS and Android, so their natural strategy is to assume competitive apps to
be of equally high quality on both platforms.

Estimation Results

The summary statistics of the app adoption models are presented in Table 1.6. As revealed,
the total number of ratings and the incremental number of ratings are highly skewed in both
Apple and Google app stores. The majority of apps have very few ratings. Google game
apps have relatively more ratings. This table also shows that it is extremely difficult to be
ranked on top charts especially on Top100, but on average the chance is slightly higher for
Google apps. Since Google app store is catching up, its apps are newer than Apple game
apps.

Table 1.7 and Table 1.8 show the demand estimation results for Apple and Google apps,
respectively.10 Figure 1.4 depicts the kernel density of estimated app qualities.

When the total adopter base is very large, the overall impact of the total number of ratings
on app adoption is positive, suggesting that a large user base benefits app discovery (e.g.
through word of mouth (WOM)). While the adopter base is very large, the overall impact

9A cross-platform app is essentially the same app present on two platforms, so the quality estimates on
the two platforms should equal or nearly equal. We regress cross-platform apps’ quality estimates based on
Google on those based on Apple. The slope of the simple linear regression is 0.87 and the intercept is 0.10.
Based on this equation, Apple and Google’s app qualities are transformed to a comparable scale.

10As top charts are specific to original genres, the demand is estimated on the original genres instead of
the redefined market.
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Table 1.6: Summary Statistics of Variables in the App Adoption Estimation

Apple

Variables Obs Mean Std. Dev. Min Max
Incremental Number of Ratings 13,184,933 11 613 0 475,688

Total Number of Ratings 13,184,933 825 12,236 0 1,688,434

Days Since Launch 13,184,933 545 396 0 1,930

Days Ranked on Top 50 13,184,933 0.042 0.695 0 14

Days Ranked on Top 50-100 13,184,933 0.042 0.651 0 14

Days Ranked off Top 100 13,184,933 0.826 3.092 0 14

Google

Variables Obs Mean Std. Dev. Min Max
Incremental Number of Ratings 3,576,405 46 1,444 0 496,140

Total Number of Ratings 3,576,405 1,269 18,921 0 2,780,605

Days Since Launch 3,576,405 298 249 0 1,829

Days Ranked on Top 50 3,576,405 0.116 0.540 0 14

Days Ranked on Top 50-100 3,576,405 0.116 1.219 0 14

Days Ranked off Top 100 3,576,405 0.799 3.055 0 14

The original data are on daily basis. To reduce the computation burden, we choose a wider biweekly span for
for the adoption estimation. Essentially, it is a biweekly panel data set and this table reports the summary
statistics of major variables on the pooled data.
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Table 1.7: Apple App Adoption Estimation Results

Variables Action Adventure Arcade Board Card Casino
Log(TotalNumberofRatings)2 -0.1681*** -0.1530*** -0.1722*** -0.1421*** -0.1074*** -0.0899***

(0.0007) (0.0010) (0.0007) (0.0011) (0.0012) (0.0013)
Log(Total Ratings) 0.9306*** 0.8754*** 0.9032*** 0.8525*** 0.6144*** 0.5455***

(0.0066) (0.0087) (0.0066) (0.0119) (0.0148) (0.0152)
Log(Present Days) 0.0441*** 0.0697*** 0.0457*** 0.0011 0.0297*** 0.0545***

(0.0016) (0.0023) (0.0015) (0.0024) (0.0037) (0.0048)
Days Ranked on Top50 0.2094*** 0.2638*** 0.2379*** 0.4060*** 0.3110*** 0.3425***

(0.0047) (0.0048) (0.0045) (0.0043) (0.0042) (0.0043)
Days Ranked on Top50-100 0.3345*** 0.2664*** 0.3449*** 0.2749*** 0.1967*** 0.1921***

(0.0048) (0.0049) (0.0048) (0.0046) (0.0047) (0.0045)
Days Ranked off Top100 0.2128*** 0.1779*** 0.2057*** 0.0634*** 0.0595*** 0.0407***

(0.0014) (0.0016) (0.0013) (0.0013) (0.0014) (0.0015)
Constant 0.1204*** (0.0016) 0.1135*** 0.0816*** -0.0518*** -0.1536***

(0.0054) (0.0084) (0.0053) (0.0080) (0.0122) (0.0172)
Observations 1,823,918 882,181 1,802,665 744,548 373,920 238,435
Number of App 53,580 28,527 51,887 21,757 11,895 8,360

VARIABLES Educational Family Music Puzzle Racing Role Playing
Log(TotalNumberofRatings)2 -0.0941*** -0.1384*** -0.1227*** -0.1524*** -0.1222*** -0.1512***

(0.0012) (0.0009) (0.0020) (0.0008) (0.0016) (0.0014)
Log(Total Ratings) 0.3414*** 0.7519*** 0.6124*** 0.8153*** 0.6749*** 0.8390***

(0.0114) (0.0085) (0.0170) (0.0068) (0.0140) (0.0116)
Log(Present Days) 0.0447*** 0.0625*** 0.0649*** 0.0359*** 0.0762*** 0.0796***

(0.0017) (0.0018) (0.0045) (0.0013) (0.0043) (0.0052)
Days Ranked on Top50 0.3847*** 0.4482*** 0.2555*** 0.3026*** 0.3663*** 0.2881***

(0.0035) (0.0049) (0.0039) (0.0044) (0.0047) (0.0058)
Days Ranked on Top50-100 0.2691*** 0.3346*** 0.1317*** 0.3719*** 0.2366*** 0.2806***

(0.0036) (0.0048) (0.0042) (0.0044) (0.0053) (0.0055)
Days Ranked on off Top100 0.0571*** 0.1657*** -0.0058*** 0.1899*** 0.0435*** 0.1004***

(0.0011) (0.0016) (0.0016) (0.0013) (0.0018) (0.0020)
Constant -0.0447*** -0.0653*** 0.0720*** -0.0153*** 0.1518*** 0.1975***

(0.0060) (0.0065) (0.0179) (0.0049) (0.0176) (0.0174)
Observations 781,328 1,206,584 174,096 1,989,339 250,813 328,078
Number of App 24,367 37,640 6,103 59,195 9,923 11,617

VARIABLES Simulation Sports Strategy Trivia Word
Log(TotalNumberofRatings)2 -0.1346*** -0.1468*** -0.1410*** -0.1200*** -0.1144***

(0.0011) (0.0013) (0.0010) (0.0014) (0.0013)
Log(Total Ratings) 0.7870*** 0.8429*** 0.7689*** 0.6840*** 0.7742***

(0.0095) (0.0130) (0.0094) (0.0148) (0.0169)
Log(Present Days) 0.1124*** 0.0707*** 0.0581*** 0.0000 -0.0463***

(0.0036) (0.0033) (0.0027) (0.0029) (0.0039)
Days Ranked on Top50 0.3315*** 0.4002*** 0.3866*** 0.3213*** 0.3398***

(0.0054) (0.0045) (0.0050) (0.0033) (0.0033)
Days Ranked on Top50-100 0.2497*** 0.3312*** 0.3429*** 0.2091*** 0.2017***

(0.0054) (0.0046) (0.0051) (0.0036) (0.0038)
Days Ranked on off Top100 0.1403*** 0.0670*** 0.1182*** 0.0322*** 0.0253***

(0.0020) (0.0017) (0.0015) (0.0010) (0.0011)
Constant 0.0028 0.0123 0.0834*** 0.0239** 0.2350***

(0.0126) (0.0117) (0.0092) (0.0104) (0.0119)
Observations 529,819 453,086 756,085 400,708 323,848
Number of App 16,864 13,871 22,535 13,170 11,063

Standard errors in parentheses, * p < 0.1; ** p < 0.05; *** p < 0.01
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Table 1.8: Google App Adoption Estimation Results

Variables Arcade & Action Brain & Puzzle Cards & Casino Casual Racing Sports Games
Log(TotalNumberofRatings)2 -0.0705*** -0.0798*** -0.0500*** -0.0693*** -0.0558*** -0.0474***

(0.0008) (0.0008) (0.0012) (0.0008) (0.0015) (0.0013)

Log(Total Number of Ratings) 0.1820*** 0.2125*** 0.2173*** 0.1918*** 0.1811*** 0.0667***
(0.0099) (0.0081) (0.0166) (0.0093) (0.0211) (0.0177)

Log(Days Since Launch) -0.0139*** -0.0142*** -0.0775*** -0.0114*** -0.0373*** -0.0794***
(0.0017) (0.0012) (0.0040) (0.0017) (0.0074) (0.0050)

Days Ranked on Top 50 0.0894*** 0.1168*** 0.0801*** 0.1562*** 0.1750*** 0.1324***
(0.0041) (0.0041) (0.0059) (0.0046) (0.0045) (0.0049)

Days Ranked on Top 50-100 0.0683*** 0.1281*** 0.1145*** 0.1312*** 0.1238*** 0.1019***
(0.0039) (0.0040) (0.0046) (0.0042) (0.0043) (0.0047)

Days Ranked off Top 100 0.0478*** 0.0727*** 0.0556*** 0.0756*** 0.0616*** 0.0589***
(0.0022) (0.0020) (0.0020) (0.0020) (0.0022) (0.0022)

Constant 1.2992*** 0.6830*** 0.7947*** 0.8941*** 1.0435*** 1.0063***
(0.0148) (0.0099) (0.0234) (0.0123) (0.0401) (0.0269)

Observations 877,677 1,215,926 265,800 919,854 103,803 189,928
Number of Apps 47,741 64,675 12,509 49,715 6,586 9,332

Standard errors in parentheses, * p < 0.1; ** p < 0.05; *** p < 0.01

becomes negative. This is because the very large adopter base erodes the potential users
which leads to slower adoptions. The total number of ratings plays a more important role
in app adoption in Apple app store. Ranking affects adoption very strongly, particularly in
Apple app store. This difference between the Apple and Google ranking effects suggests that
different platforms might be associated with different user behavior or ranking mechanisms.
Generally speaking, the stimulating effect of being ranked on top charts decreases with the
rank. On average, the effect of being ranking in the top 50 is 2-4 times larger than that of
being ranked beyond the top 100.

The adoption model also suggests very different impacts of tenure days on app adoption
between two platforms. In Google app store, the effect of longer tenure days is decaying
over time, but in Apple app store, this effect is accumulating. The opposite impacts imply
that popular apps in Apple store gets even more popular, while market attention in Google
app store is volatile. If Apple app store keeps promoting already established apps, it is very
likely to have this accumulating effect.

The kernel densities of the estimated game app quality are shown in Figure 1.4; both
Apple and Google apps are skewed leftwards. This indicates that high-quality apps account
for a small proportion of game apps and the majority of apps having low to moderate quality
levels. Despite this similarity, the quality distributions of two platforms are very different on
some aspects. For example, Apple’s distribution is more concentrated, with a very high spike
right above 0 and two thin tails, while that of Google is more spread out and is skewed to the
left, resulting in the lower mean and median quality of Google apps. Although Google has
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Figure 1.4: Apple and Google App Quality Distribution

a much larger share of low-quality apps, the two platforms have very close 75% percentiles.
This implies than Google is not necessarily inferior to Apple in the high-quality segment.
The estimated app quality will be used as an important variable the in app’s platform choice
model.

1.5 Platform Choice Decision

This section develops the empirical model of app’s platform choices, in which potential en-
trants make platform choices based on their pre-determined quality level, observable platform
characteristics, and expectations about post-entry platform characteristics. The app quality
recovered in §1.4 will be used to estimate the platform choice model.

In each period, a finite number of potential entrants with pre-determined quality levels
arrive, and simultaneously decide which platform (Apple or Google) to enter. Observing the
platform characteristics and the incumbent composition, each entrant forms an expectation
about other potential entrants’ entry probabilities, and further updates its beliefs about the
post-entry distribution of app quality for each platform. Based on these expectations and
beliefs, the potential entrant makes a platform choice decision by comparing the expected
profits associated with each platform. The platform with the higher profit will be entered.
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Incumbents’ qualities, the number of potential entrants, and the distribution of the quality
levels of potential entrants are all public information. We adopt the Bayesian Nash equilib-
rium concept, in which potential entrants’ actual choices should coincide with the expected
choices.

In this model, entry is a one-time action. As is common in the entry literature, potential
entrants that do not enter are not observed in the data. Because we focus on how apps
choose which platform to enter, a model that accommodates no entry will not provide extra
insights. Thus, no entry is not an option in this platform choice model.

Further, we adopt a static rather than a dynamic entry model, for four reasons. First, the
main advantage of a dynamic entry model lies in the fact that it is able to achieve a better
estimate of entry cost by modeling entry profit as the expected discounted future profits.
However, entry cost is not the central question in this research. Second, a dynamic entry
game inherently assumes that entrants can project the long-term state transition, which is
unrealistic in a fast-evolving area such as the app market. Entry decisions are therefore
more likely to be myopic. Third, the dynamic entry model assumes that developers can
wait to enter, but it is not true in reality. Fourth, estimating a dynamic entry game for a
large market is also computationally infeasible, unless we assume a new equilibrium concept
(e.g. the oblivious equilibrium; see Weintraub, Benkard, and Van Roy 2008 and Benkard,
Jeziorski, and Weintraub 2013). Overall, a static entry model is appropriate for addressing
the research questions in this chapter.

Basic Setting

Let the finite number of potential entrants be I, and denote Google app store and Apple app
store as platforms 0 and 1 respectively. Potential entrant i chooses an action ai ∈ {0, 1}. All
potential entrants make their choices simultaneously, and A = {0, 1}n denotes the set of all
possible actions of potential entrants. Also, let a−i = (a1, . . . , ai−1, ai+1, . . . , aI) denote the
action vector of all potential entrants except entrant i.

si ∈ Si is the state variable for potential entrant i, and similarly s = (s1, . . . , sI) ∈ S is
the state vector of all potential entrants, where S =

∏I
i=1 Si. si includes a set of variables

influencing entrant i’s profit, such as market size, entrant i’s own quality level and the quality
distribution of its competitors. We assume that s is common knowledge in the sense that it
is not only known to all potential entrants but is also observable to researchers.

Besides the state variable si, each potential entrant has a choice-specific state vector, εi =
(εi(0), εi(1)), which can be considered to be the idiosyncratic shocks to entrant utility. The
random shock may include some unobservable developer know-how knowledge or personal
preference towards one platform, so this state is only known to entrant i itself and the
private state vector is then εi = (εi(0), εi(1)). We assume that εi(ai) follows i.i.d. extreme
value distribution.

Potential entrant i obtains the following utility from taking action ai:

ui(a, εi, s; θ) = πi(ai, a−i, s; θ) + εi(ai), (1.28)
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where πi(ai, a−i, s; θ) is the profit associated with action ai and εi(ai) is the idiosyncratic
shock of taking action ai. θ is a vector of the underlying model parameters and we will
discuss the specification of πi(ai, a−i, s; θ) in detail in §1.5.

Entrant i’s policy function is a mapping of the state variable to the optimal action,
denoted as ai = ν(s, εi). Then the probability of entry, σi(ai = k | s), k = 0, 1, can be
expressed as

σi(ai = k|s) =

∫
1(ν(s, εi) = k)f(εi)dεi. (1.29)

Entrants take actions simultaneously, so they do not know competitors’ actual actions.
In period 0, entrant i’s expected utility from action ai is as follows:

Ui(ai, εi, s; θ) = Ea−i
(ui(a, εi, s; θ)) (1.30)

=
∑
a−i

πi(ai, a−i, s; θ)σ−i(a−i|s) + εi(ai)

≡ Πi(ai, s; θ) + εi(ai),

where σ−i(a−i|s) =
∏

j 6=i σj(aj|s), and Πi(ai, s; θ) is the expected profit.
Entrant i takes action ai = k ∈ {0, 1} if action k provides a higher expected utility than

action 1− k. Entrant i’s policy function therefore should satisfy:

σi(ai = k|s) = Prob (Ui(ai = k, εi, s; θ) > Ui(ai = 1− k, εi, s; θ))
= Prob (Πi(ai = k, s; θ) + εi(k) > Πi(ai = 1− k, s; θ) + εi(1− k))

= Λ (Πi(ai = k, s; θ)− Πi(ai = 1− k, s; θ)) , (1.31)

where Λ(·) is the logistic function.

Profit Function

In general, an app’s expected profit is affected by both its own quality level and market
characteristics. Market characteristics include the size of the user base, the distribution of
app quality in the focal market and other unobservable market characteristics.

Let ζi denote app quality. As the number of apps is finite, we have a finite set Θ = {ζi, i =
1, 2, . . . , Ī} containing all possible levels of app quality, where ζ1 ≤ ζ2 ≤ . . . ≤ ζĪ with Ī <∞
being the largest possible number of apps available on a platform. It is computationally
prohibitive to conduct analyses directly on this set. Similarly to BOY and to Kim 2013, we
observe from the data that the app market is highly skewed toward a few killer apps with a
fat left tail, which is also consistent with the rating distribution. Because of this polarized
market structure, app quality is discretized into two types: low-type and high-type.

Define the set ωl = {ζi : ζi < d for ∀ ζi ∈ Θ} as the set of low-type quality levels, and
the set ωh = {ζi : ζi ≥ d for ∀ ζi ∈ Θ} as the set of high-type quality levels, where d denotes
the cutoff value of low/high type. Also denote Ω = (ωl, ωh). Apps in the same subset are
homogeneous in terms of strategic interactions, meaning that they receive and exert the
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same competitive effects. Depending on the actual quality level, apps in the same subset
may still receive different profits.

Applying the counting measure on Ω results in the vector H = (hl, hh), where hj = |ωj|,
j = l, h. The vector H characterizes the distribution of apps in low- and high-quality bins.
At period 0, the market state is (Ω, H0). After entry, the market state transits to (Ω, H1) in
period 1. The relationship between H0 and H1 is defined as:

H1 = H0 + ∆, (1.32)

where ∆ ≡ (∆l,∆h) is the quality distribution of entrants who choose to enter the focal
platform, and depends on all potential entrants’ platform choice decisions. It is easy to find:

E (∆) =

(∑
j∈ωl

σj(aj = k|s),
∑
j∈ωh

σj(aj = k|s)

)
. (1.33)

Following Berry 1992, Seim 2006 and Ciliberto and Tamer 2009, we assume a reduced-
form profit function for entrant i (ζi ∈ ωj) on platform k (k = 0, 1) as:

πi(ai = k, a−i, s; θ) = πi(a−i, s
k; θk) (1.34)

= θk1N
k + gj

(
Hk

1 , θ
k
2

)
+ θk3ζi︸ ︷︷ ︸

revenue

− Ck
i︸︷︷︸

entry cost

+ ρk,

where
Ck
i = ck0 + ck1bi + ck2bi · ζi (1.35)

.
θk ≡

{
θk1 , θ

k
2 , θ

k
3

}
is the vector of the parameters of interest. For simplicity of notation, the

platform superscript k is suppressed hereafter. N is the platform user base and ρk represents
market unobservable effect.

Function gj (H1, θ2) reflects the effect of the post-entry quality distribution on app i’s
profit, which only depends on i’s quality type, j. It is parameterized as gj (H1, θ2) = θjlh1l +
θjhh1h, where h1l is the number of low-quality apps post-entry and h1h is the number of high-
quality apps post-entry. The coefficients θjl and θjh capture the effect of low-type entrants
and high-type entrants, respectively, on a type-j entrant. This assumption implies that the
effects of apps with heterogeneous quality types are separately additive.

The platform-specific entry cost has two components: a fixed entry cost c0, a variable
entry cost c1bi + c2bi · ζi, where bi is the size of app i. Larger apps have more content, and
high-quality apps require more effort, both of which are associated with higher variable costs.
In the end, (1.34) becomes:

πi(ai, a−i, s; θ) = θ1N + h1lθjl + h1hθjh + θ3ζi − Ci + ρk. (1.36)

As H1 ≡ {h1l, h1h} is realized only after entry, it is a stochastic term in the profit function,
and the expected profit function is:

Πi(ai, s; θ) ≡ E (πi(ai, a−i, s; θ)) (1.37)

= θ1N + E(h1l|s)θjl + E(h1h|s)θjh + θ3ζi − Ci + ρk,
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where E(H1|s) = H0 + E(∆|s).

Equilibrium

This platform choice decision is an incomplete information static game. The existence of an
equilibrium can be demonstrated by the Brouwer fixed-point theorem. Plugging Equation
(1.33) into Equation (1.36) results in:

Πi(ai, s; θ) = θ1N +

(
h0l +

∑
j∈ωl

σj

)
θjl +

(
h0l +

∑
j∈ωh

σj

)
θjh + θ3ζi − Ci + ρk. (1.38)

Then, if we replace the expected profit in (1.31) by (1.38), it is easy to see that an
entrant’s strategy is a mapping of other entrants’ strategies, σ = Λ(σ; s, θ). As the logistic
function Λ(·) is a continuous mapping, the equilibrium of this entry game must exist for any
finite state variable.

The uniqueness of this equilibrium does not hold in general settings. Given the same
state variable s, a different quality distribution vector H1 may lead to the same gj (H1, θ2).
Multiple equilibria are very likely in such a setting.11 However, the identification of this
game does not rely on uniqueness. The estimation strategy proposed later only requires the
data generating process to be from a single equilibrium.

1.6 Identification and Estimation

This section discusses, in turn, the identification and estimation strategies for the app’s
platform choice model.

Identification

Structural primitives θ in the profit function need to be identified. The profit function
πi(ai, a−i, s; θ) is a linear function. Once this is identified, the identification of θ is straight-
forward. The discussion thus focuses on identification of the profit function.

The first step is to identify the difference between the expected profits on each platform
from the equation (1.31) as below,

σi(ai = k|s) = Λ (Πi(ai = k, s; θ)− Πi(ai = 1− k, s; θ)) .

ASSUMPTION 1. The idiosyncratic shock εi(a) follows some known continuous distribu-
tion and is i.i.d. distributed across action a and entrant i.

11 Seim 2006 discusses equilibrium uniqueness in a similar setting.
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Assumption 1 ensures the existence of inverse Λ, so it is easy to get that

Πi(ai = k, s; θ)− Πi(ai = 1− k, s; θ) = Λ−1 (σi(ai = k|s)) .

The next step is to identify the profit function πi(ai, a−1, s; θ) from Πi(ai = k, s; θ) −
Πi(ai = 1− k, s; θ). It is similar to solving a system of simultaneous equations, in which the
number of equations must be larger than or equal to the number of unknowns.

ASSUMPTION 2. A set of variables, z, satisfies the exclusion restrictions, and z contains
at least one continuous variable.

Exclusion restrictions require the existence of a set of state variables that only affect the
entrant’s profit and not that of its competitors’, which is analogous to bringing more equa-
tions into a system of simultaneous equations to solve for unknowns. A developer’s platform
experience is essential to the success of its apps because of accumulation of knowledge and
learning by doing. Hence, a developer’s platform experiences are likely to affect its platform
choice decision for the next app. However, it is unlikely to affect other developers’ platform
choice decisions. Therefore, developers’ platform experiences (measured by the number of
days operating on each platform) are used as exclusion restrictions in our estimation.

THEOREM 2. If Assumption 1 and Assumption 2 hold, the profit function π(ai, a−i, s; θ)
can be identified.

Proof. If ν(s, εi) = k1 is the equilibrium, there must be:

Πi(ai = k1, s; θ) + εi(k1) > Πi(ai = k2, s; θ) + εi(k2) (1.39)

Following the previous assumption of extreme value distribution, the implication of this
equilibrium condition is:

σi(ai = k1|s) = Λ (Πi(ai = k1, s; θ)− Πi(ai = k2, s; θ))

The logit function Λ(·) gives a one-to-one mapping, so the difference in expected profit
can be recovered from the optimal strategy:

Πi(ai = k1, s; θ)− Πi(ai = k2, s; θ) = Λ−1 (σi(ai = k1|s)) (1.40)

This is not only the case for extreme value distribution. Πi(ai = k1, s; θ)−Πi(ai = k2, s; θ)
can be recovered from equilibrium by εi(ai) with other continuous distribution assumptions,
such as the normal distribution. Therefore, Assumption 1 guarantees the recovery of the
difference in the expected profit function.

If we disregard strategic interactions, this entry game becomes a single-agent discrete
choice problem that can easily be identified, similarly to BLP. Suppose that entrant i chooses
to enter platform k1 where ai = k1, and we obtain:

Λ−1 (σi(ai = k1|s)) = Πi(ai = k1, s; θ)− Πi(ai = k2, s; θ)

=
∑
a−i

πi(k1, a−i, s; θ)σ−i(a−i|s)−
∑
a−i

πi(k2, a−i, s; θ)σ−i(a−i|s)(1.41)
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The right-hand side of (1.41) can be further expressed as:

∑
a−i

πi(k1, a−i, s; θ)σ−i(a−i|s) =
∑
a−i

(
πi(k1, a−i, s; θ)

n∏
j 6=i

σj(aj = k1|s)

)
(1.42)

and ∑
a−i

πi(k2, a−i, s; θ)σ−i(a−i|s) =
∑
a−i

(
πi(k2, a−i, s; θ)

n∏
j 6=i

(1− σj(aj = k1|s))

)
(1.43)

The identification of π(ai, a−i, s; θ) could be viewed as solving π(ai, a−i, s; θ) uniquely
from the system of simultaneous equations structured by (1.41), (1.42) and (1.43) given the
state variable s. Equation (1.42) has n×2n−1 unknowns, because there are n entrants whose
utility of entering k1 depends on 2n−1 possible actions of n− 1 other entrants. Accordingly,
there are n × 2n−1 unknowns in (1.43). The left-hand side of (1.41) contains information
about n × 2 scalars, as there are n entrants and each has two actions. The right-hand side
of (1.41) has n × 2n unknowns. It is not possible to solve π(ai, a−i, s; θ) uniquely from this
system of equations.

To identify π(ai, a−i, s; θ), some exclusion restrictions are introduced. The basic idea of
exclusion restriction is to find some variables that only affect σ−i(a−i|s) and not πi(ai, a−i, s; θ),
so that there are sufficient variations in Λ−1 (σi(ai|s)), the left-hand side, to uniquely deter-
mine π(ai, a−i, s; θ). Suppose that a set of variables s̃ satisfies the exclusion restrictions. In
other words, z influences entrant i’s profit only through its effect on the platform choices
of other entrants. Commonly used exclusion variables are productivity shocks. Entrant i’s
expected profit should depend on the platform choices of other competitors, and not on the
productivity shocks of its competitors. With exclusion restrictions, (1.41) becomes:

Λ−1 (σi(ai = 1|s, z)) =
∑
a−i

πi(1, a−i, s; θ)σ−i(a−i|s, z)−
∑
a−i

πi(2, a−i, s; θ)σ−i(a−i|s, z) (1.44)

In the system of simultaneous equations, there are n × 2 left-hand scalars and n × 2n

unknowns, so the necessary condition for identification is that the support of the distribution
of s̃ conditional on the state variable s has at least 2n−1 points, which is Assumption 2.

This necessary condition can be easily satisfied if z includes at least one continuous
variable and Λ−1 (σi(ai|s, z)) is the sufficient variable of z so that the support of z is still
preserved.

In summary, if Assumption 1 and Assumption 2 hold, profit function π(ai, a−i, s; θ) can
be identified and the identification is proven.

Estimation Strategy

ASSUMPTION 3. Data from different markets are generated by a single equilibrium.
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The two-step approach for game estimation does not require uniqueness of the equilibrium
nor an equilibrium selection mechanism. However, data need to be generated from the same
equilibrium over different periods. In general, multiple equilibria are very common in entry
games. This single-equilibrium assumption implies that a stable equilibrium is repeatedly
played.12

Entrant i’s decision rule is governed by:

σi(ai = k|s) = Prob (Πi(ai = k, s; θ) + εi(k) > Πi(ai = 1− k, s; θ) + εi(1− k)) . (1.45)

Given the distribution of εi, it is easy to derive the likelihood function:

L(θ, σ) =
1

MT

M∑
m=1

T∑
t=1

Nmt∑
i=1

(aimtln (Λ(aimt|simt; θ, σ)) + (1− aimt)ln (1− Λ(aimt|simt; θ, σ))) ,

(1.46)
with the constraint that the action should be the equilibrium σ = Λ(θ, σ;S). Nmt is the
number of potential entrants entering genre m in period t.

Consequently, the MLE is defined as

θ̂MLE = arg max
θ

L(θ, σ) subject to σ = Λ(θ, σ;S). (1.47)

A common approach to estimating this problem is to nest a fixed-point algorithm in the
MLE (e.g. Seim 2006). For a given set of θ, a vector of equilibrium choice probabilities,
σ?, is easily calculated by finding the fixed point of σ = Λ(θ, σ;S). σ? is then used to
construct the likelihood function L(θ, σ?). Therefore, for every set of θ evaluated in MLE, a
corresponding vector of equilibrium choice probability σ needs to be calculated via the fixed-
point algorithm. When the number of players is large, the domain of the policy function
becomes very large. As a result, this estimation procedure can be extremely computationally
intensive.

A feasible pseudo maximum likelihood is therefore applied to estimate this entry game,
and is implemented in two steps. In the first step, a nonparametric estimate of the entry
probability σ̂i(ai|s) is estimated, using a sieve logit (see Ai and Chen 2003). A sieve logit with
cubic splines is used for the first step. The splines are interpolated between 1 to 3 equally
space percentiles of each state variable. In the end, all of the power terms and splines are
interacted with high quality dummy. The sieve logit also includes market fixed effect.

Given the predicted entry probability σ̂i, we have:

Π̂i(ai, s; θ) =
∑
a−i

πi(ai, a−i, s; θ)
∏
j 6=i

σ̂j(aj|s, s̃). (1.48)

12A general approach allowing for multiple equilibria in the data-generating process is developed by
Aguirregabiria and Mira 2007. Sweeting 2009 shows that with particular data structures, multiple equilibria
may aid identification of model primitives.
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Following the distribution of εi, a pseudo likelihood function could be constructed using
Π̂i:

L(θ; ai, s, σ̂) =
1

MT

M∑
m=1

T∑
t=1

Nmt∑
i=1

1∑
k=0

1(aimt = k)ln
(

Λ
(

Π̂i(aimt = k, s; θ)− Π̂i(aimt = 1− k, s; θ)
))

.

(1.49)
Primitives θ can be estimated by maximizing the pseudo likelihood function, the global

maximum of which is guaranteed.
To estimate the model, we split the data into 24 monthly intervals. State variables are

taken to be the values at the beginning of each period. Based on recovered quality levels,
apps are categorized into low-type and high-type. Different cutoff points for low- and high-
type apps are used to check robustness. A 2-year rolling sum of global smartphone shipments
is used as a proxy for the size of the user base.13

The error in this two-step estimation mainly arises from the first-step estimation of
choice probabilities. As long as σ̂ is estimated consistently, with some weak assumptions,
the consistency of the two-step estimation is guaranteed (see Aguirregabiria and Mira 2007;
Bajari et al. 2010).14 As a matter of fact, the big data allow very flexible nonparametric
estimation for the first stage, which in turn guarantee the accurate prediction of σ̂. Due to
this reason, two-step approach is a very suitable method for the big data.

Estimation Results

The summary statistics of the main variables in the platform choice model are presented
in Table 1.9. During the data period, there are slightly more apps entering Google. The
average developer tenure on Google is 88 days, much shorter than the 272 days for Apple
developers. This implies that many Google entries occurred recently. Slightly more apps
chose Apple during the data period. Table 1.10 breaks down entrants into high-type and
low-type. More high-type apps chose Google, but slightly more low-quality apps entered
Apple.

Table 1.11 reports the estimation results for structural parameters. To investigate the
interactive effects of heterogeneous apps more closely, the estimated competitive effects co-
efficients are separated into Table 1.12 and impacts of other state variables are gathered in
Table 1.13.

13In the past two years, more than 80% of global smartphone shipments were running on the Android
operating system.

14However, this two-step estimation is less efficient than the nested fixed-point estimation. Sup-
pose that σ̂ is the first step estimator and θ̂2s is the second step estimator. Also define lmt ≡∑Nm

i=1 aimtln (Λ(aimt|simt; θ, σ)). Then the Fisher information matrix of the pseudo maximum estimation

is Ω = E(∇θlmt∇θl′mt). Following the properties of MLE, it is easy to show that the infeasible MLE θ̂

has
√
MT (θ̂ − θ)→d N(0,Ω−1). For the two-step estimation, suppose that the first-step estimator satisfies√

MT (σ̂ − σ) →d N(0,Σ), then
√
MT (θ̂2s − θ) →d N(0, V2s) where V2s = Ω−1 + Ω−1ΩθσΣΩ′θσΩ−1 and

Ωθσ = E(∇θlmt∇σl′mt). As Ω−1ΩθσΣΩ′θσΩ−1 is a positive definite matrix, V2s is greater than Ω−1, meaning
that the two-step estimation is less efficient than the infeasible MLE.



CHAPTER 1. MOBILE APP PLATFORM CHOICE 38

Table 1.9: Summary Statistics of Variables in Entry Estimation

Variable Obs Mean Std. Dev. Min Max
Entry Platform (1=Apple) 245,081 0.48 0.50 0 1

App Quality 245,081 0.14 0.92 -2.61 8.23

App Download Size (Megabyte) 245,081 19.15 48.79 0 2,560

Developer Tenure on Apple 245,081 88.65 187.89 0 1,735

Developer Tenure on Google 245,081 271.67 426.58 0 1,928

iPhones 2-Yr Global Shipments (Billion) 245,081 0.22 0.04 0.12 0.27

Android Phones 2-Yr Global Shipments (Billion) 245,081 0.71 0.28 0.24 1.16

This table reports the summary statistics of game apps entering either platform during the data period.

Smart phone shipments are the sum of smart phone shipments in the past 2 years since the focal app

entered either platform. They are used to capture the size of smart phone user base.

Table 1.10: Entrants Type Distribution by Platforms

Type xAndroid Entrantx % xiTunes Entrantx % No. of Entrants

Quality> 1
H 8.4 1.7

245,081

L 43.1 46.8

Quality> 1.5
H 6.8 1.1
L 44.7 47.4

Quality> 2
H 5.4 0.8
L 46.1 47.7

For robustness, the high type and low type apps are categorized according to three cutoff points. As the

cutoff point gets larger, the proportion of high type entrants becomes smaller.
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Table 1.11: Estimated Structural Parameters

Variables Quality>1 Quality>1.5 Quality>2
θ1
ll 0.0538 0.078 0.1060**

(0.0574) (0.0564) (0.0537)
θ1
lh 0.2369 -0.314 -1.2153

(1.2455) (1.5555) (1.7505)
θ1
hl -0.2260** -0.3837*** -0.4667***

(0.1042) (0.1353) (0.1550)
θ1
hh -4.4954*** -4.7051*** -5.1338***

(0.9617) (1.3053) (1.7657)
θ2
ll 0.1883*** 0.1319*** 0.0940**

(0.0526) (0.0486) (0.0446)
θ2
lh -0.9524** -0.7407 -0.3212

(0.4400) (0.5867) (0.7434)
θ2
hl -0.4365*** -0.5124*** -0.4975***

(0.1043) (0.1374) (0.1661)
θ2
hh 1.1966* 1.8999* 1.8894

(0.6150) (1.0856) (1.9687)
iPhones 2-Yr Global Shipments (B) 12.1301** 9.9490** 7.4472

(4.9217) (4.9616) (4.8862)
Android Phone 2-Yr Global Shipments (B) -4.1813*** -3.8127*** -3.4397***

(0.7675) (0.7943) (0.7802)
App Quality 0.9115*** 0.8912*** 0.8172***

(0.0483) (0.0474) (0.0410)
Log(App Download Size) (Mb) 0.5980*** 0.5973*** 0.6007***

(0.0124) (0.0123) (0.0124)
App Quality×Log(App Download Size) (Mb) -0.0809*** -0.0665*** -0.0549***

(0.0079) (0.0086) (0.0088)
Ln(Developer Tenures on Apple) 0.5431*** 0.5458*** 0.5483***

(0.0112) (0.0113) (0.0110)
Ln(Developer Tenures on Google) -0.6230*** -0.6265*** -0.6295***

(0.0118) (0.0117) (0.0113)
Constant Entry Cost -1.4269* -1.0418 -0.5911

(0.8350) (0.8600) (0.8300)
Market Fixed Effect Yes Yes Yes
Observations 245,081 245,081 245,081

Bootstrapped standard errors in parentheses, * p < 0.1; ** p < 0.05; *** p < 0.01
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Table 1.12: Estimated Competitive Effects

Platformxxx Typexxx Quality>1xxx Quality>1.5xxx Quality>2xxx

Apple

Hll 0.0538 0.078 0.1060**
(0.0574) (0.0564) (0.0537)

Hlh 0.2369 -0.314 -1.2153
(1.2455) (1.5555) (1.7505)

Hhl -0.2260** -0.3837*** -0.4667***
(0.1042) (0.1353) (0.1550)

Hhh -4.4954*** -4.7051*** -5.1338***
(0.9617) (1.3053) (1.7657)

Google

Hll 0.1883*** 0.1319*** 0.0940**
(0.0526) (0.0486) (0.0446)

Hlh -0.9524** -0.7407 -0.3212
(0.4400) (0.5867) (0.7434)

Hhl -0.4365*** -0.5124*** -0.4975***
(0.1043) (0.1374) (0.1661)

Hhh 1.1966* 1.8999* 1.8894
(0.6150) (1.0856) (1.9687)

Bootstrapped standard errors in parentheses, * p < 0.1; ** p < 0.05; *** p < 0.01

Interestingly, for both platforms low-type incumbents make the platform inferior so that
it is less attractive for high-type entrants. This negative externality is stronger in Google.
Google and Apple also present very different competition structures. In Google, the presence
of low-type incumbents encourages low-type entrants to enter, but in Apple the presence of
high-type incumbents exerts a very negative effect on entrants of both types. The lower
competition level in Google to some extent explains why many high-type apps chose to enter
Google when Google fell far behind Apple on the high-end segment.

The user base has a positive effect on an entrant’s expected profit, but the scale of
the effect is larger for Apple than for Google. The estimates suggest that on average the
profitability of an additional iPhone user is about 3-4 times that of an additional Android
phone user. This finding is consistent with the industry consensus that Google app store
is less profitable than Apple app store, but the larger Android user base offsets the lower



CHAPTER 1. MOBILE APP PLATFORM CHOICE 41

T
ab

le
1.

13
:

Im
p
ac

ts
of

O
th

er
S
ta

te
V

ar
ia

b
le

s

V
ar

ia
b
le

s
Q

u
al

it
y
>

1
Q

u
al

it
y
>

1.
5

Q
u
al

it
y
>

2

U
se

r
B

as
e

iP
h
on

es
2-

Y
r

G
lo

b
al

S
h
ip

m
en

ts
(B

)
12

.1
30

1*
*

9.
94

90
**

7.
44

72
(4

.9
21

7)
(4

.9
61

6)
(4

.8
86

2)

A
n
d
ro

id
P

h
on

e
2-

Y
r

G
lo

b
al

S
h
ip

m
en

ts
(B

)
-4

.1
81

3*
**

-3
.8

12
7*

**
-3

.4
39

7*
**

(0
.7

67
5)

(0
.7

94
3)

(0
.7

80
2)

C
on

st
an

t
E

n
tr

y
C

os
t

1.
42

69
*

1.
04

18
0.

59
11

(0
.8

35
0)

(0
.8

60
0)

(0
.8

30
0)

E
n
tr

y
C

os
t

L
og

(A
p
p

D
ow

n
lo

ad
S
iz

e)
(M

b
)

-0
.5

98
0*

**
-0

.5
97

3*
**

-0
.6

00
7*

**
(A

p
p
le

-
G

o
og

le
)

(0
.0

12
4)

(0
.0

12
3)

(0
.0

12
4)

A
p
p

Q
u
al

it
y
×

L
og

(A
p
p

D
ow

n
lo

ad
S
iz

e)
(M

b
)

0.
08

09
**

*
0.

06
65

**
*

0.
05

49
**

*
(0

.0
07

9)
(0

.0
08

6)
(0

.0
08

8)

P
la

tf
or

m
E

x
p

er
ie

n
ce

L
n
(D

ev
el

op
er

T
en

u
re

s
on

A
p
p
le

)
0.

54
31

**
*

0.
54

58
**

*
0.

54
83

**
*

(0
.0

11
2)

(0
.0

11
3)

(0
.0

11
0)

L
n
(D

ev
el

op
er

T
en

u
re

s
on

G
o
og

le
)

0.
62

30
**

*
0.

62
65

**
*

0.
62

95
**

*
(0

.0
11

8)
(0

.0
11

7)
(0

.0
11

3)

Q
u
al

it
y

A
p
p

Q
u
al

it
y

0.
91

15
**

*
0.

89
12

**
*

0.
81

72
**

*
(0

.0
48

3)
(0

.0
47

4)
(0

.0
41

0)

M
ar

ke
t

F
ix

ed
E

ff
ec

t
Y

es
Y

es
Y

es
O

b
se

rv
at

io
n
s

24
5,

08
1

24
5,

08
1

24
5,

08
1

B
o
ot

st
ra

p
p

ed
st

an
d
ar

d
er

ro
rs

in
p
ar

en
th

es
es

,
*
p
<

0.
1;

**
p
<

0.
05

;
**

*
p
<

0.
01



CHAPTER 1. MOBILE APP PLATFORM CHOICE 42

user engagement. For instance, based on data from two big app analytic firms, Cole 2013
finds that for every $1.00 in app download revenue earned by iOS developers, their Android
counterparts earn just $0.19, and Apple’s apps bring developers 5 times the per-download
revenue of Google apps.

Google has a lower fixed entry cost than Apple, but a much higher variable entry cost for
a typical app with the average quality level. A developer need only pay a registration fee of
$25 to publish apps on Google app store, while Apple charges $100. Furthermore, new apps
published on Apple’s App Store have to undergo a strict review process that usually takes
days or even weeks. Apps that violate the rules of the app store are rejected. In contrast,
Google uses an automatic screening process. New apps submitted to Google are available on
Google app store within 20 minutes unless they contain malware. These features of the Apple
and Google app ecosystems result in a lower fixed entry cost for Google. On average Apple’s
App Store has a lower variable cost. Currently, there are only four mainstream iPhone models
(iPhone4, 4S, 5 and 5S) with minimal variations in screen size and resolution. In contrast,
there are many more Android phone models with various display specifications. causing the
development cost to increase to accommodate the different Android phones. Consequently,
it is generally more costly for an app with a mean or median download size to enter Google.

The structural estimation also shows that developer’s platform experience has a strong
impact on app’s platform choices, but developer’s platform experience on Google is more
valuable. This is again because the ecosystem in Google is more complicated, which causes
the stickier platform choices.

1.7 Policy Experiments

A booming platform needs to be attractive to potential entrants, especially to high-type apps.
App stores could adopt certain market designs to improve the app market evolution. Based
on the structural estimation in §1.6, counterfactual experiments in this section explore which
market policies can benefit the platform expansion as well as improve apps composition.

The policy experiments are achieved by solving the new equilibrium. The structure
parameters have been estimated. When a policy alters certain variables or parameters, the
new equilibrium represents the updated market outcome and the new equilibrium could be
solved by the fixed point algorithm. App’s platform choice decision characterized by an
incomplete information game is defined by the equation

σi(ai = k|s) = Λ (Πi(ai = k, s; θ)− Πi(ai = 1− k, s; θ)) , (1.50)

where
Πi(ai, s; θ) = θ1N +H1lθl +H1hθh + θ3ζi − Ci + ρk. (1.51)

H1l and H1h are the number of post-entry low-type and high-type apps respectively.
H1l = h0l +

∑
j∈ωl

σj and H1h = h0h +
∑

j∈ωh
σj. The equilibrium is a set of policy function

{σ?1, . . . , σ?n} satisfying the equation above. Counterfactual experiments require solving the
new equilibrium for either a new set of state variable s or another set of coefficients θ.
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Given the state variable s and coefficient θ, the equilibrium is solved by the following
algorithm.

The number of low-type potential entrants H̄l and the number of high-type potential
entrants H̄h are assumed to be publicly known in this game. Let ∆l =

∑
j∈ωl

σj denote the
number of low-type entrants to the focal platform and similarly ∆h is the number of high-type
entrants choosing this platform. Therefore, once ∆l and ∆h are realized, we immediately
know how many apps choose the other platform.

1. Given ∆l and ∆h, update post-entry players, H1l = H0l + ∆l and H1h = H0h + ∆h.

2. Calculate σi. Every variable in (1.50) is known, so it is easy to calculate σ̂i through the
logit function stated above. Alternatively, I draw two independent Type I extreme ran-
dom variables ε1 and ε2, and calculate σ̂i = 1 (Πi(ai = k, s; θ)− Πi(ai = 1− k, s; θ) > ε2 − ε1).
This indicator function makes this iteration an integer programming problem. Alter-
native, I can calculate the acutal probability by the logit function and let σ̂i = 1, if
the probability is greater than 0.5.

3. If | ∆l −
∑

j∈ωl
σ̂j | + | ∆h −

∑
j∈ωh

σ̂j |≤ 1, this set of {σ̂1, . . . , σ̂n} is reported as an
equilibrium.

4. Repeat 1- 3 for {(∆l,∆h) : 0 ≤ ∆l ≤ H̄l, 0 ≤ ∆l ≤ H̄l,∆l ∈ N,∆h ∈ N}.

Large Smartphone User Base and Consumer Willingness to Pay

The estimation results already show that the smartphone user base has a very strong impact
on the platform choice. The relatively small user base is a serious issue for new app platforms.
For instance, before Google started to take off in 2011, small Android phone user base was
associated with the slow growth of Google app store. The similar correlation can also be
found in Windows phone and its app store. There are several effective strategies allowing
platforms to expand its smartphone user base. For instance, Android operating system is
free for phone manufactures. In 2013, Microsoft acquired Nokia which makes it possible
to subsidize the Microsoft phone. Given everything else unchanged, this policy experiment
examines how the potential entrants adjust their platform choices facing a 5% larger user
base in one of the platforms.

This policy is equivalent with increasing user profitability by 5%, so this experiment can
also simulate the effect of higher user engagement. Google app store is widely believed to
be less profitable than Apple, mainly because of Android phone user’s low willingness to
pay and lower user engagement. In fact, Google has been trying to improve user experi-
ence through enhancing the payment system, cleaning up malware and defragging different
Android operating systems. Given that Android phone user base is four times as large as
iPhone user base, slight changes in users’ willingness to pay can result in substantial changes
in developers’ platform choice decision.
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The policy experiments results are summarized in Table 1.14. Increasing iPhone users
(or consumer willingness to pay) by 5% leads to overall 2.1% more apps choosing Apple,
in which the high-type entrants increase by 2.5%. Similarly, 5% larger Android phone user
base (or consumer willingness to pay) results in 2.3% more apps entering Google, but only
1.4% more high-type entrants. Although Android phone user is more effective on increasing
the overall entrants, iPhone user is particularly useful to improve the platform composition,
such as increasing the share of high-type apps.

Regulate Low-Type Apps

The profit of an app platform largely depends on high-quality apps, since market demand is
highly skewed toward elite apps. However, a great number of low quality apps increase the
search cost and impose negative externality on the entire platform. The estimation results
show that high-type entrants prefer a platform with fewer junk apps. Moreover, in Google,
the presence of low-quality apps induces more entry of low-quality apps. Therefore, it is
essential for app platforms to clean up junk apps and make platform more attractive to
high-quality entrants . The following two counterfactual experiments concern the effects of
app selection mechanisms on the market composition.

The first policy experiment along this line imposes a hypothetical regulation that removes
apps having downloads lower than a certain threshold. It is found that the elimination of
low-quality incumbents is followed by more high-type entrants and fewer low-type entrants.
This policy is much more effective on Apple. 5% fewer low-type incumbents results in 5.3%
more high-type entrants, much higher than the 1.6% increase in Google. This policy could
reduce low-type entrants by 1.1% in both platforms.

Woo High-Type Apps

Parallel with the regulations on low-quality apps, platform can also woo high-type apps. For
example, at the early stage of Android platform, Google hired many talented developers to
create Android apps. Microsoft subsidizes developers up to hundreds of thousands of dollars
for developing apps for the Microsoft phone. Such actions immediately boost high-type apps
available in the platform. However, more high-type apps could increase the competition
level, which may have negative impacts on the market evolution.

This policy experiment explores the changes of the platform choices when the high-type
apps are increased by 5% respectively in Apple and Google. 5% more high-type incumbents
reduce the overall entry slightly (0.1%-0.2%) in both platforms. Interestingly, Apple and
Google show some opposite impacts on high-type entrants. This policy brings 0.2% more
high-quality entrants to Google, but reduces Apple high-type entrants by 2.2%. This result
would be explained by the competition structures in high-end segment in Google and Apple.
The estimation results show a considerable competitive effect among Apple high-quality
apps, but that competitive effect does not exist in Google. During the data period, Apple
is already a very well established platform with a large collection of high-quality apps. On
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the contrary, Google had far fewer high-quality apps. Therefore, the same stimulating policy
works differently on platforms at different stages. For a platform to takeoff, it would be
effective to improve the app composition by introducing more high-type apps, but more
high-quality apps in a prosperous platform would exacerbate the already high competition
level.

More users and fewer low-type incumbents

The counterfactual experiments above discuss the effect of each single market policy. How-
ever, the platform could adopt multiple policies and get the optimal market designs. Some
policies combined with others can reach the best efficacy and minimize the “side effect”.

This policy bundle examines the effect when smartphone user base increases by 5%
and meanwhile 5% low-type incumbents are removed from the app store. In this setting,
platform promotes the adoption of hardware while regulating the low-type apps through
certain selection mechanisms. Larger user base leads to more apps to enter, but the influx of
low-type apps is an undesirable side effect, which can be alleviated by suppressing the entry
of low-type apps.

This policy bundle can boost high-type entrants by 8% in Apple and low-type entrants
only increase by 0.9%. The policy on promoting hardware adoption induces more low-type
entrants than high-type entrants in Google app store, and actually market composition will
deteriorate. However, when the promotion of hardware is combined with regulations on
low-type apps, high-type apps increase by 3% and low-type entrants only increase by 1.4%
in Google.

Lower high-type competition and fewer low-type incumbents

This policy bundle improves app compositions from two directions. On the one side, lower
competition level among high-type apps will attract more high-type entrants and on the
other side the regulation on low-type apps suppresses the low-type entrants. This policy
is very effective in Apple. High-type entrants are boosted by 7.8% while low-type entrants
decrease by 1.2%. This policy bundle can also reduce Google low-type entrant by a similar
scale, but it is not very effective on inducing high-type apps, which only increase by 1.3%.

1.8 Conclusion

Since Apple and Google launched their online app stores in 2008, the market for mobile
apps has experienced rapid growth and represents an enormous business opportunity. The
expansion of an app platform relies on the presence of a great variety of high-quality apps.
Given the existence of multiple app platforms, a fundamental question in the app industry
is how app developers choose which app platform to enter.
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This chapter studies the platform choice decisions of app developers and the implications
for the evolution of the overall app market, using a unique and big daily-level panel dataset
that contains information on every app in the two leading app stores, Apple and Google,
over a 2-year period. Based on these data, we construct and estimate a structural model for
heterogeneous app developers’ platform choice decisions within an incomplete information
static game framework. As the platform choice is largely driven by app quality, which is not
directly observed in the data, we develop an app adoption model (which consists of an app
discovery process and a conditional adoption decision) to recover app quality.

The entry model shows that in both platforms the high-type entrants dislike the platform
with more low-type incumbents. It is also found that smartphone user base has a strong
impact on the platform choice. However, since these two platforms are at different growth
stage, Apple and Google app stores also exhibit some distinctive competition structures.
In Google, the presence of low-quality apps induces more low-quality apps to enter, but in
Apple the presence of high-quality apps suppresses the entry of other high-quality apps.

These market characteristics and competition structures uncovered by the structural
model provide very rich implications regarding the platform designs. The policy experiments
find that eliminating 5% low-quality incumbents can increase high-quality entrants by 5.3%
in Apple and 1.6% in Google. And the regulation on low-quality incumbents also discourages
low-quality entrants. Boosting the smartphone user base or consumer willingness to pay are
both effective to expand the platform, but these stimulating policies also induce the entry of
more low-quality apps. The optimal market designs targeting at expanding the collection of
high-quality apps should supplement stimulating measures with app elimination mechanisms
so that the market evolution will not be undermined by the influx of junk apps.

The contributions of this research are as follows. Theoretically, we provide insights into
both app demand and app supply. On the demand side, we supplement the existing literature
on app demand by considering search cost. On the supply side, this research adds to the few
studies on the mobile app entries. Substantially, this structural model offers policy recom-
mendations for app platforms regarding various design mechanisms. Methodologically, we
integrate state-of-the-art machine learning techniques with structural estimation techniques
to derive model primitives, reducing the computational burden associated with big data.

There are several limitations to the present study that also represent opportunities for
future research. First, this chapter reveals the different market and competition structures
between Apple and Google app stores, but it has not explained causes of these differences.
The understanding of competing app platforms will be enriched through further explorations
on the relationship between ranking or featuring mechanisms and the platform evolution.
Second, we assume that app heterogeneity is compressed into one single variable, app qual-
ity. A better measure of app heterogeneity would bring deeper insights into this market.
User reviews contain rich information about app characteristics and relying on text mining
techniques, app characteristics on more dimensions could be extracted and quantified.
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Chapter 2

Do Firms Benefit From Disclosing
Innovations?

2.1 Introduction

Patents and trade secrets are the two major means of intellectual property protection. In
the patent system, inventors place inventions to the public domain in exchange for legal
protection of the intellectual property. Trade secrecy secures intellectual property by keeping
it from the public. However, owners of knowledge sometimes do not file patents or keep
their innovations secret. Instead they disclose their private knowledge by exposing them
to the public domain. Such behaviors are called knowledge disclosure. Once disclosed, the
innovation is no longer patentable and could be accessed by others free of charge. Private
knowledge can be disclosed in various forms, such as publications on research journals,
conference presentations, or publications on the Internet. In academia, there has been a long
history of publishing knowledge, which has greatly expedited the diffusion of new knowledge
and driven following innovations. In the very competitive business world, however, it is hard
to explain the large scale of knowledge disclosures by conventional wisdom, since firms can
always choose to apply for patents or to keep innovations to themselves.

Existing literature offers several explanations for open knowledge disclosure. For in-
stance, strategic disclosure could deter potential competitors in innovation competition. By
partially disclosing innovation or private knowledge, a firm sends signals to its rivals, that
the disclosing firm has advantages on this technology and is confident of its innovation. As
a result, rivals may stop competing with the disclosing firm. Besides the strategic deter-
rence, disclosure can extend patent races, because disclosure prevents anyone, including the
disclosing firm itself, from applying for patents based on this disclosed innovation unless a
significant progress is made. Therefore, by disclosing part of an ongoing innovations, firms
make it more difficult for both themselves and competitors to obtain patents on the dis-
closed innovations. This action further may extend any ongoing patent race and earn extra
time for the disclosing firm. Innovation disclosure can also send signals to potential buyers,
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by revealing valuation of a given innovation to potential buyers. Without knowing the de-
tails, potential buyers cannot correctly evaluate a piece of innovation. However, once buyers
get to know the idea, they no longer need to purchase it. This creates a paradox for the
unpatentable innovations. Therefore, a seller may choose to disclose part of its ideas or inno-
vations to help potential buyers make an evaluation. Disclosure can also create spillovers to
upstream suppliers or downstream producers. For instance, if an automobile manufacturer
discloses an innovation on steel production, this will enhance the efficiency of its upstream
supplier’s steel production process. In turn, the automobile manufacturer can also benefit
from the enhanced quality or efficiency in production. Likewise, a spillover effect could also
be realized for the downstream producers. When an innovation has profound industry-wide
influence, then disclosures could expedite the adoption of certain technologies or even estab-
lish industry standards. Disclosing firms may in turn benefit from demand increase and/or
cost reduction. Among these explanations, strategic disclosure has been extensively studied
using theoretical models. However, under many circumstances, strategic disclosure might
not be possible. Henkel and Pangerl 2008 interviewed IP managers in several multinational
firms and revealed that it is very hard for firms to know the details of competitors’ R&D,
such as the stages, obstacles or progress. Without such information, it is unrealistic to take
strategic moves or disclose strategically. In many cases, therefore, firms will not be able to
disclose innovations strategically.

Most existing studies on knowledge disclosure take a theoretical perspective, and there
have been few empirical studies on this issue. We supplement this literature by providing
empirical evidence on knowledge disclosure, which is made feasible by a very novel data set
covering all IBM’s innovation disclosures and patents. By matching this data set with the
NBER patent database, we not only observe several important patents characteristics, but
can also infer how knowledge diffuses, how the innovation evolves and more importantly,
how firms utilize patents and innovation disclosures differently.

Relying on these unique data, this chapter first empirically tests the strategic explana-
tions for innovation disclosures. If firms disclose their innovations due to strategic reasons,
a likely consequence is that disclosures undercut other firms’ related patents. In particular,
under strategic explanations, patents citing disclosures would be weaker than other patents
in the same technical field. Therefore, this research will examine the strength of patents built
upon IBM disclosures and the strength of other comparable patents not citing IBM disclo-
sures. Further this research will study the diffusion of IBM disclosures and the utilization
of disclosures along the diffusing path. Based on several empirical findings, we suggest an
alternative explanation for innovation disclosures. That is, innovation disclosures could elicit
follow-up innovations, and disclosing firms can benefit from follow-up innovations built upon
their disclosures. Through selectively disclosing peripheral innovations and learning from
follow-up innovations, disclosing firms can extend and strengthen their patent portfolios.

This chapter is organized as follows. The next section reviews related literature. The
following section documents the data used for this study and essential data preparations.
The section after provides data summary statistics, followed by the empirical section. The
last section concludes.
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2.2 Related Literature

There has been considerable prior work on knowledge disclosure. A major strand of the
literature uses theoretical models to explain why firm discloses innovation for free. One
explanation is that firms disclose innovations for defensive purposes, including strategic
deterrence (e.g., Johnson 2004; Gill 2008) and extension of patent races (e.g., Baker and
Mezzetti 2005, Johnson 2004, Gill 2008). For instance, Johnson 2004 illustrates disclosures
as a defensing mechanism against “patent pirates” and guarding against bad patents. In
addition, he finds innovations that are less-technically challenging and easier to innovate
around tend to be better candidates for publishing. Gill 2008 examines the incentives for
a leading firm in a research competition to release its intermediate R&D results. He finds
disclosures signal commitment to the research project which would induce a lagging rival
to exit the contest. Baker and Mezzetti 2005 shows that by making the innovation more
difficult to patent, disclosure extends the patent race, and gain the disclosing firm advantages
in a patent race.

Disclosures can also reveal the value of innovations to potential buyers or financial markets
(e.g., Bhattacharya and Ritter 1983; Anton and Yao 2002; Anton and Yao 2004). For
instance, Bhattacharya and Ritter 1983 show that disclosure can be valuable as it acts as
a credible signal to financial markets of the firm’s innovation prospects. Anton and Yao
2002 argue that disclosure of some knowledge serves as a signal to the value of non-disclosed
knowledge, which helps buyers evaluate the innovation.

Disclosure can also create spillovers to upstream suppliers or downstream producers,
which in turn benefits disclosing firms (e.g., Pénin 2007)

A second strand of literature studies the knowledge disclosure through surveys, interviews
or descriptive analysis. For instance, Henkel and Pangerl 2008 surveyed and interviewed IP
managers in 37 German firms cross different industries and several EPO patent examiners and
judges. They conclude that disclosures are widely used to secure firms’ free right to operate,
and firms rarely disclose private knowledge out of strategic concerns. This finding implies
that disclosures usually have close connections to the disclosing firm’s existing patents, and
these disclosures are protected by the firm’s patent portfolio. Bhaskarabhatla and Pennings
2012 compare IBM disclosures and patents before and after several antitrust lawsuits, and
claim that IBM was likely to disclose its innovations to deal with the antitrust lawsuits
initiated by the Department of Justice.

The existing literature offers a great start for our foray into the problem of knowledge
disclosure, but our work differs from existing literature in several aspects. First, to our
best knowledge, this research is is the first to address the question of knowledge disclosure
through econometric methods. Relying on the very unique data, this research empirically
tests the strategic defensive disclosures. Second, we provide an alternative explanation for
knowledge disclosure. Namely, the disclosing firm gains by learning from innovations built
upon its knowledge disclosures. This claimed mechanism is supported by rigorous empirical
evidence.
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2.3 Data Description

Since 1958, IBM has been disclosing its innovations on IBM Technical Disclosure Bulletin
(IBM TDB hereafter), a journal published by IBM itself. These published innovations are
called IBM disclosures. Once these innovations are published to the public, they become
part of the “prior art” and IBM automatically gives up its rights on filing patents on them.
These disclosures can also be used by others freely. As described by (Bhaskarabhatla and
Pennings 2012), the in-house selection process on disclosing is implemented by a committee
of IBM innovative directors and IP attorneys. IBM engineers send their innovations to this
committee, and this committee decides which ones to be published on IBM TDB and which
ones to send to the US Patent Office. Of course, the innovations selected for patent filing
need to be rewritten and prepared for the following patent application. The innovations
for publication are usually modified slightly and then published in a length of 2-4 pages.
IBM published the first issue of IBM TDB in 1958. Up to 2000, around 80,000 pieces
of innovations had been published on IBM TDB. Unlike patents, IBM disclosures tend to
be informal and only contain title, inventor name, disclosing year and the content. IBM
disclosures published on IBM TDB do not include the International Patent Classification,
which is generally revealed in patents. In addition, IBM disclosures do not list references,
so the citations of disclosures are also unavailable. Even though IBM disclosures do not
include references, patents citing these disclosures provide citations. Therefore, the missing
information could be partially supplemented by connecting IBM disclosures with patents.

A citing tree originated in IBM innovations is shown in Figure 2.1. This citing tree also
enables us to study the evolution and influence of IBM disclosures. This figure illustrates
the citing relationship between IBM patents, IBM disclosures and other US patents. IBM
patents and IBM disclosures comprise the IBM innovation pool, the root of the citing tree.
The first generation of the citing tree includes patents that cite either IBM patents or IBM
disclosures. The second generation is derived from the first generation, and includes patents
that cite the first-generation patents. We focus on the second-generation patents filed by
firms other than IBM. 1

This citing tree relies on two databases. The first one is Thompson’s patent database.
Besides many other features, this database covers the complete references cited by each
patent. These references include both patents and non-patent references, such as academic
papers and innovation disclosures. The second database is the NBER patent database, which
provides rich information on patents filed from 1976 to 2006. The same database also records
patent citations from 1976 to 2006. Because citations take time to accumulate, we drop the
latest 6 years and use the data from 1976 to 2000.

To create this tree-structured data, we need to connect disclosures with US patents,
which also will enable us to infer several essential characteristics of IBM disclosures. This
match is achieved by two steps. First, we search non-patent citations of all US patents

1This citing tree could keep growing. However as the tree becomes bigger, patents in lower generation
become less relevant to the original innovation pool. For the purpose of studying knowledge diffusion, the
citing tree is restricted to the first two generations.
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Figure 2.1: The Citing Tree
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through Thompson’s patent database and extract all US patents citing IBM disclosures.
This step establishes the basic linkage between IBM disclosures and patents. Based on the
patent citation data in NBER patent database, we could further build the second generation
patents originated in IBM disclosures. The IBM innovation pool on the very top of the citing
tree also consists of IBM patents, so we separate patents filed by IBM from NBER patent
database. Similarly, using the citation data in NBER patent database, we could build the
first generation and the second generation patents originating in IBM patents.

Table 2.1 provides summary statistics on IBM disclosures and IBM patents. In terms of
quantity, IBM patents are more than twice as many as IBM disclosures and cited more.The
average citation is the number of citations averaged cross all IBM patents or IBM disclosures.
The average citation received by IBM patents is much higher than the average citation by
IBM disclosures, suggesting that IBM disclosures are likely to be less valuable and less
significant. In other words, IBM preserves the high quality innovation for patents and only
discloses less substantial ones. The citing gap is defined as the number of years between a
patent’s application year (a disclosure’s publishing year) and the application year of patents
citing this patent (disclosure). This gap reflects the diffusion speed. The average citing gap
for IBM disclosures is about 15 months longer than IBM patents, indicating a higher diffusion
speed for IBM patents. Even though the descriptive statistics show that IBM disclosures
are less substantial and of lower quality than IBM patents, it does not mean that disclosures
are not valuable. IBM disclosures were published regularly and systematically for about
50 years. The volume of IBM disclosures alone exceeds that of patent applications by any
other firms during the same period, except Canon. The average citation received by these
disclosures is above 60% of US patents applied during the same period.

As shown in Table 2.2, more than 60% of IBM patents are cited by IBM. In comparison,
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Table 2.1: Summary Statistics of IBM Disclosures and Patents

No. No. of Citing Patents Average Citations Average Citing Gap (Year)
IBM Disclosures 14,008 23,004 2.13 7.64

IBM Patents 31,424 150,496 15.68 6.42

This first column is the number of IBM disclosures and IBM patents used for this research. The second

column reports the number of patents citing IBM disclosures or IBM patents. The third column calculates

the average citations received by IBM patents or IBM disclosures. The last column shows the average years

taken to be cited by other patents.

only about 40% IBM disclosures are cited by IBM. This implies that IBM disclosures are
less central to IBM’s overall innovation portfolio, which is consistent with the low-quality
nature of disclosures. Moreover, patents cited by IBM receive more citations from others.
For instance, on average, IBM patents cited by IBM receive 16.61 citations from other
inventors, compared with the 7.76 non-self citations received by patents not cited by IBM.
The same pattern exists for IBM disclosures, but at smaller magnitudes. This may indicate
that innovations concentrate in some directions and technologies.

Table 2.2: Citation of IBM Disclosures

Percentage Average Non-self Citations

IBM Disclosures
Cited by IBM 44.40% 2.41

Not Cited by IBM 55.60% 1.91

IBM Patents
Cited by IBM 62.63% 16.61

Not Cited by IBM 37.37% 7.76

The “Percent(%)” in the second column represents the ratio of IBM disclosures or IBM patents cited by

IBM itself. The last column shows the average citations which are not made by IBM.

Table 2.3 reports the summary statistics of patents in the first generation. More than 90%
of patents in the first generation are derived from IBM patents, even though IBM patents
are only about twice as many as IBM disclosures. More detailed analyses reveal that IBM
cites patents in the first generation differently. The first generation patents that cite both
IBM patents and disclosures are utilized by IBM the most. Patents derived from only IBM
patents are also frequently cited by IBM as well, but about 20% less. The first generation
patents originated in only IBM disclosure is the least used by IBM.

Because some patents in the first generation are IBM’s own patents, to better examine the
innovation diffusion in other firms, the bottom panel in Table 2.3 excludes the first generation
patents filed by IBM itself. The general pattern found in the full sample does not change.
Noticeably the number of patents citing both IBM patents and disclosures reduces by over
40%, from 11205 to 7142, but the number of patents in other categories only decreases by
around 10%. It seems that patents originated in both IBM patents and disclosures are more
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Table 2.3: Patents Citing IBM Patents or IBM Disclosures

Including Self Citations

Group No. of Patents Percentage of Patents Cited by IBM

Patents Citing IBM Disclosure only 11,799 29.28%

Patents Citing IBM Patents only 139,291 37.05%

Patents Citing Both 11,205 55.53%

Excluding Self Citations

Group No. of Patents Percentage of Patents Cited by IBM

Patents Citing IBM Disclosure only 10,668 25.69%

Patents Citing IBM Patents only 122,579 33.28%

Patents Citing Both 7,142 44.34%

extensively cited by IBM. IBM patents and disclosures seem to be complements for IBM, as
patents citing both are most intensively used by IBM.

One important aspect of this research is to study the innovation diffusion originated in
IBM disclosures and patents. Thus it is essential to measure the relative closeness of follow-
up innovations to IBM patent portfolio. To do so, we create a distance measure called the
technical distance. There are 883 IPC technical sub classes in patent classification system.
To determine the related technical fields of one particular patents group, we calculate the
distribution of technical classes for some patents group. Then for each patents group, the
vector with 883 elements (technical vector) represents its position in the IPC technical space.
Based on this vector, it is easy to calculate the Euclidean distance between any two groups.
Suppose Vt = (v1t, v2t, . . . , vnt) represents the technical distribution of IBM patent portfolio
in year t, where vit is the percentage of IBM patents in IPC class i in year t. Similarly,
Xj = (x1j, x2j, . . . , xnj) is the technical vector of patent j. Then the technical distance is
defined as djt = ||Vt −Xj|| =

√∑n
i=1(vit − xij)2.

Table 2.4 lists the distance matrix between different groups covering all levels. Among
these pairs, IBM patents are very close to patents citing IBM patents, the first generation
patents in the citing tree. In contrast, IBM patents are very far away from patents citing
IBM disclosure with a technical distance of 14.95. This suggests that IBM disclosures are not
very essential in IBM patent portfolio. The technical distance gets smaller to 7.12 between
IBM patents and the first generation patents citing IBM disclosures and meanwhile cited by
IBM. Most interestingly, although both citing IBM disclosures, patents citing disclosures are
very distant from patents that cite IBM disclosures and also cited by IBM disclosures, with
a distance of 19.46. This distance matrix shows that IBM disclosures lie in the peripheral
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Table 2.4: Technical Distance Between Patents Groups

IBM Patents Patents Citing

IBM Patents

Patents Citing

IBM Disclosure

Patents Citing

Disclosures and

Cited by IBM

IBM Patents 0 4.66 14.95 7.12

Patents Citing IBM Patents 0 18.58 4.40

Patents Citing IBM Disclosures 0 19.46

Patents Citing Disclosures and Cited by IBM 0

region of the entire IBM innovative realm. When IBM selectively uses patents built upon
its own disclosures, the distance gets much closer but not as close as the distance between
IBM patents and patents cited by IBM patents.

2.4 Empirical Strategies

This section first tests the strategic explanation of innovation disclosures. Existing literature
shows that defensive disclosures hurt competitors in patent races or innovation competition.
In the strategic context, disclosures could keep competitors from getting patents or under-
cut the strength of their patents on the related technical field. Unfortunately, we could
not observe a firm’s innovation process, so it is impossible to examine if disclosures block
any competitor’s patents. On the other hand, competitors’ innovations which already filed
patents are observable along with patent characteristics. By identifying disclosure’s impacts
on these patents, we will be able to verify the strategic explanation of innovation disclosures.

The descriptive analyses in the preceding section show that IBM discloses its innovations
on a large scale. Usually the peripheral innovations are published on IBM TDB. Later on,
IBM cited the follow-up patents which were built on its disclosures and not distant from IBM
patent portfolio. Based on these descriptive findings, the empirical section further provides
support on this finding and offers an alternative explanation for firms’ innovation disclosures.

The first part of this section provides empirical tests on the strategic explanations of
disclosures, and the second part explains how IBM could benefit from its disclosures.

Are IBM Disclosures Offensive?

Claim is a measure of patent’s scope and efficacy. The more claims a patent has, the
stronger and wider the patent is. Therefore, if disclosures undercut competitors in patent
races, competitors’ patents built on IBM disclosures will end up with fewer claims, compared
with other similar patents but not built on disclosures. For patents citing IBM disclosures,
we construct a control group which includes patents by the same assignees, same application
year and same IPC sub-class as those patents citing IBM disclosures, but not citing IBM
disclosures.
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Table 2.5: The Number of Claims of the First Generation Patents

Variables
Number of Claims

Full Sample IBM Patents Excluded IBM Patents Only

Cite Disclosure 0.729 0.846 0.818

(0.096)*** (0.113)*** (0.176)***

No. of Backward Citations 0.131 0.131 0.114

(0.003)*** (0.003)*** (0.011)***

No. of Forward Citations 0.092 0.094 0.059

(0.004)*** (0.004)*** (0.004)***

Constant 9.101 8.999 10.258

(0.165)*** (0.178)*** (0.424)***

Application Year Dummy Yes Yes Yes

IPC Class Dummy Yes Yes Yes

R2 0.10 0.10 0.11

N 567,033 536,175 30,858

Robust standard errors in parentheses, * p < 0.1; ** p < 0.05; *** p < 0.01

The empirical equation is as follows:

cli = α + β1ifdci + γXi + λt + ηj + εi, (2.1)

where cli is the number of claims of patent i. ifdci is a binary variable indicating whether
patent i cites any IBM disclosures. Xi is a vector of control variables, including backward
and forward citations of patent i. λt is the application year dummy and ηj is the IPC class
dummy. εi is an idiosyncratic error. The OLS estimation results are listed in Table 2.5. The
first column shows the estimation for the full sample. Compared with the control group, the
first generation patents citing IBM disclosures have more claims, which does not support the
strategic explanation. The second column removes all IBM patents and the third column is
the estimation on only IBM patents. Across these three sample groups, patents citing IBM
disclosures always have more claims.

A patent could cite IBM patents, IBM disclosures, both, or neither, so there are four
different groups: patents citing both IBM patents and disclosures, patents only citing IBM
patents (ifimbpat), patents only citing IBM disclosures (ifboth) and patents citing neither
(ifnone). In the second group of regressions, the citing relation is broken down into these
four cases and patents only citing IBM disclosures are set as the base. ifimbpat, ifboth and
ifnone are binary indicators of these cases.
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cli = α + β1ifibmpati + β2ifbothi + β3ifnonei + γXi + λt + ηj + εi (2.2)

The OLS estimation results are listed in Table 2.6. Patents only citing IBM disclosures
have more claims than patents citing neither IBM patents nor disclosures. Moreover, we find
that patents built upon IBM disclosures or IBM patents also have more claims than those
not citing IBM innovations. This result does not show any evidence that IBM disclosures
jeopardize other firms’ patents. In contrast, IBM disclosures lead to higher quality patents.
Among patents citing IBM innovations, patents citing both IBM patents and IBM disclosures
have the most claims, followed by patents citing only IBM patents. Patents citing only
IBM disclosures have fewer claims than patents citing IBM patents, and this is mainly
because innovation contained in IBM patents is more substantive than IBM disclosures.
The second column of Table 2.6 presents the results when IBM patents are excluded from
the first generation. The effects become stronger. The last column shows the results on IBM
patents. IBM patents citing its own patents and disclosures are stronger than IBM patents
not built on previous IBM innovations. However, citing IBM patents or IBM disclosures
do not have distinct impacts on the quality of IBM patents. After all, empirical results
provide no evidence showing that IBM disclosures weaken citing patents, so that the strategic
explanation of disclosures does not hold in our data.

How IBM Benefits from Disclosing Its Innovations?

This section compares the first-generation patents originated in IBM disclosures and those
originated in IBM patents. Based on these analyses, we propose an alternative explanation
of innovation disclosures. Further, we examine how IBM utilizes the first-generation patents
differently and its impact on the second-generation IBM patents. The first set of regressions
in this part examines the technical distances of the first-generation patents among different
groups. The sample used for these regressions is the same as before, which includes all first-
generation patents and all other patents by the same assignees with the same IPC class and
the same application year.

Using this sample, we estimate the following equation:

di = α + β1ifibmpati + β2ifbothi + β3ifnonei + γXi + λt + ηj + εi, (2.3)

where di is the technical distance between patent i and IBM patent portfolio in patent i’s
application year. The explanatory variables are the same as (2.2). The regression results are
summarized in Table 2.7. The first-generation patents citing IBM patents and IBM disclo-
sures have the shortest technical distance to IBM patent portfolio. Particularly, patenting
citing both are the closest to IBM patent portfolio. Patents citing only IBM disclosures
are relatively distant from patents citing IBM patents. Patents citing neither IBM patents
nor IBM patents have the greatest technical distance to IBM patent portfolio. This pattern
does not change when IBM patents are removed from the sample, as shown in the second
column. For IBM patents, we do not observe differential effects on the distance to IBM
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Table 2.6: The Number of Claims of the First Generation Patents

Variables
Number of Claims

Whole Sample IBM Patents Excluded IBM Patents Only

Cite Neither IBM patents nor Disclosure -0.757 -0.780 -0.862

(0.115)*** (0.123)*** (0.317)***

Only Cite IBM patents 0.226 0.271 -0.199

(0.120)* (0.129)** (0.312)

Cite Both IBM patents and Disclosure 0.665 1.036 0.543

(0.188)*** (0.241)*** (0.348)

No. of Backward Citations 0.124 0.124 0.106

(0.003)*** (0.003)*** (0.011)***

No. of Forward Citations 0.090 0.092 0.059

(0.003)*** (0.004)*** (0.004)***

Constant 9.767 9.710 10.944

(0.198)*** (0.213)*** (0.507)***

Application Year Dummy Yes Yes Yes

IPC Class Dummy Yes Yes Yes

R2 0.10 0.10 0.11

N 567,033 536,175 30,858

Robust standard errors in parentheses, * p < 0.1; ** p < 0.05; *** p < 0.01

patent portfolio between the two groups citing IBM disclosures. However, IBM patents not
built upon any IBM innovations are significantly further away from IBM patent portfolio,
compared with patents citing any IBM innovations.

IBM disclosures do not contain IPC classes. Otherwise we could compute the technical
distance between IBM disclosures and IBM patents directly. However, by comparing the
technical distances of patents citing IBM disclosures and those citing IBM patents, we could
infer that IBM disclosures are less central to IBM patent portfolio. In other words, IBM
discloses peripheral innovations. Or at least, IBM selectively discloses innovations which
are less likely to be used by other firms to create patents close to the core of IBM patents.
However, IBM’s own patents are not impacted by selective disclosure, because the effects
disappear in the regression on IBM patents.

The first generation patents built on IBM disclosures and patents will become inputs
of other patents in the second generation. We have shown that IBM patents and IBM
disclosures lead to different patents in the first generation, hence we next explore if these
innovations are exploited by IBM in different ways. The citing relations between the first-
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Table 2.7: Technical Distance of The First Generation Patents

Variables
Technical Dist

Full Sample IBM Patents Excluded IBM Patents Only

Only Cite IBM patents -0.449 -0.442 0.083

(0.074)*** (0.077)*** (0.261)

Cite Both IBM patents and Disclosure -0.852 -0.831 -0.082

(0.106)*** (0.123)*** (0.283)

Cite No IBM patents nor Disclosure 0.405 0.341 0.77

(0.071)*** (0.073)*** (0.268)***

No. of Backward Citations 0.005 0.004 0.011

(0.001)*** (0.001)*** (0.006)*

No. of Forward Citations 0.016 0.013 0.031

(0.001)*** (0.001)*** (0.003)***

Constant 95.571 95.917 86.612

(0.219)*** (0.229)*** (0.699)***

Application Year Dummy Yes Yes Yes

IPC Class Dummy Yes Yes Yes

R2 0.85 0.84 0.86

N 567,030 536,173 30,857

Robust standard errors in parentheses, * p < 0.1; ** p < 0.05; *** p < 0.01

generation patents and the second-generation patents could reveal how IBM learns from
innovations built upon its patents and disclosures. We still use the same sample as before.
The dependent variable is a binary variable indicating if a patent is cited by IBM. Besides
the explanatory variables used before, this regression also includes cross terms of technical
distance and the citation binary variables in order to capture differential effects of technical
distance on IBM’s citing decisions cross patent groups.

ifcitei = α + β1ifibmpati + β2ifbothi + β3ifnonei + β4di +

β5di ∗ ifibmpati + β6di ∗ ifbothi + β7di ∗ ifnonei + γXi + λt + ηj + εi(2.4)

The equation above is estimated as a linear probability model and the results are pre-
sented in Table 2.8. We see that among the first-generation patents, patents citing IBM’s
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patents or disclosures are more likely to be cited by IBM. This effect is particularly strong
for the patents citing both IBM patents and disclosures. Along with the previous evidence,
this finding once again implies that IBM disclosures and IBM patents are complements.
Together, they not only lead to stronger patents, but also elicit more relevant and useful
patents for IBM. Patents citing only IBM disclosures are cited by IBM more than patents
not built upon any IBM innovations at all.

The coefficients of interactive terms suggest that if the first-generation patents cite IBM
patents, IBM is more likely to cite those patents closer to its patent portfolio., compared
with the first-generation patents citing IBM disclosures only. This effect does not appear
for the first-generation patents citing only IBM disclosures. In other words, even though
patents citing IBM disclosures are more distant from IBM patent portfolio, when IBM cites
these patents, it does not necessarily cite those closer to IBM patent portfolio. Such selective
citing will help IBM extend the boundary of its innovation domain. The scale of these effects
becomes larger when IBM patents are excluded. However, most of these effects disappear in
the regression on IBM patents.

So far, the empirical evidence has shown that IBM disclosures are peripheral to IBM
patents, and IBM is more likely to cite patents built upon IBM disclosures, especially those
not very close to IBM patent portfolio. A natural question that follows is the consequence of
the selective citing and its impact on IBM patents in the second generation. For example, will
the peripheral patents in the first generation lead to less coherent IBM patents in the second
generation? The last set of regressions in this section focuses on the technical distances
of IBM patents in the second generation. Sample used for these regressions include all
IBM patents in the second generation, that is, all IBM patents that cite the first-generation
patents citing IBM patents or IBM disclosures in the root.

According to the citing relations of the first generation patents, we can create series of
binary variables indicating whether the second-generation IBM patents cite patents citing
IBM patents or disclosures in the root. Therefore, ifimbpati, ifbothi and ifnonei in (2.5)
have the same meaning as in previous equations. They refer to the citation relationship of
the first-generation patents instead of the direct citation relationship of IBM patents in the
second generation. di is the technical distance calculated before. OLS estimation is reported
in Table 2.9.

di = α + β1ifibmpati + β2ifbothi + β3ifnonei + γXi + λt + ηj + εi (2.5)

However, IBM patents in the second generation could cite IBM patents or IBM disclosures
directly. Therefore, we create three groups of samples. The first sample includes all IBM
patents in the second generation regardless of their direct citations. The second group
excludes the second-generation IBM patents which cite IBM disclosures directly, as well as
the second-generation IBM patents citing the first-generation IBM patents which cite IBM
disclosures in the root. This group is labeled as “Indirect Citation Excluded” and reported
in the second column of Table 2.9. A more restricted sample group is created in which any
second-generation IBM patents directly citing IBM patents or IBM disclosures are excluded.
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Table 2.8: How IBM Cites the First Generation Patents

Variables
If IBM Cites

Full Sample IBM Patents Excluded IBM Patents Only

Tech Distance -0.036 0.001 -0.126

(0.029) (0.030) (0.078)

Only Cite IBM patents 10.637 14.382 -7.459

(2.813)*** (2.966)*** (6.931)

Cite Both IBM patents and Disclosure 22.261 22.970 2.983

(3.266)*** (3.686)*** (7.274)

Cite Neither IBM patents Nor Disclosure -16.607 -11.859 -14.327

(2.802)*** (2.948)*** (7.159)**

Distance * Only Cite IBM patents -0.057 -0.098 0.118

(0.028)** (0.029)*** (0.074)

Distance * Cite Both IBM patents and Disclosure -0.021 -0.106 0.079

(0.034) (0.038)*** (0.078)

Distance * Cite Neither IBM patents nor DC 0.064 0.036 0.102

(0.028)** (0.029) (0.076)

No. of Backward Citations -0.094 -0.067 -0.084

(0.005)*** (0.005)*** (0.031)***

No. of Forward Citations 0.569 0.55 0.65

(0.021)*** (0.022)*** (0.020)***

Constant 33.059 23.199 70.662

(2.967)*** (3.110)*** (7.634)***

Application Year Dummy Yes Yes Yes

IPC Class Dummy Yes Yes Yes

R2 0.23 0.21 0.17

N 567,030 536,173 30,857

Robust standard errors in parentheses, * p < 0.1; ** p < 0.05; *** p < 0.01
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Table 2.9: How IBM Cites the Second Generation Patents

Variables

Technical Distance

Full Sample Indirect Citation Excluded Direct Citation Excluded

Only Cite IBM patents -0.435 -1.834 -1.834

(0.337) (0.427)*** (0.490)***

Cite Both IBM patents and Disclosure -0.923 -1.970 -2.040

(0.338)*** (0.464)*** (0.529)***

Cite No IBM patents nor Disclosure -0.165 -0.333 -0.430

(0.347) (0.423) (0.484)

No. of Backward Citation 0.013 0.133 0.137

(0.006)** (0.019)*** (0.023)***

No. of Forward Citation 0.031 0.030 0.027

(0.003)*** (0.005)*** (0.005)***

Constant 87.135 92.820 93.185

(0.660)*** (0.673)*** (0.778)***

Application Year Dummy Yes Yes Yes

IPC Class Dummy Yes Yes Yes

R2 0.86 0.81 0.82

N 31,423 12,534 9,518

Robust standard errors in parentheses, * p < 0.1; ** p < 0.05; *** p < 0.01

Patents in the second group could cite the first-generation IBM patents as long as these
IBM patents do not build on IBM disclosures. However, the third sample group excludes
any direct or indirect connections with IBM disclosures and IBM patents. The third group
is labeled as “Direct Citation excluded” in the third column of Table 2.9.

The results indicate that the second-generation IBM patents originated in different in-
novations in the root have different technical distances to IBM patent portfolio. Even in
the most restricted sample, where all direct connections with IBM innovations are excluded,
the effects of IBM disclosures and IBM patents could still reach the second generation. For
instance, the second-generation IBM patents originated in both IBM patents and IBM disclo-
sures in the root are very close to IBM patent portfolio, followed by IBM patents originated
in only IBM patents. IBM patents that originated in only IBM disclosures and IBM patents
that are totally unrelated with any IBM innovations sit on the very outer layer of IBM patent
portfolio. This pattern becomes sharper in the restricted samples, because contamination
through other channels is ruled out. The last empirical evidence proves that IBM disclosures
do help IBM extend its innovation domain by learning from follow-up patents from other
firms.
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2.5 Conclusions

This chapter studies competitive firms’ voluntary innovation disclosures. Building upon
existing literature, this research is one of the very few empirical studies on innovation dis-
closures. This research benefits from a very novel and unique set of data with a complete
coverage of IBM disclosures, IBM patents and patents citing these IBM innovations. We first
examines the strategic explanation of innovation disclosures. Existing literature shows that
in a competitive context, a strategic firm could deter competitors or undercut competitors’
patents by innovation disclosures. Our empirical analyses indicate that patents citing IBM
disclosures in fact have more claims than comparable patents that do not cite IBM disclo-
sures. Thus IBM disclosures do not appear to undercut citing patents, instead, they lead to
stronger patents. We do not find empirical evidence supporting the strategic and defensive
disclosures.

We further investigate how the disclosures diffuse and their impacts on firms’ IP man-
agement. The empirical study reveals that disclosures published by IBM tend to be distant
from IBM patents and less substantial, but IBM is actively learning from follow-up patents
originated in its disclosures. As a result, some IBM patents are on the peripheral of IBM
patent domain. Therefore, IBM could extend its innovation boundary and strengthen the
its innovation portfolio by selectively disclosing its innovations.



64

Bibliography

[1] Victor Aguirregabiria and Pedro Mira. “Sequential estimation of dynamic discrete
games”. In: Econometrica 75.1 (2007), pp. 1–53.

[2] Chunrong Ai and Xiaohong Chen. “Efficient estimation of models with conditional
moment restrictions containing unknown functions”. In: Econometrica 71.6 (2003),
pp. 1795–1843.

[3] James J Anton and Dennis A Yao. “Little patents and big secrets: managing intellectual
property”. In: RAND Journal of Economics (2004), pp. 1–22.

[4] James J Anton and Dennis A Yao. “The sale of ideas: Strategic disclosure, property
rights, and contracting”. In: The Review of Economic Studies 69.3 (2002), pp. 513–531.

[5] Patrick Bajari, C Lanier Benkard, and Jonathan Levin. “Estimating dynamic models
of imperfect competition”. In: Econometrica 75.5 (2007), pp. 1331–1370.

[6] Patrick Bajari et al. “Estimating static models of strategic interactions”. In: Journal
of Business & Economic Statistics 28.4 (2010).

[7] Scott Baker and Claudio Mezzetti. “Disclosure as a Strategy in the Patent Race*”. In:
Journal of Law and Economics 48.1 (2005), pp. 173–194.

[8] C Lanier Benkard, Przemyslaw Jeziorski, and Gabriel Y Weintraub. “Oblivious Equi-
librium for Concentrated Industries”. In: NBER Working Paper w19307 (2013).

[9] Steven Berry, James Levinsohn, and Ariel Pakes. “Automobile prices in market equi-
librium”. In: Econometrica: Journal of the Econometric Society (1995), pp. 841–890.

[10] Steven Berry and Peter Reiss. “Empirical models of entry and market structure”. In:
Handbook of industrial organization 3 (2007), pp. 1845–1886.

[11] Steven T Berry. “Estimation of a Model of Entry in the Airline Industry”. In: Econo-
metrica: Journal of the Econometric Society (1992), pp. 889–917.

[12] Ajay Bhaskarabhatla and Enrico Pennings. Defensive Disclosure under Antitrust En-
forcement. Tech. rep. Tinbergen Institute Discussion Paper, 2012.

[13] Sudipto Bhattacharya and Jay R Ritter. “Innovation and communication: Signalling
with partial disclosure”. In: The Review of Economic Studies 50.2 (1983), pp. 331–346.



BIBLIOGRAPHY 65

[14] Paul A Bjorn and Quang H Vuong. Simultaneous Equations Models for Dummy En-
dogenous Variables: A Game Theoretic Formulation with an Application to Labor Force
Participation. Tech. rep. California Institute of Technology, Division of the Humanities
and Social Sciences, 1984.

[15] Timothy Bresnahan, Joe Orsini, and Pai-Ling Yin. Platform choice by mobile apps
developers. Tech. rep. Working paper, National Bureau of Economic Research, Cam-
bridge, MA, 2014.

[16] Timothy F Bresnahan and Peter C Reiss. “Empirical models of discrete games”. In:
Journal of Econometrics 48.1 (1991), pp. 57–81.

[17] Timothy F Bresnahan and Peter C Reiss. “Entry and competition in concentrated
markets”. In: Journal of Political Economy (1991), pp. 977–1009.

[18] Octavian Carare. “The impact of bestseller rank on demand: evidence from the app
market”. In: International Economic Review 53.3 (2012), pp. 717–742.

[19] Federico Ciliberto and Elie Tamer. “Market structure and multiple equilibria in airline
markets”. In: Econometrica 77.6 (2009), pp. 1791–1828.

[20] Shane Cole. Apple’s iOS brings developers 5x more revenue per download than Android.
Nov. 2013. url: http://appleinsider.com/articles/13/11/27/apples-ios-
brings-developers-5x-more-revenue-per-download-than-android.

[21] Kevin Corti. Mobile games discovery - survey findings. 2013. url: http://evil27games.
wordpress.com/2014/02/11/mobile-games-discovery-survey-findings/.
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