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 7 
ABSTRACT 8 
Predictive reservoir modeling, even if present in the form of only basic hydrogeological model 9 
assumptions, is expected to accompany the majority of carbon capture and sequestration 10 
monitoring activities. It thus represents a source of prior information about the migration of 11 
injected fluids that can benefit geophysical survey planning and ensuing monitoring. 12 
Constraining the imaging of geophysical monitoring data with reservoir modeling is preferable 13 
over standalone geophysical imaging because of additional complementary hydrogeological 14 
information. However, fully coupled hydrogeophysical data inversion for flow-modeling 15 
parameters that control saturation predictions is an involved process. Within the context of three-16 
dimensional electromagnetic (EM) inversion of data from borehole-to-surface layouts, we 17 
employ a "poor people's" alternative. The approach constrains geophysical inversion parameters 18 
through saturation predictions. The coupling is realized through spatially variable lower and 19 
upper parameter bounds that scale with gas saturation magnitudes, the latter provided by 20 
reservoir modeling. Enhancement of three-dimensional time-lapse plume EM imaging is 21 
demonstrated for simulated sequestration into a depleted gas reservoir. 22 

 23 
1. Introduction 24 
Regional-scale deployment of geologic carbon sequestration (GCS) requires reliable stewardship 25 
in form of failsafe monitoring in order to reach industrial maturity (e.g., Arts et al., 2008; Shi et 26 
al., 2008; Ringrose, 2020). Geophysical remote-sensing methods offer the volume coverage 27 
needed for long-term monitoring of regional-scale GCS activities (Gasperikova and Hoversten, 28 
2006; Michael et al., 2010; Jenkins et al., 2015; Davis et al., 2019; Gasperikova et al., 2022; 29 
Tveit and Mannseth, 2022). Among geophysical rock properties, electrical properties have 30 
shown to correlate with saturation levels of stored carbon dioxide (CO2) in a porous system (Kim 31 
et al., 2010; Alemu et al., 2011). Owing to their sensitivity to fluid-induced electrical property 32 
changes and large exploration depths, geophysical controlled-source electromagnetic (CSEM) 33 
methods (e.g., Streich et al., 2010; Wirianto et al., 2010; Vilamajó et al., 2013) and concomitant 34 
CSEM-data inversion methods (e.g., Ayani et al., 2020; Grana et al., 2021; Tveit et al., 2015; 35 
Tveit et al., 2020) have become viable techniques for GCS monitoring.  36 
Typical reservoir depths exceed 800 m in order to meet the pressure and temperature 37 
requirements needed to store CO2 as a supercritical fluid (van der Meer, 1993). Large reservoir 38 
depths render borehole-to-surface electromagnetic (BSEM) surveying as suitable because the 39 
proximity of transmitters to target zones retains its sensitivities (He et al., 2005; Marsala et al., 40 
2011; Gasperikova et al., 2022). BSEM is defined by a borehole-deployed transmitter and a 41 
receiver spread on the surface. Despite its advantage of strategically placing instruments near 42 



zones of interest, a major challenge to deep reservoir monitoring is a typically thin nature of 43 
fluid-confining formations (Marsala et al., 2014). There is growing consensus that vertical 44 
electric dipole (VED) antennas deployed as sources can alleviate this issue because their 45 
dominating EM-wave mode maximizes sensitivities to thin target structures (Wirianto et al., 46 
2010; Girard et al., 2011; Vilamajó et al., 2013; Grayver et al., 2014; Schaller et al., 2014). 47 
While technical feasibility can be regarded as established, we believe that economic feasibility is 48 
an equally important but more overlooked aspect. This contribution simulates a low-cost 49 
scenario by making the BSEM survey design deliberately sparse in terms of the total 50 
instrumentation. While we exploit the resolution advantages of VED sources, the BSEM setup of 51 
our imaging demonstrations implies a volume coverage that is relatively small compared to the 52 
regional target scale. To offset the deficiencies due to a limited instrumentation, we propose the 53 
incorporation of model constraints provided by reservoir modeling. 54 
Reservoir modeling (e.g., Hosseini et al., 2012) can be regarded as some subsurface equivalent to 55 
weather prediction because fluid flow and transport forecasting improves as more monitoring 56 
data becomes available over time. Reservoir models are expected to be a standard part of GCS 57 
site management. Doughty and Oldenburg (2020) use the term operational reservoir model for a 58 
hydrogeologic model that is expected to be initially crude at the pre-injection stage due to a 59 
limited data base. Operational reservoir modeling then involves the assimilation of the 60 
monitoring data stream for an ongoing model improvement. A model that is deemed sufficiently 61 
mature thus provides a free source of prior complementary information to help optimize 62 
geophysical plume-mapping. To offset weak model resolution due to limited instrumentation, we 63 
hence propose to employ flow predictions in order to construct inversion constraints in the form 64 
of target-adapted model parameter bounds. 65 
Spatially variable (lower and upper) model parameter bounds facilitate the incorporation of prior 66 
information as inversion constraints (e.g., Abubakar et al., 2008; Sosa et al., 2013; Aghamiry et 67 
al., 2019; Ogarko et al., 2021), because parameter ranges can be scaled with uncertainties. 68 
Recent studies (Commer et al., 2022) in a crosswell EM context have employed spatially 69 
variable scaling of bound widths under a different premise. For poorly resolved interwell 70 
regions, it was shown that bound intervals that are enlarged with respect to a global default can 71 
benefit the solution-finding process. Principally, this is achieved through diminishing the chance 72 
for a premature convergence towards local solution minima. The approach is related to the 73 
concept of inversion constraints with a spatially varying degree of enforcement in order to 74 
balance out varying sensitivities inherent in a given survey geometry (Yi et al., 2003). In a 75 
similar manner, to locally enhance model fidelity, we augment lower and upper parameter 76 
bounds in zones where operational reservoir modeling predicts significant gas saturation 77 
changes. 78 
For brevity, we will use the abbreviation ORM for operational reservoir model in the following. 79 
Section 2 outlines the hydrogeophysical aspects underlying the construction of spatially variable 80 
parameter bounds from an ORM. These bounds are the input to the constrained inversion of 81 
synthetic BSEM data simulated for a large-scale reservoir model. The inversion approach 82 
presented in Section 3 and results in Section 4 demonstrate that expanded parameter bounds have 83 
the potential to offset weak model resolution in thin target zones that undergo CO2-induced 84 
changes in electrical conductivity. 85 
 86 



2. Hydrogeophysical reservoir modeling 87 
Our EM-imaging experiments are based on a reservoir model that is representative of typical 88 
large-scale depleted natural gas reservoirs in the Sacramento River Delta region of California. 89 
Reservoirs of this kind are prospective candidates for long-term storage. Extensive CO2 plume 90 
evolution simulations by Doughty and Oldenburg (2020) assessed long-term forecasting 91 
uncertainties associated with pressure and saturation evolution. Their simulated scenario 92 
involves 8 Mt/year of CO2 injection over 20 years.  93 
Doughty and Oldenburg (2020) used two types of reservoir flow models: actual and operational 94 
(Fig. 1). The actual model (Fig. 1a) features a complex heterogeneous 3D permeability 95 
representation of a regional-scale geologic model of a depleted gas field. Stochastic modeling 96 
added small-scale spatial model heterogeneity to ensure a more realistic geological complexity. 97 
A high-permeability sandstone layer located between depths of 1.4 and 1.8 km forms the actual 98 
storage reservoir, its thickness averaging roughly 400 m. The storage reservoir is overlain by a 99 
very low permeability shale (not shown in Fig. 1) that serves as cap rock for the reservoir. 100 
Starting from an initially crude vertically-layered representation, a series of progressively more 101 
complex reservoir models was derived. Their complexity reflected incorporation of the gradually 102 
increasing informational content due to the accumulation and history-matching of periodically 103 
sampled pressure, saturation, and gas composition data, simulated for a set of 14 observation 104 
wells. These wells are distributed over approximately 7 × 13 km2 as indicated by black circles in 105 
the horizontal sections of Fig. 1. Fig. 1b shows the estimated permeability model that would be 106 
realistically available to the site operator after 5 years of injection and history-matching of the 107 
corresponding monitoring data.  108 
The actual model represents the (unknown) true state. Synthetic-data generation is based on this 109 
model. The ORM represents the best available approximation to the true state at the time 5 years 110 
after start of injection (at time zero). Geophysical inversion constraints will be constructed from 111 
this model. 112 
 113 
2.1. Geophysical monitoring objective: time-lapse gas saturation changes 114 
Our monitoring objective employs the 5-year ORM (Fig. 1b) for making gas-saturation 115 
predictions for up to 12 years. Note that the 5-year timeframe refers to model maturity. In a real-116 
world case, this maturity would be attained by history-matching the monitoring data collected up 117 
to 5 years. Predicting the reservoir state up to 12 years hence translates to matching the 5-year 118 
monitoring history and forecasting the 7 following years. Fig. 2 (left column) compares the 12-119 
year forecast of gas saturations between the actual model (a) and (b) the ORM. Striking is the 120 
more heterogeneous distribution of zones of altered gas saturations at 12 years in the actual 121 
model (compare subplots of left plot column). While the match is poor on a fine-scale, the ORM 122 
appears to reproduce regions of heightened saturations on a gross scale.   123 
Gas saturation includes CH4 (methane) and CO2. Isolated pockets of gas as visible in Fig. 2a 124 
(left) have different origins. First, residual free-phase CH4 is initially trapped in some attic 125 
regions forming static accumulations. Second, over the course of injection, degassed CH4 can 126 
form due to addition of CO2. Third, injection-induced changes in pressure and composition can 127 
create isolated free-phase CO2 out of dissolved CO2 as the latter is present more widely. 128 



Our inversion objective is based on earlier assessments about the storage potential of the 129 
Sacramento River Delta region (Oldenburg et al., 2001). The region hosts many geological 130 
structures with gas storage capacity. Reinjecting gas into a depleted reservoir associates the 131 
question of permanence with properly forecasting where buoyant rise would make the gas 132 
accumulate over time. Therefore, we choose the attic region underneath the caprock (indicated as 133 
Northern attic in Fig. 1 and Fig. 2) as focus area as it is representative for locally closed high-134 
permeability structures that are crucial as long-term repositories. To predict saturation changes 135 
due to fluid transfer and substitution processes, we choose the time span between 8 and 12 years. 136 
Fig. 2a (right column) exhibits that the particular permeability makeup of the actual model leads 137 
to significant saturation changes within this time interval. Properly forecasting these changes in 138 
the reservoir cap region can aid the reduction of reservoir performance uncertainty. 139 
The ORM's prediction of the time-lapse saturation change between 8 and 12 years (Fig. 2b, right 140 
column) appears similar to the absolute saturations: there exists agreement on a gross scale; 141 
however, saturation changes in the Northern attic region appear with an error in the predicted 142 
elevation. Our objective thus also involves the question to what degree deviations from the true 143 
case would corrupt geophysical-data inversions that use prior information derived from the 144 
ORM. 145 
 146 

2.2. Petrophysical transformation of the reservoir model 147 
Petrophysical transformation functions are the key linking elements between two physical 148 
systems: the reservoir flow model and the geophysical model for EM data simulation. The 149 
petrophysical relationship derived in the following establishes a connection between rock 150 
properties that control fluid transport and electrical properties. 151 
Synthetic geophysical EM data creation is based on the actual permeability model (Fig. 1a) and 152 
its corresponding hydrogeological flow state during CO2 injection. In a first step, the function 153 

𝜌& =
𝜌()*

1 + 𝛼(𝑇 − 18) 
(1) 

calculates pore fluid electrical resistivity 𝜌& (with unit Ωm) from temperature T and content c of 154 
total dissolved solids (TDS), the latter affecting the reference resistivity at 18 degrees Celsius, 155 

𝜌()* =
4567
89.;<=

. (2) 

Eq. (1) uses the constant 𝛼 = 0.025 which together with the constants in Eq. (2) reflects the 156 
temperature dependence of electrical resistivity as detailed by Hayashi (2004). These constants 157 
are chosen here as representative for the bulk resistivity 𝜌A of the Sacramento River Delta region 158 
expressed by means of Archie's law, 159 

𝜌A = 𝑎𝜙DE𝜌&, (3) 

where 𝑎 = 1, 𝜙 is porosity, and the cementation exponent 𝑚 varies between 1.1 for clay layers 160 
and 2 for sand layers. The bulk resistivity value of each model grid cell results from Eq. (3) and 161 
the cell's gas saturation value 𝑆H, 162 

 𝜌 = (
I
= JK

((DLM)N
, (4) 



using a constant exponent of 𝑛 = 2. Our imaging method operates on the electrical conductivity 163 
𝜎 = (

J
 (with unit S/m). Eq. (4) represents the final petrophysical transformation function linking 164 

the (geophysical) 𝜎-model to the reservoir flow model. 165 

 166 
2.3. BSEM survey layout 167 
Eqs. (1)-(4) represent the hydrogeophysical linkage between the modeling of the reservoir states 168 
of interest (between 8 and 12 years) and the corresponding geophysical property evolution. The 169 
outcome of Eq. (4) produces the model of electrical rock resistivity used to calculate synthetic 170 
data of a BSEM layout shown in Fig. 2. Recall that these data calculations are based on the 𝜌-171 
distribution originating from the actual reservoir model. Synthetic data are given as electric fields 172 
that would be excited by borehole source antennas and measured via the surface electrode array. 173 
The employed controlled-source EM forward-modeling algorithm approximates Maxwell's 174 
equations on a finite-difference grid representing the geophysical modeling domain. 175 
Computational and algorithmic details can be found in the work of Commer and Newman 176 
(2008). 177 
CSEM sources are deployed in monitoring wells U1 and U2 (indicated in Fig. 1 and Fig. 2). The 178 
sources are vertical electric dipole antennas with a length of 50 m, centered at a depth of 1850 m. 179 
We simulate data for both sources at four frequencies, 0.25, 0.5, 1, and 2 Hz. There are 13 north-180 
south oriented receiver profiles spaced 250 m apart (along the Easting direction), with a receiver 181 
separation of 125 m (along the Northing direction). Two perpendicular electric-field 182 
components, Ex (parallel to Easting) and Ey (parallel to Northing) are recorded at 45 receiver 183 
stations per profile, thus amounting to a total of 585 stations and 1170 complex electric field data 184 
points per source frequency.  185 
Magnitudes of artificial noise imposed on the synthetic data are based upon 0.5 % of the data 186 
amplitude and an additional noise floor of 10-12 V/m (normalized to unit dipole moment). 187 
Theoretical estimates for sensor noise-floor limits were reported between 10-14 V/m (Streich et 188 
al., 2010) to 10-13 V/m (Wirianto et al., 2010).  189 

 190 
2.4. Simulating operational model uncertainty 191 
Uncertainty in the understanding of reservoir processes is prevalent owing to monitoring data 192 
that is always insufficient in view of the reservoir system's size and complexity. Uncertainties 193 
associated with the history-matching process and the ensuing incompleteness of a given state-of-194 
the-art reservoir model have been discussed at length (e.g., Subbey et al., 2004; Ma, 2011). Our 195 
scope touches on synthetic uncertainty, namely, does the ORM's incompleteness with respect to 196 
the actual model properly reflect the degree of incompleteness one would face in a corresponding 197 
real-world case? 198 
Table 1 of Doughty and Oldenburg (2020) details reservoir properties of the actual model and 199 
the initial (at 0 years) ORM. Without going too much into detail, we reiterate here that the 200 
difference in permeability distribution, three-dimensionally heterogeneous versus layered (Fig. 201 
1), already precludes the ORM from achieving a perfect data fit. Moreover, the ORM uses 202 
simpler relative permeability and capillary pressure functions. While both are based on the van 203 
Genuchten (1980) formulation, the actual model includes hysteresis and all function parameters 204 



depend on permeability. In contrast, the ORM is non-hysteretic and only the parameter capillary 205 
pressure strength depends on permeability via Leverett scaling. 206 
The following initial reservoir conditions match their actuals by the 5-year stage of the ORM: 207 
Initial (hydrostatic) pressure, temperature (using a geothermal gradient), initial CH4 (methane) 208 
distribution, and vertical salinity profile as derived from regional estimates by Kang and Jackson 209 
(2016). Note that CH4 is initially absent and only becomes an added feature in the 5-year ORM. 210 
One could argue that a more realistic simulation of an incomplete ORM would involve more 211 
deviating initial conditions. However, assuming the existence of prior knowledge due to the 212 
site’s depletion history, realistic deviations would not significantly affect the degree of error that 213 
is already present in the saturation predictions (Fig. 2). In other words, fine-scale improvements 214 
in the saturation prediction will not affect the geophysical plume imaging as the latter only 215 
requires a gross-scale saturation profile. More of these aspects are also discussed further below. 216 

 217 
3. Constrained inversion of BSEM data 218 
The total number of estimated parameters that make up the geophysical inversion domain 219 
amounts to 1,538,974 active finite-difference grid cells, where each cell hosts an electrical-220 
conductivity parameter. The large discrepancy between the sizes of the parameter and data 221 
spaces causes solution ambiguity rendering the inverse problem ill-posed. Bound constraints aim 222 
at reducing the ambiguity by narrowing the solution space in zones where physical property 223 
ranges are known prior to inversion. The common approach reduces bound intervals according to 224 
the prior information's certainty (e.g., Kim and Kim, 2011). Our approach differs by widening 225 
bound intervals in zones where the ORM suggests significant time-lapse property changes. In the 226 
following, we describe the method of mapping the degree of gas saturation changes to its 227 
function parameters controlling spatially variable bound widths. The general concept of bound 228 
constraints was introduced earlier together with our employed inversion algorithm (Commer and 229 
Newman, 2008). The algorithm employs a non-linear conjugate gradient (NLCG) scheme which 230 
uses a line-search based upon quadratic interpolation, safeguarded with backtracking. 231 
Logarithmically transformed model parameters define the search space, which facilitates bound 232 
constraints as logarithmic functions are amenable to inequality constraints. 233 
3.1. Spatially variable lower and upper parameter bounds for enhanced model resolution 234 
Lower and upper parameter bounds are also known as inequality constraints (e.g., Kim et al., 235 
1999) and are abbreviated by a and b in the following. Inequality refers to the evolution of a 236 
model parameter m during an inversion process, so that m is bounded by 𝑎 < 𝑚 < 𝑏. In order to 237 
impose a positivity constraint on electrical conductivity, the bounds usually occur in conjunction 238 
with logarithmic or hyperbolic types of parameter transformation functions. Generalized 239 
functions were formulated by Kim and Kim (2011), 240 

𝑥 = (
T
log XEDY

ADE
Z = [

T
tanhD( X[EDADY

ADY
Z ; 							𝑎 < 𝑚 < 𝑏, (5) 

where x is the transformed parameter and n is a positive integer constant. Our studies employ a 241 
version realized by 𝑛 = 1. Other choices for 𝑛 are discussed by Kim and Kim (2011). 242 
Transforming x back into the original model parameter space then leads to (Commer and 243 
Newman, 2008) 244 



𝑚 = YbA	exp(f)
(bexp(f)

; 						−∞ < 𝑥 < ∞. (6) 

Constant bounds may be most suitable for inversion applications where no prior information is 245 
available, that is, the bound interval [𝑎, 𝑏] applies to every cell parameter 𝑚k (𝑖 = 1,… ,𝑀) of the 246 
finite-difference mesh representing the inversion domain. In the presence of location-dependent 247 
prior information, [𝑎, 𝑏] can become spatially variable so that each cell 𝑚k is subjected to an 248 
individual bounding interval [𝑎k, 𝑏k].  249 
 250 

 251 
3.2. Designing bounds from gas-saturation predictions 252 
Gas saturation predictions provide the basis for constructing lower and upper conductivity 253 
parameter bounds in order to achieve a local resolution-enhancing effect. The general approach 254 
is to widen a preset default bound interval [𝑎, 𝑏] = [10D4, 1.5] S/m within regions of interest, so 255 
that [𝑎, 𝑏] becomes [𝑎 ∙ 𝑓Y, 𝑏 ∙ 𝑓A] with positive factors 𝑓Y and 𝑓A. The choice of the default 256 
bounds are based on estimates of extremal conductivity values that result from reservoir 257 
modeling over the whole 12-year period of interest. The focus regions are linked to injection-258 
induced gas saturation changes predicted from the ORM (Fig. 2b). With the focus being on 259 
delineating gas saturation changes between year 8 (quantified by 𝑆H

q)r) and year 12 (𝑆H
([r), the 260 

zones of interest are defined by their absolute percentage saturation change 261 

sΔSH%s = w
𝑆H
([r − 𝑆H

q)r

𝑆H
q)r w ∙ 100 

(7) 

exceeding a given threshold ΔSHxyz%. This threshold is set to ΔSHxyz% = 5 % which is the 262 
minimum gas saturation change in percent that has to occur in order to augment the default 263 
interval [𝑎, 𝑏]. In practice, the widening is achieved through two factors, 𝑓Y =

(
&{K(f,r,|)

 and 𝑓A =264 
𝑓}A(𝑥, 𝑦, 𝑧), applied to [𝑎, 𝑏] so that the interval becomes spatially variable, [𝑎, 𝑏] →265 
� Y
&{K
, 𝑏 ∙ 𝑓}A�.  266 

Dividing by the lower-bound factor 𝑓�A = 𝑓�A�ΔSH%� decreases the lower bound a. In our 267 
particular case, 𝑓�A varies linearly between 1 and 100, i.e. 𝑓�A�ΔSH% = 0� = 1 and 268 
𝑓�A�ΔSH% ≥ 100� = 100. Hence, with higher saturation changes, the lower bound decreases up to 269 
a minimum of  𝑎 100� . Enlarging the upper bound is achieved via multiplication of b with the 270 
factor 𝑓}A, which varies linearly between 1 and 10, i.e. 𝑓}A�ΔSH% = 0� = 1 and 𝑓}A�ΔSH% ≥271 
100� = 10. The default bound interval thus increases to an extremum of [𝑎EkT, 𝑏EYf] =272 
[10D5, 15] S/m.  273 
Setting the expansion factor for the lower bounds an order of magnitude larger than for the upper 274 
bounds reflects the fact that positive gas saturation changes and corresponding conductivity 275 
decreases dominate over the 12-year simulation period. Undocumented trial inversions with 276 
larger expansion factors, for example 𝑓�A�ΔSH% ≥ 100� = 1000 and 𝑓}A�ΔSH% ≥ 100� = 100, 277 
revealed no significant differences in the inversion outcome. Fig. 3 illustrates both bound 278 
extremes, the lower-bound (left) range [𝑎EkT, 𝑎EYf] and the upper-bound (right) range 279 



[𝑏EkT, 𝑏EYf], for one vertical cross section. The selected plane is parallel to the Northing axes 280 
and cuts through the Easting coordinate at E=240 m. 281 

Bounds construction starts by feeding the saturation 𝑆H
q)r and 𝑆H

([r, calculated from the ORM, to 282 
Eq. (7). The output are sets of lower and upper bounds with augmented intervals for zones where 283 
the 5-%-threshold criterion is met. Upon input of the inversion's starting model, an individual 284 
bound pair 𝑎k, 𝑏k is then assigned to each cell parameter 𝑚k of the inversion domain. 285 

 286 
3.3. Gradient weighting and parameter masking 287 
In addition to parameter bounds, we employ two other approaches that essentially impose 288 
constraints on the NLCG inversion process, namely gradient weighting and parameter masking. 289 
However, we abstain from a study that would systematically investigate the interplay of all three 290 
constraining methods as this would go beyond our intended scope. More systematic studies of 291 
combinations of different constraints were carried out by Portniaguine and Zhdanov (1999) and 292 
Boulanger and Chouteau (2001) in the context of gravity data inversion. Here, we use both 293 
gradient weighting and parameter masking in a rather empirical manner owing to their 294 
individually demonstrated benefit. 295 
Gradient weighting as used in this work is a method of assigning weighting factors to each 296 
component of the gradient vector g of the NLCG scheme. The gradient vector g contains 297 
derivative information and is at the base of optimizing the direction of the line-search in model 298 
space. Methodological details and successful application of gradient weighting within the same 299 
NLCG scheme were demonstrated earlier (Commer et al., 2016). Principally, high sensitivities of 300 
cell parameters 𝑚k pertaining to regions near surface spreads or instrumented wells are damped 301 
through assigning weighting factors 𝑤k < 1. The corresponding weighted gradient component 302 
𝑤k𝑔k then becomes down-weighted with respect to cells in unweighted model regions. Similar to 303 
the bound constraints, gradient weighting basically boosts the NLCG line-search in areas of low 304 
sensitivity, causing weak resolution, at the expense of high-sensitivity zones. For BSEM, the 305 
desired effect is to nudge model updates away from the vicinity of transmitters and receivers, 306 
where sensitivities are high, towards less resolved center regions. 307 
Parameter masking as employed here is a straightforward way of disabling an arbitrary subset of 308 
cell parameters of a rectangular inversion domain. Geological horizons derived from seismic 309 
data usually provide the prior information needed to define parameter masks (e.g., Hoversten et 310 
al., 2021). We employ the upper horizon shown in Fig. 4 in order to deactivate all mesh cell 311 
parameters that are above it. The underlying assumption is a no-leakage scenario, that is, our 312 
imaging objective does not consider the case of buoyancy-driven gas flow into the caprock. The 313 
present inversion study assumes that the background geology above the delineating seismic 314 
horizon would be known from preliminary baseline (pre-injection) data inversions and prior 315 
information. 316 

 317 
3.3. Sequential inversion scheme 318 
Delineating property changes between the two observation times (8 years and 12 years after the 319 
start of injection) involves a three-step inversion procedure. Three inversion runs pertain to the 320 
refinement of the baseline (pre-injection) model and, with respect to this baseline, the delineation 321 



of fluid-induced anomalous resistivity alterations after 8 and 12 years. Synthetic time-lapse data 322 
for these inversions are obtained by using the actual reservoir model and the BSEM 323 
configuration for three times, referred to as Year00, Year08, and Year12. For these times, Eqs. 324 
(1)-(4) convert the corresponding flow properties (porosity, saturation, and content of TDS) to 325 
electrical conductivity (𝜎).	326 
The first step of the inversion sequence refines the 3D baseline model. Fig. 4 shows slices along 327 
the Northing direction for the initial 𝜎-distribution resulting from the transform of the pre-328 
injection state calculated for the actual (left) and ORM (right). The latter one is the starting 329 
model for the first NLCG inversion sweep which refines the pre-injection state (at year 0) below 330 
the upper seismic horizon (annotated in Fig. 4, cell parameters are fixed above). The output 331 
𝜎(Year00) serves as the starting model for the second inversion sweep, estimating the 𝜎-332 
distribution after 8 years of injection. In the third sweep, the estimated model 𝜎(Year08) then 333 
becomes the initial guess for the delineation of the plume after 12 years of injection, the output 334 
referred to as 𝜎(Year12).  335 
We perform the three-step inversion sequence twice in a comparative way. The first sequence 336 
uses constant lower and upper parameter bounds [𝑎, 𝑏] = [10D5, 15] S/m; the second uses 337 
variable bounds (Fig. 3), [𝑎, 𝑏] = � Y

&{K
, 𝑏 ∙ 𝑓}A�, that widen according to the factors 𝑓�A and 𝑓}A as 338 

described above. Variable bounds are active only for the estimation of the Year08 and Year12 339 
states, that is, both inversion sequences employ constant bounds for the Year00-inversion. Note 340 
that the constant-bound sequence uses the extremal interval [𝑎EkT, 𝑏EYf] occurring in the 341 
variable-bound inversion sequence. The initial reasoning for a globally wide interval was to let 342 
the inversion practically be unbounded in order to avoid any bias due to potentially too tight 343 
bounds. However, other undocumented trial inversion experiments with the narrower default 344 
bound interval [𝑎, 𝑏] = [10D4, 1.5] S/m yielded no significant difference in the final model 345 
outcomes. 346 
Computing times amounted to a total of 126 hours for the inversion sequence with constant 347 
bounds versus 147 total hours for the variable-bounds sequence. All inversions employed 250 348 
cores of a cluster architecture with Intel Cascade Lake processor compute nodes (40 cores per 349 
node) connected with a Mellanox EDR infiniband fabric.  350 
  351 

 352 
4. Results and Discussion 353 

The final plume image output is represented in Fig. 5 as differences in 𝜎 between the estimated 354 
Year08 and Year12 models. We compare the differences ∆𝜎 = 𝜎(Year12) − 𝜎(Year08) in 355 
percent for two realizations of the three-step sequential inversion outlined above. The first uses 356 
constant bounds, the second uses spatially variable bounds. Fig. 5a shows the true distribution 357 
∆𝜎xz}� which is calculated from the petrophysical transform of the actual reservoir model state at 358 
Year08 and Year12. Fig. 5b and Fig. 5c compare the estimated counterparts, these are, 359 
respectively, the differences ∆𝜎8�T (constant bounds) and  ∆𝜎�Yz (variable bounds). Negative 360 
changes greatly dominate in the actual outcome ∆𝜎xz}� and are visualized here since our 361 
inversion objective focuses on the time-lapse accumulation of CO2 which causes negative time-362 
lapse changes. 363 



Most notable between the two estimates ∆𝜎8�T and  ∆𝜎�Yz is a lack of delineation of any 364 
property changes in zones of interest away from the injection well for the image ∆𝜎8�T. In 365 
contrast, ∆𝜎�Yz exhibits the fluid-induced property alterations across the regional scale. The 366 
variable-bound method thus yields indicators for negative time-lapse changes associated with 367 
CO2 accumulation and migration. Deviations from the true case manifest in an overestimated 368 
volume undergoing fluid-induced conductivity alterations in the Northern attic region. 369 
Concurrently, conductivity decreases in the region around the wells U1 and U2 remain 370 
underestimated in terms of their magnitudes. 371 
A certain degree of image blurring can be expected from CSEM inversions of low-frequency 372 
data, because model resolution is limited due to corresponding large wavelengths of the 373 
generated EM fields. However, despite the low resolution and the limited coverage using two 374 
transmitter wells, the final image of ∆𝜎�Yz is sufficient to support predictions of CO2-375 
breakthrough in the Northern attic region (Fig. 2b) with first-order accuracy. For this zone, Fig. 2 376 
revealed a discrepancy in the elevation of predicted saturation changes (between Year08 and 377 
Year12). This discrepancy appears only marginally in the image ∆𝜎�Yz. 378 
The large image improvement provided by the modified bounds indicates an optimization of the 379 
model-updating line-search procedure. In essence, the method translates to steering and scaling 380 
the conjugate search direction of our NLCG inversion scheme such that it more closely 381 
resembles the Newton direction. The latter is characterized by faster convergence and less 382 
potential for a premature end of the line-search in a local minimum, yet is computationally very 383 
expensive. This point of view also hints at a resemblance with the method of regularized 384 
focusing inversion (Portniaguine and Zhdanov, 1999), where stabilizing functionals convey prior 385 
information with the goal of image focusing.  386 
 387 
5. Conclusions 388 
Spatially variable lower and upper parameter bounds provide a straightforward way of 389 
incorporating prior model information in an inversion workflow. Our example inversion studies 390 
demonstrated that such prior model information can be obtained through rough spatial estimates 391 
of anticipated fluid-induced property alterations. Regions of property alterations that qualify as 392 
anomalous with respect to the property range of the underlying baseline geology are target zones 393 
of interest in time-lapse imaging problems. Prior-model information of such target zones 394 
translates to enlarged bound intervals. Our inversion study demonstrated that widened bound 395 
intervals can selectively enhance model resolution in target zones. Spatially balanced bounds can 396 
thus greatly improve the imaging process through their potential of steering the NLCG search 397 
direction away from local solution minima. 398 
Since reservoir modeling will likely be a minimum required tool for GCS site management, it 399 
represents an inexpensive source of auxiliary information for constraining geophysical plume 400 
imaging problems. One may thus call the presented method a "poor people's approach" to 401 
hydrogeophysical data analysis, because inexpensive also holds for the relative simplicity in 402 
incorporating flow information as parameter bounds. Approximate bound intervals make the 403 
method somewhat forgiving towards petrophysical uncertainties while still constraining 404 
geophysical parameter estimation to the physical processes of the flow system. In contrast, more 405 
rigorous and involved fully-coupled hydrogeophysical joint inversion approaches are generally 406 
susceptible towards erroneous petrophysical relationships (e.g., Sun and Li, 2017). 407 



In light of a need for cost-effective monitoring, our synthetic experiments consider limitations 408 
likely present at future GCS sites. A relatively sparse volume coverage results from employing 409 
two existing monitoring wells for source deployment. However, fluid-induced conductivity 410 
alterations could still be mapped, suggesting that the variable-bounds concept can help offset 411 
model resolution loss due to limited survey coverage. 412 
While we deem the simulated BSEM survey layout as relatively economic, more involved 413 
studies similar to the works of Eidsvik et al. (2008) and Trainor-Guitton et al. (2014) could 414 
figure out an informative cost measure in form of a benefit-cost ratio. Such a measure would 415 
essentially help the operator decide whether the BSEM data's added value in form of more 416 
accurate plume predictions outweighs the survey costs. Eidsvik et al. (2008) used the decision-417 
theoretic concept of value of information (VOI) with rock physics and spatial statistics in order 418 
to compare the value of seismic amplitude-versus-offset data against CSEM. In our case, this 419 
comparison would be between well-based reservoir monitoring data against BSEM data.  420 

Trainor-Guitton et al. (2014) presented a VOI methodology that quantifies the impact of 421 
inaccuracies of multidimensional geophysical inversions on geothermal resource identification. 422 
Translated to GCS contexts, a VOI assessment of constrained EM data inversions as presented 423 
here might help analyze aspects of interest to the operator that go beyond cost, for example 424 
leakage risk and environmental impact. 425 

A final related comment concerns ORM uncertainty, as discussed in Section 2.4., as a major 426 
factor influencing VOI of BSEM monitoring. Despite fairly significant deviations from the 427 
actual model, the 5-year ORM produced a gross-scale match of the actual gas saturation that 428 
turned out sufficient for the bound construction and ensuing delineation of anticipated target 429 
zones. A follow-up study similar to Harp et al. (2019) would investigate at what point larger 430 
deviations, caused by larger ORM parameter errors, would render the BSEM imaging outcome 431 
too distorted. Harp et al. (2019) developed a metric for quantifying the degree to which ORM 432 
parameters can deviate from their actuals without violating preset reservoir performance criteria. 433 
We envision a similar kind of robustness measure for assessing when an ORM may become too 434 
erroneous for properly constraining geophysical reservoir imaging. 435 
 436 
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 592 
Fig. 1: Actual (a) and operational (b) permeability model. Vertical slices (lower subplots) are 593 
along the diagonal (A-A', dashed) line and show the stratified reservoir heterogeneity with high-594 
permeability attic zones. The actual model features vertical faults as black line segments (one 595 
blue line in the simplified model). Vertical exaggeration is two times. Note that the (x-y) plan 596 
views are not horizontal as they are a projection of the top layer in the reservoir model.  597 
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 599 
 600 
Fig. 2: Gas saturation predictions calculated from the actual (a) and 5-year operational (b) 601 
reservoir flow model. The right plot column shows gas saturation differences between 602 
predictions made at 8 and 12 years. Each monitoring well U1 and U2 hosts one borehole EM 603 
transmitter at a depth of 1850 m, sourcing the shown surface receiver grid. Receiver profiles 604 
extend from y=-1500 m to y=4000 m, with a station interval of Dy=125 m. 605 
 606 



 607 
Fig. 3: Augmented lower and upper parameter bounds. The example cross sections are through 608 
the Easting coordinate E=240 m. 609 
 610 

 611 

 612 
Fig. 4: Petrophysical transform of the actual (left) and operational (right) flow model into the 613 
baseline (Year00) electrical conductivity. Conductivities derived from the operational model 614 
serve as the initial model guess for the inversion that refines the Year00 (pre-injection) model 615 



below the upper seismic horizon (indicated by the white lines). The upper horizon delineates the 616 
upper boundary of the inversion domain. 617 



 618 



Fig. 5: Electrical conductivity change ∆𝜎 = 𝜎(Year12) − 𝜎(Year08) resulting from the 619 
corresponding gas saturation changes between Year08 and Year12. (a) True difference ∆𝜎xz}� 620 
calculated from the actual model. (b) Estimated difference ∆𝜎8�T resulting from the constant-621 
bound inversion sequence. (c) Estimated difference ∆𝜎�Yz resulting from the variable-bound 622 
inversion sequence. 623 
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