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Abstract

System Design and Dynamic Signature Identi�cation for
Intelligent Energy Management in Residential Buildings

by

Jaehwi Jang

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor David M. Auslander, Chair

Increasing energy demand from residential buildings and evolving utility pricing policy to

regulate energy use during peak times require a new paradigm for energy management in

residential buildings. As a prototype for intelligent energy management systems of resi-

dential buildings, DREAM (Demand Responsive Electrical Appliance Manager), based on

a wireless sensor network, was developed. This autonomous system consisting of wireless

sensors and actuators, a graphical user interface, and a main control reduces peak electrical

demand and ultimately optimizes energy management by identifying house dynamic signa-

ture as well as occupant thermal preference and patterns. In summer 2007, functionality

and overall performance were evaluated with two �eld tests and showed promise for the

DREAM system.

Due to signi�cance of the house dynamic signature learning in an intelligent energy

management system, three approaches were studied. Despite the simplicity of the model

and success in identifying thermal characteristics of a house, the 1st order di�erential equa-

tion method, which considered thermal in�uences of �ve heat sources, showed limitations

in representing actual temperature behavior delicately. The tabular method was suggested

to capture house nonlinear behavior by learning temperature change rate with respect to
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di�erent events and periods. The prediction using the tabular method followed the actual

measured temperature within a tolerable error range, except for a relatively long heater-

on event. The last method, the ARX model �tting method, provided the best prediction

result, but the performance was considerably in�uenced by the choice of sample data for

parameter learning.

The multiple-model switching algorithm was proposed to minimize performance incon-

sistency in the ARX model �tting method. Instead of sticking to one model, it allows

several candidates whose parameters are calculated from seven consecutive days, and se-

lects one (multiple-model hard switching [MMHS]) or fuses all (multiple-model soft switch-

ing [MMSS]). Depending on the criterion to select or weight a candidate, the algorithm

is divided into proximity-based model switching and applicability-based model switching.

Overall, the MMSS showed better performance than the MMHS and, most of all, the

applicability-based MMSS algorithm dramatically improved the prediction quality when

anomalies in data were properly �ltered.

All algorithms in this study were evaluated with the real data that were collected from

more than 20 occupied houses in Northern California, Minnesota, and South Australia.

Professor David M. Auslander
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Motivation

There has been an increasing interest in building control. This increasing interest can be

considered natural in that a building is where humans spend most of their daily lives. As

a building got equipped with heavy energy-consuming appliances such as air-conditioners,

refrigerators, and water heaters, it became an object that should be under control. Ac-

cording to the Quarterly Fuel and Energy Report (QFER) data from California Energy

Commission, 2006, electricity use by residential and commercial buildings accounted for

68% of total electricity use in California in 2005. Growing energy demand is pushing peo-

ple to �nd a new methodology that requires less energy consumption without sacri�cing

comfort in the building.

Since the concept of intelligent buildings was introduced in the early 1980s, many com-

mercial buildings have been labeled as intelligent buildings. The �rst generation intelligent

buildings consisted of one or more independent intelligent devices such as a lighting control

system, an HVAC system, and a security system. Since the individual system was con-

trolled by its own controller, information �ow between systems was fundamentally blocked.

The second generation combined the disaggregated control systems by sharing information,

1
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which allowed high-level control strategies. The third generation of intelligent buildings in-

cludes self-regulating capabilities that adapt to dynamic changes of human requirement

and environment [1, 2, 3].

Although energy use by residential buildings is signi�cantly increasing, most research

in the area of building control has been concentrated on commercial buildings. The strong

inclination to commercial buildings is rooted in relative e�ectiveness per system by a smart

controller as well as by signi�cant energy policy. A commercial building is a more convenient

object than residential building from a control point of view since it has less uncertainty

in occupant behavior and smaller variation in thermal properties over time. A time-of-day

dependent utility pricing rate also stimulates building scientists' and engineers' interests in

the intelligent building control for energy-saving or cost-saving.

The State of California began to recognize that peak electricity use mainly concentrated

in hot summer periods can be redistributed by applying a dynamic pricing rate to residen-

tial buildings. In order to respond to the new pricing policy, a new energy management

system for a residential building is inevitable. Accordingly, the thermostat control group

led by Prof. David Auslander in Mechanical Engineering and Prof. Edward Arens in Ar-

chitecture of University of California, Berkeley has developed a prototype of a smart energy

management system speci�cally for residential buildings. This system, DREAM (Demand

Responsive Electrical Appliance Manager), maximizes functional e�ciency by disaggregat-

ing the elements of a conventional thermostat as well as intensifying autonomous control.

This system is based on a new paradigm and shows promise in e�cient energy management

for residential buildings.

One of the fundamental tasks in autonomous building control must be system identi�ca-

tion (or dynamic signature learning). A successful identi�cation process allows a controller

to predict house thermal behavior within a tolerable error and ultimately make an opti-

mal decision from the prediction. It is challenging to accurately identify a house dynamic

signature given limited data. Di�erent approaches were tried to provide better prediction

2
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quality. Both a tabular method and a numerical method based on physical models were

initially suggested. An Interacting Multiple Model (IMM) method whose concept origi-

nated from a target tracking process was also introduced. Since these learning algorithms

should be ready to be used in the controller of an autonomous energy management system,

computational cost and algorithmic complexity should be considered.

Di�erent from most previous studies, which dealt with simulation data, this study was

based on the data from more than 25 real houses in various locations. While the real data

contained signi�cant amounts of noise and anomalies and made data analysis arduous, the

uncertainty and diversity, which may never occur with simulated data, resulted in deeper

analysis in various directions.

1.2 Overview

Chapter 2 covers the overall procedure in developing a new prototype of an intelligent energy

management system for residential buildings. Increasing energy demand from residential

buildings in California was analyzed with the actual electricity consumption data from the

California Energy Commission. As a motivation to develop a demand responsive energy

management system (DREAM) dynamic utility price rating is also introduced.

The �rst half of this chapter describes the hierarchical layered structure of DREAM

and its infrastructure. Auxiliary elements such as the remote database and its interface,

engineering GUI, and HVAC switch are brie�y explained. The rest of this chapter is fo-

cused on optimization and control processes that the controller mainly performs to balance

the energy demand and user comfort in given conditions. The performance of the DREAM

controller was preliminarily evaluated through in-lab simulation, and the results are re-

ported. The whole system was deployed in two occupied houses in Northern California

during summer 2007, and the �eld test results are also discussed at the end of this chapter.

More technical approaches to identify the house dynamic signature (or house thermal

3
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properties) are introduced in Chapter 3. As a background for system modeling and data

analysis, general thermal properties of buildings and modeling for building energy are

summarized. In order to develop identi�cation algorithms and evaluate their performance,

three categories of houses were used. These houses include four simulation houses from

MZEST (Multi-Zone Energy Simulation Tool), two California houses in which the DREAM

system was deployed, and 22 houses in Minnesota and Australia.

Three di�erent algorithms, the 1st order physical model method, tabular method, and

4th order ARX (Auto-Regressive with Exogenous Input) model method, are suggested.

The basic idea and the detailed description on each algorithm are explained in Chapter 3.

The performance of three methods was analyzed in various ways. The drawbacks as well

as the advantages of each algorithm are analyzed by comparing the best and worst results.

The limitations of each method are also discussed at the end of each subsection.

In order to improve the ARX model method in Chapter 3, a multiple-model switching

technique was applied. The multiple-model switching algorithm suggests one methodology

to avoid poor prediction, which might be caused by parameter calculation based on biased or

atypical data. As a criterion for selecting or weighting a model, proximity and applicability

were separately used. Each method used two model-switching algorithms, hard-switching

and soft-switching. The prediction results are compared with the 24-hour prediction results.

Chapter 5 discusses the constraints in the system and algorithm development and brie�y

summarizes the �ndings from each chapter.

4
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Chapter 2

Demand Response Enabled Thermostat

Development for Residential Buildings

2.1 Backgrounds

Every year in the United States after 1999, blackouts due to high demand on electricity

have been reported. Most electricity shortage is caused by either the curtailment of supply,

such as failures in the power generation or transmission systems and power market manip-

ulation, or high usage during a peak time. In order to prevent frequent power shortage,

intuitive remedies (for example, increasing supply or decreasing demand) may be suggested.

Constructing new power plants is the simplest way to prevent electricity shortage. However,

electricity suppliers are reluctant to construct power plants because electricity shortages

occur mostly during hot peak periods, which are a relatively small portion of the year.

Alternatively, decreasing electricity demand can prevent electricity shortage as well.

According to Tab.2.1, electrical energy consumption in California has increased by 62%

since 1981. Although industrial electrical energy use in California is up to 16.3% of total

consumption, this portion cannot be regulated merely to reduce energy demand. Therefore,

electricity use from residential and commercial buildings, which account for more than 68%

5
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of total consumption, would be a target for electrical energy demand control. Currently

many e�orts have been made to reduce energy use in commercial buildings. A central

control unit that controls an HVAC system of an individual commercial building monitors

energy use and regulates peak demand by applying various methods. Unfortunately, the

same e�orts have not been made for residential buildings due to di�culty in developing an

energy management system.

Residential buildings are still major electricity consumers (31.0% of total consumption

in 2005), and the proportion is increasing (jpredicted to be 34.4% by 2018). These statistics

imply that more weight needs to be given to new energy-related policies and programs for

residential buildings. Since the energy use of a single residential building is much smaller

than that of a single commercial building, many studies have targeted energy management

of commercial buildings [4]. Energy simulation tools such as EnergyPlus and California

Non-residential Engine (CNE) were developed for commercial buildings only. The big

di�erence between energy management systems of commercial buildings and residential

buildings in control point of view is autonomy. To manage energy use of a commercial

building, physical and thermal characteristics of the buildings would be analyzed. For

analysis, complicated techniques or methods might be applied by a system engineer. Based

on the analysis, the system can predict the thermal behavior of the building and determine

temperature setpoint. Even when the system fails, the engineer would �x the problem. In

addition, system operation is regular since the behavior of occupants in the commercial

buildings is predictable. (For example, employees come to the building at 8am and leave at

5pm from Monday to Friday.) In contrast to commercial buildings, the energy management

system for residential buildings should operate autonomously. There is no engineer who

can analyze the characteristics of the house as well as �x the arising systematic problems.

The patterns of occupants are relatively random. (For example, occupants may leave home

for vacation or go to the o�ce late due to unexpected events.) Temperature preference can

vary every season. The uncertainty in residential buildings has been an obstacle for active
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Year Residential Commercial Industrial Mining Agriculture TCU*
Street

Lighting

Total Con-

sumption

1980 52,082 47,600 40,771 4,104 13,737 7,956 1,685 167,935

1981 53,495 50,419 41,350 4,387 16,402 8,260 1,643 175,957

1982 52,574 50,297 37,784 6,061 14,507 8,759 1,706 171,688

1983 54,577 52,023 38,624 6,322 11,610 9,135 1,604 173,896

1984 57,564 55,092 40,411 6,978 15,320 9,766 1,535 186,666

1985 58,528 56,908 41,496 7,329 17,453 10,423 1,537 193,673

1986 58,452 59,306 42,232 6,514 15,940 10,084 1,512 194,038

1987 61,267 62,944 44,182 6,463 16,409 11,058 1,536 203,865

1988 64,033 65,958 46,421 6,535 17,995 11,465 1,494 213,902

1989 65,316 68,932 46,942 6,719 19,225 12,087 1,507 220,728

1990 67,667 72,753 47,384 6,786 20,774 12,430 1,580 229,375

1991 67,142 72,540 46,004 6,835 16,266 12,640 1,614 223,040

1992 69,225 76,018 45,928 6,600 15,471 12,967 1,652 227,862

1993 68,424 76,604 45,532 6,262 15,902 13,059 1,648 227,431

1994 69,774 76,687 45,388 6,160 16,948 12,842 1,649 229,448

1995 69,770 78,409 46,834 6,148 14,301 13,238 1,624 230,323

1996 72,164 80,709 47,207 6,202 16,874 13,293 1,660 238,108

1997 73,547 84,442 48,847 6,174 17,514 13,914 1,701 246,140

1998 75,387 86,330 47,294 5,794 13,485 13,608 1,758 243,657

1999 76,482 89,466 48,695 5,233 17,097 13,921 1,658 252,552

2000 80,612 95,148 49,801 5,713 17,532 14,486 1,730 265,021

2001 75,916 90,130 44,693 5,786 18,921 13,068 1,727 250,241

2002 77,731 92,978 45,557 5,724 21,057 13,152 1,715 257,914

2003 82,196 96,816 43,353 5,946 20,274 13,132 1,751 263,468

2004 83,774 99,467 43,617 6,446 22,246 13,589 1,787 270,927

2005 84,527 101,393 44,586 6,559 19,502 14,014 1,804 272,385

Source: QFER, California Energy Commission. September 2006.
* Transportation, Communication & Utility

Table 2.1: California Electricity Consumption by Sector (million kWh)
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studies on them. Fortunately, the California Energy Commission (CEC) began to recognize

the importance of energy management in residential buildings and began to suggest new

policies and programs.

One of the programs that the State of California has been emphasizing is demand

response. The term demand response covers a variety of programs, including traditional

direct control (interruptible) programs and new price-responsive demand programs. A key

distinction is whether the program is dispatchable. Dispatchable programs, such as direct

control, interruptible tari�s, or demand bidding programs, have triggering conditions that

cannot be anticipated by the customer. Nondispatchable programs are not activated using

a predetermined threshold condition, and allow the customer to make the economic choice

whether to modify its usage in response to ongoing price signals [5].

In the price-responsive demand program, a time-of-use (TOU) price rate plan that the

State of California has provided to reduce the demand for electricity during peak periods

would be replaced by a dynamic price rate plan. In time-of-use price rate, electricity price

varies on the pre-speci�ed time periods in which the energy is consumed. In this structure,

higher prices are charged during utility peak-load times, which can provide an incentive

for consumers to curb power use during peak times. However, �xed periods and prices

of the time-of-use plan are not �exible enough to regulate high electricity demand during

a peak period or emergencies such as a power breakdown. However, dynamic price rates

di�er from the time-of-use (TOU) price rates in that price and period are not pre-speci�ed.

Instead, they would be determined by real-time electricity supply condition.

In order to meet the needs of a new program, an electrical energy management system

for residential buildings has been developed with a new paradigm. In the system develop-

ment, the speci�city of residential buildings had to be considered, and the system had to

properly respond to the dynamic price rate without degrading the consumer's life. Fig.2.1

summarizes annual electricity consumption by various home appliances. More than 40% of

electricity in a residential house is consumed by air-conditioners, heaters, and refrigerators.
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(a) Anual Consumption per Household [kWh (b) Total Anual Electricity Consumption

Sources: Energy Information Administration, O�ce of Energy Markets and End Use, Forms EIA-457A-C, E,
and H of the 1997 RECS; Energy Information Administration, O�ce of Energy Markets and End Use, 1993
and 2001 Residential Energy Consumption Surveys.

Figure 2.1: Residential Consumption of Electricity by End Use, 2001

A residential thermostat, therefore, would be an adequate start point as a hub for energy

management in residential buildings since major electricity consuming devices are easily

controlled by it and air-conditioning mainly causes a peak demand in hot summer periods.

2.2 System Structure and Control Hierarchy

A multidisciplinary research group at University of California, Berkeley that had strong

interest in developing infrastructure as well as providing a new paradigm for demand re-

sponsive systems started their research in June 2003. Four sub-groups determined their

own research topics: 1.power metering (Prof. Richard White), 2.energy scavenging (Prof.

Paul Wright), 3.communication (Prof. Paul Wright and Prof. Jan Rabaey), and 4.control

(Prof. David Auslander and Prof. Edward Arens). Their outcomes are contributing to de-

mand response enabling technology development. The power metering group is developing

power metering infrastructure, and the energy scavenging group is �nding a new energy

scavenging methodology. The communication group is working on the infrastructure of

wireless communications to increase reliability of wireless communication inside a building.

The control group is developing controls that can provide autonomous energy management

to residential buildings. Although the research area of each group seems to be independent,

the work is related in that constraints or properties of one group's infrastructure are often

9
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determined by another group's infrastructure.

In this section, the outcomes from the control group are described. As a control hub

that enables residential buildings to be responsive to a dynamic price, a low-cost energy

management system, DREAM (Demand Responsive Electrical Appliance Manager), has

been developed. The DREAM system based on a wireless sensor network basically is

able to do what a conventional residential thermostat, such as an HVAC system operation

control, does. However, the main control that can be characterized by system identi�cation

and learning algorithms provides more autonomy to the system, which would ultimately

increase the e�ciency of energy management for residential buildings.

2.2.1 Overall Structure of DREAM (Demand Responsive Electri-

cal Appliance Manager)

In order to aggressively respond to dynamic utility price, the system should have authority

over access to the information on real-time electricity use and control of electrical appli-

ances, including HVAC equipment. This implies that the system requires both a main

control unit that can make a decision regarding optimization between electricity use and

user comfort and infrastructure that supports data acquisition and communication. Sub-

jects of the communication involve sensors, a main control unit, occupants, and possibly

an electricity supplier. As mentioned, design of the DREAM started from conventional

thermostats. However, it increased functionality of a controller, a thermometer, and power

switches, compatibility, and extensibility by disaggregating components of conventional

thermostats. The disaggregation has been achieved mainly by wireless sensor network

techniques.

Fig.2.2 represents a schematic of the DREAM in a typical residential building. Basic

information such as temperature and humidity are measured both inside and outside the

house. Occupancy status also can be obtained by motion sensors. These sensors make it

possible to specify a control area, a target zone, and apply di�erent strategies in di�erent
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Figure 2.2: Schematic of the Demand Response Electrical Appliance Manager

situations. Electricity use by electrical appliances is monitored by a power meter that

measures each individual electrical device as well as entire electrical consumption. An

electricity supplier (utility company) would collect the meter information of each house

and provide a dynamic utility price rate in advance by two-way communication. The

control unit, a small computer in Fig.2.2 combines all the available information to optimize

cost and comfort.

The DREAM system has been designed and developed based on the following protocol

and functionality.

� Utility price information from the utility is transmitted to a household. In a normal

situation, this price information is assumed to be available approximately 24 hours

ahead. A sudden price change may occur due to an unexpected event such as a

natural disaster or stoppage of a power station.

� The main controller receives data from the wireless sensors and controls electrical

appliances such as the air-conditioner and water heater via wireless actuators. An

additional sensor or actuator can be put into an existing system without any structural
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constraint.

� The existing thermostat should be easily replaced by the main controller by simple

wiring.

� A graphical interface helps an occupant interact with the system. Energy-related

information such as utility price, individual/total electrical usage, and real-time notice

or suggestion is displayed on the screen.

� Electrical interval consumption data is relayed back to the utility.

Wireless Communication

The more information regarding temperature distribution inside the house, outdoor weather

conditions, occupancy, and appliance power use is available, the more optimized decision-

making can be achieved by the system. The system design, therefore, is driven by the need

for distributed sensing and actuating with low cost. While wired data transfer is reliable,

the cost of wiring can be the deciding factor especially in large size or multi-story houses.

Installing an additional sensor or changing the sensor location would also be accompanied

with time-consuming wiring tasks.

To avoid complexity of sensor installation and provide �exibility in total sensor number

and location, a computing concept, motes (literally means a small particle) have been used

for the system. The core of a mote is a small, low-cost, low-power computer. The computer

monitors one or more sensors that may detect temperature, light, sound, position, accel-

eration, vibration, stress, weight, pressure, or humidity depending on mote applications.

The computer connects to the outside world with a radio link. The most common radio

links allow a mote to transmit at a distance approximately from 10 to 200 feet. Since a

fundamental concept with motes is tiny size (and associated tiny cost), small and low-power

radios are normal.

The DREAM system found its sensor networks based on Tmote Sky shown in Fig.2.3, a
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Source: http://www.sentilla.com/pdf/eol/tmote-sky-datasheet.pdf

Figure 2.3: Tmote Sky from Moteiv

mote platform for extremely low power, high data-rate sensor network applications. It has

integrated sensors, radio, antenna, microcontroller, and programming capabilities. The

ultra low power microcontroller on the circuit makes the low power operation possible.

This 16-bit RISC processor features extremely low active and sleep current consumption. In

order to minimize power consumption, it is in sleep mode the majority of the time, wakes up

as quickly as possible to process, then returns to sleep mode again. It uses a USB controller

from FTDI to communicate with the host computer and features the Chipcon CC2420 radio,

which is an IEEE 802.15.4 compliant radio providing reliable wireless communication, for

wireless communications. The radio provides fast data rate and robust signal 1.

Even though the radio transmitter and microprocessor in each node requires a very small

amount of power, signal quality between two nodes should be high enough to guarantee

robust operation of the controller and electrical appliances. To minimize signal overlapping

and dropping, a communication protocol speci�ed for the DREAM system was introduced

by modifying TinyOS, which is an operating system for motes. Each sensing node is

programmed to spread signals with speci�ed frequency while actuating nodes catch signals

during wake-up periods. The protocol de�nes how often and how long the signal should

1Speci�cation of the Tmote Sky can be found from http://www.sentilla.com/pdf/eol/tmote-sky-
datasheet.pdf

13
PhD Dissertation, Dept. of Engineering, University of California, Berkeley. 



be sent to the actuating node as well as which signal is valid or should be ignored. The

base station, a central node directly connected to the controller through USB, receives and

sends signals to and from other nodes.

Due to a relatively short communication range of motes (the covering range can consid-

erably shrink when radio is blocked by walls), a mesh network is proposed for the DREAM

system. Under the condition that motes are well distributed around a target building, the

covering range is theoretically in�nite. However, deploying in mesh architecture may be ex-

pensive since all motes should be awake to transmit routing information without problems.

To minimize information redundancy and power use, the system is currently con�gured

to communicate in a star network with message forwarding used in the repeater mote.

Depending on the building size and structure, the total number of the repeater motes in-

creases. In an extreme case, the star network with the repeater motes can be shaped into

a partial mesh network. For most typical residential houses, the star network with a single

repeater mote usually is su�cient.

Sensors, Actuators, and Price Indicators

The Tmote Sky supports up to six analog and four digital inputs. An auxiliary circuit board

with four mono audio jacks that provide power to a sensor, and connection straight to an

ADC was designed and mounted on the mote. This mote, referred to as a generic mote,

is not plug and play. The power and signal pins have to be set according to the speci�c

sensor or actuator that is connected to the input jacks. Currently three di�erent types of

sensors (temperature sensor, solar radiation sensor, and motion sensor) are available for

the generic mote. Fig.2.4 shows the generic mote and occupancy switch. The temperature

sensor measures air temperature shielded from radiation and globe temperature using RTD

(resistance temperature detector) and the solar radiation sensor measures global radiation.

The motion sensor module is comprised of a Panasonic passive infrared motion sensor

(AMN41121) and a 3V watch battery (CR2032). The sensor detects changes in infrared
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(a) Generic Mote and Sensors (b) Occupancy Switch

Figure 2.4: Generic Mote (Temperature, Radiation, and Motion) and Occupancy Switch

radiation that occur when there is movement by a person or object whose temperature

di�ers from the surroundings [6].

Two additional sensors that have their own motes instead of using the generic mote

were also developed. A CT (Current Transformer) sensor is developed to measure real-

time power usage by an individual device as well as a whole house. Tab.2.2 describes

characteristics of individual sensing information.

Main Control Unit

A main control unit or a base station is a brain of the DREAM system. It consists of a

base mote, a computing platform, and control algorithms. It basically supervises the whole

wireless sensor network of the system and optimizes cost from electricity consumption and

user comfort by applying various strategies. Since all data are processed through this unit,

the control process should be well organized to prevent system failure.

The base mote is essentially the same as other motes used for sensing and actuating.

The only di�erence is that it is particularly programmed to send a command to other motes
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Group Sensor Sensing Object Location

Weather Station

anemometer wind speed

on the roofwind vane wind direction

pyranometers total horizontal radiation / direct

normal radiation

Outdoor Mote

on-board RH sensor relative humidity of outside
under the eave
of the roof

air temperature sensor air temperature of outside

battery voltage sensor 2-1.5V battery voltage residual

Generic Mote

air temperature sensor air temperature

wall / inside AC
/ near air vent

globe temperature sensor globe temperature

IR temperature sensor motion of occupants

battery voltage sensor 2-1.5V battery voltage residual

Power Mote current / volage sensor current in two main circuits / voltage

in the main circuit breaker panel

inside circuit

breaker

Table 2.2: Sensing Information

and receive signals from sensing motes. Since it is powered through a USB connection, it

can respond to input data immediately.

The computing platform should have a CPU and memory for data processing. For

a user to monitor system information and interact with the system, an output terminal

should also be required. During system development, a personal computer with a monitor

may be a reasonable computing platform. A tablet PC or a mobile PC was used for the

actual system deployment in the test houses.

Control algorithms contain both statements to make the system follow pre-de�ned pro-

cedure and mathematical calculations for data process and decision making. The DREAM

control unit uses Java, one of high level programming languages, to realize control algo-

rithms. Java is known to be inadequate for real-time control in most cases due to its

relatively slow response. Fortunately, the DREAM system does not require millisecond

accuracy, and this level of accuracy does not necessarily improve the performance of the

system at all. The fact that Java is a unique platform-independent language and exuberant

libraries for wireless communication is crucial for the wireless network based system.
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Figure 2.5: Occupant Interface of the DREAM

Graphical User Interface

The basic occupant interface design (the main user interface of DREAM) was developed

in 2005 by Therese Pe�er et al [7]. On the left side, which is modeled after the Honey-

well Round thermostat to provide better readability, the basic information (temperature,

humidity, and HVAC status) and thermostat control switches (mode and HVAC control)

are shown. More interaction between an occupant and DREAM is achieved through the

right side tabbed panels. They not only show cost information, electrical usage, and pro-

gram schedule, but also alert the price changes and upcoming events such as precooling.

Occupants can adjust the economic index according to their monthly budget. The up-

dated information from the occupant interface is directly used for the controller to make

an optimal decision.

An engineering interface was designed to check all functions and algorithms of the

controller by showing internal information �ow on the screen. Therefore, this interface

can be considered a temporary interface in development for a system engineer. After

validating the functionality of the controller through the engineering interface, only useful

functions and information for occupants were put on the occupant interface screen. In
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Figure 2.6: Engineering Interface of the DREAM

the sense that the engineering interface is relevant to debugging processes, the interface

is less graphical and more numerical than the occupant interface. The screen shot of the

engineering interface is shown in Fig.2.6.

The engineering interface consists of three individual windows: basic control window,

plot window, and sensor network window. Basic information and functions that a conven-

tional thermostat has such as time, temperature, setpoint, and mode switch are shown in

the basic control window. In addition, a user can change the economic index that indi-

cates the occupant's balance point regarding energy cost and comfort and check real-time

energy use of electrical appliances, monthly accumulated cost, and current state of each

control layer. In order to test wireless relay and price indicator, it has several buttons as

well. Through the plow window, seven basic data points (indoor temperature, outside tem-

perature, cooling setpoint, heating setpoint, current utility price, forecasting utility price,

and HVAC status) are plotted. The plot helps the engineer to check system functionality

at a glance as well as see the response to various control strategies directly. The sensor

network window is used for wireless network diagnostics. Since the total number of sensors
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and relays using wireless communication is unlimited and the control strategy is mainly

depending on the sensing information, it is important to detect malfunctioning sensors and

relays immediately to prevent further systematic problems. Assigned ID numbers of both

motes that are activating within a wireless communication range and their sensors/relays

are automatically recorded with their time stamps.

2.2.2 Layered Structure of Controller

The addition of demand responsiveness and whole house control to basic thermostat func-

tionality leads to a control system with considerable complexity. In order to handle that

complexity, we have adopted a layered design for the control system software. In a lay-

ered design, each layer (in theory) interacts only with the layers above and below it. This

provides for modularization of function and semi-independent design of each layer. This

form of layering has been a major factor in the success of the Internet. Networking was

theoretically characterized by a seven layer design [8]. In practice, a four layer design was

used to implement TCP/IP (Transmission Control Protocol/ Internet Protocol) � strict

adherence to the layered design is why computers from all manufacturers, using network

interfaces from many manufacturers, with signals going over wires, wirelessly, over �ber

optics, all can connect seamlessly.

The layered structure of controller is easily realized into an executable programming

code by using a Java scheduling package, TranRunJ that supports Tast/State design

method

We are using the layered hierarchy shown in Fig.2.7 to implement the control. The

lower part of the hierarchy describes basic control functions used to maintain temperature

in the house and other functions the controller may be responsible for. The lowest layer,

the Mote Interface Layer, maintains communication between the controller and the motes

with sensors and actuators. Other than that, the function of the lowest levels is similar to

a conventional thermostat � manipulate the HVAC system to maintain temperature in the
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Figure 2.7: Hierarchy of Layered Control Structure

house. Layers above that, however, ful�ll the demand responsiveness needs of the system.

Of these, the most interesting is the Goal Seeking Layer. It makes decisions about how to

best balance comfort and cost. In the middle, choices must be made as to how to meet the

compromise decided on by the Goal Seeker. In many cases, there are choices as to how to

achieve this, such as with whole house fan, air conditioning, ceiling fans, etc.

GoalSeeking Layer

The most complex layer is the Goal Seeking Layer. It receives pricing information and

must make decisions about how to best balance comfort and cost. In the middle layers,

choices must be made as to how to meet the compromise decided on by the Goal Seeker.

In many cases, there are choices as to how to achieve the goal; for example, for cooling,

one might use a whole house fan, air conditioning, and/or ceiling fans.

Supervisory Control Layer

While the goal seeking layer optimizes energy cost and user thermal comfort in response to

a dynamic utility price and environmental circumstances, the four lower layers (Supervisory
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Figure 2.8: Mode De�nition in Supervisory Control Layer and Goal Seeking Layer

Control layer, Coordination layer, Direct Control layer, and Sensing and Actuating layer)

provide the information the Goal Seeker requires for its optimizing process. Generally

speaking, the Supervisory Controller updates power and energy requirements for di�erent

modes, the Coordinator selects the least power consuming device in a given condition, the

Direct Controller determines actual on/o� timing with diverse control strategies, and the

Sensor and Actuator interface predicts house behavior and communicates with hardware.

The following describes more details of the roles of each layer.

The Supervisory Controller answers the questions, �How much energy will be required

to keep indoor temperature at a speci�c setpoint?� and �If we have decided to precool

the house, what time should the precooling start?� To answer these questions, we de�ned

several modes based on the necessity of air-conditioning or heating operations. Precooling

modes in the Goal Seeker and Supervisory Controller may not be identical depending on

when an air-conditioner starts operating or stops operating. Modes de�ned in the two

layers are compared in Fig.2.8.

� Normal Mode: keep a constant setpoint

� Precooling Mode: turn on a cooling device before the utility price increases

� Precooling with Normal Mode: keep the indoor temperature at the precooling set-

point
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� Preheating Mode: turn on a heating device before the utility price increases

� Preheating with Normal Mode: keep the indoor temperature at the preheating set-

point

� Float Mode: turn o� HVAC device and let the indoor temperature �oat

The Supervisory Controller determines the current and future modes based on the current

indoor temperature, a setpoint, and the predicted precooling start time, and stores the

information on the power or energy requirement for individual modes.

Coordination Layer

The Coordinator manages several HVAC devices. The main role is to determine the least

power consuming device in a given condition. For example, if the setpoint goal is to keep

the indoor temperature at 74F when the outdoor temperature is 67F, the Coordinator has

two options. An air conditioner can reduce the indoor temperature rapidly, but represents

an expensive operation cost. The Coordinator will therefore choose the whole house fan

instead of the air conditioner in this situation. The choice, however, may be di�erent if the

goal is to reach a setpoint of 74F within 30 minutes.

To determine the least power consuming device, the Coordinator needs information on

the power consumption of individual devices. This information is organized with respect

to both setpoint and outdoor temperature. After one device is chosen, the Coordinator

activates the corresponding direct controllers and deactivates the other direct controllers.

Direct Control Layer

The Direct Controller determines the actual operation of HVAC devices. As mentioned

above, the Coordinator activates some of the direct controllers. The Coordinator gives

activation commands to related direct controllers at the same time. For example, air

conditioning is provided by the combination of the compressor and blower fan. Some direct
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Figure 2.9: Interaction between Coordination Layer and Direct Control Layer

controllers have a minimum o� time to protect the device from damage due to frequent

on/o� switches. In the current system, a four minute o� time is applied for all direct

controllers.

The output from direct controllers is an on/o� command on a device. We considered

three methods of direct control: on-o� control with hysteresis, on-o� control with asym-

metric hysteresis (so-called anticipation), and cycle rate control. We are currently using

on-o� control with hysteresis since it is the simplest and is testable with a house simulation

model. For on-o� control with hysteresis, setpoint ±1F is used as a default. For example,

for a cooling setpoint of 74F, the AC controller sends an on signal when the indoor tem-

perature is equal to or higher than 75F and an o� signal when the indoor temperature is

equal to or lower than 73F.

The duty cycle of devices is one of the important pieces of information that is determined

in the Direct Control layer. A duty cycle is the ratio of on to total time. If an air-conditioner

is turned on for 6 minutes and o� for 4 minutes repetitively, this is a 60% or 0.6 duty cycle.

The duty cycle under certain conditions is used to predict the energy consumption of the

device in the future. The Direct Control layer calculates the duty cycle of each device and

updates the previous one with respect to a speci�c setpoint and outdoor temperature.
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Sensing and Actuating Layer

The lowest layer is the Sensing and Actuating layer. The main function of this layer

is to communicate with wireless sensors, LEDs, and power relays. In simulation mode,

communication can be tested by using a simulation house model, which will be explained

in a later section. Since this layer is the gateway to the controller from the outside world,

the information from outside (sensor data) and inside (command, setpoint) can be shared.

For this reason, house identi�cation and learning are performed in this layer. The next

chapter describes this procedure in detail.

2.2.3 Auxiliary Structures for a Functionality Test and Algorithm

Analysis

The goal of the DREAM project is de�nitely to develop a well-functioning energy manage-

ment system for residential buildings. In this sense, an actual residential building will be an

ultimate test bed. However, before a residential building can be used as a test bed, proper

hardware functioning should be guaranteed and control algorithms in the system should

be veri�ed to minimize damage due to system failure. Another di�culty in dealing with

an actual building as a test bed is an occupant. At a developmental stage, various control

scenarios should be applied to the test bed, which inevitably disturbs occupants. Auxiliary

structures of the DREAM are designed to minimize the problems that might occur during

development by providing the system �exibility.

Flexible Control Code for Di�erent Physical Environments

The layered control structure allows the system to be applied to di�erent physical environ-

ments with minimal code changes. Since the Sensing and Actuating layer, the lowest layer

in the control hierarchy, is the only layer that directly communicates with the physical

devices, simply adding new states that deal with a corresponding physical environment
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Figure 2.10: Di�erent Physical Environments and Opening GUI

could provide enough �exibility to the system. An opening dialog GUI shown in Fig.2.10

helps an engineer to chose a suitable mode.

For testing purposes, three di�erent physical environments (simulation house, pseudo

house, and real house) have been used. Simulation house models are convenient to change

their physical characteristics such as house size, house foundation, house location, and air-

conditioner size. Therefore, the simulation model is useful to test basic functionality and

�nd problems in the control algorithms. Compatibility with existing hardware (thermostat,

HVAC equipment, and electrical appliances) cannot be tested with simulation houses. For

hardware testing, a wall-type pseudo house was designed. The wall contains a fan, a power

meter, a power outlet, and a set of sensors on it. By using the pseudo house, unexpected

hardware-related issues and radio communication problems were identi�ed and addressed.

After su�cient tests, the DREAM system was �nally applied to a real house. A real

house has many more uncertainties and complexities in both house thermal behavior and
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occupant's behavior.

Local and Remote Databases

In the DREAM structure, data collection is important in that historical data are a funda-

mental source to characterize the system's dynamic signature and the occupant preference

or pattern as well as experimental trace to check the system's functional problems, �nd

operational anomalies, and validate the control algorithms. For this reason, a persistent

and stable database is imperative for the DREAM. The DREAM system has two di�erent

databases for its di�erent purposes.

Besides sensor (measured) data, control (command) information and system information

are stored in the central control unit (currently a small computer with MS Windows).

Depending on the engineer's need, data type and data acquisition timing can be �exibly

adjusted. The database that resides in the central control unit is called a local database.

The local database is internally used for system or occupant learning. Therefore, it stores

only necessary data for learning among all historical data and later deletes them if they

are no longer useful. Since this recursive and selective data storing in the local database

can limit the disk and memory usage by the database, it prevents the system from slowing

down or abrupt stopping.

In contrast to the local database, the remote database is set up outside of the central

control unit. The data, which can be di�erent from that for the local database, is trans-

mitted through the Internet to a server in the lab. Since the disk size of the server in the

lab is much bigger than that of the local computer, all historical data can be saved. This

database design is �exible, such that di�erent sensors, motes, and measurement units can

be added independently of one another. A change of hardware in the �eld requires only

the modi�cation of the proper ID numbers in the database. By assigning a unique mote

and sensor ID for non-sensor data such as setpoint, utility price, and other commands, any

type of information can be saved in the database. Since every single information is saved
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Figure 2.11: Interface of the Remote Database

with ID, this structure allows a local database to easily refer to the remote database in

case the local database requires old data for learning.

To review an aspect of the operation and keep track of the problems of the system

in real-time, an interface for the remote database was developed. This interface allows

users (system engineer or occupants) to see the data selectively by choosing a data period

and mote/sensor IDs. It shows a plot as well as an actual number to help users to catch

the data pro�le easily. In addition, it automatically monitors the latest data uploading

time and noti�es the system's malfunctioning to the user with a red colored font when

data uploading has not been performed for more than 5 minutes. This function allows the

engineer to check the system status in real-time without traveling to the implementation

site, and it also allows occupants to obtain useful information by themselves. Fig.2.11

shows the �rst web page of the remote database for data selection and the resultant plot

for one of the selected sensors.

Switch Relay

As mentioned, the system failure during �eld test has serious results. Therefore, a pre-

ventive device to prepare for urgent system failure is necessary. A thermostat-switch and

sensor mote is one of the device sets for safety as well as for experimental procedures. This
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Source: Arens, Edward., et. al.[6]

Figure 2.12: Wiring between a Thermostat-switch(center), a DREAM HVAC Relay(left),
and a Household Thermostat(right)

switch allows the user to completely disengage the aforementioned HVAC actuation mote

and reconnect the household's original thermostat. The connection between the house-

hold's thermostat, the DREAM HVAC relay, and the thermostat-switch is diagrammed in

Fig.2.12. In addition this device monitors the operation of the HVAC control wires, the

output of both the experimental HVAC mote and extant house thermostat, and sends these

feedback signals to the controller to verify operation of the relays.

The thermostat-switch contains a physical switch that physically shorts the four wires

from the wall with two thermostats also attached to it. The second function of this device

is to determine if the heater, fan, or AC is on. With two sets of sensors, the mote is able

to determine which thermostat is shorting which signal, regardless of which position the

switch is in.

The switch together with the sensors enables us to perform three tasks:

� Monitor the actual electrical connection of the HVAC relay mote before it is hooked

up to the house's HVAC system for testing purposes.

� Monitor the usage pattern of the existing thermostat.

� Once the testing phase is over, we can still monitor which signal the HVAC relay
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mote is sending to the HVAC system. The switch enables a fallback to the existing

house thermostat in case something goes wrong.

2.3 Optimization and Control Strategies

In order for the DREAM to accomplish the goal of reducing electricity load during hours of

peak demand while minimizing occupant thermal discomfort caused by the load reduction,

the DREAM controller must be able to intelligently respond given inputs from outside.

Since it is assumed that the electricity price is reasonably determined by utility companies

based on either current or predicted electricity demand as well as unexpected urgent events,

the only driving factor on which decision making in the controller is based will be the price.

Although the DREAM controller can control electrical appliances including HVAC

equipment in an aggressive way through a compulsive shutdown, rather modest meth-

ods are applied in current control. Both electricity use from an air-conditioner and user

comfort are controlled exclusively by setpoint changes. In this sense, a setpoint is the

most important output that the DREAM controller should determine. Another method

is informing and warning. Providing occupants with as much cost-related information as

possible helps them to get more interest in their energy use and control their behavior in a

smart way via interaction with the system.

Now the goal of the DREAM controller is narrowed down from electricity load reduction

and occupant comfort preservation during peak periods to optimal setpoint determination.

The next three subsections focus on how to de�ne the optimal setpoint from a thermal

comfort perspective and how to scale the user comfort. Based on the derived methodology,

detailed optimization process and control strategies will be described.
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2.3.1 Optimal Setpoint in Residential Buildings

The typical programmable thermostat on the market controls indoor air temperature based

on two di�erent setpoints corresponding to comfort temperature for occupied condition and

setup/setback for either unoccupied or night time condition. While these two setpoints

in programmable thermostats are manually set by users, the DREAM controller should

autonomously determine more than two setpoints (the DREAM controller uses dynamic

setpoints instead of pre-determined static setpoints) from any kind of a thermal comfort

standard. One study shows that dynamic setpoint can avoid over-heating or over-cooling

that frequently occurs for some months under static setpoint setup [9]. This implies that

people may decrease energy use without sacri�cing their comfort by adopting a dynamic

setpoint. Therefore, the key is how to scale thermal comfort by relating temperature to

comfort level.

Although no thermal comfort standard has been established for the residential sector,

the Adaptive Comfort Standard (ACS) from ASHRAE 55-2004 has been the most appro-

priate alternative standard in that it is based on naturally ventilated buildings [10, 11].

According to the ACS and two studies in the residential sector, people adapt to indoor

temperature based on the average outdoor temperature for the previous month and there

exists a seasonal variation in temperature [12, 13]. Based on the previous studies, standard

comfort distribution2 with respect to each month has been established.

Fig. 2.13 represents the di�erence between a static setpoint for typical thermostats and q

dynamic setpoint based on monthly average outdoor temperature in Sacramento, California.

The following discussion is mainly focused on the cooling setpoint rather than the heating

setpoint since the ACS was developed with respect to cooling load, and energy demand

is more concentrated during summer period. 78F (25.5C) in blue solid line is the default

cooling setpoint for occupied condition most often used in an EnergyStar programmable

2Standard comfort distribution indicates how much satis�ed ordinary human is with a given tempera-
ture. In Fig.2.13, a di�erent term, �acceptance�, was used instead of �satisfaction�.
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Source: Arens, Edward., et. al.[6]

Figure 2.13: Adaptive Temperature Setpoints for the Sacramento, CA Climate

thermostat. The standard comfort distribution indicated with rectangles shows that actual

comfort range in summer periods (from May to October) is located at higher values. While

the outside temperature keeps increasing and goes up to 100F (37.8C) in Sacramento in

July and August, people adapt to this high temperature in any rate. The adaptation

includes both psychological and behavioral changes. As a result, a higher setpoint than

78F (25.5C) during hot weather periods does not degrade their thermal comfort. In the

adaptive thermostat temperature setpoint, the setpoint is 82F (27.8C).

The summer nighttime setback is another issue in determining an optimal setpoint.

Several studies on the e�ect of temperature during a sleep period have been conducted.

Tsuzuki et al found that the person feels too uncomfortable to fall asleep without adequate

air �ow if the air temperature is above 26C (78.8F) or the relative humidity is high, or

person is clothed [14]. Another study shows that 26-27C (78.8-80.6F) compared to 31 or

36C (87.8 or 96.8F) provides better sleep [15]. From these results, 26C (78.8F) is used as

a static nighttime setpoint from 10 pm to 6 am in our controller.
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2.3.2 Optimization Schemes

In the DREAM, optimization is the process in which an optimal setpoint is calculated in a

given environmental condition. As noted, the optimal setpoint is de�ned as a temperature

value at which the cost and user comfort is well-balanced. Although the level of comfort

that a person recognizes is di�cult to be scaled, the adaptive comfort model based on the

standard comfort distribution can be used for it.

The Goal Seeking layer primarily deals with the optimization process. However, the

User Interface layer provides a scaled thermal preference from the adaptive comfort model,

and the Supervisory Control layer helps the Goal Seeking layer to predict the cost that is

required to maintain the condition. The process consists of three steps:

� Step 1 (Mode Determination): Heating or cooling mode is automatically determined

based on recent weather condition.

� Step 2 (Control Strategy Selection): Based on house occupancy and a forecasted price

change, the current state is categorized into 8 di�erent states. Departure and arrival

of an occupant is predicted by a learning method.

� Step 3 (Temperature Setpoint Calculation): By combining the information on user

thermal preference and the cost variance to perform the selected control strategy

(from the previous step), an optimal setpoint is calculated.

A typical residential thermostat has heating, cooling, and auto modes. From the current

mode setup, a thermostat decides a setpoint type (heating setpoint or cooling setpoint) as

well as a target HVAC device. The auto mode in a typical thermostat should be interpreted

as a mixed mode rather than an automatic mode since both heating and cooling can be

performed instead of choosing one of these mode. In contrast to the typical thermostat,

the DREAM controller actually determines an appropriate mode based on the average out-

door temperature for the previous 7 days. The residential Alternative Calculation Method
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State Name Control Objective

Normal
Optimize energy cost and user comfort under no forecasted price and

occupancy changes

Precooling / Preheating Minimize energy cost by cooling or heating the house before price increases

Departure / Arrival

Preparation

If the house is likely to be occupied, keep the indoor temperature at a

desired value. If the house is likely to be unoccupied, do not

Combination Precooling / Preheating state + Departure / Arrival Preparation state

Table 2.3: Categorized States and Their Control Objectives

(ACM) approval manual by the California Energy Commission (CEC) says, �the state of

the building's conditioning mode is dependent upon the outdoor temperature averaged over

hours 1 through 24 of day 8 through day 2 prior to the current day (e.g., if the current day

is June 21, the mode is based on the average temperature for June 13 through 20). The

ACM shall calculate and update daily this 7-day running average of outdoor air temper-

ature. When this running average temperature is equal to or less than 60 °F the building

shall be set in a heating mode and all the thermostat setpoints for the heating mode shall

apply. When the running average is greater than 60°F the building shall be set to be in a

cooling mode and the cooling mode setpoints shall apply.� [16]

House occupancy and utility price are two main criteria to determine an upcoming

state among 8 states. Each state has its own control (optimization) objective. Tab.2.3

summarizes categorized states and their control objectives. Since price changes can be

broadcasted by a utility company, the only issue is how to predict house occupancy as

accurately as possible. It is evident that the consistency of an occupant behavior (schedule)

is very important. The family size, day of week, and occupation can a�ect prediction quality

as well. The DREAM controller uses an occupancy prediction model. The model calculates

occupant's departure and arrival times by analyzing past occupancy data distribution.

The �nal output of the optimization process is a setpoint. Due to di�erent objectives

of 8 states, a procedure for setpoint calculation should be speci�ed with respect to each
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state.

Normal State

If there are no upcoming price increases and no house occupancy changes, the controller

considers a current condition as a normal state. In the normal state, an optimal setpoint

T opt
normal is calculated to minimize the following utility function Unormal(T )[6].

Unormal(T ) = (1− e)× Cost+ e×Discomfort

= (1− e)× Cost+ e× (1− Comfort) (2.1)

T opt
normal = {T | min(Unormal(T ))} (2.2)

where T and e3 are temperature and the economic index.

Electricity cost is obtained by multiplying electricity price rate (dollar/kW) by measured

power consumption (kW). Thermal comfort for a given user is calculated by the adaptive

comfort model in the User Interface layer. In order for the Eq.2.1 to be meaningful, Cost

and Comfort values are normalized. Economic index e can be directly input through the

user interface by a user.

Precooling/Preheating (Pre-Price Change) State

In either precooling or preheating state, the most important issue is how much bene�cial

overcooling or overheating4 the house during a relatively lower utility price period is in

a total cost point of view. While the thermal comfort in a normal state is one of main

factors for setpoint optimization, it merely constraints the lowest limit for precooling or

3Economic index e explains both sensitivity to thermal comfort and a�ordability in electricity cost. The
value ranges from 0 to 1. The person who is more sensitive to his or her comfort and a�ords to pay more
electricity cost has an economic index close to 1. In case that the economic index is 1, the optimal setpoint
always maximizes user's comfort.

4Since both precooling and preheating setpoints are relatively far from the comfortable temperature,
they can be considered as overcooling and overheating.
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the highest limit for preheating. The optimal setpoint for the precooling state minimizes

the total cost that consists of the cost before an actual cooling starts, the cost during an

actual cooling period, and the cost during a high price period. Eq.2.3 shows three sub-cost

calculation in the utility function Uprecool(T )[6].

Uprecool(T ) = Costbefore.precool + Costduring.precool + Costafter.precool

= Pricelow × Powerdevice × (tbegin.of.precool − to)×DCbefore.precool

+ Pricelow × Powerdevice × (tend.of.precool − tbegin.of.precool)

+ Pricehigh × Powerdevice × (tend.of.high.price − tend.of.float.period)

×DCafter.precool (2.3)

T opt
precool = {T |min(Uprecool(T ))} (2.4)

where t and DC are time and duty cycle of a cooling device.

If a soaking e�ect5 is not considered, determining an optimal setpoint for precooling

T opt
precoolis the same as determining a precooling start time tbegin.of.precool. tbegin.of.precool di�ers

from the state transition time to(the precooling state in the Goal Seeking layer begins at

to). If tbegin.of.precool is given, the �nal indoor temperature at the end of precooling would be

T opt
precool. When the utility price is increased at the end of precooling, cool indoor temperature

tends to increase under no cooling device operation. This period is called a �oat period.

In Eq.2.3, (tend.of.high.price − tend.of.float.period) is the total cooling device operation time in a

high price, which should be as short as possible for e�ective precooling. More details are

described in the next subsection.

5If two identical houses have been precooled down to the same precooling setpoint, the house that has
stayed at the setpoint for longer time is warmed up more slowly than another house. In a heat transfer
point of view, the long exposure to cool temperature allows objects (walls and furniture) to be cooled
besides air.
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Departure/Arrival Preparation State

The controller optimizes energy cost and thermal comfort by either avoiding an unnecessary

heating and cooling or preconditioning the house during the departure/arrival preparation

state. The following two scenarios provide how this state works.

Scenario 1 At 8:43am on a hot summer day, the outside temperature has reached 85F.

In order to keep the indoor temperature at 73F for occupant's comfort, the air-conditioner

has been run for 1 hour. However, the DREAM schedules to turn o� the air-conditioner at

8:45am even though the house will be still occupied. Since the DREAM controller knows

with high probability that the house will be unoccupied around 9:00am on most weekdays,

turning o� the air-conditioner at 8:45am will save the occupant money without a�ecting

his or her thermal comfort.

Scenario 2 At 5:00pm on the same day, the occupant has done his work and was thinking

of the cold beer that he put in the refrigerator that morning. When he opens the door

as soon as he arrives home around 5:30pm, the awful heat inside the house is waiting for

him. Although the air-conditioner begins to run, the thermometer still indicates 82F. He

recognizes that he needs a smarter thermostat more than cold beer.

The optimal setpoint in this state is determined based on the prediction probability.

The utility function Uarrival/departure(T ) in Eq.2.5 combines the utility functions, Us(T ) and

Uf (T ) for two probabilistic cases.

Uarrival/departure(T ) = Ps × Us(T ) + (1− Ps)× Uf (T ) (2.5)

T opt
arrival/departure = {T |min(Uarrival/departure(T ))} (2.6)

where Ps: Probability that prediction succeeds

36
PhD Dissertation, Dept. of Engineering, University of California, Berkeley. 



Pf = 1− Ps: Probability that prediction fails

Us(T ): Utility function for the case that prediction succeeds

Uf (T ): Utility function for the case that prediction fails

Combination State

In some cases, precooling/preheating events and house occupancy change occur at the same

time. If the directions of the desired setpoints for both events do not agree, the controller

makes an optimal decision. The decision mainly depends on the prediction probability of

arrival or departure.

2.3.3 Control Strategies

Most control and optimization strategies by the DREAM controller are based on the house

identi�cation (or dynamic signature learning). Under the assumption that the indoor

temperature can be predicted from the given data within an acceptable error range, the

DREAM controller includes the following control strategies. The house identi�cation pro-

cedure including theoretical backgrounds is discussed in Chapter 3.

Minimum O�-Time Constraint

A minimum-o� time control is used in most air-conditioners to protect the compressor

motor from frequent on/o� switching. It intentionally delays the restart of a compressor

motor for a speci�ed minimum time. Since the minimum-o� time is not controlled by a

thermostat but by an AC unit, this control algorithm seems to be unnecessary for the

DREAM controller. Initially the minimum o�-time control algorithm was implemented to

mimic the behavior of a real thermostat and an air-conditioner in simulation.

In contrast to a typical residential thermostat that mainly relies on the on-o� control

with respect to the setpoint, the DREAM controller primarily depends on the behavior

prediction of the house and HVAC equipment. For example, if a typical programmable
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thermostat sends an On signal to the AC unit before a speci�ed minimum o�-time is

elapsed, the minimum o�-time device connected to the compressor motor will automatically

cut o� the power to the motor. This intentional blocking does not a�ect the control goal and

quality of the thermostat. However, the blocking can a�ect the quality of optimization by

the DREAM controller since several-minute-long air-conditioning in a peak time is totally

di�erent from that in a low price period.

Besides the control quality problem, there is another reason why the minimum-o� con-

trol should be performed in the controller level. The DREAM is based on a wireless sensor

network. When the controller sends an On signal to the HVAC relay, the HVAC relay

follows the command and sends back the updated HVAC status. If the feedback signal and

command signal are di�erent, the controller will send the command repeatedly until the

feedback and command agrees. Currently the DREAM controller uses a 4-minute mini-

mum o�-time control in the Direct Control layer. The 4-minute interval was selected by

considering minimum requirements for hardware protection and e�ciency in control.

Adaptive Hysteresis Band Control

A temperature setpoint is much more important in the DREAM than in typical pro-

grammable thermostats since one criterion for performance valuation is an occupant's ther-

mal comfort level (assumed to be a function of indoor temperature). When people set their

temperature setpoint at certain values, they naturally expect that their thermostats will

keep the indoor temperature exactly at those values. For example, if the setpoint is 73F,

they may think the indoor temperature will be 73F sooner or later.

However, all programmable thermostats use on-o� control with their own �xed hysteresis

bands6. The on-o� control with hysteresis helps a furnace or an air-conditioner not to turn

on and o� frequently by allowing �uctuation around the setpoint. Some thermostats also

use an anticipator to make the original (de�ned) hysteresis asymmetric with respect to

6A hysteresis band is also called a �temperature swing� in some thermostat manuals
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Sources: Auslander, David, M., �Feedback Control Characteristics of Residential, Single-State Thermostats.�, 2006[17].

Figure 2.14: Power-Temperature Characteristic with Hysteresis and Anticipator

the setpoint. Fig.2.14 describes the on-o� control with hysteresis and anticipation in the

heating mode. Without an anticipator, the original hysteresis is symmetric. (A (68F) and

B (72F) are symmetric with respect to the setpoint 70F). However, the actual temperature

swing is asymmetric (A (68F) and C (73F) are asymmetric with respect to the setpoint

70F). The anticipator turns the furnace o� earlier than would have happened without the

anticipator, and residual heat around the furnace keeps increasing the indoor temperature.

In the DREAM controller, the size of a hysteresis band is adaptive to the sizes of

the furnace and air-conditioner as well as to the house. When the air-conditioner size is

relatively large in comparison to the house size, a larger band will avoid frequent on/o�

cycles. The timing of turning o� a furnace or an air-conditioner for anticipation is also

determined by a house learning.

Preconditioning

One of the ways that the DREAM controller provides occupants comfort is precondition-

ing. With a traditional non-programmable thermostat, an occupant should wake up in

uncomfortable temperature (too cold in the winter or too hot in the summer) if he or

she uses a night-time setback setpoint. A programmable thermostat seems to solve this
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problem by scheduling the heater or AC operation in the morning. For example, an oc-

cupant usually wakes up around 7:00 am, he or she may schedule the thermostat to turn

the air-conditioner on at 6:30am. However, the time within which the indoor temperature

can reach the desired setpoint strongly depends on the weather condition. If the outside

temperature is very hot, 30-minute-long air-conditioning may not be enough to cool the

house down by 7:00 am. If on the other hand the outside temperature is relatively mild,

this much air-conditioning may not be necessary.

In order to minimize the expense for comfort, it is important to turn on the air-

conditioner or the furnace at a proper time. The DREAM controller determines the time

by predicting the indoor temperature behavior based on the given weather conditions and

house information. According to one study (EcoFactor, 2008), appropriate preconditioning

bene�ts the least e�cient house since the less able a given structure is to store energy, the

more its energy usage will be determined by the length of time.

Precooling

The concept of precooling originates from night precooling. Night precooling cools the

structure during the night time by the circulation of cool air within a building. The

cooled structure is then able to serve as a heat sink during the daytime hours. Therefore,

the quality of night time weather such as temperature, humidity, and pollution and the

thermal coupling of the circulated air to the building mass are crucial for precooling [18].

There are two variations on night precooling. One is night ventilation precooling and

another is mechanical precooling. This involves the circulation of outdoor air into the space

during the naturally cooler nighttime hours. This can be considered a passive technique

except for any fan power requirement needed to circulate the outdoor air through the space.

In mechanical precooling, the building mechanical cooling system is operated during the

nighttime hours to precool the building space to a setpoint, which is usually lower than that

of normal daytime hours. The electric utility rate for peak and o�-peak loads is important
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to determine the cost-e�ectiveness, in particular for a mechanical precooling scheme. One

study result that precooling enables signi�cant energy cost savings of 10% to 50% and peak

power requirements of 10% to 35% over a traditional nighttime setup control strategy is

very encouraging [19].

The precooling strategy in the DREAM is closer to the mechanical precooling than

to the night ventilation precooling. Since the night ventilation precooling requires whole

house fan for air circulation, the mechanical precooling is less limited. The big di�erence be-

tween the DREAM's precooling and the conventional mechanical precooling is a precooling

time. While the conventional precooling cools the building structure during the night, the

DREAM's is performed within several hours (or possibly several minutes) before the peak

price comes. Therefore, the DREAM's precooling is less sensitive to the thermal energy

storage in the building mass in that even precooling without soaking can allow signi�cant

cost saving. But it requires more delicate control for a �ne performance.

Fig.2.15 illustrates how the electricity load originally assigned in a peak price period

can be shifted to the earlier lower price period by an appropriate precooling. A peak price

period (t3+ t4) is shaded in light red. The black oscillating curve stands for an indoor

temperature pro�le under a peak-time setback. Without precooling, the air-conditioner

still consumes a lot of energy during a peak time. If precooling starts from t2 (the dotted

curve in dark gray), it can shift the load, but not enough. When it begins at the middle of

t1(the dotted curve in dark red), no air-conditioning is required during a peak time.

It is certain that a longer peak price period requires a lower precooling setpoint. Un-

fortunately, the lowest cooling setpoint is limited by the comfort allowance, outdoor tem-

perature, and the e�ciency of a cooling device. In addition, a total precooling time is not

linearly proportional to a temperature drop. The following steps show how the DREAM

controller determines an optimal precooling start point.

1. Check if the price increases within a prede�ned period. (3 hours in the DREAM.

This limits the maximum precooling period)
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Figure 2.15: Schematics of Precooling Strategy in the DREAM

2. If the price change is scheduled within 3 hours, calculate the lowest temperature that

can be reached by full AC-on. If the lowest temperature is out of the occupant's

comfort allowance, the lowest temperature is adjusted.

3. Every one degree between the current setpoint and the (adjusted) lowest temperature

are precooling setpoint candidates.

4. By using both backward prediction (t1+ t2) and forward prediction (t3+ t4), calculate

AC on/o� time (or duty cycle) in di�erent price periods.

5. Find the setpoint that satis�es Eq.2.4.

2.4 Simulation Results and Field Test

Even though the DREAM still has many things to be improved and modi�ed, the current

version suggests a new direction of future residential energy management systems and shows

possibility in developing a demand responsive thermostat. The following two subsections

deal with simulation results of optimization and control by the DREAM and discuss the

�eld tests that have been completed in the summer 2007. A numerical house model,

called MZEST (Multi-Zone Energy Simulation Tool), was used for functionality check and

control algorithm validation of the DREAM controller. Since MZEST is based on the
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physical properties of a real house, HVAC devices, and occupants, it can provide realistic

thermal behavior of the residential building. After su�cient tests and validation processes,

a preliminary �eld test (deployment test) was performed for approximately one year, and

fully functioning elements of the DREAM were deployed in two real houses in California.

The results related to optimization and control strategies are discussed in this section,

but the topics related to house identi�cation (or dynamic signature learning) are fully

covered in Chapter 3. Further details of both simulation and real houses also can be found

in the next chapter.

2.4.1 Simulation Results

Since the core of the DREAM is self-learning or self-tuning that can name the DREAM

as an autonomous system, both the quantity and quality of collected data are crucial for

learning. Based on the learned information, the controller can make an optimal decision.

However, the DREAM should have considered the worst case in which there does not exist

enough data for learning, for example when an occupant moves to a new location.

To provide reasonable7 outputs without enough data, good defaults are used initially.

The defaults for an occupant's thermal preference are set by the ASHRAE (American Soci-

ety of Heating, Refrigerating and Air-Conditioning Engineers) standard and both thermal

characteristics of the house and energy consumption of the air-conditioner are calculated

by averaging the results from four extreme houses in California.

One aspect of the optimal setpoint determination process for the normal state in the

Goal Seeking layer is seen in Fig.2.16. The plot is based on the actual outputs that the

DREAM controller generates with defaults. The right plot shows the opposite tendency

in the energy consumption by the AC and comfort level that an occupant might recognize

with respect to the cooling setpoint. It is certain that the discomfort level will increases

7�reasonable� means that the prediction by the controller, for example, the indoor temperature after 30
minutes from the current time, is within an acceptable region. If the di�erence between real measurement
and predicted value are 10F in the previous example, the prediction may not be reasonable at all.
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Figure 2.16: Setpoint Optimization (Right) from Energy and Comfort Defaults (Left)

as the air-conditioner decreases its operation time. The right plots imply that the cooling

setpoint tends to be increased as the utility price increases, but the setpoint change by

the price is less a�ected with a large economic index. Since these results came from the

defaults, all houses would have the same outputs in prediction.

After enough data is collected, the DREAM controller has a di�erent (more speci�ed

to the house and occupant) energy consumption curve and a di�erent discomfort curve.

The left plot in Fig.2.17 was not the result from actual learning but one example of the

speci�c house and occupant. From the left curves, the controller performs the exact same

optimization process and provides a di�erent cooling setpoint. The most recognizable dif-

ference between Fig.2.16and Fig.2.17 (see the left plots only) is the scaled AC consumption.

The AC consumption in Fig.2.17 is smaller than that in Fig. 2.16. After balancing cost

and comfort, the controller dropped the cooling setpoint in 1 degree for the medium price.

The increased setpoint for the low price is not explained clearly from the plots but the

di�erent discomfort pro�les may a�ect this result.

Evaluating the performance of optimization by the DREAM controller is not trivial

since a comfort level is one of two main criteria in evaluation. In the simulation, a user

comfort model with defaults was used. In Fig.2.18, the results from four di�erent setpoint
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Figure 2.17: Setpoint Optimization (Right) from Learned Energy and Comfort Information
(Left)

setups are compared. The simulation house is pre-1978 (constructed before 1978, usually

poorly insulated) with crawl space and modeled in Sacramento, California from MZEST.

A detailed setpoint setup is as follows:

� Typical programmable nighttime setback : 24.5C (76.1F) in daytime and 28C (82.4F)

in nighttime.

� DREAM with 0.5 and 0.2 economic indices: Adaptive setpoint is applied based on

the price and comfort level. Precooling is also performed whenever necessary. The

smaller an economic index is, the more sensitive to cost an occupant is.

� Price-based setback: 25.5C (77.9F) for low price, 26.5C (79.7F) for medium price,

and 28.5C (83.3F) for high price in daytime. 28C (82.4F) for all price in nighttime.

Total air-conditioning time in di�erent price was calculated by accumulating 15 consecu-

tive days. The plot indicates that the setpoint setup in a typical programmable thermostat

is not responsive to the price at all even though the user may feel mostly comfortable.

In contrast, the price-based setpoint dramatically decreases the energy use during both

medium and high price periods, but the user may feel frequently uncomfortable. The set-

point setup in DREAM shows possibilities in how to balance these two extremes. Under a
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Figure 2.18: Performance Comparison : Energy Consumption vs. Discomfort

default economic index (0.5), the DREAM successfully shifted approximately 30% of the

load in the high price period with a 4% increase in discomfort. With a relatively small eco-

nomic index (0.2), the performance from a cost perspective is worse than that of price-based

setpoint thermostat. It is true that the optimization of the DREAM may not be the best

option in a speci�c environment. However, it may provide more diverse-situations-re�ected

setpoint that is impossible with �xed setpoint setup.

Fig.2.19 and Fig.2.20 are are direct screen shots of the DREAM engineering interface.

They show how well the default house parameters �t di�erent houses and how much in-

door temperature prediction can be improved by learning. During a three day simulation,

six total precooling events occurred at 6am and 12pm. In this simulation test, while the

precooling start time is �xed, the precooling setpoint was determined by the DREAM con-

troller. Therefore, the closer the indoor temperature (black curve) at the end of precooling

is to the precooling setpoint (blue line), the more accurate the prediction is.

In Fig.2.19, the setpoint pro�les in both plots are identical since the setpoint is deter-

mined based on the same default house parameters. However, the responses of the two

houses are di�erent. Since the crawl space model constructed before 1978 has relatively

poor insulation, load-shifting in high price periods is not su�cient even with precooling.
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(a) Pre-1978 Crawl Space Model (poorly-insulated house)

(b) Post-1992 Slab on Grade Model (well-insulated house)

Figure 2.19: 3-Day Simulation Based on the Prediction with Default Parameters

Figure 2.20: 3-Day Simulation Based on the Prediction with Learned House Parameters
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House 1 House 2

Location Antioch, CA Bay Point, CA

Structure 1700 square foot two-story stucco house 1500 square foot one-story house

Construction

Year
1991 1984

Thermostat White Rodgers programmable thermostat. manual setback Honeywell Chronotherm.

HVAC

System
Carrier split system air conditioner/furnace,

with supply grilles in the �oor throughout

the house

General Electric split system air

conditioner/furnace, with supply grilles in

the ceiling

Occupants Occupants are working at home.
Normal setpoint in both daytime and

nighttime is 74F and 79F when unoccupied.

Participant opens up the windows (upstairs)

at night and closes during the day.

Occupants are normally out of the house
during the day.

Normal setpoint in daytime is 70F and
lowered or o� in nighttime.

The participant opens up the house at

night; two windows are opened during

the day as well.

Mote

Deployment Total 15 motes.

A mote outside is under the southeast eave

of the roof.

Total 14 motes.

A mote outside is under the southeast

eave of the roof.

Table 2.4: Description of Two Field Test Houses

For the slab on grade model, precooling is more bene�cial due to good insulation.

All situations in Fig.2.19(a) and Fig.2.20 are equal, except what the precooling setpoint

is based on. By analyzing past data and then updating parameters of the prediction model,

the controller in Fig.2.20 could provide a more accurate precooling setpoint. Improvement

in setpoint prediction can be seen by comparing the �nal indoor temperature in precooling

and the setpoint.
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2.4.2 Field Test Results

Test Houses and System Deployment

Two occupied houses were selected to test the function of the DREAM and verify simulation

results. The feedback from participants also was important. These two single family

detached houses are located in Antioch and Bay Point, California respectively and use

their air-conditioning during the summer period. While the weather conditions for both

houses are very similar, the house structures, HVAC systems, and residents' patterns were

totally di�erent. This diversity provided the opportunity to test the system under di�erent

conditions. Detailed house information is summarized in Tab.3.1.

Test Plan and Schedule

The whole DREAM system was scheduled to test for 37 days. The �rst week was spent in

monitoring the existing thermostat setups, occupants' patterns, and AC power consump-

tion without direct control by the DREAM controller. This period is de�ned as continuous

system check-out and calibration period. During this period, any programming bugs and

hardware failure were checked. The next two days were scheduled to test if the DREAM

controller could control the existing HVAC equipment in the exact same manner. The

DREAM controller followed the same setpoint that the existing thermostat used for the

previous week. This period is called mimicking and training period. This period also pro-

vides an occupant with an opportunity in interacting with the DREAM interface. During

the test period, control methods, optimization, and learning algorithms were validated. The

�eld test was completed with a �nal interview with the occupant and hardware withdrawal.

Tab.2.5 summarizes the �eld test plan.
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Test Period Objective

Continuous
System Check
Out and
Calibration
Period

Test system communication reliability.

Analyze room occupancy and house occupancy pattern.

7 days Analyze temperature patterns.

Record current energy consumption patterns, especially air condition-

ing.

Evaluate the existing internal model .

Analyze AC energy use and e�ciency.

Mimicking &

Training Period
2 days Test actuation performance and ability of system to mimic existing

system. Train users to interact with DREAM interface.

Test Period

2 days Analyze AC duty cycle.

8 days Test optimization performance without precooling.

9 days Test optimization performance with precooling.

4 days Run new learned internal model with tuned parameters.

4 days Test the e�ect of knowing houseoccupancy on energy use and comfort.

Final Interview 1 day Interview the participants and remove hardware.

Table 2.5: Time Schedule and Detailed Objectives for 2007 Summer Field Test

Results

The DREAM system had full control of the HVAC systems of two houses for several weeks.

However, there were a few problems, some of which were solved immediately and others

that warrant further analysis. The test for house 1 lasted approximately seven weeks due

to �xes and working around the participant's schedule. The test for house 2 lasted about

six weeks.

We captured the behavior of the house plus HVAC for warm days and very hot days;

over the course of the tests, the outdoor daily high temperature ranged from 27 to 41C

(80.6 to 105.8F). House 1 performed reasonably well under hot conditions, and responded

well to precooling scenarios. Figure 27 shows the inside (Ti), outside (To) and AC supply

temperature (Tac) for house 1 for three days. The air conditioner was cycling all three days

to cool the house, but struggled on the hottest day.

House 2, however, appeared to have an undersized HVAC unit, which could barely keep
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up on hot days, and was completely underpowered for very hot days. Precooling was not an

option for this house. Figure 28 shows the same three days in August. The air conditioner

was cycling the �rst two days (albeit on for much of the time). On the hottest day the air

conditioner is on constantly, but still allows the temperature to drift up.

Goal seeker and occupancy schedules One test was to evaluate the goal seeker in

optimizing the temperature setpoint for occupancy and price. Although simulations show a

reasonable setpoint generated by goal seeking layer, the actual results are hard to evaluate.

In house 1, there was not much opportunity for optimization for the system because the

acceptable temperature range by the resident was very narrow, especially for precooling.

The participant complained that it was too cold during precooling mode and too hot when

the temperature setpoint was raised during a simulated price increase. The goal seeker was

not able to work for house 2 either. The air conditioning system for house 2 was apparently

too small for the house and climate. On very hot days, the occupants turned on the air

conditioner in the morning, otherwise the house would get too hot in the afternoon. On

one such day, at 11 am the indoor temperature kept increasing although the AC was on.

In this case, the goal seeking strategies do not work.

An occupancy switch mote was used to collect the occupancy information by requiring

the participants to push a button indicating arrival or departure. The two houses showed

di�erent occupancy schedule patterns. In one house, the occupant worked from home and

was home intermittently during the day. In the other house, the occupant worked away

from home, and the house was unoccupied regularly for a certain interval during weekdays.

The �rst type of schedule pattern is random and thus hard to identify. It is di�cult for the

system to predict the changes of status. In the second type, it is easier for the system to

learn the occupancy pattern. However, the participants forgot to manipulate the occupancy

switch most of the time, rendering the data unusable.
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Figure 2.21: Temperature and Setpoint Pro�le for House 1 with Default Parameters

House Identi�cation Results Prediction through the internal house model seemed sat-

isfactory in simulation, but met problems in �eld testing. Changes in outdoor temperature

and in�ltration due to open windows seriously a�ected the prediction. Thus, the internal

house model did not predict the indoor temperature as accurately as in simulation. How-

ever, from the �eld test, we learned about the more realistic thermal behavior of a house

and characteristics of HVAC equipment.

During most of the test, the internal house model with good defaults was evaluated.

The prediction results were used to determine the optimal temperature setpoint in the

Goal Seeking layer. One way to check the accuracy of the prediction is to compare the

predicted precooling setpoint with the real indoor temperature pro�le. Fig.2.21 shows

outdoor temperature, indoor temperature, cooling setpoint, utility price and AC status in

house 1 on August 29, 2007. There were two simulated utility price increases at 8 am and

3 pm. We can see that the precooling setpoints were set at 19C and 21C at 6 am and 1

pm respectively. The precooling setpoints chosen in both cases were somewhat lower than

required. This means that the internal house model may have a higher capacity AC unit,
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Figure 2.22: Temperature and Setpoint Pro�le for House 1 with Learned Parameters

or lower internal gain, or greater insulation than house 1.

In the last few days of the test, the internal house model was updated with learned

parameters. The parameters were calculated from the recorded data in the remote database.

According to the learned parameters, house 1 had less insulation, much higher internal gain,

and slightly higher AC capacity than the default internal house model. However, due to a

calculation error at that time, a lower internal gain was used for the test. Fig.2.22 shows

the result. The main di�erence is the second precooling setpoint: a one degree higher

setpoint (22C) was chosen when the outdoor temperature was 2C cooler. This implies

that the learned parameters may provide a better prediction than the model with defaults.

However, the �rst precooling setpoint was far from a reasonable prediction, thus requiring

more analysis.
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Chapter 3

House Dynamic Signature Learning

through Data Analysis Techniques

In Chapter 2, optimization and control strategies in the DREAM controller were discussed,

and it was mentioned that their success primarily depends on how accurately the indoor

temperature can be predicted. A whole process in which thermal and physical character-

istics of the house and HVAC equipment are identi�ed and then indoor temperature is

predicted is de�ned as house identi�cation.

In order to identify the thermal characteristics of a speci�c house, the controller needs

accurate and detailed information regarding the house. If an occupant already knows the

house location (longitude and latitude), size, structure, orientation, air-conditioner size, and

so on, the controller may predict the house dynamic signature from the given information.

In commercial buildings, building engineers usually build thermal models and control their

thermal behaviors based on the information. However, in residential buildings, access to

that kind of information is relatively limited and, even with the information, it is impossible

to make the thermal model of an individual building.

Learning is one approache to de�ne characteristics of a system. While the characteristics

of a commercial building can be derived directly from the physical properties by an engineer,
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the controller for a residential building should learn the characteristics from the limited

measurement by itself. Although the system identi�cation by learning tends to be time-

consuming and possibly less accurate, it is more �exible (adaptive) to various systems and

environments. The house identi�cation techniques that this chapter deals with should be

understood as one algorithm that can be adopted by any autonomous energy management

system for residential buildings and thus should not require high computational load.

The identi�cation process amounts to repeatedly selecting a model structure, computing

the best model in the structure, and evaluating this model's properties to see if they are

satisfactory. The cycle can be itemized as follows:

1. Design an experiment and collect input-output data from the process to be identi�ed.

2. Examine the data. Polish it so as to remove trends and outliers, and select useful

portions of the original data. Possibly apply �ltering to enhance important frequency

ranges.

3. Select and de�ne a model structure (a set of candidate system descriptions) within

which a model is to be found.

4. Compute the best model in the model structure according to the input-output data

and a given criterion of �t.

5. Examine the obtained model's properties

6. If the model is good enough, then stop; otherwise go back to Step 3 to try another

model set. Possibly also try other estimation methods (Step 4) or work further on

the input-output data (Steps 1 and 2).
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3.1 Characteristics of a Residential Building

3.1.1 Thermal properties

The envelope of a building acts as a passive climate modi�er to help maintain an indoor

environment that is more suitable for habitation that the outdoors. However, the building

envelope alone responds to the outdoor climate in any case, and it can hardly ensure that the

indoor environmental conditions will always be comfortable to the occupants, or be suitable

for the intended purposes of the indoor spaces, especially in harsh outdoor conditions.

Nowadays, an unfavorable indoor condition in any type of building is controlled by active

means of environmental control such as central heating, ventilating and air-conditioning

(HVAC) systems. It is the reason why the HVAC system should be considered as one

element that de�nes the thermal characteristics of buildings.

Thermal characteristics of a residential building di�er from those of a commercial build-

ing due to structure, size, materials, and HVAC systems. One study showed that building

type determined the e�ectiveness of the envelope's thermal insulation on the thermal perfor-

mance of buildings. It concluded that the impact of thermal insulation is more signi�cant in

the performance of a Skin-Load Dominated (SLD) building such as most residential build-

ings and small commercial building while it is not obvious that the internally generated

heat in an Internal-load Dominated (ILD) building can be trapped more e�ectively with

better insulation [20].

Disregarding the other di�erences between a residential building and a commercial build-

ing, the heat and mass transfer processes inside are very similar. Heat and mass transfer

that would take place in typical residential buildings is illustrated in Fig.3.1. Although

residential houses have various structural characteristics, a one-story house with a single

room is su�cient to explain the heat transfer process. The room is separated from the

outdoors by an external wall and a window, and above and below by a ceiling and a �oor

slab. The room is equipped with a HVAC system that would supply heating or cooling to
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Source : Underwood, Chris P. and Yik Francis W.H. (2004) p.3.

Figure 3.1: Heat and mass transfer processes involved in building energy simulation

the room by circulating air between the room and the air-handling unit via the supply and

return air ducts.

The heat and mass transfer process include the following �ve elements.

� Conduction heat transfer through the building fabric elements, including the external

walls, roof, ceiling, and �oor slabs;

� Solar radiation transmission and conduction through window glazing;

� In�ltration of outdoor air;

� Heat and moisture dissipation from the lighting, equipment, occupants, and other

materials inside the room; and

� Heating and cooling provided by the HVAC system.

The conductive heat transfer through an external wall or a roof is caused by the convective

heat that the surface of the wall is exchanging with the surrounding air, and the radiant

heat exchanges with other surfaces. The radiant heat exchange at the external side includes
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(a) External Wall (b) Window Glass Pane

Source : Underwood, Chris P. and Yik Francis W.H. (2004) pp. 3-4.

Figure 3.2: Heat Transfer at an External Wall and a Window Glass Pane

the absorbed direct and di�use solar radiation. However, the window glass allows part of

the incident solar radiation to transmit into the indoor space. At the same time, some of

absorbed solar radiation increases the temperature of the window itself and leads heat �ow

from the window to indoors and outdoors. The heat transfer at the external wall and a

window is illustrated in Fig.3.2.

In some cases, the e�ect of absorbed solar radiation and outdoor to indoor temperature

di�erence is treated together by using an equivalent outdoor air temperature, called sol-air

temperature. The sol-air temperature causes the same amount of conduction and convection

heat �ow. In a similar way, environmental temperature is used to account for the combined

e�ects of the convective heat transfer from the internal surface to the room air and the

radiant energy gain at the surface.

The transmitted solar radiation is a component of cooling (or heating) loads in an

indirect way. The temperature of the internal surfaces increases only after the transmitted

solar radiation is fully absorbed. The increased surface temperature causes the conductive

heat �ow from the surfaces to the room air. Therefore, this cooling load di�ers in magnitude
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Source : Underwood, Chris P. and Yik Francis W.H. (2004) p.5.

Figure 3.3: Radiant Heat Gain and the Resultant Cooling Load

and in the time of occurrence of its peak value from those of the radiant heat gain. The

inconsistency between the two is shown in Fig.3.3.

The thermodynamic state of the air in the room varies with the air movement caused

by pressure di�erences between the room, the adjoining rooms, the outdoors, and the

moisture experienced by the room air, air transport into or out of the room, and heat and

moisture gains by the HVAC system. Therefore, these heat transfer processes would need

to be modeled for the accurate prediction of the indoor air condition or humidi�cation or

dehumidi�cation required for maintaining the indoor air temperature at the desired setpoint

[21].

3.1.2 Overview of Modeling for Energy in Buildings

While many energy modeling methods for buildings have been suggested and validated

based on the knowledge obtained from experiences and fundamental laws, there have been

dramatic improvements in the modeling methodology primarily due to the computer in the

past 30 years.

Throughout most of the twentieth century, the thermal response of buildings has been

calculated with many assumptions to simplify the calculation. For example, the outdoor

temperature, wind speed and direction, and indoor temperature were considered static,

and the building was assumed to be always unoccupied. While these assumptions enabled
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House 1 House 2

Location Antioch, CA Bay Point, CA

Structure 1700 square foot two-story stucco house 1500 square foot one-story house

Construction

Year
1991 1984

Thermostat White Rodgers programmable thermostat. manual setback Honeywell Chronotherm.

HVAC

System
Carrier split system air conditioner/furnace,

with supply grilles in the �oor throughout

the house

General Electric split system air

conditioner/furnace, with supply grilles in

the ceiling

Occupants Occupants are working at home.
Normal setpoint in both daytime and

nighttime is 74F and 79F when unoccupied.

Participant opens up the windows (upstairs)

at night and closes during the day.

Occupants are normally out of the house
during the day.

Normal setpoint in daytime is 70F and
lowered or o� in nighttime.

The participant opens up the house at

night; two windows are opened during

the day as well.

Mote

Deployment Total 15 motes.

A mote outside is under the southeast eave

of the roof.

Total 14 motes.

A mote outside is under the southeast

eave of the roof.

Table 3.1: Description of Two Field Test Houses

the engineer to predict the thermal behavior very roughly (it might be useful to calculate

heat load in a worst case), it could not explain the impact of the thermal capacity of the

building envelope material or the dynamics of the indoor temperature with respect to a

varying outside climate. In the later part of the twentieth century, more factors such as

lagging e�ect of solar heat transfer through walls and windows began to be considered.

Since the 1970s, digital computers have been used as a main computational tool, which

means that the building energy modeling is free from static boundary conditions. In this

period, two main approaches were commonly used. One is the numerical method based

on the governing Fourier equation using �nite di�erence methods, and the other is an

analytical method in which response factor is derived from the time response to a unit

pulse. Common practice in North America is to use the analytical method due to the
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computational inexpensiveness.

In the 1980s, the �rst commercial codes for design calculation using steady-state meth-

ods of energy in buildings became available. Two main methods, Response Factor method

and Finite-di�erence method, were still dominant during this period. At the latter part of

this decade, HVAC system modeling was introduced, and the moisture sorption in building

fabric elements was treated in some codes.

In the 1990s, much research was focused on the neglected problem of �uid �ow in and

around buildings and the �rst computational �uid dynamics (CFD) codes for the case

dealing with the low Reynolds number �ow associated with building ventilation. However,

the high computational demand of most CFD problems provoked people to doubt the

embracing and comprehensive description in the building modeling method. Accordingly,

the current modeling became more speci�ed and simpli�ed in accordance with the purpose

and application.

Throughout this chapter, several methods are introduced. It should be clari�ed that

the goal of those methods is not to include all features in a building but to predict indoor

temperature within an acceptable error range with limited computational e�ort.

3.2 House Description for Algorithm Test and Valida-

tion

The house identi�cation algorithms in this chapter were suggested and developed with

di�erent research purposes and testing environments. The following simulation houses and

real houses were used in both algorithm development and validation. Di�erent aspects

in these houses allow algorithm developers to easily �nd problems or limitations of the

suggested algorithm as well as consider various phenomena in a development stage.
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(a) Pre-1978 Slab on Grade Model (b) Post-1992 Slab on Grade Model

(c) Pre-1978 Crawl Space Model (d) Post-1992 Crawl Space Model

Source : Hand-drawing by Kyle Konis, the Department of Architecture, University of California at Berkeley.

Figure 3.4: Four MZEST Models Based on Typical California Houses

3.2.1 Multi-Zone Energy Simulation Tool (MZEST) Houses

As an infrastructure of the DREAM system, the DREAM controller needed simulation

houses to validate its control strategies prior to a �eld test. The Multi-Zone Energy Sim-

ulation Tool (MZEST) was developed to simulate the energy use and thermal response

of houses. MZEST originated from the simulation code, CNE (California Non-residential

Engine), which the energy simulation software distributed by the California Energy Com-

mission used for demonstrating compliance with state residential Title 24 energy standards.

In order for MZEST to simulate thermal response and energy use, certain input param-

eters such as the speci�cation of a weather �le, designated house construction information,

and HVAC on/o� status are required. The weather �le is hourly climate data in the form

of TMY2 (Typical Meteorological Year) and the house construction parameters are speci-
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�ed in the input �les. House size, construction material properties, window speci�cation,

in�ltration rates, and HVAC equipment size are determined in this �le. The HVAC on/o�

status is transferred from the DREAM controller in the form of XML (Extensible Markup

Language). Two main outputs are temperature of each zone and energy use of the house.

MZEST reports these outputs every sampling time in the form of XML. Although the

default sampling time is �ve minutes, it can be decreased to one minute without losing

accuracy.

The initial MZEST model is based on a real single-story house in Moraga, California.

The simulation results were validated against measured indoor zone temperature using on-

site outdoor weather condition[22]. However, to cover most typical houses in California 1,

four additional houses were designed. In Fig.3.4, the characteristics of the four houses are

summarized.

These houses are categorized with respect to construction year and foundation type.

Roughly two-thirds (67%) of the occupied existing California housing stock was constructed

before the �rst Title-24 energy standards took e�ect in 1978[23]. These old houses have

relatively poor insulation with single-pane windows and air-conditioning and heating ef-

�ciency typical of the 1970s. In contrast, a post-1992 model represents a generic house

meeting the minimum for Title-24 compliance (insulated envelope and double-paned win-

dows). In addition, since the thermal mass plays in the attenuation of heating load, both

a crawl-space and slab-on-grade foundations were applied as well.

3.2.2 Test Houses for the DREAM System

Two house owners in Northern California voluntarily provided their houses as a test bed for

the DREAM system (Fig.3.5). Data acquisition frequency was determined by the sensor

type and location. The mote that was located outside measured weather information every

three minutes, and indoor temperature and relative humidity were measured every one

1While MZEST can be used for simulation of any house under diverse climate zones, the initial devel-
opment was designated to simulate residential buildings in California.
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(a) House 1 (House ID: C1) (b) House 2 (House ID: C2)

Figure 3.5: Test Houses in Northern California

minute. The power information was updated every second. Occupancy information was

updated whenever the status changed. Among the data from more than 50 sensors in each

house, outdoor temperature, solar radiation, indoor temperature in the living room, and

HVAC status were mainly used for house identi�cation.

House 1 (House ID: C1)

House C1 is a 1700ft2 two-story stucco house built in 1991. The living room has a cathedral

ceiling that is open to the stairs and upstairs hallway and four bedrooms are located upstairs

side by side. Most of the windows face east or west. The HVAC system is a Carrier split

system air conditioner/furnace, with supply grilles in the �oor throughout the house. Three

ceiling fans are controlled manually in the living room, kitchen and master bedroom.

There were two occupants who work at home. One dog is inside most of the time. The

owner normally keeps the thermostat set to 74F all the time, but he sets the thermostat

to 79F when he leaves. He opens the windows at night and closes them during the day.

House 2 (House ID: C2)

House C2 is a 1500ft2 one-story house built in 1984. One ceiling fan continuously runs in the

family room. The HVAC system is a General Electric split system air conditioner/furnace,
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with supply grilles in the ceiling. The house has an attic fan and two skylights in the roof.

There were two occupants who are normally out of the house during the day, but during

a portion of the test were at home. The participant decides whether or not to use the air

conditioning from the weather forecast. The setpoint during the day is 70F, and lowered

in the evening, and turned o� at night. If the weather is hot, the setpoint is 68F and 70F

at night. The participant opens up the house at night and two windows are opened during

the day as well.

3.2.3 Test Houses for the EcoFactor Thermostat System

EcoFactor, a start-up company in SunnyVale, CA, had co-worked with the DR thermostat

research group at University of California, Berkeley for six months. This company deployed

their �rst thermostat system in July, 2007 and started collecting information that is nec-

essary for the advanced thermostat control. The following houses, located in Minnesota

and Adelaide, are their test houses, and the data used in this chapter came from their own

database.

Houses in Minnesota (House ID: M1 - M12)

Twelve houses in various locations in Minnesota were involved in the study. Data from these

houses were uploaded to the database in November, 2007, and winter data were primarily

used for analysis. The house size ranged from 946 to 2204ft2 with an average of 1330ft2. It

should be noted that the following house information is based on the homeowner's reports.

Therefore, some houses do not have complete information. The construction year ranged

from 1937 to 1987, and the average age was 42 years. All houses are reported to have

insulation in both the attic and the walls. The primary house structure in 10 houses is

wood, and in one is masonry. The last house was not identi�ed. Six houses were built on

slab, two have basements, and two have raised perimeter. Ten of the houses are traditional

detached houses, one is half of a duplex, and one is a town home. Due to the severe winter
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House ID Size (ft2) Construction House ID Construction Comments

M1 1501 - 2500 1985 A1 1890

M2 1501 - 2500 2003 A2 1999
structurally
identical

M3 2501 - 3500 1987 A3 1999

M4 1501 - 2500 1937 A4 1999

M5 1501 - 2500 1968 A5 1999 structurally
identicalM6 1000 - 1500 1951 A6 1999

M7 1501 - 2500 1984 A7 N/A

M8 less than 1000 1962 A8 N/A

M9 1501 - 2500 1956 A9 N/A

M10 1501 - 2500 1958 A10 N/A

M11 1000 - 1500 1957

M12 1501 - 2500 1957

C3∗ 2860 1974

*C3 is an additional test house in California

Table 3.2: Summary of the Test Houses in Minnesota and Australia

climate, nine of the houses have double-glazes or better windows. The location, size, and

construction year of the houses are summarized in Tab.3.2.

Each home has one single-stage natural gas furnace. Approximately half of the houses

are equipped with less than �ve-year-old furnaces and the rest of them are equipped with

5-10 year-old ones. Two of them have more than 10 year-old furnaces. For the study, the

existing thermostats were replaced with o�-the-shelf devices manufactured by Proliphix,

Inc.

Among nine homeowners that had programmable thermostats, three reported changing

the programming often, �ve reported adjusting the programming very rarely (once or twice

per year), and the rest never changed it. Five houses are occupied most of the day, and

four houses are mostly unoccupied during the day.

The sampling time (data acquisition and uploading time) of the thermostat system is

one minute for all Minnesota houses. Indoor temperature is measured by the thermistor of

the thermostat, and other control properties such as setpoints, HVAC status, and HVAC

mode are uploaded to the database through wireless networking. Weather information

(outdoor temperature, humidity, cloud condition, and wind speed / direction) is obtained
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Figure 3.6: Five Houses on the Same Street in Adelaide, Australia

in the server side directly from the website of the local weather stations. Sampling time in

the weather stations ranged from 10 minutes to one hour.

Australia Houses (House ID: A1 - A10)

In February 2008, EcoFactor deployed their thermostats in ten houses located in Adelaide,

Australia. These houses provided thermal behavior of the houses mostly in a summer

period. Five houses (house ID: A2, A3, A4, A5, and A6) were constructed in the same

recent development. Among them, three houses (A2, A3, and A4) are structurally identical.

(They have the same �oor plan, construction methods, etc.) The other two (A5 and A6)

are identical to one another. All �ve houses are located on the same street shown in Fig.3.6.

The house information is summarized in Tab.3.2.

Each house has one single-stage AC-heat pump unit. Three of the houses have less than

5-year-old AC units and �ve have less than 10-year old units. One interesting thing is that

the ducting in every house has in-line motorized dampers controlled by switches, which

makes zone control possible.

All homeowners previously had programmable thermostats and had an experience pro-

gramming them at least once. Six of them adjusted the programming once or twice in the

previous year and the rest never changed it. Seven houses are usually occupied most of the

day and three houses are unoccupied during the day.

The data acquisition and updating procedure are exactly the same as that in the Min-
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nesota houses. The only di�erence is that the weather information for the 10 houses

comes from one weather station, and the sampling time in the weather station is one hour.

Therefore, the outside temperature (one major piece of information for dynamic signature

learning) may not be reliable, and additional �ltering will be required.

3.3 1st Order Physical Model

3.3.1 Model Development

As a �rst candidate, identi�cation through a complex physical model was not recommended.

A complicated house model with many unknown parameters would certainly provide better

prediction in that the model might be able to represent even nonlinear characteristics of the

house thermal behavior. MZEST that is used as an algorithm validation tool in this study is

a good example of complex models. However, this type of model requires a large amount of

data and high computational load to identify the unknown parameters. A simpli�ed house

model, thus, can streamline the learning process by minimizing the number of unknown

parameters. A limit was imposed on the properties of the proposed model: It should be

low order, have less than �ve unknown parameters, and require a small amount of data for

prediction. The initial internal model has the following form:

Tin(t+ ∆t) = function(Tin(t), Tout(t), RHin(t), Iglobal(t), Occupancy(t), etc.) (3.1)

where Tin(t+ ∆t): indoor temperature at time t+ ∆t

Tin(t): indoor temperature at time t

Tout(t) : outdoor temperature at time t

RHin(t): indoor relative humidity at time t

Iglobal(t): global radiation at time t
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Figure 3.7: Inputs and Outputs of the Internal House Model

Occupancy(t): house occupancy status at time t

An example of how the internal house model works is shown in Fig.3.7. Upon installa-

tion of the DREAM system, the house characteristics including the characteristics of HVAC

equipment are unknown�the proverbial black box. The indoor temperature, outdoor tem-

perature, relative humidity and solar radiation are sensory data inputs. Other inputs such

as zip code and available HVAC devices will be entered by the occupant. The zip code will

provide general location of the house, which is used to predict global radiation. Current

time and date will be automatically con�gured. The output of the model is the predicted

indoor temperature.

To simplify the model, all residential buildings were assumed to be a single-room con-

trolled by a single HVAC unit. The model considers �ve heat sources: conduction, in�ltra-

tion, internal gains, solar radiation, and heating or air-conditioning (Fig.3.8). Heat balance

caused by convective heat transfer was ignored in this house model. Heat gain through the

external walls, windows, doors, ceilings, and �oors by conduction and in�ltration can be

expressed by the following equations.
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Original graphics: www.ce.utexas.edu/bmeb/scenarios/heatingCooling.cfm

Figure 3.8: Five Heat Sources in the 1st Order Model

Hconduction = AU(To − Ti) (3.2)

Hinfiltration = sdnV (To − Ti) (3.3)

where H: heat gained (W )

A: area of exposed surface (m2)

U : overall coe�cient of heat transmission (W/m2K)

s: speci�c heat capacity of air (kJ/kgK)

d: density of air (kg/m3)

n: number of air changes (s−1)

V : volume of room (m3)

Ti: inside air temperature (
◦C)

To: outside air temperature (
◦C)

In Eq.3.2 and 3.3, other parameters except Tiand To are uniquely determined by the

house or assumed to be constant. This implies that heat transfer due to conduction and

70
PhD Dissertation, Dept. of Engineering, University of California, Berkeley. 



Still Air

Air Temperature (◦C) 10 12 14 16 18 20 22 24 26 28 30 32

Sensible Heat (W ) 136 126 115 106 98 92 85 77 69 58 47 33

Latent Heat (W ) 21 21 21 21 23 27 33 41 49 60 69 81

Total (W ) 157 147 136 127 121 119 118 118 118 118 116 114

Moisture (g/hr) 31 31 31 31 34 40 48 60 73 88 102 120

Air Velocity 1m/s

Air Temperature (◦C) 10 12 14 16 18 20 22 24 26 28 30 32

Sensible Heat (W ) 152 142 131 122 112 104 97 88 81 69 55 38

Latent Heat (W ) 19 19 19 19 19 20 25 32 38 49 61 77

Total (W ) 171 161 150 143 131 124 122 120 119 118 116 115

Moisture (g/hr) 28 28 28 28 28 29 36 47 57 73 89 114

Source: Porges, F (1995) p.116[24].

Table 3.3: Heat Emitted by Human Body (Light O�ce or Domestic Work)

in�ltration can be expressed as a linear function of temperature di�erence. The magnitude

of an internal heat gain inside the house is a�ected by the number of people, their activity,

and household equipment such as lights. Even from the same number of people, total

body heat varies because a human body emits a di�erent amount of heat depending on

its surrounding air temperature and velocity (see Tab.3.3). The e�ect of solar radiation

on inside air temperature is more subtle. Although heat induced by the solar radiation is

calculated from a very simple equation (Eq.3.4), three parameters F , α, and I are dependent

on many factors including surface material, type of shading, and orientation.

Hradiation = AFαI (3.4)

where H: heat gained (W )

A: area of exposed surface (m2)

U : overall coe�cient of heat transmission (W/m2K)

F : radiation factor, proportion of absorbed radiation transmitted to interior (W/m2)
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α: absorption coe�cient, proportion of incident radiation absorbed

I: intensity of solar radiation striking the surface (W/m2)

To reduce unknown parameters in the internal model, the following four assumptions

were applied. Heat gained by conduction and in�ltration is a linear function of outdoor

to indoor temperature di�erence; internal gain is constant; heat gained by solar radiation

does not have a time lag and can be written in a linear function of the global radiation

value; and e�ciency of a heating or an air-conditioning unit is not dependent on the indoor

and outdoor temperature, which implies that the unit supplies constant heat to the room.

Based on these assumptions, the future indoor temperature is calculated by

Tin(t+ ∆t)− Tin(t)

∆t
= α× (Tout(t)− Tin(t)) + β + γ × Iglobal(t) + δ × (AC status) (3.5)

where α: coe�cient corresponding to conduction and in�ltration heat transfer (hr−1)

β: coe�cient corresponding to internal heat gain (K/hr)

γ: coe�cient corresponding to the heat by solar radiation (Km2/Whr)

δ: coe�cient corresponding to the heat gained by air-conditioning (K/hr)

Iglobal(t): global radiation at time t

Four parameters in Eq.3.5 determine the thermal behavior of a given house. However,

these parameters would be possibly a�ected by time of day, season, or other factors because

the e�ect of those factors was excluded by the assumptions. γ, for example, may be

relatively small during a certain time period if the house is partially shaded by woods.. For

this reason, the parameter learning needs to be recursive with recent data. To minimize

seasonal e�ects as well as the variation of occupant's behavior pattern, recent three-day-

long data were used for parameter learning.

The learning process starts from data categorizing. Instead of using the same data set

for all parameters, di�erent portions of the data were applied to di�erent parameters. For

α and β, the data corresponded to the period in which there was no air-conditioning event

72
PhD Dissertation, Dept. of Engineering, University of California, Berkeley. 



−10 −5 0 5 10 15
−1.5

−1

−0.5

0

0.5

1

1.5

2
α and β Fitting

T
o
(t) − T

i
(t) [degC]

(T
i(t

+
dt

) 
−

 T
i(t

))
/d

t [
de

gC
/h

r]

y=0.10581x−0.05654 

Figure 3.9: α and β Calculation through Least Squares (Pre-1978 Slab on Grade Model)

and ignorable global radiation. Most of the night-time data belongs to this category. Since

the third and fourth terms in the right side of Eq.3.5 are ignored, only α and β remain,

and then they can be easily calculated by linear least squares2. With the α and β obtained

through the previous process, the next two parameters, γ and δ, are calculated from the

rest of data corresponding to no air-conditioning and air-conditioning periods respectively.

Fig.3.9 shows how the parameters are calculated from least squares. In this simulation, the

outdoor temperature came from the TMY2 weather �le for Sacramento, California [25].

By following the above process, four parameter sets with respect to four di�erent

MZEST houses were calculated. The sets are compared in Tab.3.4. It is interesting that

each group in the same construction year has similar values while the parameters between

two groups are considerably di�erent. Improved insulation in the post-1992 houses seems

to prevent the outside weather condition from a�ecting the inside air temperature. The

2The method of least squares, also known as regression analysis, is used to model numerical data
obtained from observations by adjusting the parameters of a model so as to get an optimal �t of the
data.(from Wikipedia)
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MZEST Model α× 103 (hr−1) β × 103(K/hr) γ × 103(Km2/Whr) δ × 10−3 (K/hr)

Pre-1978 Slab on Grade 105.81 -56.54 0.94952 -16.591

Pre-1978 Crawl Space 104.82 -17.29 0.99593 -18.253

Post-1992 Slab on Grade 48.29 -31.49 0.37017 -27.003

Post-1992 Crawl Space 43.05 10.99 0.33565 -26.828

Default 73.37 -26.79 0.66296 -21.307

Table 3.4: Parameter Comparison

post-1992 houses are approximately two times less a�ected by the outside weather than

the pre-1978 houses in that α value represents the sensitivity of the indoor temperature to

the outside temperature. In addition, heat from the solar radiation tends to be relatively

small in the post-1992 houses. The sizes of air-conditioning units in two groups are initially

di�erent. Old houses have 3 ton units and new houses have 4 ton units. (The size ratio is 1

to 1.3) Despite considering the size di�erence, heat loss by air-conditioning in the post-1992

houses is more signi�cant. (The δratio is 1 to 1.6.) In contrast to our expectation, the data

provided a negative β value, with the exception of one house. A negative internal gain in

the house does not make any physical sense, but other factors that were not considered

in this very simple model might a�ect the sign of β. Although this model does not fully

explain the physics inside the house, it successfully identi�ed the thermal characteristics of

the house to some degree.

To guarantee reasonable out-of-box performance of the DREAM controller that can be

deployed in any California house, preset parameters (defaults) of the internal model were

also obtained. Since the defaults are based on the four MZEST models, they should be

updated later. Nevertheless, they would help the controller to predict indoor temperature

within an acceptable error range. In Fig.3.10, indoor temperature predicted with defaults

is compared with the simulation results from the learned parameters associated with four

di�erent MZEST houses.
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Figure 3.10: Default Parameters

3.3.2 Performance Evaluation

While the parameters from the MZEST houses tend to be constant regardless of time

change, the parameters from the real house were seriously a�ected by disturbance. The

consecutive �ve days from July 27 to July 31, 2007 were analyzed in Fig.3.11. In order to see

consistency of the learned parameters, four α-β sets were calculated from the data obtained

during each night time period under no air-conditioning. α and β are corresponding to the

slope and y-intercept of the regression line respectively in Fig.3.11(c)(d)(e) and (f).

Except the second parameter set (α = 0.4539 and β = 2.0643), the other three (α =

0.1533, 0.1946, 0.1471 and β = 0.9841, 1.3612, 0.9833) are close. Also, the signs of the β

values, which were negative in the three out of four MZEST houses, are all positive here.

However, even if the second case is excluded for parameter calculation, the scattered data

in Fig.3.11(b) does not show the linear relationship of current outdoor/indoor temperature

di�erence, To(t) − Ti(t), and indoor temperature increment, Ti(t + ∆t) − Ti(t), clearly

unlike the MZEST houses in Fig3.9. The shape of scattering is rather more exponential

than straight.

The anomaly in the second parameter set can be explained by comparing the temper-
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Figure 3.11: Parameter Consistency (Antioch, California from Jul.27-Jul.31)
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ature behavior and air-conditioning status in 3.11(a). The weather conditions during the

selected night periods are very similar. However, the indoor temperature change rate in

the second night (44.6 - 54.0 hr) is considerably di�erent from those in the other three

nights. Therefore, it can be inferred that there was an unusual heat loss during the night,

and it might be caused by the heat exchange between indoor and relatively cool outdoor

through open windows. If the controller can compare parameters by itself, automatic fault

detection or continuous commissioning would be possible.

Fig.3.12 shows how much improved the prediction quality is after parameter learning.

Predicted indoor temperature in Fig.3.12(a) (red line) follows actual indoor temperature

(black line) within an acceptable error range. However, especially in a morning period (from

0 to 10am), the AC on/o� status of real indoor temperature and predicted temperature

is totally di�erent in that no AC on event has been predicted. Compared with predicted

indoor temperature in Fig.3.12(a), predicted temperature in Fig.3.12(b) is much closer to

the real temperature. Although the temperature slope during AC on period is not well

matched due to the simplicity of the internal model, it can be seen that AC on/o� cycle

follows the actual on/o� cycle pretty well. Imperfection of the suggested internal model

is certainly the main reason for error. Even with a more complicated internal model, the

prediction error still exists. The error would come from unexpected occupant behavior

including opening windows and cooking. This would change in�ltration and internal heat

gain of a house. Therefore, if this detailed information could be provided, the prediction

will be more accurate. Even without them, the current house learning algorithm is still

promising.

3.4 Tabular Method

Now it is questionable whether simpli�ed numerical models can describe complicated ther-

mal dynamics inside a house. As noted, the non-linearity of the house behavior was assumed
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Figure 3.12: Indoor Temperature Prediction Before/After Parameter Learning (Antioch,
California from Sep.1, 2007 � Sep.2, 2007)

to be linear due to complexity of calculation in the previous method. It is always a dilemma

that both accuracy and simplicity of the prediction mode is required for the DREAM con-

troller. At this time, a totally di�erent approach is suggested, which starts from skepticism

on numerical methods.

A tabular method does not �t the measured data to a prede�ned model. Instead, it

reorganizes the data in a prede�ned structure. Fig.3.13 demonstrates how a tabular method

is applied in house dynamic signature learning. Among many factors that a�ect indoor

temperature �uctuation, outdoor temperature, solar radiation, and the on/o� condition

of the heating or cooling devices are most dominant. Indoor temperature should also be

saved as a reference value in a prediction procedure. In Fig.3.13, three tables are used for

an o� mode, a cooling mode, and a heating mode respectively. This mode is automatically

determined based on the real-time on/o� status from the HVAC switch. Each table is �lled

with temperature change rates (degree/hour) in given outdoor and indoor temperature.

The table size is determined by the reachable indoor and outdoor temperature ranges and

their discretization measure. If solar radiation is also considered, each table will require

one more axis for it.
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Figure 3.13: Schematics of the Tabular Method for Dynamic Signature Learning

If �ve-minute sampling time is assumed, temperature change rate is calculated every

�ve minutes and this value is stored in the corresponding (o�, heating, or cooling) table.

The outdoor and indoor temperature at that moment determines the exact location where

the value should be put in the table. For example, if indoor and outdoor temperatures

are 70.0F and 82.0F at 2:30pm, and 69.5F and 82.1F at 2:35pm under air-conditioning,

the temperature change rate is -6.0◦F/hr (-0.1 ◦F/min) and the location is (82, 70) of the

second table in Fig.3.13.

3.4.1 Instant Slope Method

In this method, an instant slope at every sampling time is calculated by linearizing three

consecutive indoor temperature points. However, it is necessary to decrease the total num-

ber of reference conditions (outdoor temperature, indoor temperature, and solar radiation).

While the diverse references may provide an opportunity to consider more delicate situa-

tions, it requires, at the same time, more CPU memory for the controller and increases the
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(b) Changing Setpoint

Figure 3.14: Two MZEST Simulations with Di�erent Setpoint Setups

learning time3. Finally, the temperature di�erence between outside and inside is substituted

for outdoor temperature and indoor temperature in that heat transfer is basically caused

by the temperature di�erence. It is certain that some properties are de�nitely related to

the respective value rather than the di�erence. Nevertheless, it would be a reasonable

approach.

This method was applied to the one of the MZEST houses (pre-1978 crawl space house)

from Dec. 5 to Dec. 7. For comparison, a �xed value and a changing value in a wide

range were used as a heating setpoint. In Fig.3.14, two simulated indoor temperature

pro�les are shown. Fig.3.15 and Fig.3.16 show the correlation between a temperature

change rate (slope) and either temperature di�erence or solar radiation. From the results,

it could not be clearly shown how the solar radiation a�ects the indoor temperature change

rate. However, the proportional relationship between the temperature di�erence and the

temperature change rate was found both in the o� mode and in the heating mode. The

slope distribution with respect to the temperature di�erence in the o� mode seems to be

parabolic and that in the heating mode is approximately linear. One notable �nding is that

the distributed spots in Fig.3.16(f) are apparently divided into two separate lines while the

3It can be de�ned as a total time within which all tables are �lled with a value.
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(b) Update Statistics of the Heating Table
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(d) 3D Slope Distribution in the Heating Table
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(e) 2D Slope Distribution in the O� Table
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(f) 2D Slope Distribution in the Heating Table

Figure 3.15: Correlation between Slope, Temperature Di�erence, and Solar Radiation under
Constant Setpoint Setup (MZEST Pre-1978 Crawl Space, Dec. 5 - Dec. 7)
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(c) 3D Slope Distribution in the O� Table
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(d) 3D Slope Distribution in the Heating Table
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(f) 2D Slope Distribution in the Heating Table

Figure 3.16: Correlation between Slope, Temperature Di�erence, and Solar Radiation under
Changing Setpoint Setup (MZEST Pre-1978 Crawl Space, Dec. 5 - Dec. 7)
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(a) Slope in the O� Table
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(b) Slope in the Heating Table

Figure 3.17: Slope Distribution of the House C3 (Dec. 28 - Dec. 31, 2007)

separation is less clear in Fig.3.15(f).

Fig.3.17 and Fig.3.18 are based on 4-day-long real data from the House C3 and M4

respectively. Di�erent colors in the plots display di�erent magnitudes of solar radiation.

The slope distribution in the o� table of the C3 house (Fig.3.17(a)) resembles closely the

shape of MZEST simulation if the degree of concentration is not the matter. In the same

standpoint, the heating slope approximates a straight line.

However, the proportional relationship is not always clear in the data from real houses

like the case in Fig. 3.18. Only 4 out of 12 test houses in Minnesota showed the similar

distribution pattern and 3 houses did not have any pattern in either the o� or heating

tables. The rest of the houses could not show any relationship between two variables in

both tables.

While the indoor temperature that MZEST outputs is numerically calculated, the mea-

surement from the real houses is easily disturbed by uncontrolled factors. These factors

include inaccuracy of the indoor temperature sensor resolution due to rough resolution,

information from a weather station that cannot re�ect the actual outdoor temperature

around the house, and unpredictable human behavior that might a�ect the thermal behav-
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Figure 3.18: Slope Distribution of the House M4 (Dec. 28 - Dec. 31, 2007)

ior of the house. Due to the continuity in temperature changing, the slopes within a very

short period should be close if there is no disturbance. For example, two slopes at 6:21pm

and 6:22pm may not be very di�erent. However, even in the constant outside temperature

condition within a relatively short period, actual indoor temperature measurements are

noisy. As a result, two totally di�erent slopes can be calculated for the same slot in the

table.

3.4.2 Two-Slope Method

Even though the previous results from the MZEST and real houses show possibility in using

a slope method as a dynamic signature learning method, a more consistent method that is

less sensitive to disturbances is required for better prediction. When the indoor temperature

of the Minnesota houses was examined closely, it was found that the temperature change

rate (or slope4) was also a�ected by uneven heat balance. When the heater was repeatedly

turned on and o� around the heating setpoint, the slopes in both o� and heating modes

were a�ected by the outdoor temperature. With roughly constant outdoor temperature,

4A temperature change rate is the slope in a time-temperature plot
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Figure 3.19: Short-Term Slope vs. Long-Term Slope in a Heating Period

these slopes were expected to be similar. However, if a relatively long-term event occurs,

the slope tends to change dramatically at a certain point. In Fig.3.19, this dramatic changes

occurs in the middle of the transient period between two di�erent heating setpoints. Usually

the slope magnitudes during long-term heating and long-term o� periods are smaller than

those during short-term periods. The distinctive slope changes possibly cause the two lines

in Fig.3.16(f).

This phenomenon can be explained from a heat transfer point of view. Heat capacity 5

is the measure of the heat energy required to increase the temperature of an object by a

certain temperature interval. Since the inside of a residential building consists of various

materials (mostly air, wooden walls or concrete walls, furniture, and carpets) that have

di�erent heat capacity, temperature change rate in the individual material is di�erent. In

addition, at the beginning of a heating or cooling event, inside air gets heated or cooled

�rst via heat convection and, after some time period, the changed temperature will be

balanced with other materials via heat conduction. This explanation, however, comes from

the completely theoretical hypothesis. The actual thermal behavior inside the house may

not be as simple as the hypothesis.

5Heat capacity, Cp is an extensive property because its value is proportional to the amount of material
in the object. As distinct from heat capacity, speci�c heat capacity, also known simply as speci�c heat, is
the measure of the heat energy required to increase the temperature of a unit quantity of a substance by
a certain temperature interval.
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Figure 3.20: Ignorable Period and Break Point (House M12, Jan. 5, 2008)

In the two-slope method, a series of indoor temperature values (o�, heating, and cooling)

in an individual event is approximated to at most two lines with di�erent slopes, a short-

term slope and a long-term slope. Depending on the length of the event, some events would

be approximated to a single line. Compared to the instant slope method, the two-slope

method is less sensitive to the measurement noise. While the former method uses only

three consecutive points to calculate the temperature change rate that might change every

minute, the latter method uses many more points to get two lines per event.

Fig.3.20 shows a good example of how to �t indoor temperature to two lines with

di�erent slopes. During the period shown in Fig.3.20, there is one heater-o� event (0-55

min) and one heater-on event (55-68 min). The partial heater-o� event (68-80 min) is not

considered here. Two events were divided based on the actual heater on/o� time. The most

challenging process in the slope method is to �nd an exact break point. The break point

is de�ned as a point from which a long-term period starts. In most cases, it is di�cult to

tell where two lines meet because the indoor temperature usually follows a curve around

the break point.
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Besides determining the break point, it is important to determine how long the indoor

temperature would be a�ected by the previous event. Even after the heater was turned o�

in Fig.3.20, the indoor temperature kept increasing for six minutes and began to drop after

two more minutes. This is due to residual heat around the heater. The same thing happens

during the heater-on period as well. The length of this delay depends on the characteristics

of a house and an HVAC unit, temperature di�erence, and type of events (heater on/o�

or AC on/o�). Therefore, this property also needs to be learned for accurate temperature

prediction. Because the temperature values during this period are excluded in calculating

the short-term slope, the corresponding points are called ignorable points.

Moving Window with a Fixed Sample Size

A simple way to �nd the break point is to compare the coe�cients of determination 6 of

linear regression with �xed number of samples. If all samples in the window are located

closely to the regression line, R2would be close to 1. Otherwise, it would be much smaller

than 1. Until the window reaches the break point, calculated R2 values would be close each

other as well as close to 1. However, R2 decreases due to the lack of linearity when the

sample window includes the break point. Therefore, the point at which R2 is minimized

would be the break point and two slopes corresponding to maximum R2 before and after

the break point would be the short-term and long-term slopes. These two slopes are stored

to the corresponding stable.

The sample size is crucial to determine the sensitivity to measurement noise in this

method. In the case that the sample size is too big, the R2 values around the break point

are not clear enough to be detectable. The big sample size is problematic in the house

that has relatively short heating and air-conditioning on/o� cycles. If an event lasts for

less than the time corresponding to the sample size, the algorithm automatically excludes

6In statistics, the coe�cient of determination, R2, is the proportion of variability in a data set that is
accounted for by a statistical model. The better the regression is, the closer the value is to 1. In the case
of linear regression, R2 is simply the square of a correlation coe�cient.
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the event to increase the regression accuracy. Therefore, the tables for this type of houses

require longer time to be �lled with valid data as long as a long event such as precooling

and preheating happens. A small sample size, in contrast, increases sensitivity to the

noise. If the temperature did not change for three minutes due to the failure of sensing and

dramatically dropped afterwards, the algorithm using a small sample size may conclude

that the break point locates around these three constant temperatures.

When a default sample size (n=5) was applied to di�erent house data, the method

frequently failed to pick a correct break point, which degraded the quality of the slope data

in tables.

Fixed Window with an Incremental Sample Size

A �exible sample size that is adjusted by the characteristics of events can overcome the

limitation of the �xed sample size. Instead of using a moving window to detect a slope

change, a new method �xes the initial sample point but increases the window size (or sample

size). The di�erences in the two methods are compared in Fig.3.21. The initial sample size

is 5. The algorithm to �nd the break point is exactly the same as the previous method.

Fig.3.22 explains how the coe�cient of determination (or correlation coe�cient) changes

as the window size increases in both heater-o� and heater-on periods. The resultant slope

lines are also drawn in the plots. The di�erence of short-term and long-term slopes is

usually bigger in heater-o� events than in heater heater-on events.

As shown in Fig.3.22, the lengths of di�erent short-term periods are also di�erent. Even

though di�erent lengths do not matter to �ll up the table with slope values, the short-term

length should be �xed to determine which tables (short-term and long-term) should be

referred for prediction. In this method, the short-term length is determined by averaging

the values that are distributed within a 99% con�dence interval7. After the break point

is determined, the short-term slope and, if available, the long-term slope are recalculated

7When it is assumed that the lengths follow the Gaussian distribution, a 99% con�dence interval corre-
sponds to X̄ ± 2.58 s√

n
, where X̄: sample mean, s: sample standard deviation, and n: sample size
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(a) Moving Window w/ a Fixed Sample Size (b) Fixed Window w/ an Incremental Sample
Size

Figure 3.21: Moving Window vs. Fixed Window in Linear Regression

based on the points before/after the break point. Two �ow charts in Fig.3.23 summarize

how the method works.

Fig.3.24 and Fig.3.25 show the relationship between temperature di�erence and slope

(indoor temperature change rate). The results were obtained from 10 days data (Jan.

1 - Jan. 10, 2008). Except the short-term heater-on period in both houses, the indoor

temperature change rate tends to decrease as outdoor to indoor temperature di�erence

decreases in heating mode. . This result is consistent with what we expected in that

indoor temperature in that it drops quickly in o� mode and increases slowly in heating mode

when the outdoor temperature is much lower than the indoor temperature. In addition,

the magnitude of the short-term slope is clearly smaller than that of the long-term slope

at the same outdoor to indoor temperature di�erence. For the house M4 (Fig.3.24), two

slopes at -40F di�erence are approximately -10 and -1.7F/hr in o� mode and 9 and 3.5

F/hr in heating mode. For the house M12 (Fig.3.25), these values are -6 and -1.2F/hr in

o� mode, and 10 and 7.7F/hr in heating mode.

One interesting issue here is that the thermal characteristics of the two houses can be

accounted for only by comparing slope values in their tables. The temperature change

rates in the long-term o� table ranges from -3F/hr at -70F to -0.5F/hr at -20F in house
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(f) 31st Heater Event

Figure 3.22: Break Point Detecting and Resultant Slope Fitting in Two-Slope Method
(House M12, Jan.1 - Jan.10, 2008)
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(a) Break Point Determining (b) Table Filling with Slopes

Figure 3.23: Flow Charts for a Break Point Determining Process and a Table Filling Process

M4. However, house M13 has a smaller range (from -2.1F/hr to -0.6F/hr). The fact that

temperature change rate is less a�ected by the outside condition means that the latter

house has better insulation. From Tab.3.2, it can be inferred that the construction year is

strongly related to the house insulation. (House M4 was built 20 years earlier than house

M12.) In addition, compared with the result from the instant slope method (see Fig.3.18),

the proportional relationship is more explicit in the two-slope method.

Although the values in Fig.3.24 and Fig.3.25 are distributed approximately linearly,

these values are not adequate for prediction in that these are neither continuous nor per-

fectly linear. If adjoining three values in the same table are out of line or one of slots is

empty, the raw tables do not provide reliable prediction at all. As a method to �ll up the

empty slots as well as smooth the raw data in the tables, linear regression is performed

again. Since the data distribution in the table is not necessarily linear, the linear regression

should be considered one option for �ltering.

To evaluate the method, predicted indoor temperature and measured indoor temper-
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(e) Long-Term Heater-On Table

Figure 3.24: Slope Distribution of the House M4 (Jan. 1 - Jan. 10, 2008)
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(e) Long-Term Heater-On Table

Figure 3.25: Slope Distribution of the House M12 (Jan. 1 - Jan. 10, 2008)
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ature for three consecutive days were compared. The prediction was based on the tables

learned during past 10 days. Two temperature values were synchronized at the beginning

of each event. The results are shown in Fig.3.26. While the predicted value for short-term

events follows the actual measurement pretty well, the long-term prediction is not reliable

especially for the heater-on event.

3.4.3 Three-Slope Method

When the time of an event is long enough for the indoor temperature to reach approximately

its balance point, two lines may not be su�cient to approximate the whole temperature

pro�le of a single event. Three-slope method is not much di�erent from the two-slope

method in that the algorithms in it are the same as those in the two-slope method. The

only di�erence is one more break point must be determined in the long-term period, and

two lines are used for the long-term data. The period after the second break point is called

an extra-long-term period for convenience. In Fig.3.27, the 112-minute-long o� event is

approximated with both two and three lines. It is certain that the regression error drops

down with an additional line.

Besides using three lines in data �tting, solar radiation e�ect on the slope change was

also considered in this method. If the temperature change rate is signi�cantly a�ected by

the solar radiation, performance of the tabular method can be enhanced by adding one

more dimension to the existing table structure. In analysis on solar radiation e�ect from

the following results, two facts should be considered. First, the solar radiation data for

the houses in Minnesota and Australia are not the real measurement but the simulated

data. The global solar radiation was predicted based on weather information from the

local weather station and the Bras method [26].A turbidity factor nfac in the Bras method

could be determined by mapping weather condition to a speci�c value that ranges from 2 to

5. Using predicted data that do not re�ect actual solar radiation around the house possibly

leads to inaccurate results. Second, the solar radiation e�ect on the house temperature is
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(a) Prediction on Jan.12, 2008 (Tables Learned from Jan.1 - Jan.10, 2008)
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Figure 3.26: Prediction with Two-Slope Method (House M4, Jan.12 - Jan.14, 2008)
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(b) Three Slopes

Figure 3.27: Two-Slope Approximation vs. Three-Slope Approximation (House M4, Jan.
1, 2008)

indirect. As demonstrated in Fig.3.3, there exists a delay. House structures such as window

type, direction, trees, and surrounding buildings also cause the indirect consequence.

In spite of possible corruption induced by the above uncertainty, the following results

still exhibit the meaningful correlation between the strength of solar radiation and temper-

ature change rate. Each plot in Fig.3.28(b) and (c) contains three linear regression lines

corresponding to the temperature change rate under no solar radiation (blue) and solar

radiation (red) as well as whole data (green). Five consecutive days retaining clear sky

(constant nfac value) were used for this analysis. While the solar radiation increases the

temperature rate over all ranges in the air-conditioning mode (Fig.3.28(c)), this correla-

tion is not clearly shown in the o� mode (Fig.3.28(b)). The temperature change rate is

much higher under no solar radiation particularly in the short-term periods of the o� mode.

Fig.3.29 and 3.30 display the slope distribution and linear regression line of each case in

detail. It was discovered that the solar radiation is related to the temperature change rate

but how they are related was not evident in this analysis.

Fig.3.31 includes the indoor temperature prediction based on the three-slope tables

learned for the past 10 days. When it is compared with Fig.3.26, it turns out that the
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Figure 3.28: Solar Radiation E�ect on the Slope in the House A2 (Mar. 10 - Mar. 14,
2008)
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(a) O� Slope Distribution and Regression Line for All Data
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(b) O� Slope Distribution and Regression Line for Data below 250W/m2
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(c) O� Slope Distribution and Regression Line for Data above 250W/m2

Figure 3.29: Solar Radiation E�ect on the O� Slope in the House A2 (detailed)
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(a) AC-On Slope Distribution and Regression Line for All Data
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(b) AC-On Slope Distribution and Regression Line for Data below 250W/m2
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(c) AC-On Slope Distribution and Regression Line for Data above 250W/m2

Figure 3.30: Solar Radiation E�ect on the AC -On Slope in the House A2 (detailed)
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three-slope method characterizes the temperature behavior more accurately especially for

long events. Prediction for the last o� event on Jan. 13 (10pm - 12am) and the last long

heater-on event on Jan. 14 (from 5pm to 8pm) shows signi�cant improvement. However,

the slope method does not always provide reliable results. When it was applied to summer

data from the houses in Australia, the prediction error was much bigger than that of the

winter data from the houses in Minnesota. While occupants usually keep the windows

closed during a winter season, they frequently open the windows during a summer season.

This behavior changes the thermal characteristics of the whole house and allows tables to

be mixed with factitious data8.

3.5 ARX (Auto-Regressive with Exogenous Input) Model

Parametric models describe systems in terms of di�erential equations and transfer func-

tions. A system can generally be described using 3.6, which is known as the general-linear

polynomial model or the general-linear model. The general-linear model structure, shown

in Fig.3.32, provides �exibility for both the system dynamics and stochastic dynamics.

y(n) = q−kG(q−1, θ)u(n) +H(q−1, θ)e(n) (3.6)

where u(n) and y(n): input and output of the system respectively

e(n): zero-mean white noise, or disturbance of the system

G(q−1, θ): transfer function of the deterministic part of the system

H(q−1, θ): transfer function of the stochastic part of the system

Among parametric models, the ARX model is the most e�cient of the polynomial

estimation methods because it is the result of solving linear regression equations in analytic

form and its solution is unique. However, the coupling between the deterministic and

stochastic dynamics can bias the estimation of the ARX model when the disturbance e of

8This data can be useful to characterize the house thermal properties under a speci�c condition
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(a) Prediction on Jan.12, 2008 (Tables Learned from Jan.1 - Jan.10, 2008)
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(b) Prediction on Jan.13, 2008 (Tables Learned from Jan.1 - Jan.10, 2008)
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(c) Prediction on Jan.14, 2008 (Tables Learned from Jan.1 - Jan.10, 2008)

Figure 3.31: Prediction with Three-Slope Method (House M4, Jan.12 - Jan.14, 2008)
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(a) Genera-Linear Model (b) ARX Model

Figure 3.32: General-Linear and ARX Model Structure

the system is not white noise. In order to minimize the equation error, the model can have

a higher order than the actual system under low signal-to-noise ratio.

A model with more freedom or parameters does not necessarily provide better estima-

tion as it can result in the modeling of nonexistent dynamics and noise characteristics.

Therefore, a certain level of physical insight into a system is required to build a proper

model. The following section brie�y describes a modeling procedure for an HVAC unit and

building structures, which was initially proposed by William Burke and David Auslander

in 2007[27]. Instead of �nding physical parameters that are associated with thermal prop-

erties of the actual system, coe�cients of the polynomials, which do not have any physical

meaning, were calculated using a prediction error/Maximum Likelihood method.

3.5.1 Modeling

Despite the diversity in a building structure, the house equipped with a single zone HVAC

system was considered for modeling. This model includes the four temperatures of the

indoor air (Tair), internal walls (Tiw), external walls (Txw), and cooler (or heater) mass

(Tmass) as states. In modeling, several handbooks regarding HVAC and heat-mass transfer

were referenced [28, 29, 30, 31, 32, 33].

102
PhD Dissertation, Dept. of Engineering, University of California, Berkeley. 



HVAC Unit

When the length between the inlet and outlet of the cooler is L and the temperatures are

Tmass and Tsup respectively, it can be assumed that the temperature in the middle (T (x))

is distributed exponentially as in Eq.3.7.

T (x) = Tair + (Tmass − Tair)(1− e−
x

k3L ) (3.7)

Tsup = T (L) = Tair + (Tmass − Tair)(1− e−
1

k3 )

Conductive heat transfer from the cooler mass to outside can be considered heat loss

associated with the HVAC unit and it is expressed by Eq. 3.8. Eq.3.9 explains the heat

transfer to the inside air between the outlet and the inlet of the cooler. Then, the tempera-

ture variation of the cooler mass follows Eq.3.10 when Qadj is the adjusted heat input. Qadj

is determined by the thermal e�ciency of the cooler, which is mainly dependent on the

outside temperature. Finally, the supply air and the indoor air exchange the heat through

the convective heat transfer as in Eq.3.11.

Qloss = Qmass2out = k2(Tmass − Tout) (3.8)

Qmass2air = k1
1

L

ˆ L

0

(T (x)− Tair)dx

= k1(Tmass − Tair)(1 + k3[e
− 1

k3 − 1]) (3.9)

Ṫmass =
Qadj −Qloss −Qmass2air

cmassmmass

=
Qadj − k2(Tmass − Tout)− k1(Tmass − Tair)(1 + k3[e

− 1
k3 − 1])

cmassmmass

(3.10)

qsup2air =
νmass

mair

(Tsup − Tair) (3.11)
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External Walls and Window Glass Panes

Assuming that walls are composed of uniform external material, the heat transfer between

the outdoor air and the indoor air by conduction follows Eq.3.12 and 3.13. If the heat by

the adsorbed solar radiation is also considered, the di�erential equation for the external

walls is given by Eq.3.14.

Qxw2air = k4(Txw − Tair) (3.12)

Qxw2out = k4(Txw − Tout) (3.13)

Ṫxw =
−Qxw2air −Qxw2out +Qrad2xw

cxwmxw

=
−k4(Txw − Tair)− k4(Txw − Tout) + crad2xwIglobal

cxwmxw

=
k4(Tair + Tout − 2Txw) + crad2xwIglobal

cxwmxw

(3.14)

Besides the heat transfer at the surface of the external walls, an amount of heat is

transferred to the indoor air through the windows. The absorbed solar radiation and

in�ltrated outdoor air a�ect the indoor air temperature (Eq.3.15 and 3.16)

Qwin2air =
1

3600
AwinCwin(Tout − Tair) (3.15)

qinf =
νinf

mair

(Tout − Tair) (3.16)

Internal Walls

Internal walls include any mass inside the house such as furniture, �oors, and walls. The

conductive heat transfer between internal walls and indoor air is given by Eq.3.17 and the

heat due to the transmitted solar radiation is combined to calculate temperature change in

the internal walls (Eq.3.18).
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Qiw2air = k5(Tiw − Tair) (3.17)

Ṫiw =
−Qiw2air +Qrad2iw

ciwmiw

=
k5(Tair − Tiw) + crad2iwIglobal

ciwmiw

(3.18)

Indoor Air

The dynamics of the indoor air temperature is determined by the heat transfer associ-

ated with the all elements mentioned above as well as internal heat sources such as human

bodies and electrical appliances. The indoor air temperature is calculated by Eq.3.19.

Ṫair = qsup2air + qinf +
Qint +Qiw2air +Qxw2air +Qwin2air

cairmair

=
vhvac

mair

(Tmass − Tair)(1− e−
1

k3 ) +
νinf

mair

(Tout − Tair)

+
Qint

cairmair

+
k4

cairmair

(Tiw − Tair) +
k5

cairmair

(Txw − Tair)

+
Awincwin

3600cairmair

(Tout − Tair) (3.19)

By combining Eq. 3.10, 3.14, 3.18, and 3.19 and substituting Tmass, Txw, Tiw, and

Tairwith x1, x2, x3, and x4 respectively, each state is given by Eq.3.20, 3.21, 3.22, and 3.23.

ẋ1 = λ11Qadj + λ12(x1 − Tout) + λ13(x1 − x4) (3.20)

ẋ2 = λ21(x4 + Tout − 2x2) + λ22Iglobal (3.21)

ẋ3 = λ31(x4 − x3) + λ32Iglobal (3.22)

ẋ4 = λ41(x1 − x4) + λ42(Tout − x4) + λ43Qint + λ44(x3 − x4)

+ λ45(x2 − x4) + λ46(Tout − x4) (3.23)
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The above equations can be written in the form of the general-linear model.

A(q)x4(t) = B1(q)Tout(t) +B2(q)Qadj(t) +B3(q)Iglobal(t) +B4(q)Qint(t) + e(t) (3.24)

where A(q) = 1 + a1q
−1 + a2q

−2 + a3q
−3 + a4q

−4

B1(q) = b11q
−1 + b12q

−2 + b13q
−3 + b14q

−4

B2(q) = b22q
−2 + b23q

−3 + b24q
−4

B3(q) = b32q
−2 + b33q

−3 + b34q
−4

B4(q) = b41q
−1

When the e�ciency of the cooler is assumed to be constant, and heat from the internal

heat sources does not �uctuate considerably over time, a unit function 1hvac(t) (1 for on

and 0 for o�) can be substituted for Qadj(t) and Qint(t) can be set 1. Then the system

identi�cation process boils down to optimization of 15 parameters in the 4th order ARX

model with 4 inputs (outdoor temperature, cooler on/o� status, global solar radiation, and

internal heat gain) and one output (indoor temperature). From the collected input and

output data, the parameters can be calculated by the least square. The solution is given

by Eq.3.25.

[a1 · · · a4 | b11 · · · b14 | b22 · · · b24 | b32 · · · b34 | b41]
> =

(
X>X

)−1
X>Y (3.25)

where X = [Tair(k + 3 : k) | Tout(k + 3 : k) | 1hvac(k + 2 : k + 1) | Iglobal(k + 2 : k + 1) | 1]

Y = [Tair(5)Tair(6) · · · Tair(n)]>, n is a data size and k = 0 · · · n− 1

3.5.2 Performance Evaluation

The model validation is to check how accurately the output of the ARX model follows the

behavior of the actual indoor temperature. The validation data normally di�er from the

data that are used to determine parameters. However, by using the exact same data both

in parameter learning and for temperature prediction, the 4th order is enough to realize
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Figure 3.33: Prediction By the ARX Model Learned from the Same Day Data

a complex system. In Fig.3.33, the simulated temperature from the ARX model whose

parameters were calculated from the data on Jan. 15, 2008 for the Minnesota houses and

data on Mar. 7, 2008 for the Australia houses are compared with the indoor temperature

of the same day.

The simulated temperature was not synchronized with the real temperature during 24

hours, with the exception of the initial start point while the model used the same HVAC

on/o� time as the real data. Within 2◦F error, the ARX model could reproduce the

real indoor temperature of house M4 and A4. In the house M5 and house A7 cases, the
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predictions were more accurate. Overall, the 4th order model provided good prediction

results for both summer and winter periods when it used the same data for learning and

prediction.

Although the parameters of the ARX model do not have any physical meaning by

themselves, they should be constant over time in that they are combinations of thermal

parameters, which are �xed for a given house. If the parameters calculated from di�erent

data sets are close to each other, the model would represent the house thermal properties

very well. In order to probe consistency of 15 parameters, parameters calculated from a

24-hour-long data period were compared over 30 days.

Fig.3.34 shows the parameter change over time in house A4. Unfortunately, parameters

were not consistent, except for a1. This result implies that the parameters learned from

past data may not be useful for prediction. Among 30 days, 5 days (Mar.5, 6, 7, 9, and

10) on which the �tted curve follows the actual indoor temperature with relatively small

error were considered again. During this period, a1, a2, a3, a4, b13, b14, b22, b23, b24, b34,

and b41 out of 15 parameters are close to each other. It is interesting that b1and b3, the

most inconsistent parameters, are associated with outdoor temperature and global solar

radiation, which were obtained from the local weather station while a and b3, relatively

consistent parameters, are associated with indoor temperature and HVAC status that were

real measurements. It is also notable that b4s can be split into two groups. Internal gains

from Mar. 5 to Mar. 17 might be much bigger than those from the rest of days.

For the house M5 case in Fig.3.35, a1, b23, and b41 show minor changes over the whole

test period. However, there was no consistency in b1. Unlike the house A4, b3, the param-

eter associated with solar radiation, is all zero except for three days. A relatively small

e�ect of solar radiation on the indoor temperature during winter might be re�ected in the

parameters. A major di�erence from the above result is that b41is fairly constant in this

house.

One of issues in this method is how to �lter anomalies that result in learning wrong
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Figure 3.34: Consistency of ARX Model Parameters (House A4, Mar.1 - Mar.30, 2008)
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Figure 3.35: Consistency of ARX Model Parameters (House M5, Jan.1 - Jan.29, 2008)
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Figure 3.36: Anomaly Detection

parameters. Anomalous data can be obtained when the occupant keeps windows open,

turns on an additional heater or cooler, or invites other people. A broken sensor or system

malfunction may also cause anomalies. The following 4 plots in Fig.3.36 shows potential-

ities of the ARX model in both �ltering anomalies for parameter learning and detecting

system failure in real time. For prediction, the ARX model used the parameters that were

calculated based on the same day as the prediction date. It should be noted that the pa-

rameter learning from the same day data is only useful to �lter the occurred anomalies but

useless for real-time fault detection.
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Figure 3.37: Real-Time Anomaly Detection

While the RMS error between the real indoor temperature and simulated temperature is

small in the �rst three plots (Fig.3.36(a), (b), and (c)), the fourth plot shows a large error

overall. This implies that the given ARX model could not realize the thermal behavior

of the house on that day in particular. Since the model provided good prediction results

for the other three days, an anomaly might exist. From the indoor temperature and air-

conditioning status, it turns out that the real temperature from approximately 7am to

12pm and after 6pm was in�uenced by unusual factors. The noisy indoor temperature

during these periods suggests that the windows were open and cool outside air was mixed

with the inside air.

As the anomaly detection described above uses the same day data, the consistency of

the parameters is not important. It merely determines whether the ARX model in the

prede�ned order is matched with the real indoor temperature or not. It is useful when

the calculated parameters considerably change over time. At the same time, it is possible

that this method cannot detect anomalies if these anomalies are well �tted with the model.

Fig.3.37 shows the anomaly detection with the parameters based on the one day ahead
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Figure 3.38: Prediction by the ARX Model Learned from the Previous Day Data (House
A2, Mar.5, 2008)

data. Compared with Fig.3.36, the predicted temperature in Fig.3.37 is more realistic.

Because this method uses the parameters already learned before prediction, real-time fault

detection is possible. However, reliability of the parameters is crucial for it.

The �nal prediction result using the ARX model is shown in Fig.3.38. Instead of using

the same HVAC on/o� time as the real system, on/o� signals based on the given setpoint

were provided to the ARX model. In order to check improvement in prediction for long-

term events, the data from house A2 were selected. House A2 was precooled from 11am

to 2pm and there was no air-conditioning for four hours right after the precooling event

on Mar.5, 2008. Initial temperature input for the ARX model was synchronized with the

actual indoor temperature only at 12am, and there was no compensation for 24 hours.

The parameters were calculated from the data on Mar. 4, 2008. Predicted temperature

followed the real indoor temperature with only small error. Both the long-term cooling and

long-term o� events were also successfully predicted.
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Chapter 4

Multiple-Model Switching Algorithm for

House Thermal Behavior Prediction

4.1 Problem Description

In chapter 3, three di�erent approaches for house dynamic signature learning were sug-

gested and their performance was evaluated by comparing the actual indoor temperature

measurement and the estimation from the models. The 1st-order model re�ecting on basic

heat and mass transfer characterized house thermal properties with four parameters. The

measure of house insulation and air-conditioning could be inferred directly from the mag-

nitude of parameters associated with the conduction and in�ltration, internal heat gain,

intensity of solar radiation, and supplied heat from the HVAC equipment. However, the

model was not delicate enough to represent the dynamics of air-conditioning. The tab-

ular method, despite inaccuracy in long-term prediction, showed improved performance

for short-term events. While the ARX model provided the best performance among three

methods, the prediction quality varies over time, which ultimately reduces reliability of this

method.

Two prediction results from the same house on two consecutive days were shown in
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Figure 4.1: Variation of Prediction Quality in the ARX Model Method

Fig.4.1. There is de�nite variation of prediction quality over time. The model parameters

for prediction were calculated from 1 day ahead 24-hour-long data and the heater on/o�

input for prediction was based on the actual heater status instead of the setpoint. The

predicted indoor temperature on the �rst day (Fig.4.1(a)) was far from the actual mea-

surement. While the cold outside temperature lowered the actual indoor temperature by

�ve degrees for the �rst seven hours, the prediction model could not represent this. On

the other hand, the prediction on the second day (Fig.4.1(b)) seems to be successful. The

predicted indoor temperature during the �rst long-term o� and heater-on events starting

at 12am and 7am respectively are close to the actual behavior. Except the error that orig-

inated mainly with underestimation of the heat transfer due to temperature di�erence, the

overall prediction quality is acceptable.

As discussed in the previous chapter, parameters of the ARX model �uctuated over

time. If two consecutive days generate similar parameter sets, second day prediction based

on the �rst day would be accurate. It is because the prediction with the same day data

in the ARX model method normally does not result in large errors, except when there

are anomalies present. Therefore, it tends to determine success of prediction which data

were used for parameter calculation. Ten-day-long data can decrease the probability of
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poor prediction caused by totally di�erent parameters. However, more data can generate

blunt parameters with which disastrous prediction may not happen but, at the same time,

accurate prediction is impossible. It is also controversial that the latest data set is always

bene�cial for parameter calculation.

In the case that blow-by-blow modeling is impossible and, even with the perfect model,

behavior of the system is frequently in�uenced by uncertainty, an adaptive technique would

be useful to increase consistency of the prediction quality. Adaptive prediction, in the

similar sense of adaptive control, involves modifying the prediction law to cope with the

fact that the parameters of the system are slowly time-varying or uncertain. The following

two methods adjust model parameters by selecting one of parameter sets among several

existing candidates instead of calculating a new set. That is the reason why they are called

model switching.

4.2 Proximity-Based Model Switching Algorithm

4.2.1 Algorithm Structure and Proximity Calculation

One of multiple-model methods that is widely used for state prediction is the Interacting

Multiple Model (IMM) algorithm. The IMM algorithm, one of the most cost-e�ective

�lters for tracking maneuvering targets, was introduced in the 1980s by H.A.P. Blom as

a safe adaptation or soft switching approach [34]. The basic idea of the IMM algorithm

is to weigh each mode by mode probability and combine these estimates with no hard

decision. Di�erent modes are de�ned as di�erent dynamics of the system. For example,

the acceleration mode and constant velocity mode have di�erent dynamics, which can

be represented in di�erent state-space models. The algorithm performs four sequential

processes (interacting of estimates, model-conditional �ltering, updating mode probability,

and combining estimates) recursively.

Due to the di�erent system characteristics and di�erent prediction constraints, the IMM
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algorithm cannot be applied to the temperature prediction directly. While the IMM al-

gorithm depends on real-time error calculation between actual sensor measurement and

estimations from multiple models, estimation (or prediction) in our system should be per-

formed at least a couple of hours ahead of measurement acquisition. This means that the

�rst two steps in the IMM algorithm are useless for our algorithm.

In the proposed model switching algorithm, the models are distinguished only by di�er-

ent parameters. Except parameter di�erence, they are represented in the exact same ARX

model that is given in chapter 3.5. The parameters of each model, which are calculated

from 24-hour-long data (from 12am to 11:59pm), provide the best �t to the indoor temper-

ature measurement. The algorithm used the recent seven models that are corresponding to

the seven days prior to the current day on which indoor temperature is predicted because

seven days are assumed to be long enough to cover the outside weather characteristics.

Further, a seven day time frame is appropriate from a computational cost point of view.

Model index implies which day the model corresponds to. For example, the parameters of

model 3 are calculated three days prior to the current day.

The mode probability in the IMM algorithm is analogous to proximity in the multiple-

model switching algorithm. The proximity denotes how closely the model represents the

current temperature behavior with the same inputs. It can also be considered that pa-

rameters of two models are very close to each other. In order to measure proximity of the

model candidates, sample data from the same day when prediction is scheduled should be

selected. The sample data can be any data that are available at the prediction point.

The proximity is basically evaluated from an RMS regression error. Small RMS error

implies high proximity between the system and model. Depending on how to calculate

the error, seven models can be listed in di�erent order. Two factors, the HVAC on/o�

input and temperature synchronization, were considered in error calculation. In order to

evaluate the prediction performance of a given model, the HVAC on/o� input for the model

was determined by the setpoint in chapter 3. The thermostat control allows the predicted
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(b) With Temperature Synchronization

Figure 4.2: Proximity Evaluation from Di�erent Error Calculation

indoor temperature to follow the actual trajectory of the measurement. Large error between

estimation and measurement, however, does not necessarily mean poor prediction in this

case because time lag can seriously accumulate error. Using the same HVAC on/o� input,

the measured indoor temperature and four indoor temperature inputs 1 for the model were

synchronized at the beginning of every new HVAC event. The event-based synchronization

prevents undesirable error accumulation that is not caused by poor prediction performance

and, at the same time, allows su�cient penalty for mismatches.

Fig.4.2 demonstrates how the event-based indoor temperature synchronization elim-

inates accumulated error that is irrelevant to prediction performance. Compared with

Fig.4.2(b), error occurring from 6am to 11am in Fig.4.2(a) was mainly generated by the

asynchronous initial condition. However, the big jump around 7:30am in Fig.4.2(b) indi-

cates that penalty was also imposed on the faulty prediction.

Based on the error from the seven models, indoor temperature is predicted from two

di�erent methods. If a single model that has least error is used for prediction, it is called

a hard switching method. On the other hand, if the estimates from the seven models are

1The ARX model uses past 4 indoor temperatures, x(t − 1), · · · ,x(t − 4) to calculate current indoor
temperature, x(t).
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weighted according to their RMS error sizes and combined, it is called a soft switching

method. In soft switching, the estimates prediction is calculated by

w(n) =

1
e(n)∑

1
e(i)

, i = 1, 2, · · · , 7 (4.1)

Tin(t+ ∆t) =
∑

w(i)T i
in(t+ ∆t) , i = 1, 2, · · · , 7 (4.2)

where w(n): weight of the nth model

e(n): RMS error between measurement and estimation from thenth model

Tin(t+ ∆t): �nal predicted temperature at t+ ∆t

T i
in(t+ ∆t): predicted temperature from the ith model at t+ ∆t

4.2.2 Results from the Multiple-Model Hard Switching (MMHS)

The MMHS algorithm was applied to one winter house (House M12) and one summer

house (House A2). The results are shown in Fig.4.3 and 4.4 respectively. The algorithm

predicted 3-hour ahead indoor temperature, and model proximity was calculated based on

the sample data from 3 hour prior to the prediction point. The model that had the highest

proximity (least regression error) was used to predict indoor temperature. The lower plots

of Fig.4.3(b) and Fig.4.4(b) display which model was selected in this 24-hour simulation.

HVAC operation for the predicted indoor temperature was controlled by the scheduled

setpoint instead of following the original HVAC commands.

In the upper plot in Fig.4.3, the predicted indoor temperature by the MMHS algorithm

and the real indoor temperature are compared. While the predicted indoor temperature

did not considerably deviate from the real value (largest o�set is 4.5F), the algorithm could

not achieve delicate prediction. During the short-term on/o� events from 3pm to 9pm,

the on/o� frequency of the prediction was much smaller than the actual frequency due to

the relatively slow temperature decrement during o� periods. Model switching between

two models whose parameters are divergent resulted in unrealistic temperature behavior
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Figure 4.3: 3-Hour Ahead Prediction by the MMHS Algorithm (House M12, Feb.8, 2008)
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Figure 4.4: 3-Hour Ahead Prediction by the MMHS Algorithm (House A2, Mar.7, 2008)
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around 12:10pm and 1:30pm. The model switching occurs more frequently as the size of

sample data for proximity measure decreases. Frequent model switching induces abrupt

temperature changes.

It turns out that model proximity does not provide an acceptable criterion for deter-

mining suitability of the model in prediction especially when the algorithm should predict

further indoor temperature. The MMHS method, however, provides one way to select the

least risky2 model from the concrete criterion. The prediction results from the individual

model (Model 1 to Model 7) are shown in Fig.4.3(c)(d)(e) and (f). The results include bad

predictions from Model 1 and Model 3 and fairly good predictions from Model 4 and Model

6. When it is not certain which model would provide the best performance, the MMHS

de�nitely gives the optimal choice.

In the case that the model proximity did not re�ect future house behavior at all, the

MMHS algorithm fails to provide reasonable prediction. The prediction result from the

summer house A2 in Fig.4.4 is one example of poor performance. None of models pro-

vided good prediction during the entire period, but some of them partially showed good

congruity with the real temperature. For example, the prediction from Model 1 was good,

with the exception of three hours from 12pm to 3pm. Model 3 gave su�cient prediction

quality during the exact same period when Model 1 failed to predict temperature correctly.

However, the MMHS algorithm did not choose the correct model, which resulted in bad

prediction for both short-term events and long-term events. (See Fig.4.4(b).)

4.2.3 Results from the Multiple-Model Soft Switching (MMSS)

Although the MMHS algorithm reduces the possibility that the prediction based on a

single model would result in the worst performance, it failed to achieve accurate prediction.

Discontinuity due to model switching is one of the main drawbacks in the MMHS algorithm.

It is risky to use only one model with the least regression error for prediction, especially in

2The least risky model does not guarantee the best output but it might avoid the worst prediction
performance.
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Figure 4.5: 3-Hour Ahead Prediction by the MMSS Algorithm

the case that each model has similar error distribution while parameters of the seven models

are totally di�erent. Instead of ignoring the rest of the models, weighting each model and

then combining the estimations can reduce the risk of selecting a wrong model. Because

all models re�ect on the house thermal dynamics to some extent, the MMSS algorithm can

be a reasonable approach.

In order to make it convenient to compare the performance with that of the MMHS

algorithm, the identical houses on the same date were used for simulation. The lower plots

in Fig.4.5 show each model's weight that was calculated from Eq.4.1. Most importantly, it is

obvious that the discontinuity in the predicted temperature disappeared and the prediction

quality was improved.

While the prediction from 12am to 3am by using Model 1 in Fig.4.3(b) is far from the

actual temperature behavior, the prediction during the same period in Fig.4.5(a) is much

closer to the actual temperature. Even though Model 1 was heavily weighted during the

period, estimations from the other six models compensated the dominant e�ect of Model

1. The same compensation, however, also degrades the prediction in some periods. From

10am to 12pm, all models have similar weights, and Model 6 has the least error. Since

the MMHS algorithm exclusively used Model 6 for prediction, and Model 6 provided great
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prediction quality, the prediction was better than when all estimations from the seven

models are equally weighted.

In the summer house, the MMSS did not considerably improve prediction quality except

during the period from 6am to 12pm. The fact that all models have similar estimations

and weights from 0am to 6am and one of the models is prominently dominant from 8pm

to 10pm explains why two algorithms did not make a big di�erence.

4.3 Applicability-Based Model Switching Algorithm

4.3.1 Algorithm Structure and Applicability Calculation

The key of proximity-based model switching is to decide which model can generate the

closest estimation to upcoming indoor temperature behavior. In order to evaluate the

estimations of the models, a limited number of samples is used. When the sample data

contains a single mode only, model selection tends to be biased. For example, if sample

data are extracted from a long AC o� period, the selected model may not provide good

estimation for repetitive on and o� cycles in three hours. In Fig.4.3(b), model 1 was used to

predict the 12am to 3am period. The period associated with the sample data corresponds

to 6pm to 12am in the previous day, which contains frequent on and o� cycles. In the

proximity-based model switching method, similarity of HVAC on/o� patterns between a

sample period and a target period is crucial to determine the prediction quality.

If some models can only represent a speci�c temperature behavior, it might also be valu-

able to take into account which model is most tolerable in typical situations. Therefore,

valuation of each model requires more than one sample data. While the proximity-based

model switching is an overly simplistic algorithm, a new algorithm should be rather com-

prehensive and less sensitive.

The applicability-based model switching algorithm also uses six models 3. The six models

3The total number of models is �exible. In this paper, 6 models were used to compare the prediction
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Day -7 -6 -5 -4 -3 -2 -1 0 (Prediction Day)

Model 7 	 e76 e75 e74 e73 e72 e71 a7 = 6∑
e7i

Model 6 	 e65 e64 e63 e62 e61 a6 = 5∑
e6i

Model 5 	 e54 e53 e52 e51 a5 = 4∑
e5i

Model 4 	 e43 e42 e41 a4 = 3∑
e4i

Model 3 	 e32 e31 a3 = 2∑
e3i

Model 2 	 e21 a2 = 1∑
e2i

eni : RMS error of nth model w.r.t the data on −ith day
an : Applicability of the nth model
	 : Model creation

Table 4.1: Daily RMS Error of Models and Applicability Calculation

are represented in the exact same ARX model whose parameters are calculated from 24-

hour-long data. Unlike the proximity-based model switching algorithm, the latest ARX

model (Model 1) is not used. For example, the models from Feb. 6 (Model 2) to Feb.

1(Model 7) are used for prediction on Feb, 8. Applicability of a model is conceptually the

same as the proximity in the proximity-based model switching algorithm in that it is based

on an RMS error between measurement and estimation. The only di�erence is that the

sample is 24 hours long and updated in a 24-hour period.

Tab.4.1 explains how the applicability of each model is updated. In order to accord

the model ID number with that in the previous method, a negative day number is used.

When prediction is performed on Day 0, six models that were created on Day -7 to Day -2

are considered. The model number indicates how far the day of model creation is from a

prediction day. Error between measurement and estimation from the model is calculated

from the next day of the model creation. In the nth model case, total n-1 RMS errors can

be accumulated. That is why this method cannot use Model 1 for prediction. Applicability

is de�ned as an average of RMS errors for at most six days.

Similarly to the previous algorithm, both hard switching and soft switching were tested.

result with that of the proximity-based model switching algorithm.
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In the hard switching, the model with a maximum applicability (or minimum RMS error

e) is used for prediction during a 24-hour period. In the soft switching, each model is

weighted according to its applicability. The initial model switching law is given by the

following equation.

w(n) =
a(n)∑
a(i)

, i = 2, 3, · · · , 7 (4.3)

Tin(t+ ∆t) =
∑

w(i)T i
in(t+ ∆t) , i = 2, 3, · · · , 7 (4.4)

where w(n): weight of the nth model

a(n): applicability, or reciprocal of averaged RMS error of the nth model

Tin(t+ ∆t): �nal predicted temperature at t+ ∆t

T i
in(t+ ∆t): predicted temperature from the ith model at t+ ∆t

4.3.2 Results from the Multiple-Model Hard Switching (MMHS)

The applicability-based MMHS algorithm applied to two houses, House M12 and House

A2. In order to predict indoor temperature in four consecutive days, RMS errors of nine

models were calculated. The daily RMS error of each model should be updated at most

six days. The errors of the nine models that were created from Feb.1 (Model 9) to Feb.9

(Model 1) in order are summarized in Tab.4.2. The model numbers in parentheses are

the exact same numbers as those used in the proximity-based multiple model algorithm.

Among the nine models, one model (Model 8) kept a small error as the day changed, while

one model (Model 2) kept a large error. Some models (Model 5 and Model 6) showed large

variance. According to the values in the table, Model 8 shows the highest applicability.

Fig.4.6 contains prediction results and applicability of each model. Contrary to the

proximity-based multiple model algorithm, the prediction was performed ahead of 24 hours,

and computational cost is very low. In the �rst two days (Feb. 8 and Feb. 9, 2008), the

prediction was performed with Model 8(6*). When the predictions from the individual sex
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Day Feb.1 Feb.2 Feb.3 Feb.4 Feb.5 Feb.6 Feb.7 Feb.8 Feb.9 Feb.10

Model 9(7*) 	 0.0280* 0.0288* 0.0239* 0.0293* 0.0332* 0.0282*

Model 8(6*) 	 0.0109* 0.0150* 0.0146* 0.0141* 0.0152* 0.0128

Model 7(5*) 	 0.0359* 0.0399* 0.0269* 0.0263* 0.0249 0.0360

Model 6(4*) 	 0.0135* 0.0292* 0.0302* 0.0121 0.0384 0.0325

Model 5(3*) 	 0.0804* 0.1523* 0.0680 0.1430 0.1739

Model 4(2*) 	 0.0198* 0.0154 0.0147 0.0299

Model3 	 0.0526 0.0460 0.0322

Model2 	 0.0817 0.0734

Model1 	 0.0252

	 : Model creation
*For prediction on Feb.8, 2008

Table 4.2: Daily RMS Errors of Models (House M12, Feb,1 - Feb.9, 2008)

models are compared (See Fig.4.3), it turns out that Model 8 (Model 6 in Fig.4.3) provided

the best prediction result. The predicted temperature on Feb. 9 also follows the actual

temperature with relatively small error. Notably, the prediction for long-term events (12am

to 8am and 10pm to 12am) is very accurate if the error due to initial o�set can be ignored.

In the following two days (Feb. 10 and Feb. 11, 2008), Model 4 was used for prediction.

Although the applicability of Mode 8 is higher than those of the other models at that

time, the prediction did not follow the actual temperature, especially during the morning

period. The poor prediction result, however, does not imply that this algorithm is not

good without showing that the prediction results based on other models were compared

with that of Mode 4.

It is interesting that the applicability of Model 4 decreased by 10 when the day changed,

which implies that the model may not be reliable for further prediction. On the other hand,

the applicability of Model 8 did not change a lot, and the value is much higher than that

of Model 4. Usually the larger model number among the six model candidates means that

the model was validated for a longer period. If the selected model has a relatively small
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Figure 4.6: 1-Day Ahead Prediction by the MMHS Algorithm and Applicability of the
Models (House M12, Feb.8 - Feb.11, 2008)
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Day Feb.28 Mar.1 Mar.2 Mar.3 Mar.4 Mar.5 Mar.6 Mar.7 Mar.8 Mar.9

Model 9(7*) 	 0.0209* 0.0203* 0.0201* 0.1315* 0.0739* 0.0084*

Model 8(6*) 	 0.0349* 0.0241* 0.1158* 0.0494* 0.0161* 0.0157

Model 7(5*) 	 0.0136* 0.1090* 0.0602* 0.0156* 0.0274 0.0451

Model 6(4*) 	 0.1038* 0.0589* 0.0178* 0.0328 0.0510 0.0448

Model 5(3*) 	 0.0505* 0.0271* 0.0199 0.0686 0.0439

Model 4(2*) 	 0.0200* 0.0262 0.0460 0.0267

Model3 	 0.0218 0.0425 0.0249

Model2 	 0.0529 0.0239

Model1 	 0.0237

	 : Model creation
*For prediction on Mar.7, 2008

Table 4.3: Daily RMS Errors of Models (House A2, Feb,28 - Mar.8, 2008)

applicability value, the performance of the model may not be guaranteed.

In order to avoid this, it might be useful to compare the models with the same validation

period. In order for a model to have a long validation period, models close to a target

prediction day cannot be used. For example, if a model should be validated for 6 days,

only the model whose number is greater than 7 can be used.

Tab.4.3 summarizes the RMS errors of 9 models for House A2. While there exists the

model that has a small error for all validation periods in the case of House M12, every model

in House A2 has big error changes. It should be noted that all models have relatively big

errors on Mar. 4. From the raw data, it turned out that there was an anomaly on Mar. 4.

(Indoor temperature did not change for a long time due to system failure.) Since the error

was accumulated, the anomaly on Mar. 4 a�ected all models that were created before Mar.

6. (Since Model 5 was based on the data from Mar. 4, this model might be wrong.) That

is why the models whose numbers are greater than 4 were always excluded from the model

selection.

When the prediction results from other models are compared (See Fig.4.4), the appli-
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Figure 4.7: 1-Day Ahead Prediction by the MMHS Algorithm and Applicability of the
Models (House A2, Mar.7 - Mar.10, 2008)
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cability of Model 4(2*) in Fig.4.7 was overestimated. The result from House A2 shows how

crucial the detection and exclusion of anomalies are in data analysis. Unfortunately, the

prediction results in the other three days also did not satisfy the expected performance

range.

4.3.3 Results from the Multiple-Model Soft Switching (MMSS)

In the applicability-based method, as in the proximity-based method, the MMSS algorithm

improved the prediction quality by mixing all estimations from six models. While the

proximity-based MMSS algorithm was initially intended to remove the discontinuity due to

frequent model changes, the MMSS algorithm in the applicability-based method is purely

used to reduce the risk from excessive dependence on a single model. It was shown that

the un�ltered data that contain anomalies seriously a�ects prediction afterward. Although

the anomalies certainly degrade the quality even in the MMSS, it is expected that mixing

the estimations from six models itself can play a �ltering role, which attenuate the e�ect

of anomalies.

Fig.4.9 includes temperature prediction by the MMSS in House M12. Comparison

between the results in Fig.4.5, Fig.4.6, and Fig.4.9 clari�es the di�erence and improvement.

The prediction in the �rst prediction day (Fig.4.9(a)) is better than those from the other

six models, and also from seven models if Model 1 were also included. The prediction from

a single model can be checked in Fig.4.3. The prediction in the following three days was

also improved to some degree, especially in the last morning period for which the MMHS

failed to predict the temperature close to the actual pro�le.

In Fig.4.9, the MMSS algorithm was applied to House A2. The overall prediction error

in the �rst day was reduced quite a bit. The lowest prediction temperature increased by 2F

(69F in the MMHS and 71F in the MMSS around 8am), and the o�set between prediction

and measurement from 3pm to 9pm decreased substantially. The anomalies of the data,

however, were not reduced by mixing estimations. Instead, the mixing process made the
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Figure 4.8: 1-Day Ahead Prediction by the MMSS Algorithm and Weights of the Models
(House M12, Feb.8 - Feb.11, 2008)
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prediction worse by increasing the portion of the poor models based on anomalies.

Despite the limitations, the MMSS algorithm provided the best prediction results when

the data for model developing were properly �ltered. However, the current applicability

calculation may not be proper in that each model averaged the di�erent number of error

sets. In the case that a speci�c day causes considerably large error in all corresponding

models due to either anomalies or the model itself, the models that are created after the

day can provide an advantage. To avoid the inequity, a �xed validation period would be

required, as mentioned previously.
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Figure 4.9: 1-Day Ahead Prediction by the MMSS Algorithm and Weights of the Models
(House M12, Mar.7 - Mar.10, 2008)
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Chapter 5

Summary and Conclusions

The goal of this research is to develop a new prototype of an energy management system

speci�cally targeted for residential buildings and the learning algorithms with which indoor

temperature can be predicted within tolerable error ranges. The system and algorithms

should have met the following criteria:

� The system must be able to easily substitute for an existing HVAC control unit in a

residential building without replacing other relevant elements.

� The system must be able to e�ectively respond to the dynamic utility price and

minimize user discomfort.

� The control code must be able to work with any platform and any types of residential

buildings.

� The control procedure inside the system must be autonomous, i.e. data analysis,

decision-making, and interaction with occupants must be automated.

� Available information that the learning algorithm can use is limited.

� Computational load for the algorithm is limited.
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The DREAM (Demand Responsive Electrical Appliance Manager) system, which is based

on a wireless sensor network, has been successfully developed and was deployed to test

the performance in the occupied houses. Several learning algorithms to identify the house

thermal properties and predict indoor temperature have also been proposed, and their

characteristics were analyzed with the data from both simulation houses and real occupied

houses in various locations.

5.1 Demand Response Enabled Thermostat Development

Wireless sensor technology and computing technology have merged into a new generation

energy management system for residential buildings. The Demand Response Electrical

Appliance Manager (DREAM), based on a wireless sensor network, manages sensor data

to optimize energy cost and user comfort as well as identify house characteristics and

occupant patterns. This autonomous system is designed to reduce peak electrical demand

and ultimately optimize energy management under the evolving electricity pricing policy.

DREAM consists of three elements: 1. wireless sensors and actuators to collect mea-

sured information and operate HVAC equipment and/or other appliances, respectively; 2.

a graphical user interface to provide real-time energy use information and e�cient interac-

tion with users; and 3. a main control unit to analyze data and make the optimal decision

in various situations with respect to temperature setpoint and choice of appliances. This

decision is in�uenced by environmental factors (temperature and time of day), occupant

information (thermal preference and monthly budget limit), and physical characteristics

(house size and AC capacity).

According to the simulation results, optimization in the DREAM controller e�ciently

adjusted the setpoint to maximize user comfort according to the prede�ned economic index.

Compared to the typical programmable thermostat, it successfully decreased the electricity

use during high price periods without a�ecting the user comfort level. Actual functionality
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and overall performance of the system was evaluated through approximately 40-day-long

�eld tests in summer 2007. Although the system failure due to operating system freezing

often occurred during the test, all functions in DREAM were properly operated. The pre-

diction based on the default parameters was improved by using the parameters learned for

37 days in one house. Unfortunately, another house did not provide meaningful prediction

results since the occupants in that house erratically opened the windows for house cooling,

which substantially changes the house thermal properties.

5.2 House Dynamic Signature Learning through Data

Analysis

Due to the signi�cance of the house dynamic signature learning in the DREAM controller,

identi�cation algorithms were studied at some length. Unlike previous studies, the real data

from the houses in Northern California, Minnesota, and Adelaide, Australia were used for

algorithm validation and evaluation. Three di�erent approaches, 1st order physical model

method, tabular method, and 4th order ARX model method, were proposed, and their

performance was evaluated.

The �rst method identi�es the house thermal characteristics with the 1st order di�eren-

tial equation that is derived from the thermal in�uence of �ve heat sources (i.e. conduction,

in�ltration, solar radiation, internal heat gain, and either air-conditioning or heating).

Through the parameters learned from two California houses as well as four simulation

houses from the MZEST, it turned out that four parameters associated with conduction

and in�ltration, internal gain, solar radiation, and air-conditioning can be used to repre-

sent thermal characteristics of the house such as the level of insulation and air-conditioning

e�ciency. Despite simplicity of the model, the prediction from this method was not disap-

pointing but this method was too simple to represent the actual temperature pro�le.

The tabular method was initially proposed to cover the nonlinear characteristics that
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cannot be represented in simple numerical methods. The concept of the tabular method

is to store indoor temperature change rate, the slope, with respect to outdoor to indoor

temperature di�erence. By adding one more dimension, the e�ect of the solar radiation

could be also considered. Due to the heat capacity di�erence between air and mass, the

explicit slope change was shown from time-temperature plots. By determining the point

at which temperature slope changes abruptly through linear regression error, six di�erent

tables (2 ignorable point tables, 2 o� tables, 2 heater or AC on tables corresponding to

both short-term and long-term periods) could be �lled with slope. These tables were also

used for temperature prediction, and the prediction results from most of winter houses in

Minnesota were acceptable except for the long-term heater-on event. However, consider-

ing solar radiation that was obtained from the local weather station did not improve the

prediction quality at all.

Identi�cation through the 4th order ARX model was successful in that the model can

follow the actual temperature pro�le with small error. Di�erently from the previous two

methods, this method was very useful in predicting the long-term period events such as

precooling and preheating. However, the prediction performance considerably �uctuated

depending on which data were used for parameter learning.

5.3 Multiple-Model Switching Algorithm

The multiple-model switching algorithm was proposed to minimize performance inconsis-

tency in the ARX model method. Instead of calculating the model parameters based on the

prede�ned sample data set, it allows several models whose parameters are calculated from

consecutive seven days. Among several candidates, the optimal model in a given condition

can be used for prediction (Multiple-Model Hard Switching), or weighted estimations from

the candidates can be combined to guarantee the continuity of output temperature as well

as provide �exibility to uncertainty (Multiple-Model Soft Switching).
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Depending on the criteria to select or weight a model, the algorithm is divided into

proximity-based model switching and applicability-based model switching. The proximity-

based model switching could not guarantee the best model selection both in the MMHS

method and in the MMSS method. However, it could avoid the worst case all the time,

which increases reliability of the algorithm. On the other hand, the applicability-based

model switching improved the prediction quality. In particular, the applicability-based

MMSS algorithm provided the better prediction than the best model among several candi-

dates.
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