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Abstract

The lesser known G(rammatical)-Maze task (Forster, Guer-
rera, & Elliot, 2009) is arguably a better choice than self-paced
reading (Mitchell, 2004) for detecting difficulty from word to
word in online sentence processing over crowdsourcing plat-
forms. In G-Maze, a participant must choose between each
successive word in a sentence and a distractor word that does
not make sense based on the preceding context. If a partici-
pant chooses the distractor as opposed to the actual word, then
the trial ends and they may not complete the sentence. Thus,
G-Maze automatically filters out data from inattentive partic-
ipants, and more effectively localizes differences in process-
ing difficulty. Still, the effort required to pick contextually in-
appropriate distractors for hundreds of words might cause an
experimenter to hesitate before picking this method. To save
experimenters this time and effort, Boyce, Futrell, and Levy
(2020) developed A(uto)-Maze, a tool that automatically gen-
erates distractors using a computational language model. We
now introduce the next generation of A-Maze: T(ransformer)-
Maze. Transformer models are the current state of the art in
natural language processing, and thousands, pretrained in a va-
riety of languages, are freely available on the internet, specif-
ically through Huggingface’s Transformers package (Wolf et
al., 2020). In our validation experiment, T-Maze proves itself
to be as effective as G-Maze with handmade materials, run in
a lab. This tool thus allows psycholinguists to easily gather
high-quality online sentence processing data in many different
languages.
Keywords: Online sentence processing; Methods; Machine-
learned language models; Syntactic ambiguity

Introduction
Structure, meaning, attention, and memory are critical to on-
line sentence processing and production. Therefore, plausi-
ble theories based on their observation in speakers of vari-
ous languages can have far-reaching implications for linguis-
tics and cognitive science. Characteristics of sentence com-
prehension make it easier to study than sentence production.
Sentence comprehension is incremental: new linguistic in-
formation, whether the next phoneme or the next word, must
be integrated into our understanding from the previous time
step. Due to limited computational resources, the integra-
tion cost differs based on the context and properties of the
new information. An increased integration cost is typically
paid with more time, at the millisecond scale. By measuring
how reading times change from word to word and sentence
to sentence, researchers capture concise snapshots of online
language comprehension and its computational constraints
(Gibson & Pearlmutter, 1998; Tanenhaus & Trueswell, 1995;
Bartek, Lewis, Vasishth, & Smith, 2011).

The most prevalent methods for collecting reading mea-
sures of processing difficulty are eye tracking (Rayner, 1998)
and moving-window self-paced reading (SPR; Mitchell,
2004). In eye-tracking, as the name suggests, an infrared
camera tracks the movements of a participants eyes while
they read a sentence projected onto a screen. It is relatively
expensive because of the specialized equipment it requires.
However, it results in high-quality, though complex, data,
with several dependent measures to analyze. SPR, on the
other hand, only has one dependent measure: a word’s read-
ing time (RT). In SPR, all but one word in a sentence are
masked and the participant presses a button to re-mask the
current word and reveal the next one. The time between but-
ton presses, during which a word is legible, is that word’s RT.
In an attempt to ensure that a participant does not mentally
check out while clicking through a sentence, each sentence
is typically followed by a comprehension question. How-
ever, these questions can often be answered based on world
knowledge rather than the content of the sentence, so that
an inattentive participant can often guess correctly. Addi-
tionally, analyses of SPR data often reveal what are known
as “spillover effects”: greater than expected RTs immedi-
ately following the anticipated source of the processing dif-
ficulty. Nonetheless, SPR’s greatest advantage only became
clear over the last decade: that researchers can run SPR exper-
iments over crowdsourcing platforms (Enochson & Culbert-
son, 2015) like Amazon’s Mechanical Turk (Paolacci, Chan-
dler, & Ipeirotis, 2010) and Prolific (Palan & Schitter, 2018).
Researchers can cheaply and quickly recruit much more di-
verse participant pools using crowdsourcing platforms.

But a potential problem is that unsupervised participants
paid per task are likely to optimize for speed, which means
skimming for SPR. Because the comprehension question ac-
curacy might not allow researchers to effectively filter out
skimming participants, SPR can lose power over crowdsourc-
ing platforms. In fact, a study confirmed this: the estimated
power based on an SPR experiment run in-lab was greater for
2 out of 3 effects than the estimated power based on the same
experiment run on Mechanical Turk (Boyce et al., 2020).
While an experimenter could then simply recruit more partic-
ipants for an online study, this raises the cost of running the
experiment. More crucially, if we have no estimate of effect
size for a potential processing phenomena, we do not know
how many more online participants we would need to recruit
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to capture the potential effect. If we recruit too few for this
initial experiment, we would then either need to run a second,
more expensive pilot experiment or we may incorrectly con-
clude that there is no such processing effect. Increasing the
power of online language processing experimental methods
would then reduce experimental costs and increase the field’s
overall research output.

The Maze task (Forster et al., 2009) is another method
for measuring incremental processing time differences that
can be run on a crowdsourcing platform. A participant must
choose between each successive word in a sentence and a dis-
tractor word. In L(exical)-Maze, the distractor words are non-
words while in G(rammatical)-Maze, they are real words that
do not make sense in the preceding context of the sentence.
The G-Maze task, especially, is harder for an inattentive par-
ticipant to complete. This is because a skimming participant
is much more likely to pick a distractor, after which they
are not allowed to finish the sentence. The experiments of
Witzel, Witzel, and Forster (2012) confirms this. They found
that on the same experiment conducted in-lab, G-Maze more
effectively detected an effect of greater processing difficulty
at the critical region than L-Maze. Witzel et al. (2012) also
compared L-Maze and G-Maze to eye-tracking and SPR and
found both versions of Maze to produce localized (i.e. fewer
spill-over effects) and robust effects relative to eye-tracking
and SPR.

While G-Maze enables researchers to collect higher quality
data online, choosing good distractors that obviously do not
fit the context can be difficult and time-consuming. Boyce,
Futrell, and Levy (2020) therefore developed A(uto)-Maze
to automatically generate distractors. A-Maze uses a com-
putational language model to determine which words are the
least likely given the sentence’s preceding context. Boyce et
al. (2020) tested two versions of A-Maze, both based on re-
current neural network (RNN) models, on Mechanical Turk.
Both versions of A-Maze were better than SPR at detecting
differences in processing difficulty at the expected sentence
region.

A-Maze produced materials in English for the validation
experiments. Producing materials with A-Maze in other lan-
guages requires RNNs trained in those languages. If an RNN
trained on the appropriate language to a sufficiently high stan-
dard is not available on the internet, and a researcher other-
wise does not have access to one, then they will have to train
one themselves. Achieving high performance requires sub-
stantial computational resources as well as expertise. Train-
ing an RNN is therefore not an option for every researcher
that would be interested in using A-Maze. Moreover, RNNs
have been supplanted by Transformer models as the state of
the art in natural language processing. Thousands of pre-
trained Transformer models, trained in a variety of languages,
are freely available on the internet. They are more accessible
to researchers with limited computational resources.

We therefore developed T(ransformer)-Maze, the next gen-
eration of A-Maze, to generate distractors based on Trans-

former models. Any researcher can adapt T-Maze to a new
language, assuming it is one of the hundreds of languages rep-
resented by the models in HuggingFace’s Transformers (Wolf
et al., 2020) package. We are excited for this tool to promote
online sentence processing research in a variety of languages.

Transformer-Maze
To pair a word with a distractor, a set of candidates that ap-
proximately match the word in length and frequency are com-
piled. The user defines how large this set is, allowing them
to adjust performance and computational load to their exper-
iment and system setup. The set of potential distractors are
quickly collected from a pre-made language-specific dictio-
nary of words sorted by frequency. This dictionary can be
adjusted to the user’s experimental materials. For example,
because our sentences did not contain any abbreviations or
interjections, a participant might come to recognize them as
distractors without needing to consider the preceding context
of the sentence. We therefore removed abbreviations and in-
terjections from the dictionary of potential distractors before
generating our materials.

Next, the set of potential distractors are scored. A tradi-
tional language model, like the RNNs with which A-Maze
was tested, scores a potential distractor by assigning it a con-
ditional probability, given the sentence’s preceding context.
We pick the distractor with the lowest conditional probabil-
ity, because it, by definition, is the least likely to occur af-
ter the sentence’s preceding context. A participant, having
read the preceding context, should then be able to easily tell
it apart from the actual next word, which almost certainly has
a higher conditional probability.

Many high performing Transformer models are not tradi-
tional language models. Rather, they are masked language
models (MLMs). As opposed to predicting the next word
based just on the preceding context, an MLM predicts a word
based on the words following it in the sentence as well. Com-
puting a score for how likely a given word is given the pre-
ceding context is much less straightforward with an MLM.
We employ a Python package by Salazar, Liang, Nguyen,
and Kirchhoff (2019) to assign potential distractors pseudo-
log-likelihood (PLL) scores based on an MLM. Salazar et
al. (2019) found that PLL scores could effectively predict
which of two sentences is more acceptable according to hu-
man judgements. The MLMs they tested all outperformed
GPT-2 (a traditional language modeling Transformer) on the
Benchmark of Linguistic Minimal Pairs (BLiMP) (Warstadt
et al., 2020). Therefore, even researchers who have access to
a traditional language modeling Transformer trained on their
language of interest, may find that plugging a masked lan-
guage modeling Transformer into T-Maze will give them bet-
ter distractors.

Because the scores from different types of Transformer
models are not comparable, our algorithm does not have a
threshold score, above which a potential distractor is suffi-
ciently unlikely in the context, to automatically choose it as
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Table 1: Example stimuli for each condition. The disam-
biguating words are italicized.

Relative clause - Low attachment:
(1a) The niece of the fisherman who got himself a
sailboat learned to sail.
Relative clause - High attachment:
(1b) The niece of the fisherman who got herself a
sailboat learned to sail.
Adverb clause - Low attachment:
(2a) Robert will meet the friend he phoned yesterday,
but he doesn’t want to.
Adverb clause - High attachment:
(2b) Robert will meet the friend he phoned tomorrow,
but he doesn’t want to.
Sentence vs noun phrase (S v NP) coordination -
With comma:
(3a) The crowd cheered for the model, and the designer
took a bow after the show
Sentence vs noun phrase (S v NP) coordination -
No comma:

(3b) The crowd cheered for the model and the designer
took a bow after the show.

the distractor. Instead, we must evaluate every potential dis-
tractor in the set and then choose the one with the best score.
Therefore, on average, our algorithm will run longer than A-
Maze, which does have a threshold. However, by evaluating
every distractor, we can find the best, second best, third best,
etc. distractor in the whole set of potential distractors. We al-
low the user to specify how many top distractors they would
like to save. For example, if they set this parameter to 5, then
T-Maze saves the top 5 distractors for each word in each sen-
tence. Then, if the user finds an implausible distractor in their
materials, they have the option of replacing it with the dis-
tractor with the second best score, as opposed to potentially
needing to re-run the entire algorithm.

Validation Experiment
Procedure
In T-Maze’s maiden voyage, we replicated the experiment
Boyce et al. (2020) used to demonstrate A-Maze’s efficacy.
The sentence structures set up 3 types of syntactic ambigu-
ity: 1) relative clause attachment ambiguity, 2) adverb attach-
ment ambiguity, and 3) sentence (S) versus noun phrase (NP)
coordination ambiguity. Table 1 contains examples of each
type of ambiguity. Each sentence corresponds to a condition.
Based on the results of Boyce et al. (2020), the (a) sentence
types should be easier for native English speakers to process.
We therefore generally expect the low attachment and comma
conditions to have lower mean RTs.

Like Boyce et al. (2020), we matched distractors across
the two sentences in the same item, so (1a) and (1b) in table
1 would have the exact same distractors. This eliminates a

potential confound of different RTs across the critical region
being in part due to differences in the distractors. Before the
critical region, the sentences consist of the same words in the
same context. The algorithm described in the previous sec-
tion produces the same distractors for these words without
any kind of adjustment. However, the disambiguating words
must, of course, differ across the items to result in the dif-
ferent conditions. For example, (2a)’s disambiguating word
(italicized) is “yesterday” while (1b)’s is “tomorrow.” These
words differ in both their length (“yesterday” has 9 characters
while “tomorrow” has 8) and their frequencies. We therefore
take the average of their lengths and frequencies to determine
which potential distractors to collect, such that they match
both disambiguating words equally. The preceding context
of the sentences still match, so our evaluation procedure does
not change. After the critical region, the words of the two
sentences are the same again but now the preceding contexts
differ. We therefore compute a potential distractor’s scores
for both contexts and average them. We choose the distractor
with the best average score across both contexts.

We generated the distractors for our validation experiment
with the bert-base-uncased model (Devlin, Chang, Lee, &
Toutanova, 2018) in order to test the PLL scoring scheme.
We argue that this model gives us an estimate of T-Maze’s
baseline performance because it has the fewest parameters of
the models Salazar et al. (2019) tested on BLIMP. The gen-
eral trend with Transformers that Salazar et al. (2019) also
observed with PLLs is that the greater the number of param-
eters, the greater the performance. We evaluated 100 poten-
tial distractors for each word. We chose this parameter to
match A-Maze, which evaluates 100 distractors if none of
them meet the threshold (Boyce et al., 2020). Evaluating
more potential distractors will result in chosen distractors that
have lower PLL scores, which should correspond to distrac-
tors that are less acceptable in the given context. This param-
eter choice then also allows us to estimate T-Maze’s baseline
performance. We did not check the quality of our distractors
after they were generated.

We chose to estimate the baseline performance as opposed
to trying to achieve the best performance possible because
we want to guarantee sufficient performance for researchers
without many computational resources. If a researcher has
the resources to use the best possible Transformer model and
to evaluate more than 100 potential distractors, T-Maze is
likely to produce better distractors than those used for this ex-
periment. However, the best performing Transformer models
are often not open-source. GPT-3 (Brown et al., 2020) is an
example of such a model. Additionally, using a larger model
to evaluate a greater number of distractors, will at the very
least take more time, during which the researcher may not be
able to do other intensive computational work. Therefore, an
estimate of baseline performance also helps researchers with
these resources determine how to best allocate them.

We hosted our experiment on PCIbex Farm (Zehr &
Schwarz, 2018) and recruited 50 participants on Prolific
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Figure 1: Estimated effect sizes with error bars indicating the 95% confidence intervals and p-value equivalents when p < 0.05.
We include Boyce et al. (2020)’s data for comparison.

Figure 2: Estimated power for different numbers of participants based on observed data from different methods
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(Palan & Schitter, 2018). However, due to some technical
difficulties, we were only able to collect data from 49 partic-
ipants. After working through 8 practice sentences, partic-
ipants worked through 24 sentences of each ambiguity type
mixed in with 24 fillers (96 total). Refer to the following
PCIbex Farm demonstration for a complete picture of the ex-
perimental setup: https://farm.pcibex.net/r/PFuPTr/.

Results
If a participant makes a mistake, the trial ends at that word,
and we cannot collect that participant’s data for the rest of the
sentence. We removed 2.3% of the data for being mistakes
and 15% for being blank because of a mistake earlier in the
sentence. This left us with 83%.

We repeated the same analysis conducted by Boyce et al.
(2020) in order to more directly compare our results with
theirs. We re-ran the same analysis on the A-Maze data col-
lected by Boyce et al. (2020) and the data from the in-lab
experiments conducted by Witzel et al. (2012). All this data
is included in the A-Maze Github repository of Boyce et al.
(2020) (https://github.com/vboyce/Maze). In figure 1,
we compare T-Maze’s estimated effect sizes of each type of
attachment ambiguity with the methods Boyce et al. (2020)
found to be the most effective. Lab G-Maze refers to the G-
Maze experiment run in-lab by Witzel et al. (2012). Web G-
Maze refers to the experiment run by Boyce et al. (2020) on
Mechanical Turk with the same hand-made materials used in
Lab G-Maze. The names of the two versions of A-Maze re-
fer to the studies from which the RNN models come from:
Gulordava, Bojanowski, Grave, Linzen, and Baroni (2018)
and Jozefowicz, Vinyals, Schuster, Shazeer, and Wu (2016).

Note that to our knowledge, there is not yet a straightfor-
ward way to evaluate and compare distractor quality across
multiple experiments. Distractors are good enough if 1) they
can reveal known effects and 2) if an attentive participant
finds them easy to discern from the actual words, while an
inattentive participant is guessing at chance. Factors irrele-
vant to the distractor-generation method, like the quality of
the underlying sentences, can obscure an evaluation of 1. A
complete evaluation of 2 relies on researchers having access
to the truth value of whether any given participant is paying
attention at any given time. Because it is impossible to have
access to this kind of information, we cannot be sure whether
a participant chose a distractor because they were not pay-
ing attention, or because it was difficult to discern from the
actual word. First, we discuss the T-Maze effect sizes and
stimulated power across the 3 types of syntactic ambiguity in
comparison to other methods like A-Maze to determine the
likelihood of 1 being the case for the distractors that T-Maze
generates.

T-Maze revealed large localized effects as well as lab- and
web-based G-Maze and both versions of A-Maze. In figure
1, a localized effect is one at the 0th word position, where
the ambiguity is resolved. Effects after this position could be
considered spill-over effects, however they are not problem-
atic as long as the greatest effect is seen at the disambiguating

word. The power estimates displayed in figure 2 also demon-
strates that T-Maze is as powerful as Lab G-Maze.

Figure 3: Participant error rate at each word position, where
word 1 is the first word in the sentence (always paired with
the distractor ”x-x-x”). Lab G-Maze participants could not
make an error at word 1 because they simply pushed a button
to continue to word 2.

In both the relative clause and adverb attachment ambi-
guity conditions, T-Maze’s results and estimated power were
comparable to those of both A-Maze versions. However, both
A-Mazes found an effect for the sentence (S) v noun phrase
(NP) coordination condition, while T-Maze did not. Criti-
cally, Lab G-Maze also failed to find an effect, and the A-
Maze effect sizes were much smaller than the effect sizes of
any of the methods for the other conditions. This suggests
that the inconsistency in finding an effect may have had to do
with the original S v NP sentences as opposed to with the
distractor-generation method. We nonetheless investigated
whether the lack of an effect might have been due to distrac-
tors produced by T-Maze for the S v NP sentences appearing
difficult to discern from the actual words.

How difficult a distractor is to discern from the actual word
affects how much time a participant will take to select a word.
Uncertainty about which word is the distractor will slow par-
ticipants down, which can confound the delay of the dispre-
ferred condition’s greater processing difficulty. In addition to
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Figure 4: Error rates for each condition’s critical region. Posi-
tion 0 refers to the disambiguating word/critical region. Neg-
ative positions refer to words preceding the disambiguating
word in the sentence, and positive positions to words follow-
ing it. T-Maze tends to have some of the lowest error rates,
especially at the critical regions.

taking more time to decide which word is the distractor, par-
ticipants are also more likely to pick the distractor as opposed
to the actual word. Therefore, a higher error rate may be an
indicator of poorer quality distractors that might be mask-
ing the processing difficulty difference between the S v NP
Comma and No Comma conditions.

However, the error rate is also a function of the partici-
pants’ attentiveness. We cannot control for attentiveness, and
we want to filter out data from when a participant is not pay-
ing attention. Therefore, while a low error rate indicates that
our participants can easily tell the distractors apart from the
actual words, a lower error rate is not necessarily always bet-
ter. We have reason to believe that our participants were more
attentive than those of Boyce et al. (2020) because Prolific has
been found to produce higher quality data for online behav-
ioral studies than Mechanical Turk (Peer, Rothschild, Gor-
don, Evernden, & Damer, 2021).

Then, to better gauge whether the distractor quality may
have interfered with the detection of an S v NP coordination
ambiguity effect, we looked to the error rate of each condition

individually in figure 4.Consistent with figure 3, the Prolific
participants who saw the T-Maze distractors had some of the
lowest error rates across the different conditions. The S v
NP Comma and No Comma conditions were no exception.
In fact, at the critical region, the T-Maze participants had the
lowest error rate of all the methods. This is evidence that
T-Maze is not to blame for the lack of an S v NP effect.

Contributions
By automating distractor pairing via a sequential language
model, A-Maze removed one of the greatest hurdles for re-
searchers wanting to run G-Maze experiments–the time and
effort required to think of good distractors for hundreds of
words. T-Maze makes designing G-Maze experiments easier
still, because it allows researchers to plug in transformers, the
current NLP state of the art. These models, pretrained on sev-
eral languages, are available online, making them accessible
to researchers who do not have many computational resources
at their disposal. We designed T-Maze itself to be just as ac-
cessible: we produced the materials for our experiment on a
Google Colab notebook in about half an hour.

Through our validation experiment, we demonstrated that
T-Maze is as effective as G-Maze run in a lab at localizing dif-
ferences in processing difficulty due to syntactic attachment
ambiguity. T-Maze’s baseline performance is also on par with
A-Maze’s. T-Maze, however, is by nature easier to adjust to
new languages. It also provides researchers with greater free-
dom: in addition to having more freely available models to
plug in, a research can easily change the number of distractors
evaluated via a parameter. We will make T-Maze as easy for
other researchers to use as possible, as an open-source python
package accompanied by thorough documentation. We hope
that T-Maze enables and encourages more labs to collect the
empirical evidence they need to develop and test theories of
online language comprehension.

Code Repository
The T-Maze generation code and our experimental materi-
als are available at https://github.com/annikaheuser/
TMaze.
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