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Abstract of the Dissertation

Partition Selection for Residuals for Spatial

Point Process Models

by

Andrew Paul Bray

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2013

Professor Frederic Paik Schoenberg, Chair

This dissertation investigates the strengths and weaknesses of the current methods

of residual analysis for spatial point process models. The primary focus is on the

manner in which the space should be partitioned to form residuals. It proposes

a new method whereby the differences between the modeled conditional intensity

and the observed number of points are assessed over the Voronoi cells generated

by the observations. The resulting residuals are substantially less skewed and can

be used to construct diagnostic methods of greater statistical power than residuals

based on a regular rectangular grid. These advantages are particularly evident

for point processes with conditional intensities close to zero, such as those in

seismology. Performance is compared using simulated data and applied to models

for Southern California earthquakes.
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CHAPTER 1

Introduction

1.1 Motivation

The creation of powerful modeling approaches for spatial point processes requires

an equally strong effort to develop tools to assess how well the models describe ob-

servations from those processes. In the past decade, a framework for spatial point

process model assessment has emerged that mirrors that which was developed for

linear regression models. A milestone in this development was the publication in

2005 of Residual analysis for spatial point processes (Baddeley et al., 2005). In

this paper the authors define several residual processes and suggest corresponding

diagnostic tools to apply to models of real data. All of the proposed residuals are

a function of B: a given bounded closed subset of the bounded region, W , of the

plane. Despite its centrality, little guidance is given regarding the selection of B.

In the discussion that accompanies the paper, Lawson (2005) points this out:

The choice of B is a major concern. . . . The residuals that are derived

will be highly dependent on this choice (i.e. quadrat size, shape, and

location) as will the smoothed residual field.

This concern serves as the primary motivation for the research described

herein. This dissertation investigates the effect that the choice of partition has on

the resulting residual analysis and proposes a new form of partition based on the

Voronoi tessellation.
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1.2 Background

Residual plots for spatial point processes have two related purposes. The first

is to suggest locations or aspects of the model where the fit is poor, so that an

incorrectly specified model may be improved. The second is to form the basis of

formal testing, i.e. to assess the overall appropriateness of a model to determine

if results based on the model may be trusted.

Residual analysis for a spatial point process is typically performed by partition-

ing the space on which the process is observed into a regular grid, and computing

a residual for each pixel. That is, one typically examines aggregated values of a

residual process over regular, rectangular grid cells (see, e.g., Clements et al., 2011;

Baddeley et al., 2005, 2008). The general form of these aggregated residual mea-

sures is a standardized difference between the number of points occurring and the

number expected according to the fitted model, where the standardization may

be performed in various ways. For instance, for Pearson residuals, one weights

the residual by the reciprocal of the square root of the intensity, in analogy with

Pearson residuals in the context of linear models.

Baddeley et al. (2005) proposed smoothing the residual field using a kernel

function instead of simply aggregating over pixels; in practice this residual field is

typically displayed over a rectangular grid, and is essentially equivalent to a kernel

smoothing of aggregated pixel residuals. Baddeley et al. (2005) also proposed

scaling the residuals based on the contribution of each pixel to the total pseudo-

loglikelihood of the model, in analogy with score statistics in generalized linear

modeling. Standardization is important for both residual plots and goodness of fit

tests, since otherwise plots of the residuals will tend to overemphasize deviations

in pixels where the rate is high. Behind the term Pearson residuals lies the

implication that these standardized residuals should be approximately standard

normally distributed, so that the squared residuals, or their sum, are distributed
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approximately according to Pearson’s χ2-distribution.

The development of these residual analysis techniques over the past decade,

and the fact that such residuals extend so readily to the case of spatial-temporal

point processes, may suggest that the problem of residual analysis for such point

processes is generally solved. In practice, however, residuals that are examined

over a fixed rectangular grid tend to have two characteristics that can limit their

effectiveness.

I. When the integrated conditional intensity (i.e. the number of expected points)

in a pixel is very small, the distribution of the residual for the pixel becomes

heavily skewed.

II. Positive and negative values of the residual process within a particular cell

can cancel each other out.

Since Pearson residuals can be standardized to have mean zero and unit (or

approximately unit) variance under the null hypothesis that the modeled condi-

tional intensity is correct, one may inquire whether the skew of these residuals is

indeed problematic. Consider for instance the case of a planar Poisson process

where the estimate of the intensity λ is exactly correct, i.e. λ̂(x, y) = λ(x, y) at

all locations, and where one elects to use Pearson residuals on pixels. Suppose

that there are several pixels where the integral of λ over the pixel is roughly 0.01.

Given many of these pixels, it is not unlikely that at least one of them will con-

tain a point of the process. In such pixels, the raw residual will be 0.99, and the

standard deviation of the number of points in the pixel is
√

0.01 = 0.1, so the

Pearson residual is 9.90.

This may yield the following effects: 1) such Pearson residuals may overwhelm

the others in a visual inspection, rendering a plot of the Pearson residuals largely

useless in terms of evaluating the quality of the fit of the model, and 2) con-

ventional tests based on the normal approximation may have grossly incorrect
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p-values, and will commonly reject the null model even when it is correct. Even if

one adjusts for the non-normality of the residual and instead uses exact p-values

based on the Poisson distribution, such a test applied to any such pixel containing

a point will still reject the model at the significance level of 0.01.

These situations arise in many applications, unfortunately. For example, in

modeling earthquake occurrences, typically the modeled conditional intensity is

close to zero far way from known faults or previous seismicity, and in the case of

modeling wildfires, one may have a modeled conditional intensity close to zero in

areas far from human use or frequent lightning, or with vegetation types that do

not readily support much wildfire activity (see eg. Johnson and Miyanishi, 2001;

Malamud et al., 2005; Keeley et al., 2009; Xu and Schoenberg, 2011).

These challenges are a result of having a small integrated intensity (character-

istic I above), and one straightforward solution would be to enlarge the pixel size

such that the expected count in each cell is higher. While this would be effective

in a homogeneous setting, in the case of an inhomogeneous process it is likely

that this would induce a different problem: cells that are so large that even gross

misspecification within a cell may be overlooked, and thus the residuals will have

low power. This is the problem of characteristic II. When a regular rectangular

grid is used to compute residuals for a highly inhomogenous process, it is generally

impossible to avoid either highly skewed residual distributions or residuals with

very low power.

These problems have been noted by previous authors, and it is the goal of this

manuscript to address them using a new form of residual diagram based on the

Voronoi cells generated by tessellating the observed point pattern. The resulting

partition obviates I and II above by being adaptive to the inhomogeneity of the

process and generating residuals that have an average expected count of 1 under

the null hypothesis.
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1.3 Notation

The notation used thoughout this dissertation is meant to draws together that

used by Stoyan (2005), Baddeley (2007), and Cressie and Wikle (2011).

A spatial point process is a stochastic process that generates a countable set of

points {xn} in R2, satisfying the condition that each bounded subset of R2 contains

a finite number of points. Of interest is often the counting process, N(B), the

number of points falling within the Lebesgue-measurable bounded closed set B,

which takes values in the non-negative integers. Processes are considered to be

simple thoughout, i. e. xi 6= xj if i 6= j. A realization from a spatial point process

is a point pattern, an unordered set {x1,x2, . . . ,xn} where each point is a two-

element vector. This more compact notation will be used interchagably with the

longer form, which considers functions and points of the coordinate pair (x, y).

The mean function of N is represented by the intensity function.

λ(x) = lim
|dx|→0

E(N(dx))

|dx|

where dx is a small region located at x with volume |dx|. For the simplest

case of a homogeneous Poisson process, the intensity is constant across W , but

for earthquake models it is natural to let the intensity vary spatially.

Spatial point processes with more complex spatial interactions (i. e. no Pois-

sonian inter-point independence) have a mean function that is characterized by

the Papangelou intensity,

λ(x) = lim
|dx|→0

E(N(dx|σ{N(W \ x)}))
|dx|

which specifies the expected infinitesimal rate at point x conditional on all

information in W excluding x. For spatial-temporal processes, the analog is the

conditional intensity, which conditions on the prior history of events up to time t.
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In this dissertation, the distinction between conditional and Papangelou intensities

will not be emphasized, as the methods and results here are essentially equivalent

for spatial and spatial-temporal point processes.
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CHAPTER 2

Scientific Context: Seismology

The need for an alternative method to construct a residual plot arose from the

difficulties of using traditional quadrat methods on seismological models, which

tend to be strongly inhomogenous. In this section, we introduce the classes of

models commonly used in seismology as well as the framework in which model

building and testing occurs. In later sections, these models will be used to compare

the existing methods of residual analysis with the proposed Voronoi method.

A major goal in seismology is the ability to accurately anticipate future earth-

quakes before they occur (Bolt, 2003). Anticipating major earthquakes is espe-

cially important, not only for short-term response such as preparation of emer-

gency personnel and disaster relief, but also for longer-term preparation in the

form of building codes, urban planning, and earthquake insurance (Jordan and

Jones, 2010). In seismology, the phrase earthquake prediction has a specific defi-

nition: it is the identification of a meaningfully small geographic region and time

window in which a major earthquake will occur with very high probability. An

example of earthquake predictions are those generated by the M8 method (Keilis-

Borok and Kossobokow, 1990), which issues an alarm whenever there is a suitably

large increase in the background seismicity of a region. Such alarms could po-

tentially be very valuable for short-term disaster preparedness, but unfortunately

examples of M8-type alarms, including the notable Reverse Tracing of Precursors

(RTP) algorithm, have generally exhibited low reliability when tested prospec-

tively, typically failing to outperform naive methods based simply on smoothed
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historical seismicity (Geller et al., 1997; Zechar, 2008).

Earthquake prediction can be contrasted with the related earthquake fore-

casting, which means the assignment of probabilities of earthquakes occurring

in broader space-time-magnitude regions. The temporal scale of an earthquake

forecast is more on par with climate forecasts and may be over intervals that range

from decades to centuries (Hough, 2010).

Many models have been proposed for forecasting earthquakes, and since dif-

ferent models often result in very different forecasts, the question of how to assess

which models seem most consistent with observed seismicity becomes increas-

ingly important. Concerns with retrospective analyses, especially regarding data

selection, overfitting, and lack of reproducibility, have motivated seismologists re-

cently to focus on prospective assessments of forecasting models. This has led

to the development of the Regional Earthquake Likelihood Models (RELM) and

Collaborative Study of Earthquake Predictability (CSEP) testing centers, which

are designed to evaluate and compare the goodness-of-fit of various earthquake

forecasting models.

2.1 A framework for prospective testing

The current paradigm for building and testing earthquake models emerged from

the working group for the development of Regional Earthquake Likelihood Models

(RELM) in 2001. As described in Field (2007), the participants were encouraged

to submit differing models, in the hopes that the competition between models

would prove more useful than trying to build a single consensus model. The com-

petition took place within the framework of a prospective test of their seismicity

forecasts. Working from a standardized data set of historical seismicity, scientists

fit their models and submitted to RELM a forecast of the number of events ex-

pected within each of many pre-specified spatial-temporal-magnitude bins. The
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first predictive experiment required models to forecast seismicity in California

between 2006 to 2011 using only data from before 2006.

This paradigm has many benefits from a statistical perspective. The prospec-

tive nature of the experiments effectively eliminates concerns about overfitting.

Furthermore, the standardized nature of the data and forecasts facilitates the

comparison among different models.

RELM has since expanded into the Collaborative Study of Earthquake Pre-

dictability (CSEP), a global-scale project to coordinate model development and

conduct prospective testing according to community standards (Jordan, 2006).

CSEP serves as an independent entity that provides standardized seismicity data,

inventories proposed models, and publishes the standards by which the models

will be assessed. This is a particularly compelling framework in which to develop

methods of residual analysis because of their essential role in the iterative cycle

from model generation, data collection, residual analysis, and subsequent model

generation.

2.2 Some examples of models for earthquake occurrences

The first predictive experiment coordinated through RELM considered time-independent

spatial point process models, which can be specified by their Papangelou intensity

λ(x), a function of spatial location x. A representative example is the model spec-

ified by Helmstetter et al. (2007) that is based on smoothing previous seismicity.

The intensity function is estimated with an isotropic adaptive kernel

λ(x) =
N∑
i=1

Kd (x− xi)

where N is the total number of observed points, and Kd is a power-law kernel

9



Kd(x− xi) =
C(d)

(|x− xi|2 + d2)1.5

where d is the smoothing distance, C(d) is a normalizing factor so that the integral

of Kd() over an infinite area equals 1, and |·| is the Euclidean norm. The estimated

number of points within the pre-specified grid cells is obtained by integrating λ(x)

over each cell.

Models of earthquake occurrence that consider it to be a time-dependent pro-

cess are commonly variants of the epidemic-type aftershock sequence (ETAS)

model of Ogata (1988) (see eg. Helmstetter and Sornette, 2003; Ogata et al.,

2003; Sornette, 2005; Vere-Jones and Zhuang, 2008; Console et al., 2010; Chu

et al., 2011; Wang et al., 2011; Tiampo and Shcherbakov, 2012). According to

the ETAS model, earthquakes cause aftershocks, which in turn cause more after-

shocks, and so on. ETAS is a point process model specified by its conditional

intensity, λ(x, t), which represents the infinitesimal expected rate at which events

are expected to occur around time t and location x, given the history Ht of the

process up to time t. ETAS is a special case of the linear, self-exciting Hawkes’

point process (Hawkes, 1971), where the conditional intensity is of the form

λ(x, t|Ht) = µ(x, t) +
∑
ti<t

g(x− xi, t− ti;Mi),

where µ(x, t) is the mean rate of a Poisson-distributed background process

that may in general vary with time and space. g is a triggering function that

indicates how previous occurrences contribute, depending on their spatial and

temporal distances and marks, to the conditional intensity λ at the location and

time of interest. (xi, ti,Mi) are the origin times, epicentral locations, and moment

magnitudes of observed earthquakes.

Ogata (1998) proposed various forms for the triggering function, g, such as the

following

10



g(x, t,M) = K(t+ c)−pea(M−M0)(|x|2 + d)−q,

where M0 is the lower magnitude cutoff for the observed catalog.

The parameters in ETAS models and other spatial-temporal point process

models may be estimated by maximizing the log-likelihood,

n∑
i=1

log{λ(xi, ti)} −
∫
W

∫
λ(x, t) dx dt.

The maximum likelihood estimator (MLE) of a point process is, under quite

general conditions, asymptotically unbiased, consistent, asymptotically normal,

and asymptotically efficient (Ogata, 1978). Finding the parameter vector that

maximizes the log-likelihood can be achieved using any of the various standard

optimization routines, such as the quasi-Newton methods implemented in the

function optim() in R. The spatial background rate µ in the ETAS model can

be estimated in various ways, such as via kernel smoothing seismicity from prior

to the observation window or kernel smoothing the largest events in the catalog,

as in Ogata (1998) or Schoenberg (2003). Note that the integral term in the

loglikelihood function can be cumbersome to estimate, and an approximation

method recommended in Schoenberg (2013) can be used to accelerate computation

of the MLE.

There are many other earthquake forecasting models quite distinct from the

two point process models above. Perhaps most important among these are the

Uniform California Earthquake Rupture Forecast (UCERF) models, which are

consulted when setting insurance rates and crafting building codes (Field et al.,

2009). They are constructed by soliciting expert opinion from leading seismolo-

gists on which components should enter the model, how they should be weighted,

and how they should interact (Marzocchi and Zechar, 2011). Examples of the

components include slip rate, geodetic strain rates, and paleoseismic data.
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Although the UCERF models draw upon diverse information related to the

geophysics of earthquake etiology, commonly used models such as ETAS and its

variants rely solely on previous seismicity for forecasting future events. Many

attempts have been made to include covariates, but when assessed rigorously, most

predictors other than the locations and times of previous earthquakes have been

shown not to offer any noticeable improvement in forecasting. Recent examples

of such covariates include electromagnetic signals (Jackson, 1996; Kagan, 1997),

radon (Hauksson and Goddard, 1981), and water levels (Bakun et al., 2005; Manga

and Wang, 2007). A promising exception is moment tensor information, which is

now routinely recorded with each earthquake and seems to give potentially useful

information regarding the directionality of the release of stress in each earthquake.

However, this information appears not to be explicitly used presently in models

in the CSEP or RELM forecasts.
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CHAPTER 3

Current Methods

This section reviews the suite of model assessment and diagnostic tools that can

be used to analyze seismological models, but are useful for spatial point process

models more generally. The focus of this dissertation is on residual methods in

particular, but each method can play a role in the course of a thorough model

assessment.

3.1 Numerical tests

Several numerical tests were initially proposed to serve as the metrics by which

RELM models would be evaluated (Schorlemmer and Gerstenberger, 2007). For

these numerical tests, each model consists of the estimated number of earthquakes

in each of the spatial-temporal-magnitude bins, where the number of events in

each bin is assumed to follow a Poisson distribution with an intensity parameter

equivalent to the forecasted rate.

The L-test (or Likelihood test) evaluates the probability of the observed data

under the proposed model. The numbers of observed earthquakes in each spatial-

temporal-magnitude bin are treated as independent random variables, so the joint

probability is calculated simply as the product of their corresponding Poisson

probabilities. This observed joint probability is then considered with respect to

the distribution of joint probabilities generated by simulating many synthetic data

sets from the model. If the observed probability is unusually low in the context
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of this distribution, the data are considered inconsistent with the model.

The N-test (Number) ignores the spatial and magnitude component and fo-

cuses on the total number of earthquakes summed across all bins. If the proposed

model provides estimates λ̂i for i corresponding to each of B bins, then according

to this model, the total number of observed earthquakes should be Poisson dis-

tributed with mean (
∑B

i=1 λ̂i). If the number of observed earthquakes is unusually

large or small relative to this distribution, the data are considered inconsistent

with the model.

The L-test is considered more comprehensive in that it evaluates the forecast

in terms of magnitude, spatial location, and number of events, while the N-test

restricts its attention to the number of events. Two additional data consistency

tests were proposed to assess the magnitude and spatial components of the fore-

casts, respectively: the M-test and the S-test (Zechar et al., 2010). The M-test

(Magnitude) isolates the forecasted magnitude distribution by counting the ob-

served number of events in each magnitude bin without regard to their temporal

or spatial locations, standardized so that the observed and expected total number

of events under the model agree, and computing the joint (Poisson) likelihood of

the observed numbers of events in each magnitude bin. As with the L-test, the

distribution of this statistic under the forecast is generated via simulation.

The S-test (Spatial) follows the same inferential procedure but isolates the

forecasted spatial distribution by summing the numbers of observed events over

all times and over all magnitude ranges. These counts within each of the spatial

bins are again standardized so that the observed and expected total number of

events under the model agree, and then one computes the joint (Poisson) likelihood

of the observed numbers of events in the spatial bins.

The above tests measure the degree to which the observations agree with a

particular model, in terms of the probability of these observations under the given

model. As noted in Zechar et al. (2013), tests such as the L-test and N-test are
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really tests of the consistency between the data and a particular model, and are

not ideal for comparing two models.

Schorlemmer and Gerstenberger (2007) proposed an additional test to allow

for the direct comparison of the performance of two models: the Ratio test (R-

test). For a comparison of models A and B, and given the numbers of observed

events in each bin, the test statistic R is defined as the log-likelihood of the data

according to model A minus the corresponding log-likelihood for model B. Under

the null hypothesis that model A is correct, the distribution of the test statistic

is constructed by simulating from model A and calculating R for each realization.

The resulting test is one-sided and is supplemented with the corresponding test

using model B as the null hypothesis.

The T-test and W-test of Rhoades et al. (2011) are very similar to the R-

test, except that instead of using simulations to find the null distribution of the

difference between log-likelihoods, with the T-test and W-test, the differences

between log-likelihoods within each space-time-magnitude bin for models A and

B are treated as independent normal or symmetric random variables, respectively,

and a t-test or Wilcoxon signed rank test, respectively, is performed.

3.2 Limitations of numerical tests especially for comparing

models

Unfortunately, when used to compare various models, such likelihood-based tests

suffer from the problem of variable null hypotheses and can lead to highly mis-

leading and even seemingly contradictory results. For instance, suppose model A

has a higher likelihood than model B. It is nevertheless quite possible for model

A to be rejected according to the L-test and model B not to be rejected using the

L-test. Similarly, the R-test with model A as the null might indicate that model

A performs statistically significantly better than model B, while the R-test with
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model B as the null hypothesis may indicate that the difference in likelihoods is

not statistically significant.

The explanation for such results is that the null hypotheses of the two tests are

different: when model A is tested using the L-test, the null hypothesis is model

A, and when model B is tested, the null hypothesis is model B. The test statistic

may have very different distributions under these different hypotheses.

Unfortunately, these types of discrepancies seem to occur frequently, and hence

the results of these numerical tests may not only be uninformative for model

comparison, but in fact highly misleading. A striking example is given in Figure

4 of Zechar et al. (2013), where the Shen et al. (2007) model produces the highest

likelihood of the five models considered in this portion of the analysis, and yet

under the L-test has the lowest corresponding p-value of the five models.

3.3 Functional summaries

Functional summaries, i.e. those producing a function of one variable, such as the

weighted K-function and error diagrams, can also be useful measures of goodness-

of-fit. However, such summaries typically provide little more information than

numerical tests in terms of indicating where and when the model and the data

fail to agree, or how a model may be improved.

The weighted K-function is a generalized version of the K-function of Ripley

(1976), which has been widely used to detect clustering or inhibition for spatial

point processes. The ordinary K function, K(h), counts, for each h, the total

number of observed pairs of points within distance h of one another, per observed

point, standardized by dividing by the estimated overall mean rate of the process,

and the result is compared to what would be expected for a homogeneous Poisson

process. The weighted version, Kw(h) was introduced for the inhomogeneous

spatial point process case by Baddeley and Turner (2000), and is defined similarly
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to K(h), except that each pair of points (xi,xj) is weighted by 1/[λ̂(xi)λ̂(xj)],

the inverse of the product of the modeled unconditional intensities at the points

xi and xj. This was extended to spatial-temporal point processes by Veen and

Schoenberg (2005) and Adelfio and Schoenberg (1997).

Whereas the null hypothesis for the ordinary K-function is a homogeneous

Poisson process, in the case of Kw, the weighting allows one to assess whether the

degree of clustering or inhibition in the observations is consistent with what would

be expected under the null hypothesis corresponding to the model for λ̂. While

weighted K-functions may be useful for indicating whether the degree of clustering

in the model agrees with that in the observations, such summaries unfortunately

do not appear to be useful for comparisons between multiple competing models,

nor do they accurately indicate in which spatial-temporal-magnitude regions there

may be particular inconsistencies between a model and the observations.

Error diagrams, which are also sometimes called receiver operating character-

istic (ROC) curves (Swets, 1973) or Molchan diagrams (Molchan, 2010; Kagan,

2009), plot the (normalized) number of alarms versus the (normalized) number

of false negatives (failures to predict), for each possible alarm. In the case of

earthquake forecasting models an alarm is defined as any value of the modeled

conditional rate, λ̂, exceeding some threshold.

Figure 3.1 presents error diagrams for two RELM models, Helmstetter et al.

(2007) and Shen et al. (2007). The ease of interpretation of such diagrams is

an attractive feature, and plotting error diagrams with multiple models on the

same plot can be a useful way to compare the models’ overall forecasting efficacy.

In figure 3.1 we learn that Shen et al. (2007) slightly outperforms Helmstetter

et al. (2007) when the threshold for the alarm is high, but as the threshold is

lowered Helmstetter et al. (2007) performs noticeably better. For the purpose

of comparing models, one may even consider normalizing the error diagram so

that the false negative rates are considered relative to one of the given models
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Figure 3.1: Error diagrams for Helmstetter et al. (2007) in blue and Shen et al.

(2007) in orange. Model details are in chapter 2 and chapter 6 respectively.

in consideration as in Kagan (2009). This tends to alleviate a common problem

with error diagrams as applied to earthquake forecasts, which is that most of

the relevant focus is typically very near the axes and thus it can be difficult to

inspect differences between the models graphically. A more fundamental problem

with error diagrams, however, is that while they can be useful overall summaries

of goodness-of-fit, such diagrams unfortunately provide little information as to

where models are fitting poorly or how they may be improved.

3.4 Residual methods

Residual analysis methods for spatial-temporal point process models produce

graphical displays which may highlight where one model outperforms another

or where a particular model does not ideally agree with the data. Some residual

methods, such as thinning, rescaling, and superposition, involve transforming the
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point process using a model for the conditional intensity λ and then inspecting

the uniformity of the result, thus reducing the difficult problem of evaluating the

agreement between a possibly complex spatial-temporal point process model and

data to the simpler matter of assessing the homogeneity of the residual point pro-

cess. Often, departures from homogeneity in the residual process can be inspected

by eye, and many standard tests are also available. Other residual methods, such

as pixel residuals, Voronoi residuals, and deviance residuals, result in graphical

displays that can quite directly indicate locations where a model appears to de-

part from the observations, or where one model appears to outperform another in

terms of agreement with the data.

3.4.1 Thinned, superposed, and superthinned residuals

Thinned residuals were first introduced by Lewis and Shelder (1979) for the

purpose of simulating spatial-temporal point processes, and were extended for

the purpose of model evaluation in Schoenberg (2003). The method involves

keeping each observed point independently with probability b/λ̂(xi, ti), where

b = inf
(x,t)∈W

{λ̂(x, t)}, and λ̂ is the modeled conditional intensity. If the model

is correct, i.e. if the estimate λ̂(x, t) = λ(x, t) almost everywhere, then the resid-

ual process will be homogeneous Poisson with rate b (Schoenberg, 2003). Because

the thinning is random, there is no unique thinned pattern to assess. Nonetheless,

one may inspect several realizations of thinned residuals and analyze the entire

collection to get an overall assessment of goodness-of-fit.

The dual approach was proposed by Brémaud (1981), who suggested super-

posing a simulated point process onto an observed point process realization so as

to yield a homogeneous Poisson process. As indicated in Clements et al. (2012),

tests based on thinned or superposed residuals tend to have low power when the

model λ̂ for the conditional intensity is volatile, which is typically the case with

earthquake forecasts since earthquakes tend to be clustered in particular spatial-
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temporal regions. Thinning a point process will lead to very few points remaining

if the infimum of λ̂ over the observed space is small (Schoenberg, 2003), while

in superposition, the simulated points, which are by construction approximately

homogeneous, will form the vast majority of residual points if the supremum of λ̂

is large.

A hybrid approach called super-thinning was introduced in Clements et al.

(2012). With super-thinning, a tuning parameter k is chosen, and one thins

(deletes) the observed points in locations of space-time where λ̂ > k, keeping each

point independently with probability k/λ̂(x, t), and superposes a Poisson process

with rate λ̂(x, t)/k where λ̂ < k. When the tuning parameter k is chosen wisely,

the method appears to be more powerful than thinning or superposing in isolation.

3.4.2 Rescaled residuals

An alternative method for residual analysis is rescaling. The idea behind rescaled

residuals dates back to Meyer (1971) who investigated rescaling temporal point

processes according to their conditional intensities, moving each point ti to a new

time
ti∫
0

λ̂(t) dt, creating a transformed space in which the rescaled points are homo-

geneous Poisson of unit rate under the null hypothesis. Heuristically, the space is

essentially compressed when λ̂ is small and stretched when λ̂ is large, so that the

points are ultimately uniformly distributed in the resulting transformed space.

This method was used in Ogata (1988) to assess a temporal ETAS model and

extended in Merzbach and Nualart (1986); Nair (1990); Schoenberg (1999); Vere-

Jones and Schoenberg (2004) to the spatial and spatial-temporal cases. Rescaling

may result in a transformed space that is difficult to inspect if λ̂ varies widely

over the observation region, and in such cases standard tests of homogeneity such

as Ripley’s K-function may be dominated by boundary effects, as illustrated in

Schoenberg (2003).
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3.4.3 Pixel residuals

A different type of residual analysis that is more closely analogous to standard

residual methods in regression or spatial statistics is to consider the (often stan-

dardized) differences between the observed and expected numbers of points in

each of various spatial or spatial-temporal pixels or grids, producing what might

be called pixel residuals. More precisely, the raw pixel residual on each pixel grid

cell Gi is defined as N(Gi) −
∫
λ̂(x, t) dt dx, where N(Gi) is simply the number

of points (earthquakes) observed in pixel Gi (Baddeley et al., 2005). Baddeley

et al. (2005) also proposed various standardizations including Pearson residu-

als, which are scaled in relation to the standard deviation of the raw residuals:

ri =
N(Gi)−

∫
λ̂(x,t) dtdx√∫

λ̂(x,t) dt dx
. Although they define these residual processes for a general

B, in order to visualize them they are presumably calculated on a regular grid

and then smoothed.

The primary difficulty of using a regular pixel parition is that if the pixels are

too large, then the method is not powerful to detect local inconsistencies between

the model and data, and places in the interior of a pixel where the model over-

estimates seismicity may cancel out with places where the model underestimates

seismicity. On the other hand, if the pixels are small, then the majority of the

raw residuals are close zero while those few that correspond to pixels with an

earthquake are close to one. These are the problematic characteristics of a fixed

grid that are outlined in § 1.2.

In situations where the residuals have a highly skewed distribution, the skew

is only intensified by the standardization to Pearson residuals. As a result, plots

of the both the raw and the Pearson residuals are not informative, and merely

highlight the pixels where earthquakes occur regardless of the fit of the model.

The raw or Pearson residuals may be smoothed, as in Baddeley et al. (2005), but

such smoothing typically only reveals gross, large-scale inconsistencies between the
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model and data and has the rephrased question of how to specify the bandwidth.

If one is primarily interested in comparing competing models, then instead one

may plot, in each pixel, the difference between log-likelihoods for the two models,

as in Clements et al. (2011). The resulting residuals may be called deviance

residuals, in analogy with residuals from logistic regression and other generalized

linear models. Deviance residuals appear to be useful for comparing models on

grid cells and inspecting where one model appears to fit the observed earthquakes

better than the other. It remains unclear how these residuals may be used or

extended to enable comparisons of more than two competing models, other than

by comparing two at a time.
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CHAPTER 4

Voronoi Residuals

A partition of W based on the Voronoi tessellation is introduced in order to

address the problems caused by characterstics I and II in § 1.2: the skew in the

residual distribution caused by pixels with a small integrated intensity and the

oversmoothing that occurs in inhomogeneous processes when the pixels are large.

4.1 Voronoi residuals

A Voronoi tessellation is a partition of the metric space on which a point process is

defined into convex polygons, or Voronoi cells, Ci. Specifically, given a spatial or

spatial-temporal point pattern {xn}, one may define the cells of its corresponding

Voronoi tessellation, {Cn} as follows.

Ci = {x ∈ W : ||x− xi|| ≤ ||x− xj||,∀ j 6= i}

That is, for each point xi of the point process, its corresponding cell Ci is the

region consisting of all locations which are closer to xi than to any other point

of {xn}. The Voronoi tessellation is the collection of such cells. See Okabe et al.

(2000) for a thorough treatment of Voronoi tessellations and their properties.

Given a model for the conditional intensity of a spatial or space-time point pro-

cess, one may construct residuals simply by evaluating the residual process over

cells rather than over rectangular pixels, where the cells comprise the Voronoi tes-

sellation of the observed spatial or spatial-temporal point pattern. Such residuals
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are referred to as Voronoi residuals.

An immediate advantage of Voronoi residuals compared to conventional pixel-

based methods is that the partition is entirely automatic and spatially adaptive.

This leads to residuals with a distribution that tends to be far less skewed than

pixel-based methods. Indeed, since each Voronoi cell has exactly one point inside

it by construction, the raw Voronoi residual for cell i is given by

r̂i := 1−
∫
Ci

λ̂(x) dx

= 1− |Ci|λ̄, (4.1)

where λ̄ denotes the mean of the proposed model, λ̂, over Ci. This raw residual

can be scaled in various ways, but it will be left unscaled because the transforma-

tion is unnecessary in the method described below.

The distribution of r can approximated using known computation results. For

a homogeneous Poisson process, the expected area of a Voronoi cell is equal to

the reciprocal of the intensity of the process (Meijering, 1953), and simulation

studies have shown that the area of a typical Voronoi cell is approximately gamma

distributed (Tanemura, 2003). These properties continue to hold approximately in

the inhomogeneous case provided that the conditional intensity is approximately

constant near the location in question (Barr and Schoenberg, 2010).

The raw Voronoi residual in (4.1) will therefore tend to be distributed approx-

imately like a modified gamma random variable. More specifically, the second

term, |Ci|λ̄, referred to in the stochastic geometry literature as the reduced area,

is well-approximated by a two parameter gamma distribution with a rate of 3.569

and a shape of 3.569 (Tanemura, 2003). The distribution of the raw residuals is

therefore approximated by
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r ∼ 1−X ; X ∼ gamma(3.569, 3.569). (4.2)

By contrast, for pixels over which the integrated conditional intensity is close

to zero, the conventional raw residuals are approximately Bernoulli distributed.

The exact distributions of the Voronoi residuals are generally quite intractable

due to the fact that the cells themselves are random, but approximations can be

made by simulation. Consider the point process defined by the intensity function

λ(x, y) = 200x2|y| on the subset W = [−1, 1] × [−1, 1]. Figure 4.1 presents a

realization of the process along with the corresponding Voronoi tessellation (top

panels) and a regular rectangular pixel grid (bottom panels). Two locations in W

were selected for investigation: one with relatively high intensity, the other with

relatively low intensity. Residual distributions were simulated by generating 5000

point patterns from the model, identifying the pixel/cell occupied by the location

of interest, then calculating the difference between the number of observed points

and the number expected in that cell under the same model.

The distribution of Voronoi residuals under the null hypothesis is well approx-

imated by distribution 4.2 at both the high intensity and low intensity locations

(figure 4.1). By comparison, the distribution of pixel residuals is that of a Poisson

distributed variable with intensity
∫
Gi

λ̂(x) dx, for pixel Gi, centered to have mean

zero. At the location where the intensity is high, this distribution is moderately

skewed, but for the low intensity location the distribution becomes extremely

skewed to the point of being effectively a two-valued random variable.

Although distribution 4.2 is a good approximation to the distribution of the

Voronoi residuals at a given location across many realizations, this is not the same

thing as the distribution of interest: that of the full collection {|Cn|} under the null

hypothesis. Barr and Diez (2012) showed that this distribution is in fact a mixture

of gamma random variables. Nonetheless, experience thus far indicates that 4.2
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Figure 4.1: Residual distributions under the null hypothesis based

on a Voronoi tessellation (top panels) and a pixellated grid (bot-

tom panels). The underlying point process is Poisson with intensity

λ(x, y) = 200x2|y|. The middle panels show results at location N

where λ = 73.5; the right panels show results at location � where

λ = 1.35. The distribution (2) is overlaid in green for the top-middle

and top-right plots.

is also a reasonable approximation to this distribution (see e.g. the lower left plot

in Figure 3). For a fully rigorous model assessment, one could supplement the

analysis by computing the distribution of residuals though repeated simluations

and tessellations from the model.

It is also important to note that such residuals are not strictly independent

of one another due to the nature of the tessellation. Caution should thus be

exercised if methods are used that rely upon asymptotic distributions. Another

concern would be a tendency for this method to under- or overstate the degree
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of spatial structure in the residuals, as the dependence will be spatially local.

Again, however, experience shows that both of these concerns are relatively mi-

nor. A second Voronoi residual is introduced in § 7.2 to provide an independent

alternative.

4.2 Voronoi Residual Plots

In this section, the construction of the Voronoi residual plot is described and its

utility demonstrated using a series of simulations of spatial Poisson processes. The

simulations are random samples from a specified generating model, λ(x). These

simulations are then modeled, correctly or incorrectly, by a proposed model, λ0(x).

Voronoi residuals are then computed and used to assess the degree to which the

proposed model agrees with simulations.

4.2.1 Plot construction

The Voronoi residual plot is constructed by first tessellating W based on the

observed point pattern {xn}. This was done using the deldir package in the

R computing environment (Turner, 2011). In order to calculate each ri, it is

necessary to calculate λ̄0 (equation 4.1). This was approximated using Monte

Carlo integration: randomly generating many points within Ci, evaluating λ(xi)

for each, then taking the mean.

More important than the value of the raw residual is the value that it takes

relative to distribution 4.2. Therefore each raw residual is transformed into the

value that it takes under the cumulative distribution function of distribution 4.2.

A value very close to zero or 1 indicates that the residual is far into the tails of

the residual distribution, and therefore would represent marked over- and under-

prediction by λ0(x), respectively.

These values and their spatial configuration are visualized using a color map.

27



Each cell is shown in either red or blue, indicating over- or under-prediction, and

then the saturation of the color reflects the magnitude of that residual. Therefore,

a region of W where λ0(x) systematically overpredicted will be visualized as a

patch of dark red cells, while a residual plot where the true model was fit should

appear washed out and spatially unstructured.

Initially, the residual plot used a linear map between residual c.d.f. value

and color saturation. These plots had the tendency to overwhelm the viewer

because bright colors were assigned to cells with small and moderate residual

magnitudes. The goal of the plot is to draw attention to systematic and highly

improbable residual values under λ0(x), so this linear map was replaced with an

inverse Normal transformation (figure 4.2). Thus only unusually low residuals

are colored bright red and unusually high residuals are colored bright blue, while

values not in the tails of distribution 4.2 are assigned much more muted colors.

Additionally, this transformation can be tuned by the user to reveal more or

less constrast between the body and the tails of the distribution by changing the

standard deviation of the transformation.

4.2.2 Correctly specified model

We first consider the simplest case, where the proposed model is the same as

the generating model, λ0(x) = λ(x). As a result, one expects residuals that are

spatially unstructured and relatively small in magnitude; i.e. the only variation

should be due to sampling variability.

Figure 4.3 shows a simulation of a spatial Poisson process with intensity

λ(x, y) = 200x2|y| on the subset W = [−1, 1] × [−1, 1], along with its corre-

sponding Voronoi tessellation.

The plot in the upper left panel is a point pattern from the generating model

along with the resulting Voronoi tessellation. In the Voronoi residual plot in the
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Figure 4.2: The inverse Normal color transformation of residual c.d.f.

values at three tuning levels: σ = .75 (blue), σ = 1 (gold), σ = 1.5

(red).

top right panel of figure 4.3, the tiles range from light to moderate hues of red

and blue, representing residuals that are within the range expected under the

reference distribution. In the lower left panel, a histogram of the raw residuals

is shown with a green line representing the reference distribution. The plot in

the lower right panel is an alternative way to compare these distribution using a

quantile-quantile plot along with 95% point-wise confidence bounds. As would be

expected, the histogram and quantile plot of the Voronoi residuals demonstrate

that the distribution of the residuals is well approximated by distribution (4.2).
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4.2.3 Misspecification

In order to evaluate the ability of Voronoi residuals to detect model misspeci-

fication, simulations were obtained using a generating model and then residu-

als were computed based on a different proposed model. The top left panel of

Figure 4.4 displays a realization of a Poisson process with intensity λ(x, y) =

1001{|X|,|Y |>0.35}.
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Figure 4.4: Simulated Poisson process with intensity λ(x, y) =

1001{|x|,|y|>0.35} with Voronoi tessellation overlaid (top left), Voronoi

residual plot for this simulation using a proposed intensity of

λ0(x, y) = 100 (top right), histogram of the Voronoi residuals, with

a green curve tracing the density of the reference distribution (4.2)

(bottom left), quantile plot of the Voronoi residuals with respect to

distribution (4.2), with pointwise 95% confidence limits obtained via

simulation of the proposed model (bottom right). The color scale of

the Voronoi residual plot is Φ−1{F (r)}, where F is the distribution

function of (4.2). Tiles intersecting the boundary of the space are

ignored.
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The proposed model assumes a constant intensity across the space, λ0(x, y) =

100. Because of the lack of points near the origin, the tiles near the origin are

larger than expected under the proposed model, and hence for such a cell C near

the origin, the integral
∫
C

λ0(x, y) dx dy exceeds 1, leading to negative residuals of

large absolute value. These unusually large negative residuals are evident in the

Voronoi residual plot and clearly highlight the region where the proposed model

overpredicts the intensity of the process. These residuals are also clear outliers in

the left tail of the reference distribution of the residuals, and as a result one sees

deviations from the identity line in the quantile-quantile plot in figure 4.4.
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Figure 4.3: Simulated Poisson process with intensity λ(x, y) =

200x2|y| with Voronoi tessellation overlaid (top left), Voronoi residual

plot of this simulation (top right), histogram of the Voronoi residuals,

with a green curve tracing the density of the reference distribution

(4.2) (bottom left), quantile plot of the Voronoi residuals with respect

to the distribution (4.2), with pointwise 95% confidence limits ob-

tained via simulation (bottom right). The color scale of the Voronoi

residual plot in the top right is Φ−1{F (r)}, where F is the distribu-

tion function of (4.2). Tiles intersecting the boundary of the space are

ignored, as the distribution of these tile areas may differ substantially

from the gamma distribution.
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CHAPTER 5

Statistical Power

We now consider the manner in which the statistical power of residual analysis

using a Voronoi partition differs from that of a pixel partition. In the context of

a residual plot, a procedure with low power would generate what appears to be a

structureless residual plot even when the model is misspecified. To allow for an

unambiguous comparison, here we focus on power in the formal testing setting:

the probability that a misspecified model will be rejected at a given confidence

level.

5.1 Probability Integral Transform

As was discussed in § 4.1, the distribution of Voronoi residuals under the null

hypothesis is well approximated by a modified gamma distribution, while the dis-

tribution of pixel residuals is that of a Poisson distributed variable with intensity∫
Gi

λ̂(x) dx, for pixel Gi, centered to have mean zero. To establish a basis to com-

pare the consistency between proposed models and data for these two methods,

we utilize the Probability Integral Transform (PIT) (Dawid, 1984). The PIT was

proposed to evaluate how well a probabilistic forecast is calibrated by assessing

the distribution of the values that the observations take under the cumulative dis-

tribution function of the proposed model. If the observations are a random draw

from that model, a histogram of the PIT values should appear to be standard

uniform.
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One condition for the uniformity of the PIT values is that the proposed model

be continuous. This holds for Voronoi residuals, which are approximately gamma

distributed under the null hypothesis, but not for the Poisson counts from pixel

residuals. For such discrete random variables, randomized versions of the PIT

have been proposed. Using the formulation in Czado et al. (2009), if F is the

distribution function of the proposed discrete model, X ∼ F is an observed ran-

dom count and V is standard uniform and independent of X, then U is standard

uniform, where

U = F (X − 1) + V (F (X)− F (X − 1)) , X ≥ 1, (5.1)

U = V F (0) , X = 0. (5.2)

The method can be thought of as transforming a discrete c.d.f. into a continuous

c.d.f. by the addition of uniform random noise.

5.2 Formal Testing

The PIT, both standard and randomized, provides a formal basis for testing for

two competing residual methods. For a given proposed model and a given re-

alization of points, the histogram of PIT values, u1, u2, . . . , un, for each residual

method should appear standard uniform if the proposed model is the same as

the generating model. The sensitivity of the histogram to misspecifications in the

proposed model reflects the statistical power of the procedure.

There are many test statistics that could be used to evaluate the goodness of

fit of the standard uniform distribution to the PIT values. Here we choose to use

the Kolmogorov-Smirnov (K-S) statistic (Massey, 1951),

Dn = sup
n
|Fn (x)− F (x) |,
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where Fn (x) is the empirical c.d.f. of the sample and F (x) is the c.d.f. of

the standard uniform. Since the Voronoi residuals of a given realization are not

independent of one another, we use critical values from a simulated reference

distribution instead of the limiting distribution of the statistic.

5.3 Simulation Design

Two models were considered for the simulation study. The first was a homoge-

neous Poisson model on the unit square with intensity λ on R2. The second was

an inhomogeneous Poisson model with intensity

λ(x, y) = 100 + 200
(
x̃β ỹβc

)
, (5.3)

on R2, where x̃ = 1
2
− |x − 1

2
| and ỹ = 1

2
− |y − 1

2
|. The constant c is a scaling

constant chosen so that the parenthetical term integrates to one. The result is a

function that is symmetric about x = .5 and y = .5, reaches a maximum at (.5, .5),

integrates to 300 regardless of the choice of β, and is reasonably flat along the

boundary box. This final characteristic should allow the alternative approach to

the boundary problem, described below, to be relatively unbiased. Additionally,

it presents inhomogeneity similar to what might be expected in an earthquake

setting. Six versions of this model, each with a different choice of β are shown in

figure 5.1.
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Figure 5.1: Six version of model 5.3. From left to right, top to bot-

tom, β = 2, 3, 4, 5, 6, 7. Above each model is an approximation of the

integral of the function over the unit square along with the maximum

intensity at (.5, .5). The color scale is relative to the min and max of

each individual plot.

The procedure for the inhomogeneous simulation was as follows. A point

pattern was sampled from the true generating model, (5.3) with β = 4. For

a given proposed model, with β = β0, and a fixed number of pixels n on the

unit square [0, 1]2, PIT values were calculated for the counts in each pixel, Gi.

The empirical c.d.f. of the PIT transformed residuals was then compared to

the c.d.f. of the standard uniform using the K-S test. After many iterations of

this procedure, the proportion of iterations with an observed K-S statistic that

exceeded the critical value served as the estimate of the power of the method.

An analogous procedure was followed for the Voronoi partition, but with the PIT
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values calculated by evaluating the Voronoi residuals (4.1) under the modified

gamma distribution (4.2).

The homogeneous simulation was conducted in the same manner, but drew

samples from a generating model of λ = 500 and compared them to estimates

from a proposed model λ0.

5.3.1 Boundary effects

It is known that Voronoi cells generated along the boundary of the space do not

follow the same distribution as the interior cells. One recourse is to omit them

from the analysis, as in § 4.1. Here we consider realizations of the model (5.3) on

the entire plane but consider only the distribution of all cells generated by points

inside the unit square [0, 1]2. An example of the resulting tessellation is shown in

figure 5.2.
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Figure 5.2: The tessellation resulting from generated a point pattern

from model 5.3 with β = 4. The tessellation contains all cells gener-

ated by points that lie within the unit square.

The result is a tessellation that both exceeds and is less than the bounding box

in places. By using an intensity function that is fairly flat along the boundary,

these differences should cancel out and result in a total tessellated area that is

roughly the same as that covered by the pixel residuals. This general approach of

calculating statistics based on regions outside of W is known as a boundary plus

method (Baddeley, 2007).

39



5.4 Results

For the homogeneous model, figure 5.3 shows the resulting estimated power curves

for several pixel partitions including, n ∈ {36, 324, 900, 2500}. The power of each

method was computed for a series of proposed models, λ0 ∈ (375, 625). The best

performance was by the method that used the Voronoi partition, which shows

high power throughout the range of misspecification.

For the pixel partitions, n = 36 had the highest power but as the number of

partitions increased, the K-S test lost its power to detect misspecification. This

trend can be attributed to characteristic I: when the space is divided into many

small cells, the integrated conditional intensity is very small and the distribution of

the residuals is highly skewed. As a consequence, the majority of counts are zeros,

so the majority of the PIT values are being generating by V F (0) (equation 5.2),

and thus the resulting residuals have little power to detect model misspecification.

As the only misspecification present in the model is in the total number of

expected points in the unit square, the most powerful test will be the K-S test

performed without any partitioning. This is equivalent to P (t.025 > N(W ) >

t.975), where the number of points in the unit square, N(S) ∼ Poi(λ = 500),

and t.025 and t.975 are the lower and upper critical values for a Poisson random

variable with rate λ0. This is known in the earthquake forecasting literature as

the Number-test (Schorlemmer and Gerstenberger, 2007).
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Figure 5.3: Estimated power curves for the K-S test based on five dif-

ferent pixel partitions as well as the Voronoi tessellation. The model

under consideration is homogeneous Poisson with a generating inten-

sity of λ = 500.

For the inhomogeneous case, power curves were computed for a series of pro-

posed models of the form (5), with β0 ∈ (.5, 11). The results are shown in fig-

ure 5.4. The power curve for the Voronoi method presents good overall perfor-

mance, particularly when the model is substantially misspecified. The Voronoi

residuals are not ideally powerful for detecting slight misspecification, however,

perhaps because the partition itself is random, thus introducing some variation

that is difficult to distinguish from a small change in β.
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Figure 5.4: Estimated power curves for the K-S test based on five

different pixel partitions as well as the Voronoi tessellation. The model

under consideration is λ(x, y) = 100 + 200
(
x̃β ỹβc

)
, where x̃ = 1

2 −

|x− 1
2 | and ỹ = 1

2 − |y −
1
2 |. The generating model is β = 4.

Focusing only on the four pixel methods, the best performance is at n = 324

pixels. The poor performance of n = 36 in detecting the large positive misspec-

ification is due to the fact that the model becomes more inhomogeneous as β0

increases, but that inhomogeneity is averaged over cells that are too large (the

problem associated with characteristic II in § 1.2). Meanwhile, the poor overall

performance of n = 2500 is due to the same problem that exists in the homoge-

neous setting, where the PIT values are dominated by the random uniform noise.

In applications such as earthquake modeling, the use of pixel methods often
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result in situations with extremely low intensities in some pixels, similar to the

case considered here with n = 2500, but perhaps even more extreme. For instance,

one of the most successful forecasts of California seismicity (Helmstetter et al.,

2007) estimated rates in each of n = 7682 pixels in a model that estimated a total

of only 35.4 earthquakes above M 4.95 over the course of a prediction experiment

that lasted from 2006 to 2011. Estimated integrated rates were as low as 0.000007

in some pixels, and 58% of the pixels had integrated rates that were lower than

0.001. An immediate improvement could be made by aggregating the pixels, but

this in turn will average over the strong inhomogeneity along fault lines in the

model, which will lower power. For this reason, the Voronoi residual method may

be better suited to the evaluation of seismicity models, as well as other processes

that are thought to be highly inhomogeneous.
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CHAPTER 6

Examples

6.1 RELM

In the present section we apply some of the residual methods discussed above to

models and seismicity data from the 5-year RELM prediction experiment that

ran from 2006 to 2011. The original experiment called for modelers to estimate

the number of earthquakes above magnitude 4.95 that would occur in many pre-

specified spatial bins in California. During this time period only 23 earthquakes

that fit these criteria were recorded, a fairly small data set from which to assess

a model. In order to better demonstrate the methods available in residual anal-

ysis, the models that are considered below were recalibrated using their specified

magnitude distributions to forecast earthquakes of greater than magnitude 4.0, of

which there are 232 on record.

The first model under consideration is one that was submitted to RELM by

Helmstetter et al. (2007) and is described in chapter 2. The left panel of figure 6.1

shows the estimated number of earthquakes in every pixel in the greater California

region that were part of the prediction experiment. Pixels shaded very light gray

have a forecast of near zero earthquakes while pixels shaded black forecast much

greater seismicity. The tan circles are the epicenters of the 232 earthquakes in the

catalog, many of which are concentrated just South of the Salton Sea, near the

border between California and Mexico.

The extent to which the observed seismicity is in agreement with the forecast
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can be visualized in the raw pixel residual plot (center panel). The pixels are

those established by the RELM experiment. Pixels where the model predicted

more events than were observed are shaded in red; pixels where there was under-

prediction are shown in blue. The degree of color saturation indicates the p-value

of the observed residual in the context of the forecasted Poisson distribution. Thus

while the Helmstetter et al. (2007) model greatly underpredicted the number of

events in the Salton Sea trough (dark blue), it also forecasted a high level of

seismicity in several isolated pixels that experienced no earthquakes (dark red).

The majority of the pixels are shaded very light red, indicating regions where the

model forecast a very low rate of seismicity and no earthquakes were recorded.

The Voronoi residual plot for the Helmstetter et al. (2007) model is shown in

the right panel of figure 6.1. It generates far fewer residuals than pixel-based meth-

ods (210 versus 7682) because by definition, each tile contains one observation.

The spatial adaptivity of this partition is evidenced by the small tiles in regions of

high point density and larger tiles in low density regions. The region of consistent

underprediction in the Salton Sea trough is easily identified. Unlike the raw pixel

residual plot, the Voronoi plot appears to distinguish between areas where the

high isolated rates can be considered substantial overprediction (dark red) and

areas where, considered in the context of the larger tile, the overprediction is less

extreme (light red).

In figure 6.2 we assess how well the Helmstetter et al. (2007) model performs

relative to another model in RELM using deviance residuals. The Shen et al.

(2007) model is notable for utilizing geodetic strain-rate information from past

earthquakes as a proxy for the density (intensity) of the process. µ() is then an

interpolation of this data catalog. The result is a forecast that is generally much

smoother than the Helmstetter et al. (2007) forecast, as seen in the left panel of

figure 6.2. The center panel displays the deviance residuals for the Helmstetter

et al. (2007) model relative to the Shen et al. (2007) model. The color scale is
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mapped to a measure of the comparative performance of the two models ranging

from 1 (dark blue) indicating better performance of the Helmstetter et al. (2007)

model to -1 (dark red) indicating better performance of the Shen et al. (2007)

model. This deviance residual plot reveals that the Helmstetter et al. (2007)

model’s relative advantage is in broad areas off of the main fault lines where the

forecast was lower and there were no recorded earthquakes. It appeared to fit

worse than the Shen et al. (2007) model, however, just West of the Salton Sea

trough region of high seismicity, in a swath off the coast, and in isolated pixels in

central California.

The Voronoi deviance plot (right panel) identifies the same relative underper-

formance of the Helmstetter et al. (2007) model relative to the Shen et al. (2007)

model in the central California region and off the coast and is a bit more informa-

tive in the areas of higher recorded seismicity. In the Salton Sea trough region,

just south of the border of California with Mexico, the Helmstetter et al. (2007)

model appears to outperform the Shen et al. (2007) model in a vertical swath on

the Western side of the seismicity, while the results on the Eastern side are more

mixed. While these regions appear nearly white in the pixel deviance residual

plot, suggesting roughly equivalent performance of the models, the aggregation of

many of those pixels in the Voronoi plot allows for a stronger comparison of the

two models.

The utility of residual methods can be seen by contrasting the residual plots

with the error diagram of these same two models (figure 3.1 in chapter 3). While

the error diagram and other functional summaries collapse the model and the ob-

servations into a new measure (such as the false negative rate), residual methods

preserve the spatial referencing, which can help inform subsequent model genera-

tion.
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6.2 ETAS

In this section we apply Voronoi residual analysis to the spatial-temporal epidemic-

type aftershock sequence (ETAS) model of Ogata (1998) (see chapter 3), which

has been widely used to describe earthquake catalogs.

There is considerable debate in the seismological community about the best

method to estimate the spatial background rate ρ(x, y) (Ogata, 2011; Helmstetter

and Werner, 2012; Zhuang et al.). When modeling larger, regional catalogs, ρ is

often estimated by smoothing the largest events in the historical catalog (Ogata,

1998), and in such cases a very important open question is how (and how much)

to smooth (Schoenberg, 2003; Helmstetter et al., 2007; Helmstetter and Werner,

2012; Zhuang et al.). For a single earthquake-aftershock sequence, however, can

one instead simply estimate ρ as constant within a finite, local area, as in Schoen-

berg (2013)?

A prime catalog to investigate these questions is the catalog of California earth-

quakes including and just after the 1999 Hector Mine earthquake, which struck

east of the city of Barstow. This dataset was analyzed previously in Ogata et al.

(2003), and consists of the origin times, epicentral locations, and magnitudes of

the 520 earthquakes with magnitude at least 3.0, from latitude 34 to 35, longitude

-116 to -117, from October 16, 1999 to December 23, 2000, obtained from the

Southern California Seismic Network (SCSN).

The parameters in the model were estimated by maximum likelihood esti-

mation, using the progressive approximation technique described in Schoenberg

(2013). For the purpose of this analysis, we focused on the purely spatial aspects

of the residuals, and thus integrated over the temporal domain to enable planar

visualization of the residuals. The result is a Voronoi tessellation of the spatial

domain where for tile Ci, for the integral in equation 4.1, the estimated condi-

tional intensity function λ̂(t, x, y) is numerically integrated over the spatial tile Ci
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and over the entire time domain from 10/16/1999 to 12/23/2000.

The top left panel of figure 6.3 shows the observation region and epicenter

locations, along with their resulting Voronoi tessellation. The high concentration

of seismicity along the fault line is obvious. The top right panel shows the resid-

uals, which appear to be generally low to moderate in magnitude with no clear

suggestion of systematic over- or under-prediction, indicating general agreement

between the ETAS model and the data.

Along the periphery of the fault line, however, there is some evidence of the

model overpredicting seismicity, as indicated by several red cells. The histogram

and quantile plot of the Voronoi residuals in figure 6.3 reflect this overprediction by

highlighting several residuals with values below −3. The lowest of these residuals

corresponds to the bright red cell near the top of the residual plot, at a location

roughly 35 miles due east of Barstow, California. Looking at an enlarged version

of the residual plot (figure 6.4), it is apparent that in the region directly alongside

the fault, the residuals are small in magnitude but systematically blue, indicating

that the model is underpredicting seismicity. Taken together, these observations

suggest that, even for this very local dataset, constraining ρ to be a constant may

have resulted in excessive smoothing of the estimated seismicity and hence an

underprediction of seismicity close to the fault line.
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Figure 6.3: Southern California earthquake data (top left), Voronoi

residual plot for the ETAS model suggesting over prediction on the in

several off-fault sites (top right), histogram of the Voronoi residuals,

with a green curve tracing the density of the reference distribution

4.2 (bottom left), quantile plot of the Voronoi residuals with respect

to distribution 4.2, with pointwise 95% confidence limits obtained via

simulation from the model (bottom right). The scale of the Voronoi

residual plot is Φ−1{F (r)}, where F is the distribution function of

4.2. Tiles intersecting the boundary of the space are ignored.
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Figure 6.4: An enlarged portion of the residual plot in figure 6.3

showing systematic underprediction (blue) along the fault and over-

prediction (red) along the periphery.
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CHAPTER 7

Model-generated Centroidal Voronoi Partition

While Voronoi residuals have characteristics that make them an effective tool for

the assessment of inhomogeneous point process models - they are spatially adap-

tive and data-driven - other aspects present challenges. Some sampling variability

is induced due to the fact that the tessellation originates from a single realization

of the point process. Also, a residual will exhibit some depedence with other resid-

uals within its fundamental domain, which may over- or understate the degree of

spatial structure. In this section an alternative residual is discussed to address

these challenges.

7.1 Centroidal Voronoi Residuals

Barr (2012) presents a Voronoi residual that utilizes successive iterations of reg-

ularization to stabilize the tessellation in a bias-variance tradeoff. In a single

iteration of the algorithm, each point in the observed pattern xi is moved to the

centroid of cell Ci weighted by the proposed model, an implementation of the

method of Lloyd (1992). That is, find the new point x1
i where

x1
i =

∫
Ci

xλ0(x) dx∫
Ci
λ0(x) dx

.

The new pattern, {x1
n}, is then re-tessellated, and so on, for either 2 or 3 itera-

tions. Barr (2012) shows that the resulting residuals are well-approximated by the

Gaussian model, which leads to very accurate tests based on the χ2 distribution.
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7.2 Model-generated partition

In order to achieve independent residuals that preserve some of the properties of

the centroidal Voronoi residuals, the following variation is proposed.

7.2.0.1 Generating the partition

Let M be the expected number of points in a cell under H0 that achieves maximum

power under the Kolmogorov-Smirnov test, let M :=
∫
W
λ(x) dx, and let W be a

bounded region of interest in R2.

1. Generate n = M/M points in W , forming the pattern {x1
n}.

2. Tesselate W , forming the partition {C1
n}.

3. Move each point in {x1
n} to the model-weighted centroid of its associated

cell, defined as the point where.

4. Repeat steps 2 and 3 until sup{||{xin}−{xi−1n }||} < ε for some small distance

ε, where || · || is the Euclidean distance between successive iterations of the

same point.

The final partition that is generated by this algorithm will have cells that all

have approximately the same expected count, M , under λ0(x). Several stopping

rules could be used; this one was selected for simplicity and relative ease of com-

putation. There is no reason to think that the final partition will be unique for a

given λ0(x), M , and W , but it is not clear that this will be problematic. In terms

of power, the operative feature of the process is M .

7.2.0.2 Calculating residuals

Once the partition is in place, residuals can be calculated in the manner of Bad-

deley et al. (2005), where the observed counts in each cell come from the observed
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point pattern. Where as Voronoi residuals (4.1) fix the observed count and allow

the expected count to vary, these residuals fix the expected count at M and allow

the observed count to vary. This should create a set of residuals that are inde-

pendent of one another and Poisson distributed (if the point process is assumed

to be Poissonian).

It is unclear how to best choose M . Is it possible that an analytical solution

exists what would maximize the power of the K-S test given a certain effect size.

This is an open question that would be interesting to pursue. In any event, this

method could then be compared to pixel residuals and regular Voronoi residuals

as in figure 5.4.
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CHAPTER 8

Conclusion

The proposed residual method described here is naturally spatially adaptive, with

cell sizes approximately inversely proportional to the conditional intensity of the

underlying point process. These Voronoi residuals may of course be used in tan-

dem with standard, pixel-based residuals, which may in turn be based on a judi-

cious choice of pixel size, or perhaps using a different spatially adaptive grid than

the one proposed here.

The importance of selecting the size of the cell on which to compute a residual

is not unique to this PIT - K-S statistic testing environment. The discrepancy

measure proposed by Guan (2008) is defined on a Borel set of a given shape S.

The author emphasizes the importance of choosing an appropriate size for S (page

835), and points out that if the cell is too small or too large, the power will suffer.

A related problem arises in the selection of the bandwidth of the kernel used to

smooth a residual field (see Baddeley and Turner, 2005, section 13 and discussion).

Although this dissertation has focused on formal testing at the level of the

entire collection of residuals, testing could also be performed at the level of in-

dividual cells. For the Voronoi partition, this extension is straightforward and is

essentially what is being done informally in the shaded residual plots. For any

pixel partition, such testing may be problematic, as any pixel with an integrated

conditional intensity close to zero would contain zero points with more than 95%

probability, so any hypothesis test with α = 0.05 using a rejection interval would

necessarily have a type I error near 1.
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Generating the partition using a tessellation of the observed pattern has ad-

vantages and disadvantages. The advantage is that it is adaptive and requires

no input from the user regarding tuning parameters. The disadvantages are that

some sampling variability is induced by the random cell areas and that the resid-

uals are dependent, so techniques relying upon an i.i.d. assumption must be used

cautiously. The centroidal Voronoi variant of Barr (2012) and the model-generated

version of § 7.2 may be useful alternatives.

It should also be noted that the standardization methods proposed in Baddeley

et al. (2005) may be used with Voronoi residuals, or instead one may elect to plot

deviance residuals in each of the Voronoi cells. In general, experience suggests

that the standardization chosen for the residuals seems far less critical than the

choice of grid.

The paradigm established by RELM and CSEP is a very promising direction

for earthquake model development. In addition to requiring the full transparent

specification of earthquake forecasts before the beginning of the experiment, the

criteria on which these models would be evaluated, namely, the L, N , and R

tests, was also established. As the first RELM experiment proceeded, it became

apparent that these tests can be useful summaries of the degree to which one

model appears to agree with observed seismicity, but that they leave much to be

desired. They are not well-suited to the purpose of comparing the goodness-of-fit

of competing models or to suggest where models may be improved.

Future prediction experiments will allow for the implementation of more useful

assessment tools. Residuals methods, including superthinned, pixel, and Voronoi

residuals, seem ideal for comparison and to see where a particular model appears to

overpredict or underpredict seismicity. Deviance residuals are useful for comparing

two competing models and seeing where one appears to outperforms another in

terms of agreement with the observed seismicity. These methods are particularly

useful in the CSEP paradigm, as insight gained during one prediction experiment
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can inform the building of models for subsequent experiments.
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