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SIMULATION OF A STANDING·WAVE FREE-ELECTRON LASEr<.'"

W. M. Sharp, A. M. Sessler(a), D. H. Whittum(a), and J. S. WurtcIeCb)
Lawrence Livermore National Laboratory, University of California

Livermore, California 94550

Abstract

The standing-wave free-electron laser (FEL) differs from a
conventional linear-wiggler microwave FEL in using irises along
the wiggler to form a series of standing-wave cavities and in
reaccelerating the beam between cavities to maintain the av
erage energy. The device has been proposed for use in a two
beam accelerator (TBA) because microwave power can be ex
tracted more effectively than from a traveling-wave FEL. The
standing-wave FEL is modeled in the continuum limit by a set
of equations describing the coupling of a one-dimensional beam
to a TEol rectangular-waveguide mode. Analytic calculations
and numerical simulations are used to determine the time vari
ation of the reacceleration field and the prebunching required
so that the final microwave energy is the same in all cavities.
The microwave energy and phase are found to be insensitive to
modest spreads in the beam energy and phase and to errors in
the reacceleration field and the beam current, but the output
phase appears sensitive to beam-energy errors and to timing
jitter.

Introduction

The next generation of linear colliders is expected to require
accelerating gradients of 100 MeV1m or greater. For the high
gradient structures that have been tested, this field strength
corresponds to a microwave power of about 100 MW1m, and
the required frequency is typically in the range of 10-30 GlIz.
The microwave free-electron laser (FEL)l and the relativistic
klystron (RK)2 have both demonstrated the required power
level in this frequency range, and they have been proposed as
collider power sources in a configuration known as the "two
beam accelerator" (TBA)3, in which a high-current "drive"
beam generates microwave energy in a beamline that paral
lels the high-gradient structure. Both the RK/TBA and the
FEL/TBA have practical problems. The RK operates best in
the X-band (8.4-12 GHz) and 50 cannot be used with many
high-gradient accelerator designs. Conventional FELs, in con
trast, have no fundamental frequency limitation, but experi
ments have shown that microwave extraction is difficult. 4

The cavity-coupled FEL/TBA5 has been devised to sidestep
the problems found with RKs and conventional FELs. This
new device would replace the usual FEL waveguide by a series
of short standing-wave cavities, each about a wiggler period in
length. The cavities would be separated by irises that allow
the beam to pass but reflect most of the microwave power, and
between cavities there would be induction accelerating cells to
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maintain the beam energy. Microwave energy from these cavi
ties would be connected to the high-gradient structure by cou
plers and would oscillate between the two beam lines with a
period that is much longer than the beam time Beale but much
less than the resistive loss time. This coupling scheme was pro
posed by Henke6 for a RK/TBA and is discussed elsewhere.5

In this paper, we present preliminary numerical simula
tions of the standing-wave FEL (SWFEL) used in the cavity
coupled FEL/TBA. The SWFEL has two important differences
from conventional FEL amplifiers. One difference is that the
standing-wave phase 1> develops in time only at each cavity loca
tion z, whereas the wave phase in conventional devices evolves
in z along with the "particle phase" OJ = (k. + kw)z - w.t,
where the subscript j denotes the jth particle. This differ
ence works against the preservation of a nearly constant average
bucket phase (t/Jj) = (OJ + 1>) that is needed for good bunch
ing. As a consequence, the SWFEL requires an unusual form of
prebunching, as we discuss later. A second difference is the use
of frequent reacceleration to maintain a nearly constant beam
energy. Reacceleration is used rather than tapering of the wig
gler strength because it is more appropriate for the very long
beamlines expected in linear colliders and because it in princi
pal allows the beam energy to be adjusted in time as well as in
z. Since the unusual phase evolution is a critical novel aspect
of SWFEL physics, we choose a very simple simulation model
that retains this feature but ignores other arguably important
features, such as the discrete nature of the standing-wave cavi
ties and the competition between waveguide modes. The next
section describes this model briefly and is followed by a section
on simulation results. We offer some tentative conclusions in a
final section.

Model

Assumptions and Equations

Simulation particles are modeled by a pair of wi~gle-aver

aged equations for the total energy ri in units of mec and the
particle phase OJ. Radial motion and the effects of the trans-

I verse beam structure are neglected, and the beam is assumed
to couple only with a TEol waveguide mode, which is usually
most strongly coupled mode. The signal wavenumber for this
mode in a rectangular waveguide with height h and width w
is k. = (w;/c2 - 1I2/1I2)1/2. For the fields, we assume an
idealized linear wiggler with a vector potential

(1)

and an appropriate form for the signal field

lne c 2

A. = - --a. a. (x, y) cos(k.z - w.t + 1>). (2)
~ e,l..)..

where U = - sin(1Iy/h) X is the transverse structure for a

TEol mode. A number of other conventional assumptions are
made that are suitable for most Compton-regime FELs and
significantly simplify the equations. The energy is taken to be
sufficiently high that a w /1'j « 1, and the energy spread is as
sumed small enough that all particles have effectively the 6,Wle
axial velocity \/i,. We treat the signal amplitude a. as small

.. I.



where the coefficient '1 in general depends on s and is given by

where ok = w./c - k•. This result shows that the bucket
vanishes when {J is zero or negative and that the longitudinal
acceptance .6.0 .6., increases with a larger initial signal and
larger -{J/,]. It is found that Eq. (12) underestimates the ac
ceptance Cor distributions with spreads in 0 and, because the
required reacceleration field in such cases is somewhat lower
than Cor the single-particle case. There is also a weak depen
dence of the acceptance on the initial average particle phase a,
with the largest acceptance occurring Cor a + ¢(O) = O.

Parameters

The operating frequency w. and the final energy per unit
length ~Vaul left in the cavities are determined in practice by
the TDA requirements. With these quantities given, the specifi
cation of the wavejuide dimensions It and tv, the wiggler wave
length Aw = 211" kw , and the wiggler strength a w sets the
principle beam parameters. The beam energy is determined by
the resonance condition, and the total beam charge, given by
hLb when the current is constant, is set by Waul. Since the
initial spreads in 0 and, are usually determined by the intrin
sic emittance Crom the accelerator and the additional emittance
introduced by prebunching, the values are not considered free
parameters.

Two remaining beam quantities, the beam-cllrrent envelope
h(s)/ max h and the prebunching factor {J can be chosen by
practical considerations. Since the acceptance is found to be
proportional to Ib" 1, it is preferable for the current to be low
near the beam head, where the bucket reaches its minimum
size. It is also found from the single-particle equations that a
current that increases like s or faster leads to a monotonically
increasing E z for S :S Lb' which is an easier field to generate
than a short pulse. For these reasons, we use a beam with a
uniform current ramp as our standard case. The prebunching
factor is chosen by considering the {J-dependences of various
beam quantities in the single-particle solution. We fllld that the

iir(s) = iir(O) + {J'1 [cos(o-) - cos(a + {Js)] (lOa),r
a;(s) = Czi(O) - {JTJ [sin(a) - sin(a + {Js)], (lOb),r

and the corresponding reacceleration field is

flO::::: 3.4 (_{J,rl~(O)l) 1/2 (12a)

ll,::::: 3.3 (:. k~~~k)1/2 (_{J~r) 1/2'il(0)1, (12b)

Simulation

eEz w. a w [( .
--2 = -Dr -- tl r O)sm(a + {Js)
mee c 1'r

+ u;(O)cos(a+{Js) + {J~r Sin({JS)].

(11)
The bucket size shrinks with increasing Ez/Iiil. and Cor this
case it is straightCorward to calculate the minimum extent oC
the bucket in 0 and, as the signal develops in s. These mini
mum values are approximately

As a practical special case, we consider a beam with constant TJ
which is prebunched at a frequency w. + .6.w, so that Oo(s) =
0- - (.6.W/Vb)S == a + {Js. The components of ii are then given
by

(8)

(6)

(5)

(4)

(7b)

(7a)

eEz w. a w (_. - 0)
--2 ~-Dr-- arsmO+aicos .
mee e ,r

dO ~ 2 (k
w

+ k. _ w.) 0,
dz ~ ,r

do, w. aw eEz
-- ~ -Dr -- (arsinO + ai cos 0) - --2'
dz e ,r mee

Requiring b, to be z-independent gives the E z required for
equilibrium:

a(s) = ii(O) + ~ r ds'1](s') exp[-iOo(s')]. (9),r Jo

While this equation implicitly assumes an infinitesimal cavity
length and ignores field coupling through the cavity irises, it
does model the novel signal evolution expected in a SWFEL.

"Single-Particle" Solution

Some understanding of the SWFEL equations is gained by
looking at a z-independent "single-particle" solution, in which
the full beam current is assigned to a single phase-space point.
Linearizing the equations for small 0-; = 'Y - 'Yr, where ...,:; = I

w.(l + a~/2)/2e(kw + k. - w./e) is the resonant energy. we
obtain the approximate particle equations

Here, the coupling coefficient Dr is given for a TEal mode by

If 0, is initially zero, then 0 is likewise independent of z and
equal to some arbitrary Oo(s). The components of a in Eq. (8)
are obtained by integrating the linearized field equation, which
gives

compared with aw , and the both a. and 1> are assumed to be
slowly varying compared with k.z and WW(. This last assump
tion makes the equations inappropriate for modeling waveguide
modes near cutoff.

The wiggle-averaged particle equations are identical to those
in a conventional single-mode microwave FEL. Taking z to be
the independent variable, we write the equations as

where { = w.a~/(8ekw1']) ::::: a~/4(1 + a~/2). An equation

for the complex signal amplitude a == ar + ia; = a. exp( i1» is
obtained by assuming that tl evolves only in time and requiring
that the wiggle-averaged equations conserve energy. Taking the
distance back from the beam head s == \1hz - t as the "time"
coordinate, this procedure gives the field equation



a deeply trapped distribution randomizes very slowly. There
is also a low-amplitude ripple in the wave phase ¢ that re
suIts from fluctuations in < cos (OJ + <P )/'Yj >, due again to
synchrotron motion. The wavelength in z of this phase ripple
corresDondg to the synchrotron '·...avelength in the initiai ficid
becau~e, according to Eq. (5), fJ¢I as is proportional to la\-l,
which is largest at small s.
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Fig. 1 Output energy per unit length Woul and wave phase
¢J as functions of z for the standard case.

For the standard case, the greatest sensitivity to parameter
errors is found for fluctuations in the initial energy. When the
reacceleration field is calculated for a. beam at the resonant en
ergy and the simulation is run with an energy that is 1% higher,
Woul is nearly unaffected, but ¢J, shown in Fig. 2a, has a rip
ple of about 11"/2. As in the case with no detuning, the ripple
wavelength corresponds to the synchrotron wavelength in the
initial field, but the amplitude is significantly larger because the
distribution centroid is well away from the bucket center and
executes large orbits in O. This phase ripple can be reduced by
choosing a larger 1i'i(0)1, which makes the initial bucket ~arge~,

or by decreasing aw while adjusting Aw or the wavegutd: dI
mensions to maintain a constant resonant energy. Phase npple
is also introduced by variations in the average energy with s,
which can develop in an accelerator due to beam loading. As an
illustration, Fig. 2b shows ¢ for a beam with an energy equal
ing 'Yr at the beam head but dropping gradually by 4% toward
the beam tail. The phase ripple for this case is similar to the
constant-energy case in Fig. 1 because the beam distribution
remains near the bucket center while the signal amplitude is
small.

Wave phase ¢> as a function of z for a beam with
(a) a constant energy 1% above 'Yr and
( b) an energy that decreases by 4% toward
the tail.

In contrast to the sensitivity to detuning, a 2% error in h
has a negligible effect on either ~Voul or ¢. A change of 2%
in the magnitude of E z likewise has little effect on either the
output energy or phase for the standard case, but introducing
a 0:1 ns time lag in the reacceleration field again causes a long-

peak beam current 16 2.17 kA
beam length L 6 180.0 cm
initial energy 'Yr 27.6
initial O-spread /:;,,00 /211" 0.1
initial 'Y-spread /:;"'Yo/rr 0.01
wiggler strength aw 8.86
wiggler wavelength Aw 25 cm
wiggler length L w 40 m
waveguide height h 3em
waveguide width w 10 cm
signal frequency w./211" 17.1 GIIz
cavity Q Q 104

input power Pin 5 kWlm
output energy Woul 10 Jim

Table 1 Nominal standing-wave FEL parameters

This field could be recalculated at each z and s value, but this
algorithm introduces a high-frequency noise component in E z
that increases exponently with z. A more practical approach
is to calculate Ez(s) at z = 0 and to use it at all subseque~t

z positions. With this second technique, the calculated E z IS
noise free and reduces to Eq. (11) in the limit that /:;,.00 and
/:;"'Yo are zero.

We set the initial signallevella(O)1 by assuming some input
microwave power per unit length Pin and balancing this with
cavity-wall losses, specified by an assumed 'cavity Q.

Results

The output microwave energy Woul and phase ¢ for a beam
with the nominal parameters and a linearly increasing hare
shown in Fig. 1. The spreads /:;,,00 /211" = 0.1 and /:;,.'Yol'Yr =
0.01 used here are small enough that the distribution remains
trapped and the output signal is reasonably insensitive to beam
and field errors. The principle z dependence in this case is the
initial ripple in ~Votll due to synchrotron motion, which cor
responds to a 2% fiuctuation in the average electron energy.
This ripple does not damp fully in the 40 m wiggler because

required beam charge and the longitudinal acceptance increase
with {JL6, while the maximum reacceleration field decreases.
Since the beam emittance is difficult to decrease in induction
accelerators, we choose {JL6 = 11", although a lower value might
be selected if the limited acceptance of the SWFEL is not found
to be a problem.

The nominal parameters used in the simulations here are
listed in Table 1. These values are appropriate for a generic
TBA, and little effort has been made to optimize the waveguide
size or the wiggler strength and wavelength.

Initialization

The simulation initialization parallels the single-particle so
lution. A distribution with prescribed spreads /:;,.00 and /:;"'Yo in
OJ and 'Yj is loaded so that (OJ) =0: + {Js and ('Yj) = 'Yr. Sim
ulation particles are uniformly distributed within this phase
space rectangle, and different random position are chosen for
each beam slice. Such a distribution is not realistic, but it al
lows the longitudinal acceptance to be tested systematically.
For the small spreads in OJ and 'Yj treated here, 200 simulation
particles are adequate to give acceptably low statistical noise.

The reacceleration field required to keep ('Yj) constant is
given by



wavelength ripple of about 1r/2 in 4>, as shown ill Fig. 3a. This
ripple results from beam-energy loss during the initial period
when E. = 0, causing the beam in effect to be detuned. The
use of a constant time lag is, of course, a worst case. A more
realistic jitter model has the E. timing error vary randomly
over a scale length in z equal to Aw . The wave phase for such
a case having a root mean-square jitter of 0.1 ns is plotted in
Fig. 3b and shows a phase ripple of about 1r/8.
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Fig. 3 Wave phase 4> as a function of z for a beam with
(a) a 0.1 ns lag in the reacceleration field and
(b) a reacceleration field with an rms timing
jitter of 0.1 ns.

Studies with a constant-current beam show that the final
wave phase is as stable as for a beam with a linear current
ramp, but there is a 10% ripple in ~Vout that persists in z. A
beam with constant 16 also begins to lose particles when errors
in energy or current exceed about 0.5%, indicating the reduced
acceptance for this current envelope.

Conclusions

From the I-D simulations discussed here, a standing-wave
FEL appears to be a possible microwave source for a two-beam
accelerator. Using a beam with modest current and energy,
we find that the final microwave energy in cavities is adequate
to drive a high-gradient structure, and this energy remains ef
fectively constant in z for fluctuations in energy, current, the
reacceleration field, and timing of up to 2%. The final signal
phase appears to be more sensitive, with 1% errors in energy
or timing causing a phase variation in z of up to 1r/2. Work is
underway to determine how such a phase error would affect the
performance of the high-gradient structure. The need for tight
prebunching is another potential shortcoming of the standing
wa.ve FEL.
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