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Solution of the Schrödinger equation for quasi-one-dimensional
materials using helical waves

Shivang Agarwala,, Amartya S. Banerjeeb

aDepartment of Electrical and Computer Engineering, University of California, Los Angeles, CA
90095, U.S.A

bDepartment of Materials Science and Engineering, University of California, Los Angeles, CA 90095,
U.S.A

Abstract

We formulate and implement a spectral method for solving the Schrödinger equation, as
it applies to quasi-one-dimensional materials and structures. This allows for computa-
tion of the electronic structure of important technological materials such as nanotubes
(of arbitrary chirality), nanowires, nanoribbons, chiral nanoassemblies, nanosprings and
nanocoils, in an accurate, efficient and systematic manner. Our work is motivated by
the observation that one of the most successful methods for carrying out electronic struc-
ture calculations of bulk/crystalline systems — the plane-wave method — is a spectral
method based on eigenfunction expansion. Our scheme avoids computationally onerous
approximations involving periodic supercells often employed in conventional plane-wave
calculations of quasi-one-dimensional materials, and also overcomes several limitations
of other discretization strategies, e.g., those based on finite differences and atomic or-
bitals. The basis functions in our method — called helical waves (or twisted waves) —
are eigenfunctions of the Laplacian with symmetry adapted boundary conditions, and
are expressible in terms of plane waves and Bessel functions in helical coordinates.

We describe the setup of fast transforms to carry out discretization of the governing
equations using our basis set, and the use of matrix-free iterative diagonalization to ob-
tain the electronic eigenstates. Miscellaneous computational details, including the choice
of eigensolvers, use of a preconditioning scheme, evaluation of oscillatory radial integrals
and the imposition of a kinetic energy cutoff are discussed. We have implemented these
strategies into a computational package called HelicES (Helical Electronic Structure).
We demonstrate the utility of our method in carrying out systematic electronic struc-
ture calculations of various quasi-one-dimensional materials through numerous examples
involving nanotubes, nanoribbons and nanowires. We also explore the convergence prop-
erties of our method, and assess its accuracy and computational efficiency by comparison
against reference finite difference, transfer matrix method and plane-wave results. We
anticipate that our method will find applications in computational nanomechanics and
multiscale modeling, for carrying out transport calculations of interest to the field of
semiconductor devices, and for the discovery of novel chiral phases of matter that are of
relevance to the burgeoning quantum hardware industry.

Keywords: Helical Waves, Electronic Structure Calculations, Nanomaterials,
Nanostructures, Chiral Materials, Spectral Method.
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1. Introduction

Low dimensional materials have been intensely investigated in the past few decades
due to their remarkable electronic, optical, transport and mechanical characteristics [1, 2].
The properties of these materials often provide sharp contrasts with the bulk phase,
and have led to various technological applications, including e.g., new kinds of sensors,
actuators and energy harvesting devices [3–8]. Quasi-one-dimensional materials — which
include nanotubes, nanoribbons, nanowires, nanocoils, as well as miscellaneous structures
of biological origin [9, 10] — are particularly interesting in this regard. This is due to the
unique electronic properties that emerge as a result of the availability of a single extended
spatial dimension in these structures [11–14], the possibility that they are associated
with ferromagnetism, ferroelectricity, and superconductivity [15–18], and the fact that
the behavior of these materials may be readily modulated via imposition of mechanical
deformation modes such as torsion and/or stretching. [19–21]. Quasi-one-dimensional
materials have also been investigated as hardware components for computing platforms
— both conventional [22, 23] and quantum [24]. The applications of such materials in
the latter case are connected to anomalous transport (the Chiral Induced Spin Selectivity
effect [25]) and exotic electronic states [26] that can be observed in such systems.

Given the importance of quasi-one-dimensional materials, it is highly desirable to
have available computational methods that can efficiently characterize the unique elec-
tronic properties of these systems. However, conventional electronic structure calculation
methods — based e.g. on plane-waves [27, 28] — are generally inadequate in handling
them. This is a result of the non-periodic symmetries in the atomic arrangements of such
materials. As a result of these symmetries, the single particle Schrödinger equation asso-
ciated with the electronic structure problem exhibits special invariances [29, 30], which
plane-waves, being intrinsically periodic, are unable to handle. For example, ground state
plane-wave calculations of a twisted nanoribbon (see Fig. 1a) will usually involve making
the system artificially periodic along the direction of the twist axis — thus resulting in
a periodic supercell containing a very large number of atoms, as well as the inclusion
of a substantial amount of vacuum padding in the directions orthogonal to the twist
axis, so as to minimize interactions between periodic images. Together, these conditions
can make such calculations extremely challenging even on high performance computing
platforms, if not altogether impractical. There have been a few attempts to treat quasi-
one-dimensional materials using Linear Combination of Atomic Orbitals (LCAO) based
techniques [31–36]. However, such methods suffer from basis incompleteness and super-
position errors [37–39], which can make it difficult to obtain systematically convergent
and improvable results.

In view of these limitations of conventional methods, a series of recent contributions
has explored the use of real space techniques to study quasi-one-dimensional materials
and their natural deformation modes [20, 30, 40, 41]. Specifically, this line of work incor-
porates the helical interaction potentials present in such systems using helical Bloch waves
and employs higher order finite differences to discretize the single particle Schrödinger
equation in helical coordinates. While this technique shows systematic convergence, and
has enabled the exploration of various fascinating electromechanical properties, it also has
a number of significant drawbacks. First, due to the curvilinearity of helical coordinates,
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the discretized Hamiltonian appearing in these calculations is necessarily non-Hermitian
[42, 43]. This complicates the process of numerical diagonalization and makes many of
the standard iterative eigensolvers [44] unusable. Second, the discretized equations have
a coordinate singularity along the system axis which restricts the use of the methods to
tubular structures and prevents important nanomaterials such as nanowires and nanorib-
bons from being studied. The presence of the singularity also tends to ill condition the
discretized Hamiltonian, which further restricts the applicability of the method to sys-
tems in which the atoms lie far enough away from the system axis (e.g. larger diameter
nanotubes). Finally, while the finite difference approach does allow for the simulation of
materials with twist (intrinsic or applied), the sparsity pattern of the discretized Hamil-
tonian worsens upon inclusion of twist, making simulations of such systems significantly
more burdensome.

In this work we formulate and implement a novel computational technique that reme-
dies all of the above issues and allows one to carry out systematic numerical solutions of
the Schrödinger equation, as it applies to quasi-one-dimensional materials and structures.
The technique presented here can be thought of as an analog of the classical plane-wave
method, and is similar in spirit to the spectral scheme for clusters presented in [45].
Like the classical plane-wave method, a single parameter (the kinetic energy cutoff) dic-
tates the overall quality of solution of our numerical scheme. We present a derivation
of the basis functions of our method — called helical waves (or twisted waves) — as
eigenfunctions of the Laplacian under suitable boundary conditions. We describe how
helical waves may be used to discretize the symmetry adapted Schrödinger equation for
quasi-one-dimensional materials, and how matrix-free iterative techniques can be used
for diagonalization. A key feature of our technique is the handling of convolution sums
through the use of fast basis transforms, and we describe in detail how these transforms
are formulated and implemented. We also discuss various other computational aspects,
including the choice of eigensolvers and preconditioners, and the handling of oscilla-
tory radial integrals that appear in our method. We have implemented these techniques
into a MATLAB [46] package called HelicES (Helical Electronic Structure), which we
use for carrying out demonstrative electronic structure calculations of various quasi-one-
dimensional materials. We also present results related to the convergence, computational
efficiency and accuracy properties of our method, while using finite difference, transfer
matrix and plane-wave methods for reference data.

We remark that our technique has connections with methods presented in earlier work
concerning electronic structure calculations in cylindrical geometries [47–51], but is more
general in that the use of helical waves automatically allows both chiral (i.e., twisted) and
achiral (i.e., untwisted) structures to be naturally handled. Additionally, some of these
earlier studies have employed the strategy of setting up of the discretized Hamiltonian
explicitly and then using direct diagonalization techniques, which scales in a significantly
worse way (both in memory and computational time) compared to the transform based
matrix-free strategies adopted by us. We also note in passing that the basis functions
presented here appear to be scalar versions of twisted wave fields explored recently in the
x-ray crystallography [52, 53] and elastodynamics [54, 55] literature.

The rest of this paper is organized as follows. In Section 2, we specify the class
of systems of interest to this work, formalize the relevant computational problem, and
describe our discretization strategy. Numerical techniques and algorithms are presented
in Section 3, following which we present results in Section 4. We conclude in Section 5 and
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also discuss the future outlook of the work. Miscellaneous derivations and computational
details are presented in the Appendices.

2. Formulation

In what follows, eX, eY, eZ will denote the standard orthonormal basis of R3. Position
vectors will be typically denoted using boldface lower case letters (e.g., p) and rotation
matrices using boldface uppercase (e.g., Q).The atomic unit system of me = 1, ~ =
1, 1

4πε0
= 1 will be used throughout the paper, unless otherwise mentioned. Cartesian

and cylindrical coordinates will be typically denoted as (x, y, z) and (r, ϑ, z) respectively.
The × sign will be reserved for denoting dimensions of matrices (e.g. using M × N to
denote the dimensions of a matrix with M rows and N columns), while ∗ will be used to
explicitly denote multiplication by or in between scalars, vectors and matrices.

2.1. Description of Physical System and Computational Problem
We consider a quasi-one-dimensional nanostructure of infinite extent aligned along eZ

(see Fig. 1). We assume the structure to be of limited extent along eX and eY. Let the
atoms of the structure have coordinates:

S = {p1,p2,p3, · · · : pi ∈ R3} . (1)

Quasi-one-dimensional structures in their undeformed states, or while being subjected
to natural deformation modes such as extension, compression or torsion, can often be
described using helical (i.e., screw transformation) and cyclic symmetries [10, 20, 29, 30].
Accordingly, we may identify a finite subset of atoms of the structure with coordinates:

P = {r1, r2, r3, . . . , rM : ri ∈ R3} , (2)

and a corresponding set of symmetry operations:

G =
{

Υζ,µ =
(
R(2πζα+µΘ)| ζτeZ) : ζ ∈ Z, µ = 0, 1, . . . ,N− 1

}
, (3)

such that:

S =
⋃

ζ∈Z
µ=0,1,...,N−1

M⋃

i=1

R(2πζα+µΘ)ri + ζτeZ . (4)

Here, the Υζ,µ are symmetry operations of the structure — specifically, each Υζ,µ is an
isometry whose action on an arbitrary point x ∈ R3 (denoted as Υζ,µ◦x) is to rotate it by
the angle 2πζα+µΘ about eZ, while simultaneously translating it by µτ about the same
axis. The natural number N is related to cyclic symmetries in the nanostructure about
the axis eZ, with Θ = 2π/N denoting the cyclic symmetry angle. The quantity τ is the
pitch of the screw transformation part of Υζ,µ, the parameter α takes values 0 ≤ α < 1,
and β = 2πα/τ captures the rate of twist (imposed or intrinsic) in the structure. The
case α = 0 usually represents achiral or untwisted structures (see Fig. 1) .

The electronic properties of a quasi-one-dimensional material under study can be
investigated by calculating the spectrum of the single particle Schrödinger operator:

H = −1

2
∆ + V (x) , (5)
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Figure 1: Examples of the type of nanostructures that can be investigated using the computational
framework presented in this work. Helical and cyclic symmetry parameters associated with the geometries
of the structures are shown.

associated with the system. Determination of the spectrum in an efficient manner, espe-
cially for realistic quasi-one-dimensional nanomaterials serves as the primary computa-
tional problem of interest in this work. Here, V (x) represents the “effective potential” as
perceived by the electrons. The potential can be computed through self-consistent means
(for example, as part of Density Functional Theory calculations [20, 30]), or through the
use of empirical pseudopotentials [56, 57], as done here. Due to the presence of global
structural symmetries, the potential is expected to obey:

V (x) = V (Υζ,µ ◦ x) ,∀Υζ,µ ∈ G . (6)

As a consequence of the quasi-one-dimensional nature of the system, and the above
symmetry conditions, the eigenstates of the Hamiltonian can be characterized in terms
of Helical Bloch waves [29, 30]. Specifically, solutions of the Schrödinger equation:

(
− 1

2
∆ + V (x)

)
ψ = λψ , (7)

can be labeled using band indices j ∈ N, and symmetry adapted quantum numbers
η ∈

[
−1

2
, 1

2

)
, ν ∈ {0, 1, 2, . . . ,N − 1}. Moreover, these solutions obey the following

condition for any symmetry operation Υζ,µ ∈ G:

ψj(Υζ,µ ◦ x; η, ν) = e−2πi
(
ζη+µν

N

)
ψj(x; η, ν) . (8)

The above relation can be used to reduce the computational problem of determining the
eigenstates of the Schrödinger operator over all of space, to a fundamental domain or
symmetry-adapted unit cell.
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Since the structures considered here have limited spatial extent in the eX− eY plane,
so does the computational unit cell. We denote the maximum radial coordinate of the
points in the computational domain as R. Then, this region of space (see Fig. 3) can be
parametrized in cylindrical coordinates as:

D =
{

(r, ϑ, z) : 0 ≤ r ≤ R,
2παz

τ
≤ ϑ ≤ 2παz

τ
+ Θ, 0 ≤ z ≤ τ

}
. (9)

Due to the decay of the wavefunctions in the radial direction [58, 59], it is often appro-
priate to enforce Dirichlet boundary conditions on the surface r = R, as done here. In
practice, the value of R can be chosen so as to ensure a sufficient amount of vacuum
exists between the structure under study and this lateral boundary surface [30, 40].

2.2. The Helical Coordinate System and Transformation of Schrödinger’s Equation
For computational purposes, it is useful to utilize a coordinate system that describes

the computational domain D, and the quasi-one-dimensional system’s symmetries more
naturally. To this end, we employ helical coordinates [29, 60, 61] in this work (Fig. 2). For
a point p ∈ R3 with Cartesian coordinates (xp, yp, zp), cylindrical coordinates (rp, ϑp, zp),
and helical coordinates (θ1 p, θ2 p, rp), the following relations hold:

rp =
√
x2
p + y2

p , θ1 p =
zp
τ
,

θ2 p =
1

2π
arctan 2 (yp, xp)− αzp

τ
=
ϑp

2π
− αzp

τ
.

(10)

Regardless of the amount of twist or cyclic symmetries present in the system, the funda-
mental domain D (eq. 9) can be conveniently expressed as a cuboid in helical coordinates,
i.e.,

D =
{

(θ1, θ2, r) : 0 ≤ θ1 ≤ 1, 0 ≤ θ2 ≤
1

N
, 0 ≤ r ≤ R

}
. (11)

Thus, it is easier to setup a computational mesh over the fundamental domain using helical
coordinates. Moreover, the action of the symmetry operations Υζ,µ ∈ G is to simply result
in translations of the helical coordinates: if p ∈ R3 has helical coordinates (θ1 p, θ2 p, rp),
then Υζ,µ◦p has helical coordinates

(
θ1 p + ζ, θ2 p + µ

N
, rp
)
. In particular, this implies that

θ2 = constant

θ1 = constant

r = constant

Figure 2: The helical coordinate system represented as constant surfaces of the parameters r, θ1, θ2 (the
twist parameter α is nonzero here).
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0 to R

0 to 1

0 to 1
N

Computational mesh and domain
in simulation space (helical coordinates)

Helical coordinate

transformation

τ

R

2π
N

Computational mesh and domain
in physical space (Cartesian coordinates)

Figure 3: The computational mesh represented in simulation space using helical coordinates (left), and
physical space using Cartesian coordinates (right). The slanted walls of the fundamental domain D in
physical space (right) arise due to possibly arbitrary values of twist associated with the system.

a function that is group invariant may be represented over the computational domain by
means of periodic boundary conditions along the θ1 and θ2 directions. Next, we formulate
the governing equations, i.e., Helical-Bloch wave form of Schrodinger’s equation over the
fundamental domain using helical coordinates. To this end, we first note that:

−1

2
∆ψj + V ψj = −1

2

[(
ψj
)
rr

+
1

r

(
ψj
)
r

+
1

τ 2

(
ψj
)
θ1θ1
− 2α

τ 2
ψθ1θ2

+
1

4π2

(
1

r2
+

4π2α2

τ 2

)(
ψj
)
θ2θ2

]
+ V ψj = λjψj

(12)

Then, we recast eq. 8 to imply that the wavefunctions admit the following Helical Bloch
ansatz [20]:

ψj(θ1, θ2, r; η, ν) = e−i2π(ηθ1+νθ2)φj(θ1, θ2, r; η, ν) . (13)

Here, η ∈
[
−1

2
, 1

2

)
, ν ∈ {0, 1, 2, . . . ,N − 1}, and the auxiliary functions φj(θ1, θ2, r; η, ν)

are group invariant. In particular, this implies that these functions obey the conditions:

φj(θ1, θ2, r; η, ν) = φj(θ1 + 1, θ2, r; η, ν)

φj(θ1, θ2, r; η, ν) = φj(θ1, θ2 +
1

N
, r; η, ν) .

(14)

Substituting eq. 13 into the Schrödinger equation above (eq. 12) and after some algebra
(Appendix A), we arrive at:

[
− 1

2
∆φj −

(
2π2

τ 2

{
να (2η − να)− η2

}
− ν2

2r2

)
φj −

2iπ

τ 2
(να− η)

(
φj
)
θ1

−2iπ
[ α
τ 2

(η − να)− ν

4π2r2

] (
φj
)
θ2

+ V φj

]
= λjφj .

(15)

This serves as the governing equation for the computational method in this work. It needs
to be discretized and solved over the fundamental domain along with the enforcement of
periodic boundary conditions in the θ1 and θ2 directions (eq. 14), and the imposition of
wavefunction decay in the radial direction, i.e.:

φj(θ1, θ2, r = R; η, ν) = 0 . (16)

Note that due to eq. 6, the effective potential in helical coordinates, V (θ1, θ2, r), also
obeys conditions of the form outlined in eq. 14, although it is generically not expected to
obey the decay conditions similar to eq. 16.
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2.3. Basis Set and Discretization
We now discuss discretization of the governing equations using helical waves. The

derivation of these basis functions as symmetry adapted eigenfunctions of the Laplacian
is presented in Appendix B. In what follows, we will usually suppress the dependence of
φj(θ1, θ2, r; η, ν) on the band index (j) for the sake of simplicity of notation. Denoting
the basis functions as Fm,n,k (θ1, θ2, r) in helical coordinates, we write:

φ (θ1, θ2, r) =
∑

(m,n,k)∈Γ

φ̂m,n,k Fm,n,k (θ1, θ2, r)

=
∑

(m,n,k)∈Γ

φ̂m,n,k cm,n,k e
i2π(mθ1+nNθ2) JnN

(
bnNk r

R

)
. (17)

Here, φ̂m,n,k are the expansion coefficients, JnN(·) denotes Bessel functions of the first
kind of order nN, while bnNk denote the zeros of the Bessel functions. The basis function
normalization constants cm,n,k are:

cm,n,k =

√
N

πτ

1

RJnN+1

(
bnNk
) . (18)

The set Γ denotes triplets of integers (m,n, k) such that m ∈ [−Mmax,Mmax], n ∈
[−Nmax, Nmax] and k ∈ [1, Kmax]. The basis set size is L = (2Mmax+1)∗(2Nmax+1)∗Kmax,
i.e., it grows as O(MmaxNmaxKmax) in terms of the discretization sizes along the θ1, θ2, r
directions. By design, the basis functions are orthonormal, i.e.:

〈Fm,n,k, Fm′,n′,k′〉L2(D) = δm,m′δn,n′δk,k′ , (19)

and they satisfy (see Appendix B):

−∆Fm,n,k = λ0
m,n,kFm,n,k , λ

0
m,n,k =

(
bnNk
R

)2

+

∣∣∣∣
2π

τ
(m− αnN)

∣∣∣∣
2

. (20)

The above condition implies that the kinetic energy part of the single particle Schrödinger
operator is diagonalized in this basis.

Consistent with the literature, we will refer to the representation of a function in terms
of its expansion coefficients (i.e., φ̂m,n,k in the above) as its reciprocal space representation.
Furthermore, we will refer to the representation of the function in terms of its values on
a discrete set of grid points as its real space representation. If the basis functions are also
available on these same grid points, the real and reciprocal space representations of the
function can be connected via eq. 17. In Appendix C we demonstrate how the gradients
of quantities expressed via eq. 17 may be evaluated.

For common systems of interest, the number of basis functions required for discretizing
the governing equations can number in the tens or hundreds of thousands (See Section
4). Thus, it can become infeasible to explicitly store the discretized Hamiltonian. This
scenario is also encountered in the classical plane-wave method for bulk systems [27, 28],
and can be addressed by working with the discretized Hamiltonian implicitly, and using
iterative, matrix-free diagonalization techniques to compute the eigenstates [44, 62]. For
adopting such strategies, we need to be able to compute action of the Hamiltonian on an
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arbitrary vector, such as the wavefunction, as represented in our basis set. To this end,
we consider a vector φ ∈ Span

{
Fm,n,k : (m,n, k) ∈ Γ

}
, substitute eq. 17 into eq. 15, and

use eq. 20, to arrive at:
(
−1

2
∆ + V

)
φ =

1

2

∑

Γ

φ̂m,n,kλ
0
m,n,kFm,n,k − a (α, τ, η, ν)φ− b (α, τ, η, ν)φθ1

−c (α, τ, η, ν)φθ2 +
ν2

2r2
φ+

iν

2πr2
φθ2 + V φ = λφ , (21)

which further simplifies to:

1

2

∑

Γ

φ̂m,n,kλ
0
m,n,kFm,n,k − a (α, τ, η, ν)

∑

Γ

φ̂m,n,kfm,n,k

− b (α, τ, η, ν)
∑

Γ

φ̂m,n,k (i2πm)Fm,n,k − c (α, τ, η, ν)
∑

Γ

φ̂m,n,k (i2πnN)Fm,n,k

+
ν2

2

∑

Γ

φ̂m,n,k
Fm,n,k
r2

+
iν

2π

∑

Γ

φ̂m,n,k

(
i2πnN

r2

)
Fm,n,k + V (r, θ1, θ2)

∑

Γ

φ̂m,n,kFm,n,k

= λ
∑

Γ

φ̂m,n,kFm,n,k . (22)

The constants a, b, c in the above are as follows:

a (α, τ, η, ν) =
2π2

τ 2

{
να (2η − να)− η2

}
,

b (α, τ, η, ν) =
2iπ

τ 2
(να− η) , c (α, τ, η, ν) =

2iπα

τ 2
(η − να) .

(23)

The action of the Hamiltonian on the vector φ is simply the left hand side of eq. 22 above.
We observe that due to orthonormality of the basis set, the first four terms on the left
hand side are easily handled in reciprocal space. Specifically, the second term is simply
a scaling of the input vector φ with the factor a (α, τ, η, ν), while the other three terms
can be evaluated as element-wise product operations (Matlab operation .∗). Thus, these
terms can all be evaluated at a cost that scales linearly with the basis set size. The last
term on the left hand side is associated with action of the effective potential V (x) on the
wavefunction vector. If the expansion coefficients of the potential are available as:

V (θ1, θ2, r) =
∑

(m̃,ñ,k̃)∈Γ

V̂m̃,ñ,k̃ Fm̃,ñ,k̃(θ1, θ2, r) , (24)

then the expansion coefficients of V (x)φ(x) can be computed as:
〈
V (θ1, θ2, r)φ(θ1, θ2, r) , Fm′,n′,k′(θ1, θ2, r)

〉
L2(D)

=

〈(∑

Γ

V̂m̃,ñ,k̃Fm̃,ñ,k̃(θ1, θ2, r)

)(∑

Γ

φ̂m,n,kFm,n,k(θ1, θ2, r)

)
, Fm′,n′,k′(θ1, θ2, r)

〉

L2(D)

=

〈(∑

Γ

∑

Γ

V̂m̃,ñ,k̃ φ̂m,n,k Fm̃,ñ,k̃(θ1, θ2, r)Fm,n,k(θ1, θ2, r)

)
, Fm′,n′,k′(θ1, θ2, r)

〉

L2(D)
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=
∑

Γ

∑

Γ

V̂m̃,ñ,k̃ φ̂m,n,k
〈
Fm̃,ñ,k̃ Fm,n,k , Fm′,n′,k′

〉
L2(D)

. (25)

There are two problems with the above evaluation strategy. First, the time complex-
ity of the procedure scales in a cubic manner with respect to the basis set size, i.e.,
O(M3

maxN
3
maxK

3
max). Moreover, if the coupling coefficients:

〈
Fm̃,ñ,k̃ Fm,n,k , Fm′,n′,k′

〉
L2(D)

= cm̃,ñ,k̃cm,n,kc
∗
m′,n′,k′

∫ 1

0

ei2π(m+m̃−m′)θ1 dθ1

×
∫ 1

N

0

ei2πN(n+ñ−n′)θ2 dθ2

∫ R

0

JnN

(
bnNk r

R

)
Jn′N

(
bn

′N
k′ r

R

)
JñN

(
bñN
k̃
r

R

)
2πτr dr , (26)

are to be calculated and stored ahead of time for easier evaluation of eq. 25, the memory
complexity of the procedure would also scale cubically with the basis set size. By making
use of the fact that the coupling coefficients are non-zero only for m + m̃ = m′ and
n+ñ = n′, their evaluation, storage and application to eq. 25, can be somewhat simplified.
Despite this, the overall complexity still continues to be cubic in the basis set size in both
memory and time. Second, the potential V (x) is generally not expected to be equal to
zero at r = R and may be slowly decaying due to long range electrostatics effects. Hence,
it is inappropriate to express this quantity in terms of helical waves obeying Dirichlet
boundary conditions.

Both of the above issues can be remedied by adopting a pseudospectral evaluation
strategy [45, 63–66], as we now describe. This is related to the observation that if V (x)
and φ(x) are available in real space, as functions sampled at a common set of grid points,
the product χ(x) = V (x)φ(x) can be evaluated with a cost proportional to the size of the
grid. Thereafter, the function χ(x) can be directly expanded in terms of helical waves to
yield:

χ̂m′,n′,k′ =
〈
V (θ1, θ2, r)φ(θ1, θ2, r) , fm′,n′,k′(θ1, θ2, r)

〉
L2(D)

. (27)

Since χ(x) obeys Dirichlet boundary conditions and inherits all symmetries of the group
G, its expansion using helical waves is appropriate. To put this strategy into practice
however, we need access to fast basis transforms so that functions expressed in reciprocal
space (i.e., as expansion coefficients) and real space (i.e., on the grid), may be readily
interconverted. We describe the formulation and implementation of such transform rou-
tines in Sections 3.4.1 and 3.4.2. The overall computational cost of this strategy is the
sum total of the costs of the forward and inverse transforms, and the cost of carrying out
the real space product. Theoretically, the transforms described here scale in a manner
that is slightly worse than the basis set size. However, as we show later, in practice they
scale more favorably, in a sub-linear manner (see Fig. 4). Furthermore, the real space
grid size is usually a constant multiple of the basis set size, leading to the overall cost
of the pseudospectral method scaling in a manner that is close to the first power of this
quantity (= O(MmaxNmaxK

2
max)). The memory complexity is also reduced and scales as

the basis set size itself, i.e., O(MmaxNmaxKmax).
Finally, we discuss the evaluation of the fifth and the sixth terms on the left hand

side of eq. 22. The fifth term, i.e.,

`(θ1, θ2, r) =
ν2

2

∑

Γ

φ̂m,n,k
Fm,n,k
r2

, (28)
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satisfies `(θ1, θ2, r = R) = 0 and invariance under G, since it is a finite linear combination
of terms which individually obey these conditions. Thus, the expansion coefficients are:

̂̀
m′,n′,k′ =

〈
`(θ1, θ2, r) , Fm′,n′,k′(θ1, θ2, r)

〉
L2(D)

=
ν2

2

∑

Γ

φ̂m,n,k

∫ 1

0

∫ 1
N

0

∫ R

0

Fm,n,kF
∗
m′,n′,k′

r2
2πτr dr dθ2 dθ1

= ν2πτ
∑

Γ

φ̂m,n,kcm,n,kc
∗
m′,n′,k′

[∫ 1

0

ei2π(m−m′)θ1dθ1×

∫ 1
N

0

ei2πN(n−n′)θ2dθ2

∫ R

0

JnN

(
bnNk r

R

)
Jn′N

(
bn

′N
k′ r

R

)

r2
rdr

]

=
ν2

R2

Kmax∑

k=1

φ̂m′,n′,k
1

Jn′N+1

(
bn

′N
k

)
Jn′N+1

(
bn

′N
k′
)
∫ R

0

Jn′N

(
bn

′N
k r

R

)
Jn′N

(
bn

′N
k′ r

R

)

r2
rdr . (29)

In the above, we have made use of the orthonormality of the complex exponentials in the
θ1 and θ2 directions. We may rewrite eq. 29 as:

̂̀
m′,n′,k′ =

ν2

R2

Kmax∑

k=1

φ̂m′,n′,k I(n′, k, k′) , (30)

with:

I(n′, k, k′) =
1

Jn′N+1

(
bn

′N
k

)
Jn′N+1

(
bn

′N
k′
)
∫ 1

0

Jn′N
(
bn

′N
k q

)
Jn′N

(
bn

′N
k′ q

)

q2
q dq . (31)

Thus, if the quantities I(n′, k, k′) are known ahead of time, the coefficients `m′,n′,k′ can
be readily evaluated at a cost of O(MmaxNmaxK

2
max), i.e., quite close to the overall basis

set size, and similar in computational complexity to the evaluation of the potential term.
Since I(n′, k, k′) is problem independent (e.g., it has no dependence on R, α, τ or the
potential V (x)), we may evaluate and store it as a table for a large range of values of
n, k and k′. During program execution, this table of values may be loaded into memory,
and each `m′,n′,k′ can be evaluated as a vector dot product (eq. 30), after accessing the
necessary values of I(n′, k, k′). As for the evaluation of the I(n′, k, k′) values themselves,
we may use the recurrence relation [67]:

2κ

q
Jκ(q) = Jκ−1(q) + Jκ+1(q) , (32)

to rid the integrand in eq. 31 of it’s denominator, and obtain a pair of oscillatory in-
tegrals. We may then compute these by using Gauss-Jacobi quadrature as outlined in
eq. Appendix D.

In an analogous manner, the sixth term on the left hand side of eq. 22, i.e.,

iν

2π

∑

Γ

φ̂m,n,k (i2πnN)

∫ 1

0

∫ 1
N

0

∫ R

0

Fm,n,kF
∗
m′,n′,k

r2
2πτr dr dθ2 dθ1 , (33)
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can be simplified to:

=
iν

πR2

Kmax∑

k=1

(
φ̂m′,n′,k ∗ i2πn′N

)
I(n′, k, k′) . (34)

With the quantities I(n′, k, k′) available, the above can be evaluated in a manner similar
to the evaluation of the fifth term, at a computational cost of O(MmaxNmaxK

2
max). The

key difference is that instead of the vector {φ̂m,n,k}(m,n,k)∈Γ, we need to consider an alter-
nate one with entries {i2πn′Nφ̂m,n,k}(m,n,k)∈Γ. However, this modified vector is already
available as part of evaluation of the fourth therm on the left hand side of eq. 22, and
therefore, it can be reused.

3. Numerical Implementation

We have implemented the above computational strategies into a MATLAB [46] pack-
age called HelicES (Helical Electronic Structure). To ensure efficiency, our code heavily
relies on vectorization features of MATLAB. Various details of our implementation are
as follows.

3.1. Wave function storage: reciprocal and real space considerations
For any quantity in reciprocal space, there are three indices m,n, k associated with

each expansion coefficient, making the collection of coefficients a three-dimensional object
of dimensions (2Mmax+1)×(2Nmax+1)×Kmax = L . However, it is easier for linear algebra
operations to have these coefficients stacked up as vector in CL. To achieve this, we adopt
the following mapping between (m,n, k) ∈ Γ and the linear index i ∈ {1, 2, . . . ,L}:

i(m,n, k) = (m+Mmax) ∗ (2Nmax + 1) ∗Kmax + (n+Nmax) ∗Kmax + k . (35)

With this, a collection of Ns wavefunctions can be stored as a complex matrix of dimen-
sions L ×Ns.

For real space representation, the number of grid points to be chosen along each
helical coordinate θ1, θ2 is dictated by the accuracy of the basis transforms (see Section
3.4). We choose to work with Fourier nodes along the θ1 and θ2 directions and denote
the corresponding number of grid points as Nθ1 and Nθ2 respectively. Along the radial
direction, we choose Nr Gauss-Jacobi nodes [68] over the interval [0, R]. This has the
advantage that the coordinate singularity at the origin is automatically avoided. In order
to accommodate non-linearities and to reduce aliasing errors [45, 69], we typically choose
Nθ1 = 4 ∗Mmax + 1, Nθ2 = 4 ∗ Nmax + 1 and Nr = 4 ∗ Kmax. These choices generally
allow transforms to be evaluated accurately up to machine precision. With this setup,
quantities such as the wavefunction are available in real space over a three-dimensional
grid (i.e., the tensor product grid resulting from the one-dimensional grids along the
individual coordinate directions), and each grid point is indexed via i ∈ {1, 2, . . . , Nθ1},
j ∈ {1, 2, . . . , Nθ2} and k ∈ {1, 2, . . . , Nr}. For storage, we stack this three dimensional
representation into a complex column vector of size Nθ1 ∗Nθ2 ∗Nr, for which we use the
following ordering:

j(i, j, k) = (i− 1) ∗Nr ∗Nθ2 + (j− 1) ∗Nr + k . (36)

Since the memory requirement for storage of each wavefunction in real space is much
higher than storing it in reciprocal space, we typically avoid storing real space versions
of all Ns wave functions simultaneously.

12



3.2. Imposition of kinetic energy cutoff
In conventional plane-wave calculations, it is common to specify a kinetic energy

cutoff, i.e., a limit on the H1 Sobolev norm of the plane-waves to be used for discretization
[28, 70]. Once a suitable periodic unit cell has been identified, this criterion automatically
provides a recipe for calculating the number of planewaves along each of the Cartesian
axes, and in turn, the dimensions of the underlying real space grid to be used for Fast
Fourier Transforms (FFTs). In a similar vein, we may wish to retain only helical waves
with kinetic energies below a pre-specified cutoff in our calculation, since this has the
advantage that the basis set limits Mmax, Nmax, and Kmax get specified automatically in
proportion to the computational domain’s geometry parameters. At the gamma point
(η = 0, ν = 0) for example, the kinetic energy cutoff criterion requires that all helical
waves fm,n,k, with m,n, k values satisfying:

1

2
λ0
m,n,k =

1

2

[(
bnNk
R

)2

+

∣∣∣∣
2π

τ
(m− αnN)

∣∣∣∣
2 ]
≤ Ecut , (37)

be included in our calculations. In our implementation, we first determine the largest
absolute values of integers m,n and the largest natural number k consistent with with
eq. 37. We set the basis set limits Mmax, Nmax, and Kmax accordingly. The real space
grids used for carrying out fast transforms (described below) are chosen based on these
quantities. Within these (2Mmax + 1) ∗ (2Nmax + 1) ∗ Kmax helical waves, however, not
every combination ofm,n, k would satisfy the kinetic energy criterion. To remedy this, we
create a masking vector to exclusively retain helical waves which satisfy eq. 37, in various
operations of interest (such as the Hamiltonian times wavefunction products). Based on
the linear ordering for reciprocal space storage outlined in eq. 35, we may express the
masking vector as:

Mi(m,n,k) = 1, for
1

2
λ0
m,n,k ≤ Ecut

= 0, otherwise. (38)

Element-wise multiplication of a given vector with the masking vector results in only
kinetic energy limited helical waves being retained in the calculation. We implement the
above strategy at each η, ν point (with the expression for the kinetic energy modified
appropriately) to impose the kinetic energy cutoff in HelicES.

3.3. η-space discretization and parallelization
As described earlier, to obtain the helical Bloch states (eq. 8), i.e., solutions to the

single electron problem with a symmetry adapted potential (eq. 6), the single electron
Hamiltonian has to be diagonalized for every η ∈ [−1

2
, 1

2
) and ν ∈ {0, 1, 2, . . . ,N− 1}.

To make this calculation feasible, we sample η over a discrete set {ηb}Nηb=1 ⊂ [−1
2
, 1

2
).

The specific choice of the values ηb is based on the Monkhorst-Pack scheme [71]. This
procedure akin to “k-point sampling” in conventional periodic codes [27]. With this choice,
the Hamiltonian needs to be diagonalized at NK = Nη ×N points, and integrals in η can
be calculated via quadrature:

∫ 1
2

− 1
2

p(η) dη ≈
Nη∑

b=1

wb p(ηb) . (39)
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Here, {wb}Nηb=1 are the Monkhorst-Pack quadrature weights and are uniformly equal to
1/Nη. Integrals of the above kind appear, for example, while computing the electronic
band energy, or the electron density from helical Bloch states [20, 30].

If the single electron Hamiltonian does not include magnetic fields — as is the case
here, time reversal symmetry allows further reduction in the number of η, ν points at
which the Hamiltonian has to be diagonalized [40, 72]. Specifically, it holds that for any
η ∈ [−1

2
, 1

2
) the helical Bloch states and the associated electronic bands obey:

ψj(x; η, ν) = ψj(x;−η,N− ν)

λj(η, ν) = λj(−η,N− ν)

}
for ν ∈ {0, 1, 2, . . . ,N− 1} , (40)

and:
ψj(x; η, 0) = ψj(x;−η, 0)

λj(η, 0) = λj(−η, 0)

}
for ν = 0 . (41)

Overall, this reduces the number of discrete points in reciprocal space by a factor of 2.
Since the diagonalization problem arising from distinct sets of η, ν values are inde-

pendent of one another, they can be dealt with in an embarrassingly parallel manner. In
our implementation, we have used MATLAB’s Parallel Computing Toolbox (specifically,
the parfor function) to carry out this parallelization.

3.4. Fast basis transforms
Since our strategy for carrying out Hamiltonian matrix-vector products involves fast

basis transforms, we now elaborate on various aspects of the implementation of such op-
erations within the HelicES code. To arrive at fast transforms, we exploit the separability
of the basis functions into radial and θ1, θ2 dependence. This allows us to make use of
quadrature along the radial direction, and subsequently, efficient two-dimensional fast
Fourier transforms (FFTs) along the θ1, θ2 directions for each radial grid point, or for
each radial basis function. Since the radial part of the basis functions consists of Bessel
functions, we have also investigated the use of Hankel and discrete Bessel transforms [73–
75]. However, we found that the quadrature approach adopted here resulted in better
performance for the basis set sizes considered, consistent with some earlier studies [76].

In what follows, OM×N is used to denote a zero matrix of size M × N . The typ-
ical real space grid point for sampling a function will be denoted as (θi

1, θ
j
2, r

k), with
i ∈ {1, 2, . . . , Nθ1}, j ∈ {1, 2, . . . , Nθ2} and k ∈ {1, 2, . . . , Nr}. We will use the MAT-
LAB commands ifft2 and fft2 to denote two-dimensional fast inverse and forward Fourier
Transforms respectively [46]. Additionally, we will use the MATLAB commands ifftshift
and fftshift to denote rearrangements of Fourier transform coefficients related to shifting
of zero frequency components to matrix center [46]. Finally, we will use the MATLAB ‘:’
(colon) operator notation to denote array/matrix indices with regular increments. Thus,
i : k : j will denote indices starting at i, incremented by k and ending at j, i : j will
denote the indices i, i + 1, i + 2, . . . , j− 1, j, and simply ‘:’ will denote all indices along
a particular matrix dimension.

3.4.1. Fast Inverse Basis Transform
Given the expansion coefficients {ĝm,n,k}(m,n,k)∈Γ, a naive way of implementing the

inverse basis transform would be to calculate each basis function {Fm,n,k}(m,n,k)∈Γ at
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every grid point (θi
1, θ

j
2, r

k), and to then evaluate the sum:

g(θi
1, θ

j
2, r

k) =
∑

Γ

ĝm,n,kFm,n,k(θ
i
1, θ

j
2, r

k) . (42)

The computational complexity of this “naive inverse transform” is easily seen to be
O(MmaxNθ1NmaxNθ2KmaxNr), which simplifies to O(M2

maxN
2
maxK

2
max). The constant in-

volved in the latter estimate can be seen to be quite large based on the discussion in
Section 3.1. To remedy this situation, we express the basis functions as in Appendix B,
i.e., Fm,n,k(θ1, θ2, r) = ei2π(mθ1+nNθ2) ξn,k(r) and also rewrite the eq. 42 as:

g(θi
1, θ

j
2, r

k) =
Mmax∑

m=−Mmax

Nmax∑

n=−Nmax

Kmax∑

k=1

ĝm,n,k e
i2π(mθi1+nN θj2) ξn,k(r

k)

=
Mmax∑

m=−Mmax

Nmax∑

n=−Nmax

ei2π(mθi1+nN θj2)

(Kmax∑

k=1

ĝm,n,k ξn,k(r
k)

)
. (43)

Since the quantity in parentheses is independent of the basis function index k, we may
rewrite the above as:

g(θi
1, θ

j
2, r

k) =
Mmax∑

m=−Mmax

Nmax∑

n=−Nmax

ei2π(mθi1+nN θj2) Gm,n(rk)

with : Gm,n(rk) =
Kmax∑

k=1

ĝm,n,k ξn,k(r
k) .

(44)

Thus, if the quantities Gm,n(rk) are known, calculation of the inverse basis transform
amounts to computing an inverse two-dimensional fast Fourier transform at each radial
grid point rk. Additionally, we observe that at each radial grid point rk, Gm,n(rk) can be
expressed as a vector dot product between twoKmax dimensional vectors, i.e., {ĝm,n,k}KMax

k=1

and {ξn,k(rk)}KMax
k=1 . In fact, by grouping the evaluation ofGm,n(rk) for different grid points

together, the above operation may be expressed as the product of a Nr × Kmax matrix
with a Kmax dimensional vector, which allows for the use of Level-2 BLAS [77] opera-
tions. If the radial part of the basis functions (i.e., ξn,k(rk)) are available ahead of time,
the above steps provide a convenient recipe of computing the inverse basis transforms
with computational complexity O (MmaxNmaxKmax (Kmax + log (Mmax) + log (Nmax))), a
significant improvement over the naive algorithm discussed earlier. We outline the overall
steps of our implementation in Algorithms 1 and 2 below, and also illustrate some key
aspects through Fig. 5.

In Fig. 4 we compare the naive and fast inverse transforms as implemented in HelicES.
The starting vectors {ĝm,n,k}(m,n,k)∈Γ were randomly chosen for the tests. The results from
these two methods always agreed with each other to machine precision, guaranteeing
consistency of the implementations. However, consistent with the discussion above, the
computational time for the naive transforms is found to scale in a quadratic manner with
the basis set size, while for the fast transforms, it is close to being linear. The fact that
the observed scaling of our fast transform implementation is actually sublinear, is almost
certainly related to our use of machine optimized linear algebra and Fourier transform
routines as available within MATLAB.
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Figure 4: Variation of the normalized time for basis transforms plotted against the basis set size. Both
axes are logarithmic. Straight lines were fit using the average of the forward and inverse transform times
in each case.

Algorithm 1: Fast Inverse Basis Transform
Input: The vector of expansion coefficients {ĝm,n,k} ∈ CL

Prerequisite: The radial basis functions sampled on the grid {rk}Nrk=1,
i.e., for each integer n ∈ [−Nmax, Nmax], the matrix:

Rn =



ξn,1(r1) . . . ξn,Kmax(r1)

... . . . ...
ξn,1(rNr) . . . ξn,Kmax(rNr)




−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Initialize g = ONrNθ1Nθ2×1, G = O(2Mmax+1)(2Nmax+1)Nr×1

Initialize i, j, p = 1
for m,n ∈ Γ do

Calculate G(i : i+Nr − 1) = Rn ∗ ĝm,n,k(j : j +Kmax − 1)
i = i+Nr

j = j +Kmax
end
for p ≤ Nr do

Set v̂ = G(p : Nr : end)
g(p : Nr : end) = AngularInverseTransform(v̂)

end
Result: The inverse basis transform g (θ1, θ2, r) of the vector {ĝm,n,k}

Algorithm 2: AngularInverseTransform
(Fast Angular 2D Inverse Fourier Transform)
Input: Vector v̂ ∈ C(2Mmax+1)∗(2Nmax+1)

Initialize W = ONθ1×Nθ2 //Note: Nθ1 = 4Mmax + 1, Nθ2 = 4Nmax + 1

Reshape v̂ into a matrix V ∈ C(2Nmax+1)×(2Mmax+1)

W(Nmax + 1 : 3Nmax + 1, Mmax + 1 : 3Mmax + 1) = V
U = ifft2(ifftshift(W)))
Scale U = U ∗ (Nθ1 ∗Nθ2)
Reshape U into a column vector v ∈ CNθ1∗Nθ2

Result: The angular inverse Fourier transform v(θ1, θ2) of the vector v̂
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Figure 5: Pictorial representation of the workings of the fast angular 2D inverse Fourier transform
(Algorithm 2)

3.4.2. Fast Forward Basis Transform
We now discuss the implementation of forward basis transforms within HelicES. Given

a function g(θ1, θ2, r), the forward basis transform is defined as:

ĝm,n,k = 〈g, Fm,n,k〉L2(D) =

∫ 1

0

∫ 1
N

0

∫ R

0

g(θ1, θ2, r)F
∗
m,n,k(θ1, θ2, r) 2πτr dr dθ2 dθ1 . (45)

With Fm,n,k and g both sampled on the real space grid, this can be approximated via
quadrature as:

ĝm,n,k ≈ 2πτ ∗
( Nθ1∑

i=1

Nθ2∑

j=1

Nr∑

k=1

g(θi
1, θ

j
2, r

k)e−i2π(mθi1+nN θj2) ξn,k(r
k)ωk

r ω
i
θ1
ωj
θ2

)
. (46)

Here, the quadrature weights along the θ1, θ2 directions are constants, i.e., ωi
θ1

= 1/Nθ1

and ωj
θ2

= 1/(NNθ2), due to the use of Fourier nodes (i.e., trapezoidal rule). The radial
weights {ωk

r}Nrk=1 correspond to Gauss-Jacobi quadrature. We can see that like the case
of the inverse transforms, a naive implementation of the above expression will lead to a
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computational complexity of O(M2
maxN

2
maxK

2
max). Instead, we deal with the evaluation of

this expression along the θ1, θ2 directions simultaneously at each radial grid point using
2D FFTs, and then perform quadrature in the radial direction. Thus, we compute:

Hm,n(rk) =
1

Nθ1Nθ2

∗
( Nθ1∑

i=1

Nθ2∑

j=1

g(θi
1, θ

j
2, r

k)e−i2π(mθi1+nN θj2)

)
, (47)

followed by:

ĝm,n,k =
2πτ

N
∗
( Nr∑

k=1

Hm,n(rk) ξn,k(r
k)ωk

r

)
. (48)

The radial quadratures in the above expression can be conveniently cast in terms of
Level-2 BLAS [77] operations if the radial basis functions scaled by the corresponding
quadrature weights (i.e. {ωk

r ξn,k(r
k)}KMax

k=1 ) are available as a matrix ahead of time. We
outline the steps of our implementation in Algorithms 3 and 4 below, and illustrate key
aspects in Figure 6.

Algorithm 3: Fast Forward Basis Transform
Input: Real space representation of function {g(θi

1, θ
j
2, r

k)} ∈ CNrNθ1Nθ2

Prerequisite: The radial basis functions sampled on the grid {rk}Nrk=1, scaled by
the corresponding quadrature weights i.e., for each integer n ∈ [−Nmax, Nmax],
the following matrix:

On =




ω1
r ξn,1(r1) . . . ωNrr ξn,1(rNr)

... . . . ...
ω1
r ξn,Kmax(r1) . . . ωNrr ξn,Kmax(rNr)




−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Initialize ĝ = OL×1, H = ONr×(2Mmax+1)(2Nmax+1)

Initialize i, j, p = 1
for p ≤ Nr do

Set u = g (p : Nr : end)
H(p, :) = AngularForwardTransform(u)

end
for m,n ∈ Γ do

Calculate ĝ(i : i+Kmax − 1) = On ∗H(:, j)
i = i+Kmax

j = j + 1
end
Scale ĝ = (2πτ/N) ∗ ĝ
Result: The forward basis transform {ĝm,n,k} of the function g (r, θ1, θ2)

Algorithm 4: AngularForwardTransform
(Fast Angular 2D Forward Fourier Transform)
Input: Vector containing real space representation of 2D angular function on

Fourier grid, i.e., {u(θi
1, θ

j
2)} ∈ CNθ1Nθ2

Reshape u into a matrix W ∈ CNθ2×Nθ1

V = fft2(W)
Scale V = ( 1

Nθ1Nθ2
) ∗ V

U = fftshift(V)
û = U(Nmax + 1 : 3Nmax + 1, Mmax + 1 : 3Mmax + 1)
Result: The 2D angular Fourier transform {ûm,n} of the function u (θ1, θ2)

Referring to Fig. 4, we see that like the case of the fast inverse basis transforms, our
implementation of the fast forward basis transforms scale in a sublinear manner with
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Figure 6: Pictorial representation of the workings of the fast angular 2D forward Fourier transform
(Algorithm 4). ‘Scale’ indicates dividing the result of the 2D FFT by (Nθ1Nθ2)

respect to basis set size increase, although a somewhat worse performance is expected
theoretically. In contrast, a naive implementation of the forward transform scales in a
quadratic manner with respect to basis set size, although both implementations of the
transforms always agree with each other to machine precision.

In practice, the differences between the efficiencies of the fast and the naive transform
implementations (both forward and inverse transforms) are not only apparent in terms of
their respective scalings with respect to basis set size, but also the actual computational
wall times. Indeed, we found that the fast transform implementations can be orders
of magnitude faster as compared to the naive ones, even for relatively small basis set
sizes. In Algorithm 5, we outline the steps of calculating the product of the Hamiltonian
matrix with a wavefunction vector block by use of the fast transforms, as implemented
in HelicES.
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Algorithm 5: Product of Hamiltonian Matrix with a block vector of wavefunc-
tions
Input: Block of Ns wavefunctions expressed in reciprocal space, i.e., X̂ ∈ CL×Ns ,
real space representation of local potential V (θ1, θ2, r) as a vector V ∈ CNθ1Nθ2Nr ,
cyclic k-point ν and helical k-point η.
Prerequisites: Indexing function i : Γ→ {1, 2, . . . ,L} (eq. 35),
for each n ∈ [−Nmax, Nmax], the matrix In ∈ RKmax×Kmax with entries
given by In(k, k′) = I(n, k, k′) (eq. 31),
vector Λ ∈ RL with entries corresponding to eq. 20, i.e., Λ(i(m,n, k)) = λ0

m,n,k,
vector M ∈ CL with entries M (i(m,n, k)) = i2πm,
and vector N ∈ CL with entries N (i(m,n, k)) = i2πNn.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Initialize a = 2π2

τ2

{
να (2η − να)− η2

}
, b = 2iπ

τ2
(να− η), c = 2iπα

τ2
(η − να)

Set Ŷ = OL×Ns //Result to be stored in this
for j ≤ Ns do

Ẑ = X̂(:, j) //Work on jth wavefunction.
P̂ = M .∗ Ẑ
Q̂ = N .∗ Ẑ
Ŷ (:, j) = 1

2
∗ (Λ .∗ Ẑ)

Ŷ (:, j) = Ŷ (:, j)− a ∗ Ẑ − b ∗ P̂ − c ∗ Q̂
if ν 6= 0 then

Initialize i = 1
for m,n ∈ Γ do

T = ν2

R2 ∗ Ẑ(i : i+Kmax − 1) + iν
πR2 ∗ Q̂(i : i+Kmax − 1)

Ŷ (i : i+Kmax − 1, j) = Ŷ (i : i+Kmax − 1, j) + In ∗ T
i = i+Kmax

end
end
Z = FastInverseBasisTransform(Ẑ) //Use Algorithm 1.
Ŷ (:, j) = Ŷ (:, j) +FastForwardBasisTransform(Z .∗ V ) //Use Algorithm 3.

end
Result: Ŷ ∈ CL×Ns , i.e., the product of the Hamiltonian with X̂ at the given

values of η, ν.

3.5. Eigensolvers and Preconditioning
As mentioned earlier, we make use of matrix-free iterative eigenvalue solvers for di-

agonalization of the discretized Hamiltonian. Within HelicES, we have investigated two
different diagonalization strategies for this purpose. The first is based on the Krylov-
Schur method as implemented in the MATLAB Eigs function [78–80]. The second is
based on a MATLAB implementation [81] of the Locally Optimal Block Preconditioned
Conjugate Gradient (LOBPCG) scheme [82–84]. LOBPCG requires the use of a pre-
conditioner, for which we have adopted the Teter-Payne-Allan (TPA) recipe [79, 80, 85].
This preconditioner was originally developed in the context of plane-wave calculations
of bulk systems, but has also been successfully applied to other spectral methods [45].
During LOBPCG iterations, use of the TPA preconditioner requires the calculation and
application of a diagonal matrix K ∈ RL×L to the residual vector. The entries of the
matrix are:

Ki,j =
27 + 18 gi + 12 g2

i + 8 g3
i

27 + 18 gi + 12 g2
i + 8 g3

i + 16 g4
i

δi,j , (49)

with:

gi =
kinetic energy of basis function i

kinetic energy of the residual vector
. (50)
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As shown in Fig. 7, the preconditioner can have quite a dramatic effect on the convergence
of the diagonalization procedure, especially as the basis set size (and therefore, the size
of the discretized Hamiltonian) is increased. Thus, the benefits of the preconditioner are
likely to become more apparent when larger systems and/or harder pseudopotentials are
considered.
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Figure 7: Effect of the Teter-Payne-Allan preconditioner [85] on LOBPCG [82] iterations for diagonal-
izing the discretized Hamiltonian in HelicES. An untwisted (6, 6) armchair carbon nanotube (Mayer
pseudopotentials [86]) has been used, and the residual associated with the 2nd eigenvalue for η = 0, ν = 0
as been monitored. For clarity, the residual for every 10th iteration has been plotted. Without precondi-
tioning, the number of iterations required to reach a given convergence threshold tends to dramatically
increase as the basis set grows larger.

We found that use of LOBPCG along with the TPA preconditioner generally tends to
require longer diagonalization wall times as compared to Eigs along with an energy cutoff.
Therefore, the latter strategy is adopted for most of the the examples considered in the
next section. Implementation of more efficient eigensolvers in HelicES, particularly, ones
that work well within self consistent field iterations [87–89], is the scope of future work.

4. Results

We now present results obtained using HelicES and investigate the convergence and
accuracy properties of our implementation. All of our calculations have been carried
out using smooth empirical pseudopotentials [86, 90]. We have used the planewave code
PETRA [91], as well as two separate MATLAB based finite difference codes to generate
reference data for comparison purposes. Specifically, we have employed the helical sym-
metry adapted finite difference code Helical DFT [20, 30] and the Cartesian grid finite
difference code RSDFT [92]. The original versions of these finite difference codes were
designed for self consistent field calculations, and were modified to work with the empir-
ical pseudopotentials used in HelicES. We have also carried out comparisons of results
obtained from HelicES against data obtained from the literature [86, 90]. We have used
the WebPlotDigitizer tool [93] for extracting data from published plots.

4.1. Computational Platform
All simulations involving HelicES were carried out using dedicated desktop worksta-

tions (Dell Precision 7920 Tower, iMac, and iMac Pro) or on single nodes of the Hoffman2
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cluster at UCLA’s Institute for Digital Research and Education (IDRE). The Dell Pre-
cision workstation has an 18-core Intel Xeon Gold 5220 processor (24.75 L3 MB cache,
2.2 GHz clock speed), 256 GB of RAM and 1 TB of SATA Class 20 Solid State Drive
(SSD) storage. The iMac has an 8-core Apple M1 processor (12 MB L2 cache, 3.2 GHz
clock speed), 16 GB of RAM and a 2 TB Solid State Drive (SSD). The iMac Pro has
an 18-core Intel Xeon W processor (24.75 MB L3 cache, 2.3 GHz clock speed), 256 GB
of RAM and a 2 TB SSD. Every compute node of the Hoffman2 cluster has two 18-core
Intel Xeon Gold 6140 processors (24.75 MB L3 cache, clock speed of 2.3 GHz), 192 GB
of RAM and local SSD storage. MATLAB version 9.7.0 (R2019b) was used for the sim-
ulations. Parallelization was achieved by use of using MATLAB’s Parallel Computing
Toolbox. Reference results generated using Helical DFT [30], RSDFT [92] and PETRA
[91] employed the above platforms as well.

4.2. Convergence Studies
Using a twisted armchair carbon nanotube as an example system (Mayer pseudopo-

tentials [86]), we first investigate the convergence properties of HelicES. Considering first
the case of eigenvalues of the Hamiltonian at η = 0, ν = 0, we see in Fig. 8 that as the
number of basis functions in HelicES is increased, there is a rapid convergence to the ref-
erence values, regardless of which eigenvalue is considered. Consistent with earlier results
for electronic structure calculations using spectral basis sets [45, 70], HelicES shows a
curvature on a log-log scale, indicative of super-polynomial convergence. In contrast, the
finite difference method, also shown on the same figure, shows slower, polynomial con-
vergence. This is consistent with earlier findings for finite difference electronic structure
calculations using curvilinear coordinates [20, 40]. Furthermore, when the energy cutoff
criterion is engaged, HelicES appears to employ noticeably fewer degrees of freedom than
the finite difference method (Helical DFT) in reaching the same levels of convergence.
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Figure 8: Convergence of the first three non-degenerate eigenvalues of an armchair (16, 16) carbon
nanotube with a twist parameter of α = 0.002 using HelicES (both with and without the energy cutoff
mask implemented) and a finite difference method (FDM), i.e., Helical DFT [20, 30]. The mesh size of
the FDM decreases from 0.7 Bohrs to 0.4 Bohrs (in steps of 0.05 Bohrs) as the full Hamiltonian size
varies from 30, 744 to 157, 440. The sparsity factor for the FDM Hamiltonian was 0.0055. The reference
eigenvalues were taken to be the ones using an energy cutoff of 40 Ha for HelicES and a mesh spacing
of 0.10 Bohr for Helical DFT. The η = 0, ν = 0 case (“gamma point”) is considered here. Note that
the errors in the eigenvalues, for different eigenvalues, differ by O(10−4) or less in the FDM case, which
makes them indistinguishable in the plot above.
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The electronic features of quasi-one-dimensional systems can be characterized by one-
dimensional band diagrams [20, 30], and these can be readily calculated for systems of
interest using HelicES. As the next step in our studies, we checked the convergence be-
havior of the code with regard to a few quantities that are associated with the overall
features of the one-dimensional band diagram of the aforementioned armchair carbon
nanotube system. These include the the electronic band energy — which for an insulat-
ing system is simply twice the sum of all occupied state eigenvalues, the valence band
maximum eigenvalue, the conduction band minimum eigenvalue and the band gap. As
shown in Fig. 9, we see that all these quantities, except for the band gap, show monotonic
convergence to reference values. We also note that convergence of the band gap is nearly
monotonic until the curve enters regions of very high accuracy (O(10−6) in the figure) and
this behavior is likely related to the fact that the band gap is calculated as the difference
of two quantities.
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Figure 9: Convergence of the electronic band energy, the Valence Band Maximum (VBM) eigenvalue,
the Conduction Band Minimum (CBM) eigenvalue, and the band gap, with respect to the energy cutoff,
in the HelicES code. An armchair (16, 16) carbon nanotube with a twist parameter of α = 0.002 has
been investigated. The reference values were generated using an energy cutoff of 40 Ha.
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Figure 10: Convergence of the band energy and electron density of a (16, 16) armchair carbon nanotube
with a twist parameter of α = 0.002. The reference value was taken to be from a calculation with 45
η-points

Within HelicES, the electronic properties of quasi-one-dimensional systems are also
expected to exhibit convergence with respect to the number of points used to discretize
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the η-space (Section 3.3). In Fig. 10, we explore the convergence behavior of the electron
density (in terms of the L1 norm per electron) and the electronic band energy for the
aforementioned carbon nanotube system, as the number of η points in the calculation is
increased. We see that both the above quantities show excellent convergence. We note
that the electron density can be calculated from the wavefunctions φj(θ1, θ2, r; η, ν), and
the corresponding electronic occupation numbers ςj(η, ν) as:

ρ(θ1, θ2, r) =
2

N

Ns∑

j=1

Nη∑

b=1

N−1∑

ν=0

wb ςj(ηb, ν)
∣∣φj(θ1, θ2, r; ηb, ν)

∣∣2 . (51)

This requires inverse basis transforms to be carried out on each wavefunction vector, at
the end of the diagonalization procedure. We also note from Figs. 9,10 that for the Mayer
pseudopotential employed in the above calculations, an energy cutoff of 16 Ha and 15
η-points are more than sufficient to reach chemical accuracy.

4.3. Accuracy Studies
While the discussion in Section 4.2 serves to illustrate the systematic convergence

properties of HelicES, it does not address the accuracy or correctness of the converged
results produced by the code. Therefore, we now carry out a series of systematic tests and
compare the results produced by HelicES against solutions produced by other methods,
for a variety of systems.

Our first set of tests compares the results produced by HelicES against those computed
through the Finite Difference Method (FDM). For these studies, the Mayer pseudopo-
tential [86] was once again employed and the energy cutoff in HelicES was set at 16 Ha.
Reference results using the FDM codes were generated using a mesh spacing of 0.2 Bohr,
this being the finest mesh that could be uniformly employed for all systems of interest,
within computational resource constraints. We first used the RSDFT code [92] for cal-
culating the electronic structure of a variety of finite (cluster-like) systems. The bound
state eigenvalues for these same systems, as calculated by HelicES are compared against
RSDFT results in Table 1. We see that for these discretization parameters, the agreement
between the codes with respect to individual eigenvalues is about 1.3×10−4 Ha or better,
while the band energies agree to within millihartree range, suggesting excellent accuracy.

Next, we generated the electronic band diagram associated with a deformed quasi-one-
dimensional system, namely an armchair nanotube subjected to about β = 2.95◦ of twist
per nanometer. Reference calculations were carried out using the Helical DFT code. Both
Helical DFT and HelicES were made to use 21 η-points and the Eigs eigensolver in MAT-
LAB. As shown in Figure 11, the band diagrams produced by the two codes are virtually
identical, once again suggesting the excellent accuracy of HelicES. Overall, these findings
illustrate that HelicES adequately addresses many of the the computational bottlenecks in
existing methods for the study of electronic properties of quasi-one-dimensional systems,
commensurate with its design goals.
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System (# atoms) Hamiltonian size

Maximum difference
in the eigenvalues (in
Ha) between HelicES

and FDM

Difference in band
energy (in Ha/atom)
between HelicES and

FDM

Carbon dimer (2 atoms) HelicES without mask: 148625
HelicES with mask: 96353

FDM: 1030301
6.0698× 10−5 5.7475× 10−5

Carbon ring (6 atoms)
HelicES without mask: 148625
HelicES with mask: 96353

FDM: 8120601
3.8266× 10−5 3.7686× 10−5

Carbon disk (24 atoms)

HelicES without mask: 240096
HelicES with mask: 152556

FDM: 4173281
7.7064× 10−5 4.7145× 10−5

Carbon pillar (120 atoms)

HelicES without mask: 129591
HelicES with mask: 85741

FDM: 8120601
1.2604× 10−4 3.7118× 10−5

Table 1: Accuracy of the HelicES code while studying finite systems (green arrow denotes the eZ axis).
Reference data was generated using RSDFT [92], a finite difference method (FDM) based MATLAB
code. The last two columns show the maximum differences in the eigenvalues and the band energy per
atom computed using the two methods.
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Figure 11: Comparison of band diagrams for a twisted (16, 16) armchair carbon nanotube (diameter =
2.726 nm) with twist parameter of α = 0.002, generated using HelicES and the FDM based Helical DFT
code [20, 30]. The green shaded region in the structure on the right is the fundamental domain used in
HelicES, while the green arrow denotes the eZ axis.

Due to inherent design limitations, the aforementioned FDM codes are unable to
simulate quasi-one-dimensional nanostructures which have atoms situated near or along
the system axis (e.g. nanoribbons, nanowires or small diameter nanotubes). However,
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these systems can be conveniently dealt with by HelicES. To carry out accuracy tests for
such systems therefore, we compared the band structures calculated by HelicES against
those generated through alternate electronic structure calculation techniques. The first
of these is based on the transfer matrix method [94–96], often used in electromagnetics
calculations. In Figs. 12 and 13 we see that the band structure calculated by HelicES
is in nearly perfect agreement with results calculated using this technique in [86]. The
systems considered here are carbon nanotubes with radii about 0.3 to 0.4 nanometers.
For the (5, 5) armchair nanotube, the position of the Dirac cone is correctly predicted
to be at η = ±1

3
. Additionally, the (10, 0) zigzag nanotube, the band gap calculated by

HelicES is 1.05 eV which is very close to the value of 1.04 eV obtained in [86].
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Figure 12: Comparison of band diagrams for a (5, 5) armchair carbon nanotube (diameter = 0.851
nm) generated using HelicES and a transfer-matrix technique [86]. The dashed green box in the plot
represents the region of the band diagram over which the reference data was available for comparison.
The green shaded region in the structure on the right is the fundamental domain used in HelicES and
the green arrow denotes the eZ axis.

0 0.1 0.2 0.3 0.4 0.5

−0.3

−0.2

−0.1

0

0.1

0.2

0.5

Band gap ≈ 1 eV

η

E
ne

rg
y

(i
n

H
a)

Band structure using HelicES
Results using transfer matrix method

Figure 13: Comparison of band diagrams for a (10, 0) zigzag carbon nanotube (diameter = 0.983 nm)
generated using HelicES and a transfer-matrix technique [86]. The dashed green box in the plot represents
the region of the band diagram over which the reference data was available for comparison. The green
shaded region in the structure on the right is the fundamental domain used in HelicES and the green
arrow denotes the eZ axis.
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Next, we used the PETRA code for studying an armchair graphene nanoribbon, as
well as a silicon nanowire oriented along the 〈100〉 direction. Both these systems were
treated using the empirical pseudopotentials developed in [90] and feature hydrogen pas-
sivation. Figs. 14 and 15 show that the overall agreement between HelicES and PETRA
is excellent, although some minor variations at the edge of the highest energy band for the
nanoribbon case may be observed. This is possibly due to the different boundary condi-
tions being employed by PETRA and HelicES in the directions orthogonal to the ribbon
axis. We also note that the band gap for the silicon nanowire calculated by HelicES is
3.82 eV, which is very close to the value of 3.84 eV reported in [90].
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Figure 14: Comparison of band diagrams for a hydrogen passivated armchair graphene nanoribbon
generated using HelicES and a plane-wave technique [90, 91]. The green shaded region in the structure
on the right is the fundamental domain used in HelicES and the green arrow denotes the eZ axis.
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Figure 15: Comparison of band diagrams for a hydrogen passivated, 〈100〉 oriented silicon nanowire
generated using HelicES and a plane-wave technique [90, 91]. The dashed green box in the plot represents
the region of the band diagram over which the reference data was available for comparison. The green
shaded region in the structure in the middle is the fundamental domain used in HelicES, with the green
arrow denoting the eZ axis. The right image shows a top view of the structure (i.e., looking down along
eZ).
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4.4. Comments on computational efficiency and timing studies
We now discuss issues connected to the computational efficiency of HelicES. By de-

sign, the code is meant to overcome the computational limitations of prior approaches in
modeling quasi-one-dimensional systems. We highlight this aspect of the code by provid-
ing timing comparisons between HelicES and other existing methods, for a few systems
of interest. We have focused on the Plane-wave Electronic TRAnsport (PETRA) code
[90, 91, 97] which can model periodic systems, and Helical DFT [20, 30] which models
quasi-one-dimensional structures within a finite difference framework. For comparisons
with PETRA, we chose a twisted hydrogen-passivated graphene nanoribbon. Note that
while realistic values of α range from 0.0005 to 0.0025 (i.e., less than about 2.1◦ per
nanometer), it is not feasible to use these values in PETRA. This is because to simulate
such a system in a typical plane-wave code like PETRA, we would require 1/α times the
number of atoms needed for untwisted geometries (for rational values of α). However, the
number of atoms required in the fundamental domain in HelicES is independent of the
amount of twist. Thus, while a realistic twisted nanoribbon can be studied using only 20
atoms in HelicES, PETRA would require at least 10, 000 atoms in the fundamental do-
main for the same system. Keeping this in mind, we use larger values of α = 0.25, 0.2, 0.1,
and 0.05, so that the simulation and timing data from PETRA could be obtained within
reasonable wall times. For both codes, we used the same diagonalization technique.
The simulations were carried out on dedicated workstations, or on a single node of the
Hoffman2 cluster when larger memory was needed. In our studies, we noted factors of
1.26, 1.84, 3.83, and 12.25 improvement in the total diagonalization wall time of HelicES
over PETRA, for α = 0.25, 0.2, 0.1, and 0.05 respectively. Based on the above discussion,
we anticipate that the performance gap between HelicES and PETRA, as well as the
memory requirements of the latter, will only increase when more realistic values of α or
more complicated unit cells are considered.

Due to the fundamental limitations of plane-wave codes to efficiently represent heli-
cal symmetries, it also makes sense to compare HelicES to Helical DFT, since the right
symmetries are incorporated into both these codes, although the latter uses finite differ-
ences. For this purpose, we studied a twisted (16, 16) armchair carbon nanotube with a
diameter of 2.726 nm and a twist parameter of α = 0.002, and we used 21 η−points. As
we showed earlier (Section 4.3), while the two codes produce nearly identical results, the
diagonalization wall time for HelicES was about a factor of 27 lower, and the memory
footprint was also significantly less. These observations continue to be true when larger
values of the energy cutoff are used in HelicES, with the diagonalization wall time of the
code being about a factor of 8 lower than Helical DFT, even when an energy cutoff of 40
Ha is employed.

To finish this discussion on computational advantages of HelicES, we now present a
system that cannot be simulated in Helical DFT, and one that will require extensive
computational resources in typical periodic finite difference or plane-wave codes — an
armchair graphene nanoribbon with a twist of α = 0.02. Note that this is still a relatively
high value of α, but was chosen here for a better visual representation of the system. The
band diagram of this system is presented in Fig. 16. Noticeably, in contrast to the
untwisted, passivated nanoribbon presented in Fig. 14, this system appears to have a
vanishingly small band-gap, indicative of metallic behavior.
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Figure 16: Band diagram for an armchair graphene nanoribbon with a twist parameter of α = 0.02
(corresponding to a rate of twist β = 16.9◦ per nanometer) generated using HelicES. The green shaded
region in the structure on the right is the fundamental domain used in HelicES. The green arrow denotes
the eZ axis.

4.5. Application to the study of the electromechanical response of a nanotube
Finally, as a demonstration of the utility of the computational method developed here,

we study the the electromechanical response of a quasi-one-dimensional nanomaterial as
it undergoes deformations. Specifically, we consider a carbon nanotube with a radius of
about 1.0 nanometer (an armchair (16, 16) tube), and subject it to twisting. We start from
the untwisted structure and increase the rate of applied twist, considering up to about
β = 7.4◦ , in our simulations. Fig. 17 shows the variation of the band gap of the material
with applied twist. For comparison purposes, results from full self consistent Kohn-
Sham DFT calculations using ab initio Troullier Martins pseudopotentials [98] and Local
Density Approximation based exchange correlation [99, 100], are also shown (obtained
from [20]). It is well known that upon twisting, armchair nanotubes — which are generally
metallic in untwisted form — show metal-to-semiconductor transitions, and that these
changes manifest themselves as oscillatory behavior in the band gap [20, 101–103]. We
see from Fig. 17 that the results from HelicES do reproduce this qualitative behavior
correctly, but the actual response curve is quantitatively different from the first principles
data. This is very likely due to the lack of inclusion of atomic relaxation effects in HelicES,
as well as the general failure of the Mayer pseudopotential to model scenarios where the
carbon atoms do not form a perfect honeycomb lattice — a consequence of the shearing
distortions that arise from the applied twist in this case. Therefore, these results strongly
suggest the need for building in ab initio pseudopotentials and self consistent iterations
into HelicES, which constitutes ongoing work [104].
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Figure 17: Band gap trend as the twist parameter α is varied for a (16, 16) armchair carbon nanotube.
Results from HelicES (empirical pseudopotentials) and the Helical DFT code (self consistent calculations
with ab initio pseudopotentials and atomic relaxation effects included [20, 30]) are both shown.

5. Conclusions

In summary, we have presented a novel spectral method for efficiently solving the
Schrödinger equation for quasi-one-dimensional materials and structures. The basis func-
tions in our method — helical waves — are natural analogs of plane-waves, and allow
systematically convergent electronic structure calculations of materials such as nanowires,
nanoribbons and nanotubes to be carried out. We have discussed various mathematical,
algorithmic and implementation oriented issues of our technique. We have also used our
method to carry out a variety of demonstrative calculations and studied its accuracy,
computational efficiency, and convergence behaviors.

We anticipate that the method presented here will find utility in the discovery and
characterization of new forms of low dimensional matter. It is particularly well suited
for coupling with specialized machine learning techniques [105] and for the multiscale
modeling of low dimensional systems [106]. Building self-consistency into the method,
so as to enable ab initio calculations (e.g. using Hartree-Fock or Kohn-Sham Density
Functional Theory [107]) remains the scope of ongoing and future work. An important
first step in this direction is efficient solution of the associated electrostatics problem
[108], towards which we have been making recent progress [104, 109]. Finally, the full
power of some of the techniques described here can be brought to bear upon complex
materials problems, once a parallel, efficient, hardware optimized version of HelicES is
available. Development of such a code constitutes yet another avenue of ongoing and
future work.

—

Appendix A. Derivation of the governing equation in helical coordinates

We are interested in solutions of the Schrödinger equation, i.e.,
(
− 1

2
∆+V (x)

)
ψ = λψ,

as it applies to a quasi-one-dimensional structure. For a function ψ(θ1, θ2, r) expressed in
helical coordinates, the Laplacian is given by [29, 30]:

∆ψ = ψrr +
1

r
ψr +

1

τ 2
ψθ1θ1 −

2α

τ 2
ψθ1θ2 +

1

4π2

(
1

r2
+

4π2α2

τ 2

)
ψθ2θ2 . (A.1)
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Considering the helical and cyclic symmetry adapted Bloch ansatz, ψ(θ1, θ2, r; η, ν) =
e−i2π(ηθ1+νθ2)φ(θ1, θ2, r; η, ν), we first note:

ψr = e−i2π(ηθ1+νθ2)φr ,

ψrr = e−i2π(ηθ1+νθ2)φrr ,

ψθ1 = e−i2π(ηθ1+νθ2) [−i2πηφ+ φθ1 ] ,

ψθ2 = e−i2π(ηθ1+νθ2) [−i2πνφ+ φθ2 ] ,

ψθ1θ2 = e−i2π(ηθ1+νθ2)
[
−4π2ηνφ− i2πνφθ1 − i2πηφθ2 + φθ1θ2

]
,

ψθ1θ1 = e−i2π(ηθ1+νθ2) [−i2πη (−i2πηφ+ 2φθ1) + φθ1θ1 ] ,

ψθ2θ2 = e−i2π(ηθ1+νθ2)
[
−4π2ν2φ− 4iπνφθ2 + φθ2θ2

]
.

(A.2)

Thus, we get:

∆ψ =

[
φrr +

1

r
φr +

1

τ 2
φθ1θ1 −

4π2η2

τ 2
φ− i4πη

τ 2
φθ1 −

2α

τ 2
φθ1θ2 +

8απ2ην

τ 2
φ

+
4iπνα

τ 2
φθ1 +

4iπηα

τ 2
φθ2 +

1

4π2

(
1

r2
+

4π2α2

τ 2

)
φθ2θ2

−ν2

(
1

r2
+

4π2α2

τ 2

)
φ− iν

π

(
1

r2
+

4π2α2

τ 2

)
φθ2

]
e−i2π(ηθ1+νθ2) ,

(A.3)

which simplifies to:

∆ψ =

[
∆φ+

(
4π2

τ 2

[
να (2η − να)− η2

]
− ν2

r2

)
φ+

4iπ

τ 2
(να− η)φθ1

+i

[
4πα

τ 2
(η − να)− ν

πr2

]
φθ2

]
e−i2π(ηθ1+νθ2) .

(A.4)

Hence the action of the Schrödinger operator on ψ can be expressed as:

(
−1

2
∆ + V

)
ψ =

[
− 1

2
∆φ−

(
2π2

τ 2

{
να (2η − να)− η2

}
− ν2

2r2

)
φ

−2iπ

τ 2
(να− η)φθ1 − 2iπ

[ α
τ 2

(η − να)− ν

4π2r2

]
φθ2 + V φ

]
e−i2π(ηθ1+νθ2) .

(A.5)

Since the phase e−i2π(ηθ1+νθ2) 6= 0, canceling it from both sides of the Schrodinger equation
in ψ leaves us with the following eigenvalue problem in φ:

[
− 1

2
∆φ−

(
2π2

τ 2

{
να (2η − να)− η2

}
− ν2

2r2

)
φ− 2iπ

τ 2
(να− η)φθ1−

2iπ
[ α
τ 2

(η − να)− ν

4π2r2

]
φθ2 + V φ

]
= λφ

(A.6)

This equation needs to be discretized and solved over the fundamental domain, along
with suitable boundary conditions in φ.
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Appendix B. Derivation of the Basis Set

In analogy to the classical plane-wave method [27, 28], the basis functions in our
scheme are eigenfunctions of the Laplacian. However, instead of periodic boundary con-
ditions obeyed by planewaves, we consider boundary conditions resulting from invariance
under helical and cyclic symmetries. The calculation presented below is based on similar
results in [29], while a vector version of this calculation appears in [52, 53] in the context
of x-ray diffraction patterns of twisted nanomaterials.

Let F (θ1, θ2, r) be a basis function expressed in helical coordinates. Then, invariance
under helical and cyclic symmetries implies that this function must be periodic in θ1

with a period of 1, and also periodic in θ2 with a period of 1
N
. Assuming F (θ1, θ2, r) is

separable, we characterize the dependence of the function on θ1 and θ2 through Fourier
modes (i.e., complex exponentials), and write:

Fm,n,k(θ1, θ2, r) = ei2π(mθ1+nNθ2) ξ(r) . (B.1)

Here ξ(r) is a purely radial function that possibly depends on m,n, k, and incorporates
normalization constants. The Laplacian of the above function in the helical coordinates
is:

∆Fm,n,k = ξr e
i2π(mθ1+nNθ2) +

1

r
ξrr e

i2π(mθ1+nNθ2) − 4π2m2

τ 2
Fm,n,k

+
8απ2nmN

τ 2
Fm,n,k −

(
1

r2
+

4π2α2

τ 2

)
n2N2Fm,n,k ,

(B.2)

which can be rewritten as:

∆fm,n,k = ei2π(mθ1+nNθ2)

[
ξrr +

1

r
ξr

]
− Fm,n,k

[
n2N2

r2
+

4π2

τ 2
(m− αnN)2

]
. (B.3)

Now, imposing the condition that fm,n,k is an eigenfunction of the Laplacian, i.e.,

−∆Fm,n,k = λ0
m,n,k Fm,n,k , (B.4)

we get:

−ei2π(mθ1+nNθ2)

[
ξrr +

1

r
ξr

]
+ ei2π(mθ1+nNθ2)

[
n2N2

r2
+

4π2

τ 2
(m− αnN)2

]
ξ

=λ0
m,n,k e

i2π(mθ1+nNθ2)ξ ,

(B.5)

which simplifies to:

ξrr +
1

r
ξr − ξ

[
n2N2

r2
− λ0

m,n,k +
4π2

τ 2
(m− αnN)2

]
= 0 . (B.6)

Denoting ξ2
m,n = 4π2

τ2
(m− αnN)2 and performing the change of variables:

r̃ = r
√
λ0
m,n,k − γ2

m,n , ξ(r) = ξ̃(r̃) , (B.7)

we see that the above equation reduces to:

r̃2 ξ̃r̃r̃ + r̃ ξ̃r̃ + (r̃2 − n2N2)ξ̃ = 0 . (B.8)
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This is simply Bessel’s equation [67, 110] in ξ̃(r̃). Since nN is real, the general solution
of this equation can be expressed in terms of ordinary Bessel functions of the first and
second kind as:

ξ̃(r̃) = AJnN(r̃) +B YnN(r̃) . (B.9)

To evaluate the constants A and B, we need to invoke boundary and normalization
conditions. Since the wavefunctions are expected to be finite valued at the origin (r = 0),
and Bessel functions of the second kind approach infinity near 0, we conclude that B = 0.
Furthermore, since the wavefunctions obey Dirichlet boundary conditions on the lateral
surface of the computational domain (r = R), so should the basis functions used to
discretize them. Hence, we obtain:

ξ

(
R
√
λ0
m,n,k − γ2

m,n

)
= AJnN

(
R
√
λ0
m,n,k − γ2

m,n

)
= 0 . (B.10)

This implies that R
√
λ0
m,n,k − γ2

m,n must be a root of the the ordinary Bessel function of

the first kind. Denoting the kth root (k = 1, 2, . . .) of the Bessel function of order p, as
bpk, we see that:

bnNk = R
√
λ0
m,n,k − γ2

m,n , (B.11)

from which, it follows that:

λ0
m,n,k =

(
bnNk
R

)2

+

[
2π

τ
(m− αnN)

]2

. (B.12)

Thus, we have:

ξ(r) = AJnN

(
bnNk
R
r

)
. (B.13)

Finally, to determine the constant A, we apply the orthonormality condition between two
distinct basis functions Fm,n,k and Fm′,n′,k′ :

〈Fm,n,k, Fm′,n′,k′〉L2(D) = δm,m′ δn,n′ δk,k′ . (B.14)

This requires that:

A2

∫ 1

0

ei2π(m−m′)θ1dθ1×
∫ 1

N

0

ei2πN(n−n′)θ2dθ2

×
∫ R

0

JnN

(
bnNk r

R

)
Jn′N

(
bn

′N
k′ r

R

)
2πτrdr = δm,m′ δn,n′ δk,k′ .

(B.15)

Due to the properties of complex exponentials and Bessel functions, we note that this
condition is readily satisfied for distinct basis functions (i.e., when any of the conditions
m 6= m′, n 6= n′, k 6= k′ hold). For the case m = m′, n = n′, k = k′, we arrive at:

2πτA2

N

∫ R

0

J2
nN

(
bnNk r

R

)
rdr = 1 , (B.16)

33



i.e.,

2πτA2

N

R2

2
J2
nN+1

(
bnNk
)

= 1 . (B.17)

Thus it follows that the normalization constant:

A =

√
N

πτ

1

RJnN+1

(
bnNk
) , (B.18)

and that:

ξ(r) ≡ ξn,k(r) =

√
N

πτ

1

RJnN+1

(
bnNk
) JnN

(
bnNk
R
r

)
. (B.19)

Hence, the basis functions in our method have the form:

Fm,n,k (θ1, θ2, r) =

√
N

πτ

1

RJnN+1

(
bnNk
) ei2π(mθ1+nNθ2) JnN

(
bnNk r

R

)
. (B.20)

Note that if the computational domain were an annular cylinder (as employed in
[20, 30]), instead of the solid cylinder considered here, the boundary conditions on the
radial part of the wavefunction would be expected to change. For Dirichlet boundary
conditions applied to the inner and outer walls of such an annular cylinder — often
employed in simulations of large diameter nanotubes — Bessel functions of both kinds
would be involved (i.e., A,B 6= 0 in eq. B.9) and the zeros of the cross products of Bessel
functions [111] would be required.

Appendix C. Calculation of Gradients

In electronic structure calculations, it can sometimes become necessary to compute
the derivative of a quantity expressed using a chosen basis set, or over a grid. For instance,
evaluation of the Hellmann-Feynman forces [112, 113] on the atoms of a system involves
calculation of Cartesian gradients, if atomic pseudopotentials and pseudocharges are used
to compute total energies [30, 40, 43]. In this section, we describe how such gradients
may be computed for quantities expressed using helical waves.

Let E(θ1, θ2, r) be a function expressed in helical coordinates over the fundamental
domain, and let its expansion using helical waves be:

E (θ1, θ2, r) =
∑

Γ

Êm,n,k Fm,n,k(θ1, θ2, r)

=
∑

Γ

Êm,n,k cm,n,k e
i2π(mθ1+nNθ2) JnN

(
bnNk r

R

)
. (C.1)

The Cartesian gradient of this quantity,

∇E =
∂E

∂x
eX +

∂E

∂y
eY +

∂E

∂z
eZ , (C.2)
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may be evaluated by using the chain rule, i.e.,:

∂E

∂x
=
∂E

∂θ1

∂θ1

∂x
+
∂E

∂θ2

∂θ2

∂x
+
∂E

∂r

∂r

∂x
= −sin (2π (αθ1 + θ2))

2πr
Eθ2 + cos (2π (αθ1 + θ2))Er ,

∂E

∂y
=
∂E

∂θ1

∂θ1

∂y
+
∂E

∂θ2

∂θ2

∂y
+
∂E

∂r

∂r

∂y
=

cos (2π (αθ1 + θ2))

2πr
Eθ2 + sin (2π (αθ1 + θ2))Er ,

∂E

∂z
=
∂E

∂θ1

∂θ1

∂z
+
∂E

∂θ2

∂θ2

∂z
+
∂E

∂r

∂r

∂z
=

1

τ
(Eθ1 − αEθ2) . (C.3)

Based on eq. C.1, we note immediately that:

Eθ1(θ1, θ2, r) =
∑

Γ

Êm,n,k (i2πm)Fm,n,k(θ1, θ2, r) ,

Eθ2(θ1, θ2, r) =
∑

Γ

Êm,n,k (i2πnN)Fm,n,k(θ1, θ2, r) .
(C.4)

These expressions correspond to the inverse basis transforms of vectors with entries
{(i2πm) Êm,n,k}(m,n,k)∈Γ and {(i2πnN) Êm,n,k}(m,n,k)∈Γ respectively, and so they may be
readily computed. To calculate the radial derivative Er, we first note the following iden-
tity [67]:

∂Jκ (q)

∂q
= Jκ−1 (q)− κ

q
Jκ (q) . (C.5)

This expression may be used for computing the radial derivative of all helical waves within
the basis set. However, as n varies from −Nmax to Nmax, the order of the Bessel functions
involved range from κ = −NNmax to κ = NNmax, and the above expression results in a
Bessel function that lies beyond the range of the basis set. To remedy this, we may use
the following alternate expression [67] for the κ = −NNmax case:

∂Jκ (q)

∂q
=
κ

q
Jκ (q)− Jκ+1 (q) . (C.6)

Combining eqs. C.5 and C.6 with eq. C.1, we se that the radial derivative Er may be
expressed as:

Er(θ1, θ2, r) =
∑

Γ

Êm,n,k cm,n,k e
i2π(mθ1+nNθ2) Bn(r) , (C.7)

where the radial functions Bn(r) are:

Bn(r) =
bnNk
R

[
JnN−1

(
bnNk r

R

)
− nNR

bnNk r
JnN

(
bnNk r

R

)]
, forn 6= Nmax ,

=
bnNk
R

[
nNR

bnNk r
JnN

(
bnNk r

R

)
− JnN+1

(
bnNk r

R

)]
, forn = Nmax . (C.8)

With this, the radial derivative may be considered an inverse basis transform of the
vector with entries {Êm,n,k}(m,n,k)∈Γ, provided we use the functions Bn(r) along the radial
direction. These functions may be computed ahead of time and stored, and Algorithm
1 (Section 3.4.1) may then be used for computing Er(θ1, θ2, r). With the derivatives
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Er(θ1, θ2, r), Eθ1(θ1, θ2, r) and Eθ2(θ1, θ2, r) available on hand as values on a real space
grid, we may use eq. C.3 to evaluate the Cartesian derivatives at each point on the same
grid.

Instead of obtaining the derivatives as real space quantities as described above, it is
also possible to directly obtain them in reciprocal space. The expansion coefficients of
Eθ1 and Eθ2 are immediately seen to be:

(Êθ1)m′,n′,k′ = (i2πm′) Êm′,n′,k′ ,

(Êθ2)m′,n′,k′ = (i2πn′N′) Êm′,n′,k′ , (C.9)

and they may be evaluated at a cost that is proportional to the basis set size. By
considering the inner product of eq. C.7 with the basis functions, the expansion coefficients
of the radial derivative may be expressed as :

(Êr)m′,n′,k′ =
〈
Er, Fm′,n′,k′

〉
L2(D)

=
2

R

∑

Γ

Êm′,n′,k A(n′, k, k′) . (C.10)

The numbers A(n′, k, k′) can be expressed in terms of oscillatory integrals:

A (n′, k, k′) =
1

Jn′N+1

(
bn

′N
k

)
Jn′N+1

(
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′N
k′
)
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′N
k

∫ 1

0
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(
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′N
k q

)
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(
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k′ q

)
q dq − n′N

∫ 1

0
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(
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k q
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Jn′N

(
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′N
k′ q

)

q
q dq

]
, forn′ 6= −NNmax (C.11)

=
1

Jn′N+1

(
bn

′N
k

)
Jn′N+1

(
bn

′N
k′
)
[
n′N

∫ 1

0

Jn′N
(
bn

′N
k q

)
Jn′N

(
bn

′N
k′ q

)

q
q dq

− bn′N
k

∫ 1

0

Jn′N+1

(
bn

′N
k q

)
Jn′N

(
bn

′N
k′ q

)
q dq

]
, forn′ = −NNmax . (C.12)

We may precompute them using the techniques described in Appendix D and store
them for use later. Note that such an expansion of the radial derivatives using the basis
set implicitly requires these quantities to obey Dirichlet boundary conditions at r = R.
However, this may not be satisfied in general. The real space expression outlined earlier
(eqs. C.7,C.8) skirts this issue.

Appendix D. Evaluation of Oscillatory Radial Integrals

This work has multiple instances in which integrals with oscillatory integrands along
the radial direction make an appearance (e.g., eq. 31 and eqs. C.11,C.12). A typical sce-
nario is depicted in Fig. D.18. Techniques for the evaluation of such integrals have been
extensively studied in the literature [114–117] and specialized methods for integrands
involving Bessel functions are also available [118]. Instead of adopting these more elab-
orate methods, we choose to evaluate the oscillatory integrals in this work by using the
simpler procedure of employing a large number of Gauss-Jacobi quadrature [119] nodes
and weights. Thus, denoting q = r/R, we write:

∫ 1

0

f(q) qσ dq =

Nq∑

i=1

f(qi)wi . (D.1)
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The values of the weights wi and the nodes qi dependent on the the exponent σ, as well
as the quadrature order Nq. The weights and nodes can be computed inexpensively [120]
even when Nq is of the order of a few thousand.
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Figure D.18: The highly oscillatory behavior of the integrand involved in the evaluation of the quantity
I(n′, k, k′) in eq. 31. The behavior increases as the values of n, k, k′ increase. For the above plot, we
chose n = −98, k = 89, k′ = 85

For the case of the integrals involved in the evaluation of I(n′, k, k′) via eq. 31, the
number of oscillations of the integrand is approximately equal to k + k′. Thus, within
a given basis set, the maximum number of oscillations is 2Kmax. For all the examples
considered in this work, Kmax does not generally exceed 200, and we have found that
choosing Nq to be a few thousand for such cases allows the integrals to be converged to
O(10−14). To verify our calculations, we have also used Gauss-Kronrod quadrature [121,
122] as employed within Matlab (quadgk function). This allows for automatic adaptive
placement of the integration nodes and monitoring of the quadrature error, and we verified
that the latter was always O(10−13) or lower, even for the cases involving the most
oscillatory integrands.
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