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Executive Summary 

If carbon dioxide capture and storage (CCS) technologies are implemented on a large 
scale, the amounts of CO2 injected and sequestered underground could be extremely 
large. The stored CO2 then replaces large volumes of native brine, which can cause 

considerable pressure perturbation and brine migration in the deep saline formations. If 

hydraulically communicating, either directly via updipping formations or through 

interlayer pathways such as faults or imperfect seals, these perturbations may impact 

shallow groundwater or even surface water resources used for domestic or commercial 

water supply. Possible environmental concerns include changes in pressure and water 

table, changes in discharge and recharge zones, as well as changes in water quality. In 
compartmentalized formations, issues related to large-scale pressure buildup and brine 
displacement may also cause storage capacity problems, because significant pressure 

buildup can be produced. To address these issues, a three-year research project was 

initiated in October 2006, the first part of which is summarized in this annual report. 

Through numerical modeling of idealized subsurface formations, we have evaluated the 

possible impact of CO2 injection on regional multilayered groundwater systems. To date, 

systematic modeling studies have been conducted for two basic CO2 storage scenarios. 

For compartmentalized multilayer formations with closed lateral boundaries, we have 

evaluated the pressure buildup and storage capacity in response to CO2 injection, via 

numerical simulations as well as approximate solutions. For laterally open multilayer 

formations, we have simulated the pressure buildup and brine migration patterns, and 

have analyzed their respective regions of influence. Several key conclusions can be 

drawn as follows: 

Compartmentalized Formations: 

1) The available volume for CO2 storage in closed/semi-closed systems is mostly 

provided by pore compressibility and brine compressibility in response to formation 

pressure buildup, as well as leakage of native brine into and through seals, depending 

on the seal properties.  

2) The storage capacity in compartmentalized system with impervious seals is found to 

be generally much smaller than in open systems, because geomechanical damage due 

to overpressure needs to be avoided. A maximum efficiency factor of about 0.005 

was estimated for typical sandstone properties and the hydrologic conditions studied 

in this report, with similar storage contributions provided by pore and brine 

compressibility. In other words, only 0.5% of the initial pore volume would be 

available for storage of CO2. 

3) Only formation-seal systems with very small seal permeability of 10
–20

 m
2
 or less 

exhibit a true closed-system behavior; i.e., only then is the displacement of native 

brine into and through the bounding seals so small that the pressure buildup is similar 

to a closed system. With seal permeability varying from 10
-19

 m
2
 to 10

-17
 m

2
, brine 

leakage had a moderate to strong effect in reducing or limiting the pressure buildup in 

the storage formation, thus allowing for considerably higher storage efficiency than a 

true closed system (while CO2 was still safely trapped because of the combined 

capillary and permeability barriers).  
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Laterally Open Formations: 

1) The region of influence in response to CO2 injection can be extremely large. For the 

radial-symmetric domain evaluated in this study, considerable pressure buildup was 

observed 100 km away from the injection zone (up to one bar for certain sensitivity 

cases). Such pressure changes may cause problems if experienced in near-surface 

groundwater systems, a possible concern for a storage formation that extends updip to 

form a freshwater resource. If such environmental concerns prove to be important at a 

given site, the potential CO2 storage capacity of a storage formation may be strongly 

reduced.  

2) While the pressure pulse travels fast and far in saturated subsurface formations, the 

lateral brine flow velocities are found to be quite small, not much larger than those of 

natural groundwater flows in deep basins. The migration distance of a particle 

dissolved in the native brine (at a location a few miles away from the eventual CO2 

plume) is only a few hundred meters or less for a time period of 100 years during and 

after injection. We caution that these results have been obtained for a radial-

symmetric system assuming a single-source injection site.   

3) Characteristics of pressure buildup and brine displacement are not only sensitive to 

the key properties of the storage formation (e.g., lateral permeability, pore 

compressibility), but also strongly affected by the properties of the multilayered 

sandstone/shale sequence overlying and underlying the storage formation. Seals that 

are suitable for long-term trapping of CO2 may allow for considerable brine leakage 

out of the formation vertically upward and downward. As a result, the pressure 

buildup and lateral flow in the storage formation is moderately to strongly reduced 

compared to a perfect seal with zero or close-to-zero permeability.  

Our results demonstrate clearly the importance of evaluating the hydrologic perturbations 

generated by CO2 storage. Any site assessment should consider the constraints imposed 

by pressure perturbation and brine displacement, either to avoid shallow-water impacts in 

open systems or to account for pressure constraints in closed systems. When investigating 

these issues, it is important to consider not just the storage formation, but also the 

multilayer characteristics of the site. While the key properties of multilayered 

groundwater systems have been varied in a sensitivity study, which has enabled us to 

draw the above general conclusions, certain model simplifications and parameter choices 

may be inadequate at given storage sites. Thus, the systematic simulations conducted here 

should lead into site-specific modeling of CO2 storage candidate sites, representing the 

local hydrogeological conditions. Two site-specific modeling studies of likely candidate 

sites for CO2 storage, probably in the Illinois Basin and the California Central Valley, 

will be conducted in a future project phase. 
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1. Motivation 

If carbon dioxide capture and storage (CCS) technologies are implemented on a large 

scale, the amounts of CO2 injected and sequestered underground will be extremely large. 

Various research studies have been conducted to date evaluating under which 

hydrogeological conditions the injected volumes of CO2 can be safely stored over 

hundreds or even thousands of years. For example, many of these studies address issues 

such as the long-term efficiency of structural trapping of CO2 under sealing layers or the 

importance of other trapping mechanisms such as dissolution of CO2 into formation water 

or mineral trapping as CO2 reacts with the rock. Less emphasis has been placed on the 

understanding of the fate of the native brines or brackish waters that are being displaced 

by the injected volumes of CO2. As discussed below, large-scale injection of CO2 impacts 

subsurface volumes much larger than the CO2 plume. Thus even if the injected CO2 itself 

is safely trapped in suitable geological structures, large-scale injection and related brine 

displacement may affect shallow groundwater resources. The issue of brine displacement, 

and its possible environmental impact on groundwater hydrology, is addressed in the 

research effort reported here.  

Figure 1 shows schematically the large-scale subsurface impacts that will be experienced 

during and after industrial-scale injection of CO2. While the CO2 plume at depth may be 

safely trapped under a low-permeability caprock with anticlinal structure, the footprint 

area of the plume is smaller than the footprint area of the displaced brine, which in turn is 

much smaller than the footprint area of elevated pressure. The footprint area of displaced 

brine illustrates the approximate location of a displaced fluid volume that was originally 

located within the CO2 plume footprint. Of course, brine displacement occurs, to some 

degree, wherever a pressure gradient develops in response to injection, suggesting the 

possibility of water quality changes as brines or brackish water may migrate into 

freshwater regions. The footprint area of elevated pressure indicates the extremely large 

subsurface volumes where such pressure impacts might be expected.  
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Figure 1. Schematic showing different regions of influence related to CO2 storage 

The environmental impact of large-scale brine displacement depends to a large extent on 

the hydraulic connectivity between deep storage formations and the freshwater aquifers 

overlying them. One primary concern would be a storage formation that extends updip to 

form a freshwater resource used for domestic or commercial water supply. Via this direct 

hydraulic communication, CO2 storage at depth will impact the shallow portions of the 

aquifer, which could experience pressure increase and water table rise, changes in 

discharge and recharge zones, and changes in water quality. Even if separated from deep 

storage formations by sequences of low-permeability seals, freshwater resources may be 

hydraulically communicating with deeper layers, and the pressure buildup at depth would 

then provide a driving force for upward brine migration. This can be, for example, via 

local high-permeability flow paths such as faults and abandoned boreholes. In addition, 
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seals may pinch out or have higher permeabilities locally allowing for vertical inter-layer 

migration. Finally, land surface deformation or uplift is expected in response to CO2 

injection, which may change surface and near-subsurface flow patterns even without a 

hydraulic direct impact of brine displacement. The reverse effect, land subsidence in 

response to groundwater withdrawal (e.g., for water supply, agriculture, or related to oil 

production), is a common problem throughout the United States (USGS, 1999). 

Issues related to large-scale pressure buildup and brine displacement may also cause 

operational and capacity problems. For example, if more than one large point source was 

to store CO2 into the same formation, the operational scheme and the location of the 

injection zone would have to be carefully planned as to avoid unwanted feedback 

between neighboring sites. Storage capacity may be a concern in compartmentalized 

formations, as depicted in Figure 2, from which the displaced CO2 can not easily escape 

laterally to make room for the injected CO2 (closed systems). When large volumes of 

CO2 are injected into a closed system, a significant pressure buildup will be produced, 

which can severely limit CO2 storage capacity, because overpressure and geomechanical 

damage need to be avoided (Rutqvist and Tsang, 2002; Rutqvist et al., 2007a, 2007b). 

 

Figure 2. Schematic showing open systems versus closed systems (not to scale) 
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The above considerations suggest that evaluation of site suitability with respect to 

volumetric capacity as well as environmental impact should include (1) a study on the 

expected pressure buildup and brine displacement, and its impact on the shallow 

subsurface, and (2) a site characterization effort that includes the large region of influence 

dictated by subsurface pressure changes.  
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2. Research Scope 

To date, the impact of large-scale CO2 injection and related brine displacement on 

regional multilayered groundwater systems has not been systematically assessed. To 

build confidence in carbon capture and storage technologies, there needs to be an 

adequate understanding of the magnitude and extent of water pressure increase in the 

storage formation and in the shallower aquifers, which may be separated by aquitards of 

much smaller hydraulic conductivities. In particular, the change in groundwater table 

level, the effect on discharge and recharge zones in the groundwater system, and the 

impact of these changes on the properties and characteristics of underground sources of 

drinking water (USDWs) should be investigated. Estimates of CO2 storage capacity 

should consider constraints imposed by brine displacement, either to avoid shallow-water 

impacts in open systems or to account for pressure constraints in closed systems. To 

address these research needs, the following research project was initiated in 2006, the 

first part of which is described in this annual report. The following tasks included in the 

research program have a successive degree of complexity, starting with systematic 

studies of idealized formations leading up to detailed modeling studies of one or two 

groundwater basins in the U.S. that are likely candidates for future storage of CO2.  

 

Task 1: Storage Capacity and Pressure Buildup in Idealized Pressure-

Constrained Storage Formations (Closed Systems) 

Analytical and numerical solutions are employed that allow a fast evaluation of brine 

displacement by injected CO2 and the related pressure buildup in simplified geological 

systems such as shown in Figure 2 (bottom). The objectives are to: 

- Develop a basic understanding of potential pressure buildup in closed systems 

- Determine sensitivity of pressure buildup and storage capacity to injected volume, 

formation size, hydraulic properties, compressibility, and other key parameters 

- Develop a quick assessment method for estimating storage capacity in pressure-

constrained formations 
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Task 2:  Pressure Buildup and Brine Displacement in Idealized Multilayered 

Groundwater Systems (Open Systems) 

A semi-analytical or numerical simulation study is conducted to evaluate the brine 

displacement by injected CO2 and the related pressure buildup in a multilayer geological 

system. The objectives are to: 

-  Develop a basic understanding of the potential pressure buildup (in lateral and vertical 

direction) in a laterally open storage formation such as shown in Figure 2 (top)  

-  Explore the effects of interlayer communication through low-permeability seals  

- Explore the effects of interlayer communication through faults, fracture zones, or wells  

-  Evaluate the impact on groundwater table rises, discharge-recharge zones, and water 

quality changes in the shallower groundwater layers, including USDWs 

 

Task 3:  Hydromechanical Aspects of Injection in Idealized Multilayered 

Groundwater Systems  

This task is an extension of previous tasks to account for hydromechanical effects that 

could potentially impact the expected pressure buildup and multilayer interaction. The 

objectives are to: 

-  Evaluate the role of mechanical deformation, with associated permeability changes, on 

pressure buildup, water displacement, and land surface uplift, etc. 

-  Evaluate hydrogeological and mechanical effects in shallower units and USDWs  

 

Task 4:  Analysis and Modeling of One or Two Regional Groundwater Systems 

This task involves modeling evaluation of one or two regional groundwater systems in 

response to CO2 injection. Two deep saline aquifer systems have been chosen based on 

the interaction with regional partnerships. The objective is to evaluate pressure buildup 

and brine displacement for these real-world examples. 

The following Sections 3 and 4 of this report document the progress made during the first 

project year, with respect to Tasks 1 and 2, respectively. Tasks 3 and 4 have not yet 

started, but preparatory work has been conducted, as reported in Section 5. 
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3. Idealized Pressure-Constrained Storage Formations 

The storage capacity and transient pressure buildup in response to industrial-scale CO2 

injection into a compartmentalized saline formation is evaluated using detailed numerical 

simulations with the TOUGH2/ECO2N simulator (Pruess et al., 1999; Pruess, 2005). Our 

focus here is to understand the reservoir conditions as a function of various reservoir 

parameters. In addition, we have developed simple analytical (quick-assessment) 

expressions that provide estimates for the storage capacity and pressure buildup in such 

pressure-constrained systems. Results from the numerical simulations are compared with 

those estimated through the quick-assessment method for various sensitivity cases. The 

good agreement indicates that the analytical method produces reasonable estimates for 

compartmentalized storage formations. 

3.1.  Background 

In certain geological situations, a storage site targeted for CO2 sequestration may be a 

compartmentalized reservoir laterally separated by low-permeability zones. These zones 

may be formed by natural heterogeneity and/or faulting. When such a reservoir, bounded 

vertically by impervious seals, is surrounded on all sides by barriers of very low 

permeability, this reservoir acts as a “closed” system (Figure 3, top). Evidence of such 

closed systems has been found in hydrocarbon reservoirs, as indicated by sharp changes 

in fluid pressure along the reservoir boundaries (Neuzil, 1995; Puckette and Al-Shaieb, 

2003; Muggeridge et al., 2004). When large volumes of CO2 are injected into a closed 

system, a significant pressure buildup will be produced. This pressure buildup can 

severely limit the CO2 storage capacity, because overpressure and geomechanical damage 

need to be avoided (Rutqvist and Tsang, 2002; Rutqvist et al., 2007a, 2007b). In this 

case, the storage capacity mainly depends on pore and brine compressibilities that 

provide expanded pore space available for storing the injected CO2, and on the maximum 

pressure buildup that the formation can sustain.   
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Figure 3. Schematic showing closed and semi-closed systems (not to scale) 

Of course, the overlying and underlying seals of a storage aquifer are not perfectly 

impervious, allowing the pressure buildup caused by CO2 injection and storage to 

partially dissipate into and through these seals. In this case, the saline aquifer acts like a 

“semi-closed” system (Figure 3, bottom), allowing some fraction of the displaced brine to 

migrate into and through the overlying and underlying sealing units, which in turn would 

increase the storage capacity for CO2. The importance of this vertical inter-layer 

communication will mostly depend on the permeability of the seals, which can vary 

widely depending on their hydrogeological characteristics (e.g., Neuzil, 1994; Domenico 

and Schwartz, 1998; Hovorka et al., 2001; Hart et al., 2006). Relatively permeable 

sealing units (e.g., with permeability on the order of 10
-18

 m
2
) may allow considerable 

vertical leakage of brine out of the storage aquifer, in which case pressure buildup may be 

reduced, and pressure constraints may not be a limiting factor in CO2 storage capacity.  

To our knowledge, no research has been conducted to date to estimate the transient 

pressure buildup and CO2 storage capacity in pressure-constrained systems. Our research 
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therefore aims at (1) developing a basic understanding of potential pressure buildup in 

compartmentalized systems, (2) determining sensitivity of pressure buildup and storage 

capacity to injected volume, formation size, hydraulic properties, compressibility, and 

other key parameters, and (3) developing and applying a quick assessment method for 

estimating storage capacity in deep closed and semi-closed saline formations, 

complementing existing methods for capacity estimates in open systems (DOE, 2007).  

The quick-assessment method is based on the fact that the injected CO2 needs to displace 

native brine of an equivalent volume, and that this equivalent volume is comprised of 

three volume contributions that can be easily calculated: (1) the additional pore volume 

within the storage formation provided by pore and brine compressibility in response to 

pressure buildup; (2) the additional pore volume within the sealing units provided by pore 

and brine compressibility in response to pressure buildup; and (3) the leakage of the 

displaced brine through the seals into overlying/underlying formations. The validity of 

the method is demonstrated by comparing the estimated storage capacities to the “true” 

values calculated through detailed modeling of multiphase flow and multicomponent 

transport of CO2 and brine. The validity range is demonstrated for a range of hypothetical 

formation-seal systems, with varying lateral radial extent (i.e., pore volume) and 

hydrogeologic properties (i.e., permeability).  

With these goals in mind, this section is structured as follows: Section 3.2 introduces the 

hypothetical formation-seal systems analyzed and discusses the different sensitivity cases 

with varying geometric and hydrogeologic properties; Section 3.3 describes the quick-

assessment method for estimating the pressure buildup and storage capacity in closed and 

semi-closed systems; Section 3.4 gives simulated results showing the observed pressure 

buildup and CO2 plume evolution for a range of conditions; and Section 3.5 demonstrates 

the applicability and validity of the quick-assessment method through comparison against 

the simulated results.  
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3.2.  Numerical Simulations 

To obtain the “true” CO2 storage capacity of pressure-constrained formations, we 

developed a numerical model simulating the multiphase flow and multicomponent 

transport of CO2 and brine in a hypothetical deep saline formation, using the 

TOUGH2/ECO2N simulator (Pruess et al., 1999; Pruess, 2005). The transient pressure 

buildup and detailed spatial CO2 plume evolution were simulated for closed systems with 

impervious seals and for semi-closed systems with non-ideal seals. We conducted 

different simulation runs, varying radial extent to evaluate the effect of the lateral 

boundary condition (storage formation size), varying formation permeability to evaluate 

the propagation of pressure buildup and related sensitivities, and varying seal 

permeability to investigate the effect of brine leakage into and through the seals and its 

impact on storage capacity.  

For each simulation run, we calculated a storage efficiency factor, E, defined as the 

fraction of stored volume of CO2, 2COV , per initial total pore volume of the storage 

formation, FV . This is the same definition used in the capacity estimates for open 

systems described in DOE (2007). If the simulated pressure buildup in the storage 

formation at the end of the injection period is less then a previously defined sustainable 

pressure buildup (Section 3.3.5), the designated storage scenario is not pressure-

constrained, and we refer to E as the actual storage efficiency.  In contrast, in cases where 

the simulated pressure buildup is close to or exceeds the sustainable pressure buildup 

(which may occur before reaching the designated injection volume), the storage scenario 

is pressure-constrained. In such cases, we refer to E as the maximum storage efficiency. 

Through our detailed numerical simulations, the storage capacity estimates account for 

CO2 stored in its own supercritical phase as well as the smaller amount of CO2 dissolved 

in brine. The simulation results also consider all details related to the non-uniform 

pressure buildup and CO2 plume evolution, thus obtaining the “true” CO2 storage 

conditions. 
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3.2.1. Model Setup  

A two-dimensional radially symmetric model domain was chosen representing a deep 

saline aquifer. The storage formation, located at a depth of approximately 1,200 m (top of 

formation) below the ground surface, is 250 m thick and bounded at the top and bottom 

by sealing units (caprock and baserock) of 60 m thickness each (see Figure 4). The outer 

lateral boundary has a no-flow condition; i.e., brine is not allowed to escape from the 

model domain. In the base case, the model domain has a radial extent of 20 km, and the 

sealing units are assumed to be impervious. CO2 is injected in a zone of 125 m vertical 

and 50 m radial extent, representing not a single well, but rather a few distributed wells. 

Injection occurs over 30 years at a rate of 120 kg/s, corresponding to a large carbon 

source with an annual output of 3.8 million tonnes of CO2. The aquifer is initially fully 

brine-saturated, assuming a hydrostatic fluid pressure distribution in the vertical 

direction. Isothermal conditions are modeled with a uniform temperature of 45ºC.  

Values for hydrogeologic properties were assigned representative of a homogeneous 

brine formation suitable for CO2 storage (Table 1). In the base case, the pore 

compressibility is 4.5  10
-10

 Pa
-1

, a value representative of structurally sound sandstone 

(Harris, 2006), and the permeability of the isotropic storage formation is 10
-13

 m
2
. Pore 

compressibility is a key property for a pressure-constrained aquifer, because it defines the 

pore space (or porosity) increase in response to pressure buildup, while permeability is a 

key property defining the movement and spatial distribution of CO2. Note that the 

compressibility of brine is intrinsically taken into account in TOUGH2/ECO2N in terms 

of density variation with fluid pressure. Unlike many groundwater flow simulators, which 

employ specific storativity to describe the combined effect of pore and fluid 

compressibility, TOUGH2/ECO2N separates the effects of porosity change and density 

variation. Brine compressibility is mildly sensitive to pressure and temperature changes 

in the pressure-temperature range relevant to CO2 storage. For the conditions at the 

aquifer top depicted in Figure 4, with a pressure of 120 bar and a temperature of 45
o
C, 

brine compressibility is on the order of 3.5  10
-10

 Pa
-1

. 
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Figure 4.  Schematic showing radially symmetric model domain with deep brine formation for 

CO2 storage and overlying/underlying seals (not to scale) 

 

Table 1. Hydrogeologic properties used for the storage formation in the base-case simulations 

Properties Values 

Permeability (m
2
) 10

-13
 

Pore Compressibility (Pa
-1

) 4.5 10
-10

 

Porosity 0.12 

van Genuchten (1980) m 0.46 

van Genuchten  (Pa
-1

) 5.1 10
-5

 

Residual CO2 saturation 0.05 

Residual water saturation 0.30 
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3.2.2.  Sensitivity Analyses 

The capacity of CO2 storage in a pressure-constrained system depends on many factors, 

in particular the hydrogeologic properties of the storage formation and the confining units 

(e.g., permeability, porosity, and pore compressibility), and total pore volume of the 

storage formation (e.g., thickness and radial extent). A set of sensitivity simulations was 

conducted varying these hydrogeologic properties and the radial extent of storage 

formation (see Table 2). In each sensitivity case, only the property of interest was 

changed from the base-case value. Results are used in Section 3.5 to compare the 

capacity estimates and efficiency factors obtained through numerical simulations with 

those from the quick-assessment method. Some justification for the choice of sensitivity 

cases and the related property ranges is given below. 

Table 2.  Simulation runs for varying radial extents of storage formation, and different values 

for permeability of the storage formation, as well as permeability of the seals 

 Case No Radial Extent 

(km) 

Formation 

Permeability (m
2
) 

Seal Permeability 

(m
2
) 

Base Case Case 1 20 1.0   10
-13

 0 

Case 2 10 1.0   10
-13

 0 

Case 3 30 1.0   10
-13

 0 

Case 4 50 1.0   10
-13

 0 

Storage 

Formation 

Volume 

Case 5 100 1.0   10
-13

 0 

Case 6 20 1.0   10
-12

 0 Formation 

Permeability 
Case 7 20 5.0   10

-14
 0 

Case 8 20 1.0   10
-13

 1.0   10
-20

 

Case 9 20 1.0   10
-13

 1.0   10
-19

 

Case 10 20 1.0   10
-13

 1.0   10
-18

 

Seal 

Permeability 

Case 11 20 1.0   10
-13

 1.0   10
-17
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3.2.2.1.  Formation Volume (Radial Extent) 

We studied different storage formation sizes, with radial extent ranging from 10 km to 

100 km, representing scenarios that, for the given injection volume, range from clearly 

pressure-constrained (because of limited capacity) to not pressure-constrained (because 

of large capacity). For example, we expect the 10 km case to experience a pressure 

buildup higher than a reasonable threshold, meaning that CO2 injection would have to 

cease before the designated injection period. In such a system, the maximum storage 

efficiency would be smaller than the actual storage capacity needed to store the 

designated volume of CO2. In contrast, we expect the 100 km case to experience almost 

no pressure buildup at the outer lateral boundary, meaning that the storage formation 

would respond to injection as would an open system with potential for brine to escape. In 

such a scenario, the maximum storage efficiency would be much larger than the actual 

storage capacity after 30 years of injection.  

3.2.2.2.  Formation Properties 

Permeability of the storage formation is one of the key parameters for pressure-

constrained systems, influencing both the uniformity of pressure buildup over the domain 

and the propagation velocity of the pressure pulse away from injection zone. For 

example, when the formation permeability is relatively small, the local pressure buildup 

near the injection zone may be a limiting factor in the storage-capacity estimates. On the 

other hand, larger permeabilities would tend to result in relatively uniform pressure 

buildup both near and away from the injection zone. A reasonable range of permeability 

values (from 5.0  10
-14

 to 1.0  10
-12

 m
2
) was used in the sensitivity analysis. 

Pore compressibility is another key parameter affecting the storage capacity of a 

pressure-constrained system. For brevity, this parameter has not been varied in the 

sensitivity analysis. Wide ranges of pore (or matrix) compressibility can be expected in 

field situations, depending on the subsurface material (e.g., Fjar et al., 1991; Domenico 

and Schwartz, 1998; Hart, 2000; Harris, 2006), having a significant effect on the potential 
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CO2 storage capacity in pressure-constrained systems. For example, Domenico and 

Schwartz (1998) give ranges of compressibility values for different materials, such as less 

than 3.3  10
-10

 Pa
-1

 for sound rock, 3.3  10
-10

 Pa
-1

 through 6.9  10
-10

 Pa
-1

 for fractured 

rock, and 1  10
-8

 Pa
-1

 through 5.2  10
-9

 Pa
-1

 for dense sandy gravel. Even higher 

compressibilities can be expected in plastic or unconsolidated materials (e.g., on the order 

of 10
-6

 or 10
-7

 Pa
-1

 for plastic clay), which are, of course, not typically relevant for deep 

geological storage of CO2. On the other end of the spectrum, the lowest compressibility 

value measured from laboratory tests by Hart (2000) is 7.0  10
-11

 Pa
-1

 for Berea 

sandstone.  

3.2.2.3.  Seal Properties 

Preferred CO2 geological storage sites have a caprock formation that acts as a sealing 

barrier to the buoyant fluid. In the case of supercritical CO2 migrating upward into brine-

saturated caprock, the sealing capacity is a function of both low permeability and high 

entry capillary pressure, which are generally well correlated. In other words, most seals 

of relatively low permeability also have a considerable capillary sealing capacity with 

respect to CO2. With respect to the native brine, on the other hand, there is no capillary 

sealing capacity at the interface between storage formation and sealing units; the 

migration of brine is limited only by the permeability contrast. As a result, the leakage of 

native brine into over- and underlying seals can be significant, depending on pressure 

gradients and seal permeability, while CO2 may be safely trapped because of the 

combined permeability and capillary barriers. Seal permeabilities can range over orders 

of magnitude. For example, shale permeabilities have been reported to range from 10
-23

 

to 10
-16

 m
2
 (Neuzil, 1994; Domenico and Schwartz, 1998; Hovorka et al., 2001; Hart et 

al., 2006). Hart et al. (2006) recently measured the permeability of shale aquitards of the 

Maquoketa Formation in Wisconsin, and found the permeability to range from 2.5  10
-21

 

to 4.1  10
-19 

m
2
, while Neuzil (1994) found a wider range, between 10

-23
 to 10

-17
 m

2
.  
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To investigate the importance of brine migration through low-permeability cap- and base-

rocks, we conducted simulations for the domain with a 20 km radial extent, allowing for 

vertical interlayer brine migration (semi-closed systems) using seal permeability values 

of 10
-20

, 10
-19

, 10
-18

, and 10
-17

 m
2
 (i.e., between 10

-5
 and 10

-2
 millidarcy). These values are 

to be compared to the 10
-13

 m
2
 permeability for the storage formation. The porosity in the 

sealing units is 0.05, and the van Genuchten (1980)  value is 5.1  10
-6

 Pa
-1

 

(representing roughly the inverse of entry pressure for the nonwetting phase). All other 

properties are identical to the storage formation. In the model, fixed pressure conditions 

equal to hydrostatic are set at the top of the upper seal and the bottom of the lower seal, 

representing a sink for brine that has migrated vertically through the seals. It is thus 

assumed that any overpressure developing within the storage formation diminishes within 

the cap- and base-rock units. 

3.3.  Quick-Assessment Method  

We developed a simple method for assessing the storage capacity of pressure-constrained 

storage formations. CO2 injection into these systems will lead to pressurization (pressure 

buildup), because an additional volume of fluid needs to be stored. The injected CO2 

displaces an equivalent volume of native brine, which may be (1) stored in the expanded 

pore space in the storage formation, (2) stored in the expanded pore space in the seals, 

and (3) leak through the seals into overlying/underlying formations. The quick-

assessment method predicts the pressure-buildup history over a given injection period 

and the actual storage efficiency factor at the end of injection. Several simplifications and 

assumptions of both reservoir characteristics (geometric and hydrogeologic properties) 

and processes are outlined below. The validity of these assumptions is discussed based on 

the detailed simulation results presented in Section 3.4, and in Section 3.5, the quick-

assessment estimates are compared to simulation results to check the accuracy and 

usefulness of the approach. 
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The method is designated to provide capacity estimates at early stages of site selection 

and characterization, when (1) quick assessments of multiple sites may be needed and 

when (2) site characterization data are rather sparse. More specifically, the estimated 

pressure increase caused by injection and storage of a specified volume of CO2 can be 

compared to a sustainable pressure threshold, which is the maximum pressure that the 

formation can sustain without geomechanical damage. Alternatively, one may determine 

the maximum CO2 volume that can be injected without jeopardizing the geomechanical 

structure of the formation-seal system. As pointed out below, we provide the quick-

assessment method for systems with zero seal permeability (closed systems) as well as 

systems with small but non-zero permeability (semi-closed systems). 

3.3.1. Simplifications and Assumptions 

We assume an idealized formation-seal system with uniform thickness for both storage 

formation and seals (see Figure 4), using the following simplifications and assumptions: 

• The formation for CO2 storage is of a horizontal area A with radial extent R and 

thickness Bf. With a uniform initial porosity f , the initial total pore volume is 

fffff BRABV 2
== . The formation has a closed lateral boundary at R. 

• The storage formation has a uniform pore compressibility p , which includes the 

possible contribution of vertical formation expansion. Pore compressibility is constant 

over the relevant pressure range, from the initial hydrostatic pressure to the increased 

pressure value under final storage conditions. 

• The upper and lower seals have the same horizontal area A as the storage formation. 

Both seals have identical thickness, sB  and uniform values for permeability sk , 

porosity s , and pore compressibility ps . The total pore volume of both seals is sV  

ss AB2= . 

• Brine compressibility, w , representing the change in brine density in response to 

pressure buildup, is assumed to be constant over the relevant range of pressure 
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conditions. Brine viscosity, wu , dependent on temperature, pressure, and salinity, is 

also assumed to be constant during the CO2 injection period. 

• The pressure buildup in the storage formation is uniform, independent of formation 

permeability. The quick-assessment method calculates an expected average pressure 

in the storage formation, but does not consider local pressure increases near the 

injection zone. 

• The entire formation-seal interface is in contact with brine (for the calculation of 

brine leakage), independent of CO2 plume extent. 

• The overpressure developed within the storage formation decreases linearly within 

the seals. The pressure at the top of the overlying seal and at the bottom of the 

underlying seal remains at hydrostatic conditions prior to CO2 injection. 

• All injected CO2 mass is stored as a CO2–rich phase, with negligible dissolved CO2 

mass, and CO2 does not escape from the storage formation. This means that the total 

volume of stored CO2 under the storage condition equals the total volume of 

displaced brine. 

Note that the storage formation can have any shape with varying thickness, because only 

its total pore volume is used in the quick-assessment method. Specifications on the 

geometry of the storage formation have been employed for easier comparison with 

numerical simulation results.  

3.3.2. Basic Equations 

The quick-assessment method considers that the pore volume needed to store the injected 

CO2 volume, )( I2CO tV , after a given injection time, It , is provided by three 

contributions: (1) the expanded storage volume in the storage formation resulting from 

pressure buildup, (2) the expanded storage volume within the seals resulting from 

pressure buildup, and (3) the volumetric leakage of brine into the formations above and 

below the upper and lower seals, respectively. The expanded storage volume is caused by 
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both brine and pore compressibility. A simple expression can be developed that describes 

this volumetric relationship, as follows:  

( ) ( ) ++++=
It

0 sw

s
sIwpsfIwpI2CO dt

B

tpAk2
Vtp50VtptV

μ

)(
)(.)()( ,  (1) 

where each of the three terms on the right-hand side corresponds to one of the three 

storage contributions mentioned above. Equation (1) essentially links the injected CO2 

volume to the average pressure buildup in the storage formation, with )( Itp being the 

pressure buildup at time It  and )(tp  ( ],0[ Itt = ) being the transient pressure buildup 

from the beginning to the end of injection. By solving Equation (1) for It  at the end of 

the injection period, the total pressure buildup in the closed or semi-closed formation can 

be assessed as a function of injected CO2 volume. All three terms in Equation (1) need to 

be considered for semi-closed systems. For closed systems, Equation (1) reduces to the 

first term on the right-hand-side.  

Based on the definition of efficiency factors and the relationship in Equation (1), the 

actual storage efficiency factor, )( ItE , for a semi-closed system can be calculated as  

( ) ( ) dt
BB

tpk2
tp

V

V
50tptE

It

0 sffw

s
I

f

s
wpsIwpI ++++=

μ

)(
)(.)()( ,  (2) 

which, in analogy to Equation (1), has three individual efficiency contributions from 

increased pore space in the storage formation and the seals, as well as from brine leakage 

into the underlying and overlying formations.  

To compare the relative importance of the three individual contributions to storage 

capacity, we may define the volumetric fractions of displaced brine stored in the storage 

formation ( fF ), in the seals ( sF ), and in the overlying/underlying formations ( lF ), 

relative to the total injected CO2, as follows: 

( ) )()( I2COfIwpf tVVtpF += ,            (3a) 
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( ) )()(5.0 2 ICOsIwpss tVVtpF += ,           (3b) 

( )
( )=

It

0
2COsw

s
l dtV

dt
B

tPAk2
F

μ
.              (3c) 

Per definition, fF , sF , and lF  add up to one. 

The necessary CO2 storage capacity for a given site is often provided in total mass, 2COG , 

instead of total volume, 2COV , as calculated from Equation (1). Conversion of volume to 

mass requires knowledge of the CO2 density, 2CO , evaluated at pressures and 

temperatures representing the final storage conditions. Because the pressure buildup 

caused by injection is not known beforehand for a given total CO2 mass, the pressure-

dependent CO2 density at storage conditions is either estimated a priori (in anticipation of 

an estimated pressure buildup) or determined in an iterative procedure, using the 

calculated average pressure to correct the density and vice versa. (See Section 3.5.4 for a 

brief discussion of the potential inaccuracies related to the determination of CO2 density.) 

3.3.3.  Application to Closed Systems 

In a closed system with impervious seals, brine cannot escape from the storage formation 

into and through the seals. The available volume for storage of CO2 is then provided only 

by the expansion of the pore volume, plus the increased brine density, in response to 

pressure buildup in the formation. Equation (1) can then be simplified to the following 

linear expression: 

( ) fIwpI2CO VtptV )()( += .       (4) 

This equation can be used, for example, to estimate the maximum storage capacity for a 

given maximum sustainable pressure buildup, maxp . Similarly, one can calculate the 

expected average pressure buildup, )( Itp , for a given total volume of stored CO2. 
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The efficiency factor of CO2 storage in a closed system with average pressure buildup 

)( Itp  can be derived from a simplification of Equation (2) 

( ) ( ) ( ) ( )IwpIbIp tptpEtpEE +=+= )()( ,                     (5) 

where Ep is the storage efficiency factor caused by pore compressibility, and Eb is the 

storage efficiency factor produced from brine compressibility. Inserting the maximum 

sustainable pressure buildup, maxp , into Equation (5) results in the maximum storage 

efficiency of a closed system. For example, using a sustainable pressure buildup of 

60max =p  bar, a pore compressibility of 4.5  10
-10

 Pa
-1

 (the value used in the 

numerical simulations) and a brine compressibility of 3.5  10
-10

 Pa
-1

, we arrive at 

individual efficiency factors of Ep = 0.0027 and Eb = 0.0021, and a total storage 

efficiency of E = 0.0048. In other words, less than half a percent of the total pore volume 

of a closed system would be available for storage of CO2 in a closed system. 

3.3.4.  Application to Semi-Closed Systems 

For closed systems with impervious seals, the total volumetric storage capacity and 

pressure buildup at the end of injection are related in a simple linear manner to pore and 

brine compressibilities, as well as initial pore volume. For a semi-closed system with 

permeable seals, the capacity-pressure relationship in Equation (2) is nonlinear and 

transient, with the pressure buildup in the storage formation affecting leakage rate 

through the seals and vice versa. The stronger the pressure buildup, the higher the leakage 

rate, which in turn slows down the pressure buildup. This makes solving of Equation (1) 

more complicated; however, a solution can be achieved through a simple numerical 

integration in time. For this purpose, the injection time period ],0[ It  can be discretized 

into a number (n) of equally spaced time intervals of duration t  to form a time series: 

nnii tttttt ,,....,,...,, 111,0 , with 00 =t  and In tt = . Equation (1) converts into its discrete 

form as follows 
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At each new time step, the pressure-buildup values at all previous time steps are known, 

such that the summation term in Equation (6) (representing the cumulative brine leakage 

from beginning of injection to the previous time step) can be executed. This eventually 

yields the pressure buildup at all time steps from the beginning to the end of injection. 

Once Equation (6) has been solved, the efficiency factors in Equation (2) or the volume 

fractions in Equation (3) can be derived using the known injection and pressure history. 

Note that continued CO2 injection into a semi-closed system would eventually lead to a 

steady-state condition at which the volumetric injection rate, 2COQ , equals the rate of 

brine leakage through the seals. The pressure buildup, Sp , associated with this steady-

state condition can be calculated as follows: 

 
sws

2CO

S
BAk2

Q
p

μ/
= .        (7) 

If Sp is unrealistically high, i.e., higher than the sustainable pressure buildup, the 

storage capacity is pressure constrained and needs to be evaluated, using Equation (6). If, 

on the other hand, Sp is relatively small, brine leakage through the seals is efficient 

enough to allow for sufficient CO2 storage without pressurization concerns. In this case, 

the semi-closed system acts like an open storage formation, and its storage capacity is not 

pressure-constrained.  

3.3.5.  Sustainable Pressure Buildup 

The CO2 storage capacity of pressure-constrained systems depends on the maximum 

pressure buildup that a given formation is expected to tolerate. In most applications, this 

sustainable pressure buildup will be based on geomechanical considerations, with the 

goal of avoiding degradation (such as microfracturing and/or fault reactivation) of the 
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sealing structures (EPA, 1994; Rutqvist and Tsang, 2002; Rutqvist et al., 2007a, 2007b; 

Neuzil, 2003). Fluid pressure in the storage formation may also be constrained to limit 

the pressure driving forces into neighboring formations, or to account for potential 

concerns about seismicity. According to Rutqvist et al. (2007a), the sustainable pressure 

buildup should be reviewed in a case-by-case assessment, taking into account initial 

stress fields and geomechanical properties of the rock units at the selected sites.  

Some guidance on the determination of a ustainable pressure-buildup threshold is 

provided by the current practice for underground injection control of liquid wastes. The 

regulatory standard states that maximum injection pressure should be less than the 

measured fracture closure pressure, below which any existing fractures cannot open, no 

new fractures can form, and therefore neither can transmit waste fluids out of the 

injection intervals (EPA, 1994). The regional guidance for implementation is that the 

maximum injection pressures can be determined either by a site-specific fracture closure 

pressure derived from direct or indirect testing, or by formation-specific default values 

for the fracture-closure pressure gradients. For example, a default value of 0.57 psi/ft 

(132% of the hydrostatic pressure gradient) is given for the Mt. Simon Formation; 0.8 

psi/ft (185% of the hydrostatic pressure gradient) is reported for the Dundee Limestone. 

For the hypothetical example studied in this report, with a formation depth of 1,200 m to 

1,450 below the ground surface, these default fracture-closure pressure gradients 

correspond to sustainable fluid pressures of 158 and 222 bar, respectively (at 1,200 m 

depth). This translates to pressure buildup values between 38 and 102 bar. In our 

application example, we assume a sustainable pressure buildup threshold of 60 bar, which 

corresponds to 50% of the initial hydrostatic pressure at the top of the hypothetical 

storage formation. 
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3.4.  Simulation Results and Discussion 

Results from the numerical simulation examples introduced in Section 3.2 are presented 

here, with focus on the migration of the CO2 plume and the evolution of pressure buildup. 

Sensitivity to various hydrogeological and geometrical properties is investigated, and 

their impact on CO2 storage capacity is discussed.  

3.4.1.  Spatial and Temporal Distributions of CO2 Plume and Pressure Buildup 

Figure 5 shows the spatial distributions of CO2 saturation, CO2 density, fluid pressure, 

and pressure buildup (compared to the initial hydrostatic pressure distribution) at the end 

of the 30-year injection period. The presented results are for the base case with a model 

domain extending 20 km and impermeable upper and lower seals. The CO2 plume is 

approximately 4 km wide and is concentrated at the top portion of the aquifer, a result of 

the buoyant CO2 accumulating below the impervious caprock (Figure 5a). The density of 

the supercritical CO2 varies slightly, from 820 kg/m
3
 at the bottom of the reservoir to 780 

kg/m
3
 at the top, caused by local pressure differences (Figure 5b).  

As shown in Figures 5c and 5d, the region of elevated pressure is much larger than the 

CO2 plume size. In fact, a substantial pressure increase from hydrostatic is observed 

throughout the entire 20 km model domain, with the pressure buildup at the outer radial 

boundary at approximately 45 bar. Since the displaced brine cannot escape from the 

storage formation, the entire domain becomes an overpressured system, with the storage 

capacity provided by pore and fluid compressibility in response to the pressure increase. 

In addition to the formation-scale pressure buildup, there is some local increase near the 

injection zone, creating a driving force for the displacement of brine. The total pressure 

buildup near this zone is slightly above 60 bar, thus exceeding the sustainable pressure 

threshold assumed for this formation. We may conclude that this example features a 

pressure-constrained formation near or slightly beyond its capacity limits at the end of the 

designated injection time. Notice that the pressure contour lines away from the injection 

zone are mostly vertical, indicating horizontal brine displacement. Nonvertical contour 
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lines can be seen in the CO2 plume region, where the pressure conditions are affected by 

buoyancy, as well as nonlinearity due to two-phase flow processes. 
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Figure 5.  Spatial distribution of (a) CO2 saturation, (b) CO2 density, (c) fluid pressure, and (d) 

pressure buildup (change in fluid pressure from the initial hydrostatic condition), at 

30 years of CO2 injection, simulated for the “closed” domain with a 20 km radial 

extent. Figures 5a and 5b show close-ups of the CO2 plume (region with two-phase 

flow of CO2 and brine). 

Radial pressure-buildup profiles at different times throughout the injection period are 

shown in Figure 6. At the very beginning of injection, the injected CO2 displaces native 

brine in the area very close to the injection zone. The strong initial pressure buildup is the 

driving force to (1) move native brine away from the injection zone and (2) to overcome 

phase interference between aqueous and CO2 phases in the region of two-phase flow 

(Pruess and Garcia, 2002). This pressure increase, referred to here as injection-driven 

pressure buildup, depends on the boundary condition (i.e., CO2 injection rate in the 

injection zone, injection strategy), formation permeability, and two-phase flow 

conditions; its extent coincides roughly with the radial extent of the CO2 plume. The 

pressure pulse propagates away from the injection zone and reaches the outer radial 

boundary after approximately 2 years. After that, since the displaced brine cannot escape, 

the pressure at the outer boundary starts to increase with injection time in an 
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approximately linear manner; i.e., the entire model domain becomes overpressured such 

that additional pore volume is made available to store the injected CO2. The pressure 

buildup related to the need for generating additional pore space is referred to as storage-

driven pressure buildup, which depends mainly on the pore compressibility of the 

formation (as well as on changes in brine density).  

Both injection-driven and storage-driven pressure changes define the eventual pressure 

buildup that the formation experiences, with the relative importance of injection-driven 

buildup decreasing as time progresses. As discussed above, the final pressure conditions 

in this example simulation exhibit pressure increases over the majority of the model 

domain that are less than the sustainable threshold of 60 bar. Only in the region less than 

one kilometer away from the injection zone is the pressure buildup slightly higher than 

the threshold. Adequate injection strategies may be employed in such cases to reduce the 

injection-driven contribution to the pressure increase. 
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Figure 6.  Pressure-buildup profiles along the aquifer top at different injection times. Symbols 

indicate the CO2 plume extent to show the radial extent of the evolving two-phase 

flow region. 

 

3.4.2.  Variation of Formation Volume (Radial Extent) 

Figure 7 shows the spatial distribution of saturation and pressure buildup at the end of the 

30-year injection period for the case of a model domain with 100 km radial extent. 
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Comparison of Figures 5a and 7a indicates that the CO2 plumes in both cases, with 20 km 

and 100 km radial extent, are generally similar in shape. Minor differences can be seen in 

the lateral extent of the plumes, because differences in the pressure increases give rise to 

differences in CO2 density. Remember that the total CO2 mass injected into the formation 

is the same at the end of the 30-year injection for both cases. In contrast to the small 

difference in CO2 plume extent, a significant difference in the pressure conditions is 

observed between the two cases. The larger model domain is not pressure-constrained, as 

indicated by the zero pressure increase at the outer radial boundary at 100 km. In other 

words, the pressure conditions represent those of an open system, where the lateral 

boundary is too far away to be affected by any pressure perturbation or brine 

displacement. As a result, the maximum pressure increase near the injection zone, about 

half of what is observed in the 20 km case, represents injection-driven pressure buildup 

without any contributions from storage-driven pressure increases. At a radial distance of 

20 km, the pressure buildup is 8 bar in the 100 km case, significantly lower than the 45 

bar observed in the 20 km case.  
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Figure 7.  Spatial distributions of (a) CO2 saturation and (b) pressure buildup at 30 years of CO2 

injection, simulated for the “closed” system with a 100 km radial extent. Figure 7a 

shows a closeup of the CO2 plume (region with two-phase flow of CO2 and brine). 

Figure 8 shows pressure-buildup profiles along the aquifer top for all five sensitivity 

cases with different formation volumes. We observe that the pressure evolution is 

identical for all cases as long as the pressure pulse has not reached the respective model 

domain boundary. Once the pressure pulse reaches the lateral boundary, the pressure 
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increases at the boundary and the profiles start to deviate from the other cases with larger 

radial extent (which still act similar to open systems). In Figure 8, this behavior can be 

seen after 2 years of injection in the 10 km case, after 4 years in the 20 km case, after 8 

years in the 30 km case, and after 30 years in the 50 km case. Clearly, the smaller the 

formation, the sooner the pressure profiles start to deviate from the other results, and the 

higher the overall pressure buildup at the end of injection period. In the 10 km case, the 

simulated total pressure buildup actually reaches an unrealistically high level at the end 

of 30-year injection, with maximum values above 180 bar (beyond the scale of the 

vertical axis in Figure 8d). Injection would have to cease after approximately 8 years to 

keep the actual pressure buildup smaller than the sustainable threshold of 60 bar. 
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Figure 8.  Pressure-buildup profiles along the aquifer top for different radial extents at (a) 2, (b) 

4, (c) 8, and (d) 30 years of CO2 injection 

 

3.4.3.  Variation of Formation Permeability 

Figure 9 shows the sensitivity of local pressure buildup to the permeability of the storage 

formation. For the case with higher permeability (one order of magnitude higher than 

base case), the pressure buildup in the formation is almost uniform over the entire area, 
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varying from 51 bar close to the injection zone to 47 bar at the outer boundary (Figure 

9a). This uniformity would increase the storage capacity of a pressure-constrained 

formation, because the contribution of local pressure buildup due to injection is 

comparably small. For the second case with a lower permeability (a factor of two smaller 

than the base case), a strong local pressure buildup near the injection zone leads to total 

fluid pressure in excess of the assumed sustainable threshold of 60 bar—see Figure 9b. 

This condition occurs over most of the injection period, even at early times when the 

pressure pulse has not reached the model boundary.  

As mentioned in Section 3.3, the quick-assessment method assumes a uniform pressure 

buildup in the pressure-constrained storage formation, thereby accounting for storage-

driven pressure buildup, but not for injection-driven pressure buildup. It follows that the 

method would not provide meaningful results when the maximum pressure threshold is 

exceeded, because of injection constraints rather than volumetric storage constraints. 

Clearly, the pressure profiles observed in Figure 9b are good examples for such 

conditions. Thus, in closed systems with rather small permeability, the local pressure 

buildup would need to be considered by alternative methods, e.g., using detailed 

numerical models.  
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Figure 9.  Horizontal profiles of pressure buildup at different times of CO2 injection for 

formation permeability of (a) 10
–12

 and (b) 5  10
–14

 m
2
  

3.4.4.  Variation of Seal Permeability 

Figure 10 shows horizontal profiles of pressure buildup in the model domain considering 

different permeability values assigned to the sealing units. In contrast to the impermeable 

seals assumed in the base case (closed systems), we now use permeability values of 10
-20

, 

10
-19

, 10
-18

, and 10
-17

 m
2
, respectively (semi-closed systems). The pressure buildup 
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observed in the storage formation is very sensitive to increases in seal permeability. 

While the lowest seal permeability shows a behavior very similar to the closed system, 

we see a strong reduction of overall pressure buildup in all other cases, particularly those 

with permeabilities of 10
-18

 and 10
-17

 m
2
. In these cases, a significant fraction of the 

displaced brine escapes from the storage formation into the seals, and through the seals 

into the overlying and underlying formations, thereby providing additional storage 

capacity for the injected CO2 such that less pressure buildup occurs.  
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Figure 10.  Horizontal profiles of pressure buildup along the aquifer top at different times of CO2 

injection for seal permeability of (a) 10
–20

, (b) 10
–19

, (c) 10
–18

, and (d) 10
–17

 m
2
  

We have calculated the cumulative fraction of displaced brine escaping from the storage 

formation relative to the total volume of injected CO2. With a small seal permeability of 

10
–20

 m
2
, this volume fraction is rather insignificant at 0.07, whereas with a seal 

permeability of 10
–17

 m
2
, this fraction increases to 0.93; i.e., the additional CO2 storage 

capacity from brine leakage would amount to about 93% of the totally injected CO2 after 

30 years. This effect can be very important for storage-capacity estimates in 

compartmentalized systems that have sealing units with small, but non-zero, 
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permeability. Notice that the pressure profiles in Figure 10d (for a seal permeability of 

10
-17

 m
2
) remain relatively unchanged after a few years of injection, indicating that a 

quasi-steady state has been reached in which the volumetric rate of leakage of displaced 

brine is identical to the volumetric rate of injected CO2. 

In contrast to the significant leakage of displaced brine, insignificant amounts of CO2 

escape from the storage formation into the seals. The cumulative fractions of CO2 leaking 

into the caprock are 0.22%, 0.35%, 0.70%, and 3.1% of the total injected CO2 mass, for 

the seal permeability cases of 10
-20

, 10
-19

, 10
-18

, and 10
-17

 m
2
, respectively. This is 

because CO2 as the nonwetting-phase fluid needs to overcome a considerable capillary 

entry pressure before being able to migrate into the water-saturated pores of the sealing 

units. Notice also that the observed migration of CO2 within the seals is limited to the 

immediate vicinity of the storage formation; CO2 is not able to escape into units 

overlying or underlying the seals. Our results thus suggest that compartmentalized 

storage reservoirs with reasonably good, but not perfect, seals may allow for enough 

brine leaking out of the formation to offset pressure-related storage limitations, while still 

having sufficient sealing capacity to trap supercritical CO2. 

3.5.  Validity of the Quick-Assessment Method 

This section describes application of the quick-assessment method to the simulation 

scenarios discussed above. We derive estimates for domain-averaged pressure buildup 

and storage efficiency factors and compare these with the corresponding “true” values 

obtained via detailed numerical simulations.  

3.5.1.  Comparison of Pressure-Buildup Estimates 

The first step to demonstrate the validity of the quick-assessment method is to compare 

the estimated domain-averaged pressure buildup against the numerical simulations results 

for both closed and semi-closed systems. Figure 10a shows domain-averaged pressure 

buildup, as a function of injection time, for closed systems (with impermeable seals) of 
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varying total pore volume. The quick-assessment estimates have been obtained using 

Equation (4), solving for pressure buildup )(tP at given times t  during the injection 

period. The corresponding cumulative CO2 volume )(tV 2CO at each time step t is derived 

from the constant CO2 injection rate of 120 kg/s used in the examples. Conversion from 

CO2 mass to CO2 volume is conducted at each time step using the CO2 density at average 

pressure conditions, which, as mentioned before, requires a few iterations. The estimated 

results are then compared to the domain-averaged pressure values derived from the 

numerical simulations. The agreement between the true numerical solutions and the quick 

estimates is excellent, considering that several simplifications and assumptions are 

involved in the quick-assessment method (e.g., uniform pressure buildup in domain, no 

dissolution, constant compressibility values). 
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Figure 11.  Comparison of the transient profiles of domain-averaged pressure buildup obtained 

through numerical simulations and through the quick-assessment method for (a) a 

closed system with varying radial extents R, and (b) a semi-closed system with radial 

extent R = 20 km and seals of varying seal permeability (ks). 

Figure 11b shows a similar comparison of domain-averaged pressure buildup for the 

semi-closed system with non-ideal seals of varying permeability. In this case, the quick-

assessment estimates are obtained using Equation (6). Overall, the agreement between 

estimated and numerical results is reasonably good, with a maximum discrepancy of less 

than 6%. While the quick-assessment method captures the general nonlinear trends in 

pressure buildup very well, it slightly underestimates pressure buildup for the case with 
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the smallest seal permeability (i.e., 1.0  10
-20 

m
2
) and slightly overestimates pressure 

buildup in the cases with relatively high seal permeability (i.e., 1.0  10
-17 

m
2
).  

In summary, the quick-assessment method provides reliable pressure estimates, ones that 

can be compared with the maximum sustainable pressure buildup to judge whether the 

designated volume of CO2 can be safely stored in a storage formation with or without 

vertical interlayer communication with other units. 

Both numerical and estimated results show clearly that the average pressure approaches 

an asymptotic maximum after a few years in the case with the relatively high seal 

permeability of 10
-17 

m
2
 (Figure 11). As mentioned before, this indicates a steady-state 

condition with equal rates of CO2 entering and brine leaving the storage formation. We 

apply Equation (7) to calculate the average pressure buildup that would correspond to 

such a condition and arrive at values of 3.4, 32.3, and 270.2 bar for the three cases with 

seal permeabilities of 10
-17

, 10
-18

, and 10
-19

 m
2
, respectively. In the first case, as to be 

expected, the estimated value from Equation (7) is identical to the final pressure buildup 

shown in Figure 11b. In the second case, a steady-state condition has not yet been 

established after 30 years of injection, but would be reached if injection would continue 

for a few more years. The pressure value of 32.3 bar associated with this steady-state 

condition is less than the sustainable pressure threshold, indicating that this scenario 

would not be pressure-constrained even if the injection period were much longer. In the 

third case, however, with a seal permeability of 10
-19

 (or less), a steady-state condition 

cannot be reached without geomechanical degradation of the seals, because the steady-

state pressure buildup calculated from Equation (7) is much higher than the sustainable 

threshold.  



    

NETL Project Annual Report, October 1, 2006 to September 30, 2007,  page 42 of 88. 

3.5.2.  Comparison of Efficiency Factors for Closed Systems 

We now compare the simulated and estimated efficiency factors of CO2 storage in a 

closed system with varying total pore volume (i.e., radial extents of 10, 20, 30, 50, 100 

km). As pointed out before, the efficiency factor is defined as the cumulative volume of 

CO2 per total initial pore volume. We calculate “actual” efficiencies, meaning we derive 

efficiency factors for the considered injection scenarios using the observed pressure 

buildup, independent of how this relates to a maximum sustainable pressure buildup. 

Notice that the simulated efficiency factors include storage contributions from CO2 in 

supercritical phase as well as CO2 dissolved in brine. The quick-assessment estimates are 

determined based on the average pressure buildup from the simulation runs, then using 

Equation (4) to calculate the total injected CO2 volume or Equation (5) to directly 

calculate the actual efficiency. 

Table 3 shows the comparison of the actual efficiency factors for each case after 30 years 

of injection, showing reasonable agreement between estimated and calculated results. The 

quick-assessment estimates are slightly higher than those obtained through detailed 

numerical simulations. It can be seen that the average pressure buildup in the 20 km case 

is close to the sustainable pressure-buildup threshold (60 bar), whereas the pressure 

buildup in the larger domains is far less than the threshold, resulting in significantly 

smaller actual storage efficiencies. In comparison, the maximum storage efficiency, 

calculated using the sustainable pressure buildup of 60 bar and assigning reasonable 

values for brine and pore compressibilities would be E = 0.0048 (Section 3.3.3). The 

calculated actual efficiency factors can be evaluated against the maximum efficiency 

factor to check whether the designated CO2 volume can be safely stored. For the case of 

10 km radial extent, the pressure buildup at the end of the 30-year injection period is 

clearly higher than the sustainable threshold, indicating that the designated CO2 volume 

is not feasible in this case.  
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Table 3.  Comparison of the actual efficiency factors for CO2 storage in a closed system, using 

numerical simulation results and the quick-assessment method in Equation (5), at 30 

years of injection 

 Simulation-Based Results Quick-Assessment 

Estimates 

Domain 

Radius  

(km) 

Initial Pore 

Volume 

(10
9
 m

3
) 

Total Stored 

CO2 

Volume
1

 

(10
9
 m

3
) 

Average 

Pressure 

Buildup 

p (bar) 

Actual 

Efficiency 

Factor   

Actual Efficiency 

Factor 

 

100 942.5 0.139 2.0 0.00015 0.00017 

50 235.6 0.138 7.9 0.00059 0.00066 

30 84.8 0.136 21.4 0.0016 0.0018 

20 37.7 0.131 46.4 0.0035 0.0039 

10 9.4 0.117 166.02 0.0124 0.0142 
1
 Injected mass is identical for all domains. Stored volumes differ slightly because of different 

pressure/density conditions. 
2
 Average pressure buildup is higher than sustainable threshold. The calculated actual storage efficiency is 

therefore not feasible. 

3.5.3.  Comparison of Storage Contributions for Semi-Closed Systems 

In this validation exercise, we analyze the three individual contributions to CO2 storage 

capacity in semi-closed systems, provided by native brine within the storage formation, in 

the seals, and in the overlying/underlying formations. Values obtained through the quick-

assessment method (using Equations 3a through 3c) are compared against those directly 

derived from the numerical simulations. Table 4 summarizes the resulting volumetric 

fractions for the different seal permeability cases at the end of the 30-year injection 

period. One can see that most of the storage capacity is provided by the storage formation 

when seal permeability is small (e.g., more than 90% for seal permeability of 10
-20

 m
2
). 

In contrast, most of the storage capacity is provided by brine escaping through the seals 

when seal permeability is comparably high (e.g., more than 90% for seal permeability of 

10
-17

 m
2
). In all cases, the match between the simulated and estimated fractions is 

reasonably good. The largest relative discrepancies occur with respect to the seal storage 

of displaced brine, which fortunately is the least important of the three contributions. As 

discussed in Section 3.3.1, seal storage is calculated assuming a linear pressure variation 
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in the seals at all times, a condition that may be violated in certain cases. In the small-

permeability case (i.e., 10
-20

 m
2
), for example, the pressure pulse penetrates only halfway 

through the seals within the injection period, clearly exhibiting a nonlinear behavior.  

Table 4. Comparison between simulated and estimated volumetric fractions of displaced brine 

stored in the storage formation, in the seals, and in the overlying and underlying 

formations, relative to the total injected CO2 at the end of the 30-year injection 

period, for different seal permeability values 

Simulation Results Estimation by Equation (3) Seals 

Permeability 
Storage 

Formation 

Seals Other 

Formations 

Storage 

Formation 

Seals Other 

Formation

s 

10
-17

 m
2
 0.071 0.011 0.918 0.069 0.007 0.925 

10
-18

 m
2
 0.470 0.104 0.426 0.500 0.050 0.450 

10
-19

 m
2
 0.824 0.150 0.026 0.850 0.085 0.065 

10
-20

 m
2
 0.931 0.059 0.010 0.903 0.090 0.007 

3.5.4.  Adequacy of Important Assumptions and Simplifications 

As the above comparisons show, the quick-assessment method provides reasonable 

estimates for the CO2 storage capacity and pressure buildup in compartmentalized saline 

formations with impervious or non-ideal seals. One major limitation is the assumption of 

a uniform pressure buildup throughout the entire storage formation. This assumption 

works well as long as the average pressure is reasonably representative of the true 

pressure conditions (or, in other words, if the injection-driven pressure buildup is less 

important than the storage-driven pressure buildup). The detailed simulations in Section 

3.4.3 feature one sensitivity case with small formation permeability of 5  10
-14

 m
2
, 

where injection pressure alone exceeds a sustainable threshold. The quick-assessment 

method is not applicable in this case. We generally recommended judging the quick-

assessment results with care, knowing that the average pressure predictions may 

underestimate the local conditions near the injection zone.  



    

NETL Project Annual Report, October 1, 2006 to September 30, 2007,  page 45 of 88. 

Inaccuracies related to the fluid properties employed in the quick-assessment method can 

be quantified. For example, brine viscosity and compressibility are assumed constant. 

The inaccuracies introduced by this assumption are negligible over the pressure range 

relevant in this study. CO2 density is either assumed constant or is calculated based upon 

the actual domain-averaged pressure values at storage conditions. The latter captures 

transient pressure changes better than the former, but still introduces some inaccuracies 

because the domain-averaged pressure buildup may differ from actual pressure conditions 

within the CO2 plume (which, of course, define CO2 density). For the pressure range 

evaluated in this study (i.e., from 120 bar at hydrostatic to 180 bar at sustainable 

maximum pressure), the CO2 density varies between 720 and 820 kg/m
3
 (at 45ºC), a 

difference of about 12%.  

A similar uncertainty contribution is introduced by the assumption of negligible CO2 

dissolution. This assumption leads to an overestimation of pressure buildup and an 

underestimation of CO2 storage capacity. The approximation error caused by this 

assumption depends on the CO2 solubility in brine, which in turn varies with pressure, 

temperature, and salinity. The error also depends on the fraction of CO2 in contact with 

water. The detailed numerical simulations presented in this study suggest that the mass 

fraction of CO2 dissolved in brine (with salt mass fraction of 0.15) ranges from 0.02 to 

0.03, and that the dissolved CO2 accounts for approximately 7% of the total injected CO2 

mass at the end of the 30-year injection period.  

3.5.5.  Storage Capacity in Closed and Open Systems 

The maximum efficiency factor of CO2 storage in a closed formation is relatively small. 

In the examples discussed in this study, the maximum storage efficiency is on the order 

of 0.005 (or 0.5% of the total initial pore volume), using a pore compressibility value 

typical of sedimentary rock and assuming a maximum pressure buildup of 60 bar. As 

discussed in Section 3.2.2.2, pore compressibility can vary widely depending on the 

formation materials. Pore compressibility values ranging from 4.5  10
-11

 Pa
-1

 to 4.5  
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10
-9

 Pa
-1

 would translate to maximum efficiency factors ranging from 0.0025 to 0.029 

(0.25% to 2.9%). The efficiency in a closed system is smaller than these maximum values 

when local pressure increase is relevant and injection-driven pressure contributions 

would need to be added to the domain-averaged pressure estimates. On the other hand, 

CO2 dissolution in brine allows for more carbon storage in a closed system than predicted 

by the quick-assessment method. Inclusion of dissolution would increase storage 

efficiency on the order of a few to ten percent.  

In semi-closed systems, brine leakage into and through the seals can significantly 

enhance the storage capacity of a formation. Our simulations indicate that in cases with a 

comparably high seal permeability (in our application example around 10
–19

 m
2
), the rate 

of brine leakage through the seals is sufficient to significantly reduce pressure buildup in 

the storage formation (while the capillary and permeability barriers capabilities of the 

seals are still effective in containing injected CO2 in the storage formation). For larger 

seal permeabilities, on the order of 10
-17

 m
2
, the formation-seal system effectively acts 

like an open system, where storage-driven pressure buildup is no longer a constraint on 

storage capacity estimates.  

Capacity estimates for open systems have focused on determining the limits on CO2 pore 

occupancy owing to hydrodynamic, heterogeneity, gravity, and multiphase effects. DOE 

(2007) considered so-called formation-scale contributions, reducing the net pore volume 

available for CO2 storage in a suitable formation, defining individual efficiency factors 

for areal displacement effects (0.5–0.8), vertical displacement effects (0.6–0.9), gravity 

effects (0.2–0.6), and microscopic displacement effects (0.5–0.8). Multiplication of these 

individual factors provides first-order estimates on the overall storage efficiency range in 

an open formation. For example, multiplying the respective minimum and maximum 

factors given above, one arrives at an efficiency range for open systems from 0.03 up to 

0.35. This range is much higher than the range (0.0025 to 0.029) for a closed system, as 

considered above. Of course, issues related to pressure buildup or brine displacement are 
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not considered in the open-system estimates developed in DOE (2007), i.e., there is an 

intrinsic assumption that the storage capacity is not constrained by pressure buildup or 

brine displacement and the possible impact on the environment.  

3.6.   Summary for Pressure-Constrained Systems 

1) The available volume for CO2 storage in closed/semi-closed systems is mostly 

provided by pore compressibility and brine compressibility in response to formation 

pressure buildup, and areal leakage of native brine into and through seals.  

2) Methods for quick assessment of pressure buildup and storage capacity were 

developed for storage formations with impervious as well as permeable seals. The 

validity of these methods was demonstrated through reasonable agreement with 

results from detailed numerical simulations. The quick-assessment methods estimate 

the expected pressure buildup in response to injection of a given volume of CO2, 

which can then be compared to a sustainable pressure buildup threshold in the 

formation. The threshold pressure values are usually selected based on geomechanical 

assessments or regulatory considerations. Simplifications and assumptions are made 

that may limit the applicability of the method is certain cases. See Section 3.5.4 for a 

discussion. 

3) For a closed system with impervious seals, a typical formation-scale maximum 

efficiency factor of 0.005 was estimated for the conditions studied in this report, with 

similar storage contributions provided by pore and brine compressibility. Compared 

to this, DOE (2007) suggests formation-scale efficiency factors in open systems 

between 0.03 and 0.35, with a best estimate of 0.13. 

4) One interesting finding of this research is the importance of seal permeability on 

pressure buildup in the storage formation. Closed systems with impermeable seals 

allow CO2 storage only to the point that pressure in the formation approaches a given 

pressure threshold. This pressure constraint translates into small storage efficiency. 
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However, only formation-seal systems with very small seal permeability of 10
–20

 m
2
 

or less exhibit such a closed-system behavior; i.e., only then is the displacement of 

native brine into and through the bounding seals so small that the observed pressure 

buildup is similar to a closed system. In other sensitivity cases, with seal permeability 

varying from 10
-19

 m
2
 to 10

-17
 m

2
, brine leakage into and through the seals had a 

moderate to strong effect in reducing or limiting the pressure buildup in the storage 

formation, thus allowing for considerably higher storage efficiency (while CO2 was 

still safely trapped because of the combined capillary and permeability barriers). Our 

results indicate that a semi-closed system with seal permeability of 10
-17

 m
2
 is 

essentially an open system with respect to pressure buildup, because the rate of brine 

leaking through the seals equals the rate of injected CO2 after a certain injection time 

period.  

5) Related research results are being published in Zhou et al. (2007a,b) and Zhou et al. 

(in review), see Section 8. 
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4. Idealized Open Storage Formations 

This section describes numerical modeling to estimate the region of influence in response 

to industrial-scale CO2 injection in a large laterally open storage formation. Detailed 

numerical simulations have been conducted using the TOUGH2/ECO2N simulator 

(Pruess et al., 1999; Pruess, 2005) assuming a multilayer groundwater system with a 

sequence of aquifers and aquitards. We evaluated the region of influence in both lateral 

and vertical directions, by analyzing the pressure response as well as estimating the 

potential brine migration pathways. Sensitivity studies have been conducted varying the 

hydrologic properties of the storage formation and the confining units. Recognizing the 

importance of seal permeability for pressure buildup in semi-closed formations (Section 

3), we consider seal permeability as one of the key parameters affecting the lateral and 

vertical volume affected by pressure buildup.  

Notice that the simulation study involves an idealized multilayer aquifer-aquitard 

sequence at depth (from about 1,000 m to about 1600 m below surface); we have not yet 

modeled direct communication pathways with shallow aquifers and resulting 

environmental impact on groundwater resources. These topics will be addressed in future 

project phases, in conjunction with modeling of real-world storage sites.  

4.1.  Background on the Role of Seals and Seal Properties  

Based on the results obtained for semi-closed systems (Section 3.4.4), we may expect 

seal permeability to be a significant factor also for pressure buildup and brine migration 

in laterally open formations. Suitable sites for long-term storage of CO2 would typically 

have typically thick, laterally continuous shale, mudstone, or siltstone seals, i.e., 

sedimentary rocks formed by consolidation of clay and silt layers. Due to compaction, the 

sealing units have a lower porosity and permeability and a higher capillary entry pressure 

than the original clays and silts. 
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The primary role of the confining layers in CO2 sequestration is to act as a permeability 

and capillary barrier to impede or prevent upward migration of supercritical CO2. CO2 

tends to move upward because its density is smaller than that of water and native brine. 

The permeability of confining units is usually orders of magnitude lower than that of the 

target storage formation. As discussed in Section 3.2.2.3, seal permeability may vary in a 

wide range from approximately 10
-16

 to 10
-23

 m
2 

(Neuzil, 1994; Hildenbrand et al, 2002, 

2003; Hart et al., 2006). Capillarity also plays an important role in trapping CO2 under a 

caprock unit because CO2, as a non-wetting phase in a saline aquifer, can migrate into the 

seals only when the pressure buildup in the storage formation is higher than the capillary 

entry pressure in a CO2-brine system. The capillary-barrier role of the confining units 

depends on the contrast of the pressure buildup in the storage formation and the entry 

pressure of the seals. Confining layers may have a wide range of entry pressures, as 

measured through laboratory CO2-breakthrough experiments (Hildenbrand et al., 2002, 

2003; Li et al., 2005). For example, Hildenbrand et al. (2002, 2003) reported capillary 

displacement pressure for CO2-brine systems varying from 1 bar to 49 bar. A value of 

210 bar was observed for Mississippian-age Midale Evaporite in the Weyburn Field in 

southeastern Saskatchewan, Canada (Li et al., 2005). The small permeability and high 

capillarity of confining units limit the leakage of CO2 in its phase to a very small amount 

provided that there are no fractures and fault zones within the confining units. 

Of course, the confining units also play a role in limiting the flow of native brine out of 

the storage formation into overlying and underlying strata. In contrast to CO2 

supercritical, this process is limited only by the small seal permeability; capillary sealing 

is not a limiting factor for brine leakage. Note that brine leakage may occur anywhere in 

the storage formation where pressure increases in response to CO2 injection. Thus brine 

leakage can occur over a large area, considering that a pressure pulse can propagate far 

away from the injection zone. In comparison, the typical thickness of storage formation 

may be on the order of tens of meters, which implies that the area for lateral flow of 

displaced brine is orders of magnitude smaller than that for vertical flow. On the other 
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hand, the typical permeability within a storage formation is orders of magnitude larger 

than the typical permeability of a sealing unit.  

How far the pressure buildup will extend into the lateral and the vertical direction 

depends on the competition between flow of displaced brine within the storage formation 

and inter-layer flow into over- and underlying units. In other words, if brine leakage out 

of the formation is important, the lateral displacement of brine within the formation 

becomes less extensive, and vice versa. Both lateral and vertical displacement need to be 

evaluated with respect to the possible environmental impact on shallow groundwater. For 

very small seal permeabilities, the native brine displaced by injected CO2 will migrate 

mostly within the storage formation, which could affect freshwater resources located 

further updip (Figure 1) (Nicot, 2006). On the other hand, if the confining units have a 

relatively higher permeability, native brine may slowly migrate into and through the seals 

into neighboring formations, and may reach USDWs in extreme cases. At the same time, 

such considerable leakage would attenuate pressure buildup in the storage formation. 

To our knowledge, no research has been conducted to date to systematically estimate the 

area of influence (with respect to brine migration and pressure buildup) in multilayer 

systems where lateral and vertical brine flow may compete. Our research therefore aims 

at (1) developing a basic understanding of the flow and pressure conditions in an open 

storage formation embedded in a sandstone/shale sequence, (2) exploring effects of 

interlayer communication through low-permeability seals and impact on lateral/vertical 

displacement, and (3) determining the region of influence as a function of formation/seal 

key properties.  
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4.2.  Model Setup and Parameters 

To understand pressure buildup and brine migration in open aquifers, we developed a 

numerical model simulating the multiphase flow and multicomponent transport of CO2 

and brine in a hypothetical multilayer formation, using the TOUGH2/ECO2N simulator 

(Pruess et al., 1999; Pruess, 2005). The transient pressure buildup, spatial CO2 plume 

evolution, as well as brine flow and transport were simulated for various sensitivity cases. 

Results are presented as a function of time starting from the onset of injection and 

distance from the injection zone. 

4.2.1. Model Setup  

A two-dimensional radially symmetric model domain was chosen representing a deep 

saline aquifer with a typical sandstone/shale stratigraphy. The storage formation is 60 m 

thick and located at a depth of approximately 1,300 m (top of formation) below the 

ground surface. The storage formation is bounded at the top by a sealing unit of 100 m 

thickness each, followed by another 60 m thick aquifer and another 100 m thick shale 

formation (see Figure 12). The same sequence of shale/sandstone/shale underlies the 

storage formation. Altogether, the model domain includes three aquifers and four shales, 

with vertical depth ranging from 1,040 m to 1,620 m. Both the top and bottom model 

boundaries have fixed pressure boundary conditions set to the initial hydrostatic pressure 

value, meaning that fluids can freely flow into the over- and underlying aquifers. The 

outer lateral boundary is also open for fluids to escape from the model domain, again by 

imposing a fixed pressure conditions equal to hydrostatic. The lateral extent of the model 

domain was set to 200 km, which corresponds to a footprint area of more than 125,000 

km
2
. The large lateral extent was chosen to ensure that the boundary condition would 

have minimal effect on the simulation results.  

CO2 is injected in a zone of 125 m thickness and 50 m radial extent, representing not a 

single well, but rather a few distributed wells. Injection occurs over 30 years at an annual 

rate of 1.52 million tonnes of CO2. The simulations continue for a 70-year post-injection 
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period. The aquifer is initially fully brine-saturated, assuming a hydrostatic fluid pressure 

distribution in the vertical direction. Isothermal conditions are modeled with a uniform 

temperature of 45ºC. The initial brine salinity is 0.15 (mass fraction).  

 

 

Figure 12.  Schematic showing vertical cross section of radially symmetric model domain with 

deep brine formation for CO2 storage and overlying/underlying sandstone/shale 

sequence. The numerical simulation grid is also depicted. 

4.2.2. Model Parameters  

The hydrogeologic properties chosen for the aquifer-seal sequence are given in Table 5. 

The properties of all three aquifers are typical of a sandstone brine formation suitable for 

CO2 storage. Aquifer permeability and pore compressibility have been varied in 

sensitivity cases (Table 6). The properties of all four seals are representative of shale 

formations suitable for trapping CO2, with lower permeability and higher compressibility 

compared to the sandstone. Seal permeability and compressibility have been varied as 

well. Specifically, seal permeability was varied over a wide range, from 1.0  10
-16

 to 1.0 

 10
-21

 m
2
 plus one case with an impermeable seal (Table 6).  Notice the differences in 
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sandstone and shale properties, for permeability (much lower in shale), compressibility 

(higher in shale), porosity (lower in shale), and van Genuchten (1980)  value 

(representing roughly the inverse of entry pressure for the nonwetting phase, higher entry 

pressure in shale). See a discussion of typical parameter ranges for storage formations 

and seals in Section 3.2.2. 

Table 5. Typical values of hydrogeologic properties for the aquifer-seal system used in the 

simulations 

Properties Values for Aquifers Values for Seals 

Permeability (m
2
) 1.0  10

-13
 1.0 10

-16 
 to 1.0 10

-21
, and 0 

Pore Compressibility (Pa
-1

) 4.5  10
-10

 9.0 10
-10

 

Porosity 0.20 0.05 

Van Genuchten m 0.46 0.46 

Van Genuchten  (Pa
-1

) 5.1  10
-5

 1.67 10
-6

 

Residual CO2 saturation 0.05 0.05 

Residual water saturation 0.30 0.30 
 

 

Table 6. Simulation cases 

Cases Formation Permeability 

(m
2
) 

Formation 

Compressibility 

(Pa
-1

) 

Seal 

Permeability 

(m
2
) 

Seal 

Compressibility 

(Pa
-1

) 

1.0  10
-13

 4.5  10
-10

 1.0 10
-16

   9.0 10
-10

 

1.0  10
-13

 4.5  10
-10

 1.0 10
-17

   9.0 10
-10

 

1.0  10
-13

 4.5  10
-10

 1.0 10
-18

   9.0 10
-10

 

1.0  10
-13

 4.5  10
-10

 1.0 10
-19

   9.0 10
-10

 

1.0  10
-13

 4.5  10
-10

 1.0 10
-20

   9.0 10
-10

 

1.0  10
-13

 4.5  10
-10

 1.0 10
-21

   9.0 10
-10

 

Base Cases with 

Varying Seal 

Permeability 

1.0  10
-13

 4.5  10
-10

 0 0 

2.0  10
-13

 4.5  10
-10

 1.0 10
-18

   9.0 10
-10

 Sensitivity to 

Formation 

Permeability 
0.5  10

-13
 4.5  10

-10
 1.0 10

-18
   9.0 10

-10
 

1.0  10
-13

 4.5  10
-09

 1.0 10
-18

   9.0 10
-09

 Sensitivity to 

Compressibility 

(Formation and 

Seal) 

1.0  10
-13

 4.5  10
-11

 1.0 10
-18

   9.0 10
-11
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4.3. Simulation Results and Discussion 

4.3.1. Pressure Buildup 

We evaluate the pressure buildup in response to CO2 injection at the end of the 30-year 

injection period. Contours of pressure buildup are shown in Figure 13 for the base-case 

runs with seal permeabilities of 10
-17

, 10
-18

, 10
-19

, and 10
-20

 m
2
. A cutoff value of 0.2 bar 

is set for the contours; in other words, pressure buildup less than 0.2 bar, or less than a 

2 m increase in the groundwater elevation, is not shown. It is obvious that seal 

permeability has a strong effect on both vertical and lateral pressure propagation. The 

low-permeability case (10
-20

 m
2
) shows a pressure increase of 0.2 bar extending almost 

80 km laterally within the storage formation. This radial extent corresponds to an area of 

influence covering more than 20,000 km
2
. (Instead of the horixontal stratigraphy assumed 

in our simulations, we may imagine a gently updipping formation which is used for water 

supply from shallow groundwater resources at 80 km distance. Ignoring the impact of 

vertical variations in salinity and compressibility, the shallow groundwater resource 

would then experience a water table change of about 2 m.) Vertically, the region of 

pressure buildup is constrained to the sealing units immediately adjacent to the storage 

formation.  

With increasing seal permeability, a different behavior shows. The high-permeability 

case (10
-17

 m
2
), for example, has a lateral area of influence within the storage formation 

extending to less than 35 km in radial direction, or about 3,000 km
2
. Vertical leakage out 

of the storage formation is quite effective, as apparent from pressure increases extending 

all the way to the top and bottom model boundaries. The maximum pressure near the 

injection zone is also reduced compared to the cases with lower seal permeability. 

Clearly, brine leakage due to inter-layer communication has a strong attenuation effect on 

the pressure conditions within the storage formation. However, as the vertical extent of 

the elevated-pressure zone shows, the pressure buildup may possibly reach shallow 

aquifers in cases with comparably high seal permeability via vertical inter-layer 
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communication. While contorted by the vertical-to-horizontal scale ratio in Figure 13, the 

pressure contours show clearly the predominantly horizontal flow within the aquifers 

(vertical contours) versus the predominantly vertical flow within the seals (close-to-

horizontal contours).  

The evolution of pressure change in the storage formation experienced at different 

distances (10, 20, 50, and 100 km) from the injection zone is shown in Figure 14, for all 

seal-permeability cases ranging from zero to 10
-16

 m
2
. The time period is from 0 to 100 

years, which comprises the 30-year injection period and a 70-year post-injection period. 

The transient pressure buildup in the storage formation is significantly affected by both 

radial location and seal permeability. Pressure buildup is larger close to the injection 

zone; also the response time at the beginning and end of injection is shorter. Further 

away, the pressure response is weaker and occurs later. In fact, the maximum pressure is 

observed years to decades after injection stops when measured at 50 and 100 km radial 

extent. While strong dependence of pressure buildup on location is expected (in particular 

in a radial-symmetric setting), the significant impact of seal permeability may be 

surprising. We may group all cases with seal permeability equal to or lower than 10
-20

 m
2
 

into an “impermeable-seal” category; these cases all feature similar pressure transients 

showing the strongest pressure perturbation in the storage formation. Relative to this, all 

other cases show moderate to drastic pressure reduction, about 20% in the 10
-19

 m
2
 case, 

about 50% in the 10
-18

 m
2
, and about 80% in the 10

-17
 m

2
 case, demonstrating again the 

importance of inter-layer brine flow of displaced brine. Almost no pressure buildup is 

observed in the 10
-16

 m
2
 case, even at a close distance of 10 km to the injection zone. We 

caution, however, that the migration of buoyant CO2 into the caprock is significant in this 

case, suggesting that the sealing characteristics would not allow for safe long-term 

trapping of CO2.  
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Figure 13.  Spatial distribution of pressure buildup (change in fluid pressure from the initial hydrostatic condition), at 30 years of CO2 injection, 

as a function of seal permeability 
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Figure 14.  Sensitivity of pressure change to seal permeability, at different radial locations in the storage formation 
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The extremely large area of influence observed with respect to pressure buildup may 

have considerable implications for the storage capacity at a given site. To provide a 

perspective, we may assume that the storage formation shown in Figure 12 communicates 

with a valuable groundwater resource and that the pressure buildup observed in Figures 

13 and 14 corresponds to a pressure threshold that should not be exceeded. We may then 

calculate the storage efficiency for these conditions, i.e., the volume of CO2 stored 

divided by the total initial porosity of the formation. With total of CO2 volume of about 

65 million m
3
 injected in our simulation example (30 years with 1.52 million tones 

annually, divided by a density of 0.7 tonnes/m
3
), and using the total initial pore space for 

the 50-km radial domain as reference volume, the maximum storage efficiency as 

constrained by pressure buildup is less than 0.1%. This value is significantly smaller than 

the storage efficiency estimated in DOE (2007), where pressure constraints related to 

brine displacement are not considered (Section 3.5.5). 
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4.3.2. Spatial Distribution of CO2 Plume 

We use a 10
-18

-m
2
 seal permeability as a base case to discuss the evolution of the CO2 

plume during the injection period, shown in Figure 15 together with pressure buildup 

contours and brine flow vectors. Though the seal permeability is high enough to allow for 

inter-layer brine flow (see Figures 13 and 14), the CO2 plume is safely trapped by 

permeability and capillary barriers. The plume is approximately 3 km wide and is 

concentrated at the top of the storage formation. The 3-km plume size compares to the 

approximately 60 km radial extent experiencing a pressure buildup of 0.2 bar or more 

(Figure 13). This difference in region of influence quantifies earlier discussion about the 

footprint area of the CO2 plume typically much smaller than the footprint area of elevated 

pressure (Figure 1). The flow vectors indicate horizontal brine flow within the storage 

formation, with the exception of the plume area where buoyant CO2 migration generates 

a downward component of brine flow. The vector length in Figure 15 corresponds to the 

magnitude of velocity, with the result that the low-velocity flow in the seals and 

top/bottom aquifers are too small to be visible. Notice that the CO2 plumes are basically 

identical for all seal permeability cases, with the exception of the case with 10
-16

-m
2
 

permeability (these cases are not shown here for brevity). As indicated before, CO2 is not 

safely trapped in this case; the plume leaks into the caprock and almost reaches the 

overlying aquifer (top aquifer) after 30 years of injection.  
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Figure 15.  Contours of CO2 saturation (flooded contours), contours of fluid pressure change (in red lines), and brine flow vectors for the case 

with a 10
-18

-m
2
 seal permeability 
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4.3.3. Characteristics of Brine Displacement 

We discuss here the brine displacement/migration characteristics as a function of time, 

radial location, and seal permeability. Specifically, we evaluate the total volumetric brine 

flow at different radial cross-sections within the storage formation (Figure 16), the total 

volumetric inter-layer brine flow into different sandstone/shale units (Figure 17), and the 

lateral brine transport velocity within the storage formation (Figure 18).  

For reference, the volumetric brine flow is compared in Figure 16 to the volumetric CO2 

injection rate, which is about 5,500 m
3
 per day at storage conditions. Notice the modest 

changes in CO2 injection rate, indicative of changes in pressure conditions (and related 

CO2 density changes) during the injection period. (The plot shows the volumetric CO2 

injection rate for the sensitivity case wit a seal permeability of 10
-18

 m
2
.) For a pure 

piston-type flow in the storage formation, i.e., without compressibility effects and 

assuming impermeable seals, the volumetric rate of brine displacement at any radial 

location would be approximately equal to the volumetric rate of CO2 injection. The 

results in Figure 16 demonstrate, however, that both compressibility and brine leakage 

into non-ideal seals are important in reducing the brine flow rates in the storage formation 

to much less of the CO2 injection rates. Compressibility is the dominant factor in the 10
-21

 

m
2
 and 10

-20
 m

2
 sensitivity cases, in which brine leakage out of the storage formation is 

not significant. Since the effect of compressibility increases with the volume affected by 

pressure changes, the volumetric rate of brine displacement depends strongly on radial 

location. For example, the maximum brine flow rate through the lateral cross-section at 

10 km (i.e., A = 2 60 m 10 km) is about 5,000 m
3
 per day, or about 90% of the 

volumetric CO2 flow rate. The brine flow rate reduces to about 4,400 m
3
 per day at 30 

km, about 2,500 m
3
 per day at 50 km, and about 800 m

3
 per day at 100 km.  

Brine leakage out of the formation into overlying/underlying units causes additional 

attenuation. For the case with a seal permeability of 10
-18

 m
2
, the maximum brine flow 
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rate within the storage formation reduces to about 4,200 m
3
 per day at 10 km, about 

3,000 m
3
 per day at 30 km, about 800 m

3
 per day at 50 km, and about zero at 100 km. It 

becomes clear from these results that the impact of vertical inter-layer communication 

through the sealing units needs to be considered when estimating environmental issues 

related to pressure buildup and brine displacement. Our example results suggest that 

vertical brine leakage becomes important when the seal permeability is higher than about 

10
-20

 m
2
.  

Figure 17 shows the evolution of the total volumetric inter-layer brine flow rate through 

different sandstone/shale interfaces (see Figure 12 for the schematic stratigraphy). 

Starting from the injection unit, vertical brine flow has been integrated over the interface 

between the storage formation and the overlying/underlying seals (“Seal 2 Bottom and 

Seal 3 Top”), the interface between these seals and the overlying/underlying aquifers 

(“Seal 2 Top and Seal 3 Bottom”), the interface between these aquifers and the 

overlying/underlying seals (“Seal 1 Bottom and Seal 4 Top”), and finally the interface 

between the top/bottom seals and the model boundaries (“Seal 1 Top and Seal 4 

Bottom”). Depending on the seal permeability case, brine leakage out of the storage 

formation could be dominant (i.e., more than 90% of the volumetric CO2 injection rate 

for seal permeability equal to a larger than 10
-17

 m
2
), but this leakage rate reduces with 

increasing vertical distance, indicating the attenuation capacity of the 

overlying/underlying aquifers and aquitards. Displaced brine escapes from the model 

domain through the top/bottom boundary in the three sensitivity cases with relatively 

high seal permeabilities of 10
-16

 m
2
, 10

-17
 m

2
, and 10

-18
 m

2
. It should be evaluated in such 

cases whether pressure changes and brine displacement could propagate through the 

entire vertical strata all the way to shallow groundwater resources. From extrapolation of 

the brine flows observed in Figure 17 (with the top boundary at 1,040 m below ground 

surface), it seems rather unlikely that groundwater resources near the ground surface 

should be affected in any of the simulation cases.   
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In saturated porous media, the pressure pulse generated in the injection zone propagates 

much faster and much further than the actual movement of a fluid particle. To evaluate 

the possible displacement of a particle dissolved in the native brine, we have plotted in 

Figure 18 the particle transport velocity in the storage formation, as a function of time for 

different radial locations and different seal permeability cases. For comparison, we first 

calculate the maximum possible transport velocity assuming a pure piston-type 

displacement flow in the storage formation. Because the model domain is radial-

symmetric, a uniform volumetric flux equal to the injection rate of CO2 corresponds to 

velocity values decreasing with radial distance. The piston-type transport velocities can 

be easily calculated as about 2.7 m per year at 10 km, 1.3 per year at 30 km, 0.5 m per 

year at 50 km, and 0.25 m per year at 100 km.  

To put these numbers into perspective, the regional Darcy velocity in the Alberta Basin is 

0.01 to 0.1 m per year, which translates to a transport velocity of 0.1 to 1 m per year 

(assuming an effective porosity of 0.1) (Bachu et al., 1994). In other words, even the 

upper bounding limits provided by the piston-flow estimates are not excessively large 

compared to the natural groundwater velocities in deep basins. Furthermore, the transport 

velocities observed in Figure 18 are similar to the piston-flow estimates only for small 

radii and small seal permeabilities. In all other cases, compressibility and/or brine leakage 

into non-ideal seals reduce the actual transport velocities to a fraction of the piston-flow 

estimates. In conclusion, although the region of influence is very large with respect to 

pressure changes, the actual brine displacement velocities are quite small compared to 

natural groundwater flows, and the travel distance of a particle dissolved in the brine 

would be rather insignificant. As an example, assuming a constant upper-limit transport 

velocity of 2.7 m per day, a particle would migrate about 100 m during the injection 

period. It appears that environmental impacts related to updip displacement of saline or 

brackish water should be small, at least in settings where radial-symmetric flow is a 

reasonable approximation. 
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Figure 16.  Evolution of total volumetric brine flow rate in the storage formation, for different seal permeabilities and radial locations. The brine 

flow rate is integrated over the entire cross-sectional (radial-symmetric) interface at a given location in the storage formation. 
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Figure 17.  Evolution of total volumetric brine flow rate through different sandstone/shale interfaces, for different seal permeabilities.  Starting 

from the injection unit, vertical brine flow has been integrated over the interface between the storage formation and the overlying/ 

underlying seals “Seal 2 Bottom and Seal 3 Top”, the interface between these seals and the overlying/underlying aquifers “Seal 2 Top 

and Seal 3 Bottom”, the interface between these aquifers and the overlying/underlying seals “Seal 1 Bottom and Seal 4 Top”, and 

finally the interface between the top/bottom seals and the model boundaries “Seal 1 Top and Seal 4 Bottom”. 
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Figure 18.  Evolution of lateral transport velocity of displaced brine in the storage formation, for different seal permeabilities and radial locations.   
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4.3.4. Further Sensitivities 

In previous sections, we have established the need for considering the multilayer seal 

characteristics (i.e., seal permeability) when analyzing the pressure buildup and brine 

displacement characteristics in a storage formation. Here, we evaluate sensitivity to other 

key properties, namely the permeability of the storage formation and the pore 

compressibility of the sandstone/shale sequence. Using the base case with a seal 

permeability of 10
-18

 m
2
 as a starting point, the following sensitivity cases were 

conducted: (1) increase of storage formation permeability by a factor of two, (2) 

reduction of storage formation permeability by a factor of two, (3) increase in pore 

compressibility by a factor of ten, and (4) reduction in pore compressibility by a factor of 

ten. Results are depicted in Figure 19, showing pressure evolution (top) and total 

volumetric brine flow (bottom) in the storage formation at radial extents of 10 and 20 km, 

for the different sensitivity cases and an injection period of 30 years. 

Both parameters, permeability and compressibility, significantly affect both the storage 

formation conditions and the inter-layer leakage into neighboring units. A decrease in 

reservoir permeability, for example, results in a slightly delayed, but ultimately stronger 

pressure buildup in the storage formation, because of less brine flow in lateral direction 

(Figure 19a). As a result of the increasing pressure buildup in the storage formation, the 

inter-layer leakage of brine into overlying and underlying units increases compared to the 

base case, while the total volumetric brine flow within the storage formation reduces 

significantly, leading to smaller pressure buildup further away from the injection zone 

(Figure 19b). An increase in pore compressibility causes reduction in both pressure 

buildup and horizontal brine flux in the storage formation (Figure 19c,d). A higher 

compressibility means that more fluid volume can be stored in the porous formation in 

response to a given pressure change. As a result, less pressure buildup is generated from 

CO2 injection and less brine is being displaced at a given radial location in the storage 

formation.  
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Figure 19.  Evolution of pressure buildup change (top) and total volumetric brine flow rate in the storage formation (bottom), for different 

sensitivity cases of storage formation permeability and pore compressibility.   

 

 



    

NETL Project Annual Report, October 1, 2006 to September 30, 2007,  page 70 of 88. 

4.4. Summary for Open Multilayer Systems 

1) With respect to pressure changes in the storage formation, the region of influence in 

response to CO2 injection can be extremely large. For the radial-symmetric domain 

evaluated in this study, considerable pressure buildup was observed 100 km away 

from the injection zone (up to one bar for certain sensitivity cases). Such pressure 

changes may cause problems if experienced in near-surface groundwater systems, a 

possible concern in a storage formation that extends updip to form a freshwater 

resource (one bar translates to a water table change of 10 m). The extremely large 

area of influence observed with respect to pressure buildup may have important 

implications for the maximum CO2 storage capacity at a given site. 

2) While the pressure pulse travels fast and far within the storage formation, the lateral 

brine flow velocities are quite small, not much larger than those of natural 

groundwater flows in deep basins. The migration distance of a particle dissolved in 

brine (at a location not too close to the injection zone) is only a few hundred meters 

or less for a time period of 100 years during and after injection. This is indicative, for 

example, of the possible migration of the 10,000 mg/L TDS iso-concentration line 

that defines whether a groundwater can be considered an underground source of 

drinking water (USDWs). We caution that these results have been obtained for a 

radial-symmetric system, which is a reasonable approximation for a single-source 

injection site.   

3) Characteristics of pressure buildup and brine displacement are sensitive to key 

properties of the storage formation (e.g., lateral permeability, pore compressibility), 

which is not surprising. However, they are also strongly affected by the properties of 

the multilayer sandstone/shale units overlying and underlying the storage formation, 

which is somewhat surprising. Seals that are suitable for long-term trapping of CO2 

allow for considerable brine leakage out of the formation vertically upward and 

downward. As a result, the pressure buildup and lateral flow in the storage formation 
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is moderately to strongly reduced compared to a perfect seal with zero or close-to-

zero permeability. It is important to fully understand the multilayer characteristics of 

a storage site if the large-scale brine displacement resulting from CO2 injection, and 

the possible environmental impacts on USDWs, are to be investigated. 

4) Our simulation example involved an idealized multilayer sequence at depth (from 

about 1,000 m to about 1600 m below surface); direct communication pathways with 

shallow aquifers and resulting environmental impact on groundwater resources have 

not been modeled explicitly. These topics will be addressed in future project phases, 

in conjunction with modeling of real-world storage sites (see Section 5). 

5) The example simulations presented are associated with the injection and storage of 

1.5 million tones of CO2 per year originating from one major CO2 point source. When 

more than one large point source would store CO2 within a sedimentary basin, their 

regions of elevated pressure may be interacting and overlapping, leading to different 

and possibly stronger environmental impacts. Multiple-source scenarios will be 

studied in future project phases, possibly in conjunction with modeling of the Mount 

Simon sandstone (Section 5). 

6) Related research results are being published in Tsang et al. (2007) and Birkholzer et 

al. (in preparation), see Section 8. 
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5. Future Work 

5.1. Hydromechanical Simulations 

One of the future project tasks outlined in Section 2 is to evaluate hydromechanical 

aspects of CO2 injection that could potentially affect the expected pressure buildup and 

brine migration characteristics. Geomechanical modeling will be conducted using the 

coupled reservoir-geomechanical simulator TOUGH-FLAC, which is described in detail 

in Rutqvist et al. (2002). In preparation of this future project phase, TOUGH-FLAC has 

recently been enhanced to study the coupled multi-phase flow and geomechanical 

conditions associated with underground injection of CO2. Example applications include 

evaluation of tensile and shear failure in response to CO2 storage in a multilayered 

geological system (Rutqvist et al., 2007a) and simulation of fault-slip behavior for a 

discrete fault in a aquifer-caprock system (Figure 20) (Rutqvist et al., 2007b).  

 

Figure 20.  Schematic setup for fault-slip analysis of discrete fault hydromechanical behavior 

during CO2 injection (Rutqvist et al., 2007a) 
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5.2. Modeling of Regional Groundwater Systems 

5.2.1. Possible Sites 

Two large basins, the Illinois Basin and Sacramento Basin, have been tentatively selected 

as candidate sites for regional-scale modeling of groundwater systems in response to CO2 

storage. These basins were selected for three main reasons. (1) They are located in 

regions with a large portfolio of existing and potential future point sources. (2) They 

contain formations potentially suitable for sequestering large volumes of CO2. (3) They 

contain a variety of inter- and intra-basin hydrogeological conditions, some subset of 

which is likely to be encountered at most high-capacity sequestration sites.  

Both basins contain thick, regionally extensive permeable formations.  The conditions in 

the Illinois Basin are representative of less faulted and folded formations. In contrast, the 

Sacramento Basin contains a range of intra-basin structures likely representative of 

structurally complex, compartmentalized, and extensively faulted formations. A short 

description of these two basins follows. 

Illinois Basin 

The Illinois Basin encompasses most of Illinois, along with southwestern Indiana, and 

western Kentucky. The Midwest Geological Partnership Consortium (MGSC) views the 

Mount Simon Sandstone as a primary target for CO2 storage (MGSC 2005). The Mount 

Simon is a deep saline formation of regional extent with proven seals and large storage 

potential. While offering a large storage capacity, the Mount Simon is expected to be 

used at multiple sequestration sites, based on the current portfolio of industrial point 

sources and the predicted future developments.  The following discussion of the Mount 

Simon Sandstone is primarily from MGSC (2005). 

As shown in Figure 21, the Mount Simon Sandstone ranges up to greater than 600 meters 

(2,000 feet) thick in the northern part of the Illinois Basin.  Dipping south, the top of the 

Mount Simon Sandstone is less than 600 meters (-2000 feet) below mean sea level (msl) 



    

NETL Project Annual Report, October 1, 2006 to September 30, 2007,  page 74 of 88. 

just north of the basin and greater than -3,700 meters (-12,000 feet) below msl in the 

southern portion of the basin (Figure 22). The Mount Simon Sandstone grades updip into 

a freshwater aquifer in Wisconsin (over the Wisconsin Arch to the north of the Illinois 

Basin). Thus there is concern about potential degradation of freshwater resources due to 

brine displacement resulting from CO2 sequestration in the Mount Simon Sandstone to 

the south. 

 

Figure 21.  Contour map of the thickness of the Cambrian Mt. Simon Sandstone within the 

Illinois Basin (from MGSC 2005) 
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Figure 22.  Structure on top of the Mt. Simon Sandstone within the Illinois Basin (from MGSC 

2005) 

Besides the open, updip boundary condition into fresh groundwater to the north, the 

Mount Simon Sandstone in the Illinois Basin includes a suite of other boundary 

conditions in the remaining directions.  To the southwest it pinches out at depth against 

the Ozark Dome.  Downdip to the south, it is likely cut by the east-west trending Cottage 

Grove Fault System in Illinois and the Rough Creek Graben in Indiana.  A relative lack 
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of hydrocarbon resources at and south of Cottage Grove Fault System strongly suggests 

these faults are conductive on geologic time scales.  The Mount Simon Sandstone extends 

to the east across the Cincinnati Arch into the western portion of the Appalachian Basin, 

and northeast across the Kankakee Arch into the Michigan Basin (MRCSP 2005). 

The sealing layer over the Mount Simon Sandstone is the Eau Claire Formation.  This 

Formation consists of siltstone and shale in the center of the Illinois Basin, but grades to 

dolomitic sandstone and sandy dolomite updip to the north, and predominantly dolomite 

and limestone downdip to the south.  Therefore the sealing quality of the Eau Claire 

Formation varies with higher potential for fluid flow through the seal away from the 

central portion of the Illinois Basin. 

In sum, study of induced brine flow and pressure changes in the Mount Simon Sandstone 

in the Illinois Basin will address a number of potentially relevant, basin-scale 

hydrogeologic conditions, including updip impacts to groundwater resources, interbasin 

effects, and interaction with potentially permeable faults. 

Sacramento Basin 

The Sacramento Basin underlies the northern half of the Great Valley of California.  The 

basin is bounded to the west by the Coast Ranges, to the north by the Klamath 

Mountains, to the east by the Cascade and Sierra Nevada (Magoon and Valin, 1995), and 

to the south by the Stockton Arch (WESTCARB 2005).  The Sacramento Basin is one of 

the six “most promising” basins for CO2 storage in California (WESTCARB 2005).  The 

remainder of this discussion is based primarily on WESTCARB (2005).   

The focus of the brine displacement study will be the Mokelumne River Formation in the 

Sacramento Basin (Figures 23 and 24).  This formation is part of the marine shelf 

deposits shed primarily from the Sierran volcanic arc in the Cretaceous.  Subsequent 

uplift of the Coast Ranges bounded the asymmetric Sacramento Basin to the west.  The 
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synclinal axis of this basin is significantly to the west of its geometric midline as shown 

on Figure 23 modified from CDOG (1982).  
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Figure 23.  Generalized Cross-Section of Southern Sacramento Valley (colorized from CDOG 1982) 
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Depths to the Mokelumne River Formation range from less than 600 meters (2,000 feet) 

in the northern portion of the basin to 2,700 meters (9,000 feet) in the southern portion of 

the basin.  The net thickness of these sands ranges up to 700 meters (2,250 feet) in the 

southwestern portion of the basin as shown in Figure 24.  To the north, the formation 

consists of complexly interbedded shales and sandstones, but to the south it consists of 

several thick, mappable sands and intervening shales.  The formation dip is generally to 

the west, though, away from its onlap on the basement high to the east.  It is truncated to 

the west by a basin-wide Paleocene-Eocene unconformity. Billions of cubic meters 

(hundreds of billions of cubic feet) of natural gas have been produced from the 

Mokelumne River Formation sands in the southern portion of the basin, indicating the 

suitability of these sands and their seals for sequestering a large volume of CO2.  As 

mentioned, these sands are also in proximity to several large CO2 point sources.   

The primary difference between the Sacramento Basin and the Illinois Basin relative with 

respect to the study of brine displacement is the variety of intrabasin structures.  The 

Mokelumne River Formation was partially to completely cut by erosion of submarine 

canyons, as shown on Figure 24. These canyons, or “gorges,” were subsequently filled, 

typically with mudstone.  Natural gas has been produced from a number of unconformity 

traps where Mokelumne River sands are truncated by the gorge fills.  The gorge fills 

therefore somewhat segment the Mokelumne River sands within the Sacramento Basin. 

The Sacramento Basin has also been extensively faulted and folded at a sub-basin scale 

relative to the Illinois Basin.  Natural gas has been produced from both fold and fault 

traps in the Mokelumne River sands. Figure 25 shows an example of this faulting in a 

natural gas field in the basin (CDOG 1982).  Analysis of these faults indicates their 

development has been complex.  They appear to have both growth and tectonic origins 

(Johnson 1990).  They were extensional during deposition, but were reactivated in 

compression since the Miocene (Weber-Band 1998).  It is likely that in addition to the 

faults shown on Figure 25, there are many smaller faults as well.   
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The sub-basin structures in the Sacramento Basin may cause different brine displacement 

behavior than in the Illinois Basin. Specifically, the intra-basin unconformities and faults 

may somewhat compartmentalize the formation.  Alternatively, these structures may 

introduce flow barriers and anisotropies that direct flow along certain paths.  For 

instance, the faults in the basin tend to strike north by northwest, therefore it may be that 

brine will be displaced preferentially in this direction.  These questions motivate study of 

potential brine displacement the Sacramento Basin. 

 

Figure 24.  Contour map of the thickness of the Mokelumne River Formation (in feet) 

(Clinkenbeard 2007). 
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Figure 25.  Example of faulting of the Mokelumne River Formation (CDOG 1982). 
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5.2.2. Parallelized Version of TOUGH2/ECO2N 

As an important prerequisite for the computationally extensive basin-scale simulation 

studies envisioned in this research, the multi-phase simulator TOUGH2-ECO2N for CO2 

migration in brine aquifers at super- and subcritical conditions (Pruess, 2005) was 

adopted to run on a massively parallel computer cluster (Zhang et al., 2007). This new 

development, named TOUGH2-MP, makes possible the efficient simulation of CO2 

injection and brine migration in very large model domains.  The simulator was applied to 

a basin-scale example study investigating CO2 injection and brine migration. A three-

dimensional geologic model of the stratigraphy was discretized with one million grid 

blocks. Using TOUGH2-MP on a 10-node Linux cluster, a transient non-isothermal 

multi-phase simulation run of CO2 and brine migration with this discretization scheme 

was performed in less than a day.   



    

NETL Project Annual Report, October 1, 2006 to September 30, 2007,  page 83 of 88. 

6.  Summary and Conclusions 

Through numerical modeling of idealized subsurface formations, we have evaluated the 

possible impact of industrial-scale CO2 injection on regional multilayered groundwater 

systems. The stored CO2 replaces large volumes of native brine, which may cause 

considerable pressure perturbation and brine migration in the deep saline formations. If 

hydraulically communicating, either directly via updipping formations or through 

interlayer pathways such as faults or imperfect seals, these perturbations may impact 

shallow groundwater or even surface water resources used for domestic or commercial 

water supply. Possible environmental concerns include pressure and water table changes, 

changes in discharge and recharge zones, as well as changes in water quality. In 

compartmentalized formations, issues related to large-scale pressure buildup and brine 

displacement may also cause storage capacity problems, because significant pressure 

buildup can be produced. To address these issues, a three-year research program was 

initiated in October 2006, the first part of which is summarized in this report. 

To date, systematic modeling studies have been conducted for two basic CO2 injection 

scenarios. In Section 3, we have evaluated the pressure buildup and storage capacity in 

compartmentalized multilayer formations (closed and semi-closed systems), via detailed 

numerical simulations as well as approximate analytical solutions. Storage capacity in 

such formations is found to be generally much smaller than in open systems, because 

geomechanical damage due to overpressure needs to be avoided. In Section 4, we have 

simulated the pressure buildup and brine migration patterns in large laterally open 

systems, and have analyzed their respective regions of influence. For the conditions 

evaluated in this study, considerable pressure buildup was observed 100 km away from 

the injection zone, while the brine transport velocity and migration distance was less 

significant. Large-scale pressure changes appear to be of more concern to groundwater 

resources than changes in water quality due to, e.g., migration of saline waters into 

freshwater bodies. See summaries in Sections 3.6 and 4.4. 
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Our results demonstrate clearly the importance of evaluating the hydrologic perturbations 

generated by CO2 storage. Any site assessment should consider the constraints imposed 

by pressure perturbation and brine displacement, either to avoid shallow-water impacts in 

open systems or to account for pressure constraints in closed systems. While the key 

properties of multilayered groundwater systems have been varied in a sensitivity study, 

which has enabled us to draw the above general conclusions, certain model 

simplifications and parameter choices may be inadequate at given storage sites. Thus, the 

systematic simulations conducted here should lead into site-specific modeling of CO2 

storage candidate sites, representing the local hydrogeological conditions. Two site-

specific modeling studies of likely candidate sites for CO2 storage, probably in the 

Illinois Basin and the California Central Valley, will be conducted in a future project 

phase (Section 5). 

One interesting finding was the importance of seal permeability on pressure buildup and 

brine displacement behavior in the storage formation, in both closed and open systems. 

Seals that are suitable for long-term trapping of CO2 may allow for considerable brine 

leakage out of the formation vertically upward and downward. As a result, the pressure 

buildup in the storage formation can be strongly reduced compared to a perfect seal with 

zero or close-to-zero permeability. It is thus important to fully understand the multilayer 

characteristics of a storage site when the large-scale brine displacement resulting from 

CO2 injection, and the possible environmental impacts on USDWs, are to be investigated. 
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