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ABSTRACT OF THE DISSERTATION

Block-oriented Nonlinear System Identification Using Semidefinite
Programming

by

Younghee Han

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2012

Professor Raymond de Callafon, Chair

Identification of block-oriented nonlinear systems has been an active re-

search area for the last several decades. A block-oriented nonlinear system repre-

sents a nonlinear dynamical system as a combination of linear dynamic systems

and static nonlinear blocks. In block-oriented nonlinear systems, each block (linear

dynamic systems and static nonlinearity) can be connected in many different ways

(series, parallel, feedback) and this flexibility provides the block-oriented modeling

approach with an ability to capture a large class of nonlinear systems. However,

intermediate signals in such block-oriented systems are not measurable and the in-

accessibility of such measurements is the main difficulty in block-oriented nonlinear

system identification.
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Recently a system identification method using rank minimization has been

introduced for linear system identification. Finding the simplest model within a

feasible model set restricted by convex constraints can often be formulated as a

rank minimization problem. In this research, the rank minimization approach is

extended to block-oriented nonlinear system identification. The system parameter

estimation problem is formulated as a rank minimization problem or the com-

bination of prediction error and rank minimization problems by constraining a

finite dimensional time dependency of a linear dynamic system and by using the

monotonicity of static nonlinearity. This allows us to reconstruct non-measurable

intermediate signals and once the intermediate signals have been reconstructed,

the identification of each block can be solved with the standard Prediction Error

method or Least Squares method.

The research work presented in this dissertation proposes a new approach

for block-oriented system identification by tackling the inaccessibility of measure-

ment of intermediate signals in block-oriented nonlinear systems via rank mini-

mization. Since the rank minimization problem is non-convex, the rank minimiza-

tion problem is relaxed to a semidefinite programming problem by minimizing

the nuclear norm instead of the rank. The research contributes to advances in

block-oriented nonlinear system identification.
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1

Introduction to block-oriented

nonlinear system identification

1.1 Block-oriented nonlinear system identifica-

tion

System identification has become increasingly essential in all branches of

engineering and in other disciplines. When conducting system identification, linear

models are usually considered first because solutions for identification and modeling

of linear dynamical systems are well known. A linear model can be adequate if the

nonlinearity of the system is not severe or the real system is operated on a limited

operating range so that the linearity assumption is satisfied. However, only limited

types of systems can be approximated by linear systems. If the nonlinearity of the

system is severe or a wide operating range is considered, the linear assumption may

not be valid and a nonlinear model becomes necessary to capture the nonlinearity

of the system. Block-oriented models, a specific class of nonlinear systems, have

simple structures yet provide much better approximations than linear models for

nonlinear dynamic systems with specific purposes. This dissertation focuses on

identification of block-oriented nonlinear systems that consist of linear dynamic

systems and static nonlinear blocks. Only Single Input and Single Output (SISO)

systems will be considered in this dissertation.

1
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The output of a dynamic system depends on the past input and past output.

On the other hand, the output of a static nonlinearity depends only on the current

input. Common static nonlinear functions are saturation, deadzone, etc. Static

nonlinearity is input dependent. Only the range that is excited by an input can be

identified using system identification. Therefore, an input has to be chosen wisely

for a specific identification purpose during experimental design. In block-oriented

nonlinear systems, each block (linear dynamic systems and static nonlinearity) can

be connected in many different ways (series, parallel, feedback) and this flexibility

provides the block-oriented modeling approach with an ability to capture a large

class of nonlinear systems. However, intermediate signals in such block-oriented

systems are not measurable and the inaccessibility of such measurements is the

main difficulty in block-oriented nonlinear system identification [29].

1.1.1 Hammerstein system identification

The simplest block-oriented nonlinear systems are Hammerstein and Wiener

systems. In these systems, only a single static nonlinear block and a single linear

dynamic block are used. A Hammerstein system is a series connection of a static

nonlinearity followed by a linear dynamic system, as shown in Figure 1.1.

y(t) = G(q)x(t) + v(t)

x(t) = f(u(t)).

A Hammerstein structure is a good approach to modeling systems with actuator

nonlinearity or other nonlinear effects that can be brought to the system input

[29]. Hammerstein models have been successfully used to represent the nonlin-

G(q)f (·) x(t)
y(t)

v(t)

u(t) o

Figure 1.1: Hammerstein system consists of a static nonlinear block followed by
a linear dynamic block.

ear dynamics of various systems. For example, the nonlinear dynamics of various
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chemical processes, electrical systems, biological systems, thermal systems, etc.

have been modeled with the Hammerstein model [5] [21] [23] [29] [38] [42] [43]

[44] [58] [66]. Usually, Hammerstein systems are parametrized linear in both the

input static nonlinearity and the linear dynamic system, so the parameter estima-

tion is reduced to an ordinary least squares (LS) technique or any of its improved

versions [1]. Early research on the identification of Hammerstein systems can be

found in [53] where an iterative identification method was proposed for Hammer-

stein systems utilizing the alternate adjustment of the parameters of the linear

and nonlinear parts of the systems. Many authors have tackled the identification

of Hammerstein systems. A non-iterative method to estimate the parameters by

minimizing the equation error was proposed in [14]. Due to the equation error

minimization, this method is sensitive to noise and may result in biased estima-

tion for colored noise. An iterative technique for the estimation of parameters in a

Hammerstein model was developed in [36] to deal with colored noise. Modified for-

mulations of the generalized least squares (GLS) estimation algorithm for system

parameter identification was presented in [37] to deal with the biased estimation

produced by the least squares (LS) method, but there is no guarantee that the

procedure converges to the optimal solution. [32] proposed an algorithm using a

nonparametric kernel estimate of regression functions calculated from dependent

data. A two-step identification method of the LS parameter estimation based on

correlation functions was introduced in [34]. The authors in [3] discussed discrete

Hammerstein model identification using a blind system identification approach. An

optimal two-stage identification for Hammerstein-Wiener systems was presented in

[4] and the authors in [66] revisited an optimality result established in [4] showing

that the two-stage algorithm (TSA) provides the optimal estimation of a bilinearly

parameterized Hammerstein system in the sense of a weighted nonlinear LS crite-

rion formulated with a special weighting matrix. However, these methods suffer

from an over-parametrization problem, which requires parameter separation via a

singular value decomposition (SVD).
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1.1.2 Wiener system identification

On the other hand, a Wiener system has a block oriented structure in which

a linear dynamical system is followed by a static output nonlinearity, as shown in

Figure 1.2.

x(t) = G(q)u(t)

y(t) = f(x(t)) + v(t).

A Wiener structure is a good approach to modeling systems with sensor nonlin-

f(· )u(t) y(t)
x(t)

o

ynf(t)G(q)
v(t)

Figure 1.2: Wiener system consists of a linear dynamic block followed by a static
nonlinear block.

earity or other nonlinear effects that can be brought to the system output [25]

[29] [35] [67]. It has been shown that Wiener models can be used to effectively

capture various nonlinear dynamics, such as chemical processes and biological sys-

tems [10] [29] [33]. The identification of Wiener systems involves estimating the

parameters describing the linear dynamical and the output static nonlinear blocks

from the measured input and output data. The most common assumptions used

in Wiener system identification are the Gaussian assumption of the input signal

and the invertibility of the static nonlinearity [7] [8] [22] [31]. These assumptions

are popular because, if the input signal is Gaussian noise, the identification of the

linear dynamical block can be separated from the identification of the static nonlin-

ear function based on separability assumption and parameterization of the output

static nonlinearity is possible for the inverse of the given static nonlinearity. How-

ever, the Gaussian input assumption is too restrictive for practical application and

the invertibility of the static nonlinearity assumption excludes hard nonlinearities,

such as saturation, common in control systems.
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1.1.3 Wiener-Hammerstein system identification

More complicated block-oriented systems can be created by using more than

a single linear dynamic and static nonlinear blocks. A Wiener-Hammerstein system

is a dynamical system characterized by a series connection of three parts: a linear

dynamical system, a static nonlinearity, and another linear dynamical system,

as shown in Figure 1.3. Wiener-Hammerstein models can be used to represent

sensor systems, electro-mechanical systems in robotics, mechatronics, biological,

and chemical systems [29] [39].

x1(t) = G1(q)u(t)

x2(t) = f(x1(t))

y(t) = G2(q)x2(t) + v(t).

Early works on Wiener-Hammerstein system identification can be found in [7]

u(t) y(t)

x1(t) x2(t) v(t)

oG2(q)f(· )G1(q)

Figure 1.3: Wiener-Hammerstein system consisting of the cascade of a linear
dynamic block G1(q), a static non-linear block f(·) and a linear dynamic block
G2(q).

[8]. In this early research, the correlation analysis-based identification method

under Gaussian excitation has been proposed. The authors in [15] introduced a

time-domain identification method based on the Maximum Likelihood principle.

The authors in [12] presented a simple technique for recursive identification of

the Wiener-Hammerstein model with extension to the multi-input single-output

(MISO) case. More recent work can be found in [2] [17] [22] [52] [54] [57] [65].

The authors in [54] proposed an identification method using the polynomial non-

linear state space (PNLSS) approach. The authors in [2] presented a method

iteratively identifying the linear system and the Hammerstein system by mini-

mizing the square norm of output prediction error and by using the orthogonal

decomposition subspace method (ORT).
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1.1.4 Hammerstein-Wiener system identification

On the other hand, a Hammerstein-Wiener system is characterized by a

series connection of a static nonlinear block, a linear dynamic block, and another

static nonlinear block, as shown in Figure 1.3. A HammersteinWiener model is an

efficient way of modeling nonlinear dynamic systems in which both actuator and

sensor nonlinearities are present. Many authors have studied the identification of

Hammerstein-Wiener systems [4] [18] [64]. Hammerstein-Wiener models have been

successfully applied to modeling of electro-mechanical systems, chemical processes,

radio frequency components, and audio and speech processing [20] [40] [48]. In [4],

Bai proposed an optimal two stage identification algorithm using the recursive

least squares and the singular value decomposition.

x1(t) = f1(u(t))

x2(t) = G(q)x1(t)

y(t) = f2(x2(t)) + v(t).

u(t) y(t)

x1(t) x2(t) v(t)

of2(· )G(q)f1(· )

Figure 1.4: Hammerstein-Wiener system consisting of the cascade of a static
non-linear block f1(·), a linear dynamic block G1(q), and a static non-linear block
f2(·).

1.1.5 Closed-loop Hammerstein system identification

A feedback connection of a block-oriented system and a controller can be

used to model a closed-loop nonlinear dynamic system. Closed-loop nonlinear

dynamic system identification techniques are useful for control relevant identifi-

cation. From the control design point of view, the use of data gathered from

closed-loop experiments provides advantages for designing control systems to sat-

isfy typical control performance requirements, such as stability. For example, a
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feedback connection of a Hammerstein system and a controller provides a good

approach to modeling systems with static actuator nonlinearity or input satura-

tion during closed-loop experiments as shown in Figure 1.5.

u(t) = r(t)− C(q)y(t)

x(t) = f(u(t))

y(t) = G(q)x(t) + v(t).

u(t) v(t)r(t)

−
C(q)

H (q)

e(t)

+
O

O y(t)f (·) G(q)

x(t)

Figure 1.5: Closed-loop Hammerstein system.

One of the early works dealing with closed-loop Hammerstein system iden-

tification can be found in [6]. In this work, Beyer et al. proposed a closed-loop

identification method for Hammerstein systems using the LS method, the GLS

method and the maximum likelihood method. In addition, Linard et al. [46]

extended closed-loop identification methods (a two-stage method and using right

coprime factorizations) for linear dynamic systems to nonlinear dynamic systems

and De Bruyne et al. [19] presented gradient expressions for a closed-loop para-

metric identification scheme. However, these methods are based on linearization of

a nonlinear map between time domain signals. Recently, van Wingerden and Ver-

haegen [62] presented an algorithm to identify MIMO Hammerstein systems under

open and closed-loop conditions. They formulated an optimized predictor based

subspace identification algorithm in the dual space. Laurain et al. [45] presented

an IV method dedicated to closed-loop Hammerstein systems.
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1.2 Motivation for a new rank minimization ap-

proach and problem statement

1.2.1 Introduction to the rank minimization approach

Intermediate signals in block-oriented systems are not measurable and the

inaccessibility of such measurements is the main difficulty in block-oriented non-

linear system identification [29]. The research work presented in this dissertation

proposes a new approach for block-oriented system identification by tackling the

inaccessibility of measurement of intermediate signals in block-oriented nonlinear

systems via rank minimization. In system identification, the prediction error min-

imization method is the most commonly used approach to formulate a system pa-

rameter estimation problem. However, the prediction error minimization approach

commonly results in nonlinear cost functions when it is used in block-oriented sys-

tem identification due to the non-convexity of the error. As an alternative, the

rank minimization approach is proposed in this study. Based on the complexity of

a system, the system parameter estimation problem can be formulated as a rank

minimization problem or as the combination of prediction error and rank mini-

mization problems by constraining a finite dimensional time dependency between

signals. This allows us to reconstruct non-measurable intermediate signals and,

once the intermediate signals have been reconstructed, the identification of each

block can be solved with either the standard Prediction Error method or Least

Squares method. Since the rank minimization problem is non-convex, the rank

minimization problem is relaxed to a convex problem by minimizing the nuclear

norm instead of the rank. Through this process, a parameter estimation prob-

lem for a block-oriented model can be formulated as a Semidefinite Programming

(SDP) problem.

1.2.2 Problem statement

This study focuses on identification of nonlinear dynamic systems using

block-oriented models. In this dissertation, only linear dynamic systems and static
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nonlinear functions will be considered as subsystems of a block-oriented represen-

tation of a nonlinear dynamic system. In order to define a system identification

problem using a block-oriented structure, the finite time dependency of a linear dy-

namic system and the static relationship of a nonlinear function will be considered

as follows:

I. The static nonlinear function has no memory:

The current output from the static nonlinear function only

depends on the current input to the static nonlinear function.

II. The linear dynamical system has a finite, but unknown,

McMillan degree n:

y(t) = φT (t)θ,where

φT (t) = [u(t) · · · u(t− nb) y(t− 1) · · · y(t− na)],
θ is the linear system parameter,

and n ≤ max(nb − 1, na).

The order of a finite dimensional model can be expressed as the rank of a matrix

that is filled with input and output measurement. Finding the simplest model

within a feasible model set restricted by convex constraints can often be formulated

as a rank minimization problem [27]. Based on this idea, the rank minimization

approach is used to formulate a convex parameter estimation problem via nuclear

norm relaxation, where the nuclear norm of H is defined as the summation of its

singular values as ||H||∗ =
r∑
i=1

σi(H).

1.3 Contributions

The main objective of this dissertation is to introduce a new approach to

the modeling of block-oriented nonlinear systems. The new approach for block-

oriented system identification involves tackling the inaccessibility of measurement

of intermediate signals in block-oriented nonlinear systems via rank minimization.

Using nuclear norm relaxation, the rank minimization problem is converted to a

semi-definite programming problem.
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Most of the material in this dissertation has been published or accepted for

publication. The results in Chapter 3 have been accepted for publication in

Y. Han and R. de Callafon, Hammerstein system identification using nuclear

norm minimization, Automatica, to appear 2012.

The results in Chapter 4 have been accepted for publication in

Y. Han and R. de Callafon, 2012, Identification of a Wiener System via

Semidefinite Programming, 16th IFAC Symposium on System Identification 2012,

Brussels, Belgium.

The results in Chapter 5 have been accepted for publication in

Y. Han and R. de Callafon, Identification of Wiener-Hammerstein Bench-

mark Model using Convex Optimization, Control Engineering Practice Special Is-

sue, to appear 2012.

The results in Chapter 6 have been published in

Y. Han and R. de Callafon, Output Error Identification of Closed-loop

Hammerstein Systems, IEEE Conference on Decision and Control 2011, Orlando,

US,

and

Y. Han and R. de Callafon, Closed-loop Identification of Hammerstein Sys-

tems Using Iterative Instrumental Variables, IFAC World Congress 2011, Milano,

Italy.

1.4 Outline of this work

The dissertation is organized as follows. Chapter 1 contains a literature

review of block-oriented nonlinear system identification and introduces a new rank

minimization approach to solving block-oriented nonlinear system identification.

Chapter 2 introduces preliminary concepts regarding a new approach to block-

oriented nonlinear system identification. Chapter 3 deals with open-loop identifica-

tion of Hammerstein systems. The parameter estimation problem is formulated as

a rank minimization problem by constraining a finite dimensional time dependency

between signals and by using subspace interpretation and the LQ decomposition
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of the data matrix. Then, the rank minimization is relaxed to a convex optimiza-

tion problem using a nuclear norm. Chapter 4 deals with open-loop identification

of Wiener Systems. A new method is proposed for identifying Wiener systems

with monotonically non-decreasing nonlinearity. The identification problem is for-

mulated as a convex semidefinite programming (SDP) problem by constraining

a finite dimensional time dependency between signals. The proposed method is

robust to output noise and neither the Gaussian assumption of the input signal

nor the invertibility of the static nonlinearity is necessary. Chapter 5 deals with

open-loop identification of Wiener-Hammerstein systems. The identification of

Wiener-Hammerstein systems is formulated as a non-convex rank minimization

problem by using the over-parameterization technique. The non-convex rank min-

imization problem is then reformulated as a convex optimization problem using

trace minimization. An iterative approach is proposed to update two unmeasur-

able intermediate signals. Chapter 6 deals with closed-loop identification of Ham-

merstein systems. An iterative nuclear norm minimization algorithm is proposed

for the OE minimization problem of closed-loop Hammerstein systems. The basic

idea is to express the nonlinear parameter estimation as an iterative nuclear norm

minimization problem using gradient-based updates. Chapter 7 summarizes the

conclusions of this dissertation.



2

Preliminaries

Preliminary material about linear dynamic systems, static nonlinearity and

semidefinite programming is presented in this chapter. A modeling approach to

linear dynamic systems and static nonlinearity is presented. The rank minimization

approach and nuclear norm relaxation are explained.

2.1 Linear dynamic systems

Let gk, k = 0, 1, · · · be a causal sequence of impulse responses of G(q). The

relationship between the input u(t) and the output y(t) can be described by the

convolution as

y(t) =
∞∑
k=0

gku(t− k). (2.1)

In this study, we will approximate the relationship in (2.1) by a finite dimensional

system.

ŷ(t) =
L−1∑
k=0

ĝku(t− k) (2.2)

where the finite order sequence of ĝk, k = 0, 1, · · · , N − 1 is the impulse response

of the approximated system. This finite impulse response (FIR) approximation of

G(q) will be used to formulate a convex optimization problem to estimate system

12
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parameters. Based on (2.1) and (2.2), the error is defined by

e(t) = y(t)− ŷ(t)

= y(t)−
L−1∑
k=0

ĝku(t− k).

Thus,

||e(t)||22 =
N∑
t=1

[
y(t)−

L−1∑
k=0

ĝku(t− k)

]2
=

N∑
t=1

y2(t)− 2
L−1∑
k=0

ĝkRyu(k)

+
L−1∑
k=0

L−1∑
l=0

ĝkĝlRuu(k − l)

where

Ryu(k) =
N∑
t=1

y(t)u(t− k)

Ruu(k) =
N−k−l∑
t=1−k−l

u(t)u(t+ k).

If L tends toward infinity, ĝk will satisfy |ĝk| << 1 for k ≥ L, resulting in Rx1u(k)→
L−1∑
l=0

ĝlRuu(l − k). Then,

lim
N→∞,L→∞

||e(t)||22 = 0

As a result, the estimate ŷ(t) will converge to y(t) provided that N → ∞
and L→∞.

2.2 Static nonlinearity

In a static nonlinear function, the current output only depends on the cur-

rent input. It is well known that the static nonlinear function can be approximated

as a linear combination of a finite set of basis functions as

f(u(t)) ≈ f̂(u(t)) =
M∑
m=1

λmξm(u(t)) (2.3)

where λm are weighting parameters to be estimated and ξm(·) are basis functions.

Modeling nonlinearity linearly in the parameters as in (2.3) results in a linear least
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squares problem for the static nonlinear system parameter estimation. Users can

choose any basis functions suitable for their purpose, such as polynomial and ra-

dial basis functions. In this dissertation, polynomial approximation and piecewise

linear approximation using triangle basis functions are used.

2.2.1 Polynomial approximation

A polynomial function is often used to approximate a static nonlinear func-

tion due to its simplicity. With the polynomial basis functions, a nthf order poly-

nomial function f̂(u(t)) is defined by

f̂(u(t)) = λ0 + λ1u(t) + λ2u
2(t) + · · ·+ λnf

unf (t). (2.4)

Weierstrass’s Theorem below guarantees that the polynomial approximation f̂(u(t))

in (2.4) will converge to f(u(t)) as nf tends toward to infinity for an arbitrary in-

terval.

Weierstrass’s Theorem If f(u(t)) is a given continuous function for an

arbitrary interval i ≤ u(t) ≤ j, and ε is a small magnitude positive constant, there

is a polynomial f̂(u(t)) such that

|f(u(t))− f̂(u(t))| < ε ∀x ∈ [i, j].

A disadvantage of polynomial approximation is that high-degree polynomials have

oscillatory behavior and parameter estimation is often numerically ill-conditioned

[41] [69].

2.2.2 Piecewise linear approximation

A piecewise linear approximation of the static nonlinearity f(·) using piece-

wise triangle functions is shown in Figure 2.1. Using triangle basis functions ξm(·),
the static nonlinearity f(·) is assumed to satisfy the following condition

sup
u(t)∈[umin,umax]

lim
M→∞

M∑
m=1

|λmξm(u(t))− f(u(t))| = 0 (2.5)
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where the center location vector m = [m1 · · · mM ]T , specifying the center lo-

cations of triangle basis functions, spans the amplitude of the input vector u =

[u(1) · · · u(N)]T and the amplitude vector λ = [λ1 · · · λM ]T , specifying the ampli-

tudes of triangle basis functions at the center m, is to be estimated. The condition

in (2.5) indicates that the static nonlinearity f(·) can be approximated arbitrarily

well with a dense grid of triangular basis functions. In order to define a piecewise

λ1

=max(u(t))

m

f1

f2

fM

Piecewise linear approximation

fM−1

mM
m1 m2 m3 m4 · · · mM−1

=min(u(t))

λMλM−1λ4 · · ·λ3λ2

Figure 2.1: Triangle basis functions.

linear approximation of the static nonlinearity f(·), a finite value M in (2.5) can be

chosen, whereas the points m1, · · · ,mM of a grid over [umin, umax] can be chosen

linearly spaced or at strategic locations. Each triangle function ξm(u(t)) in (2.5)

has nonzero values through two segments and zeros elsewhere except for the first

and the last intervals of the grid.

ξm(u(t)) =


u(t)−ml−1

ml −ml−1
for ml−1 ≤ u(t) < ml

ml+1 − u(t)

ml+1 −ml

for ml ≤ u(t) < ml+1

0 Otherwise

ξ1(u(t)) =


m2 − u(t)

m2 −m1

for m1 ≤ u(t) < m2

0 Otherwise

ξM(u(t)) =


u(t)−mM−1

mM −mM−1
for mM−1 < u(t) ≤ mM

0 Otherwise
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In each segment of the m-axis in Figure 2.1, the resulting linear function as in-

dicated by the (red/shaded) dashed line is defined by two overlapping triangle

functions in the segment, as indicated by the two (blue) dotted lines. In feedback

control systems, non-smooth static nonlinearity, such as saturation, is common. A

piecewise linear approximation is an excellent way to estimate such nonlinearity

for feedback control systems since we can achieve good approximation with only a

small number of parameters.

2.3 Semidefinite programming

Semidefinite programming (SDP) deals with minimization of a linear cost

function subject to positive semidefinite symmetric matrix variables with an affine

space. A typical semidefinite programming problem can be written as

minimize cTx

subject to F (x) ≥ 0,

where

F (x) = F0 +
m∑
i=1

xiFi

where x ∈ Rm, c ∈ Rm, and Fi ∈ Rn×m are symmetric matrices. Since such

constraints are convex, SDP is a special case of convex optimization and includes

special cases of linear programming, quadratic programming, etc. Semidefinite

programming is one of the largest classes of optimization problems that can be

solved with reasonable efficiency. SDP has many applications in engineering, such

as robust control and combinatorial optimization, and can be applied to system

identification [13].

2.4 Rank minimization and nuclear norm relax-

ation

The order of a finite dimensional model can be expressed as the rank of

a matrix that is filled with input and output measurement. Finding the sim-
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plest model within a feasible model set restricted by convex constraints can often

be formulated as a rank minimization problem. From the control point of view,

identifying the simplest model that can capture the most important dynamic char-

acteristic of a system is important. Unfortunately, the rank minimization is not

convex. Minimizing the nuclear norm instead of the rank of the matrix is a con-

vex relaxation of the rank minimization problem where the nuclear norm of Z is

defined as the summation of its singular values as [26] [27]:

||Z||∗ =
r∑
i=1

σi(Z).

The motivation for this nuclear norm relaxation is that over the set

{Z | ||Z|| ≤ 1},

||Z||∗ is the convex envelope of the function Rank(Z). While the original rank

minimization problem is difficult to solve, the nuclear norm problem is a convex

optimization problem which is easy to solve. Let h : C → <, where C ⊆ <n. The

convex envelope of h (on C) is defined as the largest convex function g such that

g(x) ≤ h(x) for all x ∈ C [26].

Lemma 1 [26] The convex envelope of the function φ(X) = Rank(X), on C =

{X ∈ <m×n| ||X|| ≤ 1}, is φenv(X) = ||X||∗.

Proof : [26] To prove the theorem we use conjugate functions. Recall that the

conjugate h∗ of a function h : C → <, where C ⊆ <n, is defined as

h∗(y) = sup{yTx− h(x)|x ∈ C}.

A basic result of convex analysis is that h∗∗, i.e., the conjugate of the conjugate, is

the convex envelope of the function h, provided some technical conditions, which

are valid here.

Part 1 . Computing φ∗: The conjugate of the rank function φ, on the set of

matrices with (spectral) norm less than or equal to one, is

φ∗(Y ) = sup
||X||≤1

(trY TX − φ(X)). (2.6)
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Let q = min{m,n}, and note that by Von Neumann’s trace theorem we have

trY TX ≤
q∑
i=1

σi(Y )σi(X),

where σi(·) denotes the ith largest singular value. Let X = UXZXV
T
X and Y =

UyΣY V
T
Y be the singular value decompositions (SVDs) of X and Y. Since the term

φ(X) in (2.6) is independent of UX and VX , we pick UX = UY and VX = VY to

maximize the first term in (2.6). It follows that

φ∗(Y ) = sup
||X||≤1

(
q∑
i=1

σi(Y )σi(X)−Rank(X)

)
.

If X = 0, we have φ∗(Y ) = 0 for all Y , and if Rank(X) = r, 1 ≤ r ≤ q, then

φ∗(Y ) =
r∑
i=1

σi(Y )− r. So φ∗(Y ) can be expressed as:

φ∗(Y ) = max{0, σ1(Y )− 1, · · · ,
r∑
i=1

σi(Y )− q}.

The largest term in this set is the one that sums all positive (σi(Y ) − 1) terms.

We conclude that

φ∗(Y ) =

q∑
i=1

(σi(Y )− 1)+

where a+ denotes the positive part of a, i.e., a+ = max{0, a}.
Part 2. Computing φ∗∗: We will now find the conjugate of φ∗, defined as

φ∗∗(Z) = sup(trZTY − φ∗(Y ))

for all Z ∈ Cm×n. As before, we choose UY and VY such that UT
z UY = I and

V T
Y VZ = I to get

φ∗∗(Z) = sup(

q∑
i=1

σi(Z)σi(Y )− φ∗(Y )).

We will consider two cases, ||Z|| > 1 and ||Z|| ≤ 1: If ||Z|| > 1, we can choose

σ1(Y ) large enough so that φ∗∗(Z)→∞. To see this, note that in

φ∗∗(Z) = sup
Y

(
q∑
i=1

σi(Z)σi(Y )− (

q∑
i=1

σi(Y )− r)
)
,
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the coefficient of σ1(Y ) is (σ1(Z) − 1) which is positive. Now let ||Z|| ≤ 1. If

||Y || > 1, then φ∗(Y ) = 0 and the supremum is achieved for σi(Y ) = 1, i = 1, · · · , q,
yielding

φ∗∗(Z) =

q∑
i=1

σi(Z) = ||Z||∗.

We will now show that if ||Y || > 1, φ∗∗(Z) is always smaller than the value given

above. We have

φ∗∗(Z) = sup
||Y ||>1

(
q∑
i=1

σi(Z)σi(Y )− (

q∑
i=1

σi(Y )− 1)

)
.

Consider the expression inside the sup. By adding and subtracting the term
q∑
i=1

σi(Z) and rearranging the terms, we get

=
r∑
i=1

(σi(Y )− 1)(σi(Z)− 1) +

q∑
i=r+1

(σi(Y )− 1)σi(Z)

<

q∑
i=1

σi(Z)

where the last inequality holds since the first two sums on the second line always

have a negative value. In summary, we have shown

φ∗∗(Z) = ||Z||∗

over the set {Z| ||Z|| ≤ 1}. Thus, over this set, ||Z||∗ is the convex envelope of

the function Rank(Z). �

Lemma 1 has the following implications. Suppose the feasible set is bounded

by Q, i.e., for all X ∈ C, we have ||X|| ≤ Q. The convex envelop of RankX on

{X| ||X|| ≤ Q} is given by
1

Q
||X||∗. In particular, for all X ∈ C, we have

RankX ≥ 1

Q
||X||∗. Thus, by solving the nuclear norm minimization problem,

we obtain a lower bound on the optimal value of the original rank minimization

problem [26][27].

Nuclear norm minimization coupled with linear constraints lead to a Semidef-

inite Programming (SDP) problem that converts a non-convex problem to a convex

optimization problem by defining a feasible convex set. This is easier to solve and

the solution is close to the solution of the original non-convex problem [26] [27].
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Open-loop Identification of

Hammerstein Systems

3.1 Introduction

A Hammerstein system has a block oriented structure where a static input

nonlinearity and a linear dynamic system are separated, as shown in Figure 3.7.

Hammerstein structure is very efficiency in modeling systems with actuator nonlin-

earity or other nonlinear effects that can be brought to the system input [29]. It has

been shown that such a model structure can effectively represent and approximate

many industrial processes. For example, the nonlinear dynamics of various chem-

ical processes, electrical systems, biological systems, thermal system, etc. have

been modeled with the Hammerstein model [5] [21] [23] [29] [38] [42] [43] [44] [58]

[66]. Early research on the identification of Hammerstein systems can be found in

[53]. Many authors have tackled the identification of Hammerstein systems and a

short overview is included here as a reference. A non-iterative method to estimate

the parameters by minimizing the equation error was proposed in [14]. Due to the

equation error minimization, this method is sensitive to noise and may result in

biased estimation for colored noise. An iterative technique for the estimation of

parameters in a Hammerstein model was developed in [36] to deal with colored

noise. Modified formulations of the generalized least squares (GLS) estimation

20
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algorithm for system parameter identification was presented in [37] to deal with

the biased estimation produced by the least squares (LS) method, but there is no

guarantee that the procedure converges to the optimal solution. A two-step iden-

tification method of the LS parameter estimation based on correlation functions

was introduced in [34]. The authors in [3] discussed discrete Hammerstein model

identification using a blind system identification approach. The authors in [66] re-

visited an optimality result established in [4] showing that the two-stage algorithm

(TSA) provides the optimal estimation of a bilinearly parameterized Hammerstein

system in the sense of a weighted nonlinear LS criterion formulated with a special

weighting matrix. However, these methods suffer from an over-parametrization

problem, which requires parameter separation via a singular value decomposition

(SVD). A more comprehensive overview of block-oriented nonlinear system iden-

tification can be found in [29].

In this chapter, we propose a method that extends the rank minimization approach

to Hammerstein system identification and does not need a bilinear parametriza-

tion and singular value decomposition (SVD), which are commonly used in two-

step approaches for Hammerstein system identification. Regarding Figure 3.7, the

objective of the study in this chapter is to formulate a procedure that allows the

characterization and identification of the nonlinear static function f(·) and the lin-

ear dynamic system G(q) individually based on the input u(t) and the output y(t)

observation. This is done in a novel way by the reconstruction of the intermediate

signal x(t) with conditions on the finite dimensional dynamic representation of the

linear systems G(q) and the memoryless static nonlinearity f(·). A similar method

of finding a feasible model consistent with the input and output data under certain

constraints was also considered in [68].

As mentioned in Chapter 1, finding the simplest model within a feasible model set

restricted by convex constraints can often be formulated as a rank minimization

problem [27]. Based on this idea, in this study the rank minimization problem

is used to formulate a convex optimization problem via nuclear norm relaxation,

where the nuclear norm is defined as the summation of its singular values. The

use of nuclear norm approximation with application to system identification can
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be found in [47] and with application to Hammerstein systems in [24].

3.2 Problem description

3.2.1 Hammerstein system

G(q)f (·) x(t)
y(t)

v(t)

u(t) o

Figure 3.1: Hammerstein system consists of a static nonlinear block followed by
a linear dynamic block.

The system to be modeled is shown in Figure 3.1. We propose a method to

identify the unknown linear dynamical systemsG(q) and a static nonlinear function

f(·) from a finite number of observations of the data u(t) and y(t) by reconstruct-

ing the unmeasurable intermediate signal x(t) via rank constrained Semidefinite

Programming (SDP). The SDP problem will be formulated in such a way that

x(t) and u(t) are related via a memoryless static nonlinearity and that x(t) and

y(t) are related via a linear dynamical system with the smallest McMillan degree.

Once x(t) has been reconstructed, the identification of G(q) from x(t) and y(t) can

be solved with a standard Prediction Error (PE) identification method [49]. The

static nonlinearity and the system parameters will be estimated by finding a feasi-

ble model consistent with the input and output data, and satisfying the following

basic properties of the Hammerstein system:

Condition 1

I. The static nonlinear function (the relation between

u(t) and x(t)) has no memory.

II. The linear dynamical system has a finite, but

unknown McMillan degree n, relating a finite number

of the past input samples to the past output samples.
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The properties in Condition 1 are used to formulate a procedure to reconstruct

the unmeasurable intermediate signal x(t) based on rank minimization.

3.2.2 Modeling of static nonlinearity

In this section, the input static nonlinearity is modeled as a piecewise linear

function using piecewise triangle functions as shown in Section 2.2. Let x̂(t) =

f(u(t), λ) be the approximation of x(t) and λ is the amplitude parameter

λ =
[
λ1 · · · λM

]T
(3.1)

on m = [m1 · · · mM ]T . In each segment of the m-axis, the resulting linear function

is defined by two overlapping triangle functions in the segment. Thus, x̂(t) can be

written as

x̂(t) = ρ(u(t))λ (3.2)

where ρ(u(t)) is defined as

ρ(u(t)) =

[
· · · 0

mk+1 − u(t)

mk+1 −mk

u(t)−mk

mk+1 −mk

0 · · ·
]

(3.3)

for mk ≤ u(t) < mk+1

where mk and mk+1 are the center locations of the triangle basis functions. There

could be many possible combinations of a static nonlinear block and a Finite Im-

pulse Response (FIR) linear block that satisfy Condition 1 and (3.2). In order to

limit the number of possible selections for a linear block and a static nonlinear

block, a monotonically non-decreasing static nonlinearity with the maximum slope

of 1 (fixing the maximum slope of the static nonlinear function in one interval,

likely at the origin, equals 1) is considered as follows:

Condition 2

I. The static nonlinear function is monotonically

non-decreasing with the maximum slope of 1:

(x̂(i)− x̂(j))(x̂(i)− x̂(j)− u(i) + u(j)) ≤ 0

∀i > j.
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Without loss of generalization, this monotonicity assumption on the un-

known static nonlinearity with the maximum slope 1 guarantees a solution for an

FIR linear system and serves as a normalization condition on the static nonlinear-

ity, so that the static gain of the Hammerstein system is modeled by the static gain

of the linear system G(q). The maximum slope of the static nonlinear function can

be chosen by a user. If there exists a static nonlinear function that satisfies Con-

dition 2 for sampled data, Condition 2 will be satisfied by any two values chosen

from the sample range by the mean values theorem. A Hammerstein system with

a monotonically non-decreasing static nonlinear function can be used to model

many control, mechanical, electrical, chemical, and biological systems with various

static nonlinear functions, such as saturation, deadzone, quantization, etc. The

examples can be found in [5][21][23][38][60].

3.2.3 Input-output map of the dynamical system

Let g(i), i = 0, 1, · · · be the causal sequence of unit impulse responses for

G(q). The relationship between the intermediate signal x(t) and the output y(t)

can be described by the convolution as

y(t) =
∞∑
i=0

g(i)x(t− i) + v(t)

where v(t) is noise. Due to Condition 1 (finite McMillan degree), for a finite data

sequence of N = n1 + n2 data points and a zero initial condition, the relationship

between the intermediate signal x(t) and the output y(t) can be described by

Y = HXp + TXf + V (3.4)

where Y is the data matrix, including the future output y(t), defined by

Y =


y(1) · · · y(n2)

y(2) · · · y(n2 + 1)
...

. . .
...

y(n1) · · · · · · y(n1 + n2 − 1)

 , (3.5)



25

Xp is the data matrix, including the past intermediate signal, defined by

Xp =


x(0) x(1) · · · x(n2 − 1)

0 x(0) · · · x(n2 − 2)
...

...
. . .

...

0 0 · · · · · ·x(0)

 ,
Xf is the data matrix, including the future intermediate signal, defined by

Xf =


x(1) x(2) · · · x(n2)

x(2) x(3) · · · x(n2 + 1)
...

...
. . .

...

x(n1 + 1) x(n1 + 2) · · · x(n1 + n2)

 , (3.6)

H is the Hankel matrix defined by

H =


g(1) · · · g(n2)

g(2) · · · g(n2 + 1)
...

. . .
...

g(n1) · · · · · · g(n1 + n2 − 1)

 ,
T is the Toeplitz matrix defined by

T =


g(0) 0 · · · 0 0

g(1) g(0) · · · 0 0
...

...
. . . 0 0

g(n1 − 1) g(n1 − 2) · · · g(0) 0

 ,
and V is the matrix, including noise data, defined by

V =


v(1) · · · v(n2)

v(2) · · · v(n2 + 1)
...

. . .
...

v(n1) · · · · · · v(n1 + n2 − 1)

 .
The order of the linear dynamical system is determined by the rank(H) as H is

simply the product of the extended observability and controllability matrices [30].

A lower order model, consistent with the input and output signals can be estimated

by minimizing the rank of H.
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3.3 System identification

3.3.1 Problem formulation

The effect ofXf to Y in (3.4) can be removed by the orthogonal projection of

Y onto the null space of Xf . With the projection matrix X⊥f = I−XT
f (XfX

T
f )†Xf ,

the effect of Xf is removed [49]. Then,

Y X⊥f = HXpX
⊥
f + V X⊥f .

In order to remove the effect of noise, the projection Y can be subsequently

weighted by matrices W1 and W2 such that

W1Y X
⊥
f W2 = W1HXPX

⊥
f W2 +W1V X

⊥
f W2 (3.7)

in which W1 and W2 are chosen to be rank-preserving and such that W1V X
⊥
f W2 →

0 as the number of samples N → ∞. Details of the role and choice of weighting

matrices W1 and W2 can be found in [51] [61]. The result in (3.7) indicates that

the rank minimization problem for H can be rewritten as the rank minimization

problem for Y X⊥f . Unfortunately, the rank minimization problem for Y X⊥f cannot

be solved directly since X is unknown. In this section, the rank minimization

problem of Y X⊥f is reformulated using LQ decomposition of data matrix

[
Xf

Y

]
so that the rank minimization problem can be solved without knowing X⊥f .

Let the LQ decomposition (the transpose of the QR decomposition) of the data

matrix

[
Xf

Y

]
be given by

[
Xf

Y

]
=

[
L11 0

L21 L22

][
QT

1

QT
2

]
(3.8)

where L11, L22 are lower triangular and Q1, Q2 are orthogonal. From (3.8), Y can

be written as

Y = L21L
−1
11Xf + L22Q

T
2 . (3.9)

The first term in (3.9) is spanned by the row vectors in Xf and the second term is

orthogonal to it. Thus, the orthogonal projection of Y onto the null space of Xf
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can be written as [30] [49]

Y X⊥f = L22Q
T
2 . (3.10)

Since Q2 is orthogonal, (3.10) indicates

rank(Y X⊥f ) = rank(L22).

As a result, the rank minimization problem for Y X⊥f can be rewritten as the rank

minimization problem for L22. Using the signal x̂(t) in (3.2), Xf in (3.6) can be

reconstructed using x̂ as

X̂f = U2Θ (3.11)

where Θ is the block diagonal matrix, including λ, defined by

Θ =



λ1 0 · · · 0

λ2
... · · · 0

... 0 · · · 0

λM
...

. . . 0

0 λ1
. . . 0

... λ2
. . . 0

...
...

. . . 0
... λM

. . . 0
... 0 · · · λ1
...

... · · · λ2
...

... · · · ...

0 0
. . . λM



, (3.12)

and U2 is the data matrix including the input u(t), defined by

U2 =


ρ(u(1)) · · · ρ(u(n2))

ρ(u(2)) · · · ρ(u(n2 + 1))
...

. . .
...

ρ(u(n1 + 1)) · · · ρ(u(n1 + n2))

 . (3.13)

From (3.8), we have

rank

([
Xf

Y

])
= rank

([
L11 0

L21 L22

])
.
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Let L =

[
L11 0

L21 L22

]
. The following lemma explains the rank inequality condition

for the block matrix L.

Lemma 2 The rank of the block matrix L satisfies the following inequality:

rank

([
L11 0

L21 L22

])
≥ rank(L11) + rank(L22)

Proof Suppose that p = rank(L11) and q = rank(L22). Then L11 has p linearly

independent columns, a1, · · · , ap, and L22 has q linearly independent columns,

d1, · · · , dq. Let ci denote the columns of L21. Consider the columns of the block

matrix L (
a1

c1

)
, · · ·

(
ap

cp

)
, · · ·

(
0

d1

)
, · · ·

(
0

dq

)
.

Then one can show that these p + q column vectors are linearly independent by

contradiction. Suppose these column vectors are linearly dependent. Then there

exist numbers, α1, · · · , αp and β1, · · · , βq, not all zero, such that

p∑
i=1

αi

(
ai

ci

)
+

q∑
i=1

βi

(
0

di

)
= 0.

This gives the two equations:
p∑
i=1

αiai = 0 (3.14)

and
p∑
i=1

αici +

q∑
i=1

βidi = 0. (3.15)

Since ai are linearly independent, αi = 0 from (3.14). Then βi = 0 from (3.15)

because di are linearly independent. These are contradicted to the assumption.

Therefore, the block matrix L has at least p+ q linearly independent columns. �

With Lemma 2, we have

rank(L11) + rank(L22) ≤ rank

([
Xf

Y

])
. (3.16)
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Since rank(L11) = rank(Xf ) from (3.8), (3.16) can be written as

rank(Xf ) + rank(L22) ≤ rank

([
Xf

Y

])
.

From (3.11), we have

rank(Xf ) = rank(U2Θ) = constant.

In this section, the rank minimization problem for L22 is relaxed to the upper

bound minimization problem for rank(L22), which is equivalent to the minimiza-

tion problem for rank

([
Xf

Y

])
. As a result, with the parametrization based on

Condition 1, system parameters for a lower order model, consistent with the input

and output measurement data, will be estimated by minimizing rank

([
Xf

Y

])
under the constraints developed based on Condition 2.

3.3.2 Rank minimization for intermediate signal reconstruc-

tion

In this section, a rank minimization problem for the reconstruction of the

intermediate signal x(t) in Figure 3.1 is summarized and the optimization problem

is constructed. In Section 3.2, the rank minimization problem for H is reformu-

lated as the rank minimization problem of the data matrix

[
X̂f

Y

]
. With the

parametrization and constraints explained in Section 3.2, an optimization problem

can be written as
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Optimization Problem 1

Consider

variable λ in (3.1)

to create x̂ in (3.2) and Θ in (3.12),

Minimize

rank

([
X̂f

Y

])
,

where X̂f = U2Θ, and Y is given in (3.5),

with U2 defined in (3.13),

subject to

(x̂(i)− x̂(j))(x̂(i)− x̂(j)− u(i) + u(j)) ≤ 0

∀i > j.

Optimization Problem 1 results in the optimal solution for the system parame-

ter θ that is used to construct the intermediate signal x using the relationship

in (3.2), automatically satisfying Condition 1-I. In Optimization Problem 1, the

reconstructed signal x̂ is generated in such a way that a static nonlinear function

satisfies the monotonically non-decreasing and scaling conditions in Condition 2,

and provides a lower order model for the linear dynamic system satisfying Con-

dition 1-II by minimizing rank

([
X̂f

Y

])
. Unfortunately, the rank constraint in

Optimization Problem 1 is not convex. Minimizing the nuclear norm instead of

the rank of the matrix is a convex relaxation of the rank minimization problem

[26] [27]. The motivation for this nuclear norm relaxation is that the nuclear norm

is the convex envelope of the rank function on the set of matrices with norms

less than 1 as shown in Lemma 1. Using the nuclear norm relaxation for rank

minimization, Optimization Problem 1 will be reformulated as a convex problem.

First, let us express the constraints in Optimization Problem 1 as Linear Matrix

Inequalities (LMIs). Let δx = [δx(1) · · · δx(kmax)]
T , where δx(k) = x̂(i) − x̂(j)

and δu = [δu(1) · · · δu(kmax)]
T , where δu(k) = u(i) − u(j) for all i > j and

kmax =
N−1∑
k=1

k. Let ∆X = diag(δx) and ∆U = diag(δu), where diag(δx) is the

diagonal matrix whose diagonal elements are the elements of δx. Then, the con-
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straints in Optimization Problem 1 can be written as

∆X(∆X −∆U) ≤ 0

Nuclear norm minimization coupled with linear constraints lead to a Semidefinite

Programming (SDP) problem that converts a non-convex problem to a convex

optimization problem by defining a feasible convex set. This is easier to solve and

the solution is close to the solution of the original non-convex problem [26] [27].

Using SDP relaxation, Optimization Problem 1 can be rewritten as the following

convex optimization problem:

Optimization Problem 2

Consider

variable λ in (3.1)

to create x̂ in (3.2) and Θ in (3.12),

Minimize∣∣∣∣∣
∣∣∣∣∣
[
X̂f

Y

]∣∣∣∣∣
∣∣∣∣∣
∗

where X̂f = U2Θ, and Y is given in (3.5),

with U2 defined in (3.13),

subject to

∆X(∆X −∆U) ≤ 0

where

||H||∗ =
r∑
i=1

σi(H)

is the nuclear norm of H.

The following lemma is used to compute the nuclear norm while preserving the

convexity of the optimization problem. The following result indicates that Opti-

mization Problem 2 can be solved via a convex optimization problem.

Lemma 3 [26] For X ∈ <m×n and t ∈ <, we have ||X||∗ ≤ t if and only if there
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exist matrices A ∈ <m×m and Z ∈ <n×n such that[
A X

XT Z

]
≥ 0

and

tr(A) + tr(Z) ≤ 2t.

Proof : [26] Let A and Z satisfy the relations in Lemma 3, and let X = UΣV T

be the SVD of X. Here, Σ is of size r, where r is the rank of X. We have

tr

[
UUT −UV T

−V UT V V Y

][
A X

XT Z

]
≥ 0

since the trace of the product of two positive semidefinite (PSD) matrices is always

non-negative. This yields

trUUTA− trUV TXT − trV UTX + trV V TZ ≥ 0. (3.17)

Since columns of U are orthonormal, we can always add more columns to complete

them to a full basis, i.e., there exists UT such that [UŨ ][UŨ ]T = I, or UUT+Ũ Ũ∗ =

I, so ||UUT || ≤ 1. So we get

|trUUTA| ≤
∑
i

λi(UU
T )λi(Y ) ≤ TrA.

Similarly, for V we have trV V TZ ≤ trZ. Also, trV UTX = trV ΣV ∗ = trΣ. Using

these facts, and (3.17) above, we get

trA+ trZ − trΣ ≥ 0,

trΣ ≤ 1
2
(trA+ trZ),

trΣ = ||X||∗ ≤ t.

Suppose ||X||∗ ≤ t. We will show A and Z can be chosen to satisfy the relations

in Lemma 3. Let A = UΣUT + γI and Z = V ΣV T + γI, then

trA+ trZ = 2trΣ + r(p+ q) = 2||X||∗ + γ(p+ q),
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so if we choose γ =
2

p+ q
, we will have trA+ trZ = 2t. Also note that

[
A X

XT Z

]
=

[
UΣUT UΣV T

V ΣUT V ΣV Y

]
+ γ

[
I 0

0 I

]

=

[
U

V

]
Σ[UT V T ] + γI,

which is PSD. �

Lemma 3 indicates that the condition ||X||∗ ≤ t can be represented as an LMI

[26].

3.4 Numerical example

In this section, numerical examples of Hammerstein system identification

using the proposed identification method are presented. An excitation signal u(t)

is zero mean white noise with a standard deviation of 3. The output disturbance

v(t) is filtered white noise, where the filtering properties are unknown. For the

system identification, two sets of data (ten different measurements for each set)

are generated from the Hammerstein system. In the first data set, SNR varies

from 10dB to 20dB and in the second data set, SNR is greater than 20dB. For

both data sets, m = [min(u(t)) − 3 − 1 0 1 3 max(u(t))], and na = 2 and nb = 2

with 1 step time delay are used to model the static nonlinear function and the

linear dynamic system respectively. W1 = W2 = I are chosen in this example. In

order to solve the SDP problem (Optimization Problem 2), SeDuMi (Self-Dual-

Minimization) [59] and YALMIP (Yet Another LMI Parser) [50] are used. The

specifications of the Hammerstein system are as follows:
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Linear dynamical system:

G(q) =
0.1994q−1 − 0.1804q−2

1− 1.886q−1 + 0.9048q−2

Static nonlinearity:

f(u(t)) =



2 if x(t) > 3

u(t) + 1 if 1 < x(t) ≤ 3

0 if |x(t)| ≤ 1

u(t)− 1 if − 3 ≤ x(t) < −1

−2 if x(t) < −3

Noise dynamics:

H(q) =
1 + 0.5q−1

1− 0.85q−1

.

The estimation results are shown in Figure 3.2, Figure 3.3, Figure 3.4, and Fig-

ure 3.5. Figure 3.2 and Figure 3.3 show the simulation results for the first data

set (SNR of 10dB − 20dB). Figure 3.4 and Figure 3.5 show the simulation results

for the second data set (SNR > 20dB). As shown in Figure 3.4 and Figure 3.5,

the proposed algorithm provides excellent identification results for data with SNR

greater than 20dB. The pole location and the characteristics of the static nonlin-

earity are very well captured. As shown in Figure 3.2 and Figure 3.3, when SNR

varies from 10dB to 20dB, the proposed algorithm provides satisfactory identifi-

cation results. If SNR is less than 10dB, the proposed algorithm does not always

provide satisfactory estimation results.

3.5 Application to Hard Disk Drive (HDD) ther-

mal actuator identification

3.5.1 Thermal actuator identification problem formulation

In this section, a nonlinear dynamic model of a thermal actuator in a hard

disk drive is identified using a Hammerstein system identification technique. Ham-

merstein structure is chosen to represent a thermal actuator because of its efficiency

in modeling systems with actuator nonlinearity or other nonlinear effects that can
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Figure 3.2: The plot of the identified static nonlinearity function (top figure). The
Bode plot of the identified linear dynamic system (bottom figure). The black solid
line indicates the real Hammerstein system. The (colored) dashed lines indicate
estimated systems by using ten different data. The SNR of each data in the set is
between 10dB and 20dB.
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Figure 3.3: Pole (top figure) and zero (bottom figure) locations of the identified
linear dynamical system. The black cross and circle indicate the real linear dynam-
ical system. The colored crosses and circles indicate estimated linear dynamical
systems. SNR varies from 10dB to 20dB.

be brought to the system input [29]. For the purpose of identification, the input

voltage u(t) to the thermal actuator and the flying height variation output z(t)

were measured through spin stand experiments (refer to [11]). The parameter es-

timation problem for the Hammerstein model is formulated in a slightly different

in order to account for the known characteristics of the given static nonlinearity

in the thermal actuator in this section.

Figure 3.6 shows a side view of the slider and the disk for this case. As shown

in Figure 3.6, the read/write element and the resistance heater are positioned at

the trailing edge of the slider. Activating the resistance heater, one can reduce the

head-disk clearance by ∆d. Hence, the write current induced pole tip protrusion

can be compensated by activating the resistance heater during reading.

In order to capture the linear dynamics in a thermal actuator, the quadratic

relationship between the voltage input and the power output in a thermal actuator

was assumed in [11]. Although quadratic dependence is motivated by the quadratic

relationship between power and voltage for a resistance component, nonlinearity

due to height dependent thermal conductivity may occur. Thus, in this experi-

mental study, the nonlinear relationship between the voltage input and the power

output is assumed unknown and we will identify the nonlinearity as well as the lin-

ear dynamics of a thermal actuator. The schematic diagram of a thermal actuator
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Figure 3.4: The plot of the identified static nonlinearity function (top figure). The
Bode plot of the identified linear dynamic system (bottom figure). The black solid
line indicates the real Hammerstein system. The (colored) dashed lines indicate
estimated systems by using ten different data. The SNR of each data in the set is
greater than 20dB.
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Figure 3.5: Pole (top figure) and zero (bottom figure) locations of the identified
linear dynamical system. The black cross and circle indicate the real linear dynam-
ical system. The colored crosses and circles indicate estimated linear dynamical
systems. SNR is greater than 20dB.
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Figure 3.6: Hard disk drive and the slider with a resistance heater element for
thermal flying height control.
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represented by the Hammerstein structure is shown in Figure 3.7. Regarding Fig-

u(t)

−

z0(t)

G(q)f (·)
x(t) ∆d(t)

∆z (t)

d(t)

o

z (t)
o

Thermal acturator Relative spacing
measurement

Flying
hegiht
profile

Figure 3.7: Thermal actuator represented by a Hammerstein system that consists
of a static nonlinear block followed by a linear dynamic block.

ure 3.7, u(t) is the input voltage, x(t) is the unmeasurable intermediate signal that

indicates the input power to the system, z(t) is the absolute spacing, ∆z(t) is the

spacing variation relative to an initial flying height z0(t), ∆d(t) is the head/disk

clearance, and d(t) is disturbance. The absolute spacing z(t) is not measurable.

However, the spacing variation relative to an initially unknown flying height z0 can

be measured where

∆z = z − z0. (3.18)

The contribution of the actuator to the flying height change can be estimated by

performing two experiments: one without an external input signal as a reference

measurement and another experiment using an input signal that excites the system.

The objective of this experimental study is to identify nonlinear dynamics

of a thermal actuator system in HDDs using the Hammerstein model structure.

Let x̂ = [x̂1 · · · x̂N ]T . Then

x̂ = ρλ

where

ρ = [ρ(u(1)) · · · ρ(u(N))]T .

(3.19)

where λ is the amplitude parameter in (3.1) and ρ(u(t)) is defined in (3.3). Since

a non-negative staircase voltage input is used for the identification of the thermal

actuator, a non-negative monotonically increasing condition will be applied to the
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system parameters of the input static nonlinearity as follows:

0 ≤ λ1 < · · · < λM . (3.20)

The relationship between the intermediate signal x(t) and the output z(t) can be

described by the convolution as

z(t) =
∞∑
i=0

g(i)x(t− i) + d(t).

Due to Condition 1 (finite McMillan degree), the Hankel matrix defined as

H =


g(1) · · · g(N/2)

g(2) · · · g(N/2 + 1)
...

. . .
...

g(N/2) · · · · · · g(N − 1)

 , (3.21)

has a rank(H) ≤ n. The order of the linear dynamical system is determined

by the rank(H) as H is simply the product of the extended observability and

controllability matrices [30]. A lower order model, consistent with the input and

output signals can be estimated by minimizing the rank of H. Let

X =


x̂(1) x̂(0) · · · x̂(2−N)

x̂(2) x̂(1) · · · x̂(1−N)
...

...
. . .

...

x̂(N) x̂(N − 1) · · · x̂(1)

 (3.22)

and

g = [g(0) g(1) · · · g(N − 1)]T . (3.23)

Then the estimate of the output z can be written as

ẑ = [ẑ(1) ẑ(2) · · · ẑ(N)]T

= Xg.
(3.24)

Let θ = [gTλT ]T . With θ, let us define a positive semidefinite symmetric matrix
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Θ = θθT as

Θ =



g(0)2 · · · g(0)λ(M)
...

. . .
...

g(N − 1)g(0) · · · g(N − 1)λ(M)

λ(1)g(0) · · · · · ·λ(1)λ(M)
...

. . .
...

λ(M)g(0) · · · λ(M)2


. (3.25)

For the purpose of normalization, the following condition will be applied to the

system parameters of linear dynamics:

N∑
k=1

Θ(k) = g(0)2 + · · ·+ g(N)2 = α

where α is a user-chosen normalization coefficient. Due to the structure of Θ, the

monotonically increasing condition of λ in (3.20) is relaxed to

0 ≤ Θ(N + 1, N + 1) < · · · < Θ(N +M,N +M)

which is equivalent to

0 ≤ λ21 < · · · < λ2M .

Without loss of generalization, this monotonicity assumption on the unknown

static nonlinearity with a normalization coefficient α of the linear dynamic sys-

tem guarantees a solution for an FIR linear system. From (3.19) and (3.24), the

model output ẑ is defined by

ẑ =

min(t,N)∑
k=1

Tt−k+1,k (3.26)

where
T = ρλgT

= ρΘ(N + 1 : N +M, 1 : N).

Based on its structure, it is clear that Θ is a rank 1 matrix if there is no noise

in the data. For cases where there is noise, system parameters will be found by

minimizing rank(Θ). Because Θ is a square positive semidefinite matrix, mini-

mizing its trace is the closest approximation of the rank minimization that can be

efficiently solved [27]. With the given system parametrization, the optimization

problem for estimation of system parameters can be written as
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Optimization Problem 3

Consider

variable Θ in (3.25) to define

ẑ =

min(t,N)∑
k=1

Tt−k+1,k

where T = ρΘ(N + 1 : N +M, 1 : N)

with ρ in (3.19).

Minimize

w1||z(t)− ẑ(t)||2 + w2trace(Θ)

subject to
N∑
k=1

Θ(k) = α and

0 ≤ Θ(N + 1, N + 1) < · · · < Θ(N +M,N +M).

In Optimization Problem 3 above, α is a normalization coefficient, and w1 and w2

are weighting factors. Also, the rank minimization of H is included in the trace

minimization of Θ.

Due to the over-parametrization used to define Θ in (3.25), we need to

separate the parameters of the linear dynamical system g and the parameter of

the static nonlinearity λ. Singular Value Decomposition (SVD) is used in this

section to separate these system parameters. The SVD of Θ is given as

Θ = UΣV T (3.27)

where U and V are orthogonal matrices, U = V due to the structure of Θ, and

Σ is a rectangular diagonal matrix. The positive diagonal entries of Σ are called

singular values. From (3.27), the parameter vector θ = [gTλT ]T , where Θ = θθT

can be calculated by

θ =
√
σ1U(:, 1)

g = θ(1 : N)

λ = θ(N + 1 : N +M)

(3.28)

providing an optimal rank 1 approximation of Θ.
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3.5.2 Result of thermal actuator identification

The flying height was estimated based on servo sector measurements (128

servo sectors at 7200 rpm). Four different step inputs are applied to the thermal

actuator system and 20 flying height variation outputs for each step input are

measured and averaged. Then the inputs and outputs are concatenated to generate

a staircase input and output as shown in Figure 3.8 and Figure 3.11 respectively.

M = 9 with m = [0 .05 .1 .15 .2 .25 .3 .35 max(u(t))] is used to model the input

static nonlinearity. Once λ is estimated (subsequently x̂), a second order linear

transfer function model is used to model the linear dynamics. The estimation

results are shown in Figure 3.8, Figure 3.9, Figure 3.10, and Figure 3.11. The

estimated intermediated power signal x̂ is shown in Figure 3.8, the comparison

between the measured output y and simulated output ŷ is shown in Figure 3.11,

and the identified static nonlinearity and the identified linear dynamic system are

shown in Figure 3.9 and Figure 3.10 respectively.
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Figure 3.8: Concatenated input signal u (black dotted line, 10× magnified) and
estimated intermediate signal x̂ (colored solid line).

When the voltage input is low, the quadratic relationship between the input

voltage and the intermediate power signal is well preserved. As the input increases

(the read/write head gets close to the disk), the characteristics of the static nonlin-

earity changes due to the head’s extreme proximity to the disk. The experimental



44

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

5

10

15

u(t)

x
(t
)

Figure 3.9: Identified input static nonlinear block (black circles) and its quadratic
approximation (colored solid line).
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Figure 3.10: Identified linear dynamic block.
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Figure 3.11: Concatenated measured output y (black dotted line) and simulated
output ŷ (colored solid line).

study shows that the Hammerstein model captures the nonlinear dynamics of the

thermal actuator sufficiently well and the proposed identification method provides

an efficient way to identify Hammerstein system parameters.

3.6 Conclusion

In this chapter, the Hammerstein system parameter identification problem

is formulated as a nuclear norm minimization problem. First, the system parameter

identification problem is formulated as a rank minimization problem to reconstruct

the intermediate signal between the static nonlinearity and the linear dynamics in

a Hammerstein system. This non-convex optimization problem is then reformu-

lated as a convex optimization problem using a nuclear norm relaxation. Once the

system parameters for the static nonlinearity are estimated, an intermediate signal

can be created to facilitate the identification of the linear dynamic system. The

main assumption used in this study is that static nonlinearity is monotonically

non-decreasing in order to guarantee a unique combination of a static nonlinear

block and Finite Impulse Response (FIR) linear block. The proposed identifica-

tion method is applied to simulation data and a slightly modified version of this
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method is applied to identify a nonlinear dynamic model of a thermal actuator in

a hard disk drive. The numerical simulation and experimental result shows the ef-

fectiveness of the proposed identification method. The materials in Chapter 3 have

been accepted for publication in Y. Han and R. de Callafon, Hammerstein system

identification using nuclear norm minimization, Automatica, to appear 2012. The

dissertation author was the primary investigator and author of this paper.



4

Open-loop Identification of

Wiener Systems

4.1 Introduction

A Wiener system has a block oriented structure where a linear dynamical

system and a output static nonlinearity are separated, as shown in Figure 4.1.

Wiener structure is a good approach to modeling systems with sensor nonlinearity

or other nonlinear effects that can be brought to the system output [25] [29] [35]

[67]. It has been shown that Wiener models can be used to effectively capture

various nonlinear dynamics, such as chemical processes and biological systems [10]

[29] [33]. The identification of Wiener systems involves estimating the parame-

ters describing the linear dynamical and the output static nonlinear blocks from

the measured input and output data. A comprehensive overview of block-oriented

nonlinear system identification, including Wiener systems, can be found in [29].

The most common assumptions used in Wiener system identification are the Gaus-

sian assumption of the input signal and the invertibility of the static nonlinearity.

These assumptions are popular because, if the input signal is Gaussian noise, the

identification of the linear dynamical block can be separated from the identification

of the static nonlinear function based on separability assumption [7] [8] [22] [31]

and parameterization of the output static nonlinearity is possible for the inverse

47
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of the given static nonlinearity. However, the Gaussian input assumption is too

restrictive for practical application and the invertibility of the static nonlinearity

assumption excludes hard nonlinearities, such as saturation, common in control

systems.

Recently, a system identification method was introduced based on the sector

bound property of static nonlinearity using Quadratic Programming (QP) in [68].

This monotonicity assumption on the unknown static nonlinearity guarantees a

solution for an Finite Impulse Response (FIR) linear system and leads to possible

nonparametric identification of static nonlinear function [55].

f (·)u(t) y(t)
x(t)

o

ynf(t)G(q)

H (q)

v(t)

e(t)

Figure 4.1: Wiener system with output noise.

In this study, the monotonicity assumption on the unknown static nonlin-

earity is utilized for nonparametric identification of static nonlinear function. The

main contribution of this study is that the proposed method is robust to output

noise and neither the Gaussian assumption of the input signal nor the invertibility

of the static nonlinearity is necessary.

4.2 Problem description

The system to be modeled is a Wiener system as shown in Figure 4.1. The

purpose of this study is to propose a method to identify the unknown linear dy-

namical systems G(q) and a static nonlinear function f(·) from a finite number
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of observations of the data u(t) and y(t). This is done in a novel way by the re-

construction of the intermediate signal x(t) and the noise free output signal ynf (t)

with conditions on the finite dimensional dynamical representation of the linear

systems G(q) and the memoryless static nonlinearity f(·). The output disturbance

v(t) is filtered zero-mean white noise independent of the input signal, where the

filtering properties are unknown. As mentioned before, finding the simplest model

within a feasible model set restricted by convex constraints can often be formu-

lated as a rank minimization problem [27]. Based on this idea, in this study, the

rank minimization problem is used to formulate a convex optimization problem

via Semidefinite Programming (SDP) relaxation. The system parameters will be

estimated by finding a feasible model consistent with the input and output data,

and satisfying the following basic properties of the Wiener system:

Condition 3

I.The static nonlinear function has no memory:

The current output ynf (t) only depends on

the current input x(t).

II.The linear dynamical system has a finite, but

unknown, McMillan degree n:

x(t) = φT (t)θ,where

φT (t) = [u(t) · · · u(t− nb) x(t− 1) · · · x(t− na)],
θ is the linear system parameter,

and n ≤ max(nb − 1, na).

The intermediate signal x(t) and the noise free output signal ynf (t) in Figure 4.1

are not measurable. The unknown signals will be parametrized and the estimation

of the unknown coefficients will be formulated as a SDP problem. Let x̂(t) be the

reconstructed signal of x(t) and ŷnf (t) be the reconstructed signal of ynf (t). The

SDP problem will be formulated in such a way that x̂(t) and ŷnf (t) are related via

a memoryless static nonlinearity, u(t) and x̂(t) are related via a linear dynamical

system with the smallest McMillan degree, and ||y − ŷnf ||2 is minimized under

Condition 3. Once x̂(t) and ŷnf (t) have been reconstructed, the identification
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of G(q) from u(t) to x̂(t) can be solved with a standard Prediction Error (PE)

identification method in [49] and the identification of f(·) from x̂(t) to ŷnf (t) can

be solved via the Least Squares (LS) method.

4.3 System parametrization

4.3.1 Input-output map of the linear dynamical system

Let g(k), k = 0, 1, · · · be a causal sequence of unit impulse responses of

G(q). The relationship between the input u(t) and the intermediate signal x(t)

can be described by the convolution as

x(t) =
∞∑
k=0

g(k)u(t− k).

Due to Condition 3 (finite McMillan degree), the Hankel matrix defined as

H =


g(1) · · · g(N/2)

g(2) · · · g(N/2 + 1)
...

. . .
...

g(N/2) · · · · · · g(N − 1)

 , (4.1)

has a rank(H) ≤ n. The order of the linear dynamical system is determined

by the rank(H) as H is simply the product of the extended observability and

controllability matrices [30]. A lower order model, consistent with the input and

output signals can be estimated by minimizing the rank of H. Let

x̂ = [x̂(1) x̂(2) · · · x̂(N)]T

and

U =


u(1) u(0) · · · u(2−N)

u(2) u(1) · · · u(1−N)
...

...
. . .

...

u(N) u(N − 1) · · · u(1)

 . (4.2)

With

g = [g(0) g(1) · · · g(N − 1)]T , (4.3)
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the finite sequence of the input

u = [u(1) u(2) · · · u(N)]T

and the estimate of the intermediate signal x can be written as

x̂ = Ug.

4.3.2 Characteristics of static nonlinearity

Let ŷnf be the noise free output defined as

ŷnf = [ŷnf (1) · · · ŷnf (N)]T . (4.4)

In this chapter, a monotonically non-decreasing static nonlinearity with the max-

imum slope of 1 is considered as in Chapter 3:

Condition 4

I. The static nonlinear function is monotonically

non-decreasing with the maximum slope of 1:

(ŷnf (i)− ŷnf (j))(ŷnf (i)− ŷnf (j)− x̂(i) + x̂(j)) ≤ 0

∀i > j.

In Condition 4,

ŷnf (i)− ŷnf (j) ≥ 0⇒ ŷnf (i)− ŷnf (j) ≤ x̂(i)− x̂(j)

or

ŷnf (i)− ŷnf (j) ≤ 0⇒ ŷnf (i)− ŷnf (j) ≥ x̂(i)− x̂(j).

In both cases,

x̂(i)− x̂(j) = 0⇒ ŷnf (i)− ŷnf (j) = 0

or

x̂(i)− x̂(j) 6= 0⇒ ŷnf (i)− ŷnf (j)
x̂(i)− x̂(j)

≤ 1.

Condition 4 implies that once x̂(t) is chosen, ŷnf (t) is determined as

ŷnf = α(t)x̂(t), 0 ≤ α(t) ≤ 1.
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This implies that the cross-covariance function between x̂(t) and ŷnf (t) only de-

pends on the static nonlinearity, characterized by α(t), and the auto-covariance of

x̂(t), not τ as

Ryx(τ) =
1

N

N∑
t=1

ŷnf (t)x̂(t− τ)

=
1

N

N∑
t=1

α(t)x̂(t)x̂(t− τ).

Thus, Condition 4 guarantees that the intermediate signal x̂(t) and the output

ŷnf (t) are related by a static nonlinear function.

4.4 Parameter estimation

In this section, a rank minimization problem with the memoryless con-

straint on the static nonlinearity for the reconstruction of the intermediate signal

x(t) and the noise free output signal ynf (t) in Figure 4.1 is summarized and the

optimization problem is constructed. With the parametrization and constraints

explained in the previous section, an optimization problem can be written as fol-

lows:

Optimization Problem 4

Consider

variables g in (4.3) and ŷnf in (4.4)

Define

x̂ = Ug, with U in (4.2)

Minimize

w1 · ||y − ŷnf ||2 + w2 · rank H, with H in (4.1)

subject to

(ŷnf (i)− ŷnf (j))(ŷnf (i)− ŷnf (j)− x̂(i) + x̂(j)) ≤ 0

∀i > j

where

w1 and w2 are weighting factors
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Optimization Problem 4 results in the optimal solution for the system pa-

rameter g that is used to construct the intermediate signal x and the noise free

output ynf . In Optimization Problem 4, the reconstructed signals x̂ and ŷnf are

generated in such a way that a static nonlinear function satisfies the monotonically

non-decreasing condition, the linear dynamical system has the minimum order, and

the prediction error is minimized under the chosen weighting and constraints.

Unfortunately, the rank condition and the constraint in Optimization Prob-

lem 4 are not convex. In this section, a new variable Θ is defined in order to

convert the non-convex optimization problem to an approximated convex opti-

mization problem, resulting in a Semidefinite Programming (SDP) problem. This

SDP problem is easier to solve and the solution is close to the solution of the

original non-convex problem [27].

Let θ = [gT ŷTnf ]
T . With θ, let us define a positive semidefinite symmetric

matrix Θ = θθT as

Θ =



g(0)g(0) · · · · · · g(0)ŷnf (N)
...

...
...

...

g(N)g(0)
...

... g(N)ŷnf (N)

ŷnf (1)g(0) · · · · · · ŷnf (1)ŷnf (N)
...

... · · · ...

ŷnf (N)g(0) · · · · · · ŷnf (N)ŷnf (N)


. (4.5)

Based on its structure, it is clear that Θ is a rank 1 matrix if there is no noise in the

data. For cases where there is noise, system parameters will be found by minimizing

rank(Θ). Because Θ is a square positive semidefinite matrix, minimizing its trace is

the closest approximation of the rank minimization that can be efficiently solved.

Without loss of generalization, the maximum slope 1 of the static nonlinearity

combined with the minimization of trace(Θ) serves as a normalization condition

on the static nonlinearity, so that the static gain of the Wiener system is modeled

by the static gain of the linear system G(q). Due to the over-parametrization of Θ,

it is impossible to access ŷnf directly through Θ. However, Θ contains information

of ŷnf ŷ
T
nf . Thus, minimizing ||y− ŷnf ||2 is relaxed to minimizing ||yyT − ŷnf ŷTnf ||F ,

where || · ||F is a Frobenius norm. With Θ, let us express the quadratic constraints
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in Optimization Problem 3 as Linear Matrix Inequalities (LMIs). Let

δY =


ŷnf (2)− ŷnf (1) · · · 0

0 · · · 0

0
... 0

0 · · · ŷnf (N)− ŷnf (1)


be a diagonal matrix whose diagonal entries include ŷnf (i)− ŷnf (j), ∀i > j and

δX =


x̂(2)− x̂(1) 0 · · · 0

0 x̂(3)− x̂(2) · · · 0

0 0
... 0

0 0 · · · x̂(N)− x̂(1)


be a diagonal matrix whose diagonal entries include x̂(i) − x̂(j), ∀i > j. Then

diag(δY ) = ∆Y y, where

∆Y =



0 1 0 · · · 0

0 0 1 0 · · · 0

0 0 1 0 · · · 0
... · · · · · · · · · ...
... 0 0 · · · · · · 0 1
... · · · · · · · · · · · ·
0 0 · · · · · · 0 1


−



1 0 0 · · · 0

0 1 0 · · · ...

1 0 0 · · · ...

0 · · · · · · · · · ...

0 0 · · · 1
...

0
... · · · · · · ...

1 0 · · · · · · 0


and diag(δX) = ∆Xh, where

∆X =



u2 u1 0 · · · 0

u3 u2 u1 0 · · · 0

u3 u2 u1 0 · · · 0
... · · · · · · · · · ...

uN · · · · · · · · · u1


−



u1 0 · · · · · · 0

u2 u1 0 · · · 0

u1 0 · · · · · · 0

u3 u2 u1 0 · · · 0

u2 u1 0 · · · · · · 0

u1 0 · · · · · · 0
... · · · · · · · · · ...

u1 0 · · · · · · 0
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where ui is used instead of u(i) for notational brevity. Then, the constraints in

Optimization Problem 4 can be written as

δY T δY − δY T δX ≤ 0.

where
δY T δY = diag(diag(∆Y ˜̃Θ∆Y T ))

where ˜̃Θ = Θ(N + 1 : 2N,N + 1 : 2N)

and
δY T δX = diag(diag(∆XΘ̃∆Y T ))

where Θ̃ = Θ(N + 1 : 2N, 1 : N)

where the notation (k, :) and (:, k) are used to denote the kth row and the kth

column in a matrix respectively. Here diag(x) indicates a square matrix with the

elements of a vector x on the diagonal, and diag(X) indicates the main diagonal

of a matrix X.

Using SDP relaxation, Optimization Problem 4 can be rewritten as the fol-

lowing convex optimization problem:
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Optimization Problem 5

Consider

variable symmetric Θ

Minimize

w1 · || ˜̃Θ− yyT ||F + w2 · trace(Θ)

subject to

δY T δY − δY T δX ≤ 0

Θ ≥ 0

where

δY T δY = diag(diag(∆Y ˜̃Θ∆Y T ))

δY T δX = diag(diag(∆XΘ̃∆Y T ))

where
˜̃Θ = Θ(N + 1 : 2N,N + 1 : 2N)

Θ̃ = Θ(N + 1 : 2N, 1 : N)

|| · ||F is a Frobenius norm

where

w1 and w2 are weighting factors.

Due to the over-parametrization used to define Θ in (4.5), we need to sep-

arate the parameters of the linear dynamical system g and the noise free output

ŷnf . Singular Value Decomposition (SVD) is used in this study to separate the

system parameters. The SVD of Θ is given as

Θ = UΣV T (4.6)

where U2N×2N and V2N×2N are orthogonal matrices, U2N×2N = V2N×2N due to

the structure of Θ, and Σ2N×2N is a rectangular diagonal matrix. The positive

diagonal entries of Σ are called singular values. From (4.6), the parameter vector

θ = [gT ŷTnf ]
T , where Θ = θθT can be calculated by

θ =
√
σ1U(:, 1)

g = θ(1 : N)

ŷnf = θ(N + 1 : 2N)

providing an optimal rank 1 approximation of Θ.
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4.5 Numerical example

In this section, a numerical example of Wiener system identification us-

ing the proposed identification method is presented. A Pseudo Random Binary

Sequence (PRBS) excitation signal, defined as

u(t) = 4 · sign(randn(N, 1))

where

u(t) =


+1 w.p.

1

2

−1 w.p.
1

2

,

is used as the input. The output disturbance v(t) = H(q)e(t) is filtered zero-mean

white noise independent of the input signal, where the filtering properties, H(q),

are not estimated or not need to be known. For the system identification, twenty

sets of estimation data with 100 samples are generated from the Wiener system

with the following specifications:

Linear dynamical system:

G(q) =
0.0997q−1 − 0.0902q−2

1− 1.886q−1 + 0.9048q−2

Static nonlinearity:

f(x(t)) =


.5 if x(t) > .5

x(t) if |x(t)| ≤ .5

−.5 if x(t) < −.5
Noise dynamics:

H(q) =
1 + 0.5q−1

1− 0.85q−1

.

The input and output signals are shown in Figure 4.2. In order to solve the

Semidefinite Programming (SDP) problem (Optimization Problem 5), SEDUMI

[59] and YALMIP [50] are used. The estimation results are shown in Figure 4.3,

Figure 4.4 and Figure 4.5. As shown in Figure 4.3 and Figure 4.4, both pole and

zero locations are well estimated. As shown in Figure 4.5, ±.5 saturation is well

identified.
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Figure 4.2: The input and output signals.
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Figure 4.3: The Bode plot of the identified linear dynamical system. The black
solid line indicates the real linear dynamical system. The (colored) dashed lines
indicate estimated linear dynamical systems by using twenty different sets of data.
The SNR of each data set is greater than 50dB.
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line indicates the real static nonlinear function. The (colored) dashed lines indicate
estimated static nonlinear functions by using twenty different sets of data. The
SNR of each data set is greater than 50dB.
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4.6 Conclusion

In this chapter, the Wiener system identification problem is formulated as a

Semidefinite Programming (SDP) problem to reconstruct the intermediate signal

and noise free output. The system parameter identification problem is formulated

as a rank minimization problem by imposing the monotonically non-decreasing

condition on the static nonlinear function. This non-convex optimization prob-

lem is then reformulated as a convex optimization problem via SDP relaxation

by using over-parametrization. The proposed method is robust to output noise

and neither the Gaussian assumption of the input signal nor the invertibility of

the static nonlinearity is necessary. Singular Value Decomposition (SVD) is used

to separate the linear system parameters and the noise free output signal. Once

the intermediate signal and noise free output signal are reconstructed, the identi-

fication of the linear dynamical system and the static nonlinear function become

trivial. The proposed identification method is applied to simulation data from a

Wiener system. The numerical simulation result shows the effectiveness of the pro-

posed identification method. The materials in Chapter 4 have been accepted for

publication in Y. Han and R. de Callafon, 2012, Identification of a Wiener System

via Semidefinite Programming, 16th IFAC Symposium on System Identification

2012, Brussels, Belgium. The dissertation author was the primary investigator

and author of this paper.
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Open-loop Identification of

Wiener-Hammerstein Systems

5.1 Introduction

Wiener-Hammerstein systems are dynamical systems characterized by a se-

ries connection of three parts: a linear dynamical system, a static nonlinearity

and another linear dynamical system, as shown in Figure 5.1. This structure

u(t) y(t)

x1(t) x2(t) v(t)

oG2(q)f(· )G1(q)

Figure 5.1: Wiener-Hammerstein system consisting of the cascade of a linear
dynamic block G1(q), a static non-linear block f(·) and another linear dynamic
block G2(q).

can be used to represent sensor systems, electromechanical systems in robotics,

mechatronics, biological and chemical systems [29] [39]. Early works on Wiener-

Hammerstein system identification can be found in [7] [8]. In this early research,

the correlation analysis-based identification method under Gaussian excitation

has been proposed. The authors in [15] introduced a time-domain identification

method based on the Maximum Likelihood principle. The authors in [12] presented

61
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a simple technique for recursive identification of the Wiener-Hammerstein model

with extension to the multi-input single-output (MISO) case. More recent work

can be found in [2] [17] [22] [52] [54] [57] [65]. The authors in [54] proposed an iden-

tification method using the polynomial nonlinear state space (PNLSS) approach.

The authors in [2] presented a method iteratively identifying the linear system and

the Hammerstein system by minimizing the square norm of output prediction error

and by using the orthogonal decomposition subspace method (ORT).

Recently, a system identification method was introduced based on the sector

bound property of static nonlinearity using Quadratic Programming (QP) and

semidefinite programming (SDP) relaxation in [57] [68]. In [57], the identification

problem was formulated as a non-convex QP. A convex SDP relaxation is then

formulated and solved to obtain a sub-optimal solution to the original non-convex

QP. However, the formulation of the problem is based on the existence of the

inverse of the second dynamic system, which cannot be generally guaranteed.

In this chapter, the SDP relaxation approach by [57] is extended by using

rank minimization to propose a Wiener-Hammerstein system identification method

which does not require invertibility of any sub-systems. As mentioned before,

choosing the simplest model in the set of feasible models that is described by

convex constraints can often be expressed as a rank minimization problem [27].

Based on this idea, in this chapter a Wiener-Hammerstein system identification

problem is formulated as a rank minimization problem and the non-convex rank

minimization problem is then formulated as a convex problem via SDP relaxation.

The objective of this study is to formulate a procedure that allows the

characterization and identification of the three parts in a a Wiener-Hammerstein

system individually based on the finite number of input u(t) and the output y(t)

observations. In this study, this is accomplished by reconstructing unmeasurable

intermediate signals x1(t) and x2(t) that satisfy the conditions on the finite di-

mensional dynamical representation of the linear systems G1(q) and G2(q), and

the memoryless static nonlinearity f(·). Once the intermediate signals x1(t) and

x2(t) are reconstructed, the identification and characterization of the three parts

becomes trivial.
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5.2 Problem description

The system to be modeled is a Wiener-Hammerstein system as shown in

Figure 5.1. In this study, each block is parametrized separately. System param-

eters for each block will be estimated simultaneously by finding feasible models

consistent with the input and output data, and by satisfying the following basic

properties of the Wiener-Hammerstein system:

Condition 5

I.The static nonlinear function has no memory:

The current output x2(t) only depends on

the current input x1(t).

II. The first linear dynamic system has a finite, but

unknown, McMillan degree n1:

x1(t) = φT1 (t)θ1,where

φT1 (t) = [u(t) · · · u(t− nb) x1(t− 1) · · · x1(t− na)],
θ1 is the first linear system parameter,

and n1 ≤ max(nb − 1, na).

III. The second linear dynamic system has a finite, but

unknown, McMillan degree n2:

y(t) = φT2 (t)θ2,where

φT2 (t) = [x2(t) · · · x2(t− nd) y(t− 1) · · · y(t− nc)],
θ2 is the second linear system parameter,

and n2 ≤ max(nd − 1, nc).

The intermediate signals x1(t) and x2(t) in Figure 5.1 are not measurable, and

the properties in Condition 5 are used to formulate a procedure to reconstruct

x1(t) and x2(t). The unknown signals x1(t) and x2(t) will be parametrized, and

the estimation of the unknown coefficients will be formulated as a SDP problem.

Let x̂1(t) be the reconstructed signal of x1(t), x̂2(t) be the reconstructed signal of
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x2(t), and ŷ(t) be the model output. The SDP problem will be formulated in such

a way that x̂1(t) and x̂2(t) are related via a memoryless static nonlinearity, u(t) and

x̂1(t) are related via a linear dynamical system with the smallest McMillan degree,

and ||y − ŷ||2 is minimized under Condition 5. Once x̂1(t) and x̂2(t) have been

reconstructed, the identification of G1(q) from u(t) to x̂1(t), and the identification

of G2(q) from x̂2(t) to y(t) can be solved with the standard Prediction Error (PE)

identification method in [49] and the identification of f(·) from x̂1(t) to x̂2(t) can

be solved via the Least Squares (LS) method.

5.3 System parametrization

5.3.1 Input-output map of the first dynamic system

In order to formulate the parameter estimation problem, a finite impulse

response (FIR) model is used to model the first dynamic system G1. Let gk, k =

0, 1, · · · be a causal sequence of unit impulse responses for G1(q). The relationship

between the input u(t) and the intermediate signal x1(t) can be described by the

convolution as

x1(t) =
∞∑
k=0

gku(t− k).

Due to Condition 5 (finite McMillan degree), the Hankel matrix defined as

H =


g(1) · · · g(N/2)

g(2) · · · g(N/2 + 1)
...

. . .
...

g(N/2) · · · · · · g(N − 1)

 (5.1)

has a rank(H) ≤ n1. The order of the linear dynamical system is determined by

the rank(H) as H is simply the product of the extended observability and con-

trollability matrices [30]. Let

x̂1 = [x̂1(1) x̂1(2) · · · x̂1(N)]T
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and

U =


u(1) u(0) · · · u(2−N)

u(2) u(1) · · · u(1−N)
...

...
...

u(N) u(N − 1) · · · u(1)

 . (5.2)

With the system parameter

g = [g0 g1 · · · gN−1]T (5.3)

to be estimated, x̂1 can be written as

x̂1 = Ug. (5.4)

The finite order sequence of gk, k = 0, 1, · · · , N − 1, for a lower order model for

G1 can be estimated by minimizing the rank of H in (5.1) [27]. Here, the rank

minimization of H is used only to minimize the order of G1. The FIR approxima-

tion of G1 is used to formulate a convex optimization problem to estimate system

parameters in Section 5.4. Once x̂1(t) has been reconstructed, the identification

of G1(q) from u(t) to x̂1(t) can be solved with the standard Prediction Error (PE)

identification method in [49]. Based on (5.4), the error is defined by

e(t) = x1(t)− x̂1(t)

= x1(t)−
L−1∑
k=0

gku(t− k).

Thus,

||e(t)||22 =
N∑
t=1

[
x1(t)−

L−1∑
k=0

gku(t− k)

]2
=

N∑
t=1

x21(t)− 2
L−1∑
k=0

gkRx1u(k)

+
L−1∑
k=0

L−1∑
l=0

gkglRuu(k − l)
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where

Rx1u(k) =
N∑
t=1

x1(t)u(t− k)

Ruu(k) =
N−k−l∑
t=1−k−l

u(t)u(t+ k).

If L tends toward infinity, the gk obtained by minimizing the rank(H) will satisfy

|gk| << 1 for k ≥ L, resulting in Rx1u(k)→
L−1∑
l=0

glRuu(l − k). Then,

lim
N→∞,L→∞

||e(t)||22 = 0 (5.5)

As a result, the estimate x̂1(t) in (5.4) will converge to x1(t) provided that

N →∞ and L→∞.

5.3.2 Modeling of static nonlinearity

In this section, a nthf order polynomial function is used to model static non-

linearity. With the polynomial basis functions, x̂2(t) is defined by

x̂2(t) = λ0 + λ1x̂1(t) + λ2x̂
2
1(t) + · · ·+ λnf

x̂
nf

1 (t). (5.6)

Weierstrass’s Theorem in Section 2.2 guarantees that the polynomial ap-

proximation x̂2(t) in (5.6) will converge to x2(t) as nf tends toward to infinity for

an arbitrary interval. There could be many possible combinations of (x̂1(t), x̂2(t))

that satisfy Condition 5 and (5.6). In order to limit the number of possible selec-

tions of (x̂1(t), x̂2(t)), it is assumed that the static nonlinearity is monotonically

non-decreasing with the maximum slope of 1 as in Chapters 1 and 2:

Condition 6

I. The static nonlinear function is monotonically

non-decreasing with the maximum slope of 1:

(x̂2(i)− x̂2(j))(x̂2(i)− x̂2(j)− x̂1(i) + x̂1(j)) ≤ 0

∀i > j.
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The maximum slope of the static nonlinearity is a user-chosen value, thus

can be adjusted by a user. In this section, we assumed that λ0 = 0 and λ1 = 1.

The assumptions are not necessary for the proposed method, but chosen for nota-

tional brevity and normalization. Without loss of generalization, this monotonicity

assumption on the unknown static nonlinearity combined with the given assump-

tions (λ0 = 0, λ1 = 1, and the maximum slope ≤ 1) guarantees a solution for

an FIR linear system for G1 and serves as a normalization condition on the static

nonlinearity. Based on (5.4) and (5.6), x̂2 = [x̂2(1) · · · x̂2(N)]T can be calculated

as

x̂2 = Ug +X1λ (5.7)

where

λ = [λ2 · · · λnf
]T (5.8)

and

X1 =


x̂21(1) · · · x̂

nf

1 (1)
...

...
...

x̂21(N) · · · x̂
nf

1 (N)

 . (5.9)

An iterative approach will be used to update the higher order nonlinear terms of

x̂1 in (5.9) that are included in the description of x̂2 in (5.7).

5.3.3 Modeling of the second dynamic system

Since the output of the Wiener-Hammerstein system is measured, a ratio-

nal transfer function is used to model the second dynamic system G2. The model

output ŷ(t) is defined as

ŷ(t) = G2(q)x̂2(t)

=
D(q)

C(q)
x̂2(t)

where

C(q) = 1 + c1q
−1 + · · ·+ cncq

−nc

D(q) = d0 + d1q
−1 + · · ·+ dnd

q−nd .
(5.10)
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Using the system parameters in (5.10), the linear difference equation between the

output ŷ(t) and the intermediate signal x̂2(t) is defined as

ŷ(t) = −
nc∑
k=1

cky(t− k) +

nd∑
k=0

dkx̂2(t− k).

Let

Γ(t) =

nd∑
k=0

dkx̂2(t− k)

=

nd∑
k=0

dkU(t− k, :)g +

nd∑
k=0

dkX1(t− k, :)λ
(5.11)

and
T = UgdT +X1λd

T

=


T1,1 · · · T1,nd+1

...
...

...

TN,1 · · · TN,nd+1


using U in (5.2), g in (5.3), λ in (5.8) and X1 in (5.9), where

d = [d0 · · · dnd
]T , (5.12)

and the notations (k, :) and (:, k) are used to denote the kth row and the kth column

in a matrix respectively. Then Γ(t) in (5.11) can be rewritten as

Γ(t) =

min(t,nd)∑
k=1

Tt−k+1,k.

Using the given parameterization, the model output vector ŷ = [ŷ(1) · · · ŷ(N)]T

can be written as

ŷ = Y c+ Γ (5.13)

where

c = [c1 · · · cnc ]
T , (5.14)

Y =


−y(1− 1) · · · −y(1− nc)

...
...

...

−y(N − 1) · · · −y(N − nc)

 , (5.15)

and

Γ = [Γ(1) · · · Γ(N)]T . (5.16)
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With the system parametrization in Section 5.3 based on Condition 5, system

parameters for a lower order model for G1, consistent with the input and output

measurement data, can be estimated by minimizing ||y− ŷ||2, with ŷ in (5.13) and

rank(H), with H in (5.1) simultaneously under the constraints developed based

on Condition 6.

5.4 Parameter estimation

5.4.1 Optimization problem

With the system parametrization and constraints explained in Section 5.3,

the optimization problem to obtain system parameters can be written as

Optimization Problem 6

Consider variables

gN×1 in (5.3)

λnf−1×1 in (5.8)

cnc×1 in (5.14)

dnd+1×1 in (5.12)

and define

x̂1 = Ug in (5.4)

x̂2 = Ug +X1λ in (5.7)

ŷ = Y c+ Γ in (5.13)

minimize

w1rank(H) + w2||y − ŷ||2, with H in (5.1)

subject to

(x̂2(i)− x̂2(j))(x̂2(i)− x̂2(j)− x̂1(i) + x̂1(j)) ≤ 0

∀i > j.

In Optimization Problem 6 above, w1 and w2 are weighting factors. Optimization

Problem 6 is a non-convex quadratic programming (QP) problem. Semidefinite
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programming (SDP) relaxation is a standard approach to solve non-convex QP

problems. A SDP relaxation procedure converts a non-convex optimization prob-

lem to a convex optimization problem by defining a feasible convex set, which is

easier to solve and whose solution is close to the solution of the original non-convex

optimization problem.

5.4.2 Semidefinite programming relaxation

In order to convert the non-convex Optimization Problem 6 to a convex

optimization problem, the over-parametrization technique is used in this chapter.

Let us define a system parameter matrix Θ that includes system parameters g, λ

and d. Let us define the parameter θ as

θ = [gT λT dT ]T (5.17)

and then define the over-parametrized parameter matrix Θ as

Θ = θ · θT =



g0g0 · · · λnf
g0 · · · dnd

g0

g0g1 · · · λnf
g1 · · · dnd

g1
...

...
...

...
...

g0λnf · · · λnf
λnf

· · · dnd
λnf

...
...

...
...

...

g0dnd
· · · λnf

dnd
· · · dnd

dnd


. (5.18)

An arbitrary gain may be distributed among the static nonlinearity and the two

linear dynamic systems. In order to avoid an ambiguous gain, the scaling of the

first dynamic system can be fixed by setting
∑
k=0

g2k = 1. The scaling of the static

nonlinear function is fixed as explained in Condition 6. With the system parameter

matrix Θ, the constraint in Optimization Problem 6 can be rewritten as a linear

matrix inequity (LMI) condition as

∆XT
2 ∆X2 −∆XT

2 ∆X1 ≤ 0 (5.19)

where

∆XT
2 ∆X2 = diag(diag(δX1Θ̃δX

T
1 )), (5.20)
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and

∆XT
2 ∆X1 = diag(diag(δX1

˜̃ΘδUT )). (5.21)

Here,

δX1 =



X1(2, :)−X1(1, :)

X1(3, :)−X1(2, :)
...

X1(N, :)−X1(N − 1, :)
...

X1(N, :)−X1(1, :)


, (5.22)

with X1 in (5.9),

δU =



U(2, :)− U(1, :)

U(3, :)− U(2, :)
...

U(N, :)− U(N − 1, :)
...

U(N, :)− U(1, :)


, (5.23)

with U in (5.2), Θ̃ = Θ(N + 1 : N + M,N + 1 : N + M), and ˜̃Θ = Θ(N + 1 :

N + M, 1 : N). Here diag(x) indicates a square matrix with the elements of a

vector x on the diagonal, and diag(X) indicates the main diagonal of a matrix X.

Using the system parameter matrix Θ, the simulated output ŷ in (5.13) is defined

as

ŷ = Y c+ Γ

where
T = UΘ(1 : N,N + nf : N + nf + nd)

+X1Θ(N + 1 : N + nf − 1, N + nf : N + nf + nd)

Here, Θ in (5.18), satisfying the LMI in (5.19), is a rank 1 matrix for noiseless cases.

However, in order to account for the noise effect, the condition can be relaxed to

a rank inequality condition as rank(Θ) ≤ γ, where γ is a positive constant. An

optimization problem with rank inequality conditions is hard to solve. One simple

and effective way, applicable when the matrix is symmetric positive semidefinite,

is to use its trace in place of its rank. The motivation for the use of its trace is
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that if the matrix Θ is a symmetric and positive semidefinite, its singular values

are the same as its eigenvalues. Therefore, the nuclear norm reduces to trace, and

the nuclear norm is the convex envelope of the rank function on the set of matrices

with norms less than 1. Thus, the trace inequality condition is the closest convex

approximation to the original rank inequity condition that can be efficiently solved

[26]. As a result, trace(Θ) ≤ p, where p is a positive constant, is used instead of the

rank inequality condition. The positive constant p can be tuned by investigating

estimation results. Due to this SDP relaxation used to formulate Optimization

Problem 6 and the user-chosen value p, the constraint I in Condition 6 is relaxed

to

(x̂2(i)− x̂2(j))(x̂2(i)− x̂2(j)− (1 + r)(x̂1(i)− x̂1(j))) ≤ q

∀i > j

where r and q are small magnitude positive constants determined by the

user-chosen value p and a noise level. Also, the rank minimization on H in

Optimization Problem 6 is eliminated since this condition is included into the

trace(Θ) ≤ p. Finally, the non-convex Optimization Problem 6 is reformulated as

a SDP convex optimization problem as
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Optimization Problem 7

Consider variables

ΘN+M+nd×N+M+nd
in (5.18)

cnc×1 in (5.14)

and define

ŷ = Y c+ Γ in (5.13)

minimize

||y − ŷ||2
subject to

trace(Θ) ≤ p

∆XT
2 ∆X2 −∆XT

2 ∆X1 ≤ 0

Θ ≥ 0
N∑
k=1

Θ(k, k) = 1

with ∆XT
2 ∆X2 in (5.20) and ∆XT

2 ∆X1 in (5.21).

In Optimization Problem 7, it is assumed that the user-specified structure variables

nc, nd, and nf are known. Once the optimal Θ in (5.18) is obtained, the optimal θ

(5.17) can be obtained by conducting a Singular Value Decomposition (SVD). The

singular vector corresponding to the largest singular value is the optimal solution

for θ.

5.4.3 Iterative approach

Obviously, the proposed identification method requires prior information of

x̂1 to obtain X1 in (5.9). Let us define a new system parameter φ that includes

the parameter θ in (5.17) and the parameter c in (5.14) as φ = [θT cT ]T . With the

initialization X1
1 = zeros(N, nf − 1) (this means x̂11(t) = u(t)) and the previous

parameter estimation φ̂k−1, we propose the following iterative method:
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Step 1: Construct the necessary matrices for the

optimization problem formulation.

(δU in (5.23), δX1 in (5.22), Y in (5.15),

Γ in (5.16), ∆XT
2 ∆X2 in (5.20), ∆XT

2 ∆X1 in (5.21)).

Step 2: Solve Optimization Problem 7 to obtain

Θ in (5.18) and d in (5.14).

Step 3: Conduct a SVD on Θ in (5.18) to obtain θ in (5.17)

and define x̂1 in (5.4).

Step 4: Update Xk
1 in (5.9) using x̂1 estimated in Step 3.

Step 5: Stopping criterion of the algorithm.

If ||φ̂k − φ̂k−1||/||φ̂k−1|| < ε , stop.

Otherwise, go to Step 1.

Step1 creates the matrices necessary for constructing Optimization Problem 7.

Step 2 actually solves Optimization Problem 7 to obtain Θ in (5.18) and c in

(5.14). Step 3 conducts a SVD to obtain θ in (5.17). Step 4 updates the prior

information to construct Optimization Problem 7. Step 4 formulates a stopping

criterion for the algorithm by looking at the relative parameter error.

As long as the classes of models used for the estimation contain the true

models for static nonlinearity and for linear dynamic systems, and the assumptions

on static nonlinearity are indeed true, x̂1(t) and x̂2(t) will converge to x1(t) and

x2(t) provided N,L and nf are large enough at each iteration step based on (5.5)

and Weierstrass’s Theorem.

5.5 Benchmark problem

The system to be modeled is an electronic nonlinear system with a Wiener-

Hammerstein structure that was built by [63]. The first linear dynamic system G1

is designed as a third order Chebyshev filter (pass-band ripple of 0.5 dB and cut

off frequency of 4.4 kHz). The second linear dynamic system G2 is designed as a

third order inverse Chebyshev filter (stop-band attenuation of 40 dB starting at
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5 kHz). This system has a transmission zero in the frequency band of interest.

This can complicate the identification significantly, because the inversion of such

a characteristic is difficult.

The proposed iterative identification method is applied to the benchmark

problem. In this benchmark, the estimation data are the first part of the mea-

sured input u(t) and output y(t) (t = 1, 2, · · · , 100000), and the test data are

given by the remaining part of the measured input u(t) and output y(t) (t =

100001, · · · , 188000). The goal of the benchmark is to identify a nonlinear model

using the estimation data. Next, this model is used to simulate the output ysim(t)

of the system on the test set. nc = 3, nd = 3, and nf = 5 are used in this study.

In order to solve the SDP problem (Optimization Problem 7), SEDUMI [59] and

YALMIP [50] are used. The estimation results are shown in Figure 5.2, Figure 5.3,

Figure 5.4, Figure 5.5, and Table 5.1. Table 5.1 shows the mean value (µ),

the standard deviation (s), and the root mean square (RMS) value (eRMS) of the

simulation error (time domain) for the estimation data and the test data obtained

by using the proposed method, and the comparison with the results from [54] and

[2]. Each value is calculated based on the following equation:

Test data

1. The mean value of the simulation error:

µ =
1

87000

188000∑
t=101001

esim(t)

2. The standard deviation of the simulation error:

s =

√√√√ 1

87000

188000∑
t=101001

(esim(t)− µ)2

3. The root mean square (RMS) value of the error:

eRMS =

√√√√ 1

87000

188000∑
t=101001

e2sim(t)
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Figure 5.2: Modeled output ysim, test data y, and the simulation error esim in the
time domain (top figure). The magnified figure of the top figure (bottom figure).
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Figure 5.3: Modeled output ysim, test data y, and the simulation error esim in
the frequency domain (top figure). The magnified figure of the top figure (bottom
figure).
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Estimation data

1. The mean value of the simulation error:

µ =
1

99000

100000∑
t=1001

esim(t)

2. The standard deviation of the simulation error:

s =

√√√√ 1

99000

100000∑
t=1001

(esim(t)− µ)2

3. The root mean square (RMS) value of the error:

eRMS =

√√√√ 1

99000

100000∑
t=1001

e2sim(t)

Table 5.1: Characteristics of the simulation error.

Method Parameters Estimation data Test data

The µ 0.0011 V 0.0015V

proposed s 0.0345 V 0.0345 V

method eRMS 0.0345 V 0.0345 V

PNLSS µ 0.031 mV 0.048 mV

Paduart (2009)
s 0.359 mV 0.415 mV

eRMS 0.360 mV 0.418 mV

[2]

µ -0.0051 V -0.0038 V

s 0.0332 V 0.0333 V

eRMS 0.0336 V 0.0335 V

5.6 Conclusion

In this chapter, an iterative convex optimization algorithm is proposed to

identify Wiener-Hammerstein systems. A non-convex rank minimization problem

is formulated first, and then the non-convex rank minimization problem is refor-

mulated as a convex optimization problem using a SDP relaxation technique. In
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the proposed identification method, the first linear dynamic system, the static

nonlinear function, and the second linear dynamic system are parameterized as an

FIR model, a polynomial function, and a rational transfer function respectively.

For the modeling of static nonlinearity, the monotonically non-deceasing condition

was applied to limit the number of possible selections for intermediate signals. As

two unmeasurable intermediate signals are included in the system description, the

over-parameterization technique is used and the parameter estimation problem is

solved iteratively. At each step of iteration, the over-parametrized parameters are

estimated and then separated by using the singular value decomposition (SVD).

The proposed method is applied to the benchmark problem and the estimation re-

sult shows the effectiveness of the proposed algorithm. The materials in Chapter 5

have been accepted for publication in Y. Han and R. de Callafon, Identification

of Wiener-Hammerstein Benchmark Model using Convex Optimization, Control

Engineering Practice Special Issue, to appear 2012. The dissertation author was

the primary investigator and author of this paper.



6

Closed-loop Identification of

Hammerstein Systems

6.1 Introduction

Closed-loop system identification techniques are useful for control relevant

identification. From the control design point of view, the use of data gathered

from closed-loop experiments provides advantages for designing control systems

to satisfy typical control performance requirements, such as stability. A feedback

connection of a Hammerstein system and a controller provides a good approach

to modeling systems with static actuator nonlinearity or input saturation during

closed-loop experiments. There has been much research on the problem of identify-

ing Hammerstein systems in a open-loop setting [4] [14] [29] [32] [34] [36] [37] [53] ,

while much less attention has been paid to the problem of identifying Hammerstein

systems in a closed-loop setting. One of the early works dealing with closed-loop

Hammerstein system identification can be found in [6]. In this work, Beyer et

al. proposed a closed-loop identification method for Hammerstein systems using

the LS method, the GLS method and the maximum likelihood method. In addi-

tion, Linard et al. [46] extended closed-loop identification methods (a two-stage

method and using right coprime factorizations) for linear dynamic systems to non-

linear dynamic systems and De Bruyne et al. [19] presented gradient expressions

81
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for a closed-loop parametric identification scheme. However, these methods are

based on linearization of a nonlinear map between time domain signals. Recently,

van Wingerden and Verhaegen [62] presented an algorithm to identify MIMO Ham-

merstein systems under open and closed-loop conditions. They formulated an opti-

mized predictor based subspace identification algorithm in the dual space. Laurain

et al. [45] presented an IV method dedicated to closed-loop Hammerstein systems.

Comprehensive studies of block-oriented nonlinear system identification can be

found in [29].

In the identification of Hammerstein systems, equation error type models

are commonly used because the parameter estimation can be reduced to an ordi-

nary least squares (LS) problem that can be solved with a convex optimization.

In this chapter, we focus on the Output Error (OE) identification of Hammer-

stein systems in a closed-loop setting. Closed-loop identification is often used for

control-relevant identification where the goal is to estimate models suitable for ro-

bust control design. It is then often only necessary to model the plant dynamics,

not noise properties. So it would be natural to use an output error model structure

[28].

It is well known that the direct use of input/output data, generated from a

closed-loop setting, results in biased estimation if no noise model is estimated due

to the correlation between input and noise. The main contribution of the study in

this chapter is that we propose a method that allows us to solve a nonlinear OE

minimization problem as an iterative linear optimization problem that is robust to

the correlation between input and noise. The basic idea is to express the iterative

nonlinear parameter estimation as an iterative nuclear norm minimization problem

based on gradient expression similar to the method in [9]. Convergence of the

iterative steps guarantees a local minimum of the OE minimization problem.

6.2 Problem description

Figure 6.1 shows the Hammerstein system in a closed-loop setting consid-

ered in this study. For identification purposes, the reference input r(t) and the
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u(t) x0(t) v(t)r(t)

−

H(q )

e(t)

+
OO y(t)

C(q )

f0(· ) G0(q )

Figure 6.1: Closed-loop Hammerstein system.

controller C(q) are known, the input u(t) and output y(t) are measured, whereas

the intermediate signal x0(t), the static nonlinearity f0(·) and the linear dynamic

system G0(q) are unknown. The disturbance v(t) is a filtered white noise, where

the filtering properties are unknown. The purpose of this study is to propose an

OE identification method for the consistent estimation of the static nonlinearity

f0(·) and the linear dynamic system G0(q) in a closed-loop setting on the basis of

the measured signals, the input u(t) and output y(t), and the knowledge of the

controller C(q) . In this study, the following conditions are assumed for identifia-

bility:

Condition 7

I. The closed-loop system is stable.

II. r(t) and v(t) are not correlated.

III. All signals are stationary.

VI. The input to the linear dynamic system is persistently exciting.

V. The controller is known.
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6.3 System parametrization

From the Hammerstein system in a closed-loop setting shown in Figure 6.1,

the output y(t) generated from a closed-loop Hammerstein system is defined as

y(t) = G0(q)x0(t) + v(t)

= q−td
B0(q)

A0(q)
x0(t) + v(t)

where v(t) is colored noise, x0(t) = f0(u(t)), and td indicates the number of steps

of time delay of the system. It is assumed that there is at least one step time delay

in G0(q). The noise free output ŷ(t) is defined by

ŷ(t) =
B0(q)

A0(q)
x(t− td)

where

x(t) = f (û(t)) , û(t) = r(t)− ŷc(t), ŷc(t) = C(q)ŷ(t). (6.1)

In order to define ŷ(t), one only needs x(t − td), · · · , x(t − nb − td) and ŷ(t −
1), · · · , ŷ(t− na). Subsequently, in order to define ŷc(t) = C(q)ŷ(t), where

C(q) =
d0 + · · ·+ dnd

q−nd

1 + c1q−1 + · · ·+ cncq
−nc

, (6.2)

one only needs ŷ(t), · · · , ŷ(t− nd) and ŷc(t− 1), · · · , ŷc(t− nc). As a result, noise

free input and output signals are generated by the known reference signal r(t) only.

In this section, the input static nonlinearity f0(·) is modeled as a piece-

wise linear function using piecewise triangle functions as shown in Section 2.2. In

feedback control systems, non-smooth static nonlinearity, such as saturation, is

common. A piecewise linear approximation is an excellent way to estimate such

nonlinearity for feedback control systems since it can achieve good approximation

with only a small number of parameters.

Let x̂(t, λ) = f(û(t), λ) be the approximation of x(t), where û(t) is the noise

free input and λ is the amplitude parameter

λ =
[
λ1 · · · λM

]T
(6.3)
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on m = [m1(= min(u(t))) · · · mM(= max(u(t)))]T . In each segment of the m-

axis, the resulting linear function is defined by two overlapping triangle functions

in the segment. Thus, x̂(t, λ) can be written as

x̂(t, λ) = ρ(û(t))λ

where ρ(û(t)) is defined as

ρ(û(t)) =

[
· · · 0

mk+1 − û(t)

mk+1 −mk

û(t)−mk

mk+1 −mk

0 · · ·
]

for mk ≤ û(t) < mk+1

where mk and mk+1 are the center locations of the triangle basis functions. Let

G(q, φ) be the estimation of G0(q) with the system parameter

φ = [a1 · · · ana b0 · · · bnb
] (6.4)

such that

G(q, φ) = q−td
B(q, φ)

A(q, φ)

where

A(q, φ) = 1 + a1q
−1 + · · ·+ anaq

−na ,

B(q, φ) = b0 + b1q
−1 + · · ·+ bnb

q−nb .

With the parameters φ in (6.4) and λ in (6.3), the noise free OE model

output ŷ(t) now can be written as

ŷ(t, φ, λ) =
B(q, φ)x̂(t− td, λ)

A(q, φ)
=
B(q, φ)ρ(û(t− td))λ

A(q, φ)
. (6.5)

Realizing that ρ(û(t − td))λ in (6.5) is a linear combination of the time shifted

noise free input signal weighted by λk, k = 1, · · · ,M , it can be verified that

B(q, φ)ρ(û(t− td))λ in (6.5) can be written in a linear combination of time shifted

inputs weighted by the parameter

θ̃ = [b0λ1 · · · b0λM · · · bnb
λ1 · · · bnb

λM ]T .

In this parametrization, an arbitrary gain may be distributed between the static

nonlinearity and the linear dynamic system [16] [67]. In order to avoid an ambigu-

ous gain, the scaling of either the linear dynamic system or the static nonlinearity
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can be fixed. In this study, we choose to normalize the scaling of the linear dynamic

system by fixing b0 = 1. As a result, we will define the parameter

θ = [a1 · · · ana λ1 · · · λM · · · bnb
λ1 · · · bnb

λM ]T ∈ Rs×1,

s = na +M · (nb + 1)
(6.6)

as the parameter to be identified, leading to the shorthand notation

ŷ(t, θ) =
T (q, û(t− td), θ)

A(q, θ)
(6.7)

where θ1, · · · , θna are used to capture a1, · · · , ana and θna+1, · · · , θna+M ·nb
are used

to capture b0, · · · , bnb−1, and λ1, · · · , λM . With the chosen system parameter θ in

(6.6), the output error is defined as

ε(t, θ) = y(t)− ŷ(t, θ). (6.8)

6.4 Parameter estimation

6.4.1 OE minimization

Due to the nonlinear parameter dependency of ε(t, θ) in (6.8), an output

error (OE) model requires a nonlinear optimization (iterative search) to find at

least a local minimum. Let

E(θ) = [ε(1, θ) · · · ε(N, θ)]T

where ε(t, θ) is given in (6.8). Then, the parameter estimation is given by

θ̂NOE = arg min
θ
V N(θ)

where

V N(θ) =
1

2N
ET (θ)E(θ).

(6.9)

The minimum of V N(θ) in (6.9) can be obtained by solving

dV N(θ)

dθ
=

1

N
ET (θ)

dE(θ)

dθ
= ~0 (6.10)

where ~0 represents a zero vector.
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Theorem 1 Let yL(t) = L(q, θ)y(t) and ρL(û(t)) = L(q, θ)ρ(û(t)), where û(t)

denotes the noise free input. Define the filtered regressor as

ΦL =
[

ΦL
a ΦL

bλ

]
(6.11)

where

ΦL
a =


−yL(0) · · · −yL(1− ana)

−yL(1) · · · −yL(2− ana)
...

. . .
...

−yL(N − 1) · · · −yL(N − ana)


and

ΦL
bλ =


ρL(û(1− td)) · · · ρL(û(1− td− nb))

...
...

...

ρL(û(N − td)) · · · ρL(û(N − td− nb))

 . (6.12)

Then, solving
dV N(θ)

dθ
= ~0

is equivalent to solving

ψT (θ) · [Y L − ΦLθ] = ~0

where

ψT (θ) = −dE(θ)

dθ

T

(6.13)

and

Y L = [yL(1) · · · yL(N)]T . (6.14)

Proof From (6.10) and (6.13),

dV N(θ)

dθ
= − 1

N
ET (θ)ψ(θ).

Since E(θ) = Y−Ŷ (θ), where Y = [y(1) · · · y(N)]T and Ŷ = [ŷ(1, θ) · · · ŷ(N, θ)]T ,

ET (θ)ψ(θ) = ψT (θ) · [Y − Ŷ (θ)].

Let

Y L
A =

[
Y L
A (1) · · · Y L

A (N)
]T

where Y L
A (t) = A(q, θ)yL(t),

yL(t) = L(q, θ)y(t) and L(q, θ) =
1

A(q, θ)
,
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and

Ŷ L
T (θ) =

[
Ŷ L
T (1, θ) · · · Ŷ L

T (N, θ)
]T

where Ŷ L
T (t, θ) = TL(q, û(t− td), θ)

and TL(q, û(t− td), θ) = L(q, θ)T (q, û(t− td), θ).

Then

[Y − Ŷ (θ)] = [Y L
A − Ŷ L

T (θ)].

With Y L in (6.14) and ΦL in (6.11), which allow an additional filtering of the

output y(t) and the regressor Φ with a filter L(q, θ), solving

dV N(θ)

dθ
= ~0

is equivalent to solving

ψT (θ) · [Y L − ΦLθ] = ~0. (6.15)

�

Theorem 1 implies that one can compute a local minimum by explicitly solving

ψT (θ) · [Y L − ΦLθ] = ~0 for θ which is also known as Instrumental Variables (IV)

estimate [9] [56].

6.4.2 Calculation of the instrument

In this section, the instrument ψT (θ) in (6.13) is calculated as

ψT (θ) = −dE(θ)

dθ

T

=
dŶ (θ)

dθ

T

where

dŶ (θ)

dθ
=


dŷ(1, θ)

dθ1
· · · dŷ(N, θ)

dθ1
... · · · ...

dŷ(1, θ)

dθs
· · · dŷ(N, θ)

dθs


T

.

The following lemma summarizes the calculation of the instrument ψT (θ).

Lemma 4 The instrument ψT (θ) in (6.13) is defined by

ψT (θ) = [ψa ψbλ]
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where

ψa =


−ŷL(0) · · · −ŷL(1− na)
−ŷL(1) · · · −ŷL(2− na)

...
. . .

...

−ŷL(N − 1) · · · −ŷL(N − na)

 (6.16)

+


dŷ1(0) · · · dŷna(1− td)

dŷ1(1) · · · dŷna(2− td)
...

. . .
...

dŷ1(N − td) · · · dŷna(N − td)

 (6.17)

and

ψbλ = ΦL
bλ +


dΦ1(1) · · · dΦM×(nb+1)(1)

...
...

...

dΦ1(N) · · · dΦM×(nb+1)(N)

 . (6.18)

ŷL(t) in (6.16) is defined as ŷL(t) = L(q, θ)ŷ(t, θ). dŷi(t) in (6.17) is defined as

dŷi(t) =
1

A(q, θ)

dT (q, û(t), θ)

dθi
(6.19)

where
dT (q, û(t), θ)

dai
in (6.19) is defined as

dT (q, û(t), θ)

dai
=

(nb+1)·M∑
k=1

dΦbλ(t, k)

dû(t− p)
dû(t− p)

dai
θ̃k. (6.20)

ΦL
bλ in (6.18) is given in (6.12) and dΦi(t) in (6.18) is defined as

dΦi(t) =
1

A(q, θ)

(nb+1)·M∑
k=1

dΦbλ(t, k)

dû(t− td− p)
dû(t− td− p)

dθ̃i
θ̃k. (6.21)

dΦbλ(t, :)

dû(t− p) in (6.20) and (6.21) is defined as

dΦbλ(t, :)

dû(t− p) =

[
dρ(û(t))

dû(t)
· · · dρ(û(t− nb))

dû(t− nb))

]
where

dρ(û(t))

dû(t)
=

[
· · · 0

−1

mk+1 −mk

1

mk+1 −mk

0 · · ·
]
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when mk ≤ û(t) < mk+1, p = ceil

(
k

M

)
that rounds the elements of

k

M
to the

nearest integers greater than or equal to
k

M
, and θ̃ = θ(na + 1 : s).

Proof (i) Calculation of
dŷ(t, θ)

dθi

∣∣∣∣
i=1:na

. From (6.7), ŷ(t, θ) =
T (q, û(t− td), θ)

A(q, θ)
.

For brevity of notation, hereafter θ will be omitted if it does not lead to confusion

in notation. If we take the derivative of ŷ(t) with respect to θi=1:na , we obtain

dŷ(t)

dθi

∣∣∣∣
i=1:na

= −q−iT (q, û(t− td))

A(q)2
+

1

A(q)

dT (q, û(t− td))

dθi
. (6.22)

For brevity of notation, let ai = θi=1:na . Then, with (6.19), (6.22) is written as

dŷ(t)

dai
= −ŷL(t− i) + dŷi(t− td).

With the noise free input û(t) in (6.1) and the controller C(q) in (6.2), the derivative

of û(t) with respect to ai is defined as

dû(t)

dai
= −

nc∑
j=1

cj
dû(t− j)

dai
−

nd∑
k=0

dk
dŷ(t− k)

dai
. (6.23)

(ii) Calculation of
dŷ(t)

dθ̃i
. From (6.7) and (6.12),

ŷ(t, θ) =
T (q, û(t− td), θ)

A(q)
= ΦL

bλ(t, :)θ̃

where θ̃ = θ(na + 1 : s). If we take the derivative of ŷ(t) with respect to θ̃i, we

obtain
dŷ(t)

dθ̃i
= ΦL

bλ(t, i)+

1

A(q)

(nb+1)·M∑
k=1

dΦbλ(t, k)

dû(t− td− p)
dû(t− td− p)

dθ̃i
θ̃k

(6.24)

where ΦL
bλ(t, i) is an element of ΦL

bλ defined in (6.12). Then, with (6.21), (6.24) is

written as
dŷ(t)

dθ̃i
= ΦL

bλ(t, i) + dΦi(t).

Similar to (6.23), the derivative of û(t) with respect to θ̃i in (6.24) is defined as

dû(t)

dθ̃i
= −

nc∑
j=1

cj
dû(t− j)

dθ̃i
−

nd∑
k=0

dk
dŷ(t− k)

dθ̃i
.

�
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6.4.3 Convex optimization and parameter separation

Due to the independent parametrization of the static nonlinear block and

the linear dynamic block, the Hammerstein system is over-parametrized by the

modified parameter vector given in (6.6). As the parameter estimate θ̂NOE has the

same structure, we need to separate the parameters of the linear dynamic system

in

η =
[
a1 · · · ana b1 · · · bnb

]T
and the parameters for the piecewise linear approximation of f(·) in

λ =
[
λ1 · · · λM

]T
.

First the parameter vector θ is reorganized into Γbλ given by

Γbλ =


θna+1 · · · θna+M

...
...

...

θna+(nb−1)×M · · · θna+nb×M



=


λ1 · · · λM
...

...
...

bnb
λ1 · · · bnb

λM

 .
The rank of Γbλ is equal to 1 for noiseless cases. In order to account for the

effect of noise, the parameter estimation problem will be formulated by minimizing

rank(Γbλ) in the set of ψT (θ) · [Y L−ΦLθ] = ~0 in (6.15). The optimization problem

can be written as:
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Optimization Problem 8

Consider

variable θ

Γbλ =


θna+1 · · · θna+M

...
...

...

θna+(nb−1)×M · · · θna+nb×M


Minimize

rank(Γbλ)

subject to

ψT (θ) · [Y L − ΦLθ] = ~0 in (6.15)

Optimization Problem 8 results in the optimal solution for the system pa-

rameter θ that satisfies the constraint ψT (θ) · [Y L − ΦLθ] = ~0 in (6.15) and pro-

vides the minimum rank Γbλ. This means the smaller singular values of Γbλ will be

minimized compared to the largest singular value and simplify the rank 1 approx-

imation of Γbλ. Unfortunately, the rank minimization in Optimization Problem 8

is not convex. Minimizing the nuclear norm instead of the rank of the matrix is

a convex relaxation of the rank minimization problem. The motivation for this

nuclear norm relaxation is that the nuclear norm is the convex envelope of the

rank function on the set of matrices with norms less than or equal to 1. Thus,

by solving the nuclear norm minimization problem, we obtain a lower bound on

the optimal value of the original rank minimization problem [26] [27]. Using the

nuclear norm relaxation for rank minimization, Optimization Problem 8 will be

reformulated as a convex optimization problem.
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Optimization Problem 9

Consider

variable θ

Γbλ =


θna+1 · · · θna+M

...
...

...

θna+(nb−1)×M · · · θna+nb×M


Minimize

||Γbλ||∗
subject to

ψT (θ) · [Y L − ΦLθ] = ~0 in (6.15)

where

||Γbλ||∗ =
r∑
i=1

σi(Γbλ)

is the nuclear norm of Γbλ.

Once θ̂NOE is estimated by solving Optimization Problem 9, â = [â1 · · · âna ]T

is easily obtained. The parameter vectors b̂ =
[
b̂1 · · · b̂nb

]T
and λ̂ can be separated

using the singular value decomposition (SVD) [4]. The singular value decomposi-

tion of Γ̂bλ is given as

Γ̂bλ =


λ̂1 · · · λ̂M
...

...
...

b̂nb
λ̂1 · · · b̂nb

λ̂M


= UΣV T

where U(nb+1)×(nb+1) and VM×M are orthogonal matrices, and Σ(nb+1)×M is a rectan-

gular diagonal matrix. The positive diagonal entries of Σ are called singular values.

With the constraint, b0 = 1, the parameter vectors η̂ and λ̂ can be calculated by

η̂ =
[
âT b̂T

]
=
[
θ̂NIV (1 : na)

T U(:, 1)/U(1, 1)
]

λ̂T = σ1V
T (1, :) · U(1, 1)

(6.25)

where σ1 is the largest singular value and U(1, 1) denotes the first nonzero element

of U(:, 1), where the notation (1,:) and (:,1) are used to denote the first row and the
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first column in a matrix respectively. In this way, the optimal system parameter

vectors b̂ and λ̂ are obtained by minimizing the matrix Frobenius norm given by

[λ̂, b̂] = arg min
λ∈RM , b∈Rnb+1

||Γbλ − b̂λ̂T ||2F .

6.4.4 Iterative approach

In the constraint ψT (θ) · [Y L−ΦLθ] = ~0 in Optimization Problem 9, ψT (θ)

depends on the solution θ. Thus, it cannot be used to compute θ̂NOE directly.

However, the (parameter dependent) instrument ψk(θ) can be calculated based on

the previous parameter estimate θ̂Nk−1. Let us summarize the iterative procedure

to compute an OE parameter estimate θ̂NOE. With an initial parameter estimate

θ̂NOE = θ̂Nk to model the static nonlinearity f̂ and the linear dynamic system Ĝ,

one could employ an iterative solution that consists of the following computational

steps:

Step 1 : Separate θ̂Nk into η̂ and λ̂ in (6.25) and generate

noise free input ŷ(t) using (6.5) and noise free

output û(t) using (6.1).

Step 2 : Define the filter L(q, θ̂Nk−1) = A(q, θ̂Nk−1)
−1.

If the filter L(q, θ̂Nk−1) is unstable, project the

poles outside the unit circle inside the unit circle.

Step 3 : Define ΦL
k−1 in (6.11), ψTk−1 in (6.13) , and filtered

output vector Y L
k−1 in (6.14).

Step 4 : Compute Optimization Problem 9 to obtain θ̂Nk .

Step 5 : Stopping criterion of the algorithm. If

‖θ̂Nk − θ̂Nk−1‖/‖θ̂Nk−1‖ < ε, stop.

Otherwise, go to Step 1.

In the above steps, the stable filter L(q), the filtered output vector Y L, the filtered

regressor ΦL and the instrument ψT are updated using θ̂Nk−1 during the iterations

over k. Step 1 creates the noise free signals generated from closed-loop simulations.

In Step 2 the filter L(q) is updated to provide the correct filtering for signals used

in Step 3. In Step 3, the regressor and the instrument are calculated based on the

gradient expression. Step 4 is the actual computation of Optimization Problem 9
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and Step 5 formulates a stopping criterion for the algorithm by looking at the

relative parameter error.

6.5 Numerical study

In this section, two numerical examples (Case 1 and Case 2) of nonlin-

ear system identification using the proposed iterative nuclear norm minimization

method are presented. The configuration in Case 1 is the same as the example

that appeared in [45] except that the controller gain is reduced for the closed-loop

system stability. Case 2 is similar to Case 1, but the input static nonlinearity is

replaced by a saturation nonlinearity in order to compare the efficiency of the pro-

posed method for different static nonlinearities. An excitation signal r(t) follows

a uniform distribution with values between −2 and 2. The output disturbance

v(t) is filtered white noise. Twenty sets of estimation data with 2000 samples

are generated for the system identification. The M = 19 grid points are equally

spaced between min(u(t)) and max(u(t)) to model static nonlinearity for Case 1.

M = 5, with m = [min(u(t)) − 1 0 1 max (u(t))]T is used for Case 2. An 2nd

order model with 1 step time delay is used to model the linear dynamic system.

The configuration of the simulation is shown in Figure 6.1.

Case 1

f0(u(t)) = sin(u(t))− 0.5sin(2u(t)) + 0.4sin(3u(t))

Case 2

f0(u(t)) =


1 if u(t) > 1

u(t) if |u(t)| ≤ 1

−1 if u(t) < −1

G0(q) =
0.0997q−1 − 0.0902q−2

1− 1.8858q−1 + 0.9048q−2

C(q) = 0.1
10.75− 9.25q−1

1− q−1

H(q) =
1 + 0.5q−1

1− 0.85q−1

The results of applying the proposed iterative nuclear norm identification method

to the closed-loop time domain data are shown in Figure 6.2 and Figure 6.3. The
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results show that the proposed method is very efficient in not only identifying non-

smooth static nonlinearity due to the use of triangle basis functions, but also in

identifying smooth static nonlinearity.

6.6 Application to LTO-3 tape drive servo actu-

ator identification

In this section, the proposed iterative nuclear norm minimization method is

applied to the experimental closed-loop time domain data from the servo actuator

in a Quantum LTO-3 tape drive in order to identify the actuator dynamics and

static nonlinearity existing in the closed-loop experiment. In this experiment, the

tape drive was running at 4m/s causing periodic disturbances due to Lateral Tape

Motion (LTM). An excitation signal r was added to the output signal (the only

change is from u(t) = r(t)− yc(t) in Figure 6.1 to u(t) = C(q)(r(t)− y(t)) in Fig-

ure 6.5) and the excitation level was chosen such that the control signal u(t) to the

plant was being saturated during the experiment. A total of 1, 406, 251 actuator

output measurements, in the form of a Position Error Signal (PES) at 16bit resolu-

tion, was measured for 70.3126sec sampled at 20kHz. The controller C(q) imple-

mented during experiments is known. OnlyN = 10, 000 (for 0.05sec) data was used

for the system identification. M = 5 (the total number of grid points) with m =

[min(u) − 5 0 5 max(u)] is used to model static nonlinearity (we can start with

M > 5 and remove unnecessary grid points as we go) and an 8th order model with

1 step time delay is used to model the linear dynamic system. The configuration

of the experiment is shown in Figure 6.5. The results of applying the proposed

iterative nuclear norm minimization method to the closed-loop time domain data

from the servo actuator in a Quantum LTO-3 tape drive is shown in Figure 6.6

and Figure 6.7.

Knowing that the LTO-3 drive has a saturation of ±5V on the control

input, it can be observed from Figure 6.6-(a) that the input saturation is properly

estimated. In addition, several resonance modes have been estimated in the linear

dynamic response of the actuator as indicated in Figure 6.6-(b). The resulting
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closed-loop Hammerstein system represents the LTO-3 actuator under control with

input saturation and the simulation of this closed-loop Hammerstein system shows

excellent agreement with the experiment data, as shown in Figure 6.7.

6.7 Conclusions

For Hammerstein system identification in a closed-loop setting, an iterative

nuclear norm minimization method minimizing the output error based on gradient

expression is proposed. This method allows us to solve a nonlinear OE minimiza-

tion problem as an iterative linear optimization problem. In the proposed method,

an instrument is calculated with filtered noise-free signals and their gradients where

the filter is derived by a priori knowledge of the pole locations of the linear dynamic

system, and where the noise free signals are computed from simulated closed-loop

input and output signals generated by the known reference signal. For accurate

computation of the closed-loop signals and the filter, an iterative procedure that

updates the knowledge of the static nonlinearity and the linear dynamic system is

used. Convergence of the iterative steps guarantees a local minimum of the OE

minimization problem. The simulation and experimental studies show the effec-

tiveness of the proposed algorithms in closed-loop identification of Hammerstein

systems. The materials in Chapter 6 have been published in Y. Han and R. de

Callafon, Output Error Identification of Closed-loop Hammerstein Systems, IEEE

Conference on Decision and Control 2011, Orlando, US, and Y. Han and R. de

Callafon, Closed-loop Identification of Hammerstein Systems Using Iterative In-

strumental Variables, IFAC World Congress 2011, Milano, Italy. The dissertation

author was the primary investigator and author of these papers.
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Figure 6.2: Case 1: The plot of the identified static nonlinearity function (top
figure). The Bode plot of the identified linear dynamic system (bottom figure).
The black solid line indicates the real Hammerstein system. The (colored) dashed
lines indicate estimated systems by using twenty different sets of data. The SNR
of each data set is greater than 20dB.
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Figure 6.3: Case 2: The plot of the identified static nonlinearity function (top
figure). The Bode plot of the identified linear dynamic system (bottom figure).
The black solid line indicates the real Hammerstein system. The (colored) dashed
lines indicate estimated systems by using twenty different sets of data. The SNR
of each data set is greater than 20dB.
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Figure 6.4: Quantum LTO-3 tape drive.

y(t)

r(t)
u(t)

C(q) G(q)f(⋅)

x(t)

v(t)

oo

_

+

Figure 6.5: Closed-loop experimental setup of a Quantum LTO-3 tape drive. The
excitation signal r(t) and the linear controller C(q) are known. The input to the
static nonlinearity u(t) and the output y(t) are measured. The static nonlinearity
f(·) and linear dynamic system G(q) are unknown and need to be estimated under
a unknown colored disturbance v(t) (the dotted line indicates unknown parts and
the solid line indicates the known parts).
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Figure 6.6: (a) The plot of the identified static nonlinearity function f̂(·). (b)
The Bode plot of the identified linear dynamic system Ĝ(q).
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Figure 6.7: (a) The plot of the measured input signal u(t) and the simulated
intermediate signal xsim(t). The ±5V input saturation is very nicely estimated.
(b) The plot of the measured output signal y(t) and the simulated output signal
ysim(t).
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Conclusions and future research

7.1 Conclusion

In this dissertation, a new approach for block-oriented system identification

has been studied. Identification of block-oriented nonlinear systems has been an

active research area for the last several decades. In this study, the main focus has

been placed on tackling the inaccessibility of measurement of intermediate signals

in block-oriented nonlinear systems via rank minimization. The system parame-

ter estimation problem is formulated as a rank minimization problem or as the

combination of prediction error and rank minimization problems by constraining a

finite dimensional time dependency between signals and by using a monotonicity

of static nonlinearity. This allows us to reconstruct non-measurable intermediate

signals. Since the rank minimization problem is non-convex, the use of the nuclear

norm instead of the rank is proposed in order to define a semidefinite programming

problem. It was proven that by solving the nuclear norm minimization problem,

we can minimize a lower bound on the optimal value of the original rank mini-

mization problem. This convex problem is easier to solve and the solution is close

to the solution of the original non-convex problem. The idea of constraining rank

for unmeasurable intermediate signal reconstruction can be applied, with some

modifications, to any block-oriented system.
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7.2 Future work

In order to impose a static relationship between signals, the monotoni-

cally non-decreasing condition on a static nonlinear function is extensively used

in this study. However, the computational cost of imposing the monotonically

non-decreasing condition could be high and the usability of the method for other

static nonlinearity could be limited. Finding a way to define new constraints that

are less expensive to compute and guarantee a static relationship between signals

would be preferable.
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