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EPIGRAPH

We are all connected; To each other, biologically. To the earth, chemically. To

the rest of the universe atomically.

–Neil deGrasse Tyson
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ABSTRACT OF THE THESIS

A Primitive Based Approach for Managing, Deploying and Monitoring
In-building Wireless Sensor Networks

by

Seemanta Dutta

Master of Science in Computer Science

University of California, San Diego, 2012

Yuvraj Agarwal, Chair

Wireless sensor networks have become quite pervasive in the last few years.

As their technology has matured, they have transformed from an academic research

area to a viable means of solving practical engineering problems. This dynamic

field has several vendors who can provide the necessary software and hardware

infrastructure in order to get up and running quickly. While it is relatively easy

to get up and running with a ‘laboratory’ setup, it is a completely different story

when it comes to deploying a real world wireless sensor network. Any real world

deployment, whether it is outdoors or indoors, has its own unique challenges as

the scale of the deployment increases. We have observed these challenges, espe-

cially involving indoor deployments while working on several research projects in

xiv



our lab. Our previous projects required a large and distributed deployment of an

indoor wirelesss sensor network. Those ad hoc deployments were done manually,

making us realize the need for management primitives to do things more efficiently.

The solution as proposed in this thesis, is a set of technology agnostic manage-

ment primitives that help in overall management of wireless sensor networks. We

used ZigBee as it is quite popular for smart building applications. Leveraging our

management primitives we built features to address these challenges of adminis-

tering a wireless sensor network in a building. We have used these primitives to

deploy a small scale sensor network comprising of 100 nodes, which we then used

to demonstrate their benefits as well as evaluate our deployment.
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Chapter 1

Introduction

Recent years have seen Wireless Sensor Networks(WSNs) become pervasive

in academic as well as industrial circles. They have proved themselves as worthy

tools in solving numerous engineering problems like structural health monitoring[17],

home and industrial automation[5, 19, 23], measuring building occupancy[13], wire-

less energy metering to name a few. All of these are aided not only by the continu-

ous development of hardware and software platforms but also by the advent of low

power networking protocols that specifically target this domain, e.g ZigBee[11],

6loWPAN[1], ZWave[12] etc.

Notwithstanding whichever combination of hardware, software and net-

working technology we choose, there are a set of universal problems that need

to be solved in order to have a WSN deployment that is robust, scalable and is

manageable. For example, commissioning strategy, security, over the air (OTA)

software upgrades and load balancing are some concerns that immediately come to

our mind when we move out of a ‘lab’ mindset to an actual real world deployment

with hundreds or even thousands of nodes spread across a huge area. At this scale,

a lab setup with a handful devices no longer serves as the standard and deployment

problems no longer remain trivial.

Some of these problems might be specific to the underlying WSN technology

being used while some of them are at a higher level and loosely coupled with the

underlying WSN technology. Still some of these problems might have to do with

what kind of WSN deployment we are referring to, i.e. outdoor or in-building.

1
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Several papers have been published that deal with these problems at larger scales

[15, 18]. MAC level protocols have also been an active area of research [20, 16, 21].

However, many of the above mentioned problems of deploying a large scale network

are orthogonal to the advancements in the MAC or in the upper layers themselves.

This has led us to believe in having a rich set of primitives on top of the WSN

technology, independent of it that would allow us to tackle these problems. This

primitive based approach is what we believe, makes our solution not only scalable,

but also portable for the most part.

Our area of focus throughout has been in-building WSNs due to the nature

of our work (Smart Buildings [14, 13]). We feel a good deployment solution should

try to cover all types of problems as mentioned above. In fact, this is the next

emerging area in WSNs which has several competing entities offering a wide range

of tools and means to solve some of these deployment problems. However, the cost

of these tools remains prohibitively high at this stage, even for residential instal-

lations, let alone commercial buildings which is our area of interest. For example,

control4 home automation only has the ‘home’ version of their composer software

available for download. The ‘pro’ version of composer is made available only to

dealers and is not openly available [4]. Almost all of these solutions are closed

and are not amenable to study in an open academic environment. Furthermore,

while many of the prominent vendors have provided libraries to tackle some of

these problems, they have not provided end-to-end solutions to these deployment

related problems. It is this lack of solutions which has given rise to such closed

third party solution providers.

In this thesis, we identify the specific problems that we encountered during

our previous WSN installations for our smart buildings effort. We then suggest

solutions to these problems via hardware and software based approaches. We have

tried to attack these problems bottom up, realizing the hurdles we ourselves faced

during our past in-building WSN deployments. The underlying insight of our work

was to develop a set of rich primitives that can be used to address the wide range

of deployment related challenges when it comes to scaling WSNs in buildings. At

the same time however, we decoupled the ‘networking’ part of WSN deployment
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from the ‘sensing’ part of it. We did this by creating a testbed of devices that were

created for the sole purpose of having the ability to quickly and efficiently deploy

a large testbed of devices at short notice. This testbed formed the substrate for all

of our experiments and observations. While they lacked any sensing capabilities,

they supported a number of networking primitives that allowed us to tweak and

change network parameters on the fly and evaluate their effects.

The rest of the thesis is organized as follows: Chapter 2 provides a back-

ground of in-building WSNs, including our own efforts and familiarizes the reader

with the various challenges we encountered during our work. It also gives an

overview of the goals and requirements of our testbed. Chapter 3 then talks about

our hardware design and the choices we made for our testbed. Chapter 4 follows

with a detailed architectural description of the overall software at a high level.

Chapter 5 describes in detail our primitive based approach in addressing the chal-

lenges as outlined before. Chapter 6 rises a level above and explains some key

functionalities that we have built on top of the primitives from the previous chap-

ter. Finally, we tackle the issue of network security in Chapter 7, which is then

followed by a high level discussion of our backend design in Chapter 8. Chap-

ter 10 concludes the thesis by presenting an evaluation of our primitives and the

functionality we have built using them.



Chapter 2

Background

As part of the ongoing smart buildings effort in SYNERGY labs at the

department of Computer Science and Engineering at the University of California,

San Diego, we have frequently relied upon WSNs to realize various goals. These

goals have ranged from sensing occupancy of offices, to saving HVAC energy[13] and

finally to auditing energy consumption of plug loads[22]. In all of these endeavors,

the WSN was critical piece of the project, upon which the ideas of our project

were demonstrated, deployed and evaluated.

We began by evaluating various WSN technologies and focused on ZigBee

since we felt it was a very popular and well supported technology by the indus-

try as well by an active community of developers. Our initial WSN iterations

involved utilizing the Texas Instruments(TI) ZigBee platform which consisted of

a CC2530/CC2531 SoC coupled with a complete implementation of the ZigBee

software protocol stack. The CC2530/CC2531[3] SoC is an 8051 core along with

a 2.4 GHz radio. The ZigBee stack is based on the IEEE 802.15.4 MAC, the

implementation of which was also included as part of the TI ZigBee Stack. The

CC2531 has an added USB library that allowed it to natively communicate with

any host device with an USB implementation. [10] has more details on ZigBee and

the terminology when referring to this technology.

Our initial experience with deploying the sensor nodes was not without

issues. First of all, deploying sensor nodes was a time consuming process which

involved drilling holes in the walls and then hanging our sensing devices and in-

4
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stalling the reed switch sensors on the side[13]. Furthermore, whenever we en-

countered software bugs, we would have to remove all sensor nodes, re-flash them

with the updated firmware and then re-install them back to their original loca-

tions. Smart commissioning was virtually non-existent because the device came

pre-programmed with various network parameters and it never changed through-

out the duration of the deployment.

From the beginning we always advocated a multi-star network architecture,

rather than a mesh network (which is one of the strengths of ZigBee) because a

certain fraction of our devices had high data rates and we wanted to avoid the

negative impact of multi-hop networks on data rates. Having a multi-star network

fundamentally changes several key characteristics of the network. We now have a

collection of independent networks rather than a single unified multi-hop network.

This introduces additional complexity in terms of how a particular device figures

out which network to choose to join to when presented with multiple alternatives as

it is quite possible that in the vicinity of a sensor node, there are multiple networks

‘in-range’. On the positive side, having a multi-star network eliminated the need of

intermediate, possibly mains powered routing devices as now the battery powered

end devices can directly communicate with the coordinators. It also allowed us to

support higher data rates without losing too many packets.

It was during these deployments that we realized that a unified and coher-

ent way of deploying a WSN was needed. ‘Deployment’ here not only refers to the

physical installation of the device and getting it to work, but also refers to more

broader issues like choosing the best network possible for a particular device, sup-

plying it with run time parameters, over the air (OTA) software upgrades, dynamic

load balancing between constituent networks, being able to change and monitor

device settings from a central “dashboard” or control panel among others. We

also recognized that few of these goals, for example, OTA software upgrades would

depend on the hardware design, in mainly the available flash after the firmware

was flashed, the kind of error rates in packets while an image was transferred so

on and so forth. OTA upgrade would also depend on a custom bootloader that

had to be flashed along with the application code that could load the OTA binary
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from external or internal memory onto the active code memory.

Others issues like choosing the best network probably was a bit more far

removed from the actual underlying protocol. For example, the metric influencing

this decision could be just the RSSI, the loading factor (i.e. how many devices

are currently joined out of the maximum possible devices a particular coordinator

can support). ZigBee uses 16-bit PAN IDs for identifying networks uniquely and

for some other technology this identifier could be 32 bit. All of these differences

however, should not impact the way a decision is taken to decide one particular

network over another in a multi-star network environment.

One of the key features of our testbed is to allow us to deal with networking

issues independent of the actual sensing/actuating payload. We created a testbed

of more than 100 nodes each of which could be deployed within minutes on wall

plugs, thereby avoiding the long installation times of previous sensors. Overall, we

figured that the basic network characteristics and operations could be divided into

a set of primitives and we could form our policies and decisions on top of this veneer

of primitives without worrying much about the underlying WSN technology. The

idea of using a layered approach to abstract out lower layers and present the upper

layers with an uniform set of primitives is not new and has been an important

design strategy for systems. By using these primitives in a WSN, we have been

able to get similar kind of benefits that a layered architecture provides. These

primitives are the core of this thesis and we take a detailed stock of the various

approaches and the design decisions that we undertook while implementing these

primitives. Those will follow after we discuss the hardware and the software of our

testbed in the following two chapters.



Chapter 3

Hardware design

As mentioned in the previous section, we started off our initial WSN de-

ployments with the TI CC2530/CC2531 SoC based ZigBee platform. This plat-

form came with TI’s implementation of the ZigBee protocol stack called ‘ZStack’.

Over time, we became comfortable with this software stack and its various quirks.

For the work described in this thesis, we therefore decided to stick with TI’s ZS-

tack. However, we took a slightly different approach this time and instead of the

CC2530/CC2531 SoC reference design, we chose the AIR A2530X24A modules,

manufactured by Anaren, a reputable Wireless manufacturing company. There

were a couple of reasons that motivated this migration. First of all, these modules,

though consisting internally of the same CC2530 SoC, were FCC tested by Anaren.

This was not the case with the previous CC2530/CC2531 reference design. Since

RF design and testing is not our core area of expertise we decided to favor the

Anaren modules over the plain CC2530/CC2531 reference design. Second of all,

the Anaren AIR A2530X24A modules came with an optional Power Amplifier/Low

Noise Amplifier front end for improved range. We found this enhanced the range

of our devices by as much as 3 times when compared to the older CC2530/CC2531

reference design. Thirdly, the Anaren module, though having a different footprint,

had an almost identical pin out with the CC2530 SoC. This did not change our

older design much, apart from making changes in the PCB layout to accommodate

the new footprint.

On the flip side however, the Anaren module with the PA/LNA front end

7
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had a higher power rating. This was however offset by using it as a USB powered

ZBC. We used the Anaren module without the PA/LNA front end as our battery

powered counterpart. Our testbed therefore had an equal mix of devices based on

both the PA/LNA front end as well as those without it.

The other disadvantage with these new Anaren modules was that they

increased the cost of our BOM somewhat significantly. While the total manufac-

turing total of our older design was about 10$ in quantities of 1000 or more, these

Anaren modules alone were priced at around 18.74$ (14.41$ for the non PA/LNA

version)in quantities less than 500. Nevertheless, we needed a module that was

FCC compliant with good RF characteristics upon which we could depend on for a

much larger wide scale ‘Enterprise’ deployment. Also recall our lack of expertise in

RF design. Keeping these things in mind we made a conscious decision to bear with

the increased cost of using the Anaren modules. Our tests also showed that the

extra cost was worth well in terms of increased range and operating characteristics.

The other minor inconvenience was that since the Anaren modules did not

have a variant based on the TI CC2531, we had to rely on an external USB to serial

converter chip. Having the CC2531 in our previous design had the advantage that

it would enumerate itself as a USB Communication class device on a Windows or

Linux host. We therefore, had to use the FT232Q chip from Future Technologies in

order to make up for the lack of a CC2531 based Anaren module. While the use of

FTDI did increase our BOM cost by about 4$, its excellent support on both Linux

and Windows was a major advantage. Moreover, not all devices in our testbed

were designed to have this FTDI chip so the additional 4$ was only for about a

fourth of the devices in our testbed.

We also spent a couple of weeks porting our earlier software for these

Anaren modules. Originally, these Anaren modules came with firmware which

could be interfaced using an SPI interface. This architecture was derived from

TI’s ZAPP/ZNP architecture where the Anaren module works in slave mode and

the core application logic is hosted over the ZAPP which could be any device

supporting an SPI bus. Our porting effort proved that the Anaren module was a

viable alternative to the CC2530/CC2531 based designs that we were using earlier.
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In summary, our hardware consisted of four main components:

• ZigBee end devices which were the core of our testbed. These devices actively

transmitted test data and whose status was closely monitored through the

primitives that we talk about later. These end devices came in two variants,

as discussed above:

– With the PA/LNA enabled A2530E24A

– Without the PA/LNA front end A2530R24A

Both variants were used in our testbed in equal proportions, though in re-

ality the latter variant is suited more for battery operated sensors (like our

occupancy sensors). The former was also used in our testbed and it was very

well suited for always on coordinators and mains powered energy meters.

• ZigBee coordinators which acted as aggregators of information from these

testbed devices.

• Small form factor PCs that acted as base stations which communicated with

the coordinators and relayed the collected data to our backend infrastructure.

• Our backend consisting of server class hardware running a MySQL server

instance where we stored our database tables and dynamic information about

the network.

We designed our PCBs using Altium[2] and we had to do 3 revisions until

we were able to resolve all hardware related glitches from the final revision. Once

the design was finalized we gave it to a local boardhouse to get the design fabbed

and assembled.

The following subsections will discuss the hardware in more detail.

3.1 Testbed hardware - End devices and Coor-

dinators

Our end device hardware differed from the predecessor in two main ways:



10

• It was based on the Anaren A2530X24A ZigBee module.

• It also contained an external SPI flash chip that we needed for OTA flash

upgrades.

Since we had two variants of the Anaren ZigBee module that we intended

to use within our testbed and we also had to make use of an USB-to-serial chip

for connecting our base stations, we ended up designing a common PCB and then

populating it in 3 different ways for serving our purposes. Below we show with

3 block diagrams how these 3 designs were different from each other and how we

utilized each of them different for our testbed.

Anaren A2530E24A (with 
PA/LNA for extended 
range) 

FT232Q USB-to-
serial converter 

USB Header 256k 
Memory chip 

Debug 
header 

GPIO pins 

Figure 3.1: Type I design: With PA/LNA based Anaren module and FTDI chip
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Anaren A2530R24A 
(without PA/LNA for 
normal range) 

USB Header 

256k 
Memory chip 

Debug 
header 

GPIO pins 

Figure 3.2: Type II design: Without PA/LNA based Anaren module and without

the FTDI chip

Anaren A2530E24A (with 
PA/LNA for extended 
range) 

USB Header 

256k 
Memory chip 

Debug 
header 

GPIO pins 

Figure 3.3: Type III design: With PA/LNA based Anaren module and without

the FTDI chip

As you can see Type I design has a serial to USB converter along with

an Anaren module that has the PA/LNA range extender front end. This design

served very well as ZigBee Coordinators (ZBCs) which needed extended ranges

and were powered via the USB of the base station PCs. Type II design lacks the
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FTDI converter as well as the range extender front end. This design was meant

to emulate actual devices which are battery powered (e.g. occupancy sensors) and

which could not afford the power demands of a PA/LNA.

The third and final Type III design in addition to lacking an FTDI, had an

Anaren module with the PA/LNA front end. This was meant to emulate actual

devices which were mains powered (e.g. energy meters). Being mains powered,

the higher power requirements of the PA/LNA was not important to this class of

devices.

Our testbed therefore was a diverse mix of all the above types of devices.

The table below shows each type of device along with the approximate number of

each of them.

Table 3.1: Distribution of device types for our testbed

Device Type Number of devices Remark
Type I ˜25 Intended mainly as ZBCs
Type II ˜25 Intended to emulate battery

powered ZEDs
Type III ˜50 Intended to emulate mains

powered ZEDs

The ZBCs for our testbed were powered via the base station USB port.

Both type II and type III ZEDs however were powered by using cheap and easily

available wall plugs that have USB compatible socket at the other end. These wall

plugs are sold from several online stores that are mainly intended to be used for

charging smartphones and tablets. We repurposed them for our testbed. Having

these wall plugs made deploying our testbed devices very easy and quick. All we

needed was to find unused wall plugs to insert our testbed ZEDs.

Figure 3.4 show how the final testbed devices looked like after the entire

process of designing, fabbing and assembly was complete. Closer inspection will

reveal that type I has an FTDI chip, while the other two don’t. Type I also lacks

an onboard voltage regulator as it draws its power from the FTDI 3.3V output.
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(a) Type I testbed device (b) Type I testbed device (c) Type III testbed device

Figure 3.4: Different types of testbed devices

Type II and Type III however need an external voltage regulator because it does

not have an FTDI chip to draw power from.

Figure 3.5 shows a typical testbed device attached to a USB wallplug, ready

to go into one of the AC mains wall plug points.

Figure 3.5: Typical testbed device with wall plug

3.2 Base Stations and backend server

This section discusses the rest of the testbed hardware components, i.e. the

base stations that were responsible for interfacing with the ZBCs to collect WSN

data and also the backend server that stored this data.

For base stations we tried using an Intel based PC with the mini-ATX form

factor for the first time. This was a departure from our earlier choice of using

plug computers. This move was motivated by the ease of managing a PC based

architecture over the old ARM based plug computers. This was further evidenced

by our visits to the various plugcomputer forums where we found a lot of developers

and users struggling with solving seemingly simple problems like upgrading kernels

or device drivers [7]. We realized that having a painless PC based solution for our
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(a) Old ARM based BS (b) New PC based BS

Figure 3.6: Old ARM based Vs new PC based base station design

base stations would save us a lot of time which we could devote to solving our WSN

problems that we initially set out to solve. Figure 3.6 show both types design for

comparison.

For the server where we hosted our backend, we used a commodity server

class machine with dual Intel Xeon cores and 16 GB of RAM. This machine was

housed in the department server room to which we had access by virtue of being

a part of SYNERGY Labs.



Chapter 4

Software Architecture and Design

basics

This chapter deals with the overall software architecture and the system

wide changes that we did to the stock ZStack implementation to come up with our

primitive based approach. This chapter also deals with the architecture of base

station scripts which were used to collate the WSN end device data and also to

manage network specific parameters. The next chapter on the other hand, delves

deeper into the specifics of these primitives. Thus, this chapter lays the groundwork

necessary for understanding the primitives that we discuss in the next chapter.

Along the way, we also solved some miscellaneous issues that we found

deserved attention because they impacted our overall design considerably. We

discuss the solutions to these challenges in this chapter as well.

What follows now is a block diagram of where our software fits with respect

to the overall software architecture of ZStack. Please note that for ease of under-

standing and reducing complexity, we have shown the ZDO, APS and NWK layers

of ZigBee in the same level in this block diagram. However as per the ZigBee specs

they exist in separate layers. The reader is referred to the ZigBee specs[10] for the

exact layering semantics of the ZigBee networking protocol.

15
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Physical(PHY) layer with 2.4 GHz Radio

Medium Access Control layer (MAC)

ZDO NWK APS

Synergy WSN Primitives

App 1 App 2 App 3

Figure 4.1: Simplified block diagram showing the relationship between our work

and the ZigBee protocol

Our area of focus is indicated in green in this block diagram. Our primitives,

which we have aptly named Synergy WSN primitives, sit between the applications

and the lower layers of the ZigBee protocol stack. Some of the primitives are generic

in nature while some others are specific to ZigBee. Regardless, the Synergy WSN

Primitives provide a way for network engineers to abstract out the underlying

layers to help them realize their goals such as commissioning, OTA upgrades and

other key management tasks.
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4.1 Monitor and Test (MT) API

Key to realizing Synergy WSN primitives was a subsystem called the TI

Monitor and Test API. This subsystem came with TI’s ZStack implementation. It

was a convenient way to access several of ZStack’s core APIs via the serial port. TI

divided its MT subsystem into smaller modules and a dedicated operating system

task was responsible for all MT related processing on the device. Each module

including the entire MT subsystem could be independently turned ON and OFF

via conditional compile flags. Some of the modules include system commands,

utilities, ZDO functionality and so on.

MT APIs worked by exposing several key system and ZStack APIs through

prearranged serial packets. By sending these prearranged packets to devices run-

ning ZStack one could have these devices execute certain APIs and then return

their results. This formed our primary model of exposing Synergy WSN primitives

to the outside world as well as to applications sitting on top. TI’s implementation

was also dependent on a Windows application front end that ran on a PC. Our

changes to the MT API removes this limitation as our base station scripts were

written to be MT-aware.

The sequence diagram in Figure 4.2 shows how by using a correctly formed

serial packet (either via TI’ PC tool or our base station scripts), one could control

the behavior of any device running ZStack, compiled with the MT subsystem.
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Serial Port App Task MT Task

MT command packet

MT command packet

Parse and execute

Result

ZigBee Coordinator or End device

Result

Figure 4.2: Message sequence chart showing typical in-device MT command ex-

ecution on ZStack based devices

However, TI’s MT implementation had three major limitations.

• It had to have exclusive control over the serial port. This conflicted with the

primary functionality on our ZBC which was to access the serial port to send

the network information to the base station scripts via the serial port.

• It accepted packets only through the serial port. It was not possible to send

an MT command OTA and get its result back OTA, across multiple devices.

• It did not have a extensible design allowing addition of new primitives if

desired.

We overcame all of these limitations by carefully rewriting parts of TI’s

original MT implementation. Doing so, we were not only able to leverage TI’s rich

set of pre-defined MT primitives, but also add our own primitives to the list as

and when we felt necessary.

For the first problem, we encapsulated TI’s MT packets within our legacy

packet structure. Then we expanded the list of known packet types by adding

“MT packet” as one of the possible serial packet types. A pre-existing field within

the legacy packet structure indicated what type of packet was being transported.



19

All serial packets would be received first by application unlike TI’s implementation

where all packets were received by the MT task first. Thus, the MT task within

ZStack would no longer be in control of the serial port. The application would

disambiguate between different types of packets and in case of an MT packet it

would send it to the MT task for parsing and execution. Once execution was

complete, the MT task would not send the results back on its own, but it would

first send the results to the application task. The application task would then send

out the results via the serial port, with the correct message type flag set. This way

sensor event packets could share the same serial transport as MT packets.

For the second problem, all we did was send the same packet that we used

above, OTA to the target device. The target device in this case could either be

the entire network via a network wide broadcast or it could be a single device via

a unicast message. The receiving device application task would then figure out if

it was an MT packet and if so, it would send it to its MT task for parsing and

execution. The results would then be sent to the requesting device OTA. For the

user requesting command execution via the serial port, it would not make any

difference (except apart from a tiny speedup) whether the results were obtained

from the device connected physically via the serial port or if they were obtained

from a remote device OTA.

For the third problem, we ended up creating our own subsystem of MT com-

mands, which we termed ‘User Defined’ MT commands. These were new primitives

that were not present by default in TI’s implementation. TI categorized all MT

commands into different categories depending on their functionality. But rather

than pollute the pre-existing TI categories with our user defined primitives, we de-

cided to create our own category that could exist in parallel with TI’s primitives.

We called this new category UD or user defined MT commands (as opposed to

system defined preexisting MT commands).

All of the above changes impacted the handling of all MT commands at a

fundamental level because now an MT command could be just over the serial link

or even OTA. Moreover, it could be independently one of the preexisting commands

or an user defined command. The following steps describes the final algorithm for
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handling all possible combinations of MT commands:

1. Receive potential MT commands via the serial port or OTA and after deter-

mining the message type, send a message to the MT task with the received

MT packet as the payload.

2. The MT task determines which subsystem the command belongs to. In case

it is a system MT command, it handles it within the MT task. If on the other

hand it is a UD MT command, it trampolines it back to the application.

3. The application receives the trampolined MT packet which did not fall under

the jurisdiction of the system MT commands. Thus, the application then

parses the UD MT command and executes the necessary functionality.

4. The application then returns the results of the MT command either via the

serial or OTA as the case may be.

A question the reader might have at this point is about the necessity of

trampolining the MT packet at step 2 above. The UD MT commands could also

be handled within the MT task without trampolining it to the application task.

However, UD MT commands were mostly in the context of the application task and

needed data structures that were specific to the application task. Thus, it made

more sense to handle all UD MT commands in the context of the application task

rather than have the MT task shadow the application task context variables.

The message sequence chart in figure 4.3 describes this handling of UD MT

commands. But notice how the MT command packet trampolines from the MT

task to the application task but does not cross device boundaries.



21

Serial Port App Task MT Task

MT command packet

MT command packet

Trampoline

MT command packet

Parse and execute

ZigBee Coordinator or End device

Result

Figure 4.3: In-device UD MT commands execution

Contrast this with the message sequence chart in figure 4.4 which describes

the exact same scenario as above, but with an UD MT packet crossing device

boundaries in addition to task boundaries. This enables the command to be parsed

and executed across the network. This is the basis of all Synergy WSN primitives

which need remote execution.

Lastly, we are left with the case which is similar to the preceding scenario,

but involves a system MT command executed across device boundaries, rather

than a UD MT command executed across device boundaries. This is depicted in

figure 4.5.

Serial Port App Task MT Task

MT command packet

Trampoline

App Task

MT command packet sent OTA

MT command packet

Parse and execute

ZigBee Coordinator ZigBee End device

MT command packet

MT result sent OTA

Result

Figure 4.4: Across-device OTA UD MT commands execution

There is also a third type of MT command execution which is hybrid of

serial and OTA executions. This type of execution is needed when the primitive is
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complicated enough to warrant multiple subprimitives in order to achieve its func-

tionality. In such a situation, a single MT command will give rise to several OTA

MT commands being exchanged between devices. Finally, when all those subprim-

itives have been executed, the end result would be sent via a serial confirmation.

This is depicted in the message sequence chart in figure 4.6.

Serial Port App Task MT Task

MT command packet

Parse and execute

App Task

MT command packet sent OTA

MT command packet

ZigBee Coordinator ZigBee End device

Result

MT result sent OTA

MT result

Figure 4.5: Serial to OTA System MT commands execution

App Task MT Task App TaskSerial Port

MT command

MT command

Trampoline
MT command

Parse and execute

MT command sent OTA

MT Task

MT command packet

Trampoline
MT command packet

Parse and execute

Result sent OTA

Check result

Check result

MT command sent OTA
MT command packet

Trampoline

Parse and execute
Result sent OTA

ZigBee Coordinator ZigBee End device

MT command packet

Result

Figure 4.6: Serial to OTA Hybrid UD MT commands execution
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4.2 Base Station scripts organization

The base station scripts were written in Python over a popular Linux dis-

tribution, Ubuntu 12.04 Precise Pangolin. These scripts gave a command line

interface to the attached ZBC. The scripts were organized into multiple objects

communicating via queues with each other. We used the python binding to the

well known udev library in order to abstract out the script from the lower level

USB device names e.g. /dev/ttyUSB0 or /dev/ttUSB1. The command line in-

terface was named “BSShell”, i.e. a shell type of interface where the user could

type out commands to the connected ZBC interactively. These commands would

then get translated into corresponding primitives which would then be sent via the

USB interface to the ZBC. The ZBC would execute the primitives and then return

back the result back through the USB to the shell. Figure 4.7 shows its overall

architecture.

 
Thread Mgr Object 

 

 
 

Console input 
Object 

 

BS Object 1 

 
 

BS Object 2 

 

Serial Data Parser  
Object 

Console output 
Object 

 

Database Object 

Console Input Queue 

BS Object 1Command Queue 

BS Object 2 Command Queue 

Serial Data out 
Queue 

Console output 
Queue 

STDOUT 

STDIN 

To backend 

USB port 2 

USB port 1 

To ZBC 1 

To ZBC 2 

Figure 4.7: BSShell Software Architecture

The BSShell allowed us to quickly test new Synergy WSN primitives as well

as existing MT primitives. For existing MT primitives we just had to write the

corresponding Python front end and update the MT code within TI’s implemen-

tation to work OTA as well as through serial. For UD MT primitives, we not only
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wrote the primitives from scratch but also added the corresponding Python front

end to the BSShell source code.

Figure 4.8 shows a screenshot from a typical interactive session.

Figure 4.8: BSShell showing invocation of Synergy WSN primitives via the serial

port

4.3 Miscellaneous software issues

This section discusses some miscellaneous issues that we encountered while

developing Synergy WSN primitives. These issues are orthogonal to the MT archi-

tecture described above, but included in this chapter for the sake of completeness.

4.3.1 Sleep VS Active Power of Anaren based devices

ZigBee end devices are intended to be battery powered and therefore con-

serve power by waking up periodically, checking for any messages and then go

back to sleep. This behavior is ingrained in the protocol itself and is controlled by
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various runtime parameters which determine the rate of this polling to check for

messages.

This behavior, however is defined only after an active connection is estab-

lished by an end device with its parent coordinator/router. We discovered that in

the absence of a coordinator, the protocol does not specify the behavior of the end

device as to whether it should go to sleep or keep waking up periodically to check

for parents in its vicinity. Without a proper strategy to handle the corner case

when no ZigBee coordinator is available the end devices might end up draining

their batteries quickly.

We therefore devised our own algorithm to offset this scenario. However,

we realized that even with this new algorithm, we were not able to drive the power

consumption during sleep periods. After visiting TI’s developer forums, we found

that unless the application indicates to the stack runtime that is a battery powered

device, none of the power saving features would work. Normally, this indication

is given to the stack runtime after the device has associated with a ZBC. But in

this case, since we were scanning and trying to find one, the indication was never

given during the scan stage. We therefore fixed this by calling the indication API

right at task initialization even before we start scanning. This fix brought down

the sleep current to about 380 uW.

The flowchart in figure 4.9 depicts this algorithm. As you can see, the

device checks after a certain time interval if it has associated with a ZBC. If not,

it goes to sleep for a second fixed time interval. After this time interval expires,

it would wake up and stay awake for another interval of time. After this, it would

check again if the device was able to associate. If yes, it would simply stop sleeping

and if not, it would continue this process.

Typical interval values for scanning and sleeping chosen in our implemen-

tation were 15 seconds and 285 seconds, respectively, giving a total cycle time of

300 seconds, i.e. 5 minutes. All these time intervals are NV configurable and can

be customized without re-compiling the ZED code.
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Start

Start timer for X 
seconds

Timer callback called

Check network join 
status

Is joined?Do nothing

Stop

Start timer for Y 
seconds

Go to sleep

Wake up on timer 
callback

Is joined?

Yes

No

Yes

No

Stop scanning

Start scanning

Figure 4.9: Sleep algorithm when no ZBCs are around. Intervals X and Y are

NV configurable.



Chapter 5

Synergy WSN primitives

In this chapter we discuss the Synergy WSN primitives that we created in

detail. From the block diagram in Figure 4.1, these primitives are represented by

the green block in the last chapter.

Recall that we leveraged the existing MT infrastructure for our work. In

doing so, we could keep approximately 170 MT primitives that were part of TI’s

implementation. We added our own user defined primitives on top of that and also

did the necessary changes to make all primitives support OTA in addition to serial.

This enhanced, superset of primitives containing our own subset of primitives was

christened “Synergy WSN Primitives”. Through the use of these primitives (for us-

age model please refer to Figures 4.2 through 4.6), we have implemented some key

features of network management. The next chapter discusses these management

features in detail, while the focus of this chapter are the primitives themselves.

In the subsequent sections, we begin by familiarizing the reader with the

structure of an MT packet. We then list our own primitives and describe them

briefly. We do not wish to duplicate the listing of MT primitives supported by TI

because that is very well documented by TI in their documentation that comes

with ZStack [8].
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5.1 MT packet structure

Each MT packet is indicated by a special magic SOF (start of frame) byte.

This is arbitrarily set to 0xFE. This was followed by the rest of the packet. The

entire packet was then suffixed with an FCS or frame control sequence. The FCS

was calculated by XOR’ing all the packet bytes, excluding the SOF byte. The FCS

byte allowed the MT implementation to detect errors but there was no support to

correct those errors. Our base station scripts would time out in case there was any

checksum error or when the device under test failed to respond to our commands.

The figure below shows this general structure.

SOF
(1 Byte)

FCS
(1 Byte)

MT Payload
(3-253 Bytes)

Figure 5.1: Overall structure of an MT packet

The MT Payload field itself could be divided into 4 further fields:

1. Length: This field indicated the length of the data field, excluding the SOF

byte and the FCS. In cases of commands without any data, this would be

set to 0.

2. Command 0: This field contained the MT subsystem to which the command

belonged.

3. Command 1: This field contained the actual command that was to be

executed.

4. Data: This was an optional field containing the request or response data.

The next figure shows the complete structure of the MT packet with all the

above details.

0xFE
0 2B 00

None
FCS

(1 Byte)

Figure 5.2: Detailed structure of an MT packet
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The complete list of MT subsystems are as shown in the table below:

Table 5.1: MT subsystems and their values

Subsystem Subsystem Value
Reserved 0x00
SYS interface 0x01
MAC interface 0x02
NWK interface 0x03
AF interface 0x04
ZDO interface 0x05
SAPI interface 0x06
UTIL interface 0x07
DEBUG interface 0x08
APP interface 0x09
OTA interface 0x0A
UD interface 0x0B

Out of these, the OTA interface was TI’s own interface that was used for

their OTA software upgrade solution which we did not use in our own implemen-

tation of OTA software upgrade. The UD interface was added by us to create a

separate category for all higher level MT primitives.

5.2 Synergy WSN MT primitives

This section depicts all the primitives that we added under the UD category

of MT commands. These together with the preexisting MT primitives form the

basis of Synergy WSN primitives.

5.2.1 Get Link Quality (LQI)

This primitive can be used to get the average link quality information from

a ZBC or from its connected ZEDs. The packet structure of this primitive is shown

in Figure 5.3.
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FE 0 2B 00 None
FCS

(1 Byte)

(a) Get LQI MT request

FE 2 6B 00 LQI High Byte
FCS

(1 Byte)
LQI Low byte

(b) Get LQI MT response

Figure 5.3: Packet structures for get LQI MT command

5.2.2 Get RSSI (Received Signal Strength Indicator)

This primitive can be used to get the average RSSI of a ZBC or a ZED.

The packet structure of this primitive is shown in Figure 5.4.

FE 0 2B 01 None
FCS

(1 Byte)

(a) Get RSSI MT request

0xFE 2 6B 01 RSSI High Byte
FCS

(1 Byte)
RSSI Low byte

(b) Get RSSI MT response

Figure 5.4: Packet structures for get RSSI MT command

5.2.3 Get Data Rate

This primitive can be used to get the average data rate of a ZBC or a ZED.

The packet structure of this primitive is shown in Figure 5.5.

FE 0 2B 02 None
FCS

(1 Byte)

(a) Get data rate primitive request

FE 2 6B 02
Data rate High 

Byte
FCS

(1 Byte)
Data rate RSSI 

Low byte

(b) Get data rate primitive response

Figure 5.5: Packet structures for get data rate primitive
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5.2.4 Set transmission parameters

This primitive can be used to set the transmission parameters of the device.

This is typically used for testbed devices. Using this primitive one can change the

transmission rate and the packet size of each packet. The device needs to be reset

in order for the changes to take effect. The field definitions are shown in Figure 5.6

and are as follows:

• Unit Timer: Interval in milliseconds between each loop count

• Repeat count: Number of loops between each transmission. Product of

unit timer and repeat count gives exact transmission interval. i.e. unit timer

of 1000 and repeat count of 2 will give a delay of 2 seconds between each

packet.

• Packet Size: Size of packet in each transmission.

• Set unit timer status: Status of setting the unit timer value in NV.

• Set repeat count status: Status of setting the repeat count in NV.

• Set packet size status: Status of setting the packet size in NV.

FE 6 2B 03
FCS

(1 Byte)

Unit Timer low 
byte

Unit Timer high 
byte

Repeat count low 
byte

Repeat count low 
byte

Packet size low 
byte

Packet size high 
byte

(a) Set transmission parameters primitive

request

FE 9 6B 03
FCS

(1 Byte)

Unit Timer low 
byte

Unit Timer high 
byte

Repeat count low 
byte

Repeat count low byte

Packet size low 
byte

Packet size high byte

Set timer status

Set repeat count 
status

Set packet size 
status

(b) Set transmission parameters primitive

response

Figure 5.6: Packet structures for set transmission primitive
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5.2.5 Get transmission parameters

This primitive can be used to get the current values of the transmission

parameters i.e. unit Timer, repeat count and packet size. This is typically used

for testbed devices. The field definitions are shown in Figure 5.7 and are as follows:

• Unit Timer: Interval in milliseconds between each loop count.

• Repeat count: Number of loops between each transmission. Product of

unit timer and repeat count gives exact transmission interval. i.e. unit timer

of 1000 and repeat count of 2 will give a delay of 2 seconds between each

packet.

• Packet Size: Size of packet in each transmission.

• Get unit timer status: Status of getting the unit timer value in NV.

• Get repeat count status: Status of getting the repeat count in NV.

• Get packet size status: Status of getting the packet size in NV.

FE 0 2B 04 None
FCS

(1 Byte)

(a) Get transmission parameters primitive

request

FE 9 6B 04
FCS

(1 Byte)

Unit Timer low 
byte

Unit Timer high 
byte

Repeat count low 
byte

Repeat count low byte

Packet size low 
byte

Packet size high byte

Set timer status

Set repeat count 
status

Set packet size 
status

(b) Get transmission parameters primitive

response

Figure 5.7: Packet structures for get transmission parameters primitive
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5.2.6 Scan for active end devices

This primitive can be used to scan for active end devices in the vicinity of

a ZBC. This returns only active, i.e. transmitting devices. Non-commissioned or

device commissioned devices will not respond to this primitive. The ZBC should

wait for a fixed time out to collect all responses from neighboring end devices

before collating the results and sending it to the client. The fields of this primitive

are shown in Figure 5.8 and are as follows:

• Short Address high byte: High byte of the short address of the device

responding to this primitive.

• Short Address high byte: Low byte of the short address of the device

responding to this primitive.

FE 0 2B 05 None
FCS

(1 Byte)

(a) Active scan primitive request

FE 2 6B 05
Short Address 

High Byte
FCS

(1 Byte)
Short Address 

Low byte

(b) Active scan primitive response

Figure 5.8: Packet structure for active scan primitive

5.2.7 Load default transmission parameters

Using this primitive, the device can be instructed to restore its default trans-

mission parameters. Default transmission parameters are determined at compile

time and cannot be changed via Synergy WSN primitives. Figure 5.9 shows the

field structure of this primitive. The field definitions of this primitive is exactly

same as Subsection 5.2.4. The device needs to be reset in order for the changes to

take effect.
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FE 0 2B 06 None
FCS

(1 Byte)

(a) Load default transmission parameters

primitive request

FE 9 6B 06
FCS

(1 Byte)

Unit Timer low 
byte

Unit Timer high 
byte

Repeat count low 
byte

Repeat count low byte

Packet size low 
byte

Packet size high byte

Set timer status

Set repeat count 
status

Set packet size 
status

(b) Load default transmission parameters

primitive response

Figure 5.9: Packet structure for Load default transmission parameters primitive

5.2.8 Get packet transmission statistics

This primitive gets the supported only on the ZBC and it can be used to

get the packet transmission statistics from the ZBC.

FE 0 2B 07 None
FCS

(1 Byte)

(a) Get packet statistics primitive request

FE 13 6B 08

FCS
(1 Byte)

Device ID 
High byte

Device ID 
Low byte

Packets 
received 
High byte

Packets 
received 
low byte

Packets 
Skipped 

High byte

Packets 
Skipped 

Low byte

OOO 
packets 

High byte

OOO 
packets 

Low byte

Duplicate 
packets 

High byte

Duplicate 
packets 

Low byte

Seq no 
byte 0

Seq no 
byte 1

Seq no 
byte 2

Seq no 
byte 3

Max seq 
byte 0 

Max seq 
byte 1

Max seq 
byte 2

Max seq 
byte 3

isinit

(b) Get packet statistics primitive response

Figure 5.10: Packet structure for get packet statistics primitive
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This primitive is supported only on the ZBC, and is not supported OTA.

Figure 5.10 shows its field structure and the field definitions of this primitive are

as follows:

• Device id high byte: The high byte of the device id.

• Device id low byte: The low byte of the device id.

• Packets received high byte: The high byte of packet received.

• Packets received low byte: The low byte of packets received.

• Packets skipped high byte: The high byte of skipped packets.

• Packets skipped low byte: The low byte of skipped packets.

• OOO packets high byte: The high byte of out of order packets.

• OOO packets low byte: The low byte of out of order packets.

• Duplicate packets high byte: The high byte of duplicate packets.

• Duplicate packets low byte: The low byte of duplicate packets.

• Sequence number byte 0: Byte 0 of sequence number.

• Sequence number byte 1: Byte 1 of sequence number.

• Sequence number byte 2: Byte 2 of sequence number.

• Sequence number byte 3: Byte 3 of sequence number.

• Max sequence number byte 0: Byte 0 of maximum sequence number

encountered so far.

• Max sequence number byte 1: Byte 1 of maximum sequence number

encountered so far.

• Max sequence number byte 2: Byte 2 of maximum sequence number

encountered so far.
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• Max sequence number byte 3: Byte 3 of maximum sequence number

encountered so far.

• Is initialized: Indicates the start of sequence numbers. Is False for the first

packet, subsequent packets set it to True.

The client is responsible for using the data returned from this primitive to

calculate packet statistics on the coordinator.

5.2.9 Get coordinator information

This primitive is used by an end device during phase II of the commissioning

process,i.e. during the autonomous network acquisition phase of the commissioning

process. This primitive does not have a Python binding yet because it is used

transparently during phase II. However, a Python binding for this could be written

if desired. When a ZBC receives this primitive, it responds with information

necessary for the end device to decide if it wants to join its PAN. Figure 5.11

shows the field structure of this primitive.

FE 0 2B 08 None
FCS

(1 Byte)

(a) Get coordinator information

primitive request

FE 0E 6B 08

FCS
(1 Byte)

PAN ID 
High byte

PAN ID 
Low byte

Chanlist 
byte 3

Chanlist 
byte 2

Chanlist 
byte 1

Chanlist 
byte 0

RSSI High 
Byte

RSSI Low 
byte

Avg LQI 
High byte

Avg LQI 
Low byte

Number of 
children 

High byte

Number of 
children 

High byte

Date rate 
High byte

Max seq 
byte 3Date rate 

Low byte

(b) Get coordinator information

primitive response

Figure 5.11: Packet structure for Get coordinator information primitive

5.2.10 Scan for non-commissioned devices

This primitive is used by the C-App during device commissioning. Upon

receipt, only non-commissioned devices respond to this primitive. Figure 5.12



37

shows the field structure for this primitive.

FE 0 2B 09 None
FCS

(1 Byte)

(a) Non-commissioned devices scan primi-

tive request

FE 0F 2B 09

FCS
(1 Byte)

Short 
Address 

Low Byte

Short 
Address 

High Byte

Device ID 
Low byte

Device ID 
High byte

Device 
Type

MAC addr 
byte 0

MAC addr 
byte 1

MAC addr 
byte 2

MAC addr 
byte 3

MAC addr 
byte 4

MAC addr 
byte 5

MAC addr 
byte 6

MAC addr 
byte 7

Owner ID 
Low byte

Owner ID 
High byte

(b) Non-commissioned devices scan primi-

tive response

Figure 5.12: Packet structure for non-commissioned devices scan primitive

5.2.11 Set commission status of device

This primitive can be used to change the commission status of a device.

This needs a device reboot to take effect. Figure 5.13 shows the field structure for

this primitive.
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FE 01 2B 0A Commission Status (1 Byte)
FCS

(1 Byte)

(a) Set device commission status primitive

request

FE 02 6B 0A
Set Commission 

flag status
FCS

(1 Byte)
Commission 

status

(b) Set device commission status primitive

response

Figure 5.13: Packet structure for set device commission status primitive response

5.2.12 Get commission status of device

This primitive can be used to read the commission status of a device. Fig-

ure 5.14 shows the field structure for this primitive.

FE 0 2B 0B None
FCS

(1 Byte)

(a) Get device commission status primitive

request

FE 02 6B 0B
Get Commission 

flag status
FCS

(1 Byte)
Commission 

status

(b) Get device commission status primitive

response

Figure 5.14: Packet structure for get device commission status

5.2.13 Write external NV memory

This primitive can be used to write an arbitrary buffer of data at an ar-

bitrary location in the external NV memory of the device. The buffer being

written must be aligned at a 256-byte boundary for this primitive to

work properly. Figure 5.15 shows the field structure for this primitive.
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FE 0A+N 2B 0E

FCS
(1 Byte)

Index Low 
byte

Index High 
byte

Image area

Image type

Start 
address 
byte 0

Start 
address 
byte 1

Start 
address 
byte 2

Start 
address 
byte 3

Buffer 
length Low 

byte

Buffer 
length 

High byte

N bytes

Data

(a) External NV memory write primitive re-

quest

FE 03 2B 0E
FCS

(1 Byte)

Index Low 
byte

Index High 
byte

Write 
Status

(b) External NV memory write primitive re-

sponse

Figure 5.15: Packet structure for writing to external NV memory

5.2.14 Read external NV memory

This primitive can be used to read an arbitrary buffer from an arbitrary lo-

cation from the external NV memory of the device. The buffer being read must

be aligned at a 256-byte boundary for this primitive to work correctly.

Figure 5.16 shows the field structure for this primitive.
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FE 0A 2B 0F
FCS

(1 Byte)

Index Low 
byte

Index High 
byte

Image area

Image type

Start 
address 
byte 0

Start 
address 
byte 1

Start 
address 
byte 2

Start 
address 
byte 3

Buffer 
length Low 

byte

Buffer 
length 

High byte

(a) External NV memory read primitive re-

quest

FE 0B 2B 0F
FCS

(1 Byte)

Index Low 
byte

Index High 
byte

Image area

Image type

Start 
address 
byte 0

Start 
address 
byte 1

Start 
address 
byte 2

Start 
address 
byte 3

Buffer 
length Low 

byte

Buffer 
length 

High byte

Read 
Status

(b) External NV memory read primitive re-

sponse

Figure 5.16: Packet structure for reading external NV memory

5.2.15 Invalidate production code

This primitive invalidates the production code by writing zeros to the image

checksum bytes. Invalidating the production code does not take effect until the

next reboot of the device. Upon reboot, the bootloader will load the stored binary

image from the external memory onto the internal NV flash of the Anaren module.

If the device does not have the bootloader and this primitive is sent to the device,

the device will return failure. If the bootloader is enabled in the device, the

primitive will always return success. Figure 5.17 shows the field structure for this

primitive.
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FE 0 2B 10 None
FCS

(1 Byte)

(a) Invalidate production code primitive re-

quest

FE 0 2B 10 None
FCS

(1 Byte)

(b) Invalidate production code primitive re-

sponse

Figure 5.17: Packet structure for invalidating production code

5.2.16 Send external flash image

This primitive can be used to send a chunk of data from the external mem-

ory of the source device. It can be thereby used to send the entire memory contents

of the external memory chip. After completion, the device sends a response back.

Figure 5.18 shows the field structure for this primitive.

FE 0A 2B 11
FCS

(1 Byte)

Image area

Image type

Image 
Offset byte 

0

Image 
Offset byte 

1

Image 
Offset byte 

2

Image 
Offset byte 

3

Image 
length byte 

0

Image 
length byte 

1

Image 
length byte 

2

Image 
length byte 

3

(a) Send external flash primitive request

FE 0A 2B 11
FCS

(1 Byte)

Image area

Image type

Image 
Offset byte 

0

Image 
Offset byte 

1

Image 
Offset byte 

2

Image 
Offset byte 

3

Image 
length byte 

0

Image 
length byte 

1

Image 
length byte 

2

Image 
length byte 

3

(b) Send external flash primitive response

Figure 5.18: Packet structure for sending external flash image



42

5.2.17 Send external NV memory information

This primitive is used as a sentinel primitive prior to beginning a full ex-

ternal NV memory transfer. This lets the end device know details about the

impending transfer. This is sent via broadcast and therefore does not have any

response message. Figure 5.19 shows the field structure for this primitive.

FE 09 2B 12
FCS

(1 Byte)

Total 
packets 

Low byte

Total 
packets 

High byte

Image area

Image type

Image size 
byte 0

Image size 
byte 1

Image size 
byte 2

Image size 
byte 3

Device 
Type

(a) Send external NV memory information

primitive request

Figure 5.19: Packet structure for sending external NV memory information

5.2.18 Get external NV memory transfer statistics

This primitive is useful for knowing the external NV memory image transfer

statistics. It can be used for debugging over the air memory transfers by knowing

how many packets were lost and how many were actually written onto the external

memory. Figure 5.20 shows the field structure for this primitive.

FE 0 2B 13 None
FCS

(1 Byte)

(a) Get external memory transfer

statistics request

FE 0A 6B 13
FCS

(1 Byte)

Blocks 
written 

Low byte

Blocks 
written 

High byte

Total 
Blocks 

expected 
Low byte

Total 
Blocks 

expected 
High byte

Blocks 
missing 

after 
broadcast 
low  byte

Blocks 
missing 

after 
broadcast 
high  byte

Index of 
first 

missed 
block low 

byte

Index of 
first 

missed 
block high 

byte

Number 
blocked 
patched 
low byte

Number 
blocked 
patched 

high byte

(b) Get external memory transfer

statistics primitive response

Figure 5.20: Packet structure for get external NV memory transfer statistics
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5.2.19 End external NV memory transfer

This primitive is used to indicate to the end devices that the ZBC has

finished transferring all the image blocks. At this point the end devices can check

if they are missing any blocks and start patching up the invalid regions in their

received image. This primitive is sent via broadcast and there does not have any

corresponding response. Figure 5.21 shows the field structure for this primitive.

FE 0 2B 14 None
FCS

(1 Byte)

(a) End external NV memory transfer prim-

itive request

Figure 5.21: Packet structure for ending external memory transfer

5.2.20 Request external NV memory block

This primitive is used by an end device to request for a missing memory

block after the external NV memory transfer procedure has ended. Figure 5.22

shows the field structure for this primitive.

FE 6 2B 15
FCS

(1 Byte)

Index low byte

Index high 
byte

Image area

Image type

Return 
address 
low byte

Return 
address 

high byte

(a) Request external NV memory

primitive request

Figure 5.22: Packet structure for requesting external NV memory block

5.2.21 Handle External NV memory block

This primitive is sent by the coordinator as a response to the ‘Request

external NV memory block’ primitive. Upon receipt, the end device writes the



44

data into the external memory chip. Figure 5.23 shows the field structure for this

primitive.

FE 0A+N 6B 15

FCS
(1 Byte)

Index Low 
byte

Index High 
byte

Image area

Image type

Start 
address 
byte 0

Start 
address 
byte 1

Start 
address 
byte 2

Start 
address 
byte 3

Buffer 
length Low 

byte

Buffer 
length 

High byte

N bytes

Data

(a) Handle External NV memory block

primitive

Figure 5.23: Packet structure for Handling external NV memory block

5.2.22 Send test command

This primitive when sent to the device makes the device perform some

external visible action. This is useful for identification during device commissioning

via the C-App. The default implementation lights an LED, but it can be modified

to perform any task, even send another primitive in response to this command.

The response structure contains a byte indicating the status of the test operation.

Figure 5.24 shows the field structure for this primitive.

FE 0 2B 17 None
FCS

(1 Byte)

(a) Send test command primitive request

FE 01 2B 17 Status (1 Byte)
FCS

(1 Byte)

(b) Send test command primitive response

Figure 5.24: Packet structure for sending test command primitive
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5.2.23 Send ZigBee coordinator information

This primitive is used by the ZigBee coordinator to send status information

about itself. The base station scripts are responsible for parsing this primitive

and updating the information in the back end. There is no associated request

associated with this primitive. It is suggested that the ZigBee coordinator update

the base station script with this primitive at a regular interval. Figure 5.25 shows

the field structure for this primitive.

FE 12 6B 18

FCS
(1 Byte)

Mac 
address 
byte 0

Mac 
address 
byte 1

Mac 
address 
byte 2

Mac 
address 
byte 3

Mac 
address 
byte 4

Mac 
address 
byte 5

Mac 
address 
byte 6

Mac 
address 
byte 7

Children 
count

Left 
capacity

PAN ID low 
byte

PAN ID 
High byte

Chanlist 
byte 0

Chanlist 
byte 1

Chanlist 
byte 2

Chanlist 
byte 3

SW version 
low byte

SW version 
high byte

(a) Send ZigBee coordinator information

primitive

Figure 5.25: Packet structure for sending ZigBee coordinator information

5.2.24 End device announce

This primitive is sent by an end device at least once in its lifetime. This is

necessary to populate the back end with static information about the end device.

It is suggested that an end device send this primitive once after initialization and

then after any change of status. There is no associated request for this primitive.

Figure 5.26 shows the field structure for this primitive.
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FE 0F 6B 19

FCS
(1 Byte)

Mac 
address 
byte 0

Mac 
address 
byte 1

Mac 
address 
byte 2

Mac 
address 
byte 3

Mac 
address 
byte 4

Mac 
address 
byte 5

Mac 
address 
byte 6

Mac 
address 
byte 7

Device ID 
high byte

Device ID 
low byte

SW version 
byte 0

SW version 
byte 1

SW version 
byte 2

SW version 
byte 3

Image 
status

(a) End device announce primitive

request

Figure 5.26: Packet structure for end device announce

5.2.25 Disseminate encryption key

This primitive is used by a coordinator to disseminate its encryption key

to all its connected end devices. Figure 5.27 shows the field structure for this

primitive. This primitive is sent via a broadcast and therefore does not have any

associated response structure.

FE 0 2B 1A None
FCS

(1 Byte)

(a) Disseminate encryption key primitive re-

quest

Figure 5.27: Packet structure for disseminating encryption key

5.2.26 Send encryption key

This is an internal primitive that is sent from a ZigBee Coordinator to an

end device as a result of getting the ‘Disseminate encryption key’ primitive. This

primitive is not currently made available via Python bindings. Figure 5.28 shows

the field structure for this primitive.
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FE 16 2B 1B Security Key (16 Bytes)
FCS

(1 Byte)

(a) Send encryption key primitive request

Figure 5.28: Packet structure for sending encryption key

5.2.27 Clean NV on next reboot

This primitive makes the device to delete all its NV settings on the next

reboot. It therefore requires a reboot to take effect. This primitive can be used

to revert a device to its factory settings. Figure 5.29 shows the field structure for

this primitive.

FE 0 2B 1E None
FCS

(1 Byte)

(a) Clean NV on next reboot primitive re-

quest

FE 1 2B 1E Flag set status
FCS

(1 Byte)

(b) Clean NV on next reboot primitive prim-

itive response

Figure 5.29: Packet structure for clean NV on next reboot

5.3 Conclusion

We have described the list of primitives implemented in order to create the

complete set for Synergy WSN primitives. Some of these primitives are not shown

here because they are implemented as part of TI’s stock implementation. They

have, however been retro-fitted to conform to our idea of being able to send and

receive MT commands OTA. This has not been done for all of the 160 odd TI

primitives, but only for the primitives we felt were most needed for our work. A

step by step method has been documented which details how a pure TI primitive

can be retrofitted to behave as a Synergy WSN primitive by augmenting it so that
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it can work over serial and OTA too.

The next chapter deals with our management features that we built using

these primitives. We call them ‘features’ because they make use of multiple synergy

WSN primitives in order to achieve their end goals.



Chapter 6

Synergy WSN management

features

This chapter is the culmination of our efforts which detailed how we de-

veloped our set of primitives, termed Synergy WSN primitives. This is where we

discuss various the problems that we discussed in Chapters 1 and 2, i.e. com-

missioning, OTA software upgrade etc.. We call the solution to these problems

“features” rather than primitives because they are based on top of those preex-

isting primitives and are at a higher conceptual level than the primitives. This is

keeping with the spirit of Synergy WSN primitives, whose sole existence is to help

implement such WSN management features.

The following sections will discuss in detail how these features were imple-

mented. They will make use of the primitives as discussed in the last chapter.

6.1 Commissioning a Synergy WSN device

Commissioning is the process by which a legitimate device can bootstrap

itself to become a part of an already existing network. This is a challenge be-

cause now the devices no longer come pre-programmed with network and device

parameters but have to get them at runtime via the commissioning process.

This is a area filled with possibilities and there are many companies op-

erating in this space[6] which provide commissioning solutions. Even the ZigBee

49
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protocol supports a commissioning cluster library (ZCL)[8] that was intended for

this purpose. We decided not to depend on the ZigBee commissioning cluster and

write our own Synergy WSN primitives based solution for a couple of reasons:

• The ZCL provided by TI was just an implementation that came without any

working examples and we were hesitant to invest time on it without seeing

some working examples first.

• Since our network topology consisted of a multi-star design with multiple

networks operating simultaneously, we would have needed a solution with

multiple instances of ZCL to manage the overall network. We were not sure

how ZCL would have scaled in this regard.

Keeping the above in mind and also the fact our whole idea of Synergy

WSN primitives was to enable such management features, we decided to go with

creating our own custom commissioning solution. But before we go further in this

chapter, we would like to explain a few key terms related to the commissioning

process:

• C-PAN - Short for Commissioning PAN. The personal area network used

just for device commissioning the node.

• C-HOST - Short for Commissioning host, a device, usually a laptop or a

PDA that runs the C-APP which in turn communicates with a node pro-

grammed as the ZBC for the C-PAN via MT primitives.

• C-App - Short for Commissioning Application, the GUI/command line ap-

plication running on the C-HOST that gives user control over the Device

commissioning process.

• O-PAN - The Operating Personal Area Network, which is the eventual PAN

on which the node will operate and attain its intended goal. There can be

multiple O-PANs in the vicinity of a ZED, but the ZED will latch onto only

one O-PAN at a time.
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The entire commissioning process takes place over the C-PAN which was

a dedicated PAN which was used only for the commissioning process. We used

a laptop running Ubuntu 12.04 Precise Pangolin as our C-HOST. Later versions

could be built on top of an Android Tablet or an iOS device so long as there was

an USB interface that we could utilize on the host. The commissioning process

was divided into two phases that were necessary for a device to transition from

a brand new factory configuration into the a configuration that would allow it to

legitimately connect with an O-PAN in its vicinity.

1. Phase I: This phase can be termed as Device commissioning where the

device will be supplied with device specific parameters like, meter ID (in

case of energy meters) or room ID (in case of occupancy sensors). This

would be achieved via the C-APP running on the C-HOST connected to the

C-PAN ZBC. The C-PAN, in conjunction with the C-APP running on the

C-HOST could let the person in charge of the commissioning choose device

parameters during node installation.

This has the advantage that mass production of devices can be easily achieved

because they will not come pre-programmed with their device specific param-

eters. This also lets us have flexibility to use the mass programmed nodes

for any kind of sensor. In other words, the ‘Device commissioning’ sets up

the ‘Identity’ of the device on the network. The network encryption key is

also programmed during this period. Please check the Chapter 7 for more

information about how Phase I device commissioning is carried out securely.

We gave this phase an alternate name, ‘Device commissioning’.

2. Phase II: This is the phase where the device actually acquires the network

parameters, i.e. the O-PAN characteristics and then decides on an O-PAN to

join based on a predefined policy. In theory this phase could be eliminated

and merged with phase I. However, doing so has the disadvantage that if

at a later time if the O-PAN goes out of range or something happens to it,

then one would have to come in with the C-App and C-Host to recommission

the device. So a conscious decision was made to implement Phase II com-
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pletely in-device. This increased the complexity of phase II, but it allowed

us to not worry about corner cases of O-PANs going out of order. Just like

device commissioning, we gave this phase an alternate name too, ‘Network

commissioning’.

The state chart in Figure 6.1 describes the relationship between various

phases and commissioned states.

Uncommissioned device

Device Commissioned

Active

Set parameters
 from C-App

Autonomous O-PAN 
Acquisition or

Manual override

Manual override
 or NV reset

Figure 6.1: Commissioning states and the transitions between them

6.1.1 The Commissioning App (C-App)

The C-App was a GUI application that was written using Python and

PyGtk, intended to run over a Linux machine. It used easily available Python

bindings for the GTK+ graphical toolkit library in order to present the user with

an easy to use interface to device commission a Synergy device. The GUI is just

a front to the underlying Synergy WSN primitives which did the actual work of

setting the commissioning parameters in the target device. The software for the

ZBC used for commissioning was exactly identical to the O-PAN ZBCs except that

these ZBCs operated at a dedicated PAN for commissioning, which we termed the

C-PAN.
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Figure 6.2 shows a schematic representation of this setup.

                   
                   C-PAN 

C-Host running 
C-App GUI 

USB link to C-
PAN ZBC 

C-PAN ZBC Uncommissioned
devices 

Uncommissioned
devices 

Figure 6.2: Setup for commissioning using the C-App

Note that the same commissioning could be achieved via base station scripts

and sending the Synergy WSN primitives manually. A GUI however gives a much

better user experience from typing commands and makes it ideal for use by non-

technical personnel, i.e. building managers performing the actual installation of

these devices in a building.

The below sequence diagram describes how the C-App was designed. It

consisted of three main entities: the GUI entity, the C-App core entity and the

ActivityThreads entity. This three layered design allowed the GUI part to be

abstracted out from the inner implementation of ActivityThreads which dealt with

sending and parsing raw Synergy WSN primitives. The ActivityThreads were

designed a Python threads that were designed to perform just one functionality

and block while doing so. The GUI would register callbacks with the C-App core
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and the C-App core, in turn would register callbacks with the ActivityThreads

implementation. This two level callback daisychaining allowed us to isolate the

GUI from the implementation. If in future the GUI is replaced with Qt or some

other toolkit, one just needs to rewrite the GUI entity without changing much of

the remaining two.

The message sequence chart in Figure 6.3 depicts the interaction between

these three entities.

GUI C-App core Activity Thread

Register 'Scan' GUI callback

Register 'ScanActivity' Callback

Start Scanning

Start Scan Activity

Spawn scan thread

Call 'ScanActivity' callback

Call GUI callback

Refresh GUI with results

Figure 6.3: Message sequence chart showing the ‘Scanning’ use case in the C-App

GUI

Commissioning is achieved by using the GUI to first scan the vicinity for

non-commissioned devices and once some are found, the C-App can be used to send

Synergy WSN primitives to these non-commissioned devices to transition them to

active states. The following screenshots of the C-App will give the reader a feel for

how this is done. We begin by first showing the reader how the GUI of the C-App

looks like. Please note that the GUI we developed was for reference purposes only.

Even though fully functional, we did find some usability issues like for example,

the GUI had all the individual interfaces but lacked a wizard interface to help the

commissioning personnel program the various parameters without remembering

the steps from memory. This is something we intend to fix in the next revision.
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Console area 

Status bar 

Non-commissioned 
devices list 

Activity progress bar 

Main user interface 

Figure 6.4: A labeled figure of the C-App GUI

C-PAN ZBCC-App Non-commissioned device

Scan for devices

Scan MT command

Scan response

Create list of devices

Send devices list to C-App

Show list in C-App GUI

User selects device to commission

Send commissioning primitive

Send commission primitive

Confirmation

Confirmation

Reboot device primitive

Reboot device primitive

Device reboots in 
device 

commissioned 
state

Figure 6.5: Device commissioning message sequence chart
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As can be seen from Figure 6.4, the C-App GUI gives the user a means to

scan for non-commissioned devices and then program such devices OTA with the

device commissioning parameters. Figure 6.5 shows the message sequence chart

detailing the device commissioning process.

6.1.2 The Autonomous Operating PAN (O-PAN) acquisi-

tion

This section deals with phase II, also known as the network commissioning.

This phase takes place once the device has been commissioned with the device

specific parameters via the C-App. The following flow-chart will make it easier to

understand this process.

Start

Start PAN scan

Store found list of 
PAN into NV

Start timer to leave 
current network

Timer expires

Is connected to 
any PAN?

Send Leave request

Any more PAN 
left in list?

Join PAN

Send Initial packet 
to joined PAN

Get information 
packet from 
coordinator

Update NV PAN list 
with information

Yes

NoGet leave 
confirmation

Apply specific policy 
and select O-PAN

Change status to 
DEVICE_ACTIVE

Reboot
Is status = 

DEVICE_ACTIVE?

Continue normal 
startup

Yes

No

Yes

Figure 6.6: Autonomous O-PAN acquisition flowchart

Before phase II, we have successfully setup the identity of the device on the

network. However, it has not figured out which O-PAN it will eventually latch

onto as there could be more than one O-PAN in its vicinity. Once this phase is
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complete, we have the device in active mode and it starts to work once it latches

on to the correct O-PAN.

Note that, this phase could be integrated with the C-App by giving the

installation personnel the capability to choose the O-PAN right after phase I was

complete. However, this introduces a dependency on the physical C-App setup in

case a O-PAN stops working. This is the reason we want this process to take place

as autonomously as possible. The entire phase II is implemented on the device.

Also, worth noting is that the O-PAN selection policy is something that can

be developed independently of the entire commissioning process. The scanning for

O-PANs provides several key O-PAN characteristics which can be used to make a

decision as to which O-PAN should be selected. For testing purposes however, we

chose an algorithm that chose the O-PAN with the least amount of loading. Other

possible policies can include taking the total data throughput in an O-PAN into

account before making choosing that O-PAN, in conjunction with several other

parameters like average RSSI, average LQI etc. (all of which are obtainable via

Synergy WSN primitives).

6.2 Over the air (OTA) upgrade of Synergy WSN

devices

Any big network deployment needs to have the ability to upgrade its soft-

ware OTA (over-the-air) otherwise upgrading the software by manual flashing of

tens or hundreds of nodes can quickly become annoying. Our previous network it-

erations lacked this feature and we realized from the start that having a dependable

OTA solution was one of the key things to have. TI gives its own OTA solution

but it seriously lacks in several key ways which prevent it from being used in a big

deployment.

Some of the disadvantages that we found in TI’s OTA solution are listed

below:

1. TI’s solution was not scalable to a big network with hundreds of end devices.

The reason for this was that it required a Windows host connected to each
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ZBC and a console application had to run on that host. There was no way

for example, to run the console app on a host in the 2nd floor of a building

to do an upgrade of a end device on the 4th floor connected to a different

windows host.

2. For our base station hardware we used Linux hosts and moving to Windows

host just for OTA upgrade was not a viable solution.

3. TI’s solution used point to point unicast to upgrade a single end device.

Assuming a single upgrade takes about 10 minutes, it would have taken 100

minutes just to upgrade a network with 10 end devices.

4. TI’s solution was written for smart energy and home automation profile based

devices and it had a lot of overhead involved in order to comply with those

specifications. Our network, on the other hand, was designed independently

of those specifications and therefore we needed an OTA solution customized

for our network.

5. TI’s solution was very rigid in the sense that it was tightly coupled with

the OTA means of transporting the image binary. It would have needed

considerable changes to accept serial and/or SPI as another means of image

delivery.

Our OTA upgrade solution takes care of each of these problems:

1. Scaling the OTA upgrade solution to a bigger network: Our solution

involved giving each base station the capability to upgrade the software on

each of its connected end devices OTA. This meant that the base station side

of the OTA implementation would reside on each base station as opposed to

TI’s solution whose graphical tool would need a Windows host to be run

on these hosts. Being graphical also means that it could not be automated

easily. Our solution was scriptable, which meant that we could start the OTA

upgrade of an end device connected to base station A, without worrying in

which building and which floor base station A was located.
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2. Having our solution work without any manual intervention: Since

our base station scripts were written using Python over Linux hosts, we

integrated our OTA feature within those scripts, making use of the requisite

Synergy WSN primitives. This meant that it was no longer a manual process

to upgrade an end device, like in the case of TI’s solution which used the

Windows based graphical front end that had to operated by a human at each

step.

3. Broadcast VS unicast image delivery: We used broadcast mode to

deliver the new image to all connected end devices. This reduced the total

time to transmit a new image by a factor of the size of the network. So it

took almost the same amount of time to program a network with 2, 5 or 10

nodes. This was not trivial because end devices in ZigBee are not configured

by default to be ON all the time. We used a strategy where we tweak the

network parameters for these end devices temporarily for the duration of the

OTA upgrade and then revert them back to their original values after the

OTA upgrade was done.

4. No dependency on smart energy or home automation profiles: Our

solution did not have any smart energy or home automation related overheads

(checking certificates, hashing etc.) which made it faster than TI’s solution.

5. Having our solution work for non-OTA image delivery methods,

i.e. serial and/or SPI: Our solution decoupled the image delivery process

with the image installation process. This gave us an opportunity to use serial

as another means of deploying the new image to target devices. Once this

image was delivered, the rest of the process which was to install this new

image was completely independent of the delivery process. As of this writing

only serial has been implemented as there were not enough hardware GPIO

pins to open up an additional SPI bus on the Anaren module (one SPI port

bus already in use to interface with the external memory chip).
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6.2.1 Components of the Synergy OTA upgrade solution

External memory chip

An external memory chip was used to store the new image binary. We

could have used the internal NV flash of the Anaren device, but it would have

severely limited the total available flash for our software because half of the total

code space would have to be then reserved for the new image binary. With a total

of 256 kb flash on the Anaren module, this should have left us with just 128kb of

usable NV flash. This number reduces further because the bootloader again takes

4 kb of flash. Our code at that time was approximately about 128 kb in size so

this approach was ruled out from the start.

Synergy WSN Primitives for OTA image transfer

There were a set of synergy WSN primitives that were primarily written

for transferring an image OTA. The main problem with transferring a 128 kb

image OTA via broadcast was that some packets would be invariably lost during

the transfer. The lost image blocks would be also different for each device. So

what ends up happening after each transfer is that we are left with devices which

have holes in different locations throughout their received image. Our experiments

showed that these missing blocks were random throughout the entire image.

This is shown schematically in Figure 6.7.

Image received by Device 1

Image received by Device 2

Image received by Device 3

Invalid blocks Valid blocks

Figure 6.7: Image holes due to lost packets during an OTA image transfer
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The solution to this problem was implemented in two steps:

1. Once the image was transferred, we implemented a one-to-one unicast mech-

anism using which each end device could ask the ZBC for the image data

corresponding to the missing blocks. Only once this was completed would

the end device be ready to switch over to the new image binary. This process

was started and controlled by each end device because it would have been too

much work for the ZBC to keep track which end device was missing which

image blocks.

2. Since the end devices controlled filling these holes using the above mecha-

nism, we first uploaded the image binary via serial to the ZBC. This enabled

the ZBC to dole out missing image chunks to any end device from within

anywhere in the raw image binary. The ZBC worked in slave mode in this

scenario, fulfilling whatever request was sent by any of the end devices.

The message sequence chart in Figure 6.8 depicts this protocol.

Serial Port ZBC ZED

Write XNV

Confirmation

Write XNV

Confirmation

Start XNV OTA

Start XNV OTA

Image Block 0

Image block 0

Image block n

Image block n

End XNV OTA

End XNV OTA

Calculate missing blocks

Request missing block 1

Respond with missing block 1

Request missing block n

Respond with missing block n

Finish getting all missing blocks

Send confirmation

Send confirmation

Figure 6.8: Hole plugging strategy during OTA image transfer
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This protocol ensures that image integrity is always maintained at the end

devices using a CRC scheme. This works even for corrupt packets because any

corrupt packet will not pass the packet integrity checks at the end device side

and will get dropped by the Synergy WSN primitives’ parsing logic. All these

dropped packets will therefore be treated by the end device as if the packet was

never transmitted by the ZBC and they will be added to the list of holes in the

image.

The Bootloader

Our OTA implementation required the use of a bootloader whose main

responsibility was to check if the new image needed to be loaded onto the internal

flash of the Anaren module and then go and load it. In case there was no need

to load the new image, the bootloader would jump to the application code and

forward all device interrupts to the application defined interrupt vectors from that

point onwards.

Our bootloader was based upon TI’s bootloader, except that we modified

it to have the following differences:

1. We modified it to be able to detect whether it was to load the new image

from the factory area or the production area. Our external NV was divided

into two regions: production and factory. The factory region housed an

image which could be used to restore the device to a known good state. The

production region on the other hand, contained an image that was more

recent and more bleeding edge.

2. Since the first change increased the size of the bootloader, it was no longer

small enough fit into the 2kb dedicated to it in TI’s design. We had to in-

crease the total area allocated to the bootloader by modifying the appropriate

linker scripts.

At device reset, the bootloader examines a specific GPIO which is connected

to a push button switch and depending on the switch state it determines whether

it needs to load the factory code or the production code. It then goes ahead and
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reads data from the external NV chip and writes it onto the internal NV area of

the Anaren module. Once this is complete, it simulates an application code reset

by directly jumping to the address immediately after the bootloader region, which

in this case happened to be 0x1000 as the bootloader space reserved was 0xFFF,

i.e. 4kb. The following flow chart depicts the bootloader logic.

Start

Read CRC/Shadow 
CRC from NV

Is CRC == 
CRC_Shadow?

Jump to application 
code at 0x1000

Is CRC!=0 && CRC_Shadow == 
runcode.cksum()?

Write CRC/
CRC_Shadow to NV

Download prod or 
factory code from 
XNV to internal NV 

runcode space.

Read GPIO for push 
button to determine 
production/factory 

code

Yes
YesNo

No

Figure 6.9: Synergy OTA bootloader logic

The bootloader uses a checksum to determine the integrity of the down-

loaded image. It stores the checksum in the “CRC Shadow” variable so that it

does not have to calculate this every time the device boots up as this is a time

consuming process taking approximately a minute for an 128 Kb image.

Run code invalidation

The device uses the external NV memory as a staging area for the new

image binary while the current image is still valid within the internal flash of the

Anaren module. We need a mechanism to invalidate the current image within the

internal flash so that the new image binary can be loaded from the external area.

This is done by writing zeros to the current image checksum. A dedicated area is
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present within all OTA enabled binary images that contains the image checksum

and the image shadow checksum. By writing zeros to the image checksum we

cause the bootloader to load the new image binary from the external memory on

the next device reset.

OTA upgrade with encryption

Our initial OTA upgrade solution was done without enabling encryption.

When we turned on encryption we found that our data download time almost

doubled. This was mainly because encryption introduced extra packet overhead

for each MAC frame that was transmitted. This made less space available for our

payload. Since the image blocks had to end on 256 byte page boundaries on the

external NV chip, we dropped from a 64 byte packet to a 32 byte packet. This

effectively doubled the number of image packets we had to send and therefore

caused the extra delay. We are investigating ways to increase the MAC frame size

in order to be able to transmit the same sized packets with or without encryption.



Chapter 7

Security

7.1 Securing the ZigBee network

Security is always of utmost concern whenever talking about large scale

deployments. ZigBee on its own supports several level of security[10] and even

supports link based keys. For our purpose, we however decided to opt out of link

based security as we felt having the same key throughout the network was ad-

equate. To compromise such an arrangement it would imply physical access to

the building, breaking into our backend server and having access to our firmware

sources - all of which are decrease in likelihood, in that order. Future work

could of course, enhance this model even further at the cost of increasing the

inconvenience of users legitimately using the system, as with any security system.

Nevertheless, the risks we faced were two fold:

• Since some of the end devices that we were planning to deploy were oc-

cupancy sensing nodes for offices, a malicious entity could in theory, gain

access to the private occupancy data of its occupant(s). Many people would

be uncomfortable with that notion.

• Another type of end devices that is being planned is an energy metering

device that also has actuation capabilities. A malicious attacker in this case,

could theoretically turn ON and OFF any electrical load that was connected

to these energy metering devices.

65
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Security was therefore never something we considered optional from the

beginning. The advantage we had with ZigBee security was that it was designed

to be orthogonal with everything else in the ZigBee protocol stack. We did our

initial development without turning on security. It was only in later stages that

we ended up turning it on. ZigBee supports full 128-bit encryption. The Anaren

modules which are derived from the CC2530 have a separate hardware AES module

that freed up the CPU from encryption/decryption. This did have some impact

on the overall packet throughput nevertheless.

We realized that while it was relatively simple to get two or more ZigBee

devices to communicate securely using ZigBee, it was another matter when it came

to managing security over a large scale deployed WSN. Thinking of a large WSN

deployment naturally brought up questions like:

• How do we perform key rollover when it is time for the network to switch to

a new encryption key ?

• How do we ensure that before the key is rolled over, all the end devices have

successfully updated their keys to the new ones ?

• How is commissioning affected with respect to encryption ?

• And not just ZigBee security, how do we secure the backend from external

attacks ?

The first problem requires that we have a way of updating the encryption

key dynamically within the running end devices. There are preexisting MT prim-

itives for achieving this. However, they don’t ensure that all end devices have

been delivered the new key. In order to make sure that all devices have success-

fully received the key, it requires some additional work which our Synergy WSN

primitives do.

This is shown in the sequence diagram in Figure 7.1. Notice that the key is

broadcast at first. And then the ZBC queries each end device about the key status

via a unicast. The new key is piggy backed in this query thereby giving a chance

to each participating device to update its key in case it did not get it during the
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initial broadcast. Once the ZBC knows that all end devices have updated their

keys, it reboots itself. This causes the end devices to reboot themselves and when

they come back up, the end devices along with the ZBC start using the new key.

ZBC ZED1

New Key (broadcast)

ZED2

New Key ( (broadcast)

New key (Unicast query)

New key (Unicast query)

Reboot Reboot Reboot

Causes the ZEDs to reboot

Serial Port

Key Update

Figure 7.1: Key dissemination strategy used in our network

The network key is maintained in the backend and it can disseminated

from there. The entire network with all its constituent multi-star networks use the

same network key. The exact means of sending commands from the backend to

the installed ZBC is a topic of the next chapter. The important thing is that once

the key is pushed to the ZBCs, the ZBCs take care of disseminating it among their

end devices. This key is also a part of the various commissioning parameters that

are supplied to an end device during the commissioning process.

7.2 Securing the commissioning process

Just as securing the running ZigBee network is important, it is also impor-

tant that the commissioning process is also secured from possible attacks. Other-

wise, an attacker can sniff the key being sent out to a device being commissioned

and compromise the whole network.

The way we prevent this is by programming each new non-commissioned
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device with a key that is also pre-shared with the C-App. That way, the C-App

and the device being commissioned can communicate with each other as soon as

the device is out of the factory. During the commissioning process, the C-App

authenticates with the backend by interactively getting the credentials from the

user. Only users who are authorized to use the C-App will be able to authenticate

against the backend. If they are able to do so, the C-App makes a backend query

to get the currently valid key. This key is sent via the C-App to the device being

commissioned through a Synergy WSN primitive. After rebooting, the device

uses the latest key being used by all O-PANs and is hence successfully able to

perform the network commissioning successfully. Thereafter, the device becomes

a legitimate part of the network.

If an attacker gets hold of a non-commissioned device and the C-App, it

will be able to get the two of them to communicate. But won’t be able to sneak

in the new device onto the actual network.

The only way an attacker will be successful is if he or she gets a hold of

the pre-programmed key from an non-commissioned device by reverse engineering

the flash memory to read the location where the key is stored. This is non-trivial

and even if the attacker manages to do this, he or she then has to be in close

vicinity of a C-App being used in order to use the extracted key to extract the

current network key from OTA traffic. Thus both of the above requirements make

it extremely hard for an attacker to gain access to the currently used network key.

There is of course the question of what if the attacker sniffs the backend

authentication password when the commissioning personnel are entering the pass-

word in the C-App GUI. We address this problem by using an SSH tunnel between

the C-App GUI and the backend so that the password is never sent in plain text

over Wi-Fi or the wired network.

With these changes, we present an updated view of the process described

by Figure 6.5 from Chapter 6.
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C-APP Uncommissioned device

Scan for devices

Test Command

LED lights up

Back end

Get current encryption key

Send current encryption key

Set encryption key

Set status to DEVICE_COMMISSIONED

Set owner id

Set device type

Set device id

Confirmation Status

Reset command

Check backend for new device

Result

Show confirmation to user

Reboot

Autonomous 
network 

acquisition

Figure 7.2: Device commissioning with encryption
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7.3 Securing the base stations

The base stations that were used for our experiments were on the wired

computer network of the Computer Science and Engineering department and their

IP addresses had to be authorized by our IT department prior to installation.

The network they were on was an internal IP network that was shielded from the

outside world, so outside penetration is not possible. Hence, we did not feel the

need to secure the wired link. However, we recently realized that securing these

links via SSH tunneling would be a good idea nevertheless. This is planned to be

implemented in the next iteration of our network.



Chapter 8

Backend design

8.1 Database organization

As mentioned in chapter 3 we used MySQL as our backend database to

store the running network statistics. We divided our data into separate tables for

better management. In all, our database had about seven different tables which

are listed below:

• Device Info: This table contains the most recent reading from all the end

devices. Device ID is the primary key for this table.

• Device software status: This table contains the software version informa-

tion for each of the end devices. The primary key for this table is the device

mac.

• Device heartbeat: This table contains the periodic heartbeat messages

from end devices that can be used to detect if it has fallen-off the network.

• Base station info: This table contains specific information about ZBCs/base

stations like number of children, PAN ID etc. The primary key for this table

is the base station IP address.

• Device statistics: This table contains statistical information about packets

processed by each ZBC/base station. Device ID is the primary key for this

table.
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• Base station children map: This table contains all the short addresses

connected to any particular ZBC/base station. There is no primary key in

this table.

8.2 Remote command execution

One of the key features that we need is to visualize the network status

through a web based interface or a standalone application. This would allow us

to represent the network graphically over a browser canvas with icons for ZBCs

and ZEDs. The user can right click any particular ZBC/ZED and execute any

arbitrary Synergy WSN primitive on that device. This would suit not only in-

teractive applications, but even batch maintenance of the network could be done

using such a mechanism. For example, one can schedule key rollover every Sunday

at midnight, or a network wide software upgrade could be done with the help of a

single button click.

We propose the use of a web server gateway interface on each base sta-

tion, similar to CGI or WSGI for this. Native scripts could be executed on each

Linux base station for each Synergy WSN primitive being exposed. A test imple-

mentation was done using CGI or Common Gateway interface for demonstration

purposes. The next revision of the Synergy WSN will contain a more complete

implementation.

The idea of remote command execution on the ZBCs/ZEDs is depicted

graphically below:

Basestation Scriptlets 

Scriptlet invocation 

Return scriptlet result 

Synergy WSN primitive execution 

Result of primitive execution 

Browser front-end 

HTTP/HTTPS transport 

Basestation webserver 

Figure 8.1: Remote Synergy WSN primitives execution mechanism
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For the above scheme to work, we split up the base station scripts into tiny

single threaded programs that we called ‘scriptlets’(not to be confused with Java

Server Pages Scriptlets). These scriptlets are tiny scripts that do only one thing

and do it well, in the spirit of the Unix philosophy. Using a web based interface,

at the press of a button say, a particular scriptlet could be executed within the

context of the browser. The results could then be returned via CGI or WSGI to

the browser. The browser may then render the output for the user to see. We did

a small proof of concept implementation for this and were convinced that this was

the right way to go forward with the problem visualizing the entire Synergy WSN

from a central vantage point. The screenshot in Figure 8.2 demonstrates a proof

of concept of this proposed implementation.

Figure 8.2: Prototype for web based Synergy WSN primitives execution



Chapter 9

Evaluation

9.1 Network setup and deployment

For evaluating our work as seen in the previous chapters we used a deploy-

ment of more than 90 testbed devices in the second floor of the Computer Science

and Engineering building. While deploying these testbed devices we tried to emu-

late real sensing devices, i.e. occupancy sensors and energy meters. This was done

by deploying them under desks and tables in addition to hallways and offices, just

as the actual sensors would have been deployed.

Our test deployment consisted of 5 different star networks with approxi-

mately 20 devices each. 3 of these networks were intentionally co-located in the

same area because we wanted to test the impact of having different networks close

by. The other 2 networks were spread across the second floor.

For measuring packet losses, we initially implemented the accounting within

the BS Shell infrastructure. However, we soon realized that the Python based

approach to do the accounting had performance issues. It was not able to keep

up with arriving packets at higher transmission rates. We therefore, decided to do

all the accounting within the ZBC itself. This proved to be the correct decision

because we saw a sharp decrease in values reported by the in-device implementation

than the older Python based implementation at same transmission data rates.

Changing transmission parameters was also easy because we created Synergy WSN

primitives for this very purpose as shown in Section 5.2. All tests were performed
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with encryption turned ON as in any real deployment. The following sections will

describe the results of our experiments.

9.2 Power measurements

For power measurements, we used a USB based National Instruments Data

Acquisition System, the NI-DAQ 6218[9] for accurate measurement.

9.2.1 Sleep VS Scan power

Recall from Section 4.3 that battery powered ZigBee End devices can po-

tentially drain their batteries if no ZigBee Coordinator is available nearby. To

overcome this problem we implemented a scheme to periodically wake up and go

to sleep if no ZigBee Coordinators are detected. We measured the power for this

scenario and Figure 9.1 compares sleep power VS scan power.

Figure 9.1: Sleep VS Scanning power of a battery powered testbed device. Sleep

power is approximately 380uW while scan power is approximately 136 mW.
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The reason for a high power consumption during scanning is because the

radio is always ON during the scanning stage.

9.2.2 Power profile of single transmit

In order to measure the transmit power with finer granularity, we measured

the power consumption before, during and after a single packet of length 10 bytes

was transmitted from a ZigBee end device. Figure 9.2 shows this measurement.

Figure 9.2: Power profile of a single transmit of 10-byte packet length.

9.3 Network evaluation

Our testbed devices were programmed to transmit a test data buffer of a

certain size after every fixed time interval. Both the buffer size and time interval

were NV configurable. The default rate was fixed at a packet size of 10 bytes,

transmitting at the rate of once per second. Tests were performed to study the

effect of changing the transmission rate while keeping the packet size fixed and

vice versa.
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(a) Packet loss with 1/s transmit rate (b) Packet loss with 2/s transmit rate

(c) Packet loss with 4/s transmit rate (d) Packet loss with 8/s transmit rate

Figure 9.3: Packet loss statistics for transmit rates of 1/s, 2/s, 3/s and 4/s with

packet size of 10 bytes. Notice how the packet losses increase with increased data

rate.

Figure 9.3 shows the packet loss statistics when the transmission rate is

varied from once per second to eight times per second with a payload size of 10

bytes. As expected, the packet losses increase as we increase the throughput of

the testbed device. The same test is repeated with a different payload size of 20

bytes and the results are shown in Figure 9.4. However, as can be observed from

the figures, the packet loss is lower than 1
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(a) Packet loss with 1/s transmit rate (b) Packet loss with 2/s transmit rate

(c) Packet loss with 4/s transmit rate (d) Packet loss with 8/s transmit rate

Figure 9.4: Packet loss statistics for transmit rates of 1/s, 2/s, 3/s and 4/s with

a packet size of 20 bytes. As observed, the packet loss is below 1% for all of the

cases.

Figure 9.5: Packet loss for different packet sizes.

In Figure 9.5 we plot the average packet losses for both packet sizes. As can

be seen, increasing either the packet size or the transmission frequency increases the
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number of lost packets. However, even for a transmission frequency of 8 packets/s,

the losses are well within 1% for a 20 byte packet.

The payload size in all the above tests excluded the packet overhead which

was 16 bytes per packet and the tests were done with a PAN with 20 transmitting

end devices in it.

9.4 Over the air upgrade evaluation

As mentioned in Section 6.2.1, we use broadcast messages to disseminate

blocks of the image binary. This broadcast is not without lost packets. Each

transfer results in some lost packets. These lost packets are recovered in the next

phase which is the hole plugging strategy as discussed in Section 6.2.1. The graph

in Figure 9.6 quantifies these losses for a 12 node network. We used full 128-bit

encryption for this test, employing a 32-byte packet for transferring a test binary

blob of 128Kb. This resulted in a total of 4096 image blocks being transferred

from the ZigBee Coordinator(ZBC) to each of the end devices. The transfer was

repeated 10 times and the packet losses at each iteration is plotted in the graph.

Figure 9.6: Packet loss statistics during a 12 node OTA transfer with 4096 blocks

of 32 bytes each.

These lost packets turn up as invalid image blocks and are subsequently

filled in the next stage as described in Section 6.2.1



Chapter 10

Conclusion

We started our work by identifying the goals and features of any large indoor

WSN deployment. These goals include commissioning, OTA software upgrade,

general maintenance to name a few. We then justified the need of an abstraction

layer within a large and complex WSN to provide units of functionality to higher

layers. We showed how this abstraction layer of primitives could be agnostic to

the underlying WSN technology, though parts of it could be tightly coupled with

the underlying WSN technology.

We also provided a justification of how having such a layer of primitives is

helpful to implement more complex features by making use of these basic primi-

tives. This led us to propose a layer of abstraction which we named ‘Synergy WSN

primitives’. We developed a number of these primitives to show that they can be a

viable approach to managing the complex problems of deploying real world WSNs.

We described our software and hardware design to support these Synergy WSN

primitives and how we leveraged TI’s Monitor and Test API for our work by en-

hancing it beyond its original scope. Thus, Synergy WSN primitives was the union

of preexisting MT primitives and the set of primitives that we developed for our

work.

We also documented our primitives and their functionality. This was fol-

lowed by a discussion of commissioning and over the air software upgrade of a

WSN which utilized these Synergy WSN primitives. We evaluated our system

over a deployment of more than 90 testbed devices in the second floor of the Com-

80
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puter Science and Engineering building. The results of our evaluation were critical

in demonstrating the usefulness of our system. We were able to show that our

network could use these management features securely and with low packet loss

rates. It is hoped that future WSN deployments undertaken by SYNERGY labs

will make use of the rich set of primitives developed as part of this thesis.
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