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Abstract

The prevalence of commercial activities whose profit and cost are cor-
related with weather risk makes weather derivatives valuable financial
instruments that enable hedging of price or volumetric (quantity) risk in
many industries. This paper proposes a multi-period equilibrium pric-
ing model for weather derivative. In our stylized economy representative
agents of weather-sensitive industries optimizes their hedging portfolios
that drive the supply and demand for weather derivative which are dy-
namically determined based on a utility indifference pricing framework.
At equilibrium the weather derivative market will be cleared and their
market price can be obtained. Numerical examples illustrate the equilib-
rium prices and optimal choices for the weather derivative as function of
the correlation between weather indices and demand for the underlying
commodity. We also demonstrate the benefit of multiple trading oppor-
tunities which allows rebalancing of the hedging portfolio prior to the
commodity delivery date, as compared to a single shot framework.

1 Introduction

Weather derivatives are contingent claims whose payoff depends on the value of

an underlying weather index such as degree days over the contract periods, pre-

cipitation, snowfall, and frost days. Many weather-sensitive industries such as

energy, insurance, agriculture, and leisure confront two types of risk; price risk

and volumetric (or quantity) risk, which are both correlated with weather. Ex-

isting commodity derivatives cannot be used to fully hedge price and volumetric

risks because the two risks are not perfectly correlated and volume instruments

are not traded. Therefore, weather-sensitive industries may wish to diversify

their portfolios by introducing financial instruments driven by weather indices
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to mitigate risk which cannot be covered by commodity derivatives. One of

the main buyers of weather derivatives is the energy industry because it needs

to stabilize profits as the market becomes deregulated and more competitive

and because temperature is the most significant factor which affects price and

demand of power and natural gas (see [Li and Sailor, 1995]). Weather deriva-

tives were initially introduced by energy companies such as Enron, Koch In-

dustries, Southern Energy, Aquila and Castlebridge Weather Markets in the

over-the-counter (OTC) markets of the US in 1996. In order to meet rapidly

growing demand and increase liquidity and accessibility, the Chicago Mercan-

tile Exchange (CME) launched the first electronic market place for standardized

weather derivatives in 1999. In 2007 18 US cities’ weekly, monthly, and seasonal

weather derivatives, 6 European, 2 Asia-Pacific, 6 Canadian cities’ monthly and

seasonal weather derivatives are being traded at CME. Also Hurricane weeklies

were newly listed in 2007. In spite of the rapid market growth at CME, over-

the-counter (OTC) markets are still important since weather indices are highly

location-dependent.

Despite the advantages and increased use of weather derivatives, there are no

effective pricing models for these instruments because the underlying weather

index is not a tradable commodity or equity share and the market is incom-

plete. Therefore, classical arguments based on the existence of the unique risk-

neutral probability measure or a perfect replication of the weather derivatives

payoff cannot be applied (see [Black and Scholes, 1973], [Merton, 1973], and

[Heath et al., 1992]). [Jouini, 2001] reviews three approaches to derivative pric-

ing in complete and incomplete markets; the arbitrage approach through the

existence of a risk-neutral density, the utility approach through a utility max-

imization, and the equilibrium approach through a market clearing condition.

[Staum, 2008] surveys pricing methodologies of derivative securities in incom-

plete markets such as no-arbitrage pricing and indifference pricing as a special

case of good deal bounds detailed in [Staum, 2004], marginal pricing, and risk-

neutral pricing. In an incomplete market there exist infinitely many equivalent

martingale measures (EMMs) and some criteria are needed to choose a proper

EMM, for example, minimum-distance EMM (see [Goll and Ruschendorf, 2001]),

minimization of hedging residual variance (see [Schweizer, 1996]), and minimal

entropy martingale measure (see [Frittelli, 2000]).

Previous studies on pricing weather derivatives can be classified as actuar-
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ial pricing, risk-neutral pricing, indifference pricing, and equilibrium pricing.

First, [Jewson and Brix, 2005] discusses statistical issues concerning weather

derivative valuation such as parametric and non-parametric distributions for

modeling temperature variability, multivariate meteorological forecasting, etc.

[Platen and West, 2004] provides a fair pricing model, based on the idea that the

growth-optimal portfolio is used as a numeraire and all derivative price processes

discounted by the growth optimal portfolio (benchmarked) are martingales un-

der the real world probability measure. Other actuarial methods assuming

stochastic daily average temperature have been studied by several researchers

(see e.g. [Benth, 2003], [Brody et al., 2002], [Jewson and Caballero, 2003]). Be-

cause of ease of use and their intuitive appeal, the actuarial pricing approach

is widely used in insurance industry which usually adds risk loading on top

of the premium calculated as the expected value under the real world proba-

bility measure. However, the actuarial pricing model cannot capture, system-

atically, the risk-aversion aspect of market participants. [Alaton et al., 2002]

and [Yoo, 2003] propose a risk-neutral pricing model for weather derivatives

by inferring an EMM under the assumptions that temperature process follows

the Ornstein-Uhlenback (O-U) process and the market price of risk is constant.

[Hamisultane, 2007] extracts information from the existing weather futures mar-

ket to find a risk-neutral distribution and the market price of weather risk.

[Brockett and Wang, 2006] propose utility indifference pricing in a single-period

problem using a mean-variance utility function. They assume that one risky

portfolio can represent all risky assets. However, in order to obtain the in-

difference price it is essential to specify the probability distribution function

of the risky portfolio return. [Yamada, 2007] assumes that the risky portfolio

return follows a normal distribution to obtain closed form solutions for the in-

difference valuation of monthly average temperature derivatives. As a special

case of indifference pricing marginal pricing is proposed by [Davis, 2001]. Also

see [Ankirchner et al., 2006] for the indifference pricing approach in continuous

time. Finally, [Cao and Wei, 2004] suggests a consumption-based equilibrium

pricing model by using the Euler equation for valuation of weather derivatives

in a discrete time horizon. They assume that in equilibrium both the financial

market and the goods market clear so that aggregate consumption equals the

dividends generated from the risky stock and then they calculate a Stochastic

Discount Factor (SDF) to price weather derivatives. [Richards et al., 2004] sug-
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gested an equilibrium pricing model based on temperature processes following a

mean-reverting Brownian motion with discrete jumps and autoregressive condi-

tional heteroscedastic errors. A standard Euler equation from the Lucas general

equilibrium valuation model was applied to pricing Cooling Degree Days (CDD)

weather options. [Chaumont et al., 2005] complete the market by constructing

a special security which makes climate risk tradable and derive a unique mar-

ket price of risk at equilibrium, by solving a backward stochastic differential

equations.

Unlike other pricing approaches an equilibrium pricing model can explain the

market dynamics more realistically because the market price of weather deriva-

tives will settle at the equilibrium price which is between a bid and ask price

spread resulting from the various pricing methods. Moreover, in typical weather

derivatives markets underwriters have only limited control over prices and the

ultimate price of the weather derivatives is determined by supply and demand

resulting from hedging activities of market participants exposed to weather risk

who are optimizing their hedging portfolios. Therefore, in this paper we pro-

pose an equilibrium pricing model in a multi-period setting under an exponential

utility preference function. Previously [Lee and Oren, 2007] explored a single-

period equilibrium pricing model in a multi-commodity setting and as a special

case derived closed form expressions for the solutions under the assumption

of a mean-variance utility function. Under a similar economic setting as in

[Lee and Oren, 2007] we will break up the planning horizon of market partici-

pants in a discrete manner. In each period agents can rebalance their portfolios

by all available information so as to achieve higher expected utility level of ter-

minal wealth. In order to obtain an equilibrium price of weather derivatives

we will recursively derive supply and demand functions in each period by com-

bining the indifference pricing method and the expected utility maximization

problems of buyers and sellers using a dynamic programming algorithm. An

equilibrium price of the weather derivatives in each period can be determined

from the derived supply and demand functions.

The outline of the paper is as follows. In section 2 we first study a single-

period indifference pricing problem faced by buyers and sellers and then intro-

duce the multi-period formulation. Numerical examples are used to illustrate

the results and extract insights in section 3. We conclude in section 4.
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2 Model

2.1 Assumptions and Notation

In a frictionless economy we consider a multi-period portfolio optimization prob-

lem where each representative market participant can rebalance her portfolio at

the beginning of each period given the updated information. We assume that

there are three types of market participants; weather derivatives buyers with

a liquid commodity derivatives market (type i buyers), buyers dealing with a

commodity for which there is no liquid commodity derivatives market (type j

buyers), and an issuer (underwriter, denoted by m) of weather derivatives who

is a pure financial entity and does not engage in sales of physical commodities or

trading of commodity derivatives. All agents can trade on either side, i.e., both

types of buyers can engage in short sales whereas the issuer can buy weather

derivatives from the market if necessary. We assume that all agents maximize

the expected utility of terminal wealth subject to a self-financing constraint.

Although [Samuelson, 1969] and [Lucas, 1978] deal with maximizing the sum

of the discounted expected utility of consumptions we focus on maximizing the

expected utility of terminal wealth because weather-sensitive industries are in-

stitutional investors which do not consume any goods and just hedge their risk

exposure in peak seasons such as summer or winter in which spot prices, de-

mand, and temperature are more volatile than in spring or fall. Moreover, the

buyers’ terminal wealth is comprised of three parts; the income from the retail

business, the payoff of the commodity portfolio if available, and the payoff of

weather derivatives. In our economy the income function has the form of (reg-

ulated retail price - wholesale spot price)×demand, which assumes that each

buyer has an obligation to meet random demand at a fixed price either due to a

regulatory constraint or competitive pressure. This type of the income function

is common in energy industries (e.g. electricity) where the supplier has an obli-

gation to meet variable load at fixed retail prices fixed by regulators or through

a service contract for a load slice. 1 Given the income function, each buyer faces

not only spot price risk but also volumetric risk, whereas, spot price, demand,

and temperature are all correlated. The demand of the type i and j buyers

can be positively or negatively correlated with temperature. The commodity

1Some buyers can have a ’news vendor’ type profit function, which means that there may
exist shortage cost, inventory cost and salvage values for the leftover stocks. But in this paper,
we will not consider a ’news vendor’ type profit function for simplicity.
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portfolio consists of a risk free bond and commodity derivatives which include

forward contracts and European call and put options of all strikes. The under-

lying asset price of the commodity derivatives is its own spot price. However,

if the type i buyers represent electricity distribution companies the underlying

asset of the commodity derivatives will be futures with maturity N because of

non-storability of electricity.2 Each buyer can trade these financial assets from

time 0 to time N-1 so as to hedge the two types of risks and maximize expected

utility. In addition each buyer is willing to include weather derivatives in her

portfolio at or below the indifference price. In other words, each buyer is will-

ing to pay a certain amount for the weather derivative to get utility gains by

reducing uncertainty but does not want to be worse off in expected utility terms

than without the weather derivative. By applying the indifference pricing to

valuation of the weather derivative in the portfolio optimization problem we

can determine supply and demand functions for the weather derivative in each

period which in turn determine the equilibrium price through a market clearing

condition.

We now describe the problems confronted by the buyers and the issuer more

specifically. At time 0 the type i buyers with certain initial wealth construct

the portfolios consisting of risk-free bonds, commodity derivatives maturing at

time 1, and weather derivative maturing at time N. At time 1 the type i buyers

have the portfolio values which are realized from the previously constructed

portfolios and construct new portfolios given all updated information and so

on up to time N-1. The type j buyers and the issuer can only trade the risk-

free bonds and weather derivatives, but not commodity derivatives which are

irrelevant to their risk exposure at time N. Indifference pricing and all market

participants’ expected utility maximization problems enable us to determine the

supply and demand functions in each period and as a result we get each period’s

equilibrium price for the weather derivative in this economy. Therefore, we can

formulate the problems of the type i and j buyers and the issuer as separate

stochastic dynamic programming problems.

In many financial theories the mean-variance utility function is widely ac-

cepted. While in theory it is based on maximizing an exponential utility func-

tion over a normally distributed outcome, it is a good approximation under more

2Electricity in different periods must be considered as different assets because once gener-
ated, electricity should be consumed immediately
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general utility functions and distributional assumptions (see [Kroll et al., 1984]).

However, the mean-variance utility function is hard to deal with in the stochastic

dynamic programming setting because of the following property of the variance

operator.

var[var(·|Ft)|Fs] 6= var(·|Fs) ∀s < t (1)

where Ft is the filtration at time t. Therefore, in this paper we assume that all

agents are exponential utility maximizers. The exponential utility function is

well defined and more tractable in the stochastic dynamic programming setting

and in the context of indifference pricing. The exponential utility function has

the form of U(x) = − 1
a

exp(−ax) where a denotes the risk aversion coefficient

and U(·)is smooth, increasing and strictly concave on R, and twice continuously

differentiable on R.

Under the assumptions mentioned in the previous paragraphs we denote a

filtered probability space triplet by (Ω,F , P) in order to formulate the stochastic

dynamic programming problems of the buyers and the issuer. The discrete filtra-

tion F = {Fn}n∈{0,1,...,N} describes the information structure and Fn represent

the information available at time n. Let index k ∈ {i, j,m} be the types of the

buyers and the issuer. We assume that there are u numbers of the type i buyers,

v numbers of the type j buyers, and the representative issuer of weather deriva-

tives denoted by index m. The commodity spot (or futures) prices Pk,n change

their values only at the discrete time {0, 1, . . . , N} and are Fn-measurable. De-

mands and temperature denoted by Dk,N and TN are FN -measurable. In the

next two sections we formulate and solve the stochastic dynamic portfolio op-

timization problems by working backwards. We first explore the single-period

problems and then two-period problems. Lastly we generalize the results for

the multi-period portfolio optimization problem.

2.2 Single-period Indifference Price

In this section we define states, controls, randomness, and the value functions

of the stochastic dynamic programming problems corresponding to type i and

j buyers and the issuer. We then derive the equilibrium price under the expo-

nential utility function with a single trading opportunity. First we describe the

dynamic system equations for type i buyers as

Si,n+1 = zi,n(Si,n, xi,n+1, Yi,n+1) ∀n = 0, 1, . . . , N − 1 (2)
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where Si,n denotes a state of the dynamic system at time n and has the vector

form (Vi,n, Pi,n,Wn). Vi,n is the type i buyer’s portfolio value at time n and

zi,n(·) denotes some deterministic function which maps the previous state to

the next state. The randomness Yi,n+1 can be expressed as (Pi,n+1,Wn+1).

The last state Si,N has the additional randomness because terminal wealth of

the type i buyers is dependent on the random demand Di,N and temperature

TN , therefore the randomness at N Yi,N has the form (Pi,N ,Di,N , TN ). In

addition our control xi,n+1(Pi,n+1) at time n represents the payoff function

of the commodity derivatives portfolio which consists of a risk-free bond and

commodity derivatives. Note that xi,n+1(Pn+1) is predictable, i.e. it is Fn-

measurable. The type i buyer’s profit function (or terminal wealth) at time N

can be defined as

Πi,N = Ii(Di,N , Pi,N ) + xi,N (Pi,N ) + αi,NWN

= Ii(Di, Pi,N ) + Vi,N (3)

where Ii(Di,N , Pi,N ) denotes the income of type i buyers from the retail business.

αi,N and WN are the quantity purchased at time N-1 and the payoff (or price)

at time N of the weather derivative, respectively. Then the corresponding value

function of type i buyers at time n can be defined as

J(Vi,n − αn+1Wn, αn+1) = max
{xi,n+1(Pn+1)}

En[Ui(Πi,N )]

s.t. EQ
n [

xi,n+1(Pi,n+1)

1 + rn

] + αi,n+1Wn − Vi,n = 0 (4)

where rn denotes the interest rate at time n. In the above self-financing trading

strategy constraint the expected value of the discounted portfolio payoff under a

risk-neutral probability measure Q is the price of optimal commodity portfolio

at time n. For each realization p of the random price Pi,n+1 we will find the

optimal payoff function xi,n+1(p) of problem (4). [Carr and Madan, 2001] show

that any twice continuously differentiable function, f(S), of the terminal stock

price S can be replicated by a unique initial position of f(S0) − f ′(S0)S0 unit

discount bonds, f ′(S0) shares, and f ′′(K)dK out-of-the-money options of all

strikes K:

f(S) = [f(S0) − f ′(S0)S0] + f ′(S0)S +

∫ S0

0

f ′′(K)(K − S)+dK

+

∫ ∞

S0

f ′′(K)(S − K)+dK (5)
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However, the replication of the optimal payoff function in an incomplete market

is out of scope of this paper and we will not elaborate on this issue any further.

We will just specify the closed form of the optimal payoff function in each period.

To solve the stochastic dynamic programming problem (4), we need to work

backwards. In addition the problem in each period is a convex programming

problem because the concavity of the objective function and the convexity of

the feasible set. Therefore we formulate the original constrained problem as a

Lagrangian relaxation problem and the optimal solutions of the relaxed problem

will have no duality gap. At time N we have

J(Vi,N ) = EN [Ui(Πi,N )] = Ui(Πi,N ) = Ui(Ii(Di, Pi,N ) + Vi,N ) (6)

At time N-1 the buyers’ maximization problem is the same as in a single

period problem. The corresponding single-period problem is

J(Vi,N−1 − αi,NWN−1, αi,N ) = max
{xi,N (Pi,N )}

EN−1[Ui(Πi,N )]

s.t. EQ
N−1[

xi,N (Pi,N )

1 + rN−1
] + αi,NWN−1 − Vi,N−1 = 0 (7)

Proposition 1 The optimal payoff function xi,N (Pi,N ) of problem (7) is

xw∗
i,N (Pi,N ) =

1

ai

(

lnEN−1[exp(−ai(Ii + αi,NWN ))|Pi,N ]

−EQ
N−1

[

lnEN−1[exp(−ai(Ii + αi,NWN ))|Pi,N ]
]

−(ln
gi,N (Pi,N )

fi,N (Pi,N )
− EQ

N−1[ln
gi,N (Pi,N )

fi,N (Pi,N )
])

+ai(1 + rN−1)(Vi,N−1 − αi,NWN−1)
)

(8)

where fi,N (Pi,N ) and gi,N (Pi,N ) are probability density functions of the type

i commodity spot price under the real world probability measure P and a risk

neutral probability measure Q, respectively and rN−1 is the interest rate at time

N-1. The proof is provided in Appendix A.

To get the indifference price for type i buyers, we need to solve the expected

utility maximization problem without the weather derivative.

J(Vi,N−1, 0) = max
{xi,N (Pi,N )}

EN−1[Ui(Ii + xi,N (Pi,N ))]

s.t. EQ
N−1[

xi,N (Pi,N )

1 + rN−1
] − Vi,N−1 = 0 (9)
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Proposition 1 implies the following optimal payoff function in case of no weather

derivative.

xn∗
i,N (Pi,N )) =

1

ai

(

lnEN−1[exp(−aiIi)|Pi,N ] − EQ
N−1

[

lnEN−1[exp(−aiIi)|Pi,N ]
]

−(ln
g(Pi,N )

f(Pi,N )
− EQ

N−1[ln
g(Pi,N )

f(Pi,N )
]) + ai(1 + rN−1)Vi,N−1

)

(10)

Now we have the maximized expected utility function with and without weather

derivative and therefore, the indifference price can be obtained from the follow-

ing equation.

J(Vi,N−1 − αi,NWN−1, αi,N ) = J(Vi,N−1, 0) (11)

As a result, the indifference price of type i buyers has the form of

WN−1 =
1

ai(1 + rN−1)αi,N

ln
∆i,N−1

Λi,N−1
= hi,N−1(αi,N ) (12)

where the Greeks are given by

∆i,N−1 = EN−1

[ exp(−aiIi)
gi,N (Pi,N )
fi,N (Pi,N )

EN−1[exp(−aiIi)|Pi,N ]

]

× exp(EQ[ln EN−1[exp(−aiIi)|Pi,N ]]) (13)

Λi,N−1 = EN−1[
exp(−ai(Ii + αNWN ))

gi,N (Pi,N )
fi,N (Pi,N )

EN−1[exp(−ai(Ii + αNWN ))|Pi,N ]
]

× exp(EQ[ln EN−1[exp(−ai(Ii + αNWN ))|Pi,N ]]) (14)

Note that the indifference price of the weather derivative is independent of the

portfolio value Vi,N−1 due to the Constant Absolute Risk Aversion (CARA)

property of the exponential utility function.

Next we define the dynamic system equations of the type j buyers as

Sj,n+1 = zj,n(Sj,n, βj,n+1, Yj,n+1) ∀n = 0, 1, . . . , N − 1 (15)

where a state Sj,n is the vector form of (Vj,n,Wn), the control βj,n+1 is the

risk-free bond position, and the randomness Yj,n+1 has the single term Wn+1.

The randomness of the last state Sj,N includes the additional random variables

because the income function of terminal wealth of type j buyers has the random

price and the random demand of type j commodity. So Yj,N has the vector form

(Pj,N ,Dj,N , TN ). The profit function (or terminal wealth) of the type j buyers

is

Πj,N = Ij(Dj,N , Pj,N ) + αj,NWN + βj,NBN (16)
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The type j buyers at time n have the following utility maximization problem if

the weather derivative is included in their portfolios.

J(Vj,n − αj,n+1Wn, αj,n+1) = max
βj,n+1

En[Uj(Πj,N )]

s.t. αj,n+1Wn + βj,n+1Bn − Vj,n = 0 (17)

At time N-1 the single-period problem of the type j buyers can be simplified

as an unconstrained problem if we plug βj,N obtained from the self-financing

constraint into the objective function. Then, the reformulated problem is

J(Vj,N−1 − αj,NWN−1, αj,N )

= EN−1[Uj(Ij + αj,NWN + (Vj,N−1 − αj,NWN−1)(1 + rN−1))] (18)

To get the indifference price we need to consider the problem without the

weather derivative in the portfolio.

J(Vj,N−1, 0) = EN−1[Uj(Ij + Vj,N−1(1 + rN−1))] (19)

Equating the right hand sides of equations (18) and (19) gives the indifference

price of type j buyers as

WN−1 =
1

aj(1 + rN−1)αj,N

ln
EN−1[exp(−ajIj)]

EN−1[exp(−aj(Ij + αj,NWN ))]
= hj,N−1(αj,N ) (20)

So far we have studied the buyers’ problems and in this paragraph we will

explore the issuer’s problem. We assume that the issuer is a pure financial firm,

which can trade only risk-free bonds and weather derivatives but not commodity

derivatives. The issuer is assumed to be able to sell or buy back outstanding

weather derivative in any period. When the weather derivatives are sold in

the market the issuer will receive the selling price and at maturity settle the

payoff of the weather derivative. The issuer’s system equations are similar to

type j buyers except at the terminal time since the issuer does not have the

income function which contains two random variables, price and quantity for

the commodity. Then the issuer’s dynamic system equations can be expressed

as:

Sm,n+1 = zm,n(Sm,n, βm,n+1, Ym,n+1) ∀n = 0, 1, . . . , N − 1 (21)

where a state Sm,n is characterized by the vector (Vm,n,Wn) and the randomness

Ym,n+1 of the dynamic system equations is the weather derivative price Wn+1.
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The issuer’s value function is then,

J(Vm,n + αm,n+1Wn,−αm,n+1) = max
βm,n+1

En[Uj(−αm,NWN + βm,NBN )]

s.t. αm,n+1Wn + Vm,n = βm,n+1Bn (22)

The issuer’s indifference price at N-1, therefore, can be calculated from the

following equation.

J(Vm,N−1 + αm,NWN−1,−αm,N )

= EN−1[Um((Vm,N−1 + αm,N−1WN−1)(1 + rN−1) − αm,N−1WN )]

= EN−1[Um(Vm,N−1(1 + rN−1))] = J(Vm,N−1, 0) (23)

After simplifying the above equation we have the following indifference price for

the issuer.

WN−1 =
lnEN−1[exp(amαm,NWN )]

am(1 + rN−1)αm,N

= hm,N−1(αm,N ) (24)

Now we have the supply and demand functions for the weather derivative at

N-1. If the supply and demand quantities are a function of price then we can

directly apply the market clearing condition i.e. a zero net supply equation. In

our case the price, however, is a function of quantities and the inverse functions

of the derived supply and demand are hard to get, so we need to solve the fol-

lowing system of equations numerically. Then we can determine the equilibrium

price W ∗
N−1 and the optimal choices α∗

k,N for all k in {i, j,m} which clear the

market.

W ∗
N−1 = hi,N−1(α

∗
i,N ) = hj,N−1(α

∗
j,N ) = hm,N−1(α

∗
m,N ) ∀ i, j (25)

∑

i

α∗
i,N +

∑

j

α∗
j,N = α∗

m,N (26)

By substituting the derived optimal portfolio positions and the equilibrium

price into the objective function we can find the value function of the type i

buyers as

J(Vi,N−1 − α∗
NW ∗

N−1, α
∗
N ) = J∗

i,N−1(Vi,N−1)

= −
1

ai

exp(−ai(1 + rN−1)Vi,N−1)Θi,N−1(27)

12



where Θi,N−1 is an FN−1-measurable random variable , independent on Vi,N−1,

and has the form

Θi,N−1 = exp
(

ai(1 + rN−1)α
∗
i,NW ∗

N−1

+EQ
N−1

[

lnEN−1[exp(−ai(Ii + α∗
i,NWN ))|Pi,N ] − ln

gi,N (Pi,N )

fi,N (Pi,N )

])

×EN−1

[ exp(−ai(Ii + α∗
i,NWN ))

gi,N (Pi,N )
fi,N (Pi,N )

EN−1[exp(−ai(Ii + α∗
i,NWN )|Pi,N )]

]

(28)

In equation (27) we use J∗
i,N−1(Vi,N−1) as short hand notation for J(Vi,N−1 −

α∗
NW ∗

N−1, α
∗
N ). From now on we will also use this short hand notation for the

type j buyers and the issuer. Similarly, the value function of type j buyers will

be

J(Vj,N−1 − α∗
NW ∗

N−1, α
∗
N ) = J∗

j,N−1(Vj,N−1)

= −
1

aj

exp(−aj(1 + rN−1)Vj,N−1)Θj,N−1(29)

where Θj,N1
is again independent of Vj,N−1, FN−1-measurable, and has the

form:

Θj,N1
= exp(aj(1 + rN−1)α

∗
j,NW ∗

N−1)EN−1[exp(−aj(Ij + α∗
j,NWN ))] (30)

Finally, the value function for the issuer will be

J(Vm,N−1 + α∗
NW ∗

N−1,−α∗
N ) = J∗

m,N−1(Vm,N−1)

= −
1

am

exp(−am(1 + rN−1)Vm,N−1)Θm,N−1

= −
1

am

exp(−am(1 + rN−1)Vm,N−1) (31)

The last equality comes from the indifference pricing equality because Θm,N−1

has the form:

Θm,N−1 = exp(−am(1 + rN−1)α
∗
m,NW ∗

N−1)EN−1[exp(amα∗
m,NWN )] = 1 (32)

Note that all value functions are again exponential forms multiplied by FN−1-

measurable random variables and therefore, we can see the preservation for the

dynamic programming algorithm.
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2.3 Multi-period Indifference Price

Now we concentrate on a multi-period indifference pricing problem. Consider

the indifference pricing model for type i buyers, first. In the previous section

we already solved a single-period problem at N-1, so in this section we will

start from time N-2 and generalize the result for N periods. By applying the

Bellman’s Principle of Optimality which states that given an initial decision the

remaining decisions must be optimal, we can see that:

max
{xi,N−1,λi,N−1}

EN−2[Ui(Πi,N )] − λi,N−1Ci,N−2

= max
{xi,N−1,λi,N−1}

EN−2

[

max
{xi,N ,λi,N}

Ui(Πi,N ) − λi,NCi,N−1

]

− λi,N−1C,N−2 (33)

where Ci,n denotes the self-financing constraint at time n. If we use the law of

iterated expectations, then we can find the recursive form known as the Bellman

equation.

J(Vi,N−2 − αi,N−1WN−2, αi,N−1)

= max
{xi,N−1,λi,N−1}

EN−2

[

max
{xi,N ,λi,N}

EN−1[Ui(Πi,N )] − λi,NCi,N−1

]

− λi,N−1Ci,N−2

= max
{xi,N−1,λi,N−1}

EN−2[J
∗
i,N−1(Vi,N−1)] − λi,N−1Ci,N−2 (34)

Define Rn as
∏N−1

i=n (1+ri). By solving the problem (34) we derive the following

optimal solution at time N-2.

Proposition 2 The optimal payoff function xi,N−1(Pi,N−1) at N-2 is

xw∗
i,N−1(Pi,N−1)

=
1

aiRN−1

(

lnEN−2[exp(−aiRN−1αi,N−1WN−1)Θi,N−1|Pi,N−1]

−EQ
N−2

[

lnEN−2[exp(−aiRN−1αi,N−1WN−1)Θi,N−1|Pi,N−1]
]

−
(

ln
gi,N−1(Pi,N−1)

fi,N−1(Pi,N−1)
− EQ

N−2[ln
gi,N−1(Pi,N−1)

fi,N−1(Pi,N−1)
]
)

+aiRN−2(Vi,N−2 − αi,N−1WN−2)
)

(35)

Proof Similarly to the optimal solutions at N-1 derived in the Appendix, taking

partial derivatives provides the optimality conditions at N-2 as

∂Li,N−2

∂xi,N−1(p)
= EN−2[J

∗′

i,N−1(Vi,N−1)
∂Vi,N−1

∂xi,N−1(p)
|p]fi,N−1(p)

−λi,N−1
gi,N−1(p)

1 + rN−2
= 0 (36)

14



∂Li,N−2

∂λi,N−1
= Vi,N−2 − (EQ

N−2[
xi,N−1(Pi,N−1)

1 + rN−2
] + αi,N−1WN−2) = 0 (37)

If we plug the value function at time N-1 (27) into the above optimality condition

(36) and combine with the equation Vi,N−1 = xi,N−1(Pi,N−1) + αi,N−1WN−1

then, we have

∂Li,N−2

∂xi,N−1(p)
= RN−1 exp(−aiRN−1xi,N−1(p))

EN−2[exp(−aiRN−1αi,N−1WN−1)Θi,N−1|p]fi,N−1(p)

−λi,N−1
gi,N−1(p)

1 + rN−2
= 0 (38)

After simplifying the above equation (38) we get

xi,N−1(p) =
1

aiRN−1

(

lnEN−2[exp(−aiRN−1αi,N−1WN−1)Θi,N−1|p]

− ln
λi,N−1

RN−2
− ln

gi,N−1(p)

fi,N−1(p)

)

(39)

By taking expectation under Q and combining with equation (37) we have

ln
λi,N−1

RN−2
= EQ

N−2

[

lnEN−2[exp(−aiRN−1αi,N−1WN )Θi,N−1|Pi,N−1]
]

−EQ
N−2[ln

gi,N−1(Pi,N−1)

fi,N−1(Pi,N−1)
] − aiRN−2(Vi,N−2 − αi,N−1WN−2) (40)

If we substitute equation (40) into equation (39) we obtain the resulting optimal

payoff function at time N-2. Q.E.D.

To get the indifference price for type i buyers, we need J(Vi,N−2, 0) and the

optimal payoff function in Proposition 2 implies

xn∗
i,N−1(Pi,N−1) =

1

aiRN−1

(

lnEN−2[Θi,N−1|Pi,N−1]

−EQ
N−2[ln EN−2[Θi,N−1|Pi,N−1]]

−
(

ln
gi,N−1(Pi,N−1)

fi,N−1(Pi,N−1)
− EQ

N−2[ln
gi,N−1(Pi,N )

fi,N−1(Pi,N )
]
)

+aiRN−2Vi,N−2

)

(41)

By setting J(Vi,N−2−αi,N−1WN−2, αi,N−1) and J(Vi,N−2, 0) equal we have the

indifference price for the type i buyers as

WN−2 =
1

aiRN−2αi,N−1
ln

∆i,N−2

Λi,N−2
= hi,N−2(αi,N−1) (42)
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where we have

∆i,N−2 = EN−2

[ Θi,N−1
gi,N−1(Pi,N−1)
fi,N−1(Pi,N−1)

EN−2[Θi,N−1|Pi,N−1]

]

× exp(EQ
N−2[ln EN−2[Θi,N−1|Pi,N−1]])

Λi,N−2 = EN−2[
exp(−aiRN−1αi,N−1WN−1)Θi,N−1

gi,N−1(Pi,N−1)
fi,N−1(Pi,N−1)

EN−2[exp(−aiRN−1αi,N−1WN−1)Θi,N−1|Pi,N−1]

]

× exp(EQ
N−2[ln EN−2[exp(−aiRN−1αi,N−1WN−1)Θi,N−1|Pi,N−1]]) (43)

Based on the pattern of the optimality condition at time N-1 and N-2, inductive

reasoning implies that the Bellman equation can be written as

Ji,N = Ui(Πi,N )

J∗
i,n(Vi,n) = max

{xi,n+1,λi,n+1}
En[J∗

i,n+1(Vi,n+1)] − λi,n+1Ci,n

∀n = 0, 1, . . . , N − 1 (44)

and, therefore, we can induce the optimality conditions at time n as

∂Li,n

∂xi,n+1(p)
= En[J∗′

i,n+1(Vi,n+1)
∂Vi,n+1

∂xi,n+1(p)
|p]fi,n+1(p) − λi,n+1

gi,n+1(p)

1 + rn

= 0 (45)

∂Li,n

∂λi,n+1
= Vi,n − (EQ

n [
xi,n+1(Pi,n+1)

1 + rn

] + αi,n+1Wn) = 0 (46)

By solving the above optimality conditions or by induction we can obtain the

following optimal payoff function.

Proposition 3 The optimal payoff function xw∗
i,n+1(Pi,n+1) at n can be ex-

pressed as

xw∗
i,n+1(Pi,n+1) =

1

aiRn+1

(

lnEn[exp(−aiRn+1αi,n+1Wn+1)Θi,n+1|Pi,n+1]

−EQ
n

[

lnEn[exp(−aiRn+1αi,n+1Wn+1)Θi,n+1|Pi,n+1]
]

−
(

ln
gi,n+1(Pi,n+1)

fi,n+1(Pi,n+1)
− EQ

n [ln
gi,n+1(Pi,n+1)

fi,n+1(Pi,n+1)
]
)

+aiRn(Vi,n − αi,n+1Wn)
)

∀n = 0, 1, . . . , N − 2 (47)

Moreover the indifference price of type i buyers at time n will be

Wn =
1

aiRnαi,n+1
ln

∆i,n

Λi,n

= hi,n(αi,n+1) (48)
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where we have

∆i,n = En

[Θi,n+1
gi,n+1(Pi,n+1)
fi,n+1(Pi,n+1)

En[Θi,n+1|Pi,n+1]

]

× exp(EQ
n [ln En[Θi,n+1|Pi,n+1]])

Λi,n = En[
exp(−aiRn+1αi,n+1Wn+1)Θi,n+1

gi,n+1(Pi,n+1)
fi,n+1(Pi,n+1)

En[exp(−aiRn+1αi,n+1Wn+1)Θi,n+1|Pi,n+1]

]

× exp(EQ
n [ln En[exp(−aiRn+1αi,n+1Wn+1)Θi,n+1|Pi,n+1]]) (49)

Next we derive the optimal choices and the indifference price for type j buyers

in a multi-period setting. Recall J∗
j,N−1(Vj,N−1) in (29). After substituting the

self-financing constraint into the objective function the dynamic programming

algorithm and the indifference price equation imply

J(Vj,N−2 − αj,N−1WN−2, αj,N−1) = EN−2[J
∗
j,N−1(Vj,N−1)]

= EN−2[−
1

aj

exp(−ajRN−1((Vj,N−2 − αj,N−1WN−2)(1 + rN−2)

+αj,N−1WN−1))Θj,N−1]

= EN−2[−
1

aj

exp(−ajRN−2Vj,N−2)Θj,N−1] = J(Vj,N−2, 0) (50)

After simplifying the above equation (50) we have the following indifference

price for type j buyers at N-2.

WN−2 =
1

ajRN−2αj,N−1
ln

( EN−2[Θj,N−1]

EN−2[exp(−ajRN−1αj,N−1WN−1)Θj,N−1]

)

= hj,N−2(αj,N−1) (51)

In general, by inductive reasoning, the indifference price for type j buyers can

be expressed as

Wn =
1

ajRnαj,n+1
ln

( En[Θj,n+1]

En[exp(−ajRn+1αj,n+1Wn+1)Θj,n+1]

)

= hj,n(αj,n+1) ∀n = 0, 1, . . . , N − 2 (52)

Lastly consider the issuer’s selling price at which she is indifferent between

not selling the weather derivative versus selling the weather derivative at the

selling price today and settling the claim at maturity. The issuer’s problem is

similar to type j buyers’ problem in the sense that she has only two tradable

assets, the risk-free bond and the weather derivative but the incoming and
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outgoing cash flows are opposite to the type j buyers. Therefore, the issuer’s

portfolio value at n will be

Vm,n = (Vm,n−1 + αm,nWn−1)(1 + rn−1) − αm,nWn (53)

At N-2 the indifference selling price of the weather derivative can be obtained

from the following equation.

J(Vm,N−2 + αm,N−1WN−2,−αm,N−1) = EN−2[J
∗
m,N−1(Vm,N−1)]

= EN−2[−
1

am

exp(−amRN−1((Vm,N−2 + αm,N−1WN−2)(1 + rN−2)

−αm,N−1WN−1))]

= EN−2[−
1

am

exp(−amRN−2Vm,N−2)] = J(Vm,N−2, 0) (54)

After simplifying the above equation (54), the indifference selling price of the

weather derivative at N-2 will be

WN−2 =
1

amRN−2αm,N−1
ln

(

EN−2[exp(amRN−1αm,N−1WN−1)
)

= hm,N−2(αm,N−1) (55)

By induction the indifference selling price at time n can be obtained as

Wn =
1

amRnαm,n+1
ln

(

En[exp(amRn+1αm,n+1Wn+1)]
)

= hm,n(αm,n+1) ∀n = 0, 1, . . . , N − 2 (56)

We have found the demand and supply functions for the weather derivative

at time n based on the indifference pricing model. The equilibrium price W ∗
n

and the optimal choices α∗
k,n+1 of the buyers and the issuer can be recursively

determined from the following market clearing conditions.

W ∗
n = hi,n(α∗

i,n+1) = hj,n(α∗
j,n+1) = hm,n(α∗

m,n+1) ∀i, j (57)

∑

i

α∗
i,n+1 +

∑

j

α∗
j,n+1 = α∗

m,n+1 (58)

In each period the derived equilibrium price and optimal choices of the

weather derivative provide the value functions for type i and j buyers and the

issuer recursively. Here we derive the value functions at time N-2 based on the

previous results and then generalize the solutions. The value function of type i
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buyers at time N-2 can be calculated by substituting the optimal payoff function

from Proposition 2 into equation (34). Then, we have

J(Vi,N−2 − α∗
N−1W

∗
N−2, α

∗
N−1) = J∗

i,N−2(Vi,N−2)

= −
1

ai

exp(−aiRN−2Vi,N−2)Θi,N−2(59)

where Θi,N−2 is FN−2-measurable, independent of Vi,N−2, and has the form

Θi,N−2 = exp
(

aiRN−2α
∗
i,N−1W

∗
N−2 − EQ

N−2

[gi,N−1(Pi,N−1)

fi,N−1(Pi,N−1)

]

+EQ
N−2

[

lnEN−2[exp(−aiRN−1α
∗
i,N−1WN−1)Θi,N−1|Pi,N−1]

])

×EN−2

[ exp(−aiRN−1α
∗
i,N−1WN−1)Θi,N−1

EN−2[exp(−aiRN−1α
∗
i,N−1WN−1)Θi,N−1|Pi,N−1]

×
gi,N−1(Pi,N−1)

fi,N−1(Pi,N−1)

]

(60)

By inductive reasoning the value function of the type i buyers at n can be

expressed as

J∗
i,n(Vi,n) = −

1

ai

exp(−aiRnVi,n)Θi,n (61)

where Θi,n is independent of Vi,n and Fn-measurable. From equation (60) Θi,n

can be induced as

Θi,n = exp
(

aiRnα∗
i,n+1W

∗
n − EQ

n

[gi,n+1(Pi,n+1)

fi,n+1(Pi,n+1)

]

+EQ
n

[

lnEn[exp(−aiRn+1α
∗
i,n+1Wn+1)Θi,n+1|Pi,n+1]

])

× En

[ exp(−aiRn+1α
∗
i,n+1Wn+1)Θi,n+1

En[exp(−aiRn+1α
∗
i,n+1Wn+1)Θi,n+1|Pi,n+1]

×
gi,n+1(Pi,n+1)

fi,n+1(Pi,n+1)

]

∀n = 0, 1, . . . , N − 2 (62)

In a similar manner we obtain the value function of type j buyers at time n

as:

J∗
j,n(Vj,n) = −

1

aj

exp(−ajRnVj,n)Θj,n (63)

where the Fn-measurable random variable Θj,n can be induced as

Θj,n = exp(ajRnα∗
j,n+1W

∗
n)

× En[exp(−ajRn+1α
∗
j,n+1Wn+1)Θj,n+1] ∀n = 0, 1, . . . , N − 2(64)
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Finally the issuer’s value function at time n can be derived as

J∗
m,n(Vm,n) = −

1

am

exp(−amRnVm,n) ∀n = 0, 1, . . . , N − 2 (65)

3 Numerical example

In this section we present a numerical example of our multi-period equilibrium

pricing model. For simplicity we assume a two-period planning horizon and

price a plain-vanilla weather call option with a strike of 70◦F . The underlying

weather index is one day average temperature. However, the pricing model

can be easily extended to Cooling Degree Days (CDD)/Heating Degree Days

(HDD) if we specify the stochastic processes of temperature during the contract

period. In our economy there are 3 market participants; type i buyer which

has a liquid commodity derivatives market, type j buyer which does not, and

the issuer of the weather call option. All commodity prices and demand of the

buyers are assumed to be positively correlated with temperature. In addition

the temperature process follows Brownian motion with a drift term because

after removing seasonality the normality of the temperature process is often

assumed in literature. Moreover, we model the commodity price and demand of

the type i and j buyers as geometric Brownian motions with a drift term. The

correlated temperature, demand, and price processes can be defined as

TN = T0 + µT N + W 1
N

Dk,N = Dk,0 exp((µDk
−

1

2
σ2

Dk
)N + σDk

W 2
k,N )

Pk,n = Pk,0 exp((µPk
−

1

2
σ2

Pk
)n + σPk

W 3
k,n)

∀k ∈ {i, j} and n ∈ {n0 = 0, n1, . . . , nN = N} (66)

where W 1
N ,W 2

i,N ,W 2
j,N ,W 3

i,n, and W 3
i,n are correlated Brownian motions repre-

senting the correlation among temperature, demand, and price of the type i and

j commodities. Since we have a two-period planning horizon, Brownian motions

will be discretized by combining correlated standard normal distributions and

a Markovian property. In other words we observe the realization of Brownian

motions at n0 = 0, n1 = ∆, and n2 = 2∆.

In this example we will vary the correlation of Brownian motions between

demand of the type i commodity and temperature. All other correlation coeffi-

cients among Brownian motions ρ are fixed and listed in Table 1. In addition
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TN Di,N Pi,N Dj,N Pj,N

TN 1 vary 0.3 0.6 0.3
Di,N 1 0.5 0.15 0.1
Pi,N 1 0.1 0.1
Dj,N 1 0.5
Pj,N 1

Table 1: Correlation(ρ) Matrix

Parameters

Temperature T(0)=65, µT = 1, σT = 5
Type i & j µDk

= µPk
= 0.1, σDk

= 0.3, σPk
= 0.1, PR

k = 11
Risk aver. 0.1

∆ 0.5

Table 2: Parameters

we assume that the real world probability measure P is equal to a risk-neutral

probability measure Q in each commodity market. This assumption has been

justified in the Nordic power market by [Audet et al., 2004]. In our single-period

equilibrium pricing formula (12) of type i buyers we need to calculate conditional

expectation EN−1[exp(−ai(Ii + αNWN ))|Pi,N ] and this can be obtained from

the following conditional probability density functions.

lnDi,N |Pi,N ∼ N
(

µ1 + ρDi,N ,Pi,N
(ln(Pi,N ) − µ2)

σDi

σPi

, (1 − ρ2
Di,N ,Pi,N

)σ2
Di

n1

)

(67)

TN |Pi,N ∼ N
(

µ3 + ρT,Pi,N
(ln(Pi,N ) − µ2)

σT

σPi

, (1 − ρ2
Di,N ,Pi,N

)σ2
T n1

)

(68)

where µ1, µ2, and µ3 have the form of

µ1 = ln(Di,0) + (µDi
−

1

2
σ2

Di
)(2∆)

µ2 = ln(Pi,n1
) + (µPi

−
1

2
σ2

Pi
)∆

µ3 = T0 + µT (2∆) (69)

Other parameters in this numerical example are specified in Table 2

Figure 1 illustrates the optimal choices of the weather call option for type i

and j buyers and the sum of the two optimal quantities representing aggregate

demand or supply quantities. In both Figures we can see that the type i buyer

shorts and the type j buyer longs. Recall the assumption that the type i buyer
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can construct the commodity derivatives portfolio with continuous strike prices.

These infinitely many commodity derivatives have more flexibility to hedge risks

than the weather call option which is just a small part of available derivatives.

Therefore, type i buyer shorts the weather call option and invests more in com-

modity derivatives. This interpretation is also verified in Figure 5(a). The

variance reduction of the portfolio with commodity derivatives and the weather

call option is almost the same as the portfolio with commodity derivatives only,

which means that the weather call options have relatively small effect on the

portfolio of type i buyer.

Figure 2 shows the equilibrium prices of the weather call option in the two-

period, single-period, and the actuarial cases. Here the actuarial price is defined

as the discounted expectation of the weather call option payoff under the real

world probability measure P. The actuarial price graph is flat because the

temperature process is independent of the correlation coefficient ρT2,Di,2
. In

this figure we can see that the price is lowest under actuarial pricing, higher for

the two-period case and the highest under the single period case. The positive

difference between the single or two-period equilibrium price and the actuarial

price represents the risk premium due to buyers’ risk-aversion.

The certain equivalents (CE) of type i and j buyers for the single and two-

period case are shown in Figure 3. The certain equivalent for the two-period case

is always higher for both types of buyers. The difference in certain equivalents

between the single and two-period case captures the value of the additional

trading opportunity at time 1.

Figure 4 shows the optimal payoff functions of the commodity portfolios at

time 0 and 1 when the correlation coefficient ρT2,Di,2
is equal to 0.80. Figure

4(a) exhibits the optimal payoff of the portfolio with commodity derivatives

and the weather call option. In the case with only commodity derivatives, the

optimal payoff function has the form of Figure 4(b).

Figure 5(a) illustrates the probability density functions (p.d.f) of terminal

wealth for the type i buyer in three cases. If the type i buyer is not hedged and

exposed to all price and volumetric risks, the p.d.f of terminal wealth is widely

spread, i.e. has large variance or risk. However, if the commodity derivatives

are included in the portfolio then the risk is greatly reduced. Compared to

the portfolio with commodity derivatives only, the portfolio with commodity

derivatives and the weather call option shows very similar probability density
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(a) Optimal Choices of Two-period
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(b) Optimal Choices of Single-period

Figure 1: Optimal Choices of Two & Single-period
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Figure 2: Equilibrium Price of Two & Single-period

functions. This can be explained by the fact that our portfolio of commodity

derivatives includes a continuum of strikes whereas the weather call option is just

one derivative. However, in Figure 5(b) type j buyer is better off in terms of risk

reduction when the weather call option is purchased. Therefore, we conclude

that the weather call option plays a relatively important role in the portfolio

of type j buyer but is insignificant for type i buyer who can use commodity

derivatives to hedge both price and volumetric risk.

4 Conclusion

Many weather-sensitive industries such as energy, insurance, agriculture, and

leisure are exposed to price and volumetric risks coming from the stochastic as-

pect of cost (or wholesale price) and demand in their profit functions. In addition

these price and volumetric risks are all correlated with weather. Commodity

derivatives can mitigate price risk but volumetric risk typically associated with

weather changes can only be partially hedged via commodity derivatives. There-

fore, new financial instruments are needed and weather derivatives represent an

effective means for hedging volume risk because demand is strongly correlated
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with weather. However, pricing weather derivative is not a trivial task because

of market incompleteness and it becomes even more challenging in a dynamic

setting.

In this paper we investigate a multi-period equilibrium pricing model for

weather derivative pricing within a framework of a stylized economy. Three

types of market participants are considered, buyers with and without a liquid

commodity derivatives market and an issuer. All market participants are as-

sumed to maximize expected utility of terminal wealth subject to self-financing

trading constraints and are able to rebalance their portfolios in each period.

We use dynamic programming and indifference pricing to recursively derive the

supply and demand function for the weather derivative in each period. We then

apply a market clearing condition to determine the equilibrium prices of the

weather derivative in each period.

A numerical example employing Monte-Carlo simulations illustrates the for-

mation of the equilibrium prices and the optimal choices of the weather call

options in a single and multi-period setting under various correlations between

volumetric and weather risks. The value of multiple trading opportunities is also

demonstrated. We also show how the weather derivative improves risk hedg-

ing capability by reducing variance of terminal wealth, especially in situations

where commodity derivatives are not available.
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Appendix
Proof of Proposition 1: the optimal xi,N (Pi,N )

Let Ci,n denote the self-financing constraint at time n, i.e. EQ
n [

xi,n+1(Pi,n+1)
1+rn

]+

αi,n+1Wn − Vi,n. Then we can form the Lagrangian function as

Li,N−1 = EN−1[Ui(Πi,N )] − λi,NCi,N−1

=

∫ ∞

−∞

EN−1[Ui(Πi,N )|Pi,N = p]fi,N (p)dp

−
λi,N

1 + rN−1
(

∫ ∞

−∞

xi,N (p)gi,N (p)dp + αi,NWN−1 − Vi,N−1)(70)

where fi,N (p) is a marginal probability density function of the type i commodity

spot price Pi,N under the real probability measure P and gi,N (p) is a risk-

neutral probability density function of Pi,N . Because the commodity market is

incomplete there may exist infinitely many risk-neutral probability measures and

we assume that a risk-neutral probability measure is properly chosen under some

criterion, for example, minimum distance equivalent martingale measure. The

ratio
gi,N (p)
fi,N (p) is a Radon-Nicodym derivative in the type i commodity market and

satisfies E[
gi,N (p)
fi,N (p) ] = 1. The partial derivative with respect to xi,N (p) requires

the Euler equation for the functional derivatives because the decision variable

xi,N (Pi,N ) is a deterministic function of the random variable Pi,N . The value

function at N-1 can be expressed using the Lagrange multiplier as

J(Vi,N−1 − αi,NWN−1, αi,N ) = max
{xi,N (PN ),λi,N}

EN−1[J(Vi,N )] − λi,NCi,N−1

= max
{xi,N (PN ),λi,N}

Li,N−1 (71)

Taking the partial derivative with respect to xi,N (p) based on calculus of vari-

ation and λi,N gives us the first order necessary conditions as

∂Li,N−1

∂xi,N (p)
= EN−1[U

′
i(Πi,N )

∂Πi,N

∂xi,N (p)
|p]fi,N (p) − λi,N

gi,N (p)

1 + rN−1
= 0 (72)

∂Li,N−1

∂λi,N

= Vi,N−1 − (EQ
N−1[

xi,N (Pi,N )

1 + rN−1
] + αi,NWN−1) = 0 ∀i = 1, 2 . . . , u (73)

Note that the first order conditions are sufficient for the optimality because

the problem is a convex optimization problem. Moreover, under the assump-

tion E0[|Ui(·)|] < ∞ the partial derivative and the expectation operator are

interchangeable.
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From equation (72) and (73) the optimality conditions of the Lagrangian

relaxation problem under the exponential utility function are

∂Li,N−1

∂xi,N (p)
= fi,N (p)(EN−1[exp(−ai(Ii,N + xi,N (p) + αi,NWN ))|p])

−λi,N

gi,N (p)

1 + rN−1
= 0 (74)

∂Li,N−1

∂λi,N

= Vi,N−1 − (EQ
N−1[

xi,N (Pi,N )

1 + rN−1
] + αi,NWN−1) = 0 (75)

Given p, xi,N (p) can be taken out of the expectation operator and then equation

(74) can be simplified as

xi,N (p) =
1

ai

(

lnEN−1[exp(−ai(Ii + αi,NWN ))|p] − ln
λi,N

1 + rN−1
− ln

gi,N (p)

fi,N (p)

)

(76)

Because the above equation holds for all p we can substitute Pi,N for p. Then,

taking expectation on both sides of equation (76) under Q and combining with

equation (75) imply

EQ
N−1[xi,N (Pi,N )] =

1

ai

(

EQ
N−1[ln EN−1[exp(−ai(Ii + αi,NWN ))|Pi,N ]]

− ln
λi,N

1 + rN−1
− EQ

N−1[ln
gi,N (Pi,N )

fi,N (Pi,N )
]
)

= (1 + rN−1)(Vi,N−1 − αi,NWN−1) (77)

After simplifying we have

ln
λi,N

1 + rN−1
= EQ

N−1

[

lnEN−1[exp(−ai(Ii + αi,NWN ))|Pi,N ]
]

−EQ
N−1[ln

gi,N (Pi,N )

fi,N (Pi,N )
]

−ai(1 + rN−1)(Vi,N−1 − αi,NWN−1) (78)

Plugging equation (78) into equation (76) we get the resulting optimal payoff

function. Q.E.D.
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