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RESEARCH ARTICLE
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1 Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine

School of Medicine, Irvine, California, United States of America, 2 Sue and Bill Gross Stem Cell Research

Center, University of California-Irvine School of Medicine, Irvine, California, United States of America

* vkimonis@uci.edu

Abstract

Valosin Containing Protein (VCP) disease is an autosomal dominant multisystem proteino-

pathy caused by mutations in the VCP gene, and is primarily associated with progressive

muscle weakness, including atrophy of the pelvic and shoulder girdle muscles. Currently, no

treatments are available and cardiac and respiratory failures can lead to mortality at an early

age. VCP is an AAA ATPase multifunction complex protein and mutations in the VCP gene

resulting in disrupted autophagic clearance. Due to the rarity of the disease, the myopathic

nature of the disorder, ethical and practical considerations, VCP disease muscle biopsies

are difficult to obtain. Thus, disease-specific human induced pluripotent stem cells (hiPSCs)

now provide a valuable resource for the research owing to their renewable and pluripotent

nature. In the present study, we report the differentiation and characterization of a VCP

disease-specific hiPSCs into precursors expressing myogenic markers including desmin,

myogenic factor 5 (MYF5), myosin and heavy chain 2 (MYH2). VCP disease phenotype is

characterized by high expression of TAR DNA Binding Protein-43 (TDP-43), ubiquitin (Ub),

Light Chain 3-I/II protein (LC3-I/II), and p62/SQSTM1 (p62) protein indicating disruption of

the autophagy cascade. Treatment of hiPSC precursors with autophagy stimulators Rapa-

mycin, Perifosine, or AT101 showed reduction in VCP pathology markers TDP-43, LC3-I/II

and p62/SQSTM1. Conversely, autophagy inhibitors chloroquine had no beneficial effect,

and Spautin-1 or MHY1485 had modest effects. Our results illustrate that hiPSC technology

provide a useful platform for a rapid drug discovery and hence constitutes a bridge between

clinical and bench research in VCP and related diseases.

Introduction

Hereditary Inclusion Body Myopathy, Paget Disease of Bone, Frontotemporal Dementia

(IBMPFD) and Amyotrophic Lateral Sclerosis (ALS), recently termed VCP-associated disease

(VCP disease) is a multisystem disorder with a diverse collection of manifestations caused by
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mutations in the valosin containing protein (VCP) gene [1–4]. Inclusion body myopathy (IBM)

is the most common feature present in up to 90% of affected individuals with an age of onset

typically in their 30s. Patients typically demonstrate progressive weakness and atrophy of the

skeletal muscles, generally starting with the pelvic and shoulder girdle muscles. Progressive

muscle weakness typically advances to involve other limbs and respiratory muscles, resulting

in patient mortality from cardiomyopathy or respiratory failure between approximately 40–60

years of age. Hallmarks of the muscle pathology include rimmed vacuoles, ubiquitin- and

TDP-43-positive inclusions and increased autophagy markers such as Light Chain 3-I/II

(LC3-I/II) and p62/SQSTM1. The second most common pathology is Paget’s disease of the

bone (PDB) which is observed in 49% of patients [3, 5, 6], typically with onset in their 30s to

40s. PDB is caused by excessive osteoclastic activity and increased bone turnover and suscepti-

bility to deformities like bowing and fractures [7–9]. The third most common component of

VCP disease is frontotemporal dementia (FTD), with an average age of onset of 54 years with

an overall frequency of 33% [1, 5, 10]. Hallmarks of the muscle and brain pathology include

inclusions of ubiquitin and TDP-43 also seen in other proteinopathies associated with FTD

[11–13]. Additional pathology manifestations of VCP mutations include ALS in up to 15% of

VCP disease patients, with Parkinson’s disease (PD) [14] Alzheimer’s disease (AD) [15, 16],

and cardiomyopathy among other associated manifestations [5]. Interestingly VCP mutations

also account for 3% of isolated familial ALS (fALS) [17, 18]. Over 40 VCP mutations have been

identified worldwide in families from several parts of the world including Germany [19, 20],

France [21], Austria [22], Italy [23], the United Kingdom [24], Australia [25], Korea [26], and

the United States [1, 2, 5, 6, 27–31], with the R155H mutation present in more than 50% of

affected individuals.

On a molecular level, VCP, a member of the type II AAA+ ATPase family, plays an impor-

tant role in a plethora of cellular activities and recent studies have implicated the ubiquitin

proteasome protein degradation pathway [32, 33], the autophagy cascade [5, 30, 33, 34], mito-

chondrial quality control [32, 35–37] and potentially other signaling pathways in the patho-

genesis of VCP disease. Sequestosome 1 (p62/SQSTM1) interacts with Light Chain 3 (LC3-I/II),

which is an autophagic effector protein, to facilitate the process of autophagic uptake of aggre-

gated proteins [5]. VCP is necessary to initiate the retro-translocation process for misfolded

endoplasmic reticulum (ER) proteins; thus, mutations in the VCP gene result in defective ER

associated protein degradation (ERAD) and ER stress responses [28]. Although VCP disease is

a relatively rare disorder, exploration of its cellular and molecular mechanisms holds promise

for explaining shared pathologies of more common proteinopathies, such as ALS, PD, and

FTD.

Stem cells have revolutionized the field of human cell culture because they provide an

immortal population of pluripotent cells, which can theoretically differentiate into any cell

type [38–40]. Due to their renewable and pluripotent nature, stem cells also allow for the devel-

opment of therapies for rare muscle conditions such as VCP disease, where tissue is sparse or

difficult to access. In particular, patient-specific induced pluripotent stem cells (iPSCs) repre-

sent an excellent tool for modeling disease since they can be generated from adult somatic

cells, thus, avoiding the ethical considerations involved with using embryonic stem cells. iPSCs

will continue to be a sustainable method to model disease for gene therapies, drug therapies,

and for transplantable stem cells for neuromuscular and related diseases [38, 41–45]. iPSC

technology is already being utilized in other neurodegenerative diseases, including ALS [46],

Duchenne muscular dystrophy (DMD) [47], PD [48], AD [49, 50], macular degeneration [51,

52], and type I diabetes mellitus [53, 54]. Therefore, creation and characterization of human

derived VCP disease iPSCs has offered a novel therapeutic platform to investigate mechanisms

of VCP disease and further the development of effective treatment [55]. Differentiating these

VCP disease iPSCs for drug discovery
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patient-derived iPSCs into a myogenic lineage has the promise to make significant contribu-

tions to our understanding of VCP disease [46, 47, 56–58]. The use of adult myogenic stem

cells as a cell therapy for skeletal muscle regeneration has been attempted for decades, with

only moderate success [40, 59–63]. However, several studies have recently reported develop-

ment of more effective differentiation protocols with the use of skeletal muscle specific media

and the induction of PAX3/7 with a retrovirus [47, 56, 64–69].

In this report, we differentiated patient-derived human induced pluripotent stem cells

(hiPSC) into myogenic lineages to provide a useable resource to study the underlying patho-

logical mechanisms of VCP disease and as a novel platform for a rapid drug screening. We

showed a significant success rate of patient-derived and control iPSC differentiation into the

myogenic lineages. Characterization of the VCP disease phenotype in our myogenic lineages

revealed higher protein expression levels of classic VCP pathology including autophagy mark-

ers LC3-I/II, p62/SQSTM1, ubiquitin and upregulation and translocation of TDP-43 to the

cytoplasm. We next screened the effects of various autophagy-modifying compounds to

understand the molecular dysfunction in VCP pathology and as a therapeutic strategy for

VCP-associated diseases. We observed significant improvement in pathology with autophagy

inducers Rapamycin, Perifosine and AT101. Conversely chloroquine an autophagy inhibitor

showed no benefit. Interestingly, Spautin-1 and MHY1485 showed a modest beneficial effect

in preventing TDP-43 translocation from the nucleus to the cytoplasm. In summary, our study

provides a unique and novel platform for investigating the underlying pathophysiology mech-

anisms of VCP disease and for rapid screening of new drugs that ameliorate autophagy dys-

function thus improving muscle integrity and/or slowing down the progression of muscle

wasting in patients with VCP and related neurodegenerative diseases.

Materials and methods

Ethics statement

The University of California Irvine (Irvine, California) Institutional Review Board (IRB)

(#2009–1005) approved this study including the consenting procedure. We explained the

research to the participant, reviewed the consent form and provided an opportunity to ask

questions in order to ensure that the subject understood the research. The subjects signed the

approved consent form. Skin biopsy samples were submitted to Coriell repository and were

used for the iPSCs generation. The control iPSCs were obtained from the University of Con-

necticut repository.

Differentiation of iPSC into skeletal muscle lineage

VCP disease and control iPSCs were differentiated into skeletal muscle lineages using a modi-

fied protocol adapted from Awaya et al. (2012) [57]. Briefly, iPSCs were grown in mouse

embryonic fibroblast (MEF) conditioned media (CM) supplemented with basic fibroblast

growth factor (bFGF) (CM-bFGF) [70]. Once confluent, iPSCs were treated with 1 mg/mL col-

lagenase in DMEM/F12 at 37˚C for 5 min and removed from the plate by mechanical scraping.

The cell clusters were then left floating in CM-bFGF for 7 days in a non-adhesive flask to form

embryoid bodies (EBs). Next, the EBs were transferred to 0.2% gelatin-coated tissue culture

plates in ITS medium (DMEM, 1X ITS-X (ThermoFisher Scientific, Carlsbad, CA), non-essen-

tial amino acids (ThermoFisher Scientific GlutamaxH supplement (ThermoFisher Scientific),

and 100 mM 2-mercaptoethanol for 14 days to promote a mesenchymal lineage [57]. To

encourage skeletal muscle differentiation, the medium was changed to skeletal muscle induc-

tion medium skIM (SkIM: high-glucose DMEM supplemented with 10% fetal calf serum

(FCS; ThermoFisher Scientific), 5% horse serum (HS; Sigma, St. Louis, MO), non-essential

VCP disease iPSCs for drug discovery
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amino acids (Invitrogen), and 100 mM 2-mercaptoethanol for 7 days [57]. The differentiated

cells were analyzed on days 7, 21, 49, 56, 63, and 70. Images of differentiation by differential

interference contrast (DIC) microscopy were taken on days 0, 21, 50, 69. Primary myoblasts

from the same patient or control subjects were used in this investigation for comparison of

morphology.

Flow cytometry

Differentiated myoblasts were phenotyped and sorted by flow cytometry (Sue and Bill Gross

Stem Cell Institute, University of California-Irvine, Irvine, CA). Briefly, myogenic precursors

at days 35 and 49 were dissociated with dissociation buffer (ThermoFisher Scientific) and

stained with cell surface pluripotency marker, anti-CD34, and mesenchymal stem cell (MSC)

markers anti-CD73, anti-CD105 and anti-CD29 (Life Technologies) and skeletal muscle

marker, anti-CD56 (ThermoFisher Scientific) as well as isotype controls (BD Pharmingen).

Dead cells were excluded by propidium iodide (Sigma-Aldrich) and samples were analyzed

using FACSAria II and FACS Diva software (BD Biosciences, Franklin Lakes, NJ).

Treatments with autophagy-modifying agents

Day 50 myogenic progenitor patient and control cells were seeded onto gelatin-coated 4-well

chamber slides or 6-well plates and cultured in sKiM media. Patient and control cells were

either treated with autophagy inducers, Rapamycin (10 μM) [71, 72], Perifosine (also known

as KRX-0401) (80 μM) [73] or AT101 (10μM) [74, 75] or autophagy inhibitors chloroquine

(10 μM) [76, 77], Spautin-1 (10 μM) [78] or MHY1485 (2 μM) [79] for 24 hours. Following

treatment, immunocytochemical and Western blot analysis were performed and analyzed.

Immunocytochemical analysis

Myogenic progenitor cells were seeded, at days 21 and 50 onto gelatin-coated 4-well chamber

slides and cultured in sKiM media. Cells were washed with PBS then fixed in 4% paraformalde-

hyde (PFA) for 15 minutes, and permeabilized with Triton X-100 for ICC staining. To check for

pluripotent markers, cells were stained with anti-Oct-3/4 and Nanog (Sigma-Aldrich, St. Louis,

MO). To check for myogenic differentiation, both early (anti-MYF-5, desmin and anti-PAX-7)

and late stage markers (anti-MyoD and anti-MYH2) were used. For VCP disease pathology anal-

ysis, cells were taken at day 50 and seeded as aforementioned. Both treated and untreated cells

were then stained for ‘classic’ VCP pathology markers, anti-TDP-43, p62/SQSTM1 and LC3

(Abcam, Cambridge, MA).

Western blot analysis

Protein samples from patient and control myogenic progenitors were extracted using RIPA

buffer according to manufacturer’s instructions (Thermo Scientific, Rockford, IL). Protein

concentrations were identified using the Nanodrop technique according to the manufacturer’s

protocols. Equal amount of proteins from samples were run on Bis-Tris 4–12% NuPAGE gels

using the Novex Mini Cell (Invitrogen Life Technologies, Carlsbad, CA). To confirm differen-

tiation, both pluripotent markers (rabbit monoclonal anti-NANOG and rabbit monoclonal

anti-Oct3/4) and myogenic markers (rabbit monoclonal anti-MYF-5, rabbit polyclonal anti-

desmin, rabbit monoclonal anti-MyoG, rabbit polyclonal anti-MyoD and rabbit monoclonal

anti-MYH2) were analyzed. To analyze expression levels of ‘classic’ VCP pathology, rabbit

monoclonal anti-TDP-43, rabbit monoclonal anti-mTOR, rabbit monoclonal anti-LC3-I/II,

rabbit monoclonal anti-p62/SQSTM1, and rabbit monoclonal anti-ubiquitin-specific

VCP disease iPSCs for drug discovery
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antibodies were used. Equal protein loading was confirmed by rabbit monoclonal anti-

GAPDH antibody staining. All antibodies were purchased from Abcam. Cytoplasmic and

nuclear protein factions were extracted using NE-PER kit (Thermo Scientific). Densitometry

was performed to quantitate the Western blot bands using Image J Program (National Insti-

tutes of Health, Bethesda, MD).

Statistical analysis

Statistical analysis of densitometry data of three Western blot trials was performed using SPSS

standard software (Version 13.0. Chicago, SPSS Inc.). Two-tailed student’s t test was used to

calculate p values.

Results

Differentiation and validation of control and patient iPSC-derived

myogenic lineage

Our goal in this study was to establish efficient differentiation of human iPSCs into a myogenic

lineage to model VCP disease and related neuromuscular diseases. Additionally, we aimed to

utilize these cells in subsequent drug screening studies. A schematic of human iPSC differenti-

ation and maturation into myotubes is depicted in Fig 1A. We first cultured and imaged differ-

entiation of iPSCs (Day 0–69) into a myogenic lineage in patient (Fig 1B) and control iPSC

(Fig 1D) lines shown by differential interference contrast (DIC) microscopy. By day 69, these

cells closely resembled primary myoblasts taken from the same patient (Fig 1C) or control

myoblasts (Fig 1E).

Subsequently, myoblast lineages differentiated from patient-derived inducible pluripotent

stem cells (iPSCs) were validated using both immunohistochemical (IHC) and Western blot

methods. Staining with early myogenic precursor markers such as MYF-5, desmin, and Pax7

illustrated increased expression from day 21, and they are still expressed at day 50 (Fig 2A).

Interestingly, late myogenic skeletal markers, such as MyoD and MYH2 were expressed by day

50, however, not detected at earlier time points (Fig 2B). Western blot analysis revealed the cells

had lost expression of their pluripotent marker (Oct3/4 and Nanog) after day 21. Myogenic pre-

cursor markers (desmin, MYF5 and MyoD) begin to be expressed starting on day 21 and con-

tinue through day 50. Late myogenic markers (MyoG and MYH2) begin to be expressed last at

day 50 (Fig 2E). Myogenic differentiation was then validated by FACS analysis using the plurip-

otent marker (CD34: 96.6% negative) and myoblast marker (CD56: 92.3% positive). Similarly,

these cells were also positive for MSC markers (CD73, CD29 and CD105) (Fig 2F).

Accumulation of autophagy markers in differentiated hiPSC myogenic

lineage

The autophagy cascade whereby long-lived proteins are degraded is of critical importance in

understanding the possible underlying mechanisms in VCP disease. We and others have previ-

ously shown that the autophagic pathway is disrupted in patients’ myoblasts and in VCPR155H/+

mouse models [30, 80, 81]. To determine the pathophysiological effects of VCP mutations on

our differentiated disease myogenic lineages, we stained with mAbs specific to TDP-43, a hall-

mark of VCP pathology, mTOR, and autophagy markers LC3-I/II and p62/SQSTM1. Compared

to the control myoblasts, VCP myoblasts showed increased cytoplasmic staining of TDP-43,

(Fig 3A and 3B) and increased protein expression levels of the autophagic markers, LC3-I/II

and p62/SQSTM1, thereby suggesting impaired degradation of the proteins involved in the

autophagosome-lysosomal cascade (Fig 3A and 3B). Western blot analysis and densitometry

VCP disease iPSCs for drug discovery
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analysis of Western blot data relative to GAPDH, confirmed these results with significant

increased TDP-43 (p<0.001, both day 21 and 50), LC3I/II (p<0.005 on day 21, p<0.001 on

day 50), p62/SQSTM1 (p<0.001, both day 21 and 50) and ubiquitin (p<0.001, both day 21

and 50) (Fig 3C and 3D) as well as the cytoplasmic mislocalization of TDP-43 in VCP myo-

blasts (Fig 3E).

Autophagy modifiers and VCP’s interplay in the autophagy cascade

Several studies showed that the autophagy cascade is highly dysregulated in VCP disease [30,

82–84]. However, the underlying mechanisms of such dysregulation remain to be fully eluci-

dated. We, therefore, decided to utilize our differentiated patient-derived hiPSCs together with

several autophagy inhibitors and activators that interact as various different points in the

autophagy cascade (Fig 4A) to gain insight in the pathogenesis and explore if autophagy mod-

ulation could ameliorate VCP disease pathology. These modifiers and the location of their

impact within the autophagy cascade are illustrated in Fig 4A.

Fig 1. Differentiation of patient and control VCP iPSC into myogenic lineages. (A) Schematic of early hiPSCs and embryoid bodies commitment (Days

0–50) into early mesenchymal stem/stromal cells (MSC) and differentiation into myoblasts (Day 64). (B) Myogenic differentiation of human iPSC at Days 0,

21, 50, and 69 with (C) primary myoblast cells from a 57-year old patient diagnosed with IBMPFD. (D) Control derived myogenic precursors at Days 0, 21,

50, and 69 with (E) primary myoblast cells from age matched healthy control. Differential interference contrast (DIC) microscopy images of differentiated

primary mature myoblasts from iPSCs. Scale: Bar = 1000 μm.

https://doi.org/10.1371/journal.pone.0176919.g001
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Drug screenings with autophagy-modifiers

To explore the effects of autophagy-modifying drugs on the iPSC-derived patient VCP myo-

blasts, we treated them with autophagy stimulators Rapamycin, Perifosine, and AT101 (Fig 4)

and autophagy inhibitors chloroquine, Spautin-1, and MHY1485 (Fig 5). These autophagy

modifiers were selected to help understand the pathogenesis of VCP disease because they tar-

get the autophagy cascade and its intermediates at various locations (Fig 4A). Rapamycin, a

key modulator of the mammalian Target of Rapamycin (mTOR) pathway has shown neuro-

protection properties in several neurodegenerative diseases, including Alzheimer’s disease,

Fig 2. Validation of myogenic differentiation in patient and control-derived iPSCs. Human iPSC from a 57-year old patient diagnosed with VCP

disease-derived myogenic precursors were stained at Day 21 and Day 50 with (A-B) MYF-5, desmin, and Pax7; (C-D) MyoD and MYH2. Representative

merged overlay images of stained iPSC with DAPI. Scale: Bar = 50 μM. (E) Western blot analysis of myoblast differentiation markers at Day 0, 7, 21, 35, and

50 with anti-Oct3/4, Nanog, desmin, MYF5, MyoD, MyoG and MYH2. GAPDH was used as a positive loading control. (F) FACS analysis of iPSC-derived

MSCs with pluripotent marker (CD34) and myoblast marker (CD56). (G) CD34 isotype control. (H) CD65 isotype control.

https://doi.org/10.1371/journal.pone.0176919.g002

VCP disease iPSCs for drug discovery
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Parkinson’s disease, Huntington’s disease and spinocerebellar ataxia type 3 [71, 72, 85].

Rapamycin functions by inhibiting mTOR whose activation inhibits autophagy [86]. The

accumulation of damaged proteins and the failure of autophagy clearing is a hallmark of

VCP-associated diseases; therefore, we hypothesized that Rapamycin treatment may

show some benefit. Here, we treated our cells with 10 μM Rapamycin for 24 hours and

demonstrate significant reduction in the ‘classic’ VCP pathology markers TDP-43, LC3

and p62/SQSTM1, while mTOR activity was slightly diminished in VCP when compared

to untreated patient samples (Fig 4B–4D). These results were confirmed by Western blot

and densitometry (Fig 4G and 4H). Perifosine inhibits mTOR signaling through a differ-

ent mechanism than classical mTOR inhibitors such as Rapamycin. Perifosine is an

Fig 3. Characterization of autophagy signaling cascade in control and patient VCP iPSC-derived myoblast lineages. Differentiated (A) control and

(B) iPSC-derived myoblast lineages were immunostained with TDP-43, LC3, and p62/SQSTM1. Representative merged overlay images of stained iPSC

with DAPI. Scale: Bar = 50 μM. (C) Western blot analysis of iPSC-derived control and patient myoblasts with anti-TDP-43, LC3I/II, p62/SQSTM1, and

ubiquitin. GAPDH was used as a positive loading control. (D) Densitometry analyses confirmed these Western blot results. Statistical significance is denoted

by *p<0.05, **p<0.005 and ***p<0.001. (E) Western blot analysis of cytoplasmic (Cy) and nuclear (Nu) factions of iPSC-derived control and patient

myoblasts with anti-TDP-43.

https://doi.org/10.1371/journal.pone.0176919.g003
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alkylaphospholipid, which induces cell cycle arrest and apoptosis through the inhibition

of the serine-threonine protein kinase (Akt) also known as protein kinase B [73]. Several

publications have shown that Akt and VCP interact and that VCP is a target of Akt signal-

ing [87, 88], therefore we hypothesized that inhibition of Akt may be beneficial for VCP

disease. In this report, we examined the effects of Perifosine by treating our cells (80 μM)

and showed reduction in the “classic” VCP pathology markers TDP-43, LC3 and p62/

SQSTM1 when compared to untreated patient samples (Fig 4B, 4C and 4E). These results

were confirmed by Western blot and densitometry with p<0.001 (Fig 4G and 4H).

Fig 4. Drug screening with autophagy inducers Rapamycin, Perifosine and AT101 in patient VCP iPSC-derived myogenic lineages. (A) Schematic

of intervention with autophagy modifying agents. Green arrows show the active location of autophagy activators Rapamycin, Perifosine and AT101. Red

arrows show the active location of autophagy inhibitors chloroquine, Spautin-1 and MHY1485. VCP is indicated to have an interactive role with Akt and as a

chaperone protein with ubiquitin. (B) Untreated differentiated control and (C) untreated patient derived myogenic lineages. Patient derived myogenic lineage

were treated with either (D) Rapamycin (10 μM), (E) Perifosine (80 μM) or (F) AT101 (10 μM) for 24 hours. Subsequently, cells were stained with TDP-43,

LC3 or p62/SQSTM1 antibodies. Representative merged overlay images of stained iPSC with DAPI. Scale: Bar = 25 μm. White dotted lines represent areas

of increased or decreased expressions. (G) Western blot analysis of iPSC-derived control (C) and patient (P) myoblasts with mTOR, TDP-43, LC3I/II and

p62/SQSTM1. GAPDH was used as a positive loading control. (H) Densitometry analyses of the Western blot. Black dotted line indicates expression over

baseline control sample. Statistical significance is denoted by *p<0.05, **p<0.005 and ***p<0.001.

https://doi.org/10.1371/journal.pone.0176919.g004
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Furthermore, we examined the effects of AT101, an orally available and well-tolerated natu-

ral BH3-mimetic that activates Bax and also induces mitochondrial Smac release in our in
vitro model [75]. Here, we treated our cells with 10 μM AT101 and show reduction in VCP

pathology marker TDP-43 and less so autophagy markers LC3 and p62/SQSTM1 when com-

pared to untreated patients (p<0.001) (Fig 4B, 4C, 4F, 4G and 4H).

Chloroquine is a lysosomotropic agent that prevents endosomal acidification [89]. Chloro-

quine inhibits autophagy as it raises the lysosomal pH, which leads to inhibition of both fusion

of autophagosome with lysosome and lysosomal protein degradation [90, 91]. To uncover if

chloroquine could reduce VCP pathology by inhibiting the formation of autolysosome, thought

to be the “classic” vacuole associated with VCP disease, we treated our cells with 10 μM of chlo-

roquine. Herein, we show chloroquine has no effect on VCP pathology markers TDP-43, LC3

and p62/SQSTM1 when compared to untreated patient myoblasts (Fig 5A–5C). These results

were confirmed by Western blot and densitometry (Fig 5F and 5G). Spautin-1 inhibits the activ-

ity of two ubiquitin-specific peptidases, USP10 and USP13, causing an increase in proteasomal

degradation of class III PI3 kinase complexes, which have been shown to regulate autophagy

[78]. To uncover if Spautin-1 could reduce VCP pathology by inhibiting autophagy downstream

of Akt and mTOR we treated our cells with 10 μM Spautin-1. We found Spautin-1 had no effect

on VCP pathology markers TDP-43, LC3 and p62/SQSTM1 when compared to the untreated

patient myoblasts (Fig 5A, 5B and 5D). These results were confirmed by Western blot and

Fig 5. Drug screening with autophagy inhibitors chloroquine, Spautin-1, and MHY1485 shows in patient VCP iPSC-derived myoblast lineages. (A)

Untreated differentiated control and (B) untreated patient derived myogenic lineages. Patient derived myogenic lineage were treated with either (C)

chloroquine (10 μM), (D) Spautin-1 (10 μM) or (E) MYH1485 (2 μM) for 24 hours. Subsequently, cells were stained with TDP-43, LC3 or p62/SQSTM1

antibodies. Representative merged overlay images of stained iPSC with DAPI. Scale: Bar = 25 μm. White dotted lines represent areas of increased or

decreased expressions. (F) Western blot analysis of iPSC-derived control and patient myoblasts probed against TDP-43, LC3-I/II, and p62/SQSTM1

antibodies. GAPDH was used as a positive loading control. (G) Densitometry analyses from Western blot. Black dotted line indicates expression over

baseline control sample.

https://doi.org/10.1371/journal.pone.0176919.g005
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densitometry (Fig 5F and 5G). MHY1485 is an mTOR activator that potently inhibits autop-

hagy by suppression of fusion between autophagosomes and lysosomes [79]. To uncover if

MHY1485 could reduce VCP pathology by inhibiting autophagy by inducing mTOR we

treated our cells with 2μM MHY1485. In this report, we show MHY1485 has no effect on

VCP pathology markers LC3 and p62/SQSTM1 when compared to untreated patient myo-

blasts (Fig 5A, 5B and 5E), however, TDP-43 was seen to be expressed correctly in the nucleus

(Fig 5A, 5B and 5E). Although, spatial expression of TDP-43 was corrected, interestingly

Western blot revealed its overexpression in our patient cells treated with MHY1485 (Fig 5F

and 5G). LC3 and p62/SQSTM1 overexpression levels were confirmed by Western blot and

densitometry (Fig 5F and 5G).

Discussion

Human induced pluripotent stem cells (hiPSCs) represent a versatile model system for study-

ing diseases that affect a number of organs. When given the proper stimuli, hiPSCs can be dif-

ferentiated into a number of desired cell types and tissues. Moreover, the consistency,

expandability, and purity of the hiPSCs provide a valuable tool to screen and test drugs in
vitro. Therefore, developing robust iPSC models of both rare and common disorders is an

excellent option for those diseases requiring poorly accessible and/or limited availability tissue

samples. Due to the pleiotropic nature of VCP disease, we recently established iPSC lines to

elucidate the pathobiology and cellular and molecular mechanisms underlying this disease

[55]. In the present study, we report the differentiation of VCP disease-specific hiPSCs into a

myogenic lineage for the discovery of the underlying molecular mechanisms and the develop-

ment of a drug-screening assay offering the significant possibility to intervene in the early

stages of the disease. Ultimately, knowledge of the cellular and molecular signaling pathways

affected by VCP mutations provides future promise in the development, assessment, and clini-

cal application of pharmacological and gene therapies to prevent or slow down the progression

of VCP disease.

We previously reported differentiation and characterization of VCP patient hiPSCs into a

neural lineage [55]. These differentiated neural cells showed all the typical hallmarks of VCP

pathology, including increased p62/SQSTM1, LC3-I/II and TDP-43. Inclusion body myopathy

(IBM) is the most common feature present in 80–90% of affected VCP patients [5, 31]. Typi-

cally, the progressive muscle weakness rapidly advances resulting in patient mortality from

cardiomyopathy or respiratory failure between approximately 40–60 years of age. The differen-

tiation of human iPSCs into skeletal muscle cells has been challenging with methods ranging

from serial media changes to viral infection of myogenic genes such as Pax7 [47, 64, 68]. Of

note, an interesting observation we made was that staining with early myogenic precursor

markers such as MYF-5, desmin, and Pax7 illustrated increased expression from Day 21, and

they are still expressed at Day 50. Late myogenic markers (skeletal markers), such as MyoD

and MYH2 were expressed by Day 50, however, not observed at earlier time points. However,

a literature search suggested that Pax7 was expressed in the cytoplasm during different cell

cycle stages and development [92, 93]. We hypothesize that these cells, aptly named myogenic

lineage cells are not fully differentiated yet. However, we do believe they are suitable for our

purpose of drug screening as they do display ‘classic’ VCP-associated disease pathology fea-

tures. The reduced desmin organization and reduced MyoD expression are likely due to these

cells not reaching full maturity.

To the best of our knowledge, this is the first article to fully differentiate patient-derived

hiPSCs into a myogenic lineage modeling VCP-associated myopathy. These cells are 92% posi-

tive for CD56+ (myogenic markers) and mesenchymal stem cell markers (MSC+). Notably, we
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used these myogenic lineages to characterize the phenotypical features observed in humans.

VCP disease muscle pathology is characterized by the presence of rimmed vacuoles, ubiquitin

and TDP-43 positive inclusions and increased autophagy markers p62/SQSTM1 and LC3 indi-

cating a potentially dysfunctional autophagy pathway. Autophagy plays an important role in

degrading defective organelles. Recent studies have shown that p62/SQSTM1 interacts with the

autophagic effector protein LC3-I/II to mediate the autophagic uptake of aggregated proteins.

Previous researchers have shown that expression of VCP disease mutant proteins results from

autophagosome accumulation and that these autophagosomes fail to mature into autophagoly-

sosomes and degrade LC3; indicating autophagy is impaired in VCP disease [94]. Thus, we

characterized the autophagy cascade and observed that the differentiated VCP myogenic line-

age demonstrated a significant increase in the expression of p62/SQSTM1, LC3-I/II, and ubi-

quitin in comparison with the control myogenic lineage. There was also translocation of TDP-

43 from the nucleus to the cytoplasm, another hallmark of VCP pathology thus suggesting that

this patient derived myogenic lineage displays the typical of VCP disease pathology.

In the present study, we also examined the development of a rapid drug-screening assay to

understand the true interactions of the underlying molecular mechanisms of VCP disease and

how to target them in hopes to discover potential treatments for VCP disease. Our work as

well as work from others indicating dysfunctional autophagy as the instigator of VCP muscle

pathology led us to use our drug screening assay to target the autophagy pathway with potent

inhibitors and activators [5, 30, 33, 83, 94].

Firstly, we investigated the activation of autophagy by treating our differentiated cells with

autophagy stimulators Rapamycin, Perifosine, or AT101 [71–73, 75]. Rapamycin a key mod-

ulator of the mammalian Target of Rapamycin (mTOR) pathway has shown significant prom-

ise and neuroprotection in Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and

spinocerebellar ataxia type 3 [71, 72, 85]. Rapamycin associates with mTORs intracellular

receptor FKBP12 [95]. The FKBP12-rapamycin complex binds directly to the FKBP12-Rapa-

mycin Binding (FRB) domain of mTOR, inhibiting its activity [95]. mTOR activation inhibits

autophagy, however it simultaneously stimulates protein synthesis and cell growth which can

result in accumulations of damaged proteins and organelles [86]. The accumulation of dam-

aged proteins and the failure of autophagy clearing is a ‘hallmark’ of VCP disease and we

hypothesized that Rapamycin treatment may ameliorate the dysfunctional autophagy cascade

as it is upstream of VCP involvement in autophagy. Treatment with 10 μM of Rapamycin for

24 hours showed a reduction in the “classic” VCP pathology markers TDP-43, LC3 and p62/

SQSTM1 when compared to untreated patient, mirroring untreated control. Several publica-

tions have now shown that serine-threonine protein kinase (AKt) also known as protein kinase

B and VCP interact and that VCP is a target of Akt signaling. Vandermoere et al. (2006) identi-

fied VCP as an essential target of Akt signaling and demonstrated that Akt and VCP co-immu-

noprecipitated and co-localized under Akt activation in MCF-7 breast cancer cells. In

addition, they identified Ser-351, Ser-745, and Ser-747 as Akt phosphorylation sites on VCP

via site-directed mutagenesis [87, 88]. We, therefore, hypothesized that inhibition of Akt may

be beneficial for VCP disease. Perifosine is an alkylaphospholipid which induces cell cycle

arrest and apoptosis through the inhibition of Akt [73]. mTOR is a target for Akt, the activa-

tion of which suppresses autophagy. In the event of ER stress such as in VCP disease, mTOR is

innately downgraded to suppress protein production. All treatments with autophagy activators

result in further reduction in mTOR, we hypothesize that by mechanistically reducing protein

production mTOR inhibitors can improve VCP disease pathology. Perifosine has also been

shown to exhibit anti-cancer properties, in bladder cancer, hepatocellular carcinoma and lung

cancer [73, 96–98]. Treatment with 80 μM Perifosine showed reduction in the “classic” VCP

pathology markers TDP-43, LC3I/II and p62/SQSTM1 when compared to untreated patient,
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mirroring the untreated controls. Our last autophagy inducer, AT101, is an orally available and

well-tolerated natural BH3-mimetic that activates Bax and also induces mitochondrial Smac

release [75]. AT101 has shown anti-tumor activity as a single agent and in combination with stan-

dard anticancer drugs in a variety of tumor models [74]. We hypothesize that as AT101 works

downstream of both Rapamycin and Perifosine, it may be more effective in ameliorating VCP

pathology. We found treatment with 10 μM AT101 showed a reduction in VCP pathology mark-

ers TDP-43, LC3 and p62/SQSTM1 when compared to untreated patient, mirroring untreated

control. The results from these drug studies suggest that autophagy modulation, in particular

autophagy activation agents, may be beneficial for patients suffering from VCP disease myopathy.

Secondly, we investigated the inhibition of autophagy by treating our differentiated cells

with autophagy inhibitors chloroquine, Spautin-1 and MHY1485. Chloroquine is a lysosomo-

tropic agent that prevents endosomal acidification [89]. Chloroquine inhibits autophagy

by raising the lysosomal pH, which leads to inhibition of both fusion of autophagosome with

lysosome and lysosomal protein degradation [90, 91]. Herein, we demonstrate chloroquine

has no effect on VCP pathology markers TDP-43, LC3 and p62/SQSTM1 when compared to

untreated patient. Our second treatment was with Spautin-1 which promotes the degradation

of Vps34 PI3 kinase complexes by inhibiting two ubiquitin specific peptidases, USP10 and

USP13, which target the Beclin1 subunit of Vps34 complexes. Since USP10 mediates the de-

ubiquitination of p53, regulating de-ubiquitination activity of USP10 and USP13 by Beclin1

provides a mechanism for Beclin1 to control the levels of p53. By this mechanism, Spautin-1

increased cancer cell death in the setting of nutrient deprivation when autophagy would nor-

mally act as a survival mechanism in these metabolically stressed cells [78]. We discovered

treatment with Spautin-1 (10 μM for 24 hours) had no effect on VCP pathology markers TDP-

43, LC3 and p62/SQSTM1 when compared to untreated patient. Lastly we tested MHY1485,

which is an mTOR activator that potently also inhibits autophagy by suppression of fusion

between autophagosomes and lysosomes [79]. To uncover if MHY1485 could reduce VCP

pathology, by inhibiting autophagy, by inducing mTOR, we treated our cells with MHY1485.

We hypothesized that it could have a negative effect, as previous studies showed MHY1485

leads to the accumulation of LC3-I/II and enlargement of the autophagosomes in a dose- and

time- dependent manner [79]. Interestingly, we demonstrated that treatment with MHY1485

(2 μM for 24 hours) had a modest beneficial effect on VCP pathology with a decrease in mark-

ers LC3 and p62. Also, TDP-43 was observed to be expressed in the correct location (nucleus),

mirroring our control cells. However, although spatial expression of TDP-43 was corrected,

Western blot revealed it is still overexpressed in our patient cells treated with MHY1485.

Future studies with varying MHY1485 doses and treatment times will be needed to uncover if

MHY1485 could be beneficial for VCP patients. Future in-depth studies into the autophagy

and mitophagy cascades, cell survival and animal studies to investigate the effects of these

drugs on muscle function and structure need to be completed.

Summary and conclusions

Herein, we report the successful differentiation of VCP patient specific hiPSCs into myoblasts

exhibiting phenotype and dysfunction characteristics of typical VCP disease autophagy and

thus providing a novel platform for a rapid drug screening. Evaluation of the ameliorative

effects of several autophagy modifiers using these cells as a drug-screening platform revealed

that some autophagy modulators may hold promise for VCP disease myopathy. The VCP

hiPSC model system offers a unique platform in understanding the underlying pathophysiology

molecular mechanisms and vistas in improving muscle integrity and/or slowing down the pro-

gression of muscle wasting in patients with VCP and related neurodegenerative diseases.
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