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Predictive coding and stochastic resonance 
as fundamental principles of auditory 
phantom perception

Achim Schilling,1,2 William Sedley,3 Richard Gerum,2,4 Claus Metzner,1

Konstantin Tziridis,1 Andreas Maier,5 Holger Schulze,1 Fan-Gang Zeng,6

Karl J. Friston7 and Patrick Krauss1,2,5

Mechanistic insight is achieved only when experiments are employed to test formal or computational models. 
Furthermore, in analogy to lesion studies, phantom perception may serve as a vehicle to understand the fundamental 
processing principles underlying healthy auditory perception. With a special focus on tinnitus—as the prime 
example of auditory phantom perception—we review recent work at the intersection of artificial intelligence, 
psychology and neuroscience. In particular, we discuss why everyone with tinnitus suffers from (at least hidden) 
hearing loss, but not everyone with hearing loss suffers from tinnitus.
We argue that intrinsic neural noise is generated and amplified along the auditory pathway as a compensatory mech
anism to restore normal hearing based on adaptive stochastic resonance. The neural noise increase can then be mis
interpreted as auditory input and perceived as tinnitus. This mechanism can be formalized in the Bayesian brain 
framework, where the percept (posterior) assimilates a prior prediction (brain’s expectations) and likelihood (bot
tom-up neural signal). A higher mean and lower variance (i.e. enhanced precision) of the likelihood shifts the poster
ior, evincing a misinterpretation of sensory evidence, which may be further confounded by plastic changes in the 
brain that underwrite prior predictions. Hence, two fundamental processing principles provide the most explanatory 
power for the emergence of auditory phantom perceptions: predictive coding as a top-down and adaptive stochastic 
resonance as a complementary bottom-up mechanism.
We conclude that both principles also play a crucial role in healthy auditory perception. Finally, in the context of 
neuroscience-inspired artificial intelligence, both processing principles may serve to improve contemporary ma
chine learning techniques.
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Introduction
The ultimate goal of neuroscience is to gain a mechanistic under
standing of how information is processed in the brain. Since the 
early beginnings of the scientific study of the brain, lesions or 
more broadly anatomical damages and their physiological effects 
have provided pivotal insights into brain function. Analogously, 
phantom perception may serve as a vehicle to understand the fun
damental processing principles underlying normal perception. The 
prime example of an auditory phantom perception is tinnitus, 
which is believed to be caused by anatomical damage along the 
auditory pathway. Here we provide a mechanistic explanation of 
how tinnitus emerges in the brain: namely, how the neural and 
mental processes underlying perception, cognition and behaviour 
contribute to and are affected by the development of tinnitus. 
These insights may not only point to strategies how tinnitus may 
be reversed or at least mitigated, but also how auditory perception 
is implemented in the brain in general.

While there is broad agreement in the auditory neuroscience 
community on these goals, there is far less agreement on the way 
to achieve them. There is still a popular belief among neuroscienti
fic and psychological tinnitus researchers that we are largely data- 
driven. In other words, generating large, multi-modal and complex 
datasets—analysed with advanced data science methods—are be
lieved to lead to fundamental insights into how tinnitus emerges. 
Indeed, in the last decades we have assembled a broad database, 
which has inspired models that make quantitative predictions. 
These predictions scaffold new experimental paradigms that aim 
to unravel the mechanisms of tinnitus perception. In the following, 
we summarize some of the main findings in tinnitus research, over 
the last decades, and then turn to strategic questions about how to 
leverage these advances, from the perspective of formal modelling.

Some universal correlations between hearing loss, tinnitus and 
neural hyperactivity in the auditory system have been found in 
both animal and human studies. These reproducible findings can 
be considered as the common denominator of tinnitus research 
and could offer the minimal starting point for theoretical consid
erations. Tinnitus is a phenomenon arising somewhere along the 
auditory pathway, but not in the inner ear.1 Thus, it can be shown 
that the spontaneous activity of neurons along the auditory path
way is increased after hearing loss,2–4 whereas the damaged coch
lea transmits less information to the higher auditory nuclei.5,6

However, it has been argued that not all alterations in neural activ
ity in animal models, which were caused by an acoustic trauma, are 
necessarily related to tinnitus.1,7 Although there exist some behav
ioural tests to check for the putative presence of a tinnitus percept 
based on conditioning8,9 or startle responses,10–12 the reliability of 
these paradigms remains controversial.7,13 Thus, studies on human 
subjects complement these findings. In several recent studies, it 
was shown that the tinnitus pitch lies within the frequency range 
of the hearing loss and thus it is an obvious assumption 
that tinnitus can be regarded as a within frequency channel phe
nomenon.14–17 Potentially, it is sufficient to assume that the me
chanisms causing tinnitus occur in each impaired frequency 

channel individually and that crosstalk between the different fre
quency channels along the tonotopic map is not crucial to explain 
the basic principles behind tinnitus development.18

This assumption is supported by recent findings e.g. by Dalligna 
and coworkers,14 who report that the tinnitus is directly centred at 
the frequency of the largest hearing loss. For the sake of complete
ness, it should be mentioned that other studies on tinnitus and its 
relation to hearing loss found a special emphasis of the edges of the 
impaired frequency range on the tinnitus pitch.19-21 However, re
cently, Keppler and coworkers15 contradicted these findings and 
stated that there is no correlation between tinnitus frequency 
and the edges of the impaired frequency ranges.

Indeed, the above neural correlates of tinnitus and hearing loss 
are just a small distillation of all studies that aspire to unravel me

chanisms that underpin tinnitus, but these findings are robust and 

constitute the basis of most theoretical and computational models 

of tinnitus. In the 1990s the first computational models of tinnitus 

emerged. These models considered decreased lateral inhibition— 

due to deficient auditory input (i.e. cochlear damage)—as the 

main cause of tinnitus. Gerken22 created a feed-forward brainstem 

model and suggested the inferior colliculus to be the crucial struc

ture for tinnitus development. Kral and Majernik,23 as well as 

Langner and Wallhäuser-Franke24 pursued computational models, 

based on decreased lateral inhibition. Bruce and coworkers25 devel

oped these models further and implemented lateral inhibition in a 

spiking recurrent neural network. In a subsequent step, the princi

ples were implemented in a model of the auditory cortex based on 

spiking neurons.26

Besides lateral inhibition, homeostatic plasticity27 and central 
gain changes are hypothesized to be the cause for tinnitus emer
gence and manifestation. These hypotheses are based on the idea 
that incoming neuronal signals are amplified, in order to compen
sate the decreased input from the damaged cochlea. Thus, Parra 
and Pearlmutter28 implemented that principle in an ‘abstract’ mod
el, where they simply defined several frequency channels with a 
certain input. The output was scaled with the average, which 
means that a decreased input leads to a higher scaling or amplifica
tion factor, respectively. However, they did not consider a plausible 
neural implementation of their mathematical model. Schaette and 
Kempter29-31 further developed several computational models, in
vestigating the effects of central gain increase on tinnitus emer
gence. Finally, Chrostowski and coworkers32 developed a cortex 
model to investigate central gain changes in the cortex (for detailed 
review on computational tinnitus models see Schaette and 
Kempter1).

In 2013, Zeng33 introduced a model that argues that tinnitus is 
not caused by increased central gain, which means a multiplicative 
amplification of the signal, but by increased central noise, which 
means an additive neural noise, that is intrinsically generated. 
The idea of an additional intrinsic or extrinsic noise as an explan
ation for tinnitus has gained some popularity in recent years e.g. 
Koops and Eggermont.34 However, Zeng raised the question why 
the brain should increase central noise levels. This question was 
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addressed in 2016 by Krauss and coworkers,18 who showed that in
ternally generated neural noise could partially restore hearing abil
ity after hearing loss through the effect of stochastic resonance.35-37

Stochastic resonance is a phenomenon in which the addition of 
noise to a non-linear system can improve its sensitivity to weak sig
nals. It occurs when a system—which is normally unable to detect 
weak signals—features an optimal level of noise that lifts the weak 
signals above the detection threshold. This is because the noise 
serves to ‘jiggle’ the system, making it easier for weak signals to 
cross a response threshold. However, the effect only works in a nar
row range, as the noise amplitude has to be tuned to an optimal le
vel. Noise amplitudes that are too low would not lift the 
subthreshold signal above the detection threshold. Conversely, 
noise amplitudes that are too high would significantly worsen the 
signal-to-noise ratio up to a level at which the signal disappears 
completely in the noise. Stochastic resonance has been observed 
in a variety of physical, biological and neural systems, (for overview 
cf. Koops and Eggermont34 and Krauss et al.35).

The idea behind the stochastic resonance model of auditory 
phantom perception (Erlangen model of tinnitus development) is 
that a subthreshold signal—from an impaired cochlea—is lifted 
stochastically above the detection threshold by adding uncorre
lated neural noise. In earlier studies it has been shown that human 
hearing may be enhanced beyond the absolute threshold of hearing 
by adding acoustic white noise to a subthreshold acoustic stimu
lus.38 The Erlangen model hypothesizes that this mechanism is 
also implemented in the dorsal cochlear nucleus (DCN) and that 
—instead of acoustic white noise—internally generated neural 
noise is added to the cochlea output, to lift it above the detection 
threshold.37 Recently, several studies have provided evidence that 
cross-modal stochastic resonance is a universal principle for en
hancing sensory perception.36,39,40

This stochastic resonance hypothesis is further supported by 
the finding that, on average, hearing thresholds are better in pa
tients suffering from hearing loss with tinnitus compared to a con
trol group of patients suffering from hearing loss but without 
tinnitus.19,41,42 Along the same line, the stochastic resonance effect 
as add-on to the central noise model may explain the Zwicker tone 
illusion,43-45 i.e. the perception of a phantom sound, which occurs 
after stimulation with notched noise, and why auditory sensitivity 
for frequencies adjacent to the Zwicker tone are improved beyond 
the absolute threshold of hearing during Zwicker tone perception.46

Furthermore, recently, a crucial prediction of the stochastic reson
ance model of tinnitus development was confirmed experimentally 
by using brainstem audiometry47 and assessing behavioural signs 
of tinnitus10 in an animal model: simulated transient hearing loss 
improves auditory thresholds and leads, as a side effect, to the per
ception of tinnitus.48 Both the model from Zeng and the model from 
Krauss et al.,35 are not based on a particular or specified neural net
work architecture. However, in 2020, Schilling and coworkers de
veloped a hybrid model based on a biophysically realistic model 
of the cochlea and the DCN combined with a deep neural network 
representing all further processing stages along the auditory path
way. In this model, intrinsically generated noise could indeed sig
nificantly increase speech perception via SR.49 Recently, a similar 
hybrid neural network model has led to further insights into the 
mechanisms of impaired speech recognition caused by hearing 
loss.50

In parallel to the intrinsic neural noise models from Zeng and 
Krauss and colleagues, Sedley and coworkers developed a concep
tual model, which describes tinnitus as arising from a prediction er
ror of the brain.51,52 This model is based on the idea that the brain is 

a Bayesian prediction machine, trying to minimize prediction er
rors or free energy,53,54 a principle also known as predictive coding. 
According to the theoretical framework of predictive coding, the 
brain’s main function is to generate and test predictions about in
coming sensory information. In particular, the brain is constantly 
generating hypotheses or predictions about what is happening in 
the environment, based on past experiences, and then comparing 
these predictions with incoming sensory data. The ensuing predic
tion error is then thought to drive representations about states of 
affairs generating sensations towards better predictions; thereby 
resolving prediction errors.

This predictive coding model of tinnitus addresses the issue of 
whether or not an individual perceives tinnitus as an interplay be
tween existing auditory predictions (which, by default, do not fea
ture tinnitus) and spontaneous activity (i.e. noise) in the central 
auditory pathway (considered a ‘tinnitus precursor’). Whether the 
posterior (i.e. percept) crosses the threshold for perception depends 
on both of these factors, including their mean values (e.g. firing 
rate) and their precision. More recently, by using a hierarchical 
Gaussian filter, a computational instantiation of this model has 
been able to explain phenomenology in individual tinnitus subjects 
and predict their residual inhibition characteristics.55 Despite the 
fact that in recent years tinnitus research converged to the three 
main models described above (central noise, central gain, predict
ive coding), it has to be stated that there exist several further com
putational simulations and approaches trying to explain and 
characterize tinnitus development based e.g. on information theor
etical considerations (see Dotan and Shriki56 and Gault et al.57).

Besides the computational models that rest upon a mathemat
ical formulation, there exist several phenomenological models, 
such as the thalamo-cortical dysrhythmia model,58,59 the thalamic 
low-threshold calcium spike model,60 the fronto-striatal gating hy
pothesis61,62 and the overlapping subnetwork theory.63,64 Finally, 
there exists another Bayesian brain/predictive coding model of tin
nitus, which is somewhat the polar opposite to what Sedley and 
Friston were arguing for. There, tinnitus is not believed to arise 
from spontaneous noise increase, which higher predictions go on 
to accept, but on the contrary that tinnitus arises from reduced in
put to the auditory cortex, leading it to ‘make up’ or ‘fill in’ an audi
tory percept from auditory memory.65 However, this assumption 
contradicts the findings that spontaneous neural activity is in
creased along the entire auditory pathway starting from the DCN 
after hearing loss.2-4

As there exist various models of tinnitus development, which 
are far too numerous to be treated in detail in this study, criteria 
are needed to define which models are apt to understand tinnitus 
development. In their review paper, Schaette and Kempter1 define 
three major criteria for the quality of a model: first—and in line with 
Popper’s ideas66—a model should be falsifiable, which means there 
should be experimental paradigms, which could be used to test a 
certain candidate model. Second, a model should make quantita
tive predictions, as opposed to purely qualitative, often vague, pre
dictions, cf. also Lazebnik.67 Third, a model should be as simple as 
possible, i.e. contain the smallest number of parameters and as
sumptions as possible, a principle called Ockham’s razor.68

Hence, if two models explain experimental data equally well, the 
simpler one has to be considered the better one.

With the huge progress of artificial intelligence (AI) during the 
last decade, which is mainly due to increased computing power, a 
new discipline has been founded, called Cognitive Computational 
Neuroscience (CCN) as an integrative endeavour at the intersection 
of AI, cognitive science and neuroscience.69,70
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Here, we first discuss the opportunities and limitations of this 
new research agenda. In particular, we present key thought experi
ments that highlight the major challenges on the road towards a 
CCN of tinnitus. In the light of these considerations, we subse
quently review current models of tinnitus and assess their explana
tory power. Finally, we present an integration of those models that 
we consider most promising and point towards a unified theory of 
tinnitus development.

Three challenges ahead
The challenge of developing a common formal 
language

In 2002, Yuri Lazebnik compared the biologists’ endeavour—of try
ing to understand the building blocks and processes of living cells— 
with the problems that engineers typically deal with. In his opinion 
paper ‘Can a biologist fix a radio?—Or, what I learned while studying 
apoptosis’, Lazebnik argued that many fields of biomedical research 
at some point reach 

‘a stage at which models, that seemed so complete, fall apart, predictions 

that were considered so obvious are found to be wrong, and attempts to 

develop wonder drugs largely fail. This stage is characterized by a sense 

of frustration at the complexity of the process’.67

Subsequently, Lazebnik67 discussed a number of intriguing ana
logies between the physical and life sciences. In particular, he iden
tified formal language as the most important difference between 
the two. Lazebnik argues that biologists and engineers use quite 
different languages for describing phenomena. On the one hand, 
biologists draw box-and-arrow diagrams, which are—even if 
a certain diagram makes overall sense—difficult to translate 
into quantitative assumptions, and hence limits its predictive or 
investigative value.

Indeed, these thoughts fit to the criterion for a ‘good model’ as 
pointed out by Schaette and Kempter,1 i.e. that a model should 
make quantitative predictions. However, on the other hand a mod
el should be as simple as possible and understandable, which 
means that it is important to find a compromise between too 
fine-grained and too coarse-grained descriptions of the system to 
be explained (see Marr’s levels of analysis in Fig. 1A, based on 
Marr and Poggio71).

Lazebnik also remarks that scientific assumptions and conver
sations are often ‘vague’ and ‘avoid clear, quantifiable predictions’. 
A freely adapted example drawn from Lazebnik’s paper67 would be 
a statement like 

‘an imbalance of excitatory and inhibitory neural activity after 

hearing-loss appears to cause an overall neural hyperactivity, which in 

turn seems to be correlated with the perception of tinnitus’.

Descriptions of electrophysiological findings are an important 
starting point for hypothesis generation, but they are no more 
than a first step. Description needs to be complemented with ex
planation and prediction (compare also the four main goals of 
psychology as described in Holt et al.72). Furthermore, Lazebnik 
urges a more formal common language for biological sciences, in 
particular a language that has the precision and expressivity found 
in engineering, physics or computer science. Any engineer trained 
in electronics for instance, is able to unambiguously understand a 
diagram describing a radio or any other electronic device. Thus, en
gineers can discuss a radio using terms that are common ground in 

the community. Furthermore, this commonality enables engineers 
to identify familiar functional architectures or motifs; even in a dia
gram of a completely novel device. Finally, due to the mathematical 
underpinnings of the language used in engineering, it is perfectly 
suited for quantitative analyses and computational modelling. 
For instance, a description of a certain radio includes all key para
meters of each component like the capacity of a capacitor, but 
not irrelevant parameters—that do not ‘matter’—like its colour, 
shape or size.

We emphasize that this does not mean that anatomical descrip
tions are useless in order to understand brain function, especially 
since there is a close correlation between structure and function 
in the brain. However, also in neurobiology there exist both kinds 
of detail: those that are crucial for understanding neural process
ing, and those that are not relevant variables.

Lazebnik concludes that ‘the absence of such language is the 
flaw of biological research that causes David’s paradox’, i.e. the 
paradoxical phenomenon frequently observed in biology and 
neuroscience that ‘the more facts we learn the less we understand 
the process we study’.67

Some conclusions for tinnitus research can be drawn from 
Lazebniks’ thoughts on a more formal approach in biological 
sciences. The ‘central gain’ and ‘homeostatic plasticity’ theory on 
tinnitus emergence is a good example how the communication 
on tinnitus research can be improved. For example, Roberts stated 
in 2018 that the increase of central gain is ‘increase of input output 
functions by forms of homeostatic plasticity’, which means that 
homeostatic plasticity is necessarily connected to central gain 
adaptations.73 In contrast to that, Schaette and Kempter1 state 
that central gain changes can occur within seconds and thus are 
not necessarily caused by homeostatic plasticity. Only on longer 
timescales, both effects can be regarded as ‘functionally equiva
lent’.1 Indeed, tinnitus research would profit from a unified termin
ology for the different concepts, in the best case, a mathematical 
formulation.

The challenge of developing a unified mechanistic 
theory

In 2014, Joshua Brown built on Lazebnik’s ideas and published the 
opinion article ‘The tale of the neuroscientists and the computer: 
why mechanistic theory matters’.74 In this thought experiment, a 
group of neuroscientists finds an alien computer and tries to figure 
out its function.

First, the MEG/EEG researcher tried to investigate the computer. 
She found that every time ‘when the hard disk was assessed, the 
disk controller showed higher voltages on average, and especially 
more power in the higher frequency bands’.74

Subsequently, the cognitive neuroscientist, i.e. the functional 
MRI researcher argued that MEG/EEG has insufficient spatial reso
lution to see what is going on inside the computer. He carried out 
a large number of experiments, the results of which can be sum
marized with the realization that during certain tasks, certain re
gions seem to be more activated and that none of these 
components could be understood properly in isolation. Thus, the 
researcher analysed the interactions of these components, show
ing that there is a vast variety of different task-specific networks 
in the computer.

Finally, the electrophysiologist noted, critically, that his collea
gues may have found coarse-grained patterns of activity, but it is 
still unclear what the individual circuits are doing. He starts to im
plant microelectrode arrays into the computer and probes 
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individual circuit points by measuring voltage fluctuations. With 
careful observation, the electrophysiologist identifies units re
sponding stochastically when certain inputs are presented, and 
that nearby units seem to process similar inputs. Furthermore, 
each unit seems to have characteristic tuning properties.

Brown’s tale ends with the conclusion that even though they 
performed a multitude of different empirical investigations, yield
ing a broad range of interesting results, it is still highly questionable 
whether ‘the neuroscientists really understood how the computer 
works’. 74

This provocative thought experiment speaks to some ideas that 
are relevant for tinnitus research.

In 2021, four leading scientists in tinnitus research discussed 
different tinnitus models at the Annual-Mid-Winter Meeting of 
the Association for Otolaryngology and diagnosed a ‘lack of consist
ency of concepts about the neural correlate of tinnitus’.75 Thus, a 
clearly defined theoretical framework is needed, which helps em
pirical groups to develop experimental paradigms suited to confirm 
or falsify different candidate models. To achieve that, inter- 
disciplinary teams or at least an inter-disciplinary approach is 
needed.76

The challenge of developing appropriate analysis 
methods

In 2017 Jonas and Kording implemented the thought experiment of 
Brown in an experimental study. In their study ‘Could a neuroscien
tist understand a microprocessor?’77 the authors address this ques
tion by emulating a classical microprocessor, the MOS 6502, which 
was implemented as the central processing unit (CPU) in the Apple 
I, the Commodore 64, and the Atari Video Game System, in the 
1970s and 1980s. In contrast to contemporary CPUs, like Intel’s 
i9-9900K, that consist of more than three billion transistors, the 
MOS 6502 only consisted of 3510 transistors. It served as a ‘model 

organism’ in the mentioned study, and performed three different 
‘behaviors’, i.e. three classical video games (Donkey Kong, Space 
Invaders and Pitfall).

The idea behind this approach is that the microprocessor, as an 
artificial information processing system, has three decisive advan
tages compared to natural nervous systems. First, it is fully under
stood at all levels of description and complexity, from its gross 
architecture and the overall data flow, through logical gate primi
tives, to the dynamics of single transistors. Second, its internal 
state is fully accessible without any restrictions to temporal or spa
tial resolution. And third, it offers the ability to perform arbitrary in
vasive experiments on it, which are impossible in living systems 
due to ethical or technical reasons. Using this framework, the 
authors applied a wide range of popular data analysis methods 
from neuroscience to investigate the structural and dynamical 
properties of the microprocessor. The methods used included— 
but were not restricted to—Granger causality for analysing task- 
specific functional connectivity, time-frequency analysis as a hall
mark of MEG/EEG research, spike pattern statistics, dimensionality 
reduction, lesioning and tuning curve analysis.

The authors concluded that although each of the applied meth
ods yielded results strikingly similar to what is known from neuros
cientific or psychological studies, none of them could actually 
elucidate how the microprocessor works, or more broadly speak
ing, was appropriate to gain a mechanistic understanding of the in
vestigated system.

Of course, there are potential criticisms of this study; for ex
ample, the brain is no computer and thus the drawn parallels are 
insufficient. Nevertheless, the idea to use a known model system 
to check for the validity of the evaluation procedures and common 
methods is a seminal principle. In 2009 Bennett and coworkers78

performed an even stranger experiment, when they used standard 
functional MRI and statistics techniques to analyse the brain activ
ity of a dead salmon, and indeed found a blood oxygenation level- 

Figure 1 Marr’s levels of analysis. (A) The scheme illustrates how measurement methods (such as MEG, EEG etc.), neuroscientific disciplines, as well as 
theoretical models can be structured in three different levels of analysis (according to Marr and Poggio71). (B) Tinnitus models in the light of the three 
levels of analysis. The grey bars illustrate how the different models cover the different levels of analysis (implementational, algorithmic, computation
al). The central noise model and the stochastic resonance model can be unified (1). The stochastic resonance model is at the algorithmic level as there 
exists a neural network model,38 which could reproduce the stochastic resonance effect in tinnitus context. The exact molecular mechanism, such as 
the specific neurotransmitter, are unknown and therefore it is not at the implementational level. The mathematical formulation of the predictive cod
ing model cannot be fully translated to a neural network model and therefore it is at the computational model. A neural network implementation of the 
predictive coding model would be algorithmic. Homeostatic plasticity is a collection of the molecular and thus implementational mechanisms behind 
the central gain model (2).
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dependent (BOLD) signal due to stimulation. At first glance, this ex
periment seemed to be at least useless if not even funny, but it was 
a wake-up call and indeed changed the way functional MRI data are 
evaluated. Nowadays there exist strict rules how to correct for mul
tiple testing in functional MRI research, to prevent pseudo-effects 
being a result of wrong statistical testing.78,79 In computational 
neuroscience and AI research, newly developed methods are al
ways applied to standard datasets such as the MNIST (Modified 
National Institute of Standards and Technology) database consist
ing of 60 000 images of hand-written digits80,81 or artificially gener
ated datasets with known properties, e.g. Schilling et al.,47,82 Zenke 
and Vogels83 and Krauss et al.84 The principle of using fully known— 
even trivial systems—to test the validity of tools, methods or even 
theories could be an important approach in tinnitus research. Even 
in computational modelling, simply implementing a system in all 
details without an underlying theory, which serves as a solid 
base, will not lead to a real understanding. Indeed, theory needs 
computational modelling, but the statement is also true the other 
way around.85 Therefore, it is crucial that computational models 
meet a basic standard—they should be capable of accurately ex
plaining well established and simple phenomena. This serves as a 
basis to verify their validity before drawing more complex 
conclusions.

Towards a cognitive computational 
neuroscience of tinnitus
What does it mean to understand a system?

If popular analysis methods fail to deliver mechanistic understand
ing, what are the alternative approaches? Most obviously, narrative 
hypotheses about the structure and function of the system under 
investigation will help. Instead of simply describing data features 
with correlations, coherence, Granger causality etc.—in the hope 
of learning something about the functioning of the system under 
investigation—it would be much more effective to have a concrete 
hypothesis about the structure or function architecture of the sys
tem and then search for empirical evidence for that and alternative 
hypotheses.

Note that this does not exclude explorative analysis of existing 
data, in order to generate new hypotheses. However, as we pointed 
out in a previous publication,86 to avoid statistical errors due to 
‘HARKing’ (‘hypothesizing after results are known’ is defined as 
generating scientific statements exclusively based on the analysis 
of huge datasets without previous hypotheses87,88 and to guarantee 
consistency of the results, it is necessary to apply e.g. resampling 
techniques such as subsampling.47 Alternatively, the well estab
lished machine learning practice of cross-validation: i.e. splitting 
the dataset into multiple parts before the beginning of the evalu
ation can be used. There, one data part is used for generating new 
hypotheses and another part for subsequently statistically testing 
these hypotheses. Accumulation of such data-driven knowledge 
may finally lead to a new theory.

Ideally, the verbally defined (narrative) hypotheses to be experi
mentally tested would be derived from such an underlying theory. 
As Kurt Lewin, the father of modern experimental psychology, 
pointed out: ‘There is nothing so practical as a good theory’.89 If 
we had theorized that the microprocessor from the thought experi
ment above performs arithmetic calculations, we could have, e.g. 
derived the hypothesis that there must be something like 1-bit ad
ders, and could have searched for them specifically.

Conversely, Allan Newell, one of the fathers of artificial intelli
gence, stated that ‘You can‘t play 20 questions with nature and 
win’.90 This suggests that testing one narrative hypothesis after an
other will never lead to a mechanistic understanding. Therefore, 
this raises the fundamental question of what it actually means to 
‘understand’ a system.

Yuri Lazebnik argued that understanding of a system is 
achieved when one could fix a broken implementation: 

‘Understanding of a particular region or part of a system would occur 

when one could describe so accurately the inputs, the transformation, 

and the outputs that one brain region could be replaced with an entirely 

synthetic component’.67

In engineering terms, this understanding can be simply de
scribed as y = f (x), where x is the input, y is the output and f is the 
transformation.

According to David Marr, one can seek to understand a system 
at (at least) three complementary levels of analysis.71 He distin
guished the computational, the algorithmic and the implementa
tional level of analysis (Fig. 1A). The computational level is the 
most coarse-grained level of analysis. It asks what computational 
problem is the system seeking to solve, that results in the observed 
phenomena; in our context, phantom perceptions like tinnitus. 
This level of analysis is addressed by the fields of psychology and 
cognitive neuroscience. In contrast, the implementational level re
presents the most fine-grained description of a system. Here, the 
system’s concrete physical layout is analysed. In computer science 
and engineering, this corresponds to the exact hardware architec
ture and the individual software realization, with a particular pro
gramming language. In the brain, where there exists no clear 
distinction between software and hardware (or wetware), this level 
of description corresponds to the structural design of ion channels, 
synapses, neurons, local circuits and larger systems, and the 
physiological processes these components are subject to. This level 
of analysis can be considered as the hallmark of physiology and 
neurobiology. Finally, the algorithmic level takes an intermediate 
position between the previously described levels. It is about which 
algorithms—that are physically realized at the implementational 
level—the system employs to manipulate its internal representa
tions, in order to solve the tasks and problems identified at the com
putational level. In computer science, the algorithmic level would 
be described independently of a specific programming language 
by abstract pseudocode.

Indeed, there are ways of moving between the different levels of 
description, afforded by ‘cognitive computational models’91 and 
‘cognitive computational neuroscience’.92 Thus, in both fields, cog
nitive processes are simulated or recapitulated in silico, however, 
cognitive computational neuroscience uses—in contrast to ‘cogni
tive computational models’—neural networks as basis of the simu
lations. Therefore, cognitive computational neuroscience gives us 
an idea how processing might work algorithmically in the brain. 
Note that the similar terms (cognitive computational neuroscience 
and cognitive computational models) reflect the long—and not al
ways straight-forward—history of science of mind. Indeed, very re
cently the term cognitive computational neuroscience is more and 
more replaced by the term neuroAI.93,94

We argue that analysis at the algorithmic level is most crucial to 
understand auditory phantom perceptions like tinnitus or Zwicker 
tone. Only by knowing the algorithms that underlie normal audi
tory perception, we will gain a detailed understanding of what 
exactly happens under certain pathological conditions such as 
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hearing loss, and which processes eventually cause the develop
ment of tinnitus, so that we can mitigate or reverse these processes.

Which discipline addresses this level of analysis in tinnitus re
search? Computational neuroscience comes to mind immediately. 
However, in ‘good old-fashioned’ computational neuroscience, 
great efforts have been made to model the physiological and bio
physical processes at the level of single neurons, dendrites, axons, 
synapses or even ion channels, leading to increasingly complex 
computational models. These models, mostly based on systems 
of coupled differential equations, can mimic experimental data in 
great detail. Perhaps the most popular among these models is the 
famous Hodgkin-Huxley model,95 which reproduces the temporal 
course of the membrane potential of a single neuron with impres
sive accuracy. These types of models are of great importance to 
deepen our understanding of fundamental physiological processes. 
However, in our opinion, they also must be considered as belonging 
to the implementational level of analysis, since they merely de
scribe the physical realization of the algorithms, rather than the al
gorithms themselves.

In the following section, we will discuss emerging research di
rections that speak to the algorithmic level of analysis in the con
text of tinnitus research.

The integration of artificial intelligence in tinnitus 
research

As we argued above, hypothesis testing alone does not lead to a 
mechanistic understanding. Instead, it needs to be complemented 
by the construction of task-pointing computational models, since 
only synthesis in a computer simulation can reveal the interaction 
of proposed components entailed by a mechanistic explanation, i.e. 
which algorithms are realized, and whether they can account for 
the perceptual, cognitive or behavioural function in question. As 
Nobel laureate and theoretical physicist Richard Feynman pointed 
out: ‘What I cannot create, I do not understand’.

Along these lines, one may consider extending the four goals of 
psychology, i.e. to describe, explain, predict and change cognition 
and behaviour,72 by adding a fifth one: to build synthetic cognition 
and behaviour. This is in the tradition of ‘Walter’s tortoises’,96-99

one major attempt to build synthetic cognition and behaviour using 
analogue electronics. This approach could be revisited in the 21st 
century, using artificial deep neural networks.

As pointed out in previous publications,69,100-103 these computa
tional models can be based on constructs from AI, for example deep 
learning.104,105 A related development in AI rests upon the explicit 
use of generative models, leading to formulations of action and per
ception, in terms of predictive coding and active inference. 
Examples of their application to auditory processing and hallucina
tions range from examining the role of certain oscillatory frequen
cies in message passing, through to simulations of active listening 
and speech perception.106-112

Artificial deep neural networks are designed to solve problems 
clearly defined at the computational level of analysis, in our case 
auditory perception tasks like, e.g. speech recognition. These mod
els are precisely defined at an algorithmic level, which is complete
ly independent from any individual programming language or 
specific software library, i.e. the implementational level of analysis. 
Hence, these algorithms could, at least in principle, also be realized 
in the brain as biological neural networks. Once we have built such 
models and algorithms in computer simulations, we can subse
quently compare their dynamics and internal representations 
with brain—and behavioural—data in order to reject or adjust 

putative models, thereby successively increasing biological fidel
ity.69 Vice versa, the ensuing models may also serve to generate 
new testable hypotheses about cognitive and neural processing in 
auditory neuroscience.

As mentioned above, this research approach—combining AI, 
cognitive science and neuroscience—has been coined as CCN.69

Furthermore, besides the advantages discussed above, this ap
proach furnishes the opportunity for in silico testing of new, puta
tive treatment interventions for conditions like tinnitus, prior to 
in vivo experiments. In this way, CCN may even serve to reduce 
the number of animal experiments.

However, we note that CCN of auditory perception is not only 
beneficial for neuroscience. As noted in Hassabis et al.,113 under
standing biological brains could play a vital role in building intelli
gent machines, and that current advances in AI have been inspired 
by the study of neural computation in humans and animals. Thus, 
CCN of auditory perception may contribute to the development of 
neuroscience-inspired AI systems in the domain of natural lan
guage processing.114 Finally, neuroscience may even serve to inves
tigate machine behaviour,115 i.e. illuminate the black box of deep 
learning.116,117 However, so far, most AI research does not even at
tempt to mimic or understand the brain or biology in general.

In other neuroscientific strands, such as research on spatial 
navigation, the fusion of classical neuroscience and AI has already 
led to major breakthroughs and still promises further advances in 
the future.118 For example, Stachenfeld and colleagues developed 
a mathematical framework for the function of place and grid cells 
in the entorhinal-hippocampal system based on predictive cod
ing.119,120 On the other hand, researchers from Google DeepMind 
developed artificial agents based on Long-Short-Term-Memory 
(LSTM)121,122 neurons, in which place and grid cells emerged auto
matically.123 In another AI model, Gerum and coworkers124 showed 
that spatial navigation in a maze could be achieved by very small 
neural networks, which are trained with an evolutionary algorithm 
and are evolutionary pruned.

Towards a unified model of tinnitus 
development
The hierarchy of the different tinnitus models

In the following section, we describe a path towards a CCN of tin
nitus research. Thus, in a first step we have to go back to 
Labzebnik67 and find a way to communicate efficiently and formal
ly about various tinnitus models. Extant tinnitus models can be 
sorted by the different levels of analysis according to Marr and 
Poggio.71 This means that each model can be assigned to one or 
more of the three categories (Fig. 1B): implementational level (mo
lecular mechanisms, synapses etc.), algorithmic level (how neural 
signals are translated to information processing) and computation
al level (what are the basic mathematical imperatives for process
ing; see also ‘What does it mean to understand a system?’).

The three levels of analysis can be easily illustrated with the 
Lateral Inhibition Model of tinnitus, which describes tinnitus as a 
result of decreased lateral inhibition23,125 due to decreased cochlear 
input; e.g. caused by a noised-induced cochlear synaptopathy.6

Thus, the lateral inhibition model explains tinnitus on all different 
levels of description. The implementational level (see Marr’s level 
of analysis in Fig. 1A), which corresponds to the molecular mechan
isms of lateral inhibition, is nearly fully understood. For example, in 
the DCN cartwheel cells release glycine to inhibit fusiform cells, 
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which are excitatory.126-128 The computational role of inhibition is 
to narrow the input range of the fusiform cells.128 To provide 
such contrast enhancement via lateral inhibition, neurons sur
rounding a certain excitatory neuron, which receives auditory in
put, are inhibited. This wiring scheme ‘sharpens’ the tuning 
curves of neurons along the auditory pathway. The wiring scheme 
corresponds to the algorithmic level of analysis. The computational 
level of description is the mathematical description of decreased 
lateral inhibition. Thus, hearing loss leads to decreased input 
from the cochlea, which causes a decreased firing rate of the inhibi
tory neurons and thus to disinhibition of subsequent excitatory 
neurons. These properties can be easily written down in simple 
mathematical formulas. This means that the underlying mechan
isms of the lateral inhibition model of tinnitus are fully understood 
from specific neurotransmitter processes to an abstract mathemat
ical formulation. This is the goal of cognitive computational neuro
science. However, the fact that the model explains tinnitus 
manifestation on all scales does not say anything about the correct
ness of the model’s predictions. Indeed, a good model should be 
understood on all scales (implementational to computational), 
but it must also fit experimental observations, which is not the 
case in the Lateral Inhibition Model. Other models trying to explain 
tinnitus do not provide full explanatory power.

The thalamic bursting theory—which proposes that bursting 
neurons in the thalamus cause tinnitus—has a valid explanation 
for the origin of the spike bursts (low threshold calcium spikes, 
for details see Jeanmonod et al.60). However, it remains elusive, in 
terms of how these bursts cause tinnitus. Other top-down models 
—such as the predictive coding model,52 based on the Bayesian 
Brain theory—provide a valid mathematical description of the pro
posed mechanisms, but do not provide a full explanation of how the 
Bayesian statistics can be implemented in a neural network and 
thus in the brain.129 However, there exist some first approaches to
ward neural networks for Bayesian inference which will ultimately 
prove possible, but are still not fully developed.130-132 Other tinnitus 
models describe macro-phenomena such as the thalamo-cortical 
dysrhythmia,59 or describe tinnitus as a result of overlapping neur
al circuits.63 Those models are phenomenological, but do not pro
vide a mathematical description and thus are difficult to falsify or 
test in silico.

A critical role of stochastic resonance and central 
noise

In the following paragraph we provide an in-depth discussion of 
central noise and central gain, as possible causes for tinnitus, and 
consider how to adjudicate between—or combine—these two the
ories. To discuss these two models and their relationship, it is ne
cessary to introduce a proper nomenclature. Thus, in the 
following we refer to the mathematical description of Zeng, who 
describes central gain as a linear amplification factor g, which in
creases the input signal I (s = subjectively perceived loudness re
spectively evoked neural activity; cf. Chrostowski et al.32). Central 
noise N is a further additive term33,133 (Eq. 1).

s = g · I + N (1) 

Central gain increase is a collective term summarizing all me
chanisms that lead to an increased amplification of the input sig
nal (I ) along the auditory pathway (for an extensive review, see 
Auerbach et al.134). Therefore, the term central gain increase can 
refer to a decrease in inhibitory synaptic responses, an increase 

in excitatory synaptic responses, as well as enhanced intrinsic 
neuronal excitability.134 All of these mechanisms cause a multi
plicative amplification of the input signal (amplification 
factor: g). To sharpen the scientific language, it is necessary to 
distinguish between the observable effect (central gain increase) 
and the underlying neuronal principles (e.g. homeostatic plasti
city27,134). Central gain increase could be caused by homeostatic 
plasticity, which means that the average spike rate of affected 
neurons—after a decrease of neuronal input due to a hearing 
loss—is kept constant by plastic changes of the system (e.g. en
hanced intrinsic excitability, synaptic scaling, meta-plasticity134). 
Central gain and homeostatic plasticity are often used as syno
nyms in the context of tinnitus models, although they describe 
the problem on different levels.

The central noise model—in contrast to the central gain model 
—describes tinnitus as a consequence of increased spontaneous 
activity, which is added to the input signal (additive term, N ).33 In 
analogy to the relation of central gain and homeostatic plasticity, 
the underlying principle of the central noise model is stochastic 
resonance.135-137 The original central noise model of Zeng from 
2013 was exclusively based on psychophysical considerations and 
measurements, which means that the term s in Eq. 1 was meant 
to be the subjectively perceived loudness.33 Furthermore, the ori
ginal model makes no statements on the nature of the central 
noise, or on higher brain functions such as thalamic gating or pre
dictive coding etc., and thus provides no explanation what the 
neuronal signal looks like and why an addition of noise causes an 
ongoing conscious percept.

The novelty of the stochastic resonance model is based on the 
idea that the abstract concept of an additive central noise can be in
terpreted as real intrinsically generated neural noise, which in
creases hearing ability by exploiting the stochastic resonance 
effect. Thus, the term s in Eq. 1 is re-interpreted as actual neural 
activity.

We categorized the stochastic resonance model18,35,37 as an al
gorithmic level model on Marr’s scale (Fig. 1), which means that 
the calculations (Eq. 1 and the calculation of the autocorrelation 
function, cf. below) necessary to leverage the stochastic resonance 
effect should be linked to the neural substrate of the auditory path
way. This corresponds to the implementational level according to 
Marr. The stochastic resonance model (Fig. 2) is based on the idea 
that the auditory system continuously optimizes sensitivity via a 
feedback loop, which adapts the amplitude of the additive noise 
(central noise) to maximize information transmission. The infor
mation transmission is quantified via the autocorrelation of the sig
nal.18,35 Thus, one might call the inverse autocorrelation function 
the cost-function to be minimized. However, to calculate the auto
correlation of the signal, so-called neuronal delay lines are needed, 
which are prominent in two brain regions the cerebellum and the 
DCN.138 The mechanism behind the auto-correlation calculation 
based on delay lines is based on the fact that the signal transmis
sion is slowed down by the delay line through inter-neurons or un
myelinated nerve fibres.42 Thus, the delayed signal is then 
compared to the same signal at a later time point, which was not 
delayed. The delay serves the purpose to generate a time shift (in 
mathematical formulation of auto-correlation function commonly 
termed as lag-time τ), which allows us to compare one signal 
stream at several time points with itself.139,140

Another strong argument for the validity of the stochastic res
onance model is the fact that otherwise there is no plausible ex
planation for the cross-modal input from the somatosensory 
system to the DCN,141,142 except the notion that the somatosensory 
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system serves as the noise-generator of the stochastic resonance 
feedback loop.18 It is common knowledge that—for the stochastic 
resonance effect—the exact spectral composition of noise is irrele
vant.92,143 This suggests spontaneously firing neurons in the som
atosensory system are sufficient to trigger the stochastic 
resonance effect. In summary, the theoretical construct of an infor
mation transmission maximizing feedback can be mapped onto 
certain neuronal structures, with an architecture that is sufficient 
to perform the requisite calculations.

The whole stochastic resonance model is an intra-frequency 
channel model, which means that cross-talk between different 
frequency channels is not necessary to explain the emergence of 
tinnitus. As already described above, tinnitus is highly related to 
frequency channels, which are impaired by e.g. synaptopathy in 
the cochlea and a resulting (hidden) hearing loss.14 Frequencies 
are represented tonotopical along the whole auditory pathway 
up to the auditory cortex.144 Thus, it seems plausible that the 
amplitude of the neural noise added to each frequency channel 
of the DCN is tuned individually. Such a channel-wise optimiza
tion of the noise amplitude is the simplest explanation according 
to Occam’s razor and provides a plausible explanation for the fact 
that the tinnitus pitch is highly correlated to impaired frequency 
channels.37

Tinnitus as a result of multiplicative central gain or 
additive central noise?

Central gain increase and central noise increase cannot be fully de
coupled, for example, an increased excitability of neurons along the 
auditory pathway caused by homeostatic plasticity automatically 
leads to an amplification of neural noise. The fact that the additive 
neural noise (central noise) is amplified (central gain) along the 
auditory pathway is a direct consequence of the neuroanatomy of 
the auditory system. As the neural noise is already added in the 
DCN18 being the first processing stage of the auditory pathway, 
multiplicative amplification (central gain) has necessarily an effect 
on the noise.145

Thus, Eq. 1 could be altered so that the amplification factor also 
has an effect on the central noise:

s = g · (I + N) (2) 

As described above, the homeostatic plasticity mechanisms medi
ating central gain increase have been implicated in tinnitus gener
ation,146 however, these mechanisms are simply too slow to 
explain acute tinnitus phenomena after a noise trauma caused by 
a sudden loud stimulus.147

In contrast, neural circuits operating on faster time scales can 
explain acute tinnitus: namely, tinnitus is caused by a subcortical 
feedback loop adapting neural noise input into the auditory sys
tem.35 As described above and illustrated in Fig. 2 we suggest that 
stochastic resonance plays a critical role in not only generating tin
nitus but also restoring hearing to a certain degree.18,34,36

To illustrate this role, we interpret Eq. 2 in a classical signal de
tection task, in which the neural signal(s) has to reach a threshold 
for the input signal I to be detected.

In cases of hearing loss, the input I is effectively reduced. 
Therefore, to reach the same neural threshold, one could increase 
either the central noise N, or the central gain g, or both. Because in
creasing gain results in a squared increase in variance,133 which in
creases the difficulty of signal detection, it is not the most 
economical means of compensating for hearing loss in cognitive 
neural computation (e.g. Occam’s razor). Instead, it makes sense 
to add internal neural noise to lift weak input signals above the sen
sory threshold by means of stochastic resonance.135-137 In trad
itional stochastic resonance, a non-linear device such as hard 
thresholding and periodic signals, are needed.136 Recently, it has 
been shown that autocorrelation can serve as an estimator for the 
information content of the signal, even if it is non-periodic.35

The critical role of stochastic resonance is supported by broad 
empirical evidence: first, additional intrinsic neural noise18,41 as 
well as external acoustic noise38 can improve pure-tone hearing 
thresholds by ∼5 dB. However, this 5 dB threshold decrease (i.e. im
provement) does not explain why this mechanism is evolutionary 

Figure 2 Stochastic resonance model of tinnitus induction. In the healthy auditory system, the input signal (A) can pass the detection threshold result
ing in a supra-threshold signal as output (B). In case of hearing loss, the input signal remains below the threshold (C), resulting in zero output. However, 
if the optimum amount neural noise (D) is added to the weak signal, then signal plus noise can pass the threshold again (E), making a previously un
detectable signal, detectable again (F). The optimum amount of noise depends on the momentary statistics of the input signal and is continuously ad
justed via a feedback loop. This processing principle is called adaptive stochastic resonance.
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advantageous, as the cost of a potentially annoying and morbid tin
nitus perception may be high. In a computational model, it has 
been shown that frequency-specific intrinsic neural noise has the 
potential to significantly improve speech recognition by a far larger 
amount (up to a factor of 2).49 This improvement in speech compre
hension and the perception of complex sounds—which could also 
be important for orienting animals as warning sounds—could be 
an explanation for the emergence of this mechanism in our audi
tory system during evolution. Furthermore, a significantly im
proved speech perception could have major positive effects and 
might contribute to a decreased cognitive decline in elderly 
people.148,149

In recent studies, the fact that different modalities exploit sto
chastic resonance to improve the signal has been proven.40,150 It 
seems that stochastic resonance and especially cross-modal sto
chastic resonance is a universal principle of sensory processing.36

Second, central noise is needed to stabilize a biological system. 
Zeng showed that ‘mathematically, the loudness at threshold is 
infinite when the internal noise is zero (c = 0), and vice versa. This 
is a fundamental argument for why the brain has or needs 
internal noise because infinite loudness is clearly biologically 
unacceptable’.151

Third, as described above, the central noise model based on the 
stochastic resonance mechanism provides a mechanistic explan
ation for the purpose of the somatosensory projections to auditory 
nuclei such as the DCN.142,152,153 In fact, very recently, Koops and 
Eggermont argued that ‘increased and uncorrelated noise, poten
tially the result from a noise source outside of the auditory 
pathway’34 might play a major role in tinnitus development. 
Potentially, this somatosensory input is nothing else than intrinsic
ally generated neural noise, which is modulated in the DCN to le
verage stochastic resonance in the auditory system. This theory 
accords with the finding that tinnitus can be modulated by somato
sensory input like, e.g. jaw movement.154-156 Furthermore, tinnitus 
development can be prevented157-160 or suppressed158-160 by the 
presentation of external acoustic noise, which works best when 
the noise spectrum covers the impaired frequencies and the tin
nitus pitch.158-160 In a recent study, a novel approach was devel
oped combining somatosensory stimulation with auditory 
stimulation, to modulate the tinnitus loudness.161 Finally, it has 
been demonstrated that electrotactile stimulation of the fingertips 
enhances cochlear implant speech recognition in noise,162

Mandarin tone recognition163 and melody recognition.164 While 
the authors did not make any mention of stochastic resonance or 
internal noise, it is a reasonable assertion that the observed effect 
might have acted via cross-modal stochastic resonance.36

These arguments suggest that tinnitus is indeed caused by addi
tive neural noise (central noise) instead of a multiplicative gain. 
Central gain induced tinnitus would be characterized by increased 
evoked activity along the auditory pathway in tinnitus patients. 
Thus, auditory brainstem responses should have higher ampli
tudes in tinnitus patients compared to control patients. However, 
an increased evoked activity in tinnitus was refuted in several re
cent human patient as well as in animal studies.165-168 Increased 
evoked neural activity is related to hypersensitivity against mild 
sounds, the so-called hyperacusis. Thus, increased central gain is 
potentially a better fit to explain hyperacusis rather than 
tinnitus.167,168

Hyperacusis could be one missing key to disentangle central 
noise and central gain adaptations of the auditory system.

As described above, central gain and central noise cannot be 
fully disambiguated (Eq. 2) as both auditory input and added neural 

noise is amplified via homeostatic plasticity along the auditory 
pathway. Therefore, tinnitus severity should correlate with ampli
fication along the auditory pathway, which means that tinnitus se
verity should be highly correlated with the hyperacusis severity. 
This correlation was found in 2020 by Cederroth and coworkers.169

In summary, the three findings that first tinnitus patients without 
hyperacusis show no increase in evoked activity,165,167 second hy
peracusis patients show increased evoked activity167 and third tin
nitus severity correlates with hyperacusis,169 are a strong 
indication for the theory described above. To put the theory in a 
nutshell: central noise increase causes tinnitus, central gain in
crease causes hyperacusis, and central gain increase does not just 
cause hyperacusis but also amplifies the neural noise perceived 
as tinnitus.

Tinnitus and the Bayesian brain

The combined central gain and the central noise model provides a 
sophisticated and mathematically well developed explanation for 
the tinnitus-related neural hyperactivity in the brainstem. 
However, these theories do not explain why this hyperactivity is 
transmitted through the thalamus and induces a conscious experi
ence. Indeed, there exist several mechanisms in the brain that are 
supposed to prevent ongoing neural activity to be transmitted to 
the cortex170 and becoming a conscious and disturbing auditory 
percept. Up to now it is unclear why these mechanisms fail to 
do so. Furthermore, the stochastic resonance model does not 
make predictions on tinnitus heterogeneity. In particular, tin
nitus is probably always caused by hearing loss, but hearing 
loss does not necessarily lead to tinnitus.171 Additionally, the sto
chastic resonance model predicts that hearing aids should at 
least milden tinnitus, due to a downregulation of added neural 
noise in the DCN control circuit. However, while this is true for 
some patients, hearing aids do not milden tinnitus in all pa
tients,172 and this heterogeneity is not covered by the stochastic 
resonance model.

In the following, we provide an explanation of how and why the 
added central noise bypasses the filter mechanism of the brain and 
how this might also deliver solution approaches to the problem of 
tinnitus heterogeneity.

The only model with a solid mathematical background dealing 
with these issues is the sensory precision model from 
Sedley et al.,52 which is based on the algorithmic formulation of 
predictive coding within the computational ‘Bayesian brain’ hy
pothesis.53,65,129,173-175 Bayesian formulations of predictive process
ing are based on the Bayes theorem (Eq. 3)176,177 that describes, 
mathematically, how to update beliefs in the light of new incoming 
information. Furthermore, this account also proposes a solution to 
other paradoxical evidence from the tinnitus literature, including 
that certain types of brain activity linked to perception (gamma os
cillations) can show both positive and negative correlations with 
perceived tinnitus loudness, depending on how tinnitus loudness 
is manipulated.178

p(x|o)/ p(o|x)p(x) (3) 

Here, o corresponds to observations (e.g. sensorineural responses) 
and x to their inferred causes (e.g. auditory loudness). In this con
text, the brain is continuously updating its posterior belief distribu
tion p(x|o) about actual sound intensity x, given auditory afferents or 
observations o. This update is achieved by combining the prior ex
pectations p(x) (Fig. 3A), descending from the higher regions of the 
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processing hierarchy, with sensory input—reporting the likelihood 
or sensory evidence—ascending from below [p(o|x), Fig. 3B]. 
‘Likelihood’ refers to the probability that the pattern of sensory in
put indicates a particular underlying sensory event or cause. In the 
healthy system (no hearing loss, Fig. 3A–C) the default prediction 
(prior, Fig. 3A) would be that there is no auditory input. In silence, 
the likelihood is a broad distribution with a low mean (Fig. 3B), as 
there is exclusively spontaneous activity. This spontaneous activity 
has been termed a ‘tinnitus precursor’, which usually has a low pre
cision and is therefore not interpreted as auditory input. Reducing 
sensory precision is also called sensory attenuation. However, if the 
precision of the tinnitus precursor increases (or, sensory attenu
ation is insufficient) then the posterior shifts to the perception of 
a sound, and tinnitus occurs.

The occurrence of an external sound (evoked response) shifts 
the likelihood to higher values and the precision of the likelihood 
rises, as neuronal activity encoding a certain loudness level 
is generated, with a high precision. Therefore, the posterior 
belief is—although the prior predicts no input—that there is an 
auditory input, as precise sensory evidence shifts the posterior 
to higher values.

Starting from this configuration, the predictive coding model of 
tinnitus development can be structured in three main steps: (i) 
hearing loss (Fig. 3D); (ii) compensation of hearing loss through sto
chastic resonance and central gain; and (iii) increased precision of 
this spontaneous central noise (tinnitus precursor). A fourth step 
is thought to result in tinnitus becoming chronic, which is adjust
ment of auditory priors (shifting away from ‘silence’ as the default, 
to expecting a tinnitus-like sound); this allows the tinnitus precur
sor to be perceived even at relatively low precision levels, as it 
shows some concordance with auditory priors. The first step is 
hearing loss, which means that there is loss of precise input from 
the cochlea. Thus, the activity of the neurons along the auditory 
pathway is attenuated, which means that the likelihood becomes 
less precise in relation to the posterior (Fig. 3E). Thus, the posterior 
is shifted to lower values (Fig. 3F), and things are perceived as qui
eter or silent. This means that hearing loss and predictive coding 
alone are not sufficient to explain tinnitus. In a next step, the de
creased input through hearing loss is compensated by adding neur
al noise by means of stochastic resonance (Fig. 3G). This means that 
the mean of the likelihood [p(o|x) in Eq. 4, Fig. 3H, dark blue distribu
tion] is increased as neural activity (N in Eq. 2) is added to auditory 

Figure 3 Predictive coding model of tinnitus induction. The posterior (represents the percept) is the product of the likelihood (bottom-up neuronal sig
nal) and the prior (top-down prediction of the auditory input). The predictive coding hypothesis of tinnitus development is formalized in the Bayesian 
brain framework. The brain predicts the likelihood of the occurrence of a certain auditory input loudness [p(x), x: model] in one certain frequency chan
nel. The prior (prediction) is based on the experiences on how often certain auditory stimuli occurs and has nothing to do with the present neuronal 
signal coming from the cochlea. In the healthy case the prior distribution has a low mean (standard auditory input is zero, A). The likelihood p(o|x) (B) 
represents the bottom-up signal, respectively, the measurements of the sensor (cochlea and brainstem). The posterior is the probability that under the 
condition of one particular neuronal signal (spike rate) a certain stimulus loudness is the cause of that neural activity. In the healthy case, the low spon
taneous activity (B) is most probably the consequence of the absence of an auditory input. The effect that low spontaneous activity (with low precision) 
is assumed to be the consequence of no auditory input is called sensory attenuation (C, left side of the dashed curve). Decreased cochlear input due to 
hearing loss (D) shifts the likelihood (E) and consequently the posterior (F) to lower values, which means that a hearing loss does not directly cause 
tinnitus. Central noise (G) increases the spontaneous activity and thus increases the mean of the likelihood (H, dark blue distribution). The product 
of p(x) and p(o|x) is shifted to higher values (I, dark blue). Potentially, the precision of the likelihood is also increased (lower variance) through the central 
noise effect (H, cyan distribution), which further shifts the posterior to higher values (I, cyan), as the mean of the product of the probabilities is weighted 
with the precision. The increased neuronal activity is interpreted as auditory input, which means that there is a tinnitus percept. This effect can be 
amplified, as the continuous change of neural activity (through central gain and central noise) leads to continuous miss predictions. The prediction 
error between prior [p(x)] and likelihood [p(o|x)] is decreased by adapting the prior (J). Therefore, tinnitus becomes the standard prediction, which fur
ther manifests the phantom percept (L). The effect might be the correlate of chronic manifestation of tinnitus.
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input through the mechanism of stochastic resonance. This effect 
is further increased by the central gain amplification along the 
auditory pathway (g in Eq. 2, likelihood Fig. 3H, cyan distribution), 
further amplifying tinnitus loudness (posterior belief: Fig. 3I). 
There are good reasons to assume that the precision of the neuron
al signal is increased through subcortical phenomena: as described 
above, internal neural noise is not comparable with the pressure 
fluctuations (white uncorrelated acoustic noise) used to lift sub
threshold auditory signal above the detection threshold, as shown 
be Zeng and coworkers.38 Thus, noise increase might entail the 
addition of regular spike trains. Therefore, as the stochastic reson
ance feedback loop optimizes for a certain noise amplitude with 
low variance the precision of the likelihood might be increased 
(note that stochastic resonance is not limited to any particular 
noise92,143). Nevertheless, it is not obvious that central noise in
creases the sensory precision. The addition of regular spike trains 
or patterns to the cochlear signal might cause the system to run 
in an attractor. The number of possible neural states is limited as 
the neural noise causes a continuous activity and makes 
low-activity states very unlikely. This is in line with the therapeutic 
approaches of Tass and Popovych,179 who tried to get out of this 
neuronal attractor by presenting acoustic stimuli. An amplification 
through central gain in contrast to an additive noise might have the 
opposite effect, as a multiplicative term would increase the number 
of possible neural activity patterns. This fact indicates that central 
noise is a better complement to the predictive coding model of tin
nitus development. It is an upcoming challenge and important 
milestone to unravel the exact neuronal patterns that fulfil the 
properties described above.

Besides the fact that the increased spontaneous activity through 
central noise and central gain mechanisms changes the likelihood, 
it also leads to continuous prediction errors. Therefore, the final 
part of the model is an update of the prior (Fig. 3J). Thus, the prior 
is shifted to higher input loudness values to minimize the error be
tween likelihood and predictions (Fig. 3K). Physiologically, any ac
companying increase in the precision of these priors is usually 
associated with an increase in the postsynaptic gain or excitability 
of neuronal populations reporting prediction errors (usually super
ficial pyramidal cells in the cortex). See Benrimoh et al.,107 Bastos 
et al.,173 Adams et al.,180 Friston et al.,181 Kanai et al.,182 Shipp183

and Sterzer et al.184 for a predictive coding account of neuronal mes
sage passing and the role of precision weighted prediction errors in 
hallucinatory phenomena.

In short, the result is that the presence of auditory input be
comes the new default prediction and shifts the posterior to higher 
values (Fig. 3L). This final step could be the correlate of tinnitus and 
might explain why—in some patients—the restoration of hearing 
through, e.g. hearing aids does not cure tinnitus.

An important question is why divergent behaviour should occur 
in optimally functioning systems such as those involved in stochas
tic resonance and predictive coding; i.e. why should similar condi
tions, such as hearing loss, result in accepting central noise as a 
percept in some cases but not others. To address this, we must con
sider that what is ‘optimal’ varies according to the hierarchical level 
concerned, and the situational context. With regard to hierarchical 
level, accepting central noise as a percept reduces prediction error 
at the lower hierarchical level where the noise is generated, but (at 
least initially) results in the introduction of a prediction error at 
higher hierarchical levels by introducing an unexpected percept. 
Thus, the balance of priority between hierarchical levels may 
help to explain the emergence (or non-emergence) of tinnitus in 
different instances. Regarding wider context, we consider here 

stress as one example; in certain stressful situations, one is hyper
vigilant to a broad range of sensory inputs, particularly those which 
might indicate potential threats, which can include novel or previ
ously unanticipated ones. Such stress can be considered a relative 
shift of precision away from sensory priors, towards sensory likeli
hoods. This might explain the initial onset of tinnitus during stress, 
which has been reported.185 However, once default sensory priors 
have adjusted to accept tinnitus, the conflict between hierarchical 
levels disappears, as low-level likelihood and high-level prediction 
become concordant.

Conclusion and outlook
In conclusion, the combination of the process theory of central 
noise increase and adaptive stochastic resonance—as a bottom-up 
mechanism—together with the computational model of predictive 
coding—as a complementary top-down mechanism—provides an 
integrated explanation of tinnitus emergence. Here, bottom-up re
fers to the overall information flow, i.e. modification of signals ori
ginating from lower brain structures, like the cochlear nucleus and 
primary auditory cortex. It is important to note that this does not 
imply that the predictive coding framework is solely top-down or 
that the stochastic resonance model is solely bottom-up.

Furthermore, the models provide a mathematical framework, 
which can be used to make quantitative predictions that can be 
tested through novel experimental paradigms, e.g. for the calcula
tion of the autocorrelation function, specific neuronal delay-lines 
are needed. As the neuroanatomy along the auditory pathway is 
mostly known, one could calculate how long specific delay lines 
are and if they fit this hypothesis. Furthermore, one can look specif
ically for the noise generator—most probably in the somatosensory 
system—and characterize, e.g. the spectral composition of its out
put. Independent of these predictions, since both stochastic reson
ance and predictive coding as universal processing mechanisms 
are ubiquitous in the brain, we speculate that the presented inte
grative framework may extend to the perception of other sensory 
modalities and even beyond to certain aspects of cognition and be
haviour in general.

A current challenge is a network theory of predictive coding, 
which explains how these computations are implemented in the 
brain.129 Several studies have attempted to place predictive coding 
in the larger context of Bayesian belief updating in the 
brain.173,181,183,186-188 Furthermore, to unravel the exact characteris
tics of the neural noise necessary to significantly decrease sensory 
precision, is an important challenge that needs to be addressed in 
future studies.

Our integrated model of auditory (phantom) perception demon
strates that the fusion of computational neuroscience, AI and ex
perimental neuroscience leads to innovative ideas and paves the 
way for further advances in neuroscience and AI research. For in
stance, novel evaluation techniques for neurophysiological data 
based on AI and Bayesian statistics were recently established,189- 

192 the role of noise in neural networks and other biological infor
mation processing systems was considered193-196 and the benefit 
and application of noise and randomness in machine learning ap
proaches was further investigated.49,197,198 On the one hand, the fu
sion of these complementary fields may evince the neural 
mechanisms of tinnitus (CCN69) and information processing princi
ples that underwrite functional brain architectures. On the other 
hand, neuroscience-inspired AI113 may accelerate research in ma
chine learning. We hope that the four major steps towards a CCN 
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of tinnitus, i.e. (i) finding an exact language; (ii) developing a mech
anistic theory; (iii) testing the methods in fully specified test sys
tems; and (iv) merging AI with computational and experimental 
neuroscience, will afford novel opportunities in tinnitus research.
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